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Abstract 
  

  
During the years, we are witnessing a rapid change in the modeling and control of complex 
processes, which has necessitated employment of the approximate reasoning capacities of 
humans in the model identification and closed loop control of the uncertain and imprecision 
systems. One of the manifest of such intelligent schemes of modeling and control is the 
utilization of fuzzy logic based schemes, which has been facilitated the employment of 
computational capacities of the hardware.  
Although the intelligent methods could empower the designers to reach high speed of 
computation and safe process control strategies, they are not perfect and bring the 
imperfections. They made the closed loop behavior of the system not to be continuous neither 
smooth due to the application of min-max composition in the fuzzy structure.  
This thesis discusses on the alternative method of fuzzy modelling and control for the nonlinear 
processes, utilizing the smooth compositions. We introduce the modeling capacity of the 
smooth fuzzy models and then expand the formulation for the adaptive identification methods 
for the processes with the objective of incorporation to the model based predictive control 
schemes.   
The smooth fuzzy compositions construct an overall nonlinear smooth and continuous model 
of the system. Hence, in the optimization based manipulations and control algorithms the model 
will require fewer computations in optimization phase rather than the classical fuzzy min-max 
based modeling scheme.  It also provides an improvement in modeling accuracy and would be 
attractive for application to the systems with hybrid and switched dynamics with the limited 
number of discontinuity to obtain a continuous fuzzy model.  The smoothness property has also 
impacted the closed loop behavior of the system largely.  
Although, the combination of the iterative identification and model predictive control of the 
nonlinear processes have been directed many works in the academia and industry during the 
years; however, the smooth fuzzy structure will facilitate the employment of the experimental 
information of the system to closed loop structure with the minimum level of variations. To 
guarantee the stability of the scheme, we have considered the possibility of reaching the control 
horizon beyond the specific level to drag the system states inside the basin of attraction. 
Moreover, due to the smoothness of the scheme, the convergence of the results in face of 
uncertainties and disturbances will be faster, in comparison to the counterpart classical fuzzy 
schemes. It also can be easily tuned for the non-minimum phase and open loop unstable 
processes.  
The performance of the theoretical studies has been examined using several simulations to 
demonstrate the outperform of the proposed schemes to the traditional fuzzy structures. 
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Chapter 1 

Introduction 

The demand for the high quality products and energy saving methods has made the designers and 
practitioners in the industries to employ the integrated systems and tighter process design 
procedures to attain the safety standards and respect the environmental regulations. It has made 
the control problems evolve to be more complicated and challenging over the last few decades.  

To facilitate the solution finding combat of the sophisticated problems in the process industry, the 
designers always care about the implementation issues and endeavor to find the paths that the 
available computing facilities would be capable of analysis of the dynamic process for monitoring 
of the full process taking from the raw material pressure and concentration to the finished product 
outflow rate and the involved energy and temperature transformation.  

Taking into consideration that nearly all the variables are changing in time, the industrial 
processes are time varying, and beside that, almost all the transformation of processes are 
conducted and controlled by multivariable with nonlinear interactions, which induce the 
significant nonlinear track to the system input-output trajectory.  

The primer objective of the employment of the controllers in the industrial processes is to handle 
and modify the nonlinear trajectory of the system appropriately, and to influence the parameters 
efficiently to make the process run through the desired fashion, which can be interpreted as, 

• Safe operation of the process, with avoidance of the hazardous points of operation 
• keeping the production rates to the specific points, in view of the disturbances, faults and 

parametric changes, aging, etc. 
• Keeping the quality of products always reach and surplus the specified level, in view of 

different faults in the system, temperature change, etc. 

However, the scale to which the system can operate for fulfillment of the mentioned objectives 
normally depends on different factors. Firstly, it depends on the nature of the process and how the 
intrinsic parameters will allow us have the freedom to impact the functioning of the process. 
Second, the available hardware, on which the one can trust for better design or modification of 
the dynamic process. Third factors, is the deepness of the knowledge of the process varying 
characteristic and monitoring of the system variables, upon which the operator can take the best 
decision and implement the best running policy. 

It is so clear and understandable that the first and second factors are highly difficult to overcome. 
It means that, for instance, the control engineer cannot change intrinsic process characters, (to 
quit neither to expedite the time intervals for reaching the vapor from one unit to the next one); 
or the modification of the available hardware of the industry proceed fast with the advent of the 
digital computer innovations, are costly and in many cases impossible. Hence, the main challenge 
of the industrial process control will lie on the capacity to understand the process and the 
capability to infer from the available information of the processes, to take the best decision for 
fulfillment of the control process objectives.  

This fact highlights more the current trend in process identification and model building for further 
control objectives and process behavior analysis, with the rational consideration of the 
uncertainties, parametric changes and noises. This is why model based control by concept has 
become one of the most important dilemma in the process control domain recently.  

However, when it comes to the process control of the input-output data based models, the 
intelligent methods are always between the most demanded control strategies for the process 
adaptive and optimization based steering techniques to overcome the cumbersome situations.  
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The intelligent control schemes are normally considered the methods that combine the application 
of machine leaning techniques with the control theory [1]. They normally generalize the methods 
the human brains employs for functioning, leaning, detection, etc., to bring more flexibility, 
robustness and adaptive capacity to the computing based systems. Hence, the intelligent control 
systems are deemed to achieve the control goals, and the plants’ model description, when the 
parameters, variables, and ambient are not completely recognized and defined with the proper 
level of robustness and adaptiveness.  

 

1.1 Artificial Intelligence in Control 

As stated above, the recent demand of the industrial processes for more reliable control schemes 
to raise the capacity of the production lines and make the performance more flexible in view of 
the faults and disturbances, has made the intelligent schemes of modelling and control very 
attractive for the designers and practitioners, especially that they rely more on the available input-
output data and trust on the experience of the practitioners for dealing with the process challenges.  

During the years, the intelligent schemes for modelling and control have become known more 
with the neural networks and fuzzy logic based algorithms which could show the high level of 
performance and robustness due to their capacity for the complex and uncertain conditions over 
the wide operating domain.   

Artificial neural networks normally are designed to learn and infer from the stored data, which 
are supposed to emulate the human brain on the experiential basis while the fuzzy logic are 
assumed to function based on the linguistic expressions to emulate the human brain. In this debate, 
the soft computing algorithms are normally compared to the hard computing capacity, while the 
soft computing schemes are recognized by the fuzzy logic, neural networks and other verities of 
search techniques (includes genetic algorithms, convolutional fuzzy networks, etc.) in soft 
computing represents the hard computing schemes.  

The peculiarities of the hard computing are the precision, and category, whereas soft computing 
are recognized by their approximation and dis-positionality. While, the mentioned attributes also 
exist in the hard computing, however, the nature and tolerance of the imprecision and uncertainty 
are quite different and are known to reach an acceptable level to make the machine learning 
techniques useful and handy, especially in neuro-computing and curve fitting.  

The difference of soft computing and hard computing has opened a new era where many 
researchers have tried to take advantage of their combination, and many control techniques have 
appeared having the neural tools and fuzzy logic for complement of the classical technologies.  

The combination of the soft computing and hard computing skills have facilitated employing the 
experimental information of the system to run the system tracks the specific trajectory or gain the 
desired features in operation. This is while, the hard computing skills alone could rely mostly just 
on the mathematical models derived from the physical laws. This could enable the controller 
system operates safely in the time varying environment, shows robust properties to the changes 
in the plant’s dynamics and parametric variations, speeds up the stabilizing control behavior in 
the ill-defined and hazardous operations, and considers the structural restrictions and constraints.   

However, all the AI techniques could not bring the same capacities to the controlled systems. For 
instance, while the neural network model of the system on the back propagation basis could save 
the continuity and the smoothness of the model, the fuzzy structure of min-max basis made the 
model loses such feature of continuity and smoothness. It has made the controller design more 
complicated which could not rely on the derivate of the model. We will discuss more on such 
attributes of the fuzzy model in the coming parts of this thesis.   
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Fuzzy Logic 

As mentioned before, since the introduction, fuzzy logic has become one of the most attractive 
areas for research and also application to the industry. The control based on the linguistic 
approach has been appeared first in the works of Takagi and his colleagues [3] upon the fuzzy set 
definition of Zadeh in [4]. Since then, they have been employed for the control of processes in 
the diverse areas of application.  

Despite the success of fuzzy logic in model building and control of the nonlinear processes, the 
models on the basis of the skills and knowledge of operators are static, whose good performance 
is appreciated to the lengthy process of trial and error and the effort involved for the proper rule 
selection, especially when it comes to the nonlinear systems. Besides, almost all the industrial 
processes are time-variant, which has directed many of the research works for the robust controller 
design and fuzzy controller development upon the for customized models which will be detailed 
in Chapters 3 and Chapter 5.   

Adaptive fuzzy controller and adaptive fuzzy models are normally assumed to modify the fuzzy 
set definition, fuzzy membership function and the scaling factors. In this regards, such controllers 
(or models) also have been known as the self-tuning controllers [5] (or models). The modification 
of the fuzzy set parameters and fuzzy membership functions tune again the already designed fuzzy 
controllers (or models). There are also fuzzy model and controllers that alter the fuzzy rules in 
the process of modification, which often are called self-organizing controllers [6] (or models). 

The direct self-organizing fuzzy controllers, employ the system input-output data to evaluate the 
system performance and modify the controller rules, without any modification of the process 
model, while the indirect fuzzy controllers [7], make the alteration and modification in the system 
model before finding the next proper controller input to the real system. 

1.2 Motivations for Research  

As stated above, an interesting character of the artificial intelligence techniques that has made the 
soft computing methods so interesting is their capacity to overcome the imprecision and 
uncertainty and resolve the modelling and control problems on the basis of the experience of the 
operators in a robust and cost effective manner. However, there are differences between the 
popular artificial intelligence techniques. It is to say, the neural network based models and 
controllers upon the back propagation technique are differentiable, continuous and smooth, in 
contrast to the fuzzy logic based models and controllers, on the basis of widely used min-max 
compositions. 

Recently, smooth fuzzy compositions have been introduced which could narrow this gap, and 
make the fuzzy models differentiable, continuous and smooth as well. They could show superior 
performance to the widely used min-max compositions for modeling highly nonlinear industrial 
processes and for one-step ahead model predictive controller (MPC) design. 

Hence, the principal goal of carrying the present research is to,  

• Make contribution on the smoothness properties of fuzzy models, to find out why the 
smooth compositions show superior performance to the min-max compositions 

• Incorporate smooth fuzzy framework for adaptive modelling of the nonlinear uncertain 
system in the Takagi-Sugeno structure 

• Incorporate smooth fuzzy framework for long horizon MPC control of the nonlinear 
uncertain models in the Takagi-Sugeno structure 

We will make novel fusion of ideas drawn from the fields of MPC, identification and fuzzy logic, 
on the basis of smooth composition to treat the nonlinear systems and will demonstrate through 
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the theoretical studies and the comprehensive level of simulations the higher remarkable attributes 
of the smooth fuzzy compositions compared to the classical fuzzy ones, in their optimum 
functioning and the speed of convergence, with the capability of application to the unstable 
systems and the delayed processes. 

1.3 Contributions of The Thesis   

The research work during the period of the PhD program has been targeted to cover the following 
topics:  

Fuzzy Modeling  

The properties of smooth fuzzy models have been investigated and their approximation characters 
have been explored.  We found that this modeling method offers a continuous and derivative 
model for representing nonlinear dynamic systems.  Such properties will be employed in the 
subsequent sections for optimization based algorithms on the purpose of system identification and 
model predictive controller design.  Such structure also can be utilized for making a continuous 
model for the switched and hybrid systems with limited number of switches.    

System Identification  

We have employed the smoothness properties of the fuzzy models introduced above to make a 
smooth fuzzy structure and thereby, obtain the optimum model of the dynamic system considering 
the possible time variations of the system parameters and the disturbances. We have tested the 
algorithm for the test problem as well as the highly nonlinear dynamic system of CSTR under 
uncertainties.   

Although, we are witnessing different methods of identification of fuzzy models for the nonlinear 
processes, however, they are mostly on the basis of min-max compositions, which are not 
differentiable which lead to the construction of a non-smooth and non-continuous optimization 
problem. Hence, the proposed method facilitates the implementation issues and shows the faster 
convergence rate. 

Model Predictive Control  

Model predictive control is based on the employment of the optimization methods through the 
application of the modern computer-based hardware. Since normally the fuzzy models are 
constructed based on the min-max compositions, which are non-differentiable, hence, the use of 
such fuzzy models generally necessitates to resort to the techniques for solving the NP 
optimization problems, which are quite difficult. Hence, we have proposed the smooth fuzzy 
model structure to make up a control algorithm, which functions very efficient based on the 
mathematical derivative of the model. Therefore, the proposed model predictive control scheme 
targeted the long horizon. The ability of employing long horizon control for MPC can guarantee 
the stability of the obtained controller.   

Adaptive Models 

In the thesis we have developed identification and the MPC controller schemes based on the 
iterative methods of optimization. Hence, both the modeling and control structures are able to 
consider the parametric changes into account and thereby, give rise to adaptive control schemes 
for the uncertain systems.  This propose advantages to the traditional approach of the fuzzy 
systems.   

Robustness Properties 
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In the industrial processes, the improvement of the performance often is attained at the cost of 
deterioration of the robustness properties. Hence, in this work, we tried to demonstrate the 
acceptable betterment in the robustness properties of the smooth fuzzy models and controller for 
the working conditions considering the noises and disturbances different from the condition where 
the model has been identified or the controller has been tuned.  

 1.4 Overview of The Thesis 

The current thesis comprises six chapters to present the investigation has been done during the 
PhD program.  An overview of the contents of each chapter of this thesis is as follows. 

• Chapter 1 

  
This chapter provides background information on our research project and examines the 
important contemporary challenges of industrial process control. The concepts of model 
fuzzy control and identification are briefly introduced. The emphasis in the second case has 
been on drawing the attention of the reader to the most important trends and to highlight the 
system control applications, with particular emphasis to fuzzy logic.  

 
• Chapter 2 
  
Fuzzy modelling is a procedure for developing fuzzy membership functions and fuzzy rules 
from a given data set. This chapter begins by introducing the basic concepts and definitions 
involved in fuzzy modelling. These concepts are used to examine various fuzzy modelling 
approaches that have been proposed in the literature.  

 
• Chapter 3  
 
In this chapter the different fuzzy composition schemes are being presented. We will also 
review the state of art and earlier contribution and results on the smooth fuzzy compositions 
and smooth fuzzy systems.   

 
• Chapter 4  
 
This chapter starts by describing the Newton based fuzzy identification method and will 
continue with describing self-learning model scheme.  Then, we will apply the method to 
model a benchmark example and will extend it to a CSTR system.   
 
• Chapter 5 
 
This chapter emphasizes the development of the conceptual framework for a fuzzy model 
predictive control strategy based on the fuzzy modeling approach presented in Chapter 4.  The 
focus will be on the analytical approaches of designing a long range predictive control 
algorithm.  Compared to the earlier works, we intend to extend the prediction and control 
horizons used by the controller. The much lower computational requirements of the analytical 
approach provide it with a distinct advantage over the numerical approach.   

 
Employing the analytical approach, we will not use any fuzzy model linearization, hence, we 
will expect better performance, which has been explored explicitly.  Since the performance 
of the controller in the presence of noise and under process conditions quite different from 
that used for the learning and identification of the process, the robustness of the model has 
been explored both analytically and in experience.  We note that, the fuzzy model obtained 
through the algorithm is assumed to be dynamic, according to the system last data, which 
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makes the whole structure, sensitive to the system disturbance, parameter variations and 
uncertainties.   

 
• Chapter 6 

 
This chapter summarizes the most important findings of this research project and makes 
recommendations for further research work in the same area.  
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Chapter 2 

Fuzzy Logic 

 In this chapter, we set forth the basic mathematical ideas used in fuzzy modeling and control. We 
will start explanation of these ideas easily and their applications will be expanded upon in later 
chapters. 

2.1 Introduction 

Fuzzy set theory is assumed globally to be the way of representation of the imprecise data. After 
the introduction by Zadeh, it has been widely utilized for the mathematical interpretation of the 
uncertainty and vagueness to formulate the imprecise reality.   

The application of Fuzzy set theory has empowered the engineers to formulate the oral description 
of the dynamical behavior of the systems to develop advanced control methods. The integration 
of the experimental information and uncertain expectation of the real world as the component of 
the algorithms, has extended the capability of the engineers to think beyond the physical laws and 
hence, they could overcome several difficulties in the system modelling and control domain. First, 
the environmental effects and the ambient disturbances will be accounted easier in the fuzzy 
model based description of the industrial processes. This feature becomes more prominent when 
it comes to the distributed, stochastic and the nonlinear systems. Second, in the modeling of the 
large scale system, the are many unknown variables governed by the unknown causal 
relationships, that are either difficult to measure and take into account in the mathematical 
formulations, or are expensive computationally or physically to measure and embed in the 
system´s model.   

Hence, when the tradeoff between the precision and the significance of the statement for 
formulation of the system behavior goes toward losing the exclusive characteristic of the system, 
in view of the (in)compatibility of the variable and the complexity of the model, the role of fuzzy 
logic in the system model making becomes more prominent. Indeed, fuzzy is the nonlinear 
mapping of the input to the output of the system, under the shadow of the experience and 
knowledge of the operator, to consider the different environmental effects and the ambient 
disturbances into account. In fact, the capacity of defining different regions of normal and 
abnormal working conditions has made the fuzzy logic so rich to be able to overcome the 
enormous possibilities of the system functioning. This richness is along the capacity of the fuzzy 
models to be enough accurate to include the linguistic and rule-based form of the desired operation 
of the system, instead of being constructed upon the pure mathematical formulations, and 
reasonably complex to provide solution for the available computing capacity of the industrial 
hardware.  

From the structural point of view, fuzzy model is a combination of the fuzzification of the real 
worlds variables through the membership functions, setting fuzzy rules for the given experimental 
input-output data and the defuzzification step. Hence, we intend to introduce the basic concepts 
and definition of fuzzy modeling paradigm in this chapter. This chapter concludes with the 
comparison of the different modeling approaches, through the relational matrix based style and 
fuzzy rule based style, proposed over the years in the literature.   

2.2. Preliminaries  

Fuzzy Set 
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A Fuzzy set is assumed to be the extension of the ordinary crisp set [7,8], where each element of 
the set is a member of fuzzy set upon a certain degree of membership. The degree of membership 
is defined to take value between 0 and 1; (while in the crisp set theory an element is definitely a 
member or is not a member). Hence, the fuzzy set F in a universe of discourse  𝑈 = {𝑢𝑖, 𝑖 =
1,⋯ , 𝑛} by its membership function will be mathematically written as, 

𝜇𝐹 = 𝑈 → [0,1]          
 (2.1) 

If 𝜇𝐹(𝑢𝑖) takes the boundary values of 0 or 1, then, the  set will be changed to be ordinary rather 
than fuzzy.. However, considering 𝑈 to be continuous, then, a set  𝐹 will be defined as below to 
be fuzzy,  

𝐹 = ∫ 𝜇𝐹(𝑢)/𝑢𝑈
          

 (2.2) 

Similarly, in the discrete domain, the set 𝐹 should be presented as following to be fuzzy,   

𝐹 = ∑ 𝜇𝐹(𝑢𝑖)/𝑢𝑖
𝑛
𝑖=1           

 (2.3) 

Linguistic Variables 

A linguistic variable normally is considered to be a variable of the fuzzy number, where the fuzzy 
number is predefined to be from a normal and convex fuzzy set. Also, a variable of values defined 
by the linguistic terms is known to be a linguistic variable. For instance, if we define the term 
"very cheap" for a price below about 40 euros, "cheap " for a price about 50 euros, "moderate" 
for a price close to 60 euros, "expensive " for a prices about 70 euros and " very expensive " for 
a price above about 80 euros, then the linguistic values of price in the domain zeros to hundred 
and the associated variable could be 

T(price) = {very cheap, cheap, moderate, expensive, very expensive} 

Operation on Sets 

The operations for the fuzzy sets are being done through the membership functions of the 
associated sets. To clear up,  suppose  𝐴 and 𝐵 be two fuzzy sets in the a universe of discourse  𝑈 
defined, respectively, by two membership functions 𝜇𝐴 and 𝜇𝐵. 

