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Abstract. A speech denoising method based on Non-Negative Matrix
Factorization (NMF) is presented in this paper. With respect to previ-
ous related works, this paper makes two contributions. First, our method
does not assume a priori knowledge about the nature of the noise. Sec-
ond, it combines the use of the Kullback-Leibler divergence with sparse-
ness constraints on the activation matrix, improving the performance of
similar techniques that minimize the Euclidean distance and/or do not
consider any sparsification. We evaluate the proposed method for both,
speech enhancement and automatic speech recognitions tasks, and com-
pare it to conventional spectral subtraction, showing improvements in
speech quality and recognition accuracy, respectively, for different noisy
conditions.

Keywords: Non-Negative Matrix Factorization, Kullback-Leibler Di-
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1 Introduction

The quality of speech is degraded in the presence of noise. Noisy speech signals
are a common problem in many applications, e.g. Automatic Speech Recogni-
tion (ASR), landline and mobile phone communications, etc. In ASR systems,
the problem is harder because machine understanding is still far from humans
and speech enhancement is sometimes performed as a preprocessing stage for
those systems. In this paper, we have concentrated our efforts on enhancing
speech for both, human consumption and ASR. Several methods for reducing
the influence of noise have been proposed. Among them, it is worth mention-
ing the Wiener filtering technique [1] and Spectral Subtraction (SS) [2], which
consists of subtracting an estimate of the noise spectrum from the noisy speech
spectrum. Both of them produce a more intelligible signal but generate the so
called musical noise as a side effect.

Recently, Non-Negative Matrix Factorization (NMF) has been successfully
used in areas related to speech processing, including speech denoising [3], sound
separation [4], speaker separation [5] and feature extraction [6]. NMF provides a



way of decomposing a signal into a convex combination of nonnegative building
blocks (also called basis vectors) by minimizing a cost function. Typical cost
functions are the Euclidean distance and the Kullback-Leibler (KL) divergence.
Therefore, NMF is capable of separating sound sources when their corresponding
building blocks are sufficiently distinct, as is the case of speech and noise.

In this paper, we propose a NMF-based method for speech denoising which
is very close to the one developed in [3] for speech enhancement tasks. The
technique in [3] is based on a prior model of speech and noise, and therefore it
assumes a priori knowledge of the type of noise which contaminates speech. In
contrast, our method does not use this explicit information about noise, because
it works with the only-noise segments of the current utterance to be denoised,
after being detected with a Voice Activity Detector (VAD). Besides, we report
results for both, speech enhancement and automatic speech recognition. On the
other hand, several studies point out that it may be useful to explicit control
the degree of sparsity in NMF decompositions for sound and speaker separation
tasks. In this sense, the method for speaker separation proposed in [5] intro-
duces a penalty term in the NMF with Euclidean distance that allows to control
the sparsity of the solution. However, recent NMF-based techniques in speech
processing report better results by using NMF with KL divergence [6], [4]. For
this reason, in this paper, we propose a NMF-based method for speech denois-
ing which combines the use of the KL divergence with sparseness constraints
following the procedure described in [7].

This paper is organized as follows: Section 2 introduces the mathematical
background of NMF; in Section 3 we present the speech denoising process using
NMF. In Sections 4 and 5 we describe the application of the method to speech
enhancement and automatic speech recognition, respectively, and end with some
conclusions in Section 6.

2 Non-negative Matrix Factorization (NMF)

Given a matrix V € Ri *T where each column corresponds to a data vector,
non-negative matrix factorization (NMF) approximates it as a product of two
matrices of nonnegative low rank W and H, such that

Va~WH (1)

where W € RY*X and H € RE*T and normally K < min (F,T). This way,
each column of V' can be written as a linear combination of the K basis vectors
(columns of W), weighted with the coefficients of activation or gain located in
the corresponding row of H. NMF can be seen as a dimensionality reduction of
data vectors from an F'—dimensional space to the K —dimensional space. This
is possible if the columns of W uncover the latent structure in the data [8]. The
factorization is achieved by an iterative minimization of a given cost function
as, for example, the Euclidean distance or the generalized Kullbak Leibler (KL)
divergence,



D1, (VI|WH) = ; (Vijlog(m/vig)ij —(V - WH)ij> (2)
In this work, we consider the KL divergence because it has been recently used
with good results in speech processing tasks, such as sound source separation
[4], speech enhancement [3] or feature extraction [6]. In order to find a local
optimum value for the KL divergence between V and (W H), an iterative scheme
with multiplicative update rules can be used as proposed in [8] and stated in (3)

v _pgT T v
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where 1 is a matrix of size V', whose elements are all ones and the multiplications
® and divisions are component wise operations.

