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SUMMARY

A test for serial independence of regression errors is proposed that is consistent in the direction
of serial dependence alternatives of first order. The test statistic is a function of a Hoeffding-Blum—
Kiefer—Rosenblatt type of empirical process, based on residuals. The resultant statistic converges,
surprisingly, to the same limiting distribution as the corresponding statistic based on true errors.

Some key words: Empirical process based on residuals; Hoeffding-Blum—Kiefer—Rosenblatt statistic; Serial
independence test.

1. PRELIMINARIES AND STATEMENT OF THE PROBLEM

Consider a strictly stationary discrete time process {U;,i=>1}. Let F(.) be the distribution
function of (U;, U;+1) and Fy(.) the marginal distribution function of U;. Define S(u)=
F(u) — Fy(u,)F,(u,), for u=(uy, u,)’ € R% Given observations {U;}!*!, Skaug & Tjostheim (1993),
Delgado (1996) and Hong (1998), among others, have proposed to test Hy: {U;, i > 1} are indepen-
dently distributed, and H, : S(u) # 0, for some u € R?, using statistics which are functionals of n*S,(.),
where §,(.) is the Hoeffding-Blum—Kiefer—Rosenblatt process (Delgado, 1999), defined by

Sn(u) = Fn(u) - Fn1(“1)Fn1(“2)’

where F,(w)=n"1X"_, 1(U; <uy)1(U; 41 < up), 1(.) is the indicator function and F,,(.) is the univari-
ate empirical distribution function based on {U;}?X!. A popular test statistic for H, which is based
on n*S,(.) is the Cramér-von Mises statistic

Cn = n_l Z {n%Sn(Ui’ Ui+1)}2-
i=1

Hoeffding (1948) and Blum, Kiefer & Rosenblatt (1961) proposed this type of statistic for testing
independence between two samples, and tabulated its limiting distribution under the null hypoth-
esis. Skaug & Tjostheim (1993) showed that, if F(.) is continuous, C, and the statistic of Blum
et al. (1961) have the same limiting distribution. Delgado (1996) showed that this is not the case
when higher-order dependence alternatives are considered. Other functionals of n*S,(.) could be
used, e.g. based on the supremum distance, as in the case of Kolmogorov—-Smirnov statistics.

Suppose now that {U;,i>1} are unobservable errors in the linear regression model Y;=
X Po+ U;, where X; are fixed regressors and f, is a k-dimensional vector of unknown parameters.
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In this case, we propose to test H, as before, replacing the unobservable errors U; by residuals
U.,=Y—X! ﬁ,,, where /i,, is a suitable estimate of f§,. Thus, S(u) is estimated by

Sn(”) =Fn(”) n1(“1) 1 (42),

where F,(.) and F,;(.) are defined as F,(.) and F,,(.), but replacing U, by U,;. Functionals of n%S,(.)
can be used as test statistics, e.g. the Cramér—von Mises statistic

€n=n_1 Z { %S\ (0nn Un1+1)}2-
i=1

In view of the existing results on empirical processes depending on parameter estimates, see e.g.
Durbin (1973) for a discussion of this problem in the context of goodness-of-fit tests, we would
expect a different asymptotic behaviour for n*S,(.) and n?S,(.). Surpr1s1ng1y, we prove in § 2 that
n*S,(.) and n*S,(.) have the same limiting distribution, and hence C, can be used to test H, in the
same way as C,. The results of a Monte Carlo experiment are reported in § 3. Proofs are confined
to an appendix.

2. ASYMPTOTIC PROPERTIES
The following assumptions must hold under both H, and H;.

Assumption 1. We require that Y= X;f,+ U;, and {U;,i>1} is a strictly stationary discrete
time process.

Assumption 2. We require that >.;_, X; X/ is a nonrandom and nonsingular matrix such that

n -1
max X{(Z X,-X,-’) X, =o(1).
1<i<n i=1

Assumption 3. The distribution function of (U;, U;,,) has a density function with marginal
density function f;(.) uniformly continuous and such that f;(x) > 0 for all x e R.

Assumption 4. We require that ,l?,, is an estimator of f§, such that

n ‘JL.
('Zl XiX{> (Bu— Bo) = 0y(1).

Assumption 2 is typical when studying asymptotic properties of statistics in this context; this
assumption does not rule out trending regressors. Under Assumption 3, which is necessary to
ensure that empirical processes based on residuals behave properly (Koul, 1992, pp. 36-9), the
marginal distribution function is strictly increasing. If Assumption 2 holds, Assumption 4 is satisfied
by most estimates, such as ordinary least squares.