Definition 2.1. Union: the membership function  𝜇𝐴∪𝐵 corresponding to the union  𝐴 ∪ 𝐵  for all 
𝑢 ∈ 𝑈 can be defined as  𝜇𝐴∪𝐵(𝑢) = max{(𝜇𝐴(𝑢), 𝜇𝐵(𝑢)}.  

Definition 2.2. Intersection: the membership function 𝜇𝐴∩𝐵 corresponding to the intersection  𝐴 ∩
𝐵  for all 𝑢 ∈ 𝑈  can be defined as  𝜇𝐴∩𝐵(𝑢) = min{(𝜇𝐴(𝑢), 𝜇𝐵(𝑢)}. 

Definition 2.3. Fuzzy relation: A fuzzy relation as an n-array 
{[(𝑢1, ⋯ , 𝑢𝑛), 𝜇𝑅(𝑢1,⋯ , 𝑢𝑛)]|(𝑢1,⋯ , 𝑢𝑛) ∈  𝑈1 ×⋯× 𝑈𝑛}, is a fuzzy set in domain of 
𝑈1 ×⋯× 𝑈𝑛 .  

Definition 2.4. Sup-star composition: The sup-star composition of R and S expressed as 𝑅 ∘ 𝑆 for 
two fuzzy relations R and S over the domain 𝑈 × 𝑉  and 𝑈 × 𝑉, will be: 

 𝑅 ∘ 𝑆 = {[(𝑢, 𝑤), sup
𝑣
(𝜇𝑅(𝑢, 𝑣) ∗  𝜇𝑆(𝑣, 𝑤))] , 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉,𝑤 ∈ 𝑊  }    

 (2.4) 
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where * is considered as minimum value of the arguments. The Sup-star composition is itself a 
fuzzy relation, and is considered as a class of composition of triangular norms (t-norms) and co-
norms (s-norms). We will return to this point and talk more on the fuzzy interface and 
compositions later in chapter 3.   

Approximate Reasoning 

The approximate reasoning, based on the definition, is make inference of the available data, which 
is carried out mostly upon the generalization of the results. To illustrate our interpretation of the 
approximate reasoning here, assume the fuzzy sets A, A', B and B' as: 

Premise 1: x is A'   

Premise 2: if x is A then y is B   

Simply speaking the reasoning upon the Premise 1 and Premise 2 will be, 

Consequent: y is B'   

However, naturally the reasoning cannot be deduced always by inspection neither in a unique 
way. Normally, the approximate reasoning is carried out upon the compositional rule for the 
inference.  

Definition 2.5. Sup-star compositional:  For the fuzzy relation R in  𝑈 × 𝑉, and considering x as 
a fuzzy set of 𝑈, the sup-star compositional rule for the inference expresses that the fuzzy set y in  
𝑉 will be induced from x upon the formula: 

𝑦 = 𝑥 ∘ 𝑅           
 (2.5) 

Similar to the above definition, different compositional rule of inference has been developed and 
introduced, upon the employed operations on the fuzzy sets.  We will talk more on the fuzzy 
operations and compositions in the next chapter. 

Fuzzy Logic System 

From the engineering view point of practical usage of the fuzzy logic, the operator is supposed to 
set the gauges and scale up the controllers upon the proper level upon the deduction of the fuzzy 
reasoning schemes. However, both the input and out of the fuzzy systems are number and the 
operator needs to have the right number to employ to make the desired functioning of the system. 
Therefore, it is required to have "fuzzifier" to convert the numbers in crisp set of the real world 
to the fuzzy numbers and "defuzzifier" to do the converse in returning back to the real world [9]. 
The combination of four elements of fuzzifier, rule base, inference engine and defuzzifier is called 
to be a fuzzy logic system (FLS), which is depicted in Figure 2.1.  

Functioning of the fuzzifier is to scale up the input variables into the proper value in the universe 
of discourse, upon a predefine mapping. This is very similar to the fuzzification step, where the 
numerical data is translated into the linguistic values [10,11].  

Converse to fuzzification, the defuzzification is to evaluate the output variable in a crisp value, 
from the result of the reasoning in the inference engine. In the industrial processes, normally, the 
defuzzification involves the scaling step, where the range of output variables becomes a numerical 
value upon the domain of the involved application. 

The fuzzy rule presents the base of logic for description of the relations between input and output 
of the fuzzy system. Such rules are the principle component in the fuzzy logic paradigm, that 
emulates the human brain behavior for proper interpretation of situations and surroundings for  
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Figure 2.1. Principal structure of the fuzzy logic systems. 

intelligent functioning for the logical decision making, pattern recognition, approximate 
reasoning, predictions, etc. The fuzzy rule can be manifested through the relational matrixes or 
be transparent in the IF-THEN style.  

Fuzzy Rules 

The fuzzy rules normally are defined in the IF-THEN style: 

𝑅𝑙: IF 𝑥1 is 𝐹1𝑙 and ⋯and IF 𝑥𝑛 is 𝐹𝑛𝑙  THEN 𝑦 is 𝐺𝑙       
 (2.6) 

where    𝑥̅ = (𝑥1,⋯ , 𝑥𝑛)𝑇 ∈ 𝑈 and 𝑦 ∈ 𝑌 are supposed to be, respectively, the input vector and 
the output vector to the fuzzy system, 𝐹𝑖𝑙   and 𝐺𝑙    are assumed, respectively, as labels for the 
fuzzy sets in domains 𝑋𝑖 and 𝑌, and  𝑙 = 1,⋯ , 𝑟.  is the rule number. In (2.6), corresponding to 
each fuzzy IF-THEN rule, a fuzzy implication  𝐹1𝑙 ×⋯𝐹𝑛𝑙 → 𝐺𝑙  is defined on per. 

Different fuzzy implication rules have been introduced in the previous works for interpretation of 
the multi-variable fuzzy logic systems. We summarize the most common fuzzy implication rule 
as follows, 

Minimum operation: 

 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙( 𝑥̅, 𝑦) = min [𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙 (𝑥̅), 𝜇𝐺𝑙(𝑦)]      
 (2.7) 

Product operation: 

 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙( 𝑥̅, 𝑦)=𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙 (𝑥̅) ⋅ 𝜇𝐺𝑙(𝑦)       
 (2.8) 

Arithmetic operation: 

 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙( 𝑥̅, 𝑦) = min [1, 1 − 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙 (𝑥̅) + 𝜇𝐺𝑙(𝑦)]     
 (2.9) 

Max-min composite operation: 

𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙
( 𝑥̅, 𝑦) = max {min [𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙

(𝑥̅), 𝜇𝐺𝑙(𝑦)] , 1 − 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙
(𝑥̅) }   

 (2.10) 

where 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙 (𝑥̅) is defined as, 
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𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙
(𝑥̅) = 𝜇𝐹1𝑙

(𝑥1) ∗ ⋯∗ 𝜇𝐹𝑛𝑙
(𝑥𝑛).         

 (2.11) 

Here the symbol "*" corresponds to the conjunction "and" in (2.10), which is known to be called 
as the t-norm. We will talk on t-norms, their properties and their different operations later in this 
thesis.  

Fuzzy Inference  

The fuzzy inference is supposed to make a mapping of fuzzy sets in 𝑈 to the fuzzy sets in 𝑌. The 
fuzzy inference is the exposition of the defined IF-THEN rules, which perform the calculations 
using the composition of operations in the fuzzy sets. 

To clear up,  assume 𝐴𝑥 as the fuzzy set in 𝑈; and for each  𝑅(𝑙)  of (2.10) the fuzzy inference 
defines the fuzzy set 𝐴𝑥 ∘ 𝑅(𝑙)  , into 𝑌. This mapping is computed upon the composition of 
operations for interpretation of the rule of inference as: 

𝜇𝐴𝑥∘𝑅(𝑙)
(𝑦) = sup

x̅∈𝑈
[𝜇𝐴𝑥(𝑥̅) ∗ 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙

( 𝑥̅, 𝑦)]      

 (2.12) 

where 𝜇𝐹1𝑙×⋯×𝐹𝑛𝑙→𝐺𝑙( 𝑥̅, 𝑦) is the fuzzy implication rule from the formula (2.7)-(2.11). 

In the general case, the final fuzzy set, 𝐴𝑥 ∘ (𝑅(1),⋯ , 𝑅(𝑀)),  is calculated upon the M rules 
defined by the fuzzy rules which is obtained using the fuzzy disjunction: 

 𝜇𝐴𝑥∘(𝑅(1),⋯,𝑅(𝑀))  (𝑦) = 𝜇𝐴𝑥∘𝑅(1) ⊗⋯ ⊗ 𝜇𝐴𝑥∘𝑅(𝑀)(𝑦).       
 (2.13) 

 Here the symbol "⊗" is called to be the t-conorm. We will talk on t-conorm, their properties and 
their different operations later in this thesis.  

Fuzzifier 

The fuzzifier is to map the crisp point 𝑥̅ = (𝑥1,⋯ , 𝑥𝑛)𝑇 ∈ 𝑈  into the fuzzy set  𝐴𝑥 in 𝑈. Upon 
the widely used fuzzifier scheme, for 𝐴𝑥 with the fuzzy singleton with support 𝑥̅  we would have 

• 𝜇𝐴𝑥(𝑥
′) = 1 for  𝑥′ = 𝑥̅ and  

• 𝜇𝐴𝑥(𝑥
′) = 0 for all other 𝑥′ ∈ 𝑈 with 𝑥′ ≠ 𝑥̅ 

In the other style, the definition is as follows,   

• 𝜇𝐴𝑥(𝑥̅) = 1 for  𝑥′ = 𝑥̅ and  
• 𝜇𝐴𝑥(𝑥

′) decreases from 1 as  𝑥′ moves away from 𝑥̅,  𝑥′ ≠ 𝑥̅  (2.14) 

 Defuzzifier 

The defuzzifier is assumed to map fuzzy sets in output into the crisp set of the output. Two 
commonly used choices of the deffuzifier are,   

• Maximum defuzzifier: 

𝑦 = arg 𝑠𝑢𝑝𝑦′∈𝑌 [ 𝜇𝐴𝑥∘(𝑅(1),⋯,𝑅(𝑀))  (𝑦′)]        
 (2.15) 

• Centre-average (or centroid) defuzzifier: 
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𝑦 =
Σ𝑙=1
𝑀 𝑦′( 𝜇

𝐴𝑥∘𝑅
(𝑙)(𝑦

𝑙)) 

Σ𝑙=1
𝑀 ( 𝜇

𝐴𝑥∘𝑅
(𝑙)(𝑦

𝑙))
          

 (2.16) 

where  𝑦𝑙 is the point of Y where 𝜇𝐺(𝑙)(𝑦)   reaches the maximum.  

 

2.3.  Fuzzy Model Selection 

In the last section we have discussed the four principal elements of the fuzzy logic system. Hence, 
for each element, there are a certain degree of freedom to shape up the fuzzy model through the 
proper selection of schemes from the available possibilities. To summarize, it is notable to say 
that, we could decide which type of fuzzification to utilize (i.e. singleton or nonsingleton), we 
could decide which shape of the membership functions to use, (triangular, trapezoidal, Gaussian, 
etc.), we choose their parameters to be fixed during a training procedure or varies, and defuzzifier 
scheme to be maximum or centre-average.  Besides, one can choose from the available 
compositions (e.g. max-mm, max-product) and select the most appropriate inference scheme 
(minimum, product, etc.) to gain the highest level of performance from the fuzzy model building, 
according to the desired objective. - 

The final formulation to obtain the output of the fuzzy logic systems, can be rewritten through the 
the product operator for inference operation, with the employment of the center-average 
defuzzifier, product inference and singleton fuzzifier, as follows,  

𝑦 =
Σ𝑙=1
𝑀 𝑦′( ∏ 𝜇

𝐹𝑖
𝑙(𝑥𝑖)

𝑛
𝑖=1 ) 

Σ𝑙=1
𝑀 ( ∏ 𝜇

𝐹𝑖
𝑙(𝑥𝑖)

𝑛
𝑖=1 )

          

 (2.17) 

where 𝑦′ is the point where 𝜇𝐺𝑙 reaches the maximum value. This is the formulation that manifests 
the fuzzy logic system in a global prospect of function approximation. We will return to this 
formulation in Chapter 4 to deduce the properties of the fuzzy logic model upon the application 
of the smooth fuzzy compositions.  

Relational Fuzzy Model  

Relational fuzzy models rather than the IF-THEN rule based fuzzy models, rely on the relational 
arrays and matrixed for manifestation of the input-output relationship. The matrix considers any 
possible combination of input-output variable and assigns a value to that. This value is supposed 
to be between zero and one, and represents the possibility or truth of that particular relationship. 
Hence, the strongest relationship is valued one and the zero is assigned to the weakest relationship 
of the considered input-output relationship. The system description for the relational fuzzy model 
is as follows, 

The common identification schemes for identification of the relational fuzzy models is on the 
basis of Cartesian product of input-output data, known as the linguistic approach.  In this scheme 
the logical examination is used for determination of the degree of fulfillment of the rule for a 
particular data point. Hence, if the degree of fulfillment is more than the predefined threshold, it 
would be considered as a valid rule and subsequently, a rule table will be constructed with the 
entries of 1 and zero, corresponding to location of the valid rules. Although the relational models 
have shown the satisfactory results, however, they suffer from the incapacity for the on-line model 
modification and the requirement of huge space for the saving the arrays and tables for the high 
dimensional and large scale systems.  
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Conclusions 

In this chapter different fuzzy modeling schemes have been introduced. They can be constructed 
either in the known IF-THEN style or be manifested in the relational matrix based schemes. We 
have tried to discuss briefly on different elements in the fuzzy model structure of fuzzifier, 
defuzzifier, fuzzy inference and approximation and the related compositions and operators. The 
measures to employ before taking decision on the intended shape of the fuzzy model will greatly 
depend on the intended application. However, in the control of industrial processes, model 
accuracy, on-line learning and modification capability, the computational requirements, and the 
convergence rate for the parameters normally become prominent. We will talk more on such 
attributes in the following chapters. Also, we will study how fuzzy compositions will bring about 
different attributes, by which will impact on the capacity of the fuzzy logic to be incorporated to 
the different application in system identification and control.  
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Chapter 3 

Smooth Fuzzy Models (State of Art) 

 In this chapter, we review different fuzzy compositions and study their characters. Then, we 
review the state of art of smooth fuzzy system development for system modeling, identification 
and control schemes. These concepts will be employed for further theory development in the 
subsequent chapters.  

3.1. Introduction 

Although the most common operations for expression of AND, OR, and NOT are minimum, and 
maximum, however, there are more definitions of the operators for interpretation of the operations 
on the fuzzy sets. Hence, the subject of the next sections is these operations [8-11].   

Definition 3.1: Triangular norm. A mapping   

 𝑇: [0,1] × [0,1] → [0,1]        
 (3.1) 

is called as triangular norm (t-norm as abbreviation) iff for each argument, it is symmetric, 
associative and non-decreasing. Besides, the value 𝑇 (𝑎, 1) = 𝑎 for all  𝑎 ∈[0,1]. In other 
interpretation, any t-norm 𝑇  would satisfy the below properties: 

Commutative:  

𝑇(𝑎, 𝑏) = T(b, a), ∀ 𝑎, 𝑏 ∈[0,1].        
 (3.2) 

Associative:  

𝑇(𝑎, 𝑇(𝑏, 𝑐)) = T(T(a, b, c)),  ∀ 𝑎, 𝑏, 𝑐 ∈[0,1].       (3.3) 

Monotone: 

𝑇(𝑎, 𝑏) ≤ 𝑇(𝑐, 𝑑), 𝑖𝑓 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑        
 (3.4) 

One Identity: 

𝑇(𝑎, 1) = a, ∀a ∈ (0,1)         
 (3.5) 

Normally, the t-norms are expressed as 𝑎 ∗ 𝑏 = 𝑇(𝑎, 𝑏), which consider to be functions of two 
variables. The basic t-norms defined in the literature are: 

1- Min t-norm 
𝑇(𝑎, 𝑏) = min (𝑎, 𝑏) 

2- Product t-norm 
𝑇𝑃(𝑎, 𝑏) = 𝑎 ⋅ 𝑏 

3- Lukasicwicz t-norm 
𝑇𝐿(𝑎, 𝑏) = max (𝑎 + 𝑏 − 1,0) 

4- Weak t-norm 

𝑇(𝑎, 𝑏) = {
min(𝑎, 𝑏)    max(𝑎, 𝑏) = 1

0                      𝑜. 𝑤
 

5- Hamacher t-norm 
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𝑇𝐻(𝑎, 𝑏) =
𝑎𝑏

𝛾 + (1 − 𝛾)  ∥ 𝑎 + 𝑏 − 𝑎𝑏 ∥
   𝛾 ≥ 0 

6- Doubois and Prade t-norm  

𝑇𝐷(𝑎, 𝑏) =
𝑎𝑏

 max (𝑎, 𝑏, 𝛼)
    𝛼 ∈ (0,1) 

7- Yager t-norm 
𝑇𝑌(𝑎, 𝑏) = 1 −min {1, √(1 − 𝑎 )

𝑝 + (1 − 𝑏)𝑝
𝑝

}   𝑝 > 0 
8- Frank t-norm 

𝑇𝐹(𝑎, 𝑏) =  

{
 
 

 
 
          min(a, b)                                                   𝑖𝑓 𝜆 = 0 

            TP(a, b)                                                        𝑖𝑓 𝜆 = 0 

          TL(a, b)                                                     𝑖𝑓 𝜆 = 0 

1 − logλ [1 +
(𝜆𝑎 − 1 )(𝜆𝑏 − 1)

𝜆 − 1
 ]                  𝑜. 𝑤

 

 
 

All t-norms may be extended, through associativity, to  𝑛 > 2 arguments.  A t-norm 𝑇  is called 
strict if 𝑇  is strictly increasing in each argument.  

Definition 3.2 (Archimedean):  A t-norm 𝑇 is consider as Archimedean iff  it is continuous and  
𝑇(𝑎, 𝑎) < 𝑎 for all 𝑎 ∈(0,1).  

Proposition 3.1: Every Archimedean t-norm 𝑇 can be expressed by the continuous and 
decreasing function  𝑓: [0,1] → [0,∞] and 𝑓(1) = 0 where 

𝑇(𝑎, 𝑏) = 𝑓−1(min{𝑓(𝑥) + 𝑓(𝑦), 𝑓(0)}).   
 (3.6) 

In this case, the function 𝑓 is called the additive generator for the t-norm 𝑇. 

