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1 Introduction
What auction format gives higher expected revenue when bidders’ types are depen-
dent? This is an important question, set in a realistic context. Dependence of private
information is more realistic because there are many sources of correlation of opinions
and assessments in the real world: education, culture, evolution, common sources of
information, etc. Moreover, independence is a “knife-edge” assumption. The impor-
tance of the revenue ranking of auctions can be seen by realizing that it is a practical
version of the main problem of mechanism design — what is the best mechanism for a
decision maker (in this case, the seller)? We say that it is a “practical version” because
it differs from the general one in restricting the set of considered mechanisms to the
auctions most observed in practice (English auction and first price auctions).

In fact, the revenue ranking of auctions is a problem as old as auction theory itself.
Among the many questions addressed by Vickrey (1961), this was one of most central-
ity. His celebrated Revenue Equivalence Theorem (RET) says that the two above cited
auctions (and his second price auction) give exactly the same expected revenue. Never-
theless, RET requires independence of private information (types). Thus, the revenue
ranking of auctions with dependent types remained unknown.

The best contribution to this matter was made through a remarkable insight of Mil-
grom and Weber (1982a), which introduced the concept of affiliation in auction theory.1

Affiliation is a generalization of independence — see the definition in subsection
3.2 below — that was explained through the appealing notion that our assessments of
values are positively dependent: “Roughly, this [affiliation] means that a high value of
one bidder’s estimate makes high values of the others’ estimates more likely.” (Milgrom
and Weber (1982a), p. 1096.)

Among the many interesting results in Milgrom and Weber (1982a), we underline
the following:

• affiliation implies the existence of a symmetric, increasing, pure strategy equi-
librium for first price auctions;2

• under affiliation, the English and the second price auction have higher expected
revenue than the first price auction.3

1In two previous papers, Paul Milgrom presented results that use a particular version of the same concept,
under the name “monotone likelihood ratio property” (MLRP): Milgrom (1981a, 1981b). Before Milgrom’s
works, Wilson (1969 and 1977) made important contributions that may be considered the foundations of the
affiliated value model. Nevertheless, the concept is fully developed and the term affiliation first appears in
Milgrom and Weber (1982a). See also Milgrom and Weber (1982b). When there is a density function, the
property had been previously studied by statisticians under different names. Lehmann (1966) calls it Positive
Likelihood Ratio Dependence (PLRD), Karlin (1968) calls it Total Positivity of order 2 (TP-2), and others
use the name Monotone Likelihood Ratio Property (for the bivariate case).

2They also proved the existence of equilibrium for second price auctions with interdependent values.
In our set-up (private values), the second price auction always has an equilibrium in weakly dominant pure
strategies, which simply consists of bidding the private value. Although equilibria in mixed strategies always
exist (Jackson and Swinkels 2005), first price auctions may fail to possess a pure strategy equilibrium when
types are dependent.

3For private value auctions, which we consider in this paper, English and second price auctions are
equivalent — see Milgrom and Weber (1982a). Thus, we restrict our analysis to the latter.
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In the face of these results, it is possible to cite at least three reasons for the pro-
found influence of the aforementioned paper in auction theory: (i) its theoretical depth
and elegance; (ii) the plausibility of the hypothesis of affiliation, as explained by a clear
economic intuition; (iii) the fact that it implies that English auctions are better for sell-
ers, which is a good explanation for the fact that English auctions are more common
than first price auctions.

Nevertheless, since we were originally interested in the general problem of depen-
dence of types, it is important to have an assessment of how strong as assumption
affiliation is and how far its implications go.

In section 3 we show that affiliation is quite restrictive in three senses. It is re-
strictive in a topological sense: the set of no affiliated probability density functions
(p.d.f.’s) is open and dense in the set of continuous p.d.f.’s. It is also restrictive in a
measure-theoretic sense: if µ is a probability measure over the set of joint probabilistic
density functions (p.d.f.’s), and if µ satisfies some reasonable conditions, then then µ
puts zero measure in the set of affiliated p.d.f.’s.

Finally, we argue that affiliation is restrictive in a statistical sense. Recall that
affiliation was introduced through the intuition of positive dependence. In Statistics,
there are many definitions of positive dependence, and affiliation is just one of the
most restrictive. Moreover, in sections 4 and 5 we show that the main implications
of affiliation — equilibrium existence and the revenue ranking of auctions — do not
extend for other (still restrictive) definitions of positive dependence.

From this, it seems important to reconsider the problems of equilibrium existence
and revenue ranking of auctions with dependent types. For solving the problem of
symmetric increasing pure strategy equilibrium existence, we restrict the set of dis-
tributions considered. The idea is so simple that it can be explained graphically (see
Figure 1).
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(a) pij = Pr (t1 = vi, t2 = vj)
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v2

(b) pij = f (vi, vj)

Figure 1: Discrete values, such as in (a), capture the relevant economic possibilities in a
private value model, but preclude the use of calculus. We use continuous variables, but
consider only simple density functions (constant in squares), such as in (b).

Let us expand the above explanation. Consider the setting of symmetric private
value auctions with two risk neutral players, but general dependence of types. Since
we are analyzing auctions of single objects, it would be sufficient to consider the case
where bidders’ types are distributed according to a finite number of values (the values
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can be specified only up to cents and are obviously bounded). Nevertheless, to work
with discrete values precludes us from using the convenient tools of differential cal-
culus, which allow, for instance, a complete characterization of equilibrium strategies.
Maintaining the advantage of continuum variables, but without requiring unnecessary
richness in the set of distributions, we focus on the set of densities which are constant
in some squares around fixed values. This imposes no economic restriction on the
cases considered, but allows a complete characterization of symmetric increasing pure
strategy equilibrium (PSE) existence (see subsection 4.2).

It is easy to see that, as we take arbitrarily small squares, we can approximate any
p.d.f. (including non-continuous ones). Thus, even if the reader insists on mathematical
generality, that is, to include other distributions, our results are still meaningful because
they cover a dense set.

For this set of simple p.d.f.’s, we are able to provide an algorithm, implementable
by a computer, that completely characterizes whether or not a pure strategy equilibrium
exists. Theoretical results are also available.

The results in section 4 reveal that the set of affiliated distribution is small even in
the set of distributions with a PSE, sharpening the results of restrictiveness of affilia-
tion. On the other hand, the proportion of p.d.f.’s which have PSE is also small. We
offer a mathematical proof of this fact. This suggests that most of the cases only have
equilibria in mixed strategies.

From this, we consider the characterization of the revenue ranking of auctions. The
standard approach in the literature (see Milgrom and Weber 1982 for affiliated distribu-
tions and Maskin and Riley 2000 for asymmetrical independent distributions) is to give
conditions on the set of distributions that imply such or such ranking. Unfortunately,
the conditions are usually very restrictive.

Numerical simulations, made possible by the results of sections 4 and 5, suggest
that a complete characterization is very difficult. Even p.d.f.’s with positive dependence
may often present a revenue ranking contrary to that implied by affiliation.

From this, we see two options for approaching the problem of revenue ranking. One
is to obtain (experimental or empirical) information related to the specific situation
and restrict the set of p.d.f.’s to analyze. Then, with this restriction, use our model
to run simulations and determine what auction format gives higher expected revenue
in the specific environment. Although this “engineering”-type approach was recently
proposed by Roth (2002) as a tool for economists, it will be useful to also have a
general, theoretical model. This is the other part of the proposal.

