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Abstract

We study the uniformly bounded orthonormal systemU� of functions

u
(�)
n (x)= �(�)n (cosx)(sinx)

�, x ∈ [0,�],

where{�(�)n }∞n=0 (�> 0) is the normalized systemof ultraspherical polynomials.We investigate some
approximation properties of the systemU� and we show that these properties are similar to one’s of
the trigonometric system. First, we obtain estimates ofLp-norms of the kernels of the systemU�.
These estimates enable us to prove Nikol’ski˘ı-type inequalities forU�-polynomials. Next, we prove
directly thatU� is a basis in eachL

p
w, 1<p<∞, wherew is an arbitraryAp-weight function. Finally,

we apply these results to get sharp inequalities for the bestU�-approximations inLq in terms of the
bestU�-approximations inLp (1�p<q <∞). For the trigonometric system such inequalities have
been already known.
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1. Introduction

Let 0�� < ∞ andm�(x) = (1 − x2)�−1/2, x ∈ (−1,1). Denote by{�(�)n }∞n=0 the
orthonormal basis ofL2([−1,1],m�)obtained from{xn}∞n=0 by theGram–Schmidt process.
Set

u(�)n (x) = �(�)n (cosx)(sinx)
�, x ∈ [0,�].

Then the systemU� ≡ {u(�)n }∞n=0 is an orthonormal basis inL2[0,�]. Moreover, this system
is uniformly bounded in[0,�] (see[13, (7.33.6)]),

|u(�)n (x)|�M�, x ∈ [0,�], n = 0, 1, . . . . (1.1)

For� = 0 this is the cosine system

u
(0)
0 (x) = 1√

�
, u(0)n (x) =

√
2

�
cosnx, n ∈ N

and for� = 1 we get the sine system

u(1)n (x) =
√
2

�
sin(n+ 1)x, n= 0, 1, . . . .

Askey andWainger[2] proved the following transplantation theorem:

Theorem A. Let 0 < � < ∞, 1 < p < ∞, and let{an} be a sequence of real numbers.

Then the series
∑∞
n=0 anu

(�)
n (x) is the Fourier series of some functionf ∈ Lp[0,�] if

and only if the series
∑∞
n=0 an cosnx is the Fourier series of some function� ∈ Lp[0,�].

Moreover,c′p‖�‖p�‖f ‖p�cp‖�‖p, c′p > 0.

It follows immediately that the systemU� is a basis in eachL
p[0,�], 1< p <∞ (a direct

proof of this result will be given below). Therefore the analysis of general approximation
properties of this system is a natural and relevant problem. Of course, a lot of results
in this direction can be derived by transplantation from the theory of trigonometric series.
Nevertheless, amore extended study of the systemU� requires an independent development
of basic tools of approximation theory for this special case.
Let 0�� < ∞. For any integern�0 denote byU (n)� the linear span of{u(�)k }nk=0, i.e.,

the set of all functions

Un(x) =
n∑
k=0

aku
(�)
k (x), ak ∈ R. (1.2)

These functions are said to beU�-polynomials. For everykwe have

coskx =
k∑
j=0

�(k)j �(�)j (cosx).
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Thus,U (n)� coincides with the set of all functions Un(x) = Tn(x)(sinx)�, where

Tn(x) =
n∑
k=0

�k coskx (�k ∈ R)

are even trigonometric polynomials of a degree at mostn.
Let f ∈ Lp[0,�] (1�p�∞). Denote byE(�)n (f )p the best approximation off by

polynomialsUn ∈ U (n)� ,

E(�)n (f )p = inf
Un∈U (n)�

‖f − Un‖p.

One of the important questions in the Embedding and Approximation theories is to
determine how certain smoothness or constructive properties of a functionf ∈ Lp are
reflected on its corresponding properties in amore strongLq -norm(q > p). Notice that the
first results in this direction concerning the embedding of Lipschitz classes were obtained
by Hardy and Littlewood[6]. Afterwards, sharp different norm inequalities for moduli of
continuity were found by Ul’yanov[15]. In the case of constructive characteristics (best
approximations) the question can be formulated as follows: given 1�p < q�∞, find
sharp relations between best approximations inLp andLq .

For the trigonometric system this problem was posed by Ul’yanov[15] and Stechkin.
Its complete solution for 1< p < q < ∞ was obtained in[8]. Let En(f )r be a best
trigonometric approximation of a functionf in Lr . It was proved in [8,9]that for 1< p <
q <∞

En(f )q�c
( ∞∑
k=n
(k − n+ 1)q/p−2(Ek(f )p)

q

)1/q

(1.3)

and this inequality is sharp forany rateof decay of the best approximationsEn(f )p. The
same results are also true in the casep = 1; in particular, inequality (1.3) forp = 1 can be
deduced from the casep > 1.
Initially, this work started from the similar question for the best approximations byU�-

polynomials. Of course, it was clear in view of TheoremA that in the casep > 1 the same
results hold for all� > 0.Nevertheless, wewere interested in the casep = 1 aswell as in the
direct proof forp > 1. This led us to the study of such problems as estimates of the kernels
of the U�-system, relations between different norms ofU�-polynomials (Nikol’skiı̆-type
inequalities), specialU�-polynomials with some extremal properties.
The main results of this paper are the following. In Section 2 we obtain estimates of

Lp-norms of the kernels of the systemU�. These estimates enable us to prove Nikol’skiı̆-
type inequalities forU�-polynomials (Section 3). Next, in the Section 3 we constructU�-
polynomials of the form

U�,�(x) =
�∑
k=�

aku
(�)
k (x), 0�� < � are integers,
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which have optimal order of growth of theLp-norm for allp�p0 > 0. In Section 4 we
give a direct proof of the basis property of the systemU� in Lpw[0,�], 1 < p < ∞, where
w is an arbitraryAp-weight function. In particular, this gives a short proof of the Pollard’s
mean convergence theorem for ultraspherical polynomials. Finally, in Section 5 we apply
these results to get an analogue of inequality (1.3) for the bestU�-approximations and to
prove its sharpness. In this section we follow the scheme of the works[8,9].