Proposition 3.2: All continuous t-norms introduced above, other than minimum, are 
Archimedean. 

Definition 3.3: If 𝑇(𝑎, 𝑏) = 0 holds for some 𝑎, 𝑏 ∈ (0,1), then the t-norm 𝑇 is called nilpotent. 

Example 3.1: Every Lukasiewicz t-norm is the prototype of a nilpotent t-norm. 

Definition 3.4: An Archimedean t-norm is said strict when  𝑇(𝑎, 𝑎) = 0 only for 𝑎 = 0.  

Example 3.2: Every t-norm of product is the prototype of a strict t-norm.  

Definition 3.5: Consider two t-norms 𝑇1, and  𝑇2. Then, 𝑇1 is said to be weaker than  𝑇2 (with 
the notation 𝑇1 ≤ 𝑇2 ) if 𝑇1(𝑎, 𝑏) ≤ 𝑇2(𝑎, 𝑏) for all 𝑎, 𝑏 ∈ [0,1]. 

 Definition 3.6: Triangular conorm. A mapping  

𝑆: [0,1] × [0,1] → [0,1]    
 (3.7) 

is a called triangular co-norm (or in abbreviation t-conorm) provided that in each argument, it be 
symmetric, associative, non-decreasing. Moreover, 𝑆 (𝑎, 0) = 𝑎 for all  𝑎 ∈[0,1].  As a result, 
any t-conorm S will satisfy the properties:  

Commutative:  
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𝑆(𝑎, 𝑏) = S(b, a), ∀ 𝑎, 𝑏 ∈[0,1].        
 (3.8) 

Associative:  

𝑆(𝑎, 𝑆(𝑏, 𝑐)) = S(S(a, b, c)),  ∀ 𝑎, 𝑏, 𝑐 ∈[0,1].       (3.9) 

Monotone: 

𝑆(𝑎, 𝑏) ≤ 𝑆(𝑐, 𝑑), 𝑖𝑓 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑         
 (3.10) 

One Identity: 

𝑆(𝑎, 0) = a, ∀a ∈ (0,1)         
 (3.11) 

Theorem 3.1: For the t-norm T,   
𝑆(𝑎, 𝑏) = 1 − 𝑇(1 − 𝑎, 1 − 𝑏)         (3.12) 

The basic t-conorms are: 

1-  Max s-norm 
𝑇(𝑎, 𝑏) = max (𝑎, 𝑏) 

2- Probabilistic s-norm  
𝑆(𝑎, 𝑏) = a + b − ab 

3- Lukasicwicz s-norm 
𝑆(𝑎, 𝑏) = max (𝑎 + 𝑏, 1) 

4- Strong s-norm 

𝑆(𝑎, 𝑏) = {
max(𝑎, 𝑏)    min(𝑎, 𝑏) = 0

1                      𝑜. 𝑤
 

5- Hamacher s-norm 

𝑆𝐻(𝑎, 𝑏) =
𝑎 + 𝑏 − (2 − 𝛾)𝑎𝑏

1 − (1 − 𝛾)𝑎𝑏
   𝛾 ≥ 0 

6-  Yager s-norm 
𝑆𝑌(𝑎, 𝑏) = min{1, √𝑎

𝑝 + 𝑏𝑝
𝑝

}   𝑝 > 0 
  

Until now in this section, we have studied the most popular and widely used t-norms and t-co-
norms. However, not all the presented operators are differentiable, which harden application of 
fuzzy logic in the optimization part of the different identification, data classification and control 
algorithms.  It is widely accepted that application of derivative based optimization algorithms 
facilitates highly the application to the different fast and reliable problems of the real world. 
Hence, in the next section we will focus on the smooth fuzzy compositions and try to look to such 
problems through the specific lenses.  

3.2 Smooth Fuzzy Compositions 

As stated above, the smoothness and continuity of the fuzzy compositions brings about the 
capacity to employ the gradient-based algorithms for optimal tuning of the parameters of the fuzzy 
model, identification or controller design, with higher speed of convergence and with smoother 
convergence behavior. The other benefit employing the gradient based methods is that even if we 
come to the sub-optimal solution, the overall algorithm will be stable and feasible.  
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Therefore, in this section we want to review a general framework for smooth fuzzy compositons, 
including the recent contributions on the matter, and we will review  the utilization of the  smooth  
fuzzy relational compositions in system modeling and control.  Let’s start with presenting the new 
smooth t-conorms and t-norms from [12,13]:  

Smooth t-norm  
𝐼: 𝑇𝑆(𝑎, 𝑏) =  1 − cos (

2

𝜋
cos−1(1 − 𝑎) cos−1(1 − 𝑏))      

 (3.13) 

𝐼𝐼: 𝑇𝑆(𝑎, 𝑏) =
4

𝜋
tan−1(tan (

𝜋

4
𝑎) tan(

𝜋

4
𝑏))       

 (3.14) 

𝐼𝐼𝐼: 𝑇𝑆(𝑎, 𝑏) = 1 − 
2

𝜋
cos−1(sin (

𝜋

2
𝑎) sin(

𝜋

2
𝑏))      

 (3.15) 

IV: 𝑇𝑆(𝑎, 𝑏) =  cos (cos
−1 𝑎 + cos−1 𝑏 −

2

𝜋
 cos−1 𝑎 cos−1 𝑏)     

 (3.16) 

 

Smooth s-norm  

𝐼: 𝑆𝑆(𝑎, 𝑏) =   
𝑟.𝑑.𝛽

−logβ(𝑑) −logβ(𝑟)−1

(𝛽−1)
, 𝑟 = (𝛽 − 1)𝑎 + 1, 𝑠 = (𝛽 − 1)𝑏 + 1, 𝛽 ∈ (1,∞)  (3.17) 

𝐼𝐼: 𝑆𝑆(𝑎, 𝑏) =  1 − 
4

𝜋
tan−1(tan (

𝜋

4
(1 − 𝑎)) tan(

𝜋

4
(1 − 𝑏)))     

 (3.18) 

𝐼𝐼𝐼: 𝑆𝑆(𝑎, 𝑏) =  
2

𝜋
cos−1(cos (

𝜋

2
𝑎) cos(

𝜋

2
𝑏))       

 (3.19) 

IV: 𝑆𝑆(𝑎, 𝑏) =   cos ( 
2

𝜋
 cos−1 𝑎 cos−1 𝑏)       

 (3.20) 

 
The above-mentioned smooth compositions are differentiable almost everywhere.  After 
presenting these new smooth compositions in [12], they have been use to make fuzzy model of 
the dynamic systems [13]. Following that other authors have employed them for one step ahead 
model predictive control of dynamic system [14]. However, all the contributions in the field have 
employed the fuzzy relational modeling framework.  

Relational fuzzy models indeed can be easily developed and modified online, however, they have 
some structural drawbacks that has obstacles their applications in the industrial systems.  

Firstly, since they are being manifested with the elements of zero and one assigned to the proper 
cells in the arrays and matrixes, therefore, their application is limited just to the systems of limited 
number of variables, since handling of such matrixes are not easy for the large scale and complex 
systems. Besides, the computation requirement of such arrays of zero and one is not comparable 
to the computational requirement of the fuzzy model defined by the common IF-THEN  rules.  

The second difficulty is that analysis of the result of the controllers by handing the input-output 
of the system is not easy through the relational fuzzy models. For instance, the impression of the 
operator through the inspection of the matrixes for fault detection, stability analysis and other 
structural analysis are much more cumbersome rather than investigation of the common IF-THEN 
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rules.  From this point of view, it is worth mentioning that one of the primer ideas of employing 
the fuzzy models is to resort to the linguistic rules and statement for expression of the system 
behavior, which will get lost in handling the matrixes of zero and one. Therefore, many has 
underlined that fuzzy relational models cannot put the human in loop to interact with the skills 
and knowledge of the operators, as it is expected from the fuzzy modeling paradigm. 

Hence, in this section we will review the literature developed so far, for application of smooth 
compositions in system identification and controller design to get ready and convey our 
motivation of making the main contributions of the current thesis, which will be presented in the 
following chapters. 

3.3 Fuzzy Relational Model Identification 

 

 

Figure 3.1 Main parts of an Fuzzy Relational Method 

 

 

Figure 3.2. Block diagram of the dynamic system for system identification in [12]. 
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Ashtiani and Menhaj [12, 13] have considered the actual input to the system comprised of the 
input vector and the delayed states of the dynamic system as demonstrated in the function block 
of Fig. 3.1. The same structure is shown in Fig.  3.2 with the outer box and the general input 
vector of 𝜈 = [𝑥(𝑘 − 1),⋯ , 𝑥(𝑘 − 𝑛), 𝑢(𝑘 − 1),⋯ , 𝑢(𝑘 − 𝑟)] of the length 𝜂 = 𝑛 + 𝑟.  
Correspondingly, they have considered an (𝜂 + 1)  dimensional fuzzy relational matrix. Hence, 
the structure of the model in its general format has been considered as, fuzzification Block, Fuzzy 
Relational Matrix and Defuzzifier.  

As they elaborated in [13], Although the fuzzy relational matrix in many of the fuzzy relational 
models are considered to be only two-dimensional, Ashtiani and Menhaj have considered the 
fuzzy relational matrix with the dimension above two in order to make the model properly capture 
the real system.   

They tried to apply fuzzy composition in a N-dimensional structure, to capture the multi-
dimension structure of the fuzzy matrix, in a manner to be rational and understandable for proper 
globalization of the basic fuzzy matrix, and expand the two dimensional fuzzy compositions for 
higher dimensions for expression of the multilevel systems. Hence, compared to the N-
dimensional fuzzy relational compositions in the earlier works that Ashtiani and Menhaj [12, 13] 
has called the straight fuzzy relational compositions, the recent authors have proposed the 
structural fuzzy relational compositions through the successive application of the fuzzy smooth 
compositions. They claimed that their fuzzy relational model can handle the multilevel fuzzy 
relational networks too, although they did not bring any simulation or other kind of evidence to 
back up the claim.  

The operation of the innermost block to gain the output is represented by successive application 
of fuzzy relational s-t composition “∘”: 

𝑏 = 𝑅 ∘ 𝑎1  ∘ 𝑎2  ∘ ⋯ ∘ 𝑎𝜂 .         
 (3.21) 

The identification algorithm they proposed is based on calculation of the derivative of the 
functions and can be optioned online. Therefore, very much like the other fuzzy relational model 
identification, they employed a productive correction term to adjust the elements of the Fuzzy 
relational matrix iteratively. However, according to the virtue of the new s- and t- norms the 
derivation of the correction term for their modified fuzzy relational model takes more work than 
the ordinary ones.  The benefit of their approach is that the iterative optimization based algorithm 
can be calculated from the defined error-dependent cost function explicitly upon Newton based 
optimization algorithm.  They applied the algorithm to the gas furnace data from Box and Jenkins. 
In their contribution they considered a combination of the deterministic and stochastic 
optimization algorithms and allowed the learning rate to be dynamic for speeding up in the 
learning process. 

 Although in the tuning procedure they employed derivative-based algorithms and very well used 
the assumption that the t-norm and the t-conorm are differentiable or at least piecewise 
differentiable with a finite number of non-differentiable points, where for the non-differentiable 
point, a virtual value could be approximated by its neighbor points, their algorithm cannot easily 
be employed for the large scale systems since they suffer from the curse of dimensionality. 
Actually, since they model the whole dynamic of the system in an N-dimensional matrix, an 
increase in the number of the linguistic terms would result in the exponential expansion of the 
number of the size of the matrixes, which avoid making practical application of the algorithm and 
also their easy and fast tuning. This is why they in practice faced a difficult problem to solve and 
hence, employed a mixture of deterministic and stochastic optimization to speed up the 
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identification process. However, implementation of such methods of problem solving is 
tremendous in practice. 

3.4. One Step Ahead Predictive Control for Relational Fuzzy Model 

Askari and Menhaj [14] have employed fuzzy relational modeling scheme described above for 
one step ahead prediction and control of complicated and nonlinear systems. They developed a 
MPC schemes based on fuzzy relational nonlinear models and considered non-quadratic cost-
function directly from the input-output data. They have demonstrated the efficiency of the 
proposed fuzzy relational model predictive control scheme in contrast to the PID and sliding mode 
control methods, subject to different uncertainties toward the control of  nonlinear systems.    

In the modeling part they have employed the same scheme of Aghili and Menhaj [12,13] for the 
iterative system identification process.     

They considered the cost function as: 

𝐽 =
1

2
(𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑦𝑚𝑜𝑑𝑒𝑙  )

2 =
1

2
(𝑐𝑡𝑒 −

∑ 𝑏(𝑖)𝑐(𝑖)
𝑞
𝑖=1

∑ 𝑏(𝑖) 
𝑞
𝑖

 )

2

=
1

2
 

(𝑐𝑡𝑒 −
∑ (𝑅(𝑘1,⋯,𝑘𝜂+1)∘𝑎1(𝑘𝜂+1)∘𝑎2(𝑘𝜂)∘⋯∘𝑎𝜂(𝑘2))𝑐(𝑘1) 
𝑞
𝑖=1

∑ (𝑅(𝑘1,⋯,𝑘𝜂+1)∘𝑎1(𝑘𝜂+1)∘𝑎2(𝑘𝜂)∘⋯∘𝑎𝜂(𝑘2)) 
𝑞
𝑖=1

 )

2

      

 (3.22) 

where 𝑐(𝑘1) s have been values of the weighted averages for the fuzzy model. As the normative 
of model predictive control, they made the formulation to optimize the cost function respect to 
the first system´s input 𝑎1 and repeated this iteration for the next time step.  They could obtain 
the excellent tolerance of the control system to the different levels of noise, disturbance and up to 
25% uncertainty.   

 

3.3 Block diagram of Fuzzy MPC (MFRM stands for modified fuzzy relational model [14].) 

 

But, there were some weak points, due to the triangular membership function they used for 
formulation of the problem. Therefore, although they employed the smooth fuzzy compositions 
to solve the optimization problem using the derivative based methods, but ultimately they solved 
the problem through a non-derivative optimization method and could not enjoy the actual 
computational benefit of the scheme. Secondly, the algorithm they proposed had a short prediction 



21 
 

horizon which puts the stability of the algorithm at risk, especially for real time applications of 
complex systems. 

Conclusions 

In this chapter we have discussed on the properties of fuzzy compositions and presented different 
fuzzy compositions. Furthermore, we introduced the smooth fuzzy operators and reviewed their 
practical application in dynamical system modeling and control. 

Since, the attention on smooth fuzzy models have emerged just recently, the literature developed 
for such systems and their practical applications are just in the infantile period.  In the next chapter 
we will elaborate more on the smoothness properties of the smooth fuzzy operators and will 
employ them subsequently for identification and long range fuzzy model predictive control of the 
nonlinear systems.   

 

 

 

 

 

 

 

  

 

The “what” is in constant flux, the “why” has a thousand variations. 

 

Chapter 4 

On Approximation Properties of Smooth Fuzzy Models   

In this chapter, we pose the basic idea behind the smooth fuzzy compositions and prove their 
approximation properties. We will start explanation of the smoothness and continuity and then 
extend it to the fuzzy compositions and models.  

4.1 Introduction 

It is well known that fuzzy systems can uniformly approximate any real continuous function on a 
compact domain to the desired degree of accuracy.  The universal approximation properties of 
the fuzzy systems, with Gaussian membership functions, product t-norm and centroid 
defuzzification has been proved in the literature [15, 16].  The results for the Gaussian, triangular 
or trapezoidal membership functions, any t-norm and any practical defuzzification also has been 
proved in [17].  Over the years, this topic has been extended for the accurate approximation of a 
smooth function beside its derivatives [18, 19], however, it is unanswered that whether a fuzzy 
system with arbitrary continuous membership functions (not necessarily Gaussian, triangular or 
trapezoidal) can accurate approximation a function smoothly, i.e. not only the smooth function is 
approximated but also its derivatives [15].  

Hence, in this chapter, we will work on this topic and will demonstrate that from the application 
of smooth compositions and the arbitrary continuous membership functions, the fuzzy model can 
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approximate the real plant and its derivatives. The importance of the topic is that, through this 
stream, we would be able to model two (or more) different states of a discontinuous or a switched 
system by a single fuzzy model with the minimum variation. The other contribution will be that 
we can be sure that employing the smooth compositions in the design of the fuzzy models and 
controllers, the plant can damp the uncertainties and parameter variation and noises fast. Such 
extensions will be topic of the next chapters.  

However, for the present chapter, the structure is as follows. First we review mathematical 
smoothness and continuity properties. Then, we study the general structure of fuzzy systems. 
Based on the results of the two beginning sections, we formulize the smoothness property of a 
special class of fuzzy systems which is the main result of the chapter. Following that we bring an 
example to demonstrate the practical functionality and properties of the obtained results and the 
proposed theorems. Finally, we draw conclusions.  

4.2 Preliminaries 

In this section for the convenience of the readers we review some mathematical backgrounds from 
[8-11].  

Definition 4.1: A function 𝑓(𝑥) is continuous at the point 𝑐 if and only if 𝑓(𝑥) is defined at 𝑐 and 
for any 𝜖 > 0 there exists a 𝛿 > 0 such that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜖 if   |𝑥 − 𝑐| < 𝛿 . 

Definition 4.2: A function 𝑓(𝑥) has gap discontinuity at 𝑐 if  𝑓(𝑐) is undefined.  

For instance, 𝑓1(𝑥)
𝑓2(𝑥)

 has gap discontinuity at  𝑐 if 𝑓2(𝑐) = 0. 

Definition 4.3: A function 𝑓(𝑥) has jump discontinuity at 𝑐 if  𝑓(𝑐) is defined and lim
x→c+

𝑓(𝑥) ≠

 lim
x→c−

𝑓(𝑥).  

The function f(x) = {4, 𝑥 < 0
5, 𝑥 ≥ 0 

  for example has a jump discontinuity at 𝑥 = 0. 

Structure of fuzzy systems 

We consider the multiple input single output systems to facilitate our theory development. 
Nevertheless, our results can be extended for the multiple - input- multiple output systems; since 
the multiple outputs can be decomposed readily into several single output systems.  

Consider the problem of approximation for a nonlinear function of the following form: 

𝑓: 𝑅𝑛 → 𝑅                (4.1) 

𝑦 = 𝑓(𝑥1, 𝑥2,⋯ , 𝑥𝑛)           (4.2) 

For every input variable of the system we consider an interval where there is the highest 
probability that the variable lies in this interval. Then, we divide the interval into 2N+1 regions 
and assign a membership function to each region.   

Next step in constructing fuzzy system is to assign rules for the data in the different regions of the 
input and output domains. We consider,    

𝑅(𝑖): if  𝑥1 is 𝑀1𝑖  and 𝑥2 is 𝑀2𝑖  and ⋯ and  𝑥𝑛is 𝑀𝑛𝑖  then      (4.3) 

𝑔(𝑥1,⋯ , 𝑥𝑛) is 𝑏𝑖 under the probability 𝜇𝑖 , 𝑖 = 1,⋯ , 𝑟  

Here the function 𝑔(𝑥1,⋯ , 𝑥𝑛)  is about to approximate the function 𝑓(𝑥1,⋯ , 𝑥𝑛) in the 
corresponding interval.  The rules generated for the fuzzy system in this way, have two "if"  and 
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"then" parts.  There are different ways for interpretation of the relations and making mathematical 
inference on the fuzzy values using the compositions of t-norm and s-norm in the fuzzy systems´ 
domain. The different types of the fuzzy compositions introduced in the literature, are summarized 
in Chapter 2 and Chapter 3.  