The NMF algorithm does not assume any sparsity or mutual statistical in-
dependence between columns of W. However, NMF usually provides sparse de-
composition [8]. There are several ways to achieve some control of the sparsity.
In this paper, we follow the approach proposed in [7] and [9] for KL cost func-
tions, in which the NMF is regularized using non-linear projections based on (3).
Applying this procedure, the regularized learning rules are the following,

(4)
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where «,, and «j are the regularization parameters or sparse factors and w is
a relaxation parameter which also controls the sparsity and, in addition, speeds
up the algorithm convergence. Note that with the sparse factors, the exponent
of the learning rules are greater than one, which implies that the small values
in the non-negative matrix tend to zero as the number of iterations increase [9].
In this paper, we only consider sparsification on the matrix H.

3 Speech Denoising Using NMF

NMF-based methods perform speech denoising under the hypothesis that noisy
speech signals are the additive mixture of two sufficiently different sources:
speech and noise. NMF is applied to magnitude spectra as it is assumed that the
short-time magnitude spectra of a noisy signal, |Vj,ix| can be expressed as a lin-
ear combination of several distinct components, those representing only-speech
spectra (Wipeecn) and those representing only-noise spectra (Wheise). These com-
ponents are called Spectral Basis Vectors (SBV). The NMF representation of a
noisy signal is shown in Fig. 1, wherein the speech SBVs (Wpeecn) and their cor-
responding speech activation coefficients (Hspeecn) can be used to reconstruct the
clean SpeeCh Signa‘l (|‘/spccch| ~ WspccchHspccch)7 while the noise SBVs (Wnoisc)
and their corresponding noise activation coefficients (Hypise) can also be used to
reconstruct the noise signal (|Vioise| & Whoise Hnoise) if required.



| Vl‘nlxl WSI?eEC]I Whoise

T --- TT1)]
T - 17,

speech

4

FxT F x 2K

|V5peech‘ = WspeechHspeech

Fig. 1. NMF representation of noisy speech signals

The speech enhancement process consists of two different stages, training and
denoising itself, as detailed below.

Training Stage. In the training stage, the SBVs representing speech and
noise signals are determined. This is done by separately performing NMF on
clean speech and noise data. First, the spectrum magnitude of both, clean
speech (|Vipeecn|) and noise (|Vioise|) is computed. Afterwards, the KL diver-
gence between the magnitude spectra and their corresponding factored matrices
((Wspeech Hspeech) and (Whgise Hnoise)) is minimized using the learning rules in
(3). Since it is an iterative algorithm, it is important to perform a proper initial-
ization of the matrices. Note that the spectral basis vectors contained in Wpeech
and Wiise are used in the next stage as speech and noise models.

For building the speech model, it is assumed that enough clean speech data
is available. For the noise model, we have explored two different alternatives:

— Offline Noise Data (OND). In this approach, a priori knowledge about the
type of the noise is assumed as in [3]. Therefore, a separate noise model for
each of the noise types considered is trained using some offline available noise
data. This approach will provide an upper limit of the proposed NMF-based
denoising method performance.

— Voice Activity Detector Noise Data (VADND). In this approach, a VAD is
used in order to explicit detect the only-noise segments of the utterance to
be denoised. Afterwards, the noise model is built using these noise frames.
Therefore, one noise model is trained for each utterance to be enhanced.
This approach is more computational costly, but it avoids the need of the a
priori knowledge about the type of noise, which it is not always possible.

Denoising Stage. As Wypeech and Wigise are assumed to be good spectral
basis functions to describe speech and noise, in the denoising stage they are
kept fixed and are concatenated to form a single set of SBVs called Wy);. Given
the magnitude spectrum of the noisy speech signal (|Viix|), we compute its
factorization |Viix| & WanHan by minimizing the KL divergence between |Viix|
and (W Han), updating only the activation matrix H,y with the learning rules
in (4). In order to control the sparseness of H,y, appropriate values for the
regularization parameters (w and a;,) need to be chosen (see subsection 4.2).
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Fig. 2. Block diagram of the speech denoising process using NMF

speech

The magnitude spectrum of the denoised speech is estimated as |Vipeech| =
Wepeech Hspeech, being Hgpeecn the Tows of Hyy corresponding to the activation
coefficients of Wpeecn. Finally, the spectrogram is recovered using the phase
spectrum of the original noisy signal and the denoised speech signal is trans-
formed into the time domain by means of a conventional overlap-add method.
The whole process of speech denoising is shown in the block diagram of Fig. 2.

4 Application to Speech Enhancement

In this section, the evaluation of the proposed methods (OND and VADND) on
a speech enhancement task is presented.