2. Kernels of the systemU�

In this sectionwewill prove estimates of the kernels of the systemU�.Assume that� > 0.
Let P (�)n be the sequence of ultraspherical polynomials defined in[13, 4.7]. Then we have

�(�)n (x) = �(�)n P
(�)
n (x), (2.1)

where

�(�)n = 2�−1/2�−1/2�(�)
(
(n+ �)�(n+ 1)

�(n+ 2�)

)1/2

.

In what follows we usec� andC� to denote constants (in every appearance, in principle
different) depending only on the parameter�.

Lemma 1. Let0< � <∞. Then for everyx ∈ [0,�] andn ∈ N

u(�)n (x)− u(�)n+1(x) = b�u(�+1)
n−1 (x) sinx + (1− cosx)u(�)n (x)+

�n(x)
n
, (2.2)

whereb� is a positive constant and

|�n(x)|�C�, x ∈ [0,�], n = 0, 1, . . . .

Proof. We shall use the following identity[13, (4.7.27)]:

(n+ 2�)tP (�)n (t)− (n+ 1)P(�)n+1(t) = 2�(1− t2)P (�+1)
n−1 (t).

Taking into account (2.1), we get

�(�)n (t)− �(�)n+1(t)=
(
�(�)n

n+ 1

n+ 2�
− �(�)n+1

)
P
(�)
n+1(t)

+ (1− t)�(�)n (t)+
2�

n+ 2�
�(�)n (1− t2)P (�+1)

n−1 (t).

Observe that

�(�)n
n+ 1

n+ 2�
= �(�)n+1

(
1+O

(
1

n

))
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and

2�
n+ 2�

�(�)n = �(�+1)
n−1

(
b� +O

(
1

n

))
, b� > 0.

Thus, we have

�(�)n (t)− �(�)n+1(t)= b�(1− t2)�(�+1)
n−1 (t)+ (1− t)�(�)n (t)

+O
(
1

n

)[
(1− t2)�(�+1)

n−1 (t)+ �(�)n+1(t)
]

and, as a consequence,

u(�)n (x)− u(�)n+1(x)= b�u(�+1)
n−1 (x) sinx + (1− cosx)u(�)n (x)

+O
(
1

n

)[
u
(�)
n+1(x)+ u(�+1)

n−1 (x) sinx
]
.

By virtue of (1.1), this yields (2.2). The lemma is proved.�

Denote

K(�)n (x, t) =
n∑
k=0

u
(�)
k (x)u

(�)
k (t).

From the Christoffel–Darboux formula[13, 3.2],

K(�)n (x, t)=
�n

cosx − cost

[
u
(�)
n+1(x)u

(�)
n (t)− u(�)n (x)u(�)n+1(t)

]
= �n

cosx − cost

[
u(�)n (t)

(
u
(�)
n+1(x)− u(�)n (x)

)
+ u(�)n (x)

(
u(�)n (t)− u(�)n+1(t)

)]
, (2.3)

where

c′���n�c′′� (n ∈ N; c′�, c′′� > 0).

Notice also that (see[13, (4.1.3)])

u(�)n (� − x) = (−1)nu(�)n (x), x ∈ [0,�]. (2.4)

Lemma 2. Let0< � <∞. Then for anyn ∈ N andx, t ∈ [0,�]
|K(�)n (x, t)|�c� min(n, |x − t |−1). (2.5)

Proof. By (1.1),

|K(�)n (x, t)|�M2
� (n+ 1). (2.6)

We shall prove that

|K(�)n (x, t)|�c�|x − t |−1. (2.7)
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First suppose thatx ∈ [0,�/2]. For anyt ∈ [0,�] we have

| cosx − cost | = 2 sin
|x − t |

2
sin
x + t
2

� 1

2�2 |x − t |(x + t). (2.8)

Denote

�n(x, t) ≡ |u(�)n+1(x)u
(�)
n (t)− u(�)n (x)u(�)n+1(t)|. (2.9)

By (1.1),

�n(x, t)�M�(|u(�)n (x)− u(�)n+1(x)| + |u(�)n (t)− u(�)n+1(t)|).
It follows from (2.2) that for anyy ∈ [0,�]

|u(�)n (y)− u(�)n+1(y)|�c�(y + 1/n).

If max(x, t)�1/n, then�n(x, t)�c�(x+t); applying (2.8), we get (2.7). Ifx, t ∈ [0, 1/n],
then (2.7) follows immediately from (2.6). Thus, we have proved inequality (2.7) forx ∈
[0,�/2], t ∈ [0,�]. If x ∈ [�/2,�] andt ∈ [0,�], then by (2.4) we have

K(�)n (x, t) = K(�)n (� − x,� − t)
and this case immediately reduces to the preceding one. The lemma is proved.�

Let 0�� < � be integer numbers. Denote

K(�)�,�(x, t) =
�∑
k=�

u
(�)
k (x)u

(�)
k (t).

If ��1, then

K(�)�,�(x, t) = K(�)� (x, t)−K(�)�−1(x, t).

As usual, we setp′ = p/(p − 1) for 1�p�∞.