The following theorem establishes the asymptotic equivalence between S,,(.) and S,(.).

THeoREM 1. If Assumptions 1-4 hold, then
(a) under HO: SupuER2 |Sn(u) - Sn(u)l = op(n_é); N
(b) under Hy, if {U;,i> 1} is ergodic, then sup, cr2|S,u) — S,()| = 0,(1).

It follows from Theorem 1, see the proof of the Corollary in the Appendix, that, under H,,
n*S,(.) and n*S,(.) converge weakly to the same process, which is, as Skaug & Tjestheim (1993)
prove, a Gaussian process, S.(.) say, with E{S (1)} =0 and

cov{Se (), Seo(v)} = [ [min{F;(w), Fy(v;)} — Fy(u)Fy(v;)];

j=1



and, under H,, S,(.) and S,(.) converge in probability to S(.). The§e results are exploited in the
following corollary, which justifies asymptotic inferences based on C,.

COROLLARY. I[ Assumptions 1-4 hold, then
(a) under Hy, C, converges in distribution to Co, = [ Soo(u)* dF (u);
(b) under H,, if {U;,i> 1} is ergodic, then, for all ¢ < oo, lim,_, , pr{C,>c} =1.

The distribution of C,, does not depend on F(.) and has been tabulated by Blum et al. (1961).
The Corollary states that, asymptotically, the test can be performed using C, and critical values
from the distribution of C,, that is in the same way as if we used C,. This result may seem
surprising at first sight because, in goodness-of-fit tests, the statistic computed with errors and the
statistic computed with residuals have different asymptotic distributions; see e.g. Koul (1992,
pp. 178-86). When testing goodness of fit, replacing the true parameter value by an estimator
introduces a non-negligible random term in the empirical distribution function, and this affects the
limiting distribution of the test statistic. When testing independence, replacing f, by S, introduces
random terms in the joint empirical distribution function and in the two marginal empirical distri-
bution functions, but these random terms cancel out asymptotically when we consider the
Hoeffding-Blum—Kiefer—Rosenblatt process.

In a nonlinear regression model Y; = m(X;, fo) + U;, where m(.) is a known function, continuously
differentiable in a neighbourhood of f,, the equivalence result we establish is also expected to hold
if we assume, instead of Assumptions 2 and 4, that the estimator B,, is such that

max {m(Xn Bn),Rn(Bn)_lm(Xia En)} = Op(l)

1<i<n

and R,(B,)}(B, — Bo) = 0,(1), for any B, such that || B, — Bol < ||, — Boll, where

n

m(x, f) = om(x, B)/op, R,(B)= Y. m(X, By X, B

i=1

However, the reasoning which we use to prove Theorem 1 does not apply directly in the nonlinear
case because it is based on results derived in Koul (1992, Ch. 3), where only linear models are
considered.

3. SIMULATIONS

In order to study how the replacement of errors by residuals affects the finite sample behaviour
of the test statistic, we carried out some Monte Carlo experiments with programs written in GAUSS.
We generated n + 1 observations from a linear regression model with X;=(1,i), fo=(1,1) and
errors U; satisfying a first-order autoregressive model U; = pU;_, + ¢;, where ¢; are independent
identically distributed N (0, 1) variables; hence H is true if and only if p = 0. We used least squares
residuals to compute the test statistic C,. In Table 1, we report the proportion of rejections of H,
in 5000 Monte Carlo samples for different parameter values p, significance levels « and sample
sizes n. The critical values we used, 004694 for o =0-1, 00584 for =005 and 008685 for
o =0-01, were obtained from Table II in Blum et al. (1961).

We observe that C, and C, yield very similar results. Moreover, the empirical level of the test is
fairly close to the theoretical level and the power is reasonably high. To study the power of the
test in other contexts, we performed some other Monte Carlo experiments with the same character-
istics as those described in Skaug & Tjostheim (1993, § 4.4). The results of these experiments are
not reported here; we obtained the same results as Skaug & Tjestheim (1993), both when using
errors and when using residuals.