We construct a “natural” measure over our proposed set of p.d.f.’s — this is natural
in the sense that it comes from the limit of Lebesgue measure over finite-dimensional
sets and also has some (partial) characteristics of Lebesgue measure. Using this mea-
sure, we obtain an “expected value” of the expected revenue difference of the second-
price and the first-price auction.

We illustrate this theoretical (and specification-free) method in section 5. This
method suggests that the English auction gives higher revenue than the first price auc-
tion “on average”. Surprisingly, this conclusion seems to hold in general, not only for
positive dependent distributions.4

4The reader should not be confused: the conclusion is in a weak sense: just “on average”. For specific
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Thus, our paper makes the following contributions: it illustrates the restrictiveness
of affiliation; proposes a convenient and sufficiently general set of distributions; offers
a method to numerically test equilibrium existence and the revenue ranking of auc-
tions for non-affiliated distributions; and shows that the revenue ranking implied by
affiliation is valid, in a weak sense, for a bigger set of distributions.

The paper is organized as follows. Section 2 gives a brief exposition of the stan-
dard auction model. Section 3 compares affiliation and other definitions of positive
dependence and shows that affiliation is a restrictive condition. Section 4 presents the
equilibrium existence results. Section 5 describes the proposed methods for approach-
ing the problem of revenue ranking in auctions. Section 6 contains a comparison with
related literature and concluding remarks. The more important and short proofs are
given in an appendix, while lengthy constructions are presented in a separate supple-
ment to this paper.

2 Basic model and definitions
Our model and notations are standard. There are n bidders, i = 1, ..., n. Bidder i
receives private information ti ∈

[
t, t

]
which is the value of the object for himself.

The usual notation t = (ti, t−i) = (t1, ..., tn) ∈
[
t, t

]n
is adopted. The values are

distributed according to a p.d.f. f :
[
t, t

]n → R+ which is symmetric, that is, if
π : {1, ..., n} → {1, ..., n} is a permutation, f (t1, ..., tn) = f

(
tπ(1), ..., tπ(n)

)
.5 Let

f (x) =
∫

f (x, t−i) dt−i be a marginal of f . Our main interest is the case where f
is not the product of its marginals, that is, the case where the types are dependent.
We denote by f (t−i | ti) the conditional density f (ti, t−i) /f (ti). After knowing his
value, bidder i places a bid bi ∈ R+. He receives the object if bi > maxj 6=i bj . We
consider both first and second price auctions. As Milgrom and Weber (1982a) argue,
second price and English auctions are equivalent in the case of private values, as we
assume here. In a first price auction, if bi > maxj 6=i bj , bidder i’s utility is u (ti − bi)
and is u (0) = 0 if bi < maxj 6=i bj . In a second price auction, bidder i’s utility is
u (ti −maxj 6=i bj) if bi > maxj 6=i bj and u (0) = 0 if bi < maxj 6=i bj . For both
auctions, ties are randomly broken.

By reparametrization, we may assume, without loss of generality,
[
t, t

]
= [0, 1]. It

is also useful to assume n = 2, but this is not needed for most of the results, although
some (especially in sections 4 and 5) may require non-trivial adaptations for n > 2. For
most of the paper, we assume risk neutrality, that is, u (x) = x. Thus, unless otherwise
stated, the results will be presented under the following set-up:

BASIC SETUP: There are n = 2 risk neutrals bidders, that is, u (x) = x, with
private values distributed according to a symmetric density function f : [0, 1]2 → R+.

A pure strategy is a function b : [0, 1] → R+, which specifies the bid b (ti) for
each type ti. The interim payoff of bidder i, who bids β when his opponents follow

distributions, as we said, the rank can be in any direction.
5For the reader familiar with Mertens and Zamir (1986)’s construction of universal type spaces: we make

the usual assumption in auction theory that the model is “closed” at the first level, that is, all higher level
beliefs are consistently given by (and collapse to) f .
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b : [0, 1] → R+ is given by

Πi (ti, β, b) = u (ti − β) F
(
b−1 (β) | ti

)
= u (ti − β)

∫ b−1(β)

t

f (t−i | ti) dt−i,

if it is a first price auction and

Πi (ti, β, b) =
∫ b−1(β)

t

u (ti − b (t−i)) f (t−i | ti) dt−i,

if it is a second price auction.
We focus attention on symmetric increasing pure strategy equilibrium (PSE), which

is defined as a function b : [0, 1] → R+ such that Πi (ti, b (ti) , b) ≥ Πi (ti, β, b) for
all β and ti. The usual definition requires this inequality to be true only for almost all
ti. This stronger definition creates no problem and makes some statements simpler,
as those about the differentiability and continuity of the equilibrium bidding function
(otherwise, such properties should be always qualified by the expression “almost ev-
erywhere”). Finally, under our assumptions, the second price auction always has a PSE
in a weakly dominant strategy, which is b (ti) = ti.

3 Restrictiveness of affiliation

3.1 Why dependent types?
Dependence of types may arise through many channels, such as culture, education,
common sources of information, evolution, etc. It is even possible to give a more
structured economic model for this, as follows.

Assume, for instance, that the object has an intrinsic value v, which is unknown
and modeled as a random variable. The bidders’ valuation is given by this intrinsic
value plus an idiosyncratic valuation εi, assumed to be independent across bidders.
Thus, bidder i’s type (value) is ti = v + εi. This obviously makes the types dependent
(although is not yet sufficient to imply that types are affiliated — see subsection 3.6).

A generalization of this economic model is to assume that there is a random variable
v and that the idiosyncratic values (types) are conditionally independent, given v (we
also consider this model in more detail in subsection 3.6, where we show that it does
not imply affiliation).

This discussion shows that there are meaningful cases of dependence out of affilia-
tion, even for particular economic examples. Nevertheless, affiliation is widely used in
auction theory. The main reason for this seems to be its very appealing intuition, based
on positive dependence, as we discuss next.

3.2 Definition and intuition for affiliation
In auction theory, it is usual to assume that f is affiliated. The introduction of the
affiliation concept was made through an appealing economic intuition: “Roughly, this

5



[affiliation] means that a high value of one bidder’s estimate makes high values of the
others’ estimates more likely.” Milgrom and Weber (1982a), p. 1096.

The formal definition is illustrated by Figure 2.6

x

f (x, y )
y

f (x′, y )

x′

f (x, y′)
y′

f (x′, y′)

Figure 2: The p.d.f. f is affiliated if x ≤ x′ and y ≤ y′ imply
f (x, y′) f (x′, y) ≤ f (x′, y′) f (x, y).

Affiliation requires that the product of the weights at the points (x′, y′) and (x, y)
(where both values are high or both are low) be greater than the product of weights
at (x, y′) and (x′, y) (where they are high and low, alternatively). It is clear from this
definition that affiliation captures very well the notion of positive dependence.

In fact, there is a predominant view in auction theory that understands affiliation
as a suitable synonym of positive dependence. This can be seen by the intuitions nor-
mally given to affiliation, along the same lines as the above quote. One can say that the
literature seems to mix two different ideas that, for expositional ease, we would like
to state separately: (1) positive dependence is a sensible assumption (an idea that we
call positive dependence intuition); and (2) affiliation is a suitable mathematical defi-
nition of positive dependence (an idea that, for easier future reference, we call rough
identification).

The positive dependence intuition seems very reasonable because, as we said, many
mechanisms may lead to correlated assessments of values. Nevertheless, we argue that
the rough identification is misleading because affiliation is too strong to be a suitable
definition of positive dependence. In the following subsection, we present some the-
oretical concepts that also correspond to positive dependence and are strictly weaker
than affiliation.