Corollary 1. Let0< � <∞. Then for everyx ∈ [0,�]
‖K(�)�,�(x, ·)‖p�(p′)1/pc�(� − �)1−1/p (1< p <∞) (2.10)

and

‖K(�)�,�(x, ·)‖1�c� log(� − �), (2.11)

wherec� is some positive constant.

Proof. It follows from (1.1) and (2.5) that for everyx, t ∈ [0,�]
|K(�)�,�(x, t)|�c� min(� − �, |x − t |−1).
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For a fixedx ∈ [0,�] denote
E′
x = {t ∈ [0,�] : |x − t |�(� − �)−1}, E′′

x = [0,�] \ E′
x.

Then for 1�p <∞ we have∫ �

0
|K(�)�,�(x, t)|p dt =

(∫
E′
x

+
∫
E′′
x

)
|K(�)�,�(x, t)|p dt

� 2cp�

[
(� − �)p−1 +

∫ �

(�−�)−1
z−p dz

]
.

This implies (2.10) and (2.11).�

In what follows we will use the Mehler’s formula[4, p. 177]:

u(�)n (x) = tn(�)(sinx)1−�
∫ x

0

cos(n+ �)y

(cosy − cosx)1−�
dy (2.12)

for everyx ∈ [0,�] and� > 0, where

tn(�) = 22�−1/2�(� + 1/2)

��(2�)

(
(n+ �)�(n+ 2�)

�(n+ 1)

)1/2

= c�n� +O(n�−1).

Denote

L
p,�
n = sup

x∈[0,�]
‖K(�)n (x, ·)‖p (1�p�∞); L1,�

n ≡ L�
n.

Theorem 1. Let 0 < � < ∞ and1�p�∞. Then there exist positive constants c andc′
depending only on p and� such that for everyn ∈ N

c′n1−1/p�Lp,�n �cn1−1/p, when 1< p�∞, (2.13)

c′ log(n+ 1)�L�
n�c log(n+ 1), when p = 1. (2.14)

Proof. The second inequalities in (2.13) and (2.14) follow by Corollary 1.
Let	n = �/(8(n+�)). From (2.12) it easily follows that for any 1�k�n and 0�x�	n

u
(�)
k (x)�c�k�

∫ x

0
(x − y)�−1 dy = c�

�
(kx)�, (2.15)

wherec� > 0. Thus, for 0� t�	n we have

K(�)n (	n, t)�c�
n∑

k=[n/2]
u
(�)
k (t)�c′�n�+1t�.

Hence,∫ �

0
|K(�)n (	n, t)|p dt �

∫ 	n

0
|K(�)n (	n, t)|p dt

� c�n
p(�+1)

∫ 	n

0
t�p dt�c′�np−1, c′� > 0.

This yields the left-hand side inequality in (2.13).
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To prove the first inequality in (2.14) we will proceed from formula (2.3). Using notation
(2.9) and applying (1.1), (2.2), and (2.15), we get for anyt ∈ [1/n,�/2]

�n(	n, t) � |u(�)n+1(t)− u(�)n (t)‖u(�)n (	n)|
−M�|u(�)n+1(	n)− u(�)n (	n)|�c�t |u(�+1)

n−1 (t)| − c′�(t2 + 1/n).

Further, fort ∈ [1/n,�/2] we have

0< cos	n − cost = 2 sin
t − 	n

2
sin
t + 	n

2
� t2.

Using these estimates and (2.3), we get∫ �

0
|K(�)n (	n, t)| dt �

∫ �/2

1/n
|K(�)n (	n, t)| dt

� c�

∫ �/2

1/n
|u(�+1)
n−1 (t)|

dt

t
− c′�

(�
2

+ 1
)
.

Finally, in the last integral we will use the asymptotic formula (see[13, (8.21.18)])

u(�)n (x) = (2/�)1/2cos((n+ �)x − ��/2)+ 
n(x), (2.16)

where

|
n(x)|� c�

nx
, x ∈ (0,�/2]. (2.17)

We obtain∫ �/2

1/n
|u(�+1)
n−1 (t)|

dt

t
� (2/�)1/2

∫ �/2

1/n
| cos((n+ �)t − (� + 1)�/2)| dt

t
− c�

� c′� logn,

wherec′� > 0. This implies the first inequality in (2.14). The proof is completed.�

3. U�-Polynomials

Using estimate (2.10), we get the following Nikol’skiı̆-type inequality (see[11],
[3, p. 102]).

Theorem 2. Let0�� < � be integer numbers, 0< � <∞, and

U�,�(x) ≡ U(x) =
�∑
k=�

aku
(�)
k (x), ak ∈ R.

Then for any0< p < q�∞
‖U�,�‖q�cp,�(� − �)1/p−1/q‖U�,�‖p. (3.1)
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Proof. First suppose that 1�p <∞. We have

U(x) =
∫ �

0
U(t)K(�)�,�(x, t) dt.

From here,

|U(x)|�‖U‖p‖K(�)�,�(x, ·)‖p′

and by (2.10)

‖U‖∞ �c�p1/p
′
(� − �)1/p‖U‖p. (3.2)

Let now 0< r < 1. Using (3.2) withp = 1, we have

‖U‖∞ � c�(� − �)
∫ �

0
|U(x)| dx

� c�(� − �)‖U‖1−r∞
∫ �

0
|U(x)|r dx.

It follows that

‖U‖∞ �[c�(� − �)]1/r‖U‖r . (3.3)

Thus, we have (3.1) for 0< p < ∞, q = ∞. Let now 0< p < q < ∞. Then by
inequalities (3.2) and (3.3),∫ �

0
|U(x)|q dx � ‖U‖q−p∞

∫ �

0
|U(x)|p dx

� c̄
q−p
p,� ‖U‖qp(� − �)(q−p)/p,

wherec̄p,� = p1/p
′
c�, if p�1, andc̄p,� = c

1/p
� , if 0 < p < 1. This implies (3.1). The

theorem is proved. �

The following lemma presents a construction ofU�-polynomials with optimal order of
growth of theLp-norm for allp�p0 > 0.