We remind that the actual output of the model is determined based on the centroid defuzification 
formula, which is given simply by,  

 𝑔( 𝑥̅) =  
∑ 𝑏𝑖  𝜇𝑖   
𝑟
𝑖=1

∑ 𝜇𝑖
𝑟
𝑖=1

         (4.4) 

where  𝜇𝑖 is considered to be at the center of the region 𝐵𝑖  at every time instant of dynamics of 
the system, 𝑥̅ = [𝑥1, ⋯ , 𝑥𝑛] and r is the total number of the fuzzy rules for approximation of the 
plant.   

4.3 Approximation Properties  

On the purpose of explaining the approximation procedure, we consider equation (3.16) and 
equation (3.20) as the formulation of t-norm and t-conorm under study, and denote them by 
smooth compositions  𝑇𝑠−𝐼𝑉 and  𝑆𝑠−𝐼𝑉, respectively. The approach can be extended to other types 
of the smooth compositions. For the system defined by the function 𝑓(𝑥1, ⋯ , 𝑥𝑛)  introduced 
above, we assume r=2, with three state variables, then, the fuzzy model will be written as, 

𝑔(𝑥1,⋯ , 𝑥𝑛) =
𝑁(𝑥1,⋯,𝑥𝑛)

𝐷(𝑥1,⋯,𝑥𝑛)
=
𝑏1∗𝜇1+𝑏2∗𝜇2 

𝜇1+𝜇2 
                                                              (4.5) 

where  𝜇𝑖( 𝑥̅, 𝛼𝑖)are the membership functions from the system state vector 𝑥̅ = [𝑎, 𝑏, 𝑐], 𝑖 =
1,⋯ , 𝑟 and 𝛼 is the design parameter. 

  𝜇𝑖( 𝑥̅, 𝛼𝑖) = 𝑆𝑠−𝐼𝑉 (𝑇𝑠−𝐼𝑉 (𝜇𝑖 (𝑎,⋅), 𝜇𝑖(𝑏,⋅), 𝜇𝑖  (𝑐,⋅))) =                                      (4.6) 

𝑆𝑠−𝐼𝑉(𝑇𝑠−𝐼𝑉(𝑇𝑠−𝐼𝑉( 𝜇𝑖(𝑎,⋅), 𝜇𝑖(𝑏,⋅)), 𝜇𝑖  (𝑐,⋅)))                                                    

Let Λ1 = 𝑇𝑠−𝐼𝑉(𝜇(𝑎,⋅), 𝜇(𝑏,⋅)),  and Λ2 = 𝑇𝑠−𝐼𝑉( Λ1, 𝜇(𝑐,⋅)), and upon Eq (3.16), 

Λ1 = cos (cos
−1 𝜇𝑖(𝑎,⋅) + cos

−1 𝜇𝑖( 𝑏,⋅) −
2

𝜋
 cos−1  𝜇𝑖(𝑎,⋅) cos

−1 𝜇𝑖( 𝑏,⋅)) 

 Λ2 = cos (cos
−1 Λ1  + cos

−1𝜇𝑖( 𝑐,⋅) −
2

𝜋
 cos−1 Λ1   cos

−1 𝜇𝑖(𝑐,⋅)). 

Based on Eq (3.20),  𝜇𝑖(⋅, 𝛼𝑖) = cos ( 
2

𝜋
 𝑐𝑜𝑠−1 𝛬1  𝑐𝑜𝑠

−1 𝛬2 ) , hence, we define,                                                    

𝜃 =  
2

𝜋
 𝑐𝑜𝑠−1 𝛬1  𝑐𝑜𝑠

−1 𝛬2                                                                                                           
(4.7) 

Therefore,  

μi(⋅, 𝛼𝑖) = cos(𝜃) =  𝑟𝑒𝑎𝑙 (exp(𝑗𝜃)),                                                                   

where 𝑗 = √−1 . For the suitable selection of exponential function  𝐺(𝑥, 𝛼𝑖) and 𝜃 we write it 
more simple as,   

𝜇𝑖 (⋅, 𝛼𝑖) =  𝐺(⋅, 𝛼𝑖) ∶= 𝑟𝑒𝑎𝑙 (exp(𝑗𝜃))                                                                (4.8) 

Therefore, we can generalize the procedure and write, 
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𝑔(𝑥1,⋯ , 𝑥𝑛) =
𝑁(𝑥1,⋯,𝑥𝑛)

𝐷(𝑥1,⋯,𝑥𝑛)
= 

∑ 𝑏𝑖𝐺( 𝑥̅,𝛼𝑖)
𝑟
𝑖

∑ 𝐺( 𝑥̅,𝛼𝑖)
𝑟
𝑖

.                                                              (4.9) 

If we consider a box [−𝑁,𝑁],⋯ , [−𝑁,𝑁] along a dense grid with the steps Δ 𝛼1 = ⋯ =  Δ𝛼𝑟 =
ℎ and correspondingly 𝑏𝑖 = 𝑏(𝛼𝑖), we can write the summation as the integration,  

𝑁( 𝑥̅). ℎ𝑛 = ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺( 𝑥̅, 𝛼̅)
𝑁

−𝑁

𝑁

−𝑁
 . 𝑑𝛼̅                                                             (4.10) 

𝐷( 𝑥̅). ℎ𝑛 = ∫ ⋯∫  𝐺( 𝑥̅, 𝛼̅). 𝑑𝛼̅
𝑁

−𝑁

𝑁

−𝑁
 .                                                                 (4.11) 

Now, as ℎ → 0 and 𝑁 → ∞, we will have the multi-dimensional integrals, 

 𝑁∞( 𝑥̅) = ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺( 𝑥̅, 𝛼̅)
∞ 

−∞

∞

−∞
 . 𝑑𝛼̅                                                                       (4.12) 

 𝐷∞( 𝑥̅) =  ∫ ⋯∫  𝐺( 𝑥̅, 𝛼̅). 𝑑𝛼̅
∞

−∞

∞

−∞
 .                                                                     (4.13) 

The value of the last integral is independent of the system states vector (𝑥1, ⋯ , 𝑥𝑛) . Hence, it 
sums up to a constant value C for 𝐷∞( 𝑥̅). Therefore, to find the approximation of the function 
𝑓(⋅) we just need to find the weights 𝑏(𝛼̅), such that 

𝐶 ⋅ 𝑔( 𝑥̅) =  ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺( 𝑥̅, 𝛼̅)
∞ 

−∞

∞

−∞
 . 𝑑𝛼̅                                                         (4.14)                                 

The right side of this equation is the convolution of the function 𝑏( 𝛼̅) and the real function 
𝐺( 𝑥̅, 𝛼̅). We can transform the convolution to the frequency domain, and use the Fourier 
transformation to find the weights as, 

 𝑏̂( 𝜔̅) =  
𝐶⋅𝑔( 𝜔̅)

𝐺( 𝜔̅)
                                                                                                    (4.15) 

and then use the inverse Fourier Transformation to get the desired function  𝑏( 𝛼̅).   
 

To come up to the results, here we review some theorems from the signal and system literature.  

Theorem 4.1: Let ℱ and ℛ be continuous real-valued functions and assume that ℱ or ℛ is zero 
outside some bounded set. If ℱ ∈ 𝐶𝑘 and ℛ ∈ 𝐶𝑙, then ℱ ∗ ℛ ∈ 𝐶𝑘+𝑙.  

Proof: see [15]. 

Theorem 4.2: (Derivative Theorem) If ℱis a rough function, and ℛ is a smooth function, then the 
convolution ℱ ∗ ℛ will be smoother than ℱ.  

Proof: The theorem can be deduced from Theorem 4.1, see also [15]. 

Theorem 4.3: If ℱis a rough function and ℛ is n-times differentiable, then the convolution ℱ ∗ ℛ 
will be n-times differentiable.  

Proof: The theorem can be deduced from Theorem 4.1, see also [15]. 

Corollary 4.1: The convolution ℱ ∗ ℛ is at least as smooth as the function ℱ and the function  ℛ 
separately.  

Theorem 4.4: The fuzzy model obtained by the arbitrary membership function and the smooth s-
norm and t-norm compositions is continuous, n-time differentiable and smoother than a periodic 
cosine function. 

Proof: The fuzzy model is the convolution of the function 𝑏( 𝛼̅) by the function 𝐺( 𝑥̅, 𝛼̅) weighted 
by the constant value C, according to the Eq (4.14). Since the function 𝐺( 𝑥̅, 𝛼̅) is a cosine function 
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whatever the membership functions are, hence, based on Theorems 4.1-4.3, we can conclude 
Theorem 4.4. It is to say, the model will be smoother than cosine function, whatever the function 
𝑓(⋅) is.   

Remark 4.1: Theorem 4.4 applies independent of the shape and nature of the plant, according to 
the derivative theorem stated above. In other words, Theorem 4 applies even if the plant has a 
rough or discontinuous dynamics.  

Remark 4.2: The interpretation of theorem 4 in control application will be that, the control surface 
which the smooth fuzzy system produces will be smooth. Even if the system has a discrete state 
or systematic transition, based on this theorem, the transition in the system will happen with the 
minimum level of abrupt changes and variations. Moreover, the control system will show a better 
robustness to the uncertainties and disturbances in the region around the steady state point, trying 
to stay on the smooth surface.  

Now we look at the properties of the estimation of derivatives of the plant.  

4.4 Estimation of the Dynamic System Derivatives 

We first consider the first derivative of the model. Taking the first derivative we have, 

𝑔1( 𝑥̅) =
𝑁1( 𝑥̅)

𝐷( 𝑥̅)
− 
𝑁( 𝑥̅)𝐷1( 𝑥̅)

𝐷2( 𝑥̅ )
                                                                                                  (4.16) 

 

  
 𝑁∞( 𝑥̅) =  ∑ 𝑏𝑖𝐺1(𝑥, 𝛼𝑖)

𝑟
𝑖 = ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺1( 𝑥̅, 𝛼̅)

∞ 

−∞

∞

−∞
 . 𝑑𝛼̅                                            (4.17) 

𝐷∞( 𝑥̅) = ∑  𝐺1(𝑥, 𝛼𝑖)
𝑟
𝑖 = ∫ ⋯∫  𝐺1( 𝑥̅, 𝛼̅). 𝑑𝛼̅

∞

−∞

∞

−∞
 .                                                          (4.18) 

Again using the same procedure, we come to,  

𝐶 ⋅ 𝑔1( 𝑥̅) =  ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺1( 𝑥̅, 𝛼̅)
∞ 

−∞

∞

−∞
 . 𝑑𝛼.̅                                                                     (4.19) 

If we consider the m-th higher derivatives, similarly, we arrive to  

𝐶 ⋅ 𝑔𝑚( 𝑥̅) =  ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺𝑚( 𝑥̅, 𝛼̅)
∞ 

−∞

∞

−∞
 . 𝑑𝛼.̅                                                                       ( 

4.20) 

Theorem 4.5: The fuzzy model obtained by the smooth compositions is continuous and m-time 
differentiable.  

Proof: Considering that the function 𝐺𝑚( 𝑥̅, 𝛼̅) is a cosine function in origin and m-times 
differentiable, also Theorem 2, hence we always can approximate the desired function up to m-th 
Derivative 𝑔𝑚( 𝑥̅) with the desired accuracy using the smooth fuzzy model ( m is an arbitrary 
number).  

Theorem 4.6: The approximation function 𝑔(𝑥̅)  is defined everywhere in the domain of the states 
with the possible finite numbers of jump discontinuities.  

Proof: Based on the definition, the smooth compositions are smooth with the possible number of 
discontinuities over their domains. Hence, the integration ∫ ⋯∫ 𝑏( 𝛼̅). 𝐺 ( 𝑥̅, 𝛼̅)

∞ 

−∞

∞

−∞
 𝑑 𝛼̅  in Eq 

(4.1) always can be calculated by the grid based sum of integration for the appropriate small h 
and large N.  
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Theorem 4.7: Consider the smooth fuzzy system defined above with the parameters  𝛼̅ =
[𝛼1,⋯ , 𝛼𝑟] for the rules. The smooth fuzzy model  𝑔(𝑥̅)  is continuous if ∃𝛼𝑖,, 𝑖 ∈ [1, 𝑟] such that 
max( 𝜇(𝛼𝑖)) > 0, i.e. there exists at least one input fully covered by the membership functions. 

Proof: We describe the case for  𝑖 = 2 which is extendable to the cases with the higher number 
of rules. Consider the integral part as stated above for the case  𝑖 = 2 , when there is a discontinuity 
for 𝛼2 ∈ [𝑐1, 𝑐2] . 

 ∫ ∫ 𝑏( 𝛼̅). 𝐺𝐷( 𝑥̅, 𝛼̅)
∞ 

−∞

∞

−∞
 𝑑 𝛼̅ =  ∫ ∫ 𝑏( 𝛼1, 𝛼2). 𝐺𝐷( 𝑥̅, 𝛼1, 𝛼2)

𝑐1
−∞

∞

−∞
 𝑑 𝛼1𝑑𝛼2 

+∫ ∫  𝑏( 𝛼1, 𝛼2). 𝐺𝐷( 𝑥̅, 𝛼1, 𝛼2)
∞ 

𝑐2

∞

−∞
  𝑑 𝛼1𝑑𝛼2.                                                    (4.21) 

The above integrations are calculable at every point, as the last input is supposed to be fully 
covered by the membership functions, and is continuous.  

From the Fourier Transformation viewpoint, described above, it worth mentioning that the Fourier 
Transformation exists only if the jump discontinuity at  𝛼2 =  𝑐  cannot change the value of any 
of the integrals, i.e. ,  𝑐1 = lim

α2→c
−

, 𝑐2 = lim
α2→c

+
 since at this case, the inverse of the Fourier 

transformation will converge to the mid value level at the point of discontinuity.  

Corollary 4.2:  Consider the smooth fuzzy system with one input. The jump discontinuity of the 
mapping function 𝑓(𝑥1,⋯ , 𝑥𝑛) will not impact on the smoothness property of the resulted smooth 
fuzzy model.  

Proof: For the one input case, the above formulation will be, 

∫ 𝑏( 𝛼̅). 𝐺𝐷( 𝑥̅, 𝛼1)
∞

−∞
 𝑑 𝛼1 =                                                                             ( 4.22) 

  ∫ 𝑏( 𝛼̅). 𝐺𝐷( 𝑥̅, 𝛼1)
𝑐−𝜖

−𝑁 𝜖→0
 𝑑 𝛼1 + ∫ 𝑏( 𝛼̅). 𝐺𝐷( 𝑥̅, 𝛼1)𝜖→0

+𝑁

𝑐+𝜖 
 𝑑 𝛼1   

for a suitable choice of number N. It is obvious that the value of the integral will not be affected 
by the point discontinuity of the system.   

 Theorem 4.8: (Main Theorem) Let d and n be integers, and 𝑁 > 0 and 𝜖 > 0 be real numbers. 
Assume the function 𝑓(𝑥1,⋯ , 𝑥𝑛) is a D-times differentiable function on [−𝑁,𝑁]𝑛. Then, using 
the smooth fuzzy compositions, one can construct a fuzzy model 𝑔(𝑥1,⋯ , 𝑥𝑛) to approximate the 
function 𝑓(𝑥1,⋯ , 𝑥𝑛) and its derivatives up to D-th order with the desired accuracy  𝜖. 

Remark 4.3: The results we presented here compared to the earlier works by Kreinovich [19] on 
smoothness properties for the fuzzy models brings much lesser restrictions; As in this chapter we 
have not put any restriction on shape of membership function, ( to be or not be in Gaussian Form) 
to gain the smoothness property, compared to their work.  

Now we show the effectiveness of the obtained results by an illustration.  

4.5 Illustrative Examples 

 To demonstrate application of the proposed approach, we take the simple model as Table 4.1, 
where each rule consequent is shown based on the crisp number.  

The table represents the logical rule that orchestrate switching between the different states of the 
finite state machine [20-22].  Such kind of logical rules, when coupled with the controller and the 
plants modelled with continuous or difference equations are generally called hybrid or switched 
systems which have the increasing popularity for modeling and control of the devices with digital 
components, e.g. relays, switches, stepper motors, so on [22]. Traditionally fuzzy controllers for 
hybrid and switched systems are designed such that every subsystem is being considered by a 
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separate fuzzy structure. What follows is an evidence that using the smooth fuzzy schemes, it 
would be possible to model and control the different discrete states of the system by a single fuzzy 
model structure such that the augmented continuous and discrete dynamics of the system changes 
between the augmented continuous and discrete states of the model smoothly.  

 

 Table 4.1: logical rules of the 
switched system 

 

𝒙𝟏\ 𝒙𝟐 𝑿𝟐𝟏 𝑿𝟐𝟐 𝑿𝟐𝟑 

𝑿𝟏𝟏 1 2 3 

𝑿𝟏𝟐 4 5 6 

𝑿𝟏𝟑 7 8 9 

 

We first consider fuzzy membership functions shown in figure 4.1, where they cover all the 
domain of the system states definition. Consequently, we have used first the conventional fuzzy 
inference for the fuzzy model and compared that to the smooth fuzzy structure. They are equal 
in the functioning for mapping the input-output relation. 

 

  

Membership function for the state x1 Membership function for the state 
x2 
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Output surface of the classical fuzzy systems Output surface of the smooth fuzzy 

Figure 4.1: Case 1: when membership functions of both states cover the space. 

We then considered fuzzy membership functions shown in figure 4.2 and figure 4.3, where the 
membership function of the first state covers all the domain of system state definition, and the 
membership function of the second state does not cover all the second state space. Again, we have 
used the conventional fuzzy inference for the fuzzy model and compared that to the smooth fuzzy 
model. This is clear that the classical fuzzy model has great value of variation in the output. This 
is while the smooth fuzzy model has a minimum variation which is to say its performance is 
almost similar to the case 1, when the membership functions covered all the state space. 

  

Membership function for the state 
x1 

Membership function for the state x2 
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The output surface of the classical 
fuzzy  

The output surface of the smooth 
fuzzy system 

Figure 4.2: Case 2: when membership functions of just one state covers the 
state space 

  

 

 

Figure 4.3: The comparison of the output of the fuzzy function with the 
smooth compositions vs the classical compositions 

Lastly, we consider the fuzzy membership functions shown in figure 4.4, where none of the state 
spaces are covered by the membership functions. It is clear that both of the fuzzy models show 
high amount of variation and discontinuity.  

As it is clear from the results of simulations, when the membership functions cover at least one 
of the state space variables, the smooth fuzzy model shows a smooth and minimum variation 
behavior for modeling of the input-output mapping, compared to the classical fuzzy model.  In 
control applications, this feature can be used to damp the effect of the parameter variations and 
noise in the system and using the smooth compisitions one can run the system to return to the 
stable states after the disturbance with the minimum turbulences.   