In subsections 3.4 and 3.5 we show that affiliation is also restrictive in topological
and measure-theoretic senses.

Since these results do not confirm the usual understanding (rough identification),
it is useful to reassess other arguments and models that lead to affiliation. Subsection
3.6 considers the conditional independence model. Subsection 3.7 discusses the use of
affiliation in other sciences.

6For n players, we say that the density function f :
ˆ
t, t

˜n → R+ is affiliated if f (t) f (t′) 6
f (t ∧ t′) f (t ∨ t′), where t ∧ t′ =

`
min

˘
ti, t

′
i

¯´n

i=1
and t ∨ t′ =

`
max

˘
ti, t

′
i

¯´n

i=1
. It is possi-

ble to give a definition of affiliation for distributions without density functions. See Milgrom and Weber
(1982a). We will assume the existence of a density function and use only this definition.
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3.3 The relation between affiliation and positive dependence
In the statistical literature, various concepts were proposed to correspond to the no-
tion of positive dependence. Let us consider the bivariate case, and assume that the
two real random variables X and Y have joint distribution F and strictly positive den-
sity function f . The following concepts are formalizations of the notion of positive
dependence:7

Property I - X and Y are positively correlated (PC) if cov(X, Y ) > 0.

Property II - X and Y are said to be positively quadrant dependent (PQD) if
cov(g (X) , h (Y )) > 0, for all non-decreasing functions g and h.

Property III - The real random variables X and Y are said to be associated (As) if
cov(g (X, Y ) , h (X, Y )) > 0, for all non-decreasing functions g and h.

Property IV - Y is said to be left-tail decreasing in X (denoted LTD(Y |X)) if
Pr[Y 6 y|X 6 x] is non-increasing in x for all y. X and Y satisfy property IV if
LTD(Y |X) and LTD(X|Y ).

Property V - Y is said to be positively regression dependent on X (denoted PRD(Y |X))
if Pr[Y 6 y|X = x] = F (y|x) is non-increasing in x for all y. X and Y satisfy prop-
erty V if PRD(Y |X) and PRD(X|Y ).

Property VI - Y is said to be Inverse Hazard Rate Decreasing in X (denoted
IHRD(Y |X)) if F (y|x)

f(y|x) is non-increasing in x for all y, where f (y|x) is the p.d.f. of Y

conditional to X . X and Y satisfy property VI if IHRD(Y |X) and IHRD(X|Y ).

We have the following:

Theorem 1 Let affiliation be Property VII. Then, the above properties are successively
stronger, that is,

(V II) ⇒ (V I) ⇒ (V ) ⇒ (IV ) ⇒ (III) ⇒ (II) ⇒ (I)

and all implications are strict.
Proof. See the appendix.

This theorem illustrates how strong affiliation is.8 Some implications of Theorem
1 are trivial and most of them were previously established. Our contribution regards

7Most of the concepts can be properly generalized to multivariate distributions. See, e.g., Lehmann
(1966) and Esary, Proschan and Walkup (1967). The hypothesis of strictly positive density function is made
only for simplicity.

8We defined only seven concepts for simplicity. Yanagimoto (1972) defines more than thirty concepts of
positive dependence and, again, affiliation is the most restrictive of all, but one.
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Property VI, that we use later to prove convenient generalizations of equilibrium ex-
istence and revenue rank results. We prove that Property VI is strictly weaker than
affiliation and is sufficient for, but not equivalent to Property V.

Although Theorem 1 says that affiliation is mathematically restrictive, it would be
possible for affiliation to be satisfied in most of the cases with positive correlation.
That is, although there are counterexamples for each of the implications above, such
counterexamples could be pathologies and affiliation could be true in many cases where
positive correlation (property I) holds. Thus, one should evaluate how typical affiliation
is.

There are two ways to assess whether a set is typical or not: topological and
measure-theoretic. We consider both in the sequel.

3.4 Affiliation is restrictive in the topological sense
We adopt the following notation. Let C denote the set of continuous density functions
f : [0, 1]2 → R+ and let A be the set of affiliated densities. For convenience and con-
sistency with the notation in next sections, we are including in A all affiliated densities
and not only the continuous one, which creates no problem.

Endow C with the topology of the uniform convergence, that is, the topology de-
fined by the norm of the sup:

‖f‖ = sup
x∈[0,1]2

|f (x)| .

The following theorem shows that the set of continuous affiliated densities is small
in the topological sense.

Theorem 2 The set of continuous affiliated density function C ∩ A is meager. More
precisely, the set C\A is open and dense in C.
Proof. See the appendix.

In fact, the theorem says more than the set of continuous affiliated density functions
is a meager set. A meager set (or set of first category) is the union of countably many
nowhere dense sets, which are sets whose closure has empty interior. C ∩ A is itself a
nowhere dense set, by the second claim in the theorem.

The proof of this theorem is given in the appendix, but is not difficult to understand.
To prove that C\A is open, we take a p.d.f. f ∈ C\A which does not satisfy the affili-
ated inequality for some points t, t′ ∈ [0, 1]2, that is, f (t) f (t′) > f (t ∧ t′) f (t ∨ t′)+
η, for some η > 0. By using such η, we can show that for a function g sufficiently
close to f , the above inequality is still valid, that is, g (t) g (t′) > g (t ∧ t′) g (t ∨ t′)
and, thus, is not affiliated. To prove that C\A is dense, we choose a small neighbor-
hood V of a point t̂ ∈ [0, 1]2, such that for all t ∈ V , f (t) is sufficiently close to f

(
t̂
)

— this can be done because f is continuous. Then, we perturb the function in this
neighborhood to get a failure of the affiliation inequality.

Maybe more instructive than the proof is to understand why the result is true: sim-
ply, affiliation requires an inequality to be satisfied everywhere (or almost everywhere).
This is a strong requirement and it is the source of its restrictiveness.
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3.5 Affiliation is restrictive in a measure-theoretic sense
Affiliation is also restrictive in the measure-theoretic sense, that is, in an informal way,
it is of “zero measure”. Obviously, we need to be careful with the formalization of
this, since we are now dealing with measures over infinite-dimensional sets (the set
of distributions or densities). As is well known, there are no “natural” measures for
infinite dimension sets, that is, measures with all of the properties of the Lebesgue
measure — see Yasamaki (1985), Theorem 5.3, p. 139.

Thus, before we formalize our results, we informally explain what we mean by
“measure-theoretic”. Let D be the set of probabilistic density functions (p.d.f.’s) f :
[0, 1]2 → R+ and assume that there is a measure µ over it. We define below a sequence
Dk of finite-dimensional subspaces of D and take the measures µk over Dk induced
by the projection of D over Dk. The result is as follows: if µk is absolutely continuous
with respect to the Lebesgue measure λk over Dk — as seems reasonable — then µ
puts zero measure on the set A of affiliated p.d.f.’s.

Remark. There is an alternative method of characterizing smallness in the measure-
theoretic sense: to show that the set is shy, as defined by Anderson and Zame (2001),
generalizing a definition of Christensen (1974) and Hunt, Sauer and Yorke (1992). We
discuss it in the supplement to this paper.