4.1 Database and Experimental Setup

The evaluation of speech enhancement was conducted on the AURORA-2 data-
base [10], which is based on the TIDIgits database and it contains the recordings
of 52 male and 52 females US-American adults pronouncing sequences of digits.
Originally the database was recorded in clean conditions and subsequently con-
taminated with several types of noises at different SNRs. The sampling frequency
is 8KHz. The database was end-pointed using the G.729 VAD.

For training the speech SBVs we used around 420 clean files belonging to the
clean training set of the AURORA-2 database. In the OND method, the specific
noise models were trained using the corresponding noise signals included in the
database. In the VADND approach, the noise model for each utterance was
trained using the initial only-noise frames detected by the VAD. In order to
perform the study in subsection 4.2 we used 1,200 files from the test set A,
which correspond to different noisy versions of 200 arbitrarily selected files with
car noise added at SNRs from —5dB to 20dB with 5dB step. Finally, experiments
in subsection 4.3 were conducted over 4,800 files from the test set A containing
speech contaminated with subway, babble, car and exhibition hall noises at the
SNRs previously mentioned. These files are noisy versions of 200 arbitrarily
selected speech signals different from the ones used in subsection 4.2.

To evaluate the performance of the proposed methods, we use the so-called
Perceptual Fvaluation of Speech Quality (PESQ), which is a measure recom-
mended by the ITU-T for end-to-end speech quality assessment. The PESQ



score is able to predict subjective quality with good correlation in a very wide
range of conditions (noise, filtering, coding distortions, etc.) [11] and uses a 5-
point scale with 1 the worst and 5 the best values. PESQ values were computed
using the code available in [12] and considering the clean speech signal as the
reference. Results are presented using the following relative measure,

PESQdcnoiscd - PESQnoisy
PESQnoisy
where PESQnoisy and PESQdenoisea are the PESQ scores before and after ap-

plying the speech enhancement process, respectively. Increments imply a quality
improvement and decrements a degradation with respect to the noisy signal.

Efrcl =

x 100% (5)

4.2 Study on the Influence of the NMF Parameters

This set of experiments was performed in order to study the impact of several
NMF parameters on the quality of the enhanced speech. The considered param-
eters were the analysis window length and the frame shift used for spectrograms
computation, the number of spectral basis vectors and the values of the regu-
larization factors, w and ay. In all cases, NMF was initialized by running 10
times the Alternating Least Squares NMF (ALS NMF) algorithm [9], in such a
way that the factorization with the smallest euclidean distance between V' and
(WH) was chosen for initialization. Then, these initial matrices were refined
by minimizing the KL divergence with sparseness constraints as indicated en
Section 2. Preliminary experiments considering the Euclidean distance as cost
function instead of the KL divergence produced worse results in terms of PESQ.
The main experiments and results are summarized in next paragraphs:

— The window length was varied from 10ms to 45ms with 5ms step. From this
set of experiments, it was observed that PESQ scores decreased with the
window length, obtaining the best results in the range from 25ms to 45ms.

— The frameshift was studied in the range from 1ms to 10ms. In this case,
the speech quality improved as the frameshift became smaller. Best PESQ
scores were found in the range from 1ms to 5ms.

— The number of SBVs was varied from 10 to 80 with 10 step. Results showed
that the quality of the denoised speech degraded when using a small number
of SBVs (below 30), whereas best PESQ scores were obtained in the range
from 40 to 80 SBVs. This result indicates that for an adequate representation
of speech signals in NMF | it seems necessary to consider more than 30 SBVs.

— With respect to the regularization parameters, several experiments were per-
formed varying ay, from 0 to 1.2 (fixing w = 1) and varying w from 1 to 2.5
(fixing ap, = 0). Results for the OND approach are shown in Fig. 3a and
Fig. 3b, respectively. Similar trends were observed for the VADND method.
As it can be observed, PESQ scores degrade when no regularization is used
(this case corresponds to aj, = 0 in Fig. 3a and w = 1 in Fig. 3b). How-
ever, when the values of the regularization parameters increase, the speech
quality improves, being the best performance found for the combination of
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Fig. 3. Relative PESQ measure for the OND approach and a) w = 1 with different
values of ap and b) a = 0 with different values of w

ap, around 1 and w = 1 or the combination of w around 2 and ap = 0).
Other combinations of these parameters were tried, not obtaining significant
improvements with respect to these PESQ values.

4.3 Experimental Results

In this subsection, we compare the performance of the two NMF-based denoising
approaches (OND and VADND) with the conventional Spectral Subtraction (SS)
in terms of the relative PESQ measure. According to the results achieved in the
previous study, for the NMF-based methods, we used a window length of 40ms,
a frameshift of 2.5ms, 50 SBVs, w = 1 and a3, = 1. For a fair comparison, in SS
we considered the same values for the window length and the frameshift.