The inspection of the results in the example could clear up that i) converse to the earlier 
contributions, we are able to model two (or more) different states of a discontinuous or a switched 
system by a single smooth fuzzy model. ii) Based on the result of the case when the membership 
function of the second state in the simulation does not cover all the second state space, we claim 
that the smooth fuzzy models can uniformly approximate any real continuous function on a 
possible non-compact domain to the desired degree of accuracy, which is new in the fuzzy 
modeling literature. iii) As it has demonstrated in the simulation, for the 
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Membership function for the state x1 Membership function for the state x2 

 

  

Output surface of the classical fuzzy systems Output surface of the smooth fuzzy systems 

 

Figure 4.4:  Case 3: when membership functions of none of states cover the space 

case when the second state in the simulation does not cover all the second state space, the error 
between the smooth fuzzy model and the plant, in comparison to the error value with the same 
definition in the classical fuzzy model of the plant, has declined much more - to the minimum 
possible value.  Hence, we claim that employing the smooth compositions in the design of 
connectivist fuzzy modeling and controller schemes, we will not have high value of real plant-
fuzzy model difference, neither the un-modeled dynamics, and therefore, will not need to restrict 
ourselves to the conservative methods of robust or adaptive control schemes. iv) As it is 
demonstrated by the simulation, the smoothness property of such fuzzy model structure could 
encompass the change in the discrete modes of the switched system by showing the minimum 
amount of variations and errors. Hence, we can generalize it and expect to be able to damp the 
uncertainties and parameter variations of the systems and environmental noises also very fast 
through the same smoothness properties of the fuzzy model. Some simulations in the earlier 
publications on smooth fuzzy modeling and control [12, 13] have demonstrated the robustness 
properties of such connectivist smooth fuzzy modeling and control schemes, however, they lack 
providing a theoretical analysis. The current chapter can back up their results by giving a clue that 
why such robustness properties exist.  
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Conclusions 

In this chapter it is shown that we can model the dynamics and derivative of the continuous 
systems using the smooth fuzzy structure. We did not put any limitation on shape of the 
membership functions, in contrast to the earlier works, where the special Gaussian membership 
function has been considered. As a result of this finding, what we need to do in design of smooth 
fuzzy systems, to approximate dynamics of the system along its derivatives, would be to stick to 
the common practice of choosing the centric point and do not care of shape of the membership 
function.  

We backed up our theories by an example where each rule’s consequent has been shown based 
on a crisp number. It can be seen as a Mamdani model with the height defuzzification, or the 
discrete state models of hybrid and switched systems.  

In our analysis and transformation, to run the approximation error and its derivative tends to zero, 
we need to increase the number of partitions in the dense grid as well as the fuzzy rules. It means 
that in the practical applications, we will have growing numbers of fuzzy rules to make use of the 
smooth approximation properties. Therefore, there is a trade-off between the accuracy of the fuzzy 
model and the modeling complexity. Hence, it is required to think about a method for finding the 
minimal number of fuzzy rules for a given accuracy of the fuzzy model in the future researches. 
One suggestion will be to discard the rules which have weak contribution to the output. The 
interested reader is referred to [23] for the fuzzy region assignment schemes. 

 

 

 

 

 

 

No one can lose either the past or the future - how could anyone be deprived of what he does not possess?  

Chapter 5  

Fuzzy Model Identification and Self Learning with Smooth Compositions  

This chapter develops a smooth model identification and self-learning strategy for dynamic 
systems taking into account possible parameter variations and uncertainties. Compared to the 
earlier works on the smooth fuzzy modelling structures, we could reach a desired tradeoff between 
the model optimality, without the need of having computations with large matrixes. It potentially 
will lower the computational load. The proposed method has been evaluated on a test problem as 
well as the nonlinear dynamic of a chemical process.  

5.1. Introduction 

The fuzzy structures presented in the literature are either defined by the rule- based models or 

they are fuzzy relational models [8, 11]. Rule based models describe the process behavior by a 

set of IF-THEN mechanisms. On the other hand, in the fuzzy relational models the input-output 
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mapping is presented through a matrix. This matrix conveys any possible combination of the 

input-output mapping with a value between zero and one, which is the scale of truth (or 

probability) of each possible input to output relation.  

It worth reminding the slight alteration of the definition of a smooth fuzzy topology built from 

the employment of the smooth fuzzy norms by fuzzy relations which is associated to the concept 

of composition of binary numbers and relations in the earlier works [12,13], rather than the 

topology built from the employment of the same norms in the IF-THEN model, which more 

relates to the concept of fuzzy numbers as introduced by Zadeh. This is to say, the main difference 

of two approaches of the relational smooth fuzzy models and IF-THEN smooth fuzzy models is 

that whether or not it is more practical that the functions be presented through fuzzy numbers of 

the fuzzy topology or one should restrain to only the constant zero and one fuzzy sets 0 and 1 of 

the smooth fuzzy relations; We think the first one is preferable and will contribute on development 

of the IF-THEN smooth fuzzy modeling scheme in this chapter.  

Alongside, the other difficulty in smooth fuzzy relational models is that they suffer from the lack 

of analyzability. Hence, our other motivation has been not only to develop a new TS fuzzy 

modeling framework using the smooth compositions, but also to construct models which could 

be used more efficient for study on the numerical behavior, speed of convergence, and the stability 

of the algorithm. We will apply the method on the nonlinear dynamic of a continuous stirred tank 

reactor (CSTR) system. Indeed, the nonlinearities, uncertainties or the environmental parametric 

changes in the dynamic of a CSTR may make the control process to fail [24-28].   We have 

demonstrated the application of the algorithm to CSTR with the varying parameters and with the 

uncertain parameters can assist in accomplishment of a precise and effective modeling task 

without direct intervention of an operator. The simulation results show that the proposed adaptive 

identification algorithm can handle all the difficult types of such nonlinear system’s behavior 

during the manipulation. 

Hence, the rest of this chapter is as follows.  First we review fuzzy IF-THEN structures for process 

modeling and introduce the smooth compositions based on the literature. Then, we employ them 

for generation of the adaptive fuzzy modeling scheme.  Subsequent to that, we introduce the self-

learning structure for smooth fuzzy models, to make it sensitive to the parameter variations of the 

process. After that, we apply the developed structure for a benchmark example and then on a 

practical example of CSTR, in two different working modes, and also with uncertainty in the 

parameters. Then, we conclude the chapter.  

5.2. Smooth Fuzzy Structures for Process Modeling  
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This basic structure of smooth fuzzy models has been developed so far, in the past chapter, for 

designing fuzzy relational dynamic systems, and here we want to employ them for rule-based 

fuzzy model identification and gaining self -learning dynamics, to be described in the sequent.  

Generation of Smooth Rules-Based Fuzzy Models  

The aim of this section is to find the optimum parameters for the membership functions to shape 

it up correspondingly, such that the fuzzy model can make the best approximation of the nonlinear 

system using the smooth fuzzy compositions. For this aim, first we define the error function as,  

𝑒(𝑘) = 𝑦(𝑘) − 𝑦(𝑘)   (5.1) 

𝐸(𝑘) =
1

2𝑇
∑ (𝑒(𝑘 + 𝑡))𝑇
𝑡=0    (5.2) 

where T is the horizon of training , 𝑦(𝑘) is target value of the fuzzy model and  𝑦(𝑘) is the output 

of the fuzzy model. The goal is to use this error function to find the optimal shape of the 

membership functions. Hence, the variables to find are the centers and the widths of the input and 

output membership functions in the model definition.  To simplify the procedure, we consider the 

normal membership functions with the variables update algorithm, as  

𝑐𝑖𝑗(𝑘 + 1) = 𝑐𝑖𝑗(𝑘) − 𝛼𝑐
𝜕𝐸(𝑘)

𝜕𝑐𝑖𝑗
   (5.3) 

𝛿𝑖𝑗(𝑘 + 1) = 𝛿𝑖𝑗(𝑘) − 𝛼𝛿
𝜕𝐸(𝑘)

𝜕𝛿𝑖𝑗
   (5.4) 

𝑑𝑖(𝑘 + 1) = 𝑑𝑖(𝑘) − 𝛼𝑏
𝜕𝐸(𝑘)

𝜕𝑏𝑖
   (5.5) 

where 𝜃𝑖𝑗 = [𝑐𝑖𝑗 , 𝛿𝑖𝑗]are the parameters of the normal membership functions that give shape to 

the membership functions, 𝛼𝑐 , 𝛼𝛿 and 𝛼𝑏 are the step lengths in the gradient based optimization 

and 𝑖 = 1⋯ , 𝑟, 𝑗 = 1,⋯ , 𝑛 are the numbers of the system rules and the system inputs, and 𝑑𝑖 are 

the parameters to be used in the defuzzification formula, respectively. In order to derive the error 

derivatives, we study the estimation process in more details. To begin with, we write the gradient 

descent method formula as follows, 

𝜕𝐸

𝜕𝜃𝑖𝑗
=
𝜕𝐸

𝜕𝑦

𝜕𝑦

𝜕𝑦́𝑖

𝜕𝑦́𝑖

𝜕𝑥́𝑖𝑗

𝜕𝑥́𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝜃𝑖𝑗
.   (5.6) 

In order to complete the formulation, we need to take the partial derivative of each variable 

separately.  

 

1- We define the fuzzy variables  {𝑥́1,⋯ , 𝑥́𝑟} at every time instant as  
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𝑥́𝑖 = [𝑥́𝑖1, 𝑥́𝑖2,⋯ 𝑥́𝑖𝑛] = [𝜇𝑖1(𝑥1), 𝜇𝑖2(𝑥2),⋯ , 𝜇𝑖𝑛(𝑥𝑛)], 𝑖 = 1⋯ , 𝑟 

where 𝜇𝑖𝑗(⋅) is the value of ith membership function for jth input fuzzy set, presented in Equation 

(4.6). 

For making gradient descent method formula,  𝜕𝜇𝑖𝑗
𝜕𝜃𝑖𝑗

 can be written as,  

𝜕𝜇𝑖𝑗(⋅)

𝜕𝑐𝑖𝑗
= 𝑒𝑥𝑝 (

−1

2
(
𝑥𝑖𝑗−𝑐𝑖𝑗

𝛿𝑖𝑗
)
2

)(
𝑥𝑖𝑗−𝑐𝑖𝑗

𝛿𝑖𝑗
2 )  (5.7) 

𝜕𝜇𝑖𝑗(⋅)

𝜕𝛿𝑖𝑗
= 𝑒𝑥𝑝 (

−1

2
(
𝑥𝑖𝑗−𝑐𝑖𝑗

𝛿𝑖𝑗
)
2

)(
(𝑥𝑖𝑗−𝑐𝑖𝑗)

2

𝛿𝑖𝑗
3 )  (5.8) 

2- The estimation of the system output based on the compositional rule inference, can be written 

as, 

𝑦́𝑖 = 𝑠 − 𝑛𝑜𝑟𝑚(𝑡 − 𝑛𝑜𝑟𝑚(𝑥́𝑖, 𝑅𝑖(𝑥́, 𝑦)))    (5.9)  

for the i-th rule 𝑅𝑖, 𝑖 = 1,⋯ , 𝑟.We will use the abbreviation 𝑆: 𝑠 − 𝑛𝑜𝑟𝑚 and 𝑇: 𝑡 − 𝑛𝑜𝑟𝑚 in the 

followings.  

In order to simplify the explanation of the procedure of taking the derivation of 𝜕𝑦́𝑖
𝜕𝑥́𝑖𝑗

, we assume 

a system with 𝑗 = 2, and put, 𝑥́𝑖 = [𝑥́𝑖1, 𝑥́𝑖2] and 𝑐 = 𝑅𝑖(𝑥́, 𝑦). Then, based on the properties of t-

norms, we have,  

𝑦́𝑖 = 𝑆(𝑇(𝑇(𝑥́𝑖1, 𝑥́𝑖2), 𝑐)) = 𝑆 (𝑇(𝑥́𝑖1, 𝑐), 𝑇(𝑥́𝑖2, 𝑐))  (5.10) 

We define: 𝛬1 = 𝑇(𝑥́𝑖1, 𝑐) and 𝛬2 = 𝑇(𝑥́𝑖2, 𝑐), then, 

𝑦́𝑖 = 𝑆(𝛬1, 𝛬2)  (5.11) 

𝜕𝑦́𝑖

𝜕𝑥́𝑖𝑗
=
𝜕𝑠

𝜕𝛬

𝜕𝛬

𝜕𝑥́𝑖𝑗
= 𝑆́1𝑇́1, 𝑗 = 1,2.  (5.12) 

If there exist more state variables, 𝑗 = 𝑛 > 2, 𝑥́𝑖 = [𝑥́𝑖1, 𝑥́𝑖2, ⋯ 𝑥́𝑖𝑛] we can follow in the same 

manner and write as,  

𝜕𝑦́𝑖

𝜕𝑥́𝑖𝑗
= 𝑆́𝑛−1𝑇́𝑛−1⋯𝑆́1𝑇́1, 𝑗 = 1,⋯ , 𝑛.  (5.13) 

Hence, to derive the gradient descent based training formulation, the derivative of the error will 

be,   

𝜕𝐸

𝜕𝑐𝑖𝑗
=
𝜕𝐸

𝜕𝑦

𝜕𝑦

𝜕𝑦́𝑖

𝜕𝑦́𝑖

𝜕𝑥́𝑖𝑗

𝜕𝑥́𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝑐𝑖𝑗
  (5.14) 
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= 𝑒(𝑘) ⋅ (
𝑑𝑖 − 𝑦

∑ 𝑦𝑟
𝑖=1

) ⋅ (𝑆́𝑛−1𝑇́𝑛−1⋯𝑆́1𝑇́1) ⋅ 𝑒𝑥𝑝 (
−1

2
(
𝑥𝑖𝑗−𝑐𝑖𝑗
𝛿𝑖𝑗

)

2

)(
𝑥𝑖𝑗 − 𝑐𝑖𝑗

𝛿𝑖𝑗
2 ) 

 

𝜕𝐸

𝜕𝛿𝑖𝑗
=
𝜕𝐸

𝜕𝑦

𝜕𝑦

𝜕𝑦́𝑖

𝜕𝑦́𝑖

𝜕𝑥́𝑖𝑗

𝜕𝑥́𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝜇𝑖𝑗

𝜕𝛿𝑖𝑗
  (5.15) 

= 𝑒(𝑘) ⋅ (
𝑑𝑖 − 𝑦

∑ 𝑦𝑟
𝑖=1

) ⋅ (𝑆́𝑛−1𝑇́𝑛−1⋯𝑆́1𝑇́1) ⋅ 𝑒𝑥𝑝 (
−1

2
(
𝑥𝑖𝑗−𝑐𝑖𝑗
𝛿𝑖𝑗

)

2

)(
(𝑥𝑖𝑗 − 𝑐𝑖𝑗)

2

𝛿𝑖𝑗
3 ) 

𝜕𝐸

𝜕𝑑𝑖
=
𝜕𝐸

𝜕𝑦

𝜕𝑦

𝜕𝑑𝑖
   (5.16) 

= 𝑒(𝑘) ⋅ (
𝑦𝑖

∑ 𝑦𝑟
𝑖=1

)  (5.17) 

We want to stress that during the fuzzy adaptation process of the present approach, the 

membership functions represent linguistic terms of fuzzy model interferences, which are 

transparent and comprehensible to the system operator. This aspect, which lacks in the earlier 

works using matrix based relational fuzzy models is one of the strengths of fuzzy modelling. 

 

 

 

 

 

Table 5.2. The proposed algorithm for rule based fuzzy model identification 

 

 

 

 

 

 

 

 

Concept: the set of input-output data measurements of the system is available and it is desired to identify the 

smooth fuzzy model for the system. 

Initialization Phase:  

1- Membership function selection: Choose a membership function for fuzzification of the input variables. The 

implemented Guassian membership function. 

2- Rule selection: Select r fuzzy rules and compose the fuzzy model using these r rules. Number of rules can 

be determined heuristically by the designer according to the complexity of the system.  

3- Consequent calculation: Choose a smooth fuzzy composition to realize the inference mechanism. This 

stage makes the functional expansion of the input variables, according to the structure of the employed 

smooth fuzzy s-norm and t-norm. 

4- Model Output: Make the defuzzification of the variables to convert the fuzzy results into the crisp results.  

Parameter Learning Phase:  

Choose a desired value of accuracy  𝜖 .  
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Actually, the blind performance index used at the matrix based relational fuzzy modelling or 

artificial neural networks based tuning of the membership functions causes in semantically 

meaningless linguistic terms at the model interfaces, which we could address effectively. In the 

following, we will illustrate the properties of the proposed algorithm.  

Proposition 5.1: The error function constructed based on the Equation (5.2) is a smooth function.  

Proof: The interference mechanism makes the functional expansion of the fuzzified input 

variables using the different polynomical basic functions, which are all smooth. Hence, the output 

function of the fuzzy model is a smooth function, and therefore, the obtained error function is a 

smooth function. 

Proposition 5.2: The derivative of the error function constructed based on the Equation (5.2) is a 

smooth function. 

Proof: The interference mechanism makes the functional expansion of the fuzzified input 

variables using the different polynomical basic functions, which all have smooth derivatives [29-

30].  Hence, the output function of the fuzzy model has a smooth derivative, and therefore, the 

obtained error function has a smooth derivative.  

Proposition 5.3: The rate of convergence of the parameter learning phase in Table 5.1 to the 

optimal solution is quadratic.  

Proof: Since the derivative of the error function is smooth almost everywhere, the second derivate 

of the error function is continuous. Hence, when the initial point of the algorithm is sufficiently 

close to the optimal point and the derivative function is not zero, parameter learning phase of the 

algorithm will converge quadratic [30].  

Remark 5.1: The algorithm in Table 5.1 will converge only if the assumptions in the proof of 

Proposition 5.3 are satisfied. The most common difficulty is to choose a proper initial point of 

search in the basin of convergence of the algorithm. The suggested remedy is to run the algorithm 

from the several random initial points. 
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5.3. Self-learning of the Smooth Fuzzy Models 

Until now, we have developed the algorithm to make a model from the system’s input output data. 

However, for the time varying systems, after making up the initial model of the system, the system 

parameters changes and the basic model will not remain useful. Therefore, after that the initial 

fuzzy model comes available, a modification in the abovementioned algorithm can be useful to 

improve the system performance in an adaptive self-learning scheme. We make this improvement 

as Table 5.2.  

The overall scheme of the self-learning algorithm is shown in Figure 5.1. In the next section, we 

demonstrate the application of the algorithm in a practical example of chemical processes.  

 
Figure 5.1: Scheme of the proposed self-learning algorithm 

 

 

Table 5.2. Self Learning Algorithm for the fuzzy model 

 

 

 

 

 

 

 

 

 

Concept: Assume that the basic model is available and we want to improve it based on the new measurements 

of the system. 

Initialization:  

Choose a proper 𝜖   and the simulation horizon. 

Put 𝑘 = 1. 

Main Steps:  

1- let 𝑘 → 𝑘 + 1. 

2- Use the fuzzy model and the system new measurement data to produce the prediction 𝑦(𝑘). Let, 𝑒(𝑘) =

𝑦(𝑘) −  𝑦(𝑘).   

3- If |𝑒(𝑘)| > 𝜖, then update the parameters of the fuzzy model based on optimization method described 

above in Section 4, Else return to step (1). 

4- End if the simulation horizon terminates; Else return to step (1). 
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5.4. Case Studies   

We have chosen two highly nonlinear systems for examination of the proposed modelling 
approach. The first system is an example of chaotic time series. We have added parametric 
uncertainty to demonstrate the effectiveness of the proposed method to the classical modelling 
scheme.  

The second example is about modelling of a continuous stirred tank reactor (CSTR) [24-28]. 
Different fuzzy models are tested and compared in the uncertain working conditions.  