Now, we formalize our method. Endow D with the L1−norm, that is, ‖f‖1 =∫
|f (t)| dt. When there is no peril of confusion with the sup norm previously defined,

we write ‖f‖ for ‖f‖1.
For k ≥ 2, define the transformation T k : D → D by

T k (f) (x, y) = k2

∫ p
k

p−1
k

∫ m
k

m−1
k

f (α, β) dαdβ,

whenever (x, y) ∈
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
, for m, p ∈ {1, 2, ..., k}. Observe that T k (f)

is constant over each square
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
. Let Dk be the image of D by T k,

that is, Dk ≡ T k (D). Thus, T k is a projection.
Observe that Dk is a finite dimensional set. In fact, a density function f ∈ Dk can

be described by a matrix A = (aij)k×k, as follows:

f (x, y) = amp if (x, y) ∈
(

m− 1
k

,
m

k

]
×

(
p− 1

k
,
p

k

]
, (1)

for m, p ∈ {1, 2, ..., k} . The definition of f at the zero measure set of points {(x, y) =(
m
k , p

k

)
: m = 0 or p = 0} is arbitrary.

The following result is important to our method:

Proposition 3 f is affiliated if and only if for all k, T k (f) also is. In mathematical

notation: f ∈ A⇔ T k (f) ∈ A, ∀k ∈ N, or yet: A = ∩k∈NT−k
(
A ∩Dk

)
.

Proof. See the supplement to this paper.
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The set of affiliated distributionsA is the countable intersection of the sets T−k
(
A ∩Dk

)
,

and these sets themselves are small. T−k
(
A ∩Dk

)
is small in D because A ∩Dk is

small in Dk (by definition, T k is surjective). In fact, we have the following:

Proposition 4 If λk denotes the Lebesgue measure over Dk, then λk
(
A ∩Dk

)
↓ 0

as k →∞.
Proof. See the supplement to this paper.

The convergence is extremely fast, as shown in the following table, obtained by nu-
merical simulations, with 107 cases (see the supplement to this paper for the description
of the numerical simulation method and other results).

k = 3 k = 4 k = 5 k = 6

λk
(
A ∩Dk

)
1.1% ∼0.01% ∼10−6 <10−7

Table 1 - Proportion of affiliated distribution
in the sets Dk.

Now, define the measure µk overDk as follows: if E ⊂ Dk is a measurable subset,
put µk (E)= µ

(
T−k (E)

)
. Now, it is easy to obtain the main result of this subsection:

Theorem 5 If µk ≤ Mλk for some M > 0 then, µ (A) = 0.9

Proof. By Proposition 3, A ⊂ T−k
(
A ∩Dk

)
for every k. Thus,

µ (A) ≤ µ
(
T−k

(
A ∩Dk

))
= µk

(
A ∩Dk

)
≤ Mλk

(
A ∩Dk

)
.

Since λk
(
A ∩Dk

)
↓ 0 as k →∞, by Proposition 4, we have the conclusion.

As the reader may note from the above proof, it is possible to change the condition
µk ≤ Mλk for some M > 0 by µk ≤ Mkλk for a sequence Mk, as long as Mk

does not go to infinity as fast as λk
(
A ∩Dk

)
goes to zero. Since the convergence

λk
(
A ∩Dk

)
↓ 0 is extremely fast, as we noted above, this assumption seems mild.

It is useful to observe that Theorem 5 is not empty, that is, there are many measures
over D that satisfy it. A way to see this is to recall that a measure over D can be
constructed from the measures over the finite-dimensional sets Dk by appealing to

9The reader may note that the assumption is slightly stronger than absolute continuity of µk with respect
to λk . In fact, absolute continuity requires only that λk (A) = 0 implies µk (A) = 0. Nevertheless, by
the Radon-Nikodym Theorem, absolute continuity implies the existence of a measurable function mk such
that µk (A) =

R
A mkdλk . Thus, the above assumption is really requiring this function mk to be bounded:

mk ≤ M . As we discuss in the paragraph after the Theorem, this bound does not need to be uniform in k.
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the Kolmogorov Extension Theorem (see Aliprantis and Border 1991, p. 491). The
interested reader will find more comments about this in the supplement to this paper.

The findings presented in this and previous subsections seem to contradict the com-
mon understanding that affiliation is reasonable. For instance, models with conditional
independence are considered very natural and it is sometimes (wrongly) believed that
they imply affiliation. We analyze them in the next subsection.

3.6 Conditional independence
Conditional independence models assume that the signals of the bidders are condi-
tionally independent, given a variable v (which can be the intrinsic value of the ob-
ject, see Wilson 1969, 1977). Assume that the p.d.f. of the signals conditional to v,
f (t1, ..., tn|v), is C2 (twice continuously differentiable) and has full support. It can be
proven that the signals are affiliated if and only if

∂2 log f (t1, ..., tn|v)
∂ti∂tj

> 0,

and

∂2 log f (t1, ..., tn|v)
∂ti∂v

> 0, (2)

for all i, j.10 Conditional independence implies only that

∂2 log f (t1, ..., tn|v)
∂ti∂tj

= 0.

Thus, conditional independence is not sufficient for affiliation. To obtain the latter,
one needs to assume (2) or that ti and v are affiliated. In other words, to obtain affil-
iation from conditional independence, one has to assume affiliation itself. Thus, the
justification of affiliation through conditional independence is meaningless.

A particular case, also described in subsection 3.1, is used as a method of obtaining
affiliated signals: to assume that the signals ti are a common value plus an individual
error, that is, ti = v+εi, where the εi are independent and identically distributed. This
is not yet sufficient for the affiliation of t1, ..., tn. Indeed, let g be the p.d.f. of the
εi, i = 1, ..., n. Then, t1, ..., tn are affiliated if and only if g is a strongly unimodal
function.11,12

10See Topkis (1978), p. 310.
11The term is borrowed from Lehmann (1959). A function is strongly unimodal if log g is concave. A

proof of the affirmation can be found in Lehmann (1959), p. 509, or obtained directly from the previous
discussion.

12Even if g is strongly unimodal, so that t1, ..., tn are affiliated, it is not true in general that t1, ..., tn,
ε1, ..., εn, v are affiliated.
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3.7 Affiliation in other sciences
The above discussion suggests that affiliation is, indeed, a narrow condition and proba-
bly not a good description of the world. Nevertheless, we know that affiliation is widely
used in Statistics, reliability theory and in many areas of social sciences and economics
(possibly under other names). Why is this so if affiliation is restrictive?

In Statistics, affiliation is known as Positive Likelihood Ratio Dependence (PLRD),
the name given by Lehmann (1966) when he introduced the concept. PLRD is widely
known by statisticians to be a strong property and many papers in the field do use
weaker concepts (such as those given by properties V, IV or III).

In Reliability Theory, affiliation is generally referred to as Total Positivity of order
two (TP2), after Karlin (1968). Historical notes in Barlow and Proschan (1965) suggest
why TP2 is convenient for the theory. It is generally assumed that the failure rates of
components or systems follow specific probabilistic distributions (exponentials, for in-
stance) and such special distributions usually have the TP2 property. Thus, it is natural
to study its consequences.

In contrast, in auction theory, the types represent information gathered by the bid-
ders and there is no reason for assuming that they have a specific distribution. Indeed,
this is rarely assumed (at least in theoretical papers). Thus, the reason for the use of
TP2 (or affiliation) in reliability theory does not apply to auction theory.

Finally, we stress that the type of results from previous subsections are insufficient
to regard a hypothesis as inadequate or not useful. This judgement has to be made
in the context of the other assumptions of the theory. For instance, it is possible that
the hypothesis is not so restrictive given the setting where it is assumed. Moreover,
the judgment must take into account the most important of all criteria: whether the
resulting theory “yields sufficiently accurate predictions”(Friedman (1953), p. 14).
Because of this, we study the main consequences of affiliation – namely, equilibrium
existence and the revenue rank – in sections 4 and 5. Thus, this paper addresses only
the use of affiliation in auction theory. It is a task for the specialists in other fields to
analyze whether affiliation is appropriate for their applications.