Table 1. Proportion of rejections of Hy:p =0 from sets of 5000
Monte Carlo samples, using the statistics C, and C,

a=010 o =0-05 a=001

n p C, C, C, C,, C, C,,
50 —06 0975 0978 0954 0961 0-882 0-897
—04 0753 0771 0650 0676 0424 0454
—-02 0289 0317 0-189 0-213 0070 0079
0 0-111 0-110 0059 0056 0015 0014
02 0397 0332 0278 0234 0116 0093
04 0829 0776 0746  0-685 0534 0453
06 0981 0964 0966 0943 0908 0-860
250 —06 1-000  1-000 1-000  1-000 1-000  1-000
—04 1-000  1-000 1-000  1-000 0999 0999
—-02 0-868 0878 0786 0799 0-581 0-597
0 0-105 0105 0057 0-057 0011 0010
02 0-893  0-880 0829 0811 0637 0610
0-4 1-000  1-000 1-000  1-000 0999 0999
06 1-000 1-000 1-000  1-000 1-000  1-000
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APPENDIX
Proofs

Detailed proofs are available from the authors on request. Hereafter, the interval [0, 1] is denoted
by I, I>=1 x I, D(I?) is the set of all real functions on I? which are ‘continuous from above with
limits below’ as in Neuhaus (1971), C(I?) is the set of all real continuous functions on I?, ‘=
denotes weak convergence, ¢t = (t,, t,) is a generic element in I%, for j=1,2and i=1,..., n, unless
otherwise stated. The proofs of Theorem 1 and the Corollary will be derived from the following
proposition.

ProrosiTiON Al. Let {(Yy;, X1;, Ya;, X5;)'} -1 be observations from an R x Rt x R x RP2-valued
variable such that the following linear regression models hold: Y;=X;f+ U, where
{(Uy, Uy, i =1} is a strictly stationary sequence of random vectors. We assume that both regression
models satisfy Assumption 2, that we have estimators [?,, ; satisfying Assumption 4 and that the distri-
bution function of (Uy;, Us,;)' has a density function with marginal density functions uniformly continu-
ous and positive in R. Let H(.) be the distribution function of (Uy;, Uy) and Hy(.) its marginal
distribution functions. Define

2 n
P(t)y=n* (”ﬁl Z [H 1{H,(U; tj}:| —n~? H [ Z 1{H,(Uy) < tj}:|>
i=1 j=1Li=1
and P,(t) in the same way as P,(t), but replacing errors U i by residuals U,, =Y — X,-’,-B,,j.

(a) If {(Uy;, Uy),i=1} is an ergodic sequence, then sup,E,z|P (t)—P,(t)|=0 (ni) Moreover,
n~%P,(.) converges in probability to L(t) = G(t) — t,t,, where G(t) = H{HT !(t,), H; (t,)}.

(b) If {(Uy;, Uy),i=1} is an m-dependent sequence for me NU {0} (Billingsley, 1968, p. 167),
and H(u)= H,(u,)H,(u,) for all w=(u;,u,) €R% then sup,cp|P,(t)— P,(2)| =0,(1). Moreover,
P,(.)= P™(.), where P"™(.) is a Gaussian process in D(I%) with zero mean and



cov{P™(s), P™(t)} = H {min(s;, t;) — s;t;}

j=1

) E<H[1{H( AR s;][l{Hj(Uj,k+1)<tj}—t,-])

+iE(1‘][1{H( i) <83 — s LHH(U) <t} — t,-]>,
k=1

where the last two terms on the right-hand side appear only if m > 0.

(c) Let D:R—R be a continuous function and let Q,(.), Q(.) be processes in D(I?) such
that pr{Q( )e(l?(lz)} =11 {Uy;, Uz),i21} is an ergodic sequence, then the random variable
n 1Y D[Q,{H (U,), Hy(U,,)}] converges in distribution to [2D{Q(1)} dG(2).

Proof. (a) Define

n

Z [H{H(Uy) St} 1H{H,(Uz) < 12} — G(1)],

1

W, ()=n"*

B

W(t))=n" %Z[l{H( i) <ty — 1]

i=1

and define W,(t), W,(¢) in the same way as W,(t), W,(¢), but replacing Uj; by U,,;;. Then

Pn(t) = Wl(t) - t2 I/Tlln(tl) - tl VT/Zn(tZ) - n_%VT/ln(tl)VT/hl(t2) + n%L(t)’ (Al)
P,(t) = W, () — ta Wi,(t1) — £t Wan(t3) — n™ 2 Wy, (t1) Wau(t,) + nEL(1). (A2)