Lemma 3. Let 0 < � < ∞ andp0 > 0. Then for every integer numbers0���� there
exists a polynomial

U�,�(x) =
�∑
k=�

aku
(�)
k (x), ak ∈ R, (3.4)

such that for anyp0�p�∞
c′(� − � + 1)1−1/p�‖U�,�‖p�c′′(� − � + 1)1−1/p, (3.5)

wherec′ andc′′ are positive constants depending only on� andp0.
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Proof. First notice that for anyp > 0∫ �

0
|u(�)k (x)|p dx�cp,� > 0 (k = 0, 1, . . .). (3.6)

Indeed, since‖u(�)k ‖2 = 1, for p�2 (3.6) follows by Hölder’s inequality. If 0< p < 2,
then by (1.1)

1 =
∫ �

0
(u
(�)
k (x))

2 dx�M2−p
�

∫ �

0
|u(�)k (x)|p dx,

which implies (3.6).
Denotem = [(�p0)−1] + 1. If � − � < 2m, then we setU�,�(x) = u

(�)
� (x). In this case

inequalities (3.5) follow from (3.6) and (1.1). Suppose that� − ��2m. Clearly, we can
assume that the numbers = (� − �)/(2m) is a positive integer. Let

n = � + �
2

= � +ms = � −ms. (3.7)

Next, denote

U(x) ≡ U�,�(x) = s1−m�u(�)n (x)(�
(�)
s (cosx))

m.

By the Dougall’s formula (see[1, p. 319]),

�(�)n (t)�
(�)
s (t) =

n+s∑
k=n−s

ck�
(�)
k (t).

Applying this equalitym times, we get that

�(�)n (t)(�
(�)
s (t))

m =
n+ms∑
k=n−ms

ak�
(�)
k (t).

By (3.7), it follows thatU is a polynomial of form (3.4).
Further, we have forx ∈ (0,�/2] (see[13, (7.33.6)])

|�(�)s (cosx)|�cmin(s�, x−�).

Using this inequality, we obtain for anyp�p0∫ �

0
|U(x)|p dx = 2

∫ �/2

0
|U(x)|p dx

� cs(1−m�)p
(∫ 1/s

0
+
∫ �/2

1/s

)
|�(�)s (cosx)|mp dx

� c′s(1−m�)p
[
smp�−1 +

∫ ∞

1/s
x−�mp dx

]
�c′′sp−1

(note that�mp > 1). This implies the second inequality in (3.5).
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Next, we will prove the first of inequalities (3.5). Let	k = �/(8(k+ �)). By (2.15) we
have

|�(�)s (cosx)|�cs� (0�x�	s) and u(�)n (	n)�c (c > 0).

Thus,‖U‖∞ �c(� − �). By Theorem 2, it follows that for anyp > 0

‖U‖p�c(� − �)−1/p‖U‖∞ �c′(� − �)1−1/p, c′ > 0.

The proof is completed.�

Remark 1. In the trigonometric case the Jackson’s kernels can be used to prove Lemma 3
(see[8]). Namely, in this case the function

U�,�(x) =
�∑
k=�

ak coskx

satisfying condition (3.5) can be given by

U�,�(x) = s1−2r
(
sin((s + 1)x/2)

sin(x/2)

)2r

cosnx,

wherer = [(2p0)−1] + 1, s = (� − �)/(2r), andn = (� + �)/2 (we assume thats is an
integer).

Remark 2. In the case� = 0 we have a more simple proof of Lemma 3. Moreover,
in this case non-negative polynomials can be constructed. Let� > 0 andp0 > 0. Set
r = [(� + 1/p0)/2] + 1,m = [�/r]. Then

T�(x) =
(
sin((m+ 1)x/2)

sin(x/2)

)2r

is an even trigonometric polynomial of degreemr��. Thus, the function

U�(x) = ��+1−2rT�(x)(sinx)
� (3.8)

belongs toU (�)� . Furthermore, for some constantc > 0 we have

1

c
��+1x��U�(x)�c��+1x�, x ∈ [0, 1/�]

and

U�(x)�c��+1−2rx�−2r , x ∈ [1/�,�].
Using these inequalities, we easily get that

c′�1−1/p�‖U�‖p�c′′�1−1/p (c′, c′′ > 0)

for anyp�p0.

Remark 3. It follows from Lemma 3 that inequality (3.1) is sharp for any��0.
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4. Basis property

For every polynomial (1.2) we haveUn(0) = Un(�) = 0. Therefore, if a function
f ∈ C[0,�] does not vanish at the endpoints of the interval[0,�], then the sequence of
the best approximations{E(�)n (f )C} does not tend to 0 (we setE(�)n (f )C ≡ E

(�)
n (f )∞ for

f ∈ C[0,�]). Denote byC0[0,�] the closed subspace ofC[0,�] which consists of all
functionsf ∈ C[0,�] such thatf (0) = f (�) = 0.

Proposition 1. If f ∈ C0[0,�], then for every0< � <∞
lim
n→∞ E(�)n (f )C = 0.

Proof. Let ε > 0. Sincef ∈ C0[0,�], then there exist a closed intervalI ⊂ (0,�) and a
functiong ∈ C[0,�] such thatg(x) = 0 for all x ∈ [0,�] \ I and

‖f − g‖C < ε

2
.