Example 5.1: Application for prediction of Mackey-Glass chaotic time series 

In this study, we have employed Mackey-Glass chaotic time series assess the performance 

prediction of the proposed smooth fuzzy model. Chaos can be inspected commonly in different 

fields of nonlinear dynamics and can be represented in different forms including by the time 

series.  

The widely assumption on the chaotic time series is that they are nonlinear by nature and 

extremely sensitive to the initial condition.  Therefore, it is a practical technique to evaluate the 

accuracy of different types of nonlinear models based on their performance in prediction of the 

chaotic time series.  

We have employed the Mackey-Glass time series as, 

𝑥́ =
𝑎𝑥(𝑡−𝜏)

1+𝑥𝐶(𝑡−𝜏)
− 𝑏𝑥(𝑡),         (5.18) 

The following parameters are assumed: a=0.2; b=0.1; C=10; with the initial conditions x0=1.2 

and τ= 17s. Four different fuzzy models have been trained to predict accurately the generated time 

series as shown in Fig. 5.2. The error convergence can be seen in Fig. 5.3.  

The differences between the sequences derived from the min-max fuzzy model converges more 

slowly, but note that the range of errors in all the fuzzy compositions is very narrow.  

We do not place much emphasis on the min-max error convergence comparison, because the 

fuzzy min-max model is not differentiable to be solved softly with the gradient descent we applied 

to the other compositions. Nevertheless, Figure 5.4 does show that the smooth fuzzy models 

provide better performance with quicker convergence rather than non-smooth compositions.  

To study the disturbance- rejection performance of the different fuzzy models, we have evaluated 

the models through simulation with the parametric change in the chaotic system set to b=0.15. 
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Figure 5.5 compares the data employed for training to the data employed for validation and 

prediction.  

Figure 5.6 illustrates and compares the disturbance rejection performance of the different fuzzy 

models. It can be seen that the smooth models have better performances.   

To make the model prediction more realistic, the system parameter is randomly varied as 

disturbances. In Fig. 5.7 the dynamic of the models validation in the noisy environment have been 

shown and compared. The performance of the model for a validation data set demonstrated that 

the smooth fuzzy models have a strong disturbance rejection capability rather than classical 

product-sum compositions and min-max compositions. The noise has been considered as b=0.1+ 

0.05*r, where r is assumed to be random signal at every iteration.  

To derive a measure of the model accuracy numerically, the employed performance function 

accounts for the error in the prediction as follows, 𝐹(𝑡) = 𝑒(𝑡) × 𝑒(𝑡). 

It can be seen from Fig. 5.3 to Fig. 5.7 that smooth fuzzy models and the classical product-sum 

fuzzy model yield compatible results, but the smooth fuzzy models are more robust to the 

parametric changes and noises and arrive at a better solution in the presence of uncertainties. 

However, they require slightly more computational efforts than the product-sum fuzzy models. 

With this type of nonlinear optimization problem, it is difficult to say in general what type of 

fuzzy compositions scheme works best.  
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Figure 5.2. Comparison of training data and the validation data 

 

 

Figure 5.3. Comparison of error convergence for different fuzzy compositions 
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Figure 5.4. Comparison of the performance of the proposed modeling scheme 

rather than the classical fuzzy scheme in presence of parametric change 

 

 

Figure 5.5. Comparison of the performance of the proposed modeling scheme 

rather than the classical fuzzy scheme in noisy environment  
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Figure 5.6. Magnified view to the performance of the “atan” fuzzy smooth model 

in the presence of parametric change in the system 

 

Figure 5.7. Magnified view to the performance of the “acos” fuzzy smooth model 

in the presence of parametric change in the system 

Example 5.2. Evaluation of the Proposed Smooth Fuzzy model with a chemical process 

We have considered the dynamic of a highly nonlinear continuous-stirred tank reactor (CSTR) 

process, as a second benchmark example. This reactor is used commonly in chemical process 

engineering. Hence, this is a proper modeling problem for test of the algorithm and contrast 

between different fuzzy compositions.  In the reactor, an irreversible, exothermic reaction takes 

place inside a constant volume to generate a compound 𝐴 with concentration 𝐶𝑎(𝑡) with the 

temperature of the mixture 𝑇(𝑡).  The contents are cooling down through stream of a single 

coolant with the rate of flow 𝑞𝑐(𝑡). The following equations describe the process model [24, 28]: 

𝑑𝐶𝑎(𝑡)

𝑑𝑡
=
𝑞

𝑉
(𝐶𝑎0 − 𝐶𝑎(𝑡)) − 𝑘0𝐶𝑎(𝑡)  × exp (

−𝐸

𝑅𝑇(𝑡)
)      (5.19) 

𝑑𝑇(𝑡)

𝐷𝑡
=
𝑞(𝑡)

𝑉
(𝑇0 − 𝑇(𝑡)) − 𝑘1𝐶𝑎(𝑡) × exp (

−𝐸

𝑅𝑇(𝑡)
)       (5.20) 

+𝑘2𝑞𝑐(𝑡) (1 − exp (−
𝑘3

𝑞𝑐(𝑡)
 )) (𝑇𝑐0 − 𝑇(𝑡) )     

Where the concentration of inlet feed 𝐶𝑎0 , the rate of process flow 𝑞 , and the temperatures of 

the inlet and coolant, respectively, as 𝑇0 and  𝑇𝑐0, all are considered as the constant values. 
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Likewise, 𝑘0,
𝐸

𝑅
, 𝑉, 𝑘1, 𝑘2and 𝑘3are constants. The nominal values of the process parameters 

appear in Table 5.4. 

𝑘1 = −
Δ𝐻𝑘0

𝜌𝐶𝑝   
, 𝑘2 =

𝜌𝑐𝐶𝑝𝑐 

𝜌𝐶𝑝𝑉 
, 𝑘3 =

ℎ𝑎

𝜌𝑐𝐶𝑝𝑐
       (5.21) 

Considering the product concentration 𝐶𝑎 = 0.1mol/l, the nominal conditions will be,  

𝑇 = 438.5𝐾, 𝑞𝑐 = 103.411 𝑙/𝑚𝑖𝑛        (5.22) 

The objective in the chemical process is handling the concentration of 𝐴,as 𝐶𝐴(𝑡) by proper  

adjustment of the rate of the coolant flow 𝑞𝑐(𝑡). In the process of fuzzy model making, initially, 

we have run the mentioned model to derive enough input and output data for the model training. 

Then, the structure of the considered model is: 

𝐶̂𝑎(𝑘 + 1) = 𝑓(𝐶̂𝑎(𝑘), 𝐶̂𝑎(𝑘 − 1), 𝐶̂𝑎(𝑘 − 2), 𝑞𝑐(𝑘 − 1))     (5.23) 

The fuzzy model has 3 Gaussian membership functions with the number of rules as 

3 × 3 × 3 × 3 = 81.   

 

 

 

Table 5.4. Specification of the CSTR 

Parameter Description Nominal Value 

𝑞 Process flow-rate 100 𝑙/𝑚𝑖𝑛 

𝑉 Reactor volume 100 𝑙 

𝑘0 Reaction rate constant 
7.2 × 1010min

−1
 

𝐸/𝑅 Activation energy 104𝐾 

𝑇0 Feed temperature 350 𝐾 

𝑇𝑐0 Inlet coolant temperature 350 𝐾 

Δ𝐻 Heat of reaction −2 × 105𝑐𝑎𝑙 / 𝑚𝑜𝑙 

𝐶𝑝, 𝐶𝑝𝑐 Specific heats 1 𝑐𝑎𝑙 / 𝑔/𝐾 

𝜌, 𝜌𝑐  Liquid densities 103𝑔/𝑙 
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ℎ𝑎 Heat transfer coefficient 7 × 105𝑐𝑎𝑙/𝑚𝑖𝑛/𝐾 

𝐶𝑎0 Inlet feed concentration 1 𝑚𝑜𝑙/𝑙 

 

The performance of model for the validation data is depicted in Fig. 5.8. Four different fuzzy 

compositions are compared: two smooth compositions (based on “atan” and “acos” functions), 

and two classical fuzzy models using min-max compositions and product-sum compositions.  

We have conducted several simulations to inspect how the different set points affect the 

performance of the system and how different fuzzy structures will track the nonlinear dynamic. 

Figure 8 shows the open-loop responses upon the different set points when coolant flow rate 𝑞𝑐(𝑡) 

was changed from 103 𝑙/𝑚𝑖𝑛 to 105, to 110, to 100, to 99 and then to 110. All the developed 

fuzzy models can reflect the process dynamic behavior almost perfect. The Figure 8 shows the 

validation error on simulation and the quality of the model is very good.  

Fig. 5.9 and Fig. 5.10 demonstrate the disturbance rejection capability of the different fuzzy 

models. The variation of the coolant temperature 𝑇𝑐0 are added as the disturbance to the system.  
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Figure 5.8. The quality of smoothing for the smooth fuzzy model and the classical fuzzy model  

(up) Classical model (below) smooth model 

 

 

Figure 5.9. Disturbance rejection performance of the proposed smooth fuzzy modeling 

scheme compared to the classical fuzzy model 
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Figure 5.10. Disturbance rejection performance of the proposed smooth fuzzy modeling 

scheme compared to the classical fuzzy model 

The coolant temperature is manipulated as 𝑇0 =  350 + 5 ∗ sin (𝑘). The dynamic response in the 

figure shows that the smooth fuzzy models have a strong disturbance rejection capability. 

As it can be seen, employing the smooth compositions leads to system prediction with the lower 

errors. Considering that almost in all the industrial processes on which real time process 

algorithms are implemented, it is desired to show their smooth dynamics, while the possibility of 

abrupt changes and parameter variations due to the system faults, aging etc. in the industrial plants 

are not unneglectable, the importance of making up smooth fuzzy models and the promising 

applications in the system´s model making and prediction become more transparent.  

The key features and main results of developing the presented modelling scheme in the 

application to CSTR can be briefly summarized as follows, 

- The accuracy of modeling with smooth fuzzy compositions are highly better than the 

classical fuzzy models, which is clear from the comparison of the simulations.   

- The transparency of the IF-THEN smooth fuzzy models is much better than the matrix of 

relational fuzzy models. Hence, the interpretation of the linguistic variable can be useful 

for better modeling and the subsequent control purpose during the operator interaction.  

- The smooth fuzzy model is differentiable and hence, derivative-based iterative 

optimization algorithms can be applied for better connectivist identification- control 

approaches.  
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- The If-THEN smooth model structure has the potential for the theoretical analysis on the 

robustness and stability properties rather than matrix based relational smooth fuzzy 

model.  

- The smooth compositions bring about higher speed of convergence, based on Proposition 

5.3, which results in higher capacity and faster tracking of the parameter changes and 

changes in the simulations. Our expectation is that, the model based control would damp 

better uncertainties and variations.   

- When the model can track the changes precisely, in the applications of the chemical 

processes, in particular CSTR, the smooth fuzzy modeling framework makes the model 

adaptive upon the measurement on a smooth surface of parameters and it enables the 

calculation of derivative of error surface and fast removal of the local uncertainties. 

Bearing this point in mind, we will work for the implementation of the proposed algorithm in the 

processes that it is required to make up a fast simultaneous measurement and control scheme. The 

connectivist approach for the measurement based modeling and model based control will lower 

the down-time production and provide a feasible solution to the challenge of precise and high 

level of accuracy in the validation and calibration phases, with the minimal level of being 

underscored by the parameter variations, perturbations and noises.  This potentially would give 

the dynamical systems, possibility of working at higher speeds up to video rate and also utilization 

for the examination of live processes.  

 

 

Conclusions 

The overall achievement of the chapter is twofold.  From theoretical side, one seeks to extend the 

operational range of applications of smooth fuzzy compositions to make up fuzzy IF-Then 

models, which comprises lower computational complexities in comparison to the earlier works 

on the relational fuzzy models, and then, to contribute to the state of smooth fuzzy self-learning 

algorithm for modeling task of the time variant structures.   

We have proposed a novel optimization- based method for fuzzy smooth model construction and 

compared its performance to the classical fuzzy models. Four different compositions for 

extracting fuzzy models in the presence of uncertainty have been investigated. The advantages, 

benefits and limitations of the proposed methods have been investigated though simulation on the 

benchmark examples. We have investigated the case of parametric uncertainty and a comparison 

of the speed of convergence has been carried out. 
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The simulation results validate the smooth fuzzy model superior performance through the 

comparison and contrast to the classical implementation, on equal conditions, for the chaotic time 

series model and a CSTR system.  

This makes the proposed smooth modeling approach an appealing solution for designing different 

adaptive identification – controller schemes, especially for the learning of the fast systems, which 

are supposed to work at the vide rate [23], and for the mutli-target tracking, which considers the 

multi-objective optimization problems [31, 32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Look back over the past, with its changing empires that rose and fell, and you can foresee the future too. 

Chapter 6 

Smooth Fuzzy Model Identification and 

Model Predictive Control for Dynamic Systems 

 

It has been shown in the previous chapters, that the smooth fuzzy compositions can bring very 
interesting feature to the fuzzy models ; 1) by structural and smoothness properties they can die 
out the uncertainties and parameter variation of the systems and environmental noises very fast, 
2) they can  model the derivate of the plant structure as well as the plant dynamics, 3) they can 
encompass two ( or more) different states of a discontinuous or a switched system and present it 
by a single smooth fuzzy model, etc. However, the available control schemes rely on the relational 
matrix fuzzy model, which, from the computational point of view it is not easy to design a 
controller with them and there exists lack of algorithms for utilization of such interesting fuzzy 
compositions in the advanced control strategies, due to the large size of the matrixes and the 
difficulty in the interpretation of the matrixes as the fuzzy model of the large scale plant.   
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In this chapter, we address this issue and propose a systematic design methodology of combined 
identification and MPC control through the smooth fuzzy compositions. We will develop a 
gradient based approach to convert the MPC cost function to an incremental iterative controller 
design problem to come up with a very fast and simple controller algorithm. The connectivist 
identification- MPC approach has been designed and tested for the controller with the long-range 
horizons, in the presence of noises and disturbances.  

6.1. Introduction 

Model Predictive Control (MPC) is one of the methods that have been considered largely for the 
purpose of fuzzy logic model based control of nonlinear processes. It can run the complex 
nonlinear dynamics toward the desired point employing the system data combined with prior 
knowledge [25, 26, 33, 34]. This control strategy is based on on-line optimization algorithms and 
can employ the long-range predictive horizons to secure the stability and optimality of the 
unstable processes. MPC has been employed for the fuzzy logic systems with smooth 
compositions in [14], where the authors have attempted to make the one step ahead model 
predictive control of the nonlinear process.  
This chapter aims to make the structure of fuzzy model through a harmonious selection of 
components which simplifies the fuzzy smooth structure, and its subsequent control system. We 
have extended the earlier works to long-range horizon MPC. Using the long-range horizon, one 
can predict the impact of the current process input to the future process output, to handle the 
uncertainty in the system and the model mismatches during the closed loop control performance.  
Therefore, the proposed algorithm can be employed for the multi-variable systems, to run the 
system back to the feasibility region in the cases of failure in the actuators, to stabilize the non-
minimum phase and dead-time systems.  

The other novelty of the findings in this chapter compared to the contribution of AmirAskari and 
Menhaj [14] is that we made it possible to use any kind of membership function in the modeling 
of the process for the subsequent control utilization. In the earlier work in [14], they have used 
the triangular membership function for formulation of the problem. Therefore, although the model 
has been identified through smooth fuzzy compositions, nevertheless, they then solved the 
optimization problem using the non-derivative based methods. But, we propose a systemic 
iterative algorithm without need of solving the optimization problem in every step, which widens 
the area of application of the algorithm for the industrial applications without the computational 
power.  

This chapter improve the general form of the fuzzy smooth models both theoretically (for 
mathematical analysis) and practically (for numerical implementation). Hence, our goal here is to 
formulate the general case for employment of the fuzzy smooth components in the MPC control 
application.    
The chapter is organized as follows. First we present the structure of fuzzy models for dynamic 
systems which comprises a review on the different fuzzy compositions.  Then, the identification 
problem is addressed and we present an identification scheme employing the smooth fuzzy 
compositions. In the next section, we employ the model constructed through the proposed 
identification algorithm for the purpose of model predictive control of the systems in the long 
horizons. We have provided examples for the proposed uniform identification- control design 
procedure to show the usefulness of the methods. We will end the chapter with the conclusions. 

6.2. Problem Definition 

Consider a MIMP system with m inputs 𝑢 ∈ 𝑈 ⊂ 𝑅𝑚and p outputs 𝑦 ∈ 𝑌 ⊂ 𝑅𝑝.   

𝑦(𝑘 + 1) = 𝑓(𝜉(𝑘), 𝑢(𝑘)),        (6.1) 
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The input vector 𝑢(𝑘) ∈ 𝑅𝑚contains the input variables and the regression vector 𝜉(𝑘) includes 
the current and lagged inputs and outputs, 

𝜉(𝑘) = [𝑦1́, 𝑦2́, ⋯ , 𝑦𝑝́, 𝑢1́,⋯ , 𝑢𝑚́]
𝑇      (6.2) 

𝑦𝐼́ = [𝑦𝑖(𝑘), 𝑦𝑖(𝑘 − 1),⋯ , 𝑦𝑖(𝑘 − 𝑛𝑦𝑖)], 𝑖 = 1,⋯ , 𝑝     (6.3) 

𝑢𝑗́ = [𝑢𝑗(𝑘), 𝑢𝑗(𝑘 − 1),⋯ , 𝑢𝑗(𝑘 − 𝑛𝑢𝑗)], 𝑗 = 1,⋯ ,𝑚     (6.4) 

where 𝑛𝑦𝑖, and 𝑛𝑢𝑗specifiy the number of delayed for the 𝑖th output and 𝑗th input, respctively. 
We can define a fuzzy inference for this system as,  

𝑅𝑙𝑖:if 𝜉1 ∈ 𝛺𝑙𝑖,1 and ⋯ and 𝜉𝑝 ∈ 𝛺𝑙𝑖,𝑝 and         (6.5) 

𝜉𝑝+1 ∈ 𝛺
𝑙𝑖,𝑝+1 and ⋯ and 𝜉𝑝+𝑚 ∈ 𝛺𝑙𝑖,𝑝+𝑚 

then 𝑌𝑙𝑖(𝑘 + 1) = 𝜃𝑙(𝜉(𝑘), 𝑢(𝑘)), 𝑙 = 1,⋯ , 𝑟. 

where 𝛺𝑙𝑖 are the associated interval of existance of the fuzzy set, 𝜉1is the first element of the 
vector 𝜉,    and 𝜃𝑙 is the linguistic consequent parameters of the 𝑙th fuzzy rule, 𝜃 = [0,1]𝑟𝑝 and 
𝑟 is the number of the rules for the system. The output is evaluated from the predicted output 
corresponding to each rule via the center of gravity method, 

𝑦𝑖(𝑘 + 1) =
∑ 𝛽𝑙𝑖
𝑟
𝑙=1 𝜃𝑙𝑖

∑ 𝛽𝑙𝑖
𝑟
𝑙=1

  (6.6) 

 Based on the definition, 𝛽 is the degree of membership function for the antecedent (states + 
input) variables as follows, 

𝛽𝑖: 𝑈 × ⋯×𝑈⏟      
m times

× 𝑌 ×⋯× 𝑌⏟      → [0, 1]𝑙

p+1 times

                                    (6.7) 

where the symbol × represents the Cartesian product in the fuzzy sets. It can be calculated 
through the s-t composition where s and t are some t-conorm and t-norm, respectively.  