Define g;(t;) = h; {H; '(t;)},

i = H{UH71(4) + X (Bag— Bio)}s B = HEHT (1) + X1:(Bur — Bro)s Hz (82) + X3:(Brz — Bao)}-
As H(.) is a one-to-one mapping, 1{Hj((7,,ﬁ) <ty =1{H;({Uy) < fj,,i}. Hence, if we define
Ejn(tj):n_% z [1{H(U, )< iy — L — HH;(Uy) < 85} + 8],
i=1

n

Zi(t)=n"F Y (=) = ng,(0) ¥ Xp(By— B

Bjﬂ(tj) n 7gj(t) Z (an_ﬂjo)7

n

E,()=n"%Y <H [H{HU;) <] —t— H [1{H;(Uy) <t;}] +G(t)>,

Z,()=n"*% Z {t.i— G(1)} — t3B1,(t;) — t; Byu(22),
i=1
then it is easily proved that
Winlt5) = Ein(t;) + Zin(t;) + Biu(t;) + Wi(1)), (A3)
W, (£) = E,(£) + Z,(1) + t; B2u(t5) + £, B1,(11) + W, (1) (A4)

With our assumptions, and using similar arguments to those in Koul (1992, pp. 28-39), it may be
proved that

sup |Z]n(t)| = op(1)7 sup |n_%Zn(t)| = op(l)a sup |n_% jn(t)l = op(1)$
tel tel? tel

sup In"2E, ()| = 0,(1), sup |Bjn(t)] = 0,(1), sup [n™ W, (1) = 0,(1).
te te

tel



In view of (A1)—~(A4), all these results imply that sup,c 2n~% | P,(¢) — P,(t)| = 0,(1). On the other
hand,

R~ =n"1 Y, [ [T HH,U) <) - Gm]

i=1
=7 L Wia(ty) + 1 Wa,(8) + n ™ AW (8) Wy (£2)}-
If we use the Glivenko—Cantelli Theorem in Stute & Schumann (1980) and Theorem 4.1 in
Billingsley (1968, p. 25), it follows that n~*P,(t) converges in probability to L(t).
(b) With these assumptions,
sup | Z;, (1) = 0,(1), sup |Z,(t)| =0,(1), sup |E;(£)]=0,(1),
tel ter?

tel

sup |Ea(6)] = 0,(1), sup |Bjn(£)] = O,(1), sup [Win(0)] = Op(1).
te te te

Thus from (A1)—(A4) it follows that sup, 2| P,(t) — P,(t)| = 0,(1). Moreover, write
V() = Wi (8) — 6 Wan(ty) — £t Wau(£2).

From (A2) it follows that P,(t) = V,(t) — n~ ¥ Wy, (t;)Wa,(t,); if we use Theorem 4 in Csorgd (1979),
V,(.)=P™(.) and hence P,(. )=> Pm().

(c) Write G,(t)=n""1 i [1{H; (U,,J,) <t;}], and define G,(¢) in the same way as G, () but
replacing residuals by errors. We must prove that in distribution,

L D{Q,(1)} dG,(1) > L D{Q(1)} dG(2). (A5)

From (A4) we obtain that
G,(1) = G,(t) = n"H{W,(t) — W,(t)} = n"H{E,(t) + Z, (1) + t, B, (t;) + £, By, (1)}

Hence, sup; ¢ 12 | G,(t) — G, ()| = 0,(1), and (A5) may be proved from this result using the Skorohod
embedding theorem. ]

Proof of Theorem 1. Apply Proposition Al with 4;; = A;, A5;= A;+, for A=Y, X, U. Under H,,
all conditions in _part (b) of Proposition Al hold with m=1, and, except for terms which are
uniformly o,(1), B,(.), P, ( ), H(. ) H,(.) and H,(.) become, respectively, n*S¥(.), n*S¥(.), F(.), F,(.)
and Fy(.), where S¥(t)= S, {F7!(t,), Fy X(t,)} and S*(t)=S,{F7'(t,), F{ \(t,)}. O

Proof of the Corollary. Under H,, apply part (b) of Proposition Al to deduce that
ntS*(.) = S%(.), where S*(t) =S, {Fi (t;), Fr X(¢,)}; then use part (c) of Proposition Al. Under
H,, apply part (a) of Proposition Al and then use part (c) to derive that n~1C, converges in
probability to

= J {F (ug, up) — Fl(”l)F1(”2)}2 AF (uy, uy).

As H, is true and F(.) is continuous, then A >0 (Blum et al,, 1961, p. 490). O
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