The function�(x) = g(x)(sinx)−� is uniformly continuous in(0,�). Thus, there exists a
trigonometric polynomial

Tn(x) =
n∑
k=0

�k coskx

such that

|�(x)− Tn(x)| < ε

2
for everyx ∈ (0,�).

SetUn(x) = Tn(x)(sinx)�. ThenUn ∈ U (n)� . Furthermore, for everyx ∈ (0,�) we get

|g(x)− Un(x)| = |�(x)− Tn(x)|(sinx)� < ε

2
.

It follows that‖f − Un‖C < ε. This completes the proof.�

Letwbe a non-negative measurable function in[0,�]. Denote byLpw[0,�] (1�p <∞)
the space of all measurable functionsf such that

‖f ‖p,w ≡
(∫ �

0
|f (x)|pw(x) dx

)1/p

<∞.

Corollary 2. Letw ∈ L1[0,�] be a non-negative weight function and0 < � < ∞. Then
U�-polynomials form a dense subset in everyLpw[0,�], 1�p <∞.

Recall that a non-negative locally integrable functionw on R is said to satisfyAp-
condition(1�p <∞) if

sup
I

1

|I |
∫
I

w(x) dx

(
1

|I |
∫
I

w(x)−1/(p−1) dx

)p−1

<∞,
where the supremum is taken over all intervalsI.
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We have a similar definition for functionsw in [0,�] (in this case we take only intervals
I ⊂ [0,�]). It is easy to see that if a functionw satisfiesAp-condition in [0,�] and we
extendw to the whole line as an even 2�-periodic function, then the extended function also
satisfiesAp-condition onR.
Next, for any function� ∈ L1[−�,�] denote byC∗� the maximal conjugate function

operator,

(C∗�)(x) = sup
0<ε��

∣∣∣∣ 12�
∫
ε� |x−t |��

�(t) cot
t − x
2

dt

∣∣∣∣ .
If 1 < p < ∞ and a 2�-periodic weight functionw satisfiesAp-condition, then (see[14,
p. 120, Theorem 2.12];[5, p. 255])(∫ �

−�
|(C∗�)(x)|pw(x) dx

)1/p

�c
(∫ �

−�
|�(x)|pw(x) dx

)1/p

. (4.1)

For f ∈ L1[0,�] and 0< � < ∞ denote byS(�)n (f ; x) the partial sum of the Fourier
series off,

S(�)n (f ; x) =
n∑
k=0

ak(f )u
(�)
k (x), ak(f ) =

∫ �

0
f (x)u

(�)
k (x) dx.

We have

S(�)n (f ; x) =
∫ �

0
f (t)K(�)n (x, t) dt. (4.2)

Theorem 3. Let 0 < � < ∞, 1 < p < ∞, and let w be a weight function satisfying the
Ap-condition in[0,�]. Then for any functionf ∈ Lpw[0,�]

‖S(�)n (f )‖p,w�c‖f ‖p,w (n = 0, 1, . . .). (4.3)

Proof. First we suppose thatf (x) = 0 for x ∈ [�/2,�] andf is extended to the whole line
as 2�-periodic function such thatf (x) = 0, x ∈ [−�, 0). Furthermore, as it has been noted
above, we may assume thatw is extended toR as even 2�-periodic function. Forx ∈ [0,�]
we denote

An(x) = {t ∈ [0,�/2] : |x − t |�1/n}, Bn(x) = [0,�/2] \ An(x).
By (4.2),

S(�)n (f ; x)=
∫
An(x)

f (t)K(�)n (x, t) dt

+
∫
Bn(x)

f (t)K(�)n (x, t) dt ≡ �n(x)+ 
n(x). (4.4)

First, we have

|
n(x)|�cn
∫
Bn(x)

|f (t)| dt�cMf (x),
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whereMf is the Hardy–Littlewood maximal function. Then (see[5, p. 255])

‖
n‖p,w�c‖Mf ‖p,w�c′‖f ‖p,w. (4.5)

Next, in order to estimate‖�n‖p we will apply formula (2.3). First, (2.3) implies that

|K(�)n (x, t)|�C for x ∈ [2�/3,�], t ∈ [0,�/2]. (4.6)

Further, by (2.2),

u(�)n (x)− u(�)n+1(x) = sinx
[
b�u

(�+1)
n−1 (x)+ u(�)n (x) tan

x

2

]
+ �n(x)

n
, (4.7)

where

|�n(x)|�C� (x ∈ [0,�], n = 0, 1, . . .).

We have also

sint

cosx − cost
= 1

2

(
cot
t − x
2

+ cot
t + x
2

)
. (4.8)

Now for t ∈ [0,�] set

fn(t) = f (t)u(�)n (t), gn(t) = f (t)
[
b�u

(�+1)
n−1 (t)+ u(�)n (t) tan

t

2

]
.

Sincef (t) = 0 for t ∈ [�/2,�], we have

|fn(t)| + |gn(t)|�c|f (t)|, 0� t��.

Extend the functionsfn andgn to be 0 in(−�, 0) and then periodically with the period 2�
to the whole real line. Using (2.3), (4.7), and (4.8), we easily get forx ∈ [0, 2�/3]

|�n(x)| � c

(∣∣∣∣
∫
An(x)

fn(t)

(
cot
t − x
2

− cot
t + x
2

)
dt

∣∣∣∣
+
∣∣∣∣
∫
An(x)

gn(t)

(
cot
t − x
2

+ cot
t + x
2

)
dt

∣∣∣∣
+1

n

∫
An(x)

|f (t)|
| cosx − cost | dt

)
.