Employing different t-norm and s-norm from the above list introduced in chapter 3 to make 
different compositions, can give rise to a different level of accuracy in modeling of the dynamical 
systems upon the context, which has been studied in the previous chapter. From them, the smooth 
fuzzy compositions can make the fuzzy model such that the output is a deferential function of the 
input variables. Hence, the different schemes of gradient based methods can be used later for the 
adaptive tuning of the fuzzy model parameters to time varying plant parameters and the 
uncertainties of the plant. We want to employ this idea for rule-based fuzzy model identification 
and long-range control horizon model predictive control, to be described in the sequent.  

6.3. Generation of Smooth Fuzzy Model 

In the process of system identification, we want to train the fuzzy model to capture the functioning 
of the real plant. We can view this process as an application of the optimization methods to the 
fuzzy model, very similar to the process of training neural networks, where the least square 
optimization problem is solved. At every sampling time, we consider a target value  𝑡𝑖(𝑘) for the 
system´s output 𝑦𝑖(𝑘) and correspondingly, define the overall performance index 𝛯 of the model 
as   

𝐽 =
1

2
𝛯(𝑡 − 𝑦)2    (6.8) 
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The parameters of the fuzzy model can be tuned through solving the minimization problem of the 
performance index. It leads us to have a general method of modifying the fuzzy model at every 
sampling time k. The goal is to use the performance index to find the optimal shape of the 
membership functions.  Therefore, the variables to find will be the center and the width of the 
fuzzy membership functions. To simplify the procedure, we consider the normal membership 
functions with the gradient based variables update algorithm,  

𝜌𝑙𝑑(𝑘 + 1) = 𝜌𝑙𝑑(𝑘) − 𝛼𝜌
𝜕𝐽(𝑘)

𝜕𝜌𝑙𝑑
     (6.9) 

𝜃𝑙𝑖(𝑘 + 1) = 𝜃𝑙𝑖(𝑘) − 𝛼𝑏
𝜕𝐽(𝑘)

𝜕𝜃𝑙𝑖
     (6.10) 

where 𝜌 = [𝑐𝑙𝑑 , 𝛿𝑙𝑑]are parameters of the normal membership functions, 𝛼𝜌 and 𝛼𝑏 are the step 
lengths in the gradient based optimization and 𝑙 = 1⋯ , 𝑟, 𝑑 = 1,⋯ ,𝑚 + 𝑝 are the number of the 
system rules and the system inputs, respectively. The error derivatives are straightforward and we 
study the identification process in more details in appendix 6.1.  

6.4. MPC for Smooth Fuzzy Model   

In this section we intend to employ the smooth fuzzy model developed in the last section to 
construct a uniform on-line identification- MPC control framework for the nonlinear processes. 
In order to facilitate the explanation of the algorithm development, we consider a single-input 
single output dynamics; however, we emphasize that the results are readily extendable to the 
multi-input multi-output processes.  

We consider the following cost function for the model predictive control purpose,  

𝐽 =
1

2𝑇
∑ [𝑒2(𝑘 + 𝑡) + 𝜆𝑢2(𝑘 + 𝑡 − 1)]𝑇
𝑡=1       (6.11) 

where the tracking error is defined as 

𝑒(𝑘 + 𝑡) ≔ 𝑟(𝑘 + 𝑡) − 𝑦(𝑘 + 𝑡)   (6.12) 

𝑟(𝑘 + 𝑡) is the reference and  𝑦(𝑡 + 𝑘) is the output of the plant both at (𝑘 + 𝑡) th sampling time 
instant. We choose 𝜆 ≥ 0 as the penalty factor and T as the control horizon. Based on the 
minimization of the cost function J we derive a sequence of the optimal increase in input 
signal  Δ𝑢(𝑘),⋯ ,Δ𝑢(𝑘 + 𝑇 − 1), however, just the first increase signal is applied to the 
system.  At the next time instant 𝑘 + 1, the whole process will be repeated.  

To derive the control law, we consider the simple case, where the input signal of the process is 
comprised of two membership functions as, 

𝑢(𝑘) = 𝛽1𝑢1(𝑘) + 𝛽2𝑢2(𝑘)   (6.13) 

where 𝛽1(𝑘) =
𝜇1

𝜇1+𝜇2
, 𝛽2(𝑘) =

𝜇2

𝜇1+𝜇2
.  The input signal at the next time step will be, 

𝑢(𝑘 + 1) = 𝑢(𝑘) + 𝛼𝛥𝑢(𝑘)   (6.14) 

or in other formulation,  

𝑢(𝑘 + 1) = [𝛽1, 𝛽2] [
𝑢1(𝑘)

𝑢2(𝑘)
] 𝑢(𝑘) + 𝛼[𝛽1, 𝛽2] [

𝛥𝑢1(𝑘)

𝛥𝑢2(𝑘)
] 

The incremental input signals 𝛥𝑢1(𝑘) and 𝛥𝑢2(𝑘) are given as, 

𝛥𝑢𝜚(𝑘) =
−𝜕𝐽

𝜕𝑢𝜚(𝑘)
, 𝜚 = 1,2.    (6.15) 
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with the length step 𝛼(0 < 𝛼 ≤ 1). 

Based on the definition, we have, 

𝜕𝐽

𝜕𝑢𝜚(𝑘)
=
1

𝑇
∑ [−(𝑟(𝑘 + 𝑡) − 𝑦(𝑘 + 𝑡))

𝜕𝑦(𝑘+𝑡)

𝜕𝑢𝜚(𝑘)
+ 𝜆𝑢(𝑘 + 𝑡 − 1)

𝜕𝑢(𝑘+𝑡−1)

𝜕𝑢𝜚(𝑘)
]𝑇

𝑡=1    (6.16) 

We assume free 𝑢(𝑘) and (𝑘 + 𝑡) = 𝑢(𝑘), 𝑡 = 1,2,⋯ ,𝑁 − 1, . When one considers,   𝑖, 𝑗 =

1, 𝑦 =
∑ 𝛽𝑙
𝑟
𝑙=1 𝜃𝑙

∑ 𝛽𝑙
𝑟
𝑙=1

 and 𝑌𝑙(𝑘 + 1) = 𝜃𝑙(𝜉(𝑘), 𝑢(𝑘)), 𝑙 = 1,⋯ , 𝑟,the state vector  and inputs become, 

𝜉(𝑘) = [𝑦́, 𝑢́]𝑇          (6.17) 

𝑦́ = [𝑦(𝑘), 𝑦(𝑘 − 1),⋯ , 𝑦(𝑘 − 𝑛𝑦)]        (6.18) 

𝑢́ = [𝑢(𝑘), 𝑢(𝑘 − 1),⋯ , 𝑢(𝑘 − 𝑛𝑢)]       (6.19) 

The increment of the input signal can be obtained by taking the derivatives,  

𝜕𝑦(𝑘+𝑡)

𝜕𝑢𝜚(𝑘)
=
∑ 𝜃𝑙(

𝜕𝛽𝑙(𝑘+𝑡)

𝜕𝑢𝜚(𝑘)
)−𝑦(𝑘+𝑡)∑

𝜕𝛽𝑙(𝑘+𝑡)

𝜕𝑢𝜚(𝑘)
𝑟
𝑙=1

𝑟
𝑙=1

∑ 𝛽𝑙(𝑘+𝑡)
𝑟
𝑙=1

, 𝜚 = 1,2  (6.20) 

In the Equation (6.20), the value of the derivative  𝜕𝛽𝑙(𝑘+𝑡)
𝜕𝑢𝜚(𝑘)

 can be computed after the model and 

inference structure selection. For the sake of illustration, we consider the following model 
structure defined by the smooth fuzzy composition,  

𝛽𝑙(𝑘 + 𝑡) = 𝑆 (𝑇(𝑅, 𝑈(𝑘 + 𝑡 − 1), 𝑌(𝑘 + 𝑡 − 1))) (6.21) 

where 𝑈 and 𝑌 are fuzzy values in [0,1]. 

For input prediction horizon with 𝑡 = 1, (i.e. 𝜕𝑦(𝑘+1)
𝜕𝑢𝜚(𝑘)

), the only term depending on 𝑢(𝑘) is 𝑈(𝑘) 

Therefore,  

𝜕𝛽𝑙(𝑘+1)

𝜕𝑢𝜚(𝑘)
=

𝜕𝑆

𝜕𝑇(⋅,⋅)

𝜕𝑇(⋅,⋅)

𝜕𝑈(𝑘)

𝜕𝑈(𝑘)

𝜕𝑢𝜚(𝑘)
           (6.22) 

where 

𝜕𝑈(𝑘)

𝜕𝑢𝜚(𝑘)
=
𝜕𝑓(𝑢́(𝑘), 𝜌𝑢)

𝜕𝑢𝜚(𝑘)
 

and 𝑓(⋅,⋅) is the membership function with the parameters 𝜌𝑢 = [𝑐𝑢, 𝛿𝑢], 𝑐𝑢 is the membership 
function center and 𝛿𝑢 is the membership function width, obtained in the identification phase.  

For the input prediction horizon with 𝑡 = 2, the  terms depending on 𝑢(𝑘) is 𝛽(𝑘 + 1), and 

𝛽𝑙(𝑘 + 2) = 𝑆 (𝑇(𝑅, 𝑈(𝑘 + 1), 𝑌(𝑘 + 1)))  (6.23) 

Therefore,  

𝜕𝛽𝑙(𝑘 + 2)

𝜕𝑢𝜚(𝑘)
=

𝜕𝑆

𝜕𝑇(⋅,⋅)
[
𝜕𝑇(⋅,⋅)

𝜕𝑈(𝑘 + 1)

𝜕𝑈(𝑘 + 1)

𝜕𝑢𝜚(𝑘)
+

𝜕𝑇(⋅,⋅)

𝜕𝑌(𝑘 + 1)

𝜕𝑌(𝑘 + 1)

𝜕𝑢𝜚(𝑘)
] , 𝜚 = 1,2 

and 
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𝜕𝑌(𝑘+1)

𝜕𝑢𝜚(𝑘)
=
𝜕𝑌(𝑘+1)

𝜕𝑦(𝑘+1)

𝜕𝑦(𝑘+1)

𝜕𝑢𝜚(𝑘)
, 𝜚 = 1,2 

where 

𝜕𝑌(𝑘+1)

𝜕𝑦(𝑘+1)
=
𝜕𝑓𝑙(𝑦́(𝑘+1),𝜌𝑦)

𝜕𝑦(𝑘+1)
,  

and 𝜕𝑦(𝑘+1)
𝜕𝑢𝜚 (𝑘)

 is calculated above in (6.20).  

For 𝑖 = 3, the only terms depending on 𝑢(𝑘) is 𝛽(𝑘 + 2), hence,  

𝜕𝛽𝑙(𝑘+3)

𝜕𝑢𝜚(𝑘)
=

𝜕𝑆

𝜕𝑇(⋅,⋅)
[
𝜕𝑇(⋅,⋅)

𝜕𝛽𝑙(𝑘+2)

𝜕𝛽𝑙(𝑘+2)

𝜕𝑢𝜚(𝑘)
] , 𝜚 = 1,2       (6.24) 

which is calculated above. For 𝑖 > 3, 𝛽𝑙(𝑘 + 𝑖 − 1) is the only term depending on 𝑢(𝑘) which 
can be calculated recursively.  

Remark 6.1: We can extend the control design procedure and the identification process readily 
for other definitions of the membership function involvement or to the systems with multi inputs, 
multi outputs.  

Lemma 6.1: Provided that there exists a feasible solution for the control problem in (6.11). Then 
the system dynamics will converge to track the reference signal as 𝑘 → ∞.  

Proof : Assume that we are at the time k and implement the optimal input 𝑢(𝑘) = 𝑢0∗  that runs 
the system to the state 𝑥(𝑘 + 1).   

𝐽𝑥(𝑘) = min
u(k)

1

2𝑇
∑ [𝑒2(𝑘 + 𝑡) + 𝜆𝑢2(𝑘 + 𝑡 − 1)]𝑇
𝑡=1      

 (18) 

𝐽𝑥(𝑘) = min
u(k)

 
1

2𝑇
[𝑒2(𝑘 + 1) + 𝜆𝑢2(𝑘)] + 𝐽𝑥(𝑘)(𝑘 + 1)      (6.25) 

At this time, we can determine the associated optimal control input to the system over the horizon 
1 to N+1,   

𝐽𝑥(𝑘+1) = min
u(k+1)

1

2𝑇
∑ [𝑒2(𝑘 + 𝑡 + 1) + 𝜆𝑢2(𝑘 + 𝑡)]𝑇
𝑡=1       (6.26) 

However, we can employ the previous sequence of optimal moves followed by zero as well :  
𝑢(𝑘 + 1) = 𝑢0

∗ . As this sequence of input is not optimal hence,   

𝐽𝑥(𝑘+1) ≤ 𝐽𝑥(𝑘) −min
u(k)
 
1

2𝑇
[𝑒2(𝑘 + 𝑡) + 𝜆𝑢2(𝑘 + 𝑡 − 1)]     (6.27) 

As the value of minimization is positive for (𝑒, 𝑢) ≠ (0,0), hence the sequence of the optimal 
costs is stricktly decreasing for all (𝑒, 𝑢) ≠ (0,0)., i.e. 𝐽(𝑘 + 2) ≤ 𝐽(𝑘 + 1) ≤ 𝐽(𝑘). From the 
other hand, by the definition in equation (7), we have 0 ≤ 𝐽. It means that the the sequence of the 
cost functions 𝐽(𝑘), 𝐽(𝑘 + 1), 𝐽(𝑘 + 2)  are converging to zero and 𝑒 → 0 as well. 

Corollary 6.1: The feasibility of the control input and state variable implies that the MPC 
controller will run the state trajectory to zero. 

Proof: It can be proved by change of parameters from Lemma 1, considering that, 

𝐽(⋅) > 0, (𝑒, 𝑢) ≠ (0,0), 𝐽(𝑒 = 0, 𝑢 = 0) = 0.      (6.28) 
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For the unstable systems, the question will be how to determine the interval N or at least an upper 
bound such that the system enters the positive invariant set. Several algorithms for the proper 
selection of the control horizon N have been introduced in the literature.   

Lemma 6.2: The obtained control law is continuous and smooth. 

Proof: Since the control law u is obtained by the derivation and linear combination of some 
smooth and continuous functions, the control input is continuous and smooth.  

Lemma 6.3: The cost function 𝐽(⋅) is convex, continuous and smooth. 

Proof: Since the cost functionu is obtained by the derivation and linear combination of some 
cosine smooth and continuous functions, it is continuous and smooth. The convexity of the cost 
function can be proved easily from the equation (6.11). 

Corollary 6.2: The control function is the optimal control sequence and the system trajectory is 
the corresponding optimal trajectory.  

Proof: The corollary can be concluded from the convexity property of the cost function 𝐽(⋅) in 
Lemma 6.3.  

The overal proceedure of the connectivist smooth fuzzy identification and MPC control scheme 
is portrayed in the Figure 6.1.  

Remark 6.2: As it is shown in Figure 6.1, we could join the learning capacities of the adaptive 
modelling scheme to the iterative method of controller design to reach a uniform framework with 
the parallel processing features.  

Remark 6.3: At each step of the adaptation for the fuzzy model, the membership functions 
linguistically express terms for the model interference that are understandable to a human. This 
aspect, which has been forgotten in the earlier works using relational fuzzy models [14], is one of 
the strengths of fuzzy modelling. Actually, the blind performance index used at the relational 
fuzzy modelling or artificial neural networks based tuning of the membership functions causes in 
semantically meaningless linguistic terms at the model interfaces, which we could address 
effectively.  

Remark 6.4: In the present work, we have developed a systematic incremental controller using 
the smoothness and continuity properties of the model structure, to employ the online membership 
function calibration of the model with the least on-line computational burdens. This is while, the 
MPC design in typically based on the minimization of a non-convex quadratic performance index.  

 
 

Figure 6.1: The overall scheme of the presented connectivist 
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 smooth fuzzy identification-control approach 
 
 
Lemma 6.4: The rate of convergence of the control function is quadratic. 
 
Proof: Based on the Lemma 3, the derivative of the control function is smooth almost everywhere, 
and it´s second derivate is continuous. Hence, when the initial point of the control signal and the 
system states are sufficiently close to the optimal points and the derivative function is not zero, 
the optimization algorithm will converge quadratic. 
 
Corollary 6.3: The smooth fuzzy MPC control function will converge faster than the classical 
fuzzy MPC and to a more stable solution. 
 
Proof: Considering the quadratic rate of convergence for the control function in smooth fuzzy 
models and the linear rate of convergence of the classical fuzzy model, the corollary can be 
concluded straight from the Lemma 6.4.   
 

We show the effectiveness of the proposed uniform smooth fuzzy modeling in Section 2 on a time 
series example and the present connectivist identification-control approach on a nonlinear non 
minimum phase example below.  

6.5. Illustrative Example  

In this section, we intend to illustrate the effectiveness of the proposed approach through an 
example based on [33, 34] for smooth fuzzy IF-THEN model identification – MPC control 
of a non-minimum phase system. We also study the role of extending control horizon on the 
overall performance of the controlled system. Consider the following discrete time nonlinear 
system, 

𝑦(𝑘 + 1) = −𝑢(𝑘) + 1.2𝑢(𝑘 − 1) + 1.4𝑒𝑥𝑝(−𝑦2(𝑘)) − 0.6𝑦(𝑘 − 1)    (6.28) 

The open-loop response shown in Fig. 6.2 indicates that the process is indeed highly nonlinear.   

Initially we have modeled the system through the proposed smooth fuzzy modeling scheme. Then, 
we controlled the system in different control horizons T. We have taken  𝛼 = 0.5 and 𝜆 = 0 for 
this purpose.   

We have run several simulations to examine how the change of the control horizon and the 
selection of fuzzy composition impact on the effectiveness and quality of the controller. We have 
examined the control performance for different time horizons.  
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Figure 6.2. open loop of the plant 

 

Fuzzy controller design: We have made several simulations to inspect the quality and 
effectiveness of the smooth fuzzy controller. In course of the simulations, we changed the set 
point of the plant in a train of pulses. The dynamic response of the system and system input are 
depicted in the same figure.  We have considered several different set points to properly see the 
performance of the controller to the system. Fig. 6.3 demonstrates the systems´ responses in the 
closed-loop for three control horizons using four different fuzzy compositions: two “atan” and 
“acos” smooth fuzzy controllers and two classical min-max and product-sum fuzzy controllers. 
Apparently, the control dynamics with all four compositions are good.   

 Disturbance rejection performance: To make the control problem more realistic, the value of 
parameters is randomly varied as disturbances.  

Both classical fuzzy structure and smooth fuzzy structure are used in the comparative study of the 
performance of the MPC controller in Fig. (6.3) - (6.6). The dashed lines demonstrate the response 
of the control action where the smooth fuzzy MPC is applied and the dotted lines depict the 
response to the control action from classical fuzzy MPC. With a contrast of the obtained results, 
one can conclude that the smooth fuzzy controller outperformances the classical MPC technique.  