4 Equilibrium existence
We divide the results of this section into three subsections. In subsection 4.1, we show
that pure strategy equilibrium existence has little relation with positive dependence.
More precisely, pure strategy equilibrium existence can be generalized from affiliation
(Property VII) to Property VI, but not beyond, that is, we have a counterexample satis-
fying the (strong) Property V, which does not have symmetric increasing pure strategy
equilibrium (PSE).

This negative result shows the need for another approach. In subsection 4.2 we
argue that the auction phenomena related to dependence can be modeled and analyzed
by considering a simpler but sufficiently rich class of distributions, which we introduce
there.

Working in this class, we are able to completely characterize the PSE existence
question in subsection 4.3. In this subsection, we also show that the proportion of
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distributions with PSE is small in the set of all densities considered.

4.1 Generalization of equilibrium existence
Before we present our main equilibrium existence result, we call the attention to the fact
that the same proof from Milgrom and Weber (1982a) can be used to prove equilibrium
existence for Property VI. Indeed, the following property is sufficient:13

Property VI′ - The joint (symmetric) distribution of X and Y satisfy property VI′

if for all x, x′ and y in [0, 1], x ≥ y ≥ x′ imply

F (y|x′)
f (y|x′)

≥ F (y|y)
f (y|y)

≥ F (y|x)
f (y|x)

.

It is easy to see that Property VI implies Property VI′ (under symmetry and full
support). Unfortunately, however, it is impossible to generalize further the existence
of equilibrium for the properties defined in subsection 3.5. Indeed, in the appendix,
we give an example of a distribution which satisfies Property V, but does not have
equilibrium. These facts are summarized in the following:

Theorem 6 If f : [0, 1]2 → R satisfies property VI′, there is a symmetric pure strategy
monotonic equilibrium. Moreover, property V is not sufficient for equilibrium existence.
Proof. See the appendix.

The most important message of Theorem 6 is the negative one: that it is impossi-
ble to generalize the equilibrium existence for the other still restrictive definitions of
positive dependence. This mainly negative result leads us to consider another route to
prove equilibrium existence. For this, we begin by considering the set of distributions
which we shall work with.

4.2 The class of distributions
Modeling types as continuous real variables is a widespread practice in auction theory.
The reason for that is clear: continuous variables allow the use of the convenient tools
of calculus, such as derivatives and integrals, to obtain precise characterizations and
uniqueness results. The problem with this approach, as long as we try to consider
dependence, is that to establish pure strategy equilibrium existence with traditional
tools seems difficult, as the result in the previous subsection suggests.

Here we offer an alternative solution. Observe that the value of the single object
in the auction is expressed up to cents and is obviously bounded. Thus, the number of
actual possible values is finite. Nevertheless, instead of sticking to the (actual) case of
discrete values, we allow them to be continuous, but impose, on the other hand, that
the density functions are simple. In fact, it is sufficient to consider the particular set
of simple symmetric functions Dk, as defined in subsection 3.5. This mathematical

13Recently, Monteiro and Moreira (2006) obtained further generalizations of equilibrium existence for
non-affiliated variables. Their results are not directly related to positive dependence properties.
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restriction implies no economical restriction to the problem we are studying. In sum,
we propose considering the set D∞ = ∪k∈NDk of simple p.d.f.’s. Now we describe
how the equilibrium existence problem can be completely solved in this set.

First, recall the standard result of auction theory on PSE in private value auctions:
if there is a differentiable symmetric increasing equilibrium, it satisfies the differential
equation (see Krishna 2002 or Menezes and Monteiro 2005):

b
′
(t) =

t− b (t)
F (t|t)

f (t|t) .

If f is Lipschitz continuous, one can use Picard’s theorem to show that this equation
has a unique solution and, under some assumptions (basically, Property VI’ of the
previous subsection), it is possible to ensure that this solution is, in fact, equilibrium.
Now, for f ∈ D∞, the right hand side of the above equation is not continuous and one
cannot directly apply Picard’s theorem. We proceed as follows.

First, we show that if there is a symmetric increasing equilibrium b, under mild
conditions (satisfied by f ∈ D∞), b is continuous. We also prove that b is differentiable
at the points where f is continuous. Thus, for f ∈ D∞, b can be non-differentiable
only at the points of the form m

k , but it is continuous. See figure 3.

0
t0

bids

1
k

2
k

... k−1
k

1

b
(

1
k

)b
(

2
k

)
b (1)

...

Figure 3: Bidding function for f ∈ Dk.

With the initial condition b (0) = 0 and the above differential equation being valid
for the first interval

(
0, 1

k

)
, we have uniqueness of the solution on this interval and,

thus, a unique value of b
(

1
k

)
. Since b is continuous, this value is the initial condition

for the interval
(

1
k , 2

k

)
, where we again obtain a unique solution and the uniqueness of

the value b
(

2
k

)
. Proceeding in this way, we find that there is a unique b which can be

a symmetric increasing equilibrium for an auction with f ∈ D∞. In the supplement to
this paper we prove the following:

Theorem 7 Assume that u is twice continuously differentiable, u′ > 0, f ∈ Dk, f is
symmetric and positive (f > 0). If b : [0, 1] → R is a symmetric increasing equilib-
rium, then b is continuous in (0, 1) and is differentiable almost everywhere in (0, 1) (it
is may be non-differentiable only in the points m

k , for m = 1, ..., k). Moreover, b is the
unique symmetric increasing equilibrium. If u (x) = x1−c, for c ∈ [0, 1), b is given by

b (x) = x−
∫ x

0

exp
[
− 1

1− c

∫ x

α

f (s | s)
F (s | s)

ds

]
dα. (3)
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Having established the uniqueness of the candidate for equilibrium, our task is
reduced to verifying whether this candidate is, indeed, an equilibrium. We complete
this task in the next subsection.

Even if the reader insists on considering the more general set of p.d.f.’s D — being
aware that this is a matter of mathematical generality, but not of economic generality —
our set D∞ is still dense in D and, thus, may arbitrarily approximate any conceivable
p.d.f. inD. In fact, the following result shows that equilibrium existence in the setD∞
is sufficient for equilibrium existence in D. This provides an additional justification of
the method.

Proposition 8 Let f ∈ D be continuous and symmetric. If T k (f) has a differentiable
symmetric pure strategy equilibrium for all k ≥ k0, then so does f , and it is the limit
of the equilibria of T k (f) as k goes to infinity.14

4.3 Equilibrium existence results
In the previous subsection, we established the uniqueness of the candidate for symmet-
ric increasing equilibrium for f ∈ D∞. Let b (·), given by (3) with c = 0, denote such
a candidate. Let Π (y, b (x)) = (y − b (x))F (x|y) be the interim payoff of a player
with type y who bids as type x, when the opponent follows b (·). Let ∆ (x, y) repre-
sent Π (y, b (x)) − Π (y, b (y)). It is easy to see that b (·) is equilibrium if and only if
∆ (x, y) ≤ 0 for all x and y ∈ [0, 1]2. Thus, the content of the next theorem is that it is
possible to prove equilibrium existence by checking this condition only for a finite set
of points:

Theorem 9 Let f ∈ D∞ be symmetric and strictly positive. There exists a finite set
P ⊂ [0, 1]2 (precisely characterized in the supplement to this paper) such that f has a
PSE if and only if ∆ (x, y) ≤ 0 for all (x, y) ∈ P .