If t ∈ An(x), then| cosx − cost |�(x + t)/(�2n). Thus, forx ∈ [0, 2�/3]we have

|�n(x)|�c
[
(C∗fn)(x)+ (C∗gn)(x)+

∫ �/2

0

|f (t)|
x + t dt

]
.

If x ∈ [0,�], then

�(x) ≡
∫ �/2

0

|f (t)|
x + t dt�c(H�)(x),
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where�(x) = |f (−x)|
[−�/2,0](x) andH� is the Hilbert transform of�. Hence (see[5,
p. 255]),‖�‖p,w�c‖f ‖p,w. Next, by (4.1)

‖C∗fn‖p,w + ‖C∗gn‖p,w�c
(∫ �

−�
(|fn(x)| + |gn(x)|)pw(x)dx

)1/p

�c′‖f ‖p,w.

Thus, we get(∫ 2�/3

0
|�n(x)|pw(x) dx

)1/p

�c‖f ‖p,w. (4.9)

Further, applying (4.2), (4.6), Hölder inequality, andAp-condition, we obtain(∫ �

2�/3
|S(�)n (f ; x)|pw(x) dx

)1/p

�c
∫ �

0
|f (t)| dt

(∫ �

0
w(x) dx

)1/p

�c′‖f ‖p,w.
From this inequality, (4.4), (4.5), and (4.9), it follows (4.3).
If suppf ⊂ [�/2,�], then we consider the functionf1(x) = f (� − x). We have (see

(2.4))

S(�)n (f1;� − x)=
∫ �

0
f (� − t)K(�)n (� − x, t) dt

=
∫ �

0
f (t)K(�)n (x, t) dt = S(�)n (f ; x).

Therefore (4.3) follows from the preceding case. This completes the proof.�

Corollary 3. Suppose that0< � <∞, 1< p <∞, and a weight function w satisfies the
Ap-condition in[0,�]. Then the systemU� is a basis inLpw[0,�].

To prove this, observe that the systemU� is minimal inLpw[0,�], that is, nou(�)k belongs

to the closure of the linear span of{u(�)n }n�=k in Lpw[0,�] (see[7, p. 6]). Indeed, ifQ is an
element in this linear span, then by orthogonality, (1.1), and Hölder inequality, we have

1 =
∫ �

0
(u
(�)
k (x))

2 dx =
∫ �

0
[u(�)k (x)−Q(x)]u(�)k (x) dx

� M�cw‖u(�)k −Q‖p,w, wherecw =
(∫ �

0
w(x)−1/(p−1) dx

)1/p′

<∞.
Now Corollary 3 follows immediately from the criterion of a basis property (see[7, p. 10]).

Remark 4. The systemU� is not a basis neither inC0[0,�] nor inL1[0,�]. Indeed, it is
easy to see that for any 0< � < ∞, n ∈ N, ε > 0, andx ∈ [0,�] there exists a function
f ∈ C0[0,�] with ‖f ‖C = 1 such that

S(�)n (f ; x) >
∫ �

0
|K(�)n (x, t)| dt − ε.
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Thus, we have

sup{‖S(�)n (f )‖C : f ∈ C0[0,�], ‖f ‖ = 1} = L(�)n .
Applying (2.14) and the uniform boundedness principle, we immediately get the following
statement:

Proposition 2. For any0 < � < ∞ there exists a functionf ∈ C0[0,�] such that the

sequence{‖S(�)n (f )‖C} is unbounded.

The similar proposition is true in the case ofL1-norm.

Remark 5. Let 0 < � < ∞ andLp� ≡ Lp([−1,1], (1− t2)�−1/2). Suppose that(2� +
1)/(�+1) < p < (2�+1)/�. The Pollard’s mean convergence theorem[12, Theorem 8.1]
asserts that for any functiong ∈ Lp� the series

∞∑
n=0

cn(g)�(�)n (t), cn(g) ≡
∫ 1

−1
g(t)�(�)n (t)(1− t2)�−1/2dt,

converges tog in Lp� . Observe that this theorem can be derived from Theorem 3. Indeed,

it is easy to see that the functionw(x) = (sinx)(2−p)� satisfiesAp-condition in[0,�]. Set
f (x) = g(cosx)(sinx)�. Then

cn(g) =
∫ �

0
f (x)u(�)n (x) dx

and ∫ 1

−1
|g(t)|p(1− t2)�−1/2dt =

∫ �

0
|f (x)|pw(x) dx.

Applying Theorem 3, we easily get Pollard’s theorem.

5. Different norm inequalities for best approximations

In this section we will study the following problems. First, given 1�p < q < ∞, find
sharp conditions on the best approximationsE(�)n (f )p of a functionf ∈ Lp[0,�] which
guarantee thatf belongs toLq [0,�]. Furthermore, if these conditions hold, then find a sharp
estimate ofE(�)n (f )q in terms ofE(�)n (f )p.
As it was mentioned in the Introduction, for the trigonometric system these problems

have been already solved. In our casewe can apply the same schemewith the corresponding
modifications.
The crucial role is played by the following lemma[8,10]:

Lemma 4. Let 0 < p < ∞ and let {hk(x)} be a sequence of non-negative functions
hk ∈ L∞[a, b] such that

‖hk‖p�dk (k = 1,2, . . .),

16



where the sequence{dk} satisfies the condition

dk+1��dk (0< � < 1; k = 1,2, . . .).

Then for anyq ∈ (p,∞)∥∥∥∥∥
∞∑
k=1

hk

∥∥∥∥∥
q

�c
( ∞∑
k=1

‖hk‖q−p∞ d
p
k

)1/q

.

We will use also the following Hardy-type inequalities.

Lemma 5. Let�n�0, εn > 0,and for some� ∈ (0, 1)
εn+1��εn (n = 1,2, . . .).