In simulation, different types of disturbances and noisy environment also have been considered 
to affect the system.  
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Figure 3. Comparison of three compositions 

 (top) short term control horizon H=1, (bottom) long term horizon H=11. 
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Figure 6.4. Performance of the proposed MPC scheme with three fuzzy compositions in noisy 
environment. (top) short term control horizon H=1, (middle) medium term horizon H=4, 

(bottom) long term horizon H=11. 
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Additive noise: To study the impact of the smooth model prediction on the control performance, 
we have considered noisy environment which is added to the system. Obviously, this causes 
degradation in the normal performance of the controllers. A focus on Fig. 6.4. demonstrated 
the impact of the smooth fuzzy MPC for the noisy conditions, where it is proved to be more 
robust, rather than the classical scheme. We have considered the followings as the additive 
noise to the system. 

𝑦(𝑘 + 1) = −𝑢(𝑘) + 1.2𝑢(𝑘 − 1) + 1.4𝑒𝑥𝑝(−𝑦2(𝑘)) − 0.6𝑦(𝑘 − 1) + 0.05 ∗ R 
 (6.29) 

where R is a random noise signal.  

Parametric change: We also have studied how the change in parameters (usually not measurable) 
can impact the controller performances. Obviously, this leads to degradation in the normal 
performance of the controllers. From the other hand, a focus on Fig. 6.5. demonstrates that the 
proposed smooth scheme outperforms the classical controller in the disturbance rejection. We 
have considered as the parametric change to the system. 

𝑦(𝑘 + 1) = −𝑢(𝑘) + 1.2𝑢(𝑘 − 1) + (1.4 + 0.08 ∗ 𝑅)𝑒𝑥𝑝(−𝑦2(𝑘)) − 0.6𝑦(𝑘 − 1) 
 (6.30) 

with R as defined above. 
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Figure 6.5. Comparison of three compositions with change  in the parameters of the plant. 
(top) short term control horizon H=1, (middle) medium term horizon H=4, (bottom) long 

term horizon H=11. 
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Figure 6.6. Comparison of three compositions with additive time-varying disturbance. (top) 
short term control horizon H=1, (middle) medium term horizon H=4, (bottom) long term 

horizon H=11. 

 

 

Additive time-varying disturbance: We also have studied how time-varying disturbance (usually 
not measurable) can impact the controller performance. This leads to degradation in the normal 
performance of the controllers, too. It is demonstrated in Fig. 6.6 that the smooth fuzzy controllers 
are more robust. We have included the parametric changes to the system. The controller managed 
to achieve desired reference trajectory under constant disturbance, 

𝑦(𝑘 + 1) = −𝑢(𝑘) + 1.2𝑢(𝑘 − 1) + 1.4𝑒𝑥𝑝(−𝑦2(𝑘)) − 0.6𝑦(𝑘 − 1) ∗ 0.05 ∗ sin (k)  
 (6.31) 

The study of dynamic response shows that the fuzzy smooth predictive controllers have strong 
disturbance rejection capabilities, in all the figures, in comparison to the classical fuzzy systems.  

As it can be seen, employment of the smooth compositions in the fuzzy implementation, has 
reduced the level of overshoot and made the performance of the controller much smoother, rather 
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than the classical fuzzy modeling and control scheme. Besides, the comparison of the results of 
study the same initial conditions of different smooth versus classical fuzzy models shows that the 
smooth representation causes a faster response in the transient state of the system. Hence, it 
highlights the importance of making up smooth fuzzy models and smooth fuzzy controller and 
the promising applications they may have in the system modeling and prediction become more 
transparent.  

In all the figures, it can be distinguished that both employed smooth “atan” and “acos” 
compositions provide satisfactory performance and more stable performance with superiority 
of the latter classical fuzzy controllers. More analytical study on the robustness and stability of 
the control system is beyond the scope of the current chapter. The interested reader can consult 
the reference [29] – [31].  

 

The inspection of results, we obtained so far, could reveal that 

i) Converse to the earlier contributions on smooth fuzzy compositions where the whole 
structure of the system was controlled based on the single relational matrix of operation, 
we are able to control and run every state and output of the system separately. Hence, it 
will be more easy to handle the industrial multivariable system here, while manipulating 
the relational matrix of the industrial plants requires much more computational 
requirement and lacks the model transparency and interpretability. 

ii) As it is depicted in Figures 6.3-6.6, we can vary the control horizon through the presented 
approach. Hence, in the cases of unstable system, non-minimum phases and/ or delayed 
systems, it will be possible to increase the control horizon large enough such that the 
system enters the basin of attraction. While, this is not possible through the one-step 
ahead prediction strategy of the earlier work of AmirAskari and Menhaj [14]. 

iii) For the systems with dead time, we can increase the control horizon long enough to check 
the effect of every input to the system. Hence, it makes the algorithm very applied for 
the real industrial plants. This is while, it is impossible to do the same for the approach 
based on the one-step ahead prediction MPC control [14].  

iv) The system has been identified based on the fuzzy IF-Then approach, and hence, the 
designer can employ the experience of the operator for better functioning of the system 
and suitable manipulation of the control inputs in certain areas of the state space.  
However, for the system identified by relational matrix model of the strategy presented 
in the previous contributions [14] it was not possible to do translate the experience of the 
operator into the blocks of the relational matrix properly, and are not essentially 
favorable from the viewpoint of model transparency (in view of knowledge extraction 
and knowledge embedment) and interpretability.  

v) The controller input can be computed incrementally, while the previous works needed a 
to solve a MIP problem, for every iteration from the scratch. It lowers very much the 
computational burden [29, 30]. 

vi) Although we have used the normal membership function, however, the present algorithm 
can be adapted easily for every definition of the membership functions, while the 
algorithm presented before in [14] is constructed based on the certain definition of the 
membership function. It worth to note that still normal membership function is more 
practical and widely used rather than the triangle membership function, used by 
AmirAskari and Menhaj.  
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vii) As a matter of fact, the smooth fuzzy components in its general form are very capable 
modeling structures, that could show robust properties to noise and switched changes. 
Hence, we tried to establish a standardized formulation for the general form that of 
smooth fuzzy structure which not only have a good modeling and control capability but 
also can be employed for all the generic forms of smooth fuzzy compositions defined in 
section 2.1.     
 

Conclusions 

Several interesting properties of smooth fuzzy compositions have been cited and proved in the 
literature [12-13], and robustness advantage of smooth fuzzy models has been reported in almost 
all the contributions in the field [14]. However, they cannot be employed for the practical cases 
and industrial systems until an easy and industrial implementable algorithm appears [15, 25, 26]. 
This chapter is a response to this requirement and we formulated a scheme for identification and 
long horizon MPC control of the smooth fuzzy models in its general form.  

Hence, the overall achievement of the chapter has been twofold.  One seeks to contribute to the 
state of smooth fuzzy controller design by proposing a general and systematic expert free design 
methodology, and to extend the operation range of smooth IF-THEN fuzzy models for time 
variant systems. We have presented an approach for the combined identification and MPC control 
of the systems through the smooth fuzzy composition. A gradient based optimization approach 
has been developed to convert the MPC cost function into an incremental controller design 
problem which results in a very fast and simple controller, in comparison to the other fuzzy MPC 
approaches that solve the problem through the hessian and gradient approximation.  

Different simulations on a non- minimum phase unstable system have been provided to 
demonstrate the benefits and the limitations of the schemes in the presence of disturbance and 
noises. Four fuzzy compositions for extracting fuzzy MPC controllers to track the assumed 
trajectory using the fuzzy model have been contrasted. According to the test results, we can say 
that the overall smooth fuzzy modeling- control scheme is very much suitable for the adaptive 
control of time changing and noisy systems. One can conclude from the theoretical studies and 
the simulations that the smooth fuzzy controller is the best choice to respond in time to the 
disturbances, with the lowest overshoot during the changing tracking reference.   

Appendix 6.1 

In order to drive error derivatives, we study the identification process in more details. To begin 
with, we write the gradient descent method formula and define the vectors as follows, 

𝜕𝐽

𝜕𝜌𝑙𝑑
=
𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝑦́𝑙𝑖

𝜕𝑦́𝑙𝑖

𝜕𝜉𝑙𝑑

𝜕𝜉𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝜌𝑙𝑑
    

 (6.32) 

But to complete the formulation we need to take partial derivative of each variable separately.  

 

1- We define the fuzzy variables  {𝜉́1, 𝜉́2, ⋯ , 𝜉́𝑟} at every time instant as, 
𝜉́𝑙 = [𝜉𝑙1, 𝜉𝑙2⋯ , 𝜉𝑙,𝑚+𝑝] = [𝛽𝑙1(𝜉1), 𝛽𝑙2(𝜉2),⋯ , 𝛽𝑙,𝑚+𝑝(𝜉𝑚+𝑝)], 𝑙 = 1⋯ , 𝑟 

and  𝜉́ = [𝜉́𝑙]𝑙=1
𝑟

, where 𝛽(⋅), as stated above is value of the membership function for the 
fuzzy set.  In general, this function can be written as, 
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𝛽𝑙𝑑(⋅) = 𝑒𝑥𝑝 (
−1

2
(
𝜉𝑙𝑑−𝑐𝑙𝑑

𝛿𝑙𝑑
)
2
).   

 (6.33) 

 Therefore, for making up the gradient descent method formula,  𝜕𝜉𝑙𝑑
𝜕𝜌𝑙𝑑

 can be written as,  

𝜕𝜉𝑙𝑑

𝜕𝑐𝑙𝑑
= 𝑒𝑥𝑝 (

−1

2
(
𝜉𝑙𝑑−𝑐𝑙𝑑

𝛿𝑙𝑑
)
2
)(
𝜉𝑙𝑑−𝑐𝑙𝑑

𝛿𝑖𝑗
2 )   

 (6.34) 

𝜕𝜉𝑙𝑑

𝜕𝛿𝑙𝑑
= 𝑒𝑥𝑝 (

−1

2
(
𝜉𝑙𝑑−𝑐𝑙𝑑

𝛿𝑙𝑑
)
2
)(
(𝜉𝑙𝑑−𝑐𝑙𝑑)

2

𝛿𝑙𝑑
)   

 (6.35) 

2- Based on the compositional rule inference, we can say that estimation of the output, 
according to our notation is, 

𝑦́𝑙𝑖 = 𝑠 − 𝑛𝑜𝑟𝑚(𝑡 − 𝑛𝑜𝑟𝑚 (𝜉́𝑙 , 𝑅𝑙(𝜉́, 𝑦𝑖))) 

for all 𝑙 = 1,⋯ , 𝑟.Let’s abbreviate 𝑆: 𝑠 − 𝑛𝑜𝑟𝑚 and 𝑇: 𝑡 − 𝑛𝑜𝑟𝑚 in the following.  

To facilitate the explanation of the procedure of taking the derivation of 𝜕𝑦́𝑙𝑖
𝜕𝜉𝑙𝑑

, we assume a 

simple system and put 𝜉́𝑙 = [𝜉𝑙1, 𝜉𝑙2] and 𝑐 = 𝑅(𝜉́, 𝑦𝑖). Then, based on the properties of t-norms, 
we have,  

𝑦́𝑙𝑖 = 𝑆 (𝑇(𝑇(𝜉𝑙1, 𝜉𝑙2), 𝑐)) = 𝑆(𝑇(𝜉𝑙1, 𝑐), 𝑇(𝜉𝑙2, 𝑐)) 

We define: 𝛬1 = 𝑇(𝜉𝑙1, 𝑐) and 𝛬2 = 𝑇(𝜉𝑙2, 𝑐), then, 

𝑦́𝑙𝑖 = 𝑆(𝛬1, 𝛬2)   
 (6.36) 

𝜕𝑦́𝑙𝑖

𝜕𝜉𝑙1
=

𝜕𝑆

𝜕𝛬𝑑

𝜕𝛬𝑑

𝜕𝜉𝑙1
= 𝑆́1𝑇́1, 𝑑 = 1,2.    

 (6.37) 

If there exists more state variables in the augmented state vector, 𝜉́𝑙 = [𝜉𝑙1, 𝜉𝑙2⋯ , 𝜉𝑙,𝑚+𝑝]we can 
continue in the same manner and write as,  

𝜕𝑦́𝑙𝑖

𝜕𝜉𝑙𝑑
= 𝑆́𝑚+𝑝−1𝑇́𝑚+𝑝−1⋯𝑆́1𝑇́1.   

 (6.38) 

Hence, to derive the gradient descent method formulation, the general formula for the error 
derivation will be,   

𝜕𝐽

𝜕𝑐𝑙𝑑
=
𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝜉𝑙𝑑

𝜕𝜉𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝑐𝑙𝑑
   

 (6.39) 

= 𝑒(𝑘) ⋅ (
𝜃𝑙𝑖 − 𝑦𝑖
∑ 𝛽𝑙𝑖
𝑟
𝑖=1

) ⋅ (𝑆́𝑚+𝑝−1𝑇́𝑚+𝑝−1⋯𝑆́1𝑇́1) ⋅ 𝑒𝑥𝑝 (
−1

2
(
𝜉𝑙𝑑 − 𝑐𝑙𝑑
𝛿𝑙𝑑

)
2

)(
𝜉𝑙𝑑 − 𝑐𝑙𝑑

𝛿𝑙𝑑
2 ) 
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𝜕𝐽

𝜕𝛿𝑙𝑑
=
𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝜉𝑙𝑑

𝜕𝜉𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝛽𝑙𝑑

𝜕𝛿𝑙𝑑
   

 (6.40) 

= 𝑒(𝑘) ⋅ (
𝜃𝑙𝑖 − 𝑦𝑖
∑ 𝛽𝑙𝑖
𝑟
𝑖=1

) ⋅ (𝑆́𝑚+𝑝−1𝑇́𝑚+𝑝−1⋯𝑆́1𝑇́1) ⋅ 𝑒𝑥𝑝 (
−1

2
(
𝜉𝑙𝑑 − 𝑐𝑙𝑑
𝛿𝑙𝑑

)
2

) ( 
(𝜉𝑙𝑑 − 𝑐𝑙𝑑)

2

𝛿𝑙𝑑
3 ) 

  
𝜕𝐽

𝜕𝜃𝑙𝑖
=
𝜕𝐽

𝜕𝑦

𝜕𝑦

𝜕𝑦𝑖

𝜕𝑦𝑖

𝜕𝜃𝑙𝑖
   

 (6.41) 

= 𝑒(𝑘) ⋅ (
𝜃𝑙𝑖 − 𝛽𝑙𝑖
∑ 𝛽𝑙𝑖
𝑟
𝑖=1

) 
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Begin at the beginning, the King said, very gravely, and go on till you come to the end: then stop.' 

Conclusions 

7.1. Summary of The Thesis 

The complexity of the industrial processes always demands for more sophisticated modeling and 
control systems to uphold the quality of products, make the process safer and more stable, 
employing the available hardware and experience and knowledge of the operator. Artificial 
learning methods and fuzzy logic based algorithms for a long time have been the most attractive 
responses to such challenges, and despite all the achievements and popularity, there are still open 
questions in the field.  

One of the open questions from the design point of view always has been that which membership 
function (either Gaussian or Trapezoid or other else) would work better regarding the simplicity 
of calculations and the continuity of the models and smoothness. Parallel to that, which other 
parameter of the fuzzy model can be manipulated properly to reduce the number of trial and error 
and the required time and effort for a suitable controller design.  

In this thesis, we demonstrated that upon the application of the smooth compositions, we will 
come to a united scheme of the continuity and smoothness, no matter what the membership 
function has been selected. Besides, we have tried to show how the smooth fuzzy compositions 
can be incorporated effectively into the nonlinear system modelling, identification and model 
based predicative control schemes and described the features on the speed of convergence, 
optimality and robustness the system will gain alongside. Although the initial works have been 
carried out before, we have emphasized on the theoretical study of the smooth fuzzy models and 
have tried to transfer a clear interpretation of such smooth models.  

In later chapters, we have endeavored to determine the optimal model structure and controller 
design for the long horizon in model predictive control strategy. Several simulations have 
demonstrated that the proposed approaches bring remarkable attributes to the classical fuzzy 
modelling and control schemes, while offering better performance in the presence of noise and 
uncertainties to the highly nonlinear processes.  

The accuracy of the modelling and control methods when be examined using simulations of the 
well-known benchmarks and the theoretical studies on the convergence and stability of the 
algorithms have been provided in the body of the thesis. While the numerical approaches have 
been examined for the algorithms, the emphasis has been on theoretical studies as well to prove 
the efficiency of the derived algorithms, which enjoy from the smoothness properties of the model 
at the optimization phase. Hence, all of the developed algorithms could outperform in modeling 
and control based on the classical fuzzy structures, especially in the presence of disturbance and 
noise. The results of this work, have been obtained without appealing to the nonlinear NP hard 
optimization algorithms, while, they have been a core for the application of smooth fuzzy 
compositions to the relational fuzzy models in the computation of the matrix operations, in the 
previous works of the earlier researchers.   

The thesis concludes that the smooth fuzzy model for system identification and control brings 
about the following features: 

• Can be used with different membership functions, and again brings the same level of 
smoothness and continuity to the model and to the derivative of model as the Gaussian  
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• In combination to the predictive control strategy facilitates the consideration of long 
control horizon whereby could reach better robustness and speed of convergence 

• Smooth fuzzy IF-THEN model building through the least squares algorithm will show 
higher level of convergence in the optimization step and higher disturbance rejection 
capacity  

• Allows dead time compensation in the MPC applications 
 

7.2 Future Directions   

We believe that this study represents the initial steps in a direction that appears to be promising 
in the smooth fuzzy modelling of the complex systems. Even though we endeavored to make a 
throughout study of the topic from different angels of optimality, stability and adaptiveness during 
the course of PhD works, it seems inevitable that some goal could not be achieved, given the 
limited period of time dedicate for termination of this dissertation.  

Since, one feature of smooth fuzzy models is the higher speed of convergence, the future works 
can focus on the development of a detailed error mapping of the smooth fuzzy models for 
characterization of high speed stages used in the noisy environments for precise measurement and 
manipulation. When we employ the smooth compositions in the fuzzy models, derivative of the 
model and error mapping can be obtained analytically.  

In fact, the success in robust modeling will empower to predict the experimental results accurately 
in the face of environmental conditions and parametric variations. Hence, we employed the 
smooth fuzzy compositions for the model building and self-learning of the models in the practical 
example of CSTR. Therefore, we suggest the proposers to give priority to the experimental 
verification of the benefits of the developed algorithm and work on it to meet the industrial needs 
and take measures for the transfer of it into the industry. Other works can focus on the applications 
of different control theories to the smooth models to improve the calibration accuracy of systems 
and decrease the number of interactions between the systems/tools/equipment and changes in the 
measurement configurations during the manipulation, validation and calibration phases.  

Also, it will be possible to deal with the theoretical works and focus on the system constraints on 
the manipulated variables by handling them through proper application of the penalty functions. 
Moreover, it would be possible to consider the multi-objective optimization criteria for the 
nonlinear processes [29]. We believe that the future works also can dedicate to study the analytical 
robustness conditions in the controller design phase.   

In our analysis and transformation, to run the approximation error and its derivative tend to zero 
we need to increase the number of partitions in the dense grid as well as the fuzzy rules. It means 
that in the practical applications, we will have growing numbers of fuzzy rules to make use of the 
smooth approximation properties. Therefore, there is a trade-off between the accuracy of fuzzy 
model and the modelling complexity. Hence, it is required to think about a method for finding the 
minimal number of fuzzy rules for a given accuracy of the fuzzy model in the future researches. 
One suggestion will be to discard the rules which have weak contribution to the output. The 
interested reader is referred to [23] for such solutions. Also, the application to the multi-agent 
systems and cooperative control can be followed as the schemes of [35, 36], as the other future 
paths. 
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