It is useful to say that the theorem is not trivial, since ∆ (x, y) is not monotonic in
the squares

(
m−1

k , m
k

]
×

(
p−1

k , p
k

]
. Indeed, the main part of the proof is the analysis

of the non-monotonic function ∆ (x, y) in the sets
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
and the de-

termination of its maxima for each of these sets. It turns out that we need to check a
different number of points (between 1 and 5) for some of these squares.

Using Theorem 9, we can classify whether or not there is equilibrium, and, through
numerical simulations, obtain the proportion of cases with pure strategy equilibrium.
That is, for each trial f ∈ Dk, we test whether the auction with bidders’ types dis-
tributed according to f has a symmetric increasing pure strategy equilibrium. The
results are shown in the Table 2 below.

14See the definition of T k in subsection 3.5.
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For each k, 100%=distributions with equilibrium.

Distribution satisfying k = 3 k = 4 k = 5 k = 6 k = 7
Prop. VII (affiliation) 7.7% 0.07% < 10−7 − −

Prop. VI 1.4% 0.08% ∼ 10−6 < 10−7 −
Prop. V 5.5% 0.75% 0.01% < 10−6 < 10−7

Prop. IV 8.8% 4.1% 0.8% 0.1% ∼ 10−5

∼ Prop. IV 76.6% 95% 99.2% 99.9% 100%

Table 2 - Proportion of f ∈ Dk with PSE, satisfying properties IV-VII.

Table 2 shows that affiliation is restrictive even in the set of p.d.f.’s with symmetric
increasing equilibrium. It is useful to record this fact separately. For this, let us in-
troduce some useful notations. Let µ and µk denote the natural measures defined over
D∞ = ∪∞k=1Dk and Dk, respectively, as constructed in the supplement to this paper
and let P and Pk denote the set of p.d.f.’s in D∞ and Dk, respectively, which have a
symmetric increasing pure strategy equilibrium. From the above table, we extract the
following:

Observation 10 Let µk
(
·|Pk

)
denote the measure induced by µkin the set Dk ∩ Pk.

Then, we have µk
(
A ∩Dk|Pk

)
↓ 0.

Another way to say this is: there are many more cases with pure strategy equilib-
rium than affiliation allows us to prove.

Unfortunately, however, the set of p.d.f.’s with symmetric increasing equilibrium is
also small. This result is proved formally in the following:

Theorem 11 The measure of the set of densities f ∈ Dk which has PSE goes to zero
as k increases, that is µk

(
Pk

)
↓ 0. Consequently, the measure of the set of densities

f ∈ D∞ with PSE is zero, that is, µ (P) = 0.
Proof. See the supplement to this paper.

The proof of this theorem follows a simple idea: the equilibrium existence depends
on a series of inequalities, the number of which increases with k. Although some care
is needed for rigorously establishing the result, this simple observation is the heart of
the argument.

The following table provides the numbers that come from numerical simulations
and show that the convergence of µk

(
Pk

)
to zero is also very fast.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
With PSE 43.3% 22.2% 11.4% 5.6% 2.7% 1.3% 0.6%

Without PSE 56.7% 77.8% 88.7% 94.4% 97.3% 98.7% 99.4%

Table 3 - Proportion of f ∈ Dk with and without PSE.
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The result summarized in Table 3 is negative in the sense that it suggests that the
focus on symmetric increasing equilibrium may be too narrow. Nevertheless, this is
not yet sufficient to conclude that most of the equilibria are in mixed strategies. In
fact, while we know that mixed strategy equilibria always exist (Jackson and Swinkels
2005), there is the possibility — not considered in our results — that there are equilibria
in asymmetric or non-monotonic pure strategies.

5 The Revenue Ranking of Auctions
This section is also divided in three parts. In the first subsection, we present negative
results regarding the generalization of affiliation to other notions of positive depen-
dence. In subsection 5.2 we propose a method for dealing with the problem of revenue
ranking. In subsection 5.3 we describe the results obtained with the proposed method.

5.1 Generalization of affiliation’s revenue ranking
In this subsection we show that, for private values auctions, it is possible to generalize
the existence for Property VI but not for Property V. Moreover, we provide an expres-
sion for the difference in revenue from second and first price symmetric auctions that
will be useful later.15 This is the content of the following:

Theorem 12 If f satisfies Property VI’ (see subsection 4.1), then the second price
auction gives greater revenue than the first price auction. Specifically, the revenue
difference is given by∫ 1

0

∫ x

0

b
′
(y)

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

where b (·) is the first price equilibrium bidding function, or by∫ 1

0

∫ x

0

[∫ y

0

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx, (4)

where L (α|t) = exp
[
−

∫ t

α
f(s|s)
F (s|s)ds

]
. Moreover, Property V is not sufficient for this

revenue rank.
Proof. See the appendix.

From the expression of expected revenue difference provided by Theorem 12, we
see that the revenue superiority of the English (second price) auction over the first price
auction seems to be strongly dependent on the condition required for Property VI′ (see
subsection 4.1). Moreover, the revenue rank is not valid even for a positive dependence
concept as strong as Property V.

15The expression is not particularly difficult to obtain, but we were not able to find a reference for it. Mil-
grom and Weber (1982a)’s argument for affiliation’s revenue ranking does not make use of this expression,
nor do Krishna (2002) or Menezes and Monteiro (2005).
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5.2 How to solve the problem of revenue ranking?
In an article about design economics, Roth (2002) compares the relationship between
economic theory and market design to the relationship between physics and engineer-
ing and between biology and medicine and surgery. For instance, while physics offers
simple and elegant models with clear indications, the actual problems in engineering re-
quire dealing with details that are not (and shall not be) considered in the basic physical
model. But, as long as the specific environment is sufficiently determined, engineers
can detail the basic model to reach more precise conclusions.

Roth (2002)’s analogy suggests an answer to the question in the title of this sub-
section. Basically, we need a two-level answer. In the first (theoretical) level with-
out specific information, we need a clear prediction, obtained with a simple and basic
model. Then, in the applied level, we need a methodology that allows the use of more
detailed information (available in the specific case considered), to reach more precise
conclusions.

We describe these two levels of the methodology in the sequel.

5.2.1 The basic model, without specific information

Not only the results in subsection 5.1, but also many results in auction theory (e.g.
Maskin and Riley 1984, 2000), suggest that it is not possible to give simple predictions
about the revenue ranking of auctions. The reason is that the expected difference of
revenues can have any sign and the description of the set of distributions which has one
sign or another is very difficult.

Fortunately, a simple characterization is available without further assumptions —
if we work in the correct level of abstraction. To describe what we mean by “correct
level of abstraction”, consider the following figure.

R2 ≥ R1

R2 < R1

B A

Figure 4: Illustrative representation of the set of distributions with any kind of depen-
dence.

The standard approach to the problem of revenue ranking of auctions is to give con-
ditions (the sets A and B above) under which the revenue ranking is defined. Such an
approach is illustrated by Milgrom and Weber (1982)’s affiliation assumption and by
Maskin and Riley (2000)’s three different assumptions for asymmetrical independent
distributions.16 Under each of the these assumptions, the authors are able to say pre-

16The reader should not be confused with the citation of Maskin and Riley (2000), which do not exactly
deal with our problem — the revenue ranking with dependent types — but rather with the problem of revenue
ranking with asymmetries. We cite them only to illustrate what we are calling the “standard approach” to the
revenue ranking problem (in general).
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cisely what the revenue ranking (the color of balls in the above figure) is. Now, if we
think of the set of distributions as a black box or an urn, and we want a “prevision” of
the color of the ball that we are going to extract from it (the expected revenue ranking),
the “correct” type of answer to our problem is the characterization of the probability of
obtaining one ranking or another.