Then for anyr > 0

∞∑
n=1

εn

(
n∑
k=1

�k

)r
�c

∞∑
n=1

εn�rn, (5.1)

∞∑
n=1

ε−1
n

( ∞∑
k=n

�k

)r
�c

∞∑
n=1

ε−1
n �rn. (5.2)

Inequality (5.1) was proven in[9]; the proof of (5.2) is similar.

Theorem 4. Let1�p < q <∞ and0< � <∞. Then for any functionf ∈ Lp[0,�]

‖f ‖q�c


‖f ‖p +

( ∞∑
n=1

nq/p−2(E(�)n (f )p)
q

)1/q

 , (5.3)

where c is a constant which only depends onp, q, and�.

Inequality (5.3) is a direct analogue of the Ul’yanov’s inequality[15] for the best approx-
imations by trigonometric polynomials. A generalization as well as an alternative proof of
Ul’yanov’s inequality was given in[10]. The proof in our case can be provided exactly as
in [10, Theorem 4]and we omit it.
Next, it was proven in[8] for � = 0 that inequality (5.3) is sharp for any rate of decay

of the best trigonometric approximationsEn(f )p. Following the scheme given in[8], we
immediately get a similar result for all��0. The only changewe need is to use polynomials
(3.8) instead of Fejér’s kernels (see[8, Theorem 3]).
Nowwewill consider themain problem in this section, the relations between best approx-

imations in different norms. First, it follows immediately from (5.3) that for 1�p < q <∞

E(�)n (f )q�c


n1/p−1/qE(�)n (f )p +

( ∞∑
k=n
kq/p−2(E

(�)
k (f )p)

q

)1/q

 . (5.4)
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However, it is easy to see that this inequality is not sharp if the sequence{E(�)n (f )p} tends to
0 sufficiently rapidly (for example, with a geometric rate). In the case of the trigonometric
system the sharp estimate was found in[8] (see also[9]). We will obtain similar results for
all � > 0.
Since the systemU� is a basis inLp[0,�] (1 < p < ∞), then for everyf ∈ Lp[0,�]

we have

E(�)n (f )p�‖f − S(�)n (f )‖p�cpE(�)n (f )p. (5.5)

Theorem 5. Let1�p < q <∞ and0�� <∞. Then for any functionf ∈ Lp[0,�]

E(�)n (f )q�c
( ∞∑
k=n
(k − n+ 1)q/p−2(E

(�)
k (f )p)

q

)1/q

(5.6)

for everyn = 0, 1, . . ., where c is a constant which only depends onp, q, and�.

Proof. SetSn(x) = S
(�)
n (f ; x). First we suppose thatp > 1. Denoteεn = E

(�)
n (f )p. Fix

n ∈ N and set

�1 = n, �k+1 = min

{
���k : ε�� 1

2
ε�k

}
, k = 1,2, . . . . (5.7)

Then

ε�k+1 �
1

2
ε�k and ε�k < 2ε�, �k�� < �k+1. (5.8)

By (5.5), we have (convergence inLp)

f (x) = Sn(x)+
∞∑
k=1

[S�k+1(x)− S�k (x)].

Thus,

E(�)n (f )q�‖f − Sn‖q�
∥∥∥∥∥

∞∑
k=1

hk

∥∥∥∥∥
q

, (5.9)

wherehk(x) = |S�k+1(x)− S�k (x)|. Once again applying (5.5), we get

‖hk‖p�‖f − S�k+1‖p + ‖f − S�k‖p�cε�k . (5.10)

Furthermore, by Theorem 2,

‖hk‖∞ �c(�k+1 − �k)1/p‖hk‖p�c′(�k+1 − �k)1/pε�k . (5.11)

Now Lemma 4 and inequalities (5.9)–(5.11) yield

E(�)n (f )q�c
( ∞∑
k=1

(�k+1 − �k)q/p−1ε
q
�k

)1/q

.
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Changing the order of summation, we get
∞∑
k=1

(�k+1 − �k)q/p−1ε
q
�k � c

∞∑
k=1

ε
q
�k

�k+1−n∑
m=1

mq/p−2

� c

∞∑
m=1

mq/p−2
∞∑
k=km

ε
q
�k ,

wherekm = min{k : �k+1�m+ n}. By virtue of (5.8),

∞∑
k=km

ε
q
�k �21+qεqm+n−1

and we get (5.6).
Now assume thatp = 1. Choose some 1< r < q. By (5.6) and (5.2), we have

E(�)n (f )q � c

( ∞∑
k=1

kq/r−2(E
(�)
n+k−1(f )r )

q

)1/q

� c′
( ∞∑
m=0

2m(q/r−1)(E
(�)
n+2m−1(f )r )

q

)1/q

� c′
( ∞∑
m=0

2m(q/r−1)‖f − Sn+2m−1‖qr
)1/q

� c′
( ∞∑
m=0

2m(q/r−1)

( ∞∑
�=m

‖Sn+2�+1−1 − Sn+2�−1‖r
)q)1/q

� c′′
( ∞∑
m=0

2m(q/r−1)‖Sn+2m+1−1 − Sn+2m−1‖qr
)1/q

.

Further, letUn(x) be theU�-polynomial of best approximation of degreen to f in L1[0,�].
Using orthogonality, we have

Sn+2m+1−1(x)− Sn+2m−1(x)=
∫ �

0
f (t)

n+2m+1−1∑
k=n+2m

u
(�)
k (x)u

(�)
k (t) dt

=
∫ �

0
(f (t)− Un+2m−1(t))

n+2m+1−1∑
k=n+2m

u
(�)
k (x)u

(�)
k (t) dt.