Fig. 4 shows the relative PESQ measure with respect to the noisy signal for
the four types of noise considered at several SNRs. For subway, babble and
exhibition hall noises, the NMF-based methods clearly outperform SS at low
and medium SNRs (from -5 dB to 10 dB). For SNR = 15 dB, results obtained
with OND, VADND and SS are rather similar. However, at higher SNR (20
dB), SS produces better results than the NMF-based techniques. For the car
noise, OND is better than SS at low and medium SNRs (-5 dB, 0 dB and 5 dB).
Nevertheless, SS outperforms OND for higher SNRs. VADND produces worse
results than SS at all SNRs, being more noticeable the differences for SNRs over
15 dB. In general, results show that OND and VADND are more suitable than
SS for low and medium ranges of SNR.

With respect to the comparison between OND and VADND, it can be ob-
served that the quality of the enhanced signal is better with OND in all cases.
This result is expectable because OND uses more information than VADND in
the denoising process. In fact, it needs to know the type of noise (not the SNR)
presented in the noisy utterances. Nevertheless, VADND is capable of effectively
denoise the speech signal using only the information contained in the only-noise
segments of each utterance.
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Fig. 4. Relative PESQ measure for SS, OND and VADND techniques

5 Application to Automatic Speech Recognition (ASR)

In this section, we present the evaluation of the proposed techniques on an
ASR task. In this case, firstly noisy signals are denoised using the NMF-based
techniques (OND or VADND) and then, these enhanced signals are fed into the
ASR system.

5.1 Database and Experimental Setup

The experiments were conducted over the AURORA-2 database [10] as for the
speech enhancement task. The recognizer was based on HTK (Hidden Markov
Model Toolkit) software package with the configuration included in the standard
experimental protocol of the database. Acoustic models were obtained from the
clean training set of the database, whereas test files correspond to the complete
test set A. Results are shown in terms of the recognition accuracy.

Acoustic features consist of the conventional Mel-Frequency Cepstrum Coeffi-
cients (MFCC). In particular, twelve MFCCs were computed every 10 ms using
a Hamming analysis window of 25 ms long and 23 mel-spaced spectral bands.
The log-energy of each frame and the corresponding delta and acceleration coeffi-
cients were also computed and added, yielding feature vectors of 39 components.
Finally, cepstral mean normalization (CMN) was applied.

5.2 Experimental Results

Fig. 5 shows the recognition results achieved by the different NMF-based denois-
ing techniques as well as for Spectral Subtraction (SS) and the baseline system
(without denoising). For SS; OND and VADND, the same configuration parame-
ters as in the case of speech enhancement were used, except for the regularization
parameters, that were set to w = 1.25 and ay, = 0.2, after a preliminary experi-
mentation.
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Fig. 5. Recognition Rates (%) for the baseline, SS, OND and VADND techniques

As it can be observed, for subway, babble and exhibition hall noises, both
NMF-based techniques achieve better results than SS and the baseline for low
and medium SNRs (from -5 dB to 10 dB). For higher SNRs, all the algorithms
present a similar behaviour except for SS in the babble noise. In this case, the
recognition accuracy obtained with SS is lower than the other techniques (in-
cluding the baseline), probably due to the distortions introduced by SS in the
denoising process. For the car noise, similar results are achieved with all tech-
niques. On the other hand, comparing the two NMF-based methods for all noises,
OND outperforms slightly VADND in most cases, being these performance dif-
ferences less noticeably than in the speech enhancement task.

Table 1. Average Recognition Rates (%) for the four types of noise

Noise OND VADND SS Baseline
Subway 77.12  76.62 73.95 65.34
Babble 70.19 69.66 65.35 66.83

Car 75.29 74.94 75.72 63.86

Exhibition Hall 71.81 70.66 68.83 62.23

Table 1 shows the recognition rates averaged over all SNRs for each type of
noise. It can be observed that OND and VADND outperforms SS for all noises,
except for the car noise in which the results are very similar.

6 Conclusions and Future Work

In this paper we have presented a NMF-based method for speech denoising which
combines the use of the Kullback-Leibler divergence with sparseness constraints
on the activation matrix and it does not assume a priori knowledge about the



nature of the noise. In addition, an exhaustive study on the influence of different
NMF parameters (window length, frameshift, number of spectral basis vectors
and regularization parameters) on the quality of the enhanced speech has been
carried out. We have compared the proposed method to conventional spectral
subtraction for both, speech enhancement and automatic speech recognitions
tasks, under different noisy conditions, obtaining significant improvements espe-
cially at low and medium SNRs.

For future work, we plan to experiment on real noisy signals instead of the
artificially distorted ones used in this paper. Other future lines include the un-
supervised learning of auditory filter banks by means of NMF and the use of the
activation coefficients as acoustic parameters in ASR tasks.
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