Since we have the expression of the expected revenue difference, given by (4), we

can obtain ∆f
R = Rf

2 −Rf
1 and r = Rf

2−Rf
1

Rf
2

, for each f . Generating a uniform sample

of f ∈ Dk, we can obtain the probabilistic distribution of ∆f
R or of r. The procedure

to generate f ∈ Dk uniformly is described in the supplement to this paper. The results
are shown in subsection 5.3 below.

Moreover, we can also obtain theoretical results about what happens for DN for
a large N and even for D∞ = ∪∞k=1Dk. Nevertheless, for the last case, one has to
be careful with the meaning of the “uniform” distribution. In the supplement to this
paper we show that a natural measure can be defined for D∞, which is analogous to
Lebesgue measure, although it cannot have all the properties of the finite dimensional
Lebesgue measure.

As such, this context-free approach, without specific information, allows one to
obtain theoretical results and previsions based on simulations. One possible objection
to this approach is that it considers too equally the p.d.f.’s in the sets Dk. But this is
exactly what we mean by “context-free”. If one has information on the environment
where the auction runs, so that one can restrict the set of suitable p.d.f.’s, then this
context-free approach should be substituted by the applied approach which follows.

5.2.2 The applied approach, with specific information

Econometricians working in a specific auction environment may be able to restrict or
characterize the set of distributions (dependence) that one finds in such an environment.

R2 ≥ R1

R2 < R1

Environment A

Environment B

Figure 5: In specific auction environments — e.g. auctions of energy contracts, art ob-
jects, timber, etc. — we may experimentally find different sets of typical distributions.

If we have the characterization of the typical distributions in an auction environ-
ment, we can use the model presented in this paper and make simulations. In this
fashion, we will be able to obtain more precise, context-specific indications about the
revenue ranking of auctions in such environments.

A least comment is useful. The comparison of figures 4 and 5 may wrongly suggest
that this applied approach means to go back to what we called the “standard approach”,
that is, to consider only special cases of the distributions. It is important to highlight
the difference between the two. With the standard approach, econometricians need
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to begin the analysis believing that the data obey such or such assumption.17 In our
method, no assumption is required on the dependence of information. The restriction
that one finds (and which is illustrated in figure 5) comes from the data, not from
theoretical restrictions. Methodologically, this is a big difference.

5.3 Results on Revenue Ranking
In the supplement to this paper, we develop the expression of the revenue differences
from the second price auction to the first price auction for f ∈ Dk. Let us denote by Rf

2

the expected revenue (with respect to f ∈ Dk) of the second price auction. Similarly,
Rf

1 denotes the expected revenue (with respect to f ∈ Dk) of the first price auction.
When there is no need to emphasize the p.d.f. f ∈ Dk, we write R1 and R2 instead of
Rf

1 and Rf
2 . Below, µ refers to the natural measure defined over D∞ = ∪∞k=1Dk, as

further explained in the supplement to this paper. We observe the following fact in the
simulations made:

Observation 13 The expectation of the (expected) revenue differences, R2 − R1, is
non-negative, that is, Eµ

[
Rf

2 −Rf
1 |f ∈ Pk

]
≥ 0, where Pk denotes the set of those

f ∈ Dk for which there is a PSE in the first price auction.18

The simulations were made as follows. We generated the distributions f ∈ Dk as
described in the supplement to this paper. (It is the same process used in subsection 3.5
and section 4). We evaluate the revenue difference percentage, given by:

r =
Rf

2 −Rf
1

Rf
2

· 100%,

that is, we carried out the following:

Numerical experiments
In what follows, we will treat the numerical simulations as giving an “experimental

distribution” of r. No confusion should arise between the “experimental distribution”
of r and the distributions generated by each f ∈ Dk. We generated 107 distributions
f ∈ Dk, for k = 3, ..., 9 and obtained r for each such f . The “experimental distri-
bution” of r is characterized by the table below. It is worth saying that the results are
already stable for 106 trials.

17One may see this in almost all papers about econometrics of auctions.
18This was verified for k ≤ 10, but seems to be valid for larger k’s.
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Distribution: k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
Expectation 4.5% 8.0% 10.3% 12.1% 13.4% 14.6% 15.5%

Variance 5.3% 6.9% 7.3% 7.2% 7.0% 6.8% 6.6%
5% quantile −4% −3% −2% 0% 1% 3% 4%
10% quantile −2% −1% 0% 2% 3% 4% 6%
25% quantile 0% 2% 4% 6% 6% 8% 8%
50% quantile 2% 6% 8% 10% 10% 12.5% 12.5%
75% quantile 6% 10% 12.5% 15% 15% 17.5% 17.5%
90% quantile 10% 15% 17.5% 17.5% 19% 19% 19%
96% quantile 12.5% 17.5% 20% 20% 20% 20% 20%
99% quantile 15% 20% 25% 25% 25% 25% 25%

Table 4 - Expectation of the relative revenue differences (r) for f ∈ Dk with PSE.

Figure 6 shows the “experimental density” (histogram) of r for k = 4.

−100 −80 −60 −40 −20 0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

Values of r (%)

R
el

at
iv

e 
fr

eq
ue

nc
y

  
  Expectation  =  +8.0 %
  Variance  =  +6.9 %    
  0.05 quantile  =  −3 %
  0.1 quantile  =  −1 %
  0.25 quantile  =  2 %
  0.5 quantile  =  6 %
  0.75 quantile  =  10 %
  0.9 quantile  =  15 %
  0.96 quantile  =  17.5 %
  0.99 quantile  =  20 %

Figure 6: Histogram of r for k = 4, c = 0 — for those f ∈ Dk with PSE.

In Table 4, we displayed the results only for those f with PSE. If we consider all
distributions, with and without PSE, we obtain the results in Table 5 below. This shows
that the restriction of PSE existence matters for the distribution of r.
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Distribution k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
Expectation −0.08% 0.13% 0.28% 0.38% 0.46% 0.53% 0.57

Variance 10.5% 10.9% 10.5% 9.9% 9.4% 9.0% 8.5%
5% quantile −25% −20% −20% −17.5% −17.5% −15% −15%

10% quantile −15% −15% −15% −15% −12.5% −12.5% −12.5%
25% quantile −8% −8% −8% −8% −8% −8% −8%
50% quantile −1% −1% −1% −1% −1% −1% −1%
75% quantile 4% 6% 6% 6% 4% 4% 4%
90% quantile 10% 12.5% 12.5% 10% 10% 10% 10%
96% quantile 15% 15% 15% 15% 15% 15% 12.5%
99% quantile 25% 25% 25% 25% 25% 25% 25%

Table 5 - Expectation of the relative revenue differences (r) for all cases
(with and without PSE).