By Minkowski inequality and (2.10),

‖Sn+2m+1−1 − Sn+2m−1‖r

�
∫ �

0
|f (t)− Un+2m−1(t)|


∫ �

0

∣∣∣∣∣∣
n+2m+1−1∑
k=n+2m

u
(�)
k (x)u

(�)
k (t)

∣∣∣∣∣∣
r

dx




1/r

dt

� c2m(1−1/r)‖f − Un+2m−1‖1 = c2m(1−1/r)E
(�)
n+2m−1(f )1.

19



Thus, we get

E(�)n (f )q � c

( ∞∑
m=0

2m(q−1)(E
(�)
n+2m−1(f )1)

q

)1/q

� c′
( ∞∑
k=1

kq−2(E
(�)
n+k−1(f )r )

q

)1/q

.

This is inequality (5.6) forp = 1. The proof is now complete.�

It was proven in[8,9] for � = 0 that inequality (5.6) is sharp for any rate of the decay of
the best approximationsE(�)n (f )p. Following the same scheme we obtain a similar result
for all ��0. The main tools are Lemmas 3 and 4.
Let H be the set of all positive sequencesε ≡ {εn} such thatεn ↓ 0. Suppose that

1�p < ∞, 0�� < ∞, andε ∈ H. ThenL(�)p (ε) will denote the class of all functions

f ∈ Lp[0,�] such thatE(�)n (f )p�εn.
Next, for 0< � <∞, 1�p < q <∞, andε ∈ H denote

En(ε;p, q) = sup
f∈L(�)p (ε)

E(�)n (f )q (n = 0, 1, . . .).

Theorem 6. Let 0�� < ∞ and1�p < q < ∞. Then there exist positive constants c
and c′ (depending only onp, q, and �) such that for every sequenceε ∈ H and every
n = 0, 1, . . .

c′Rn(ε;p, q)�En(ε;p, q)�cRn(ε;p, q), (5.12)

where

Rn(ε;p, q) =
( ∞∑
k=n
(k − n+ 1)q/p−2ε

q
k

)1/q

. (5.13)

Proof. The second inequality in (5.12) follows immediately fromTheorem5.Wewill prove
the first inequality. Fixn ∈ N and set

�1 = n, �k+1 = min

{
���k : ε�� 1

2
ε�k

}
, k = 1,2, . . . . (5.14)

It follows that

ε�k+1 �
1

2
ε�k and ε�k < 2ε�, �k�� < �k+1. (5.15)

Setp0 = min(1, p/(q− 1))/2 and apply Lemma 3 with� = �k+1 and� = �k + 1. Thus
we obtainU�-polynomials


k(x) =
�k+1∑

j=�k+1

a
(k)
j u

(�)
j (x)
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which satisfy the inequalities(c′ > 0)

c′(�k+1 − �k)1−1/r�‖
k‖r�c′′(�k+1 − �k)1−1/r (5.16)

for eachr ∈ [p0,∞]. Next, we consider the function

f (x) ≡ fn(x) = 1

4

∞∑
k=1

ε�k
k(x)/‖
k‖p (5.17)

(it follows from (5.15) that the last series converges inLp). Let Sm(x) be the partial sums
of the Fourier series of the functionf with respect to the systemU�. Note thatSm(x) = 0
for 0�m�n. By (5.15), we get for any�k�m < �k+1

E(�)m (f )p�‖f − S�k‖p� 1

4

∞∑
j=k
ε�j �εm.

Hence,f ∈ L(�)p (ε). If f /∈ Lq [0,�], then by Theorem 4 series (5.13) diverges and (5.12)
trivially holds. Suppose thatf ∈ Lq [0,�]. Set

gN(x) =
N∑
k=1

hk(x), wherehk(x) = (�k+1 − �k)(q−1)/p−1ε
q−1
�k 
k(x). (5.18)

Taking into account the orthogonality of the system{
k(x)} as well as (5.16), we have∫ �

0
f (x)gN(x) dx

�c
N∑
k=1

(�k+1 − �k)q/p−2ε
q
�k‖
k‖22�c′

N∑
k=1

(�k+1 − �k)q/p−1ε
q
�k (5.19)

(c′ > 0). On the other hand, by the Hölder inequality and (5.5),∫ �

0
f (x)gN(x) dx � ‖f ‖q‖gN‖q ′

= ‖f − Sn‖q‖gN‖q ′ �cE(�)n (f )q‖gN‖q ′ (5.20)

(we have used also thatSn = 0). Next, by (5.16) we have (see (5.18))

‖hk‖p/(q−1)�cεq−1
�k and ‖hk‖∞ �c(�k+1 − �k)(q−1)/pε

q−1
�k .

Applying Lemma 4, we get

‖gN‖q ′ �c
(
N∑
k=1

(�k+1 − �k)q/p−1ε
q
�k

)1/q

. (5.21)

It follows from (5.19)–(5.21) that

E(�)n (f )q�c
( ∞∑
k=1

(�k+1 − �k)q/p−1ε
q
�k

)1/q

≡ cAn,

wherec is a positive constant that does not depend onn andε.
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The last step is similar to one carried out in the proof of Theorem 5. Namely, applying
Lemma 5, changing the order of summation, and using (5.15), we get

A
q
n � c

∞∑
k=1

(�k+1 − n)q/p−1ε
q
�k �c′

∞∑
k=1

ε
q
�k

�k+1−n∑
m=1

mq/p−2

� 2qc′
∞∑
m=1

mq/p−2ε
q
m+n−1 = 2qc′Rn(ε;p, q)q .

This yields the first inequality in (5.12). The proof is now complete.�
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