The following table allows one to compare the effects of dependence and risk aver-
sion to the expected revenue differences. For this, we restrict ourselves to the case of
CRRA bidders, that is, bidders with utility function u (x) = x1−c, where c ∈ [0, 1) .19

Expect. k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
c = 0 4.6% 8.0% 10.3% 12.1% 13.4% 14.6% 15.4%

c = 0.05 3.7% 6.9% 8.8% 10.0% 10.8% 11.3% 11.6%
c = 0.1 3.0% 5.7% 7.2% 8.0% 8.4% 8.6% 8.6%
c = 0.15 2.2% 4.5% 5.7% 6.2% 6.3% 6.3% 6.3%
c = 0.2 1.4% 3.4% 4.1% 4.4% 4.4% 4.4% 4.2%
c = 0.3 0.0% 1.0% 1.2% 1.2% 1.1% 1.1% 1.0%
c = 0.4 −1.4% −1.5% −1.8% −1.8% −1.8% −1.7% −1.5%
c = 0.52 −2.9% −4.7% −5.3% −5.2% −4.9% −4.6% −4.1%
c = 0.65 −3.7% −8.8% −9.6% −9.3% −8.6% −7.9% −7.1%
c = 0.8 −6.3% −14.7% −15.9% −15.2% −14.1% −13.1% −12.1%

Table 6 - Expectation of the relative revenue differences (r) for bidders

with CRRA function u (x) = x1−c, where c ∈ [0, 1) .

6 Related literature, the contribution and future work
A few papers have pointed out restrictions or limitations to the implications of affil-
iation. Perry and Reny (1999) presented an example of a multi-unit auction where
the linkage principle fails and the revenue ranking is reversed, even under affiliation.
Thus, their criticism seems to be restricted to the generalization of the consequences

19In Table 6, we restrict our study to the cases where PSE exists for c = 0. We do not have a generalization
of the PSE existence result (Theorem 9) — and, thus, we do not have a procedure to test for PSE existence
— for c > 0. The results in Table 6 should be considered with this in mind.
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of affiliation to multi-unit auctions. In contrast, we considered single-unit auctions and
non-affiliated distributions.

Klemperer (2003) argues that, in real auctions, affiliation is not as important as
asymmetry and collusion. He illustrates his arguments with examples of the 3G auc-
tions conducted in Europe in 2000-2001.

Nevertheless, much more was written in accordance with the conclusions of affil-
iation. McMillan (1994, p.152) says that the auction theorists working as consultants
to the FCC in spectrum auctions, advocated the adoption of an open auction using the
linkage principle (Milgrom and Weber 1982a) as an argument: “Theory says, then,
that the government can increase its revenue by publicizing any available information
that affects the licensee’s assessed value”. The disadvantages of the open format in the
presence of risk aversion and collusion were judged “to be outweighed by the bidders’
ability to learn from other bids in the auction” (p. 152). Milgrom (1989, p. 13) empha-
sizes affiliation as the explanation of the predominance of the English auction over the
first price auction.

This paper presents evidence that affiliation is a restrictive assumption. After devel-
oping an approach to test the existence of symmetric increasing pure strategy equilib-
rium (PSE) for simple density functions, we are able to verify that many cases with PSE
do not satisfy affiliation. Also, the superiority of the English auction is not maintained
even for distributions satisfying strong requirements of positive dependence. Neverthe-
less, we show that the original conclusion of Milgrom and Weber (1982a) (that positive
dependence implies that English auctions gives higher revenue than first price auction)
is true for a much larger set of cases , but in a weaker sense — “on average”.

We would also like to highlight two conceptual contributions of this paper that may
go beyond the actual applications made here.

One of these is the restriction to a simple space of distributions. The proposed space
makes possible the complete characterization of the symmetric increasing pure strategy
equilibrium existence problem, because it requires only elementary (albeit lengthy)
calculations. The set of distributions considered is as general as necessary for economic
applications and seems suitable for modeling the asymmetric bidders case as well.

The second conceptual contribution is a way of looking at the problem of revenue
ranking. We propose two levels of the answer: an abstract, theoretical level and a
simulation-driven applied level.

The first level allows general theoretical conclusions that may be useful as general,
context-free guidance. Using the second level, applied economists can reach case-
specific conclusions which may be more accurate and valuable.

These ideas are applicable for more general setups than those pursued here. Not
only equilibrium existence but also the revenue ranking can be investigated in con-
texts of n asymmetric bidders, interdependent values, risk aversion and multi-units.
Although these generalizations seem feasible, they are by no means trivial.20

Nevertheless, the main complement to this work seems to pertain to the fields of

20The generalization from n = 2 to general n can be pursued, at least for the symmetric case, using
the expressions developed in the supplement of this paper. Only, instead of considering the expressions of
f (x|y) and F (x|y) as coming from a bivariate distribution, we could write the expressions as coming from
n variables but expressing them, as we did, by a matrix. Some expressions would change, but the main
results would remain valid. Thus, the most difficult generalization seems to be to the asymmetric case.
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econometrics and experimentation. This is to develop a method to characterize the de-
pendence (sets of distributions) typical in each specific situation. With such a method,
applied works could characterize what happens in specific auctions. For instance, it is
likely that the kind of dependence that appears in mineral rights auctions, or in elec-
tricity market auctions, is different from that observed in art auctions.

If such a method is developed and if the correspondent specific characterizations are
done — these are big if’s — we could find a way to explain why some kinds of markets
almost always use a specific auction format, as observed by Maskin and Riley (2000):
“rarely is any given kind of commodity sold through more than one sort of auction.
Thus, for example, art is nearly always auctioned off according to the English rules,
whereas job contracts are normally awarded through sealed bids” (p. 413). Maskin and
Riley (2000) comment that the Revenue Equivalence Theorem is not able to explain
such case-specific uniformity. The same argument also applies to affiliation, which
would predict the use of English auctions for every situation.

An auction theory model capable of general conclusions and context-specific cali-
brations, using simulations and theoretical analysis, could explain this. If not, at least
it would be more realistic and, thus, more useful.

Appendix

Proof of Theorem 1.
It is obvious that (III) ⇒ (II) ⇒ (I). The implication (IV ) ⇒ (III) is Theorem
4.3. of Esary, Proschan and Walkup (1967). The implication (V ) ⇒ (IV ) is proved by
Tong (1980), chap. 5, p. 80. Thus, we have only to prove that (V I) ⇒ (V ), since the
implication (V II) ⇒ (V I) is Lemma 1 of Milgrom and Weber (1982a). Assume that
H (y|x) ≡ f(y|x)

F (y|x) is non-decreasing in x for all y. Then, H (y|x) = ∂y [lnF (y|x)]
and we have

1− ln [F (y|x)] =
∫ ∞

y

H (s|x) ds >
∫ ∞

y

H (s|x′) ds = 1− ln [F (y|x′)] ,

if x > x′. Then, ln [F (y|x)] 6 ln [F (y|x′)], which implies that F (y|x) is non-
increasing in x for all y, as required by property V .

The counterexamples for each passage are given by Tong (1980), chap. 5, except
those involving property (VI): (V ) ; (V I), (V I) ; (V II). For the first counter
example, consider the following symmetric and continuous p.d.f. defined on [0, 1]2:

f (x, y) =
d

1 + 4 (y − x)2

where d = [arctan (2)− ln (5) /4]−1 is the suitable constant for f to be a p.d.f. We
have the marginal given by
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f (y) =
k

2
[arctan 2 (1− y) + arctan 2 (y)]

so that we have, for (x, y) ∈ [0, 1]2:

f (x|y) = 2
[
1 + 4 (y − x)2

]−1

[arctan 2 (1− y) + arctan 2 (y)]−1
,

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]
arctan 2 (1− y) + arctan 2 (y)

and

F (x|y)
f (x|y)

= 2
[
1 + 4 (y − x)2

]
[arctan (2x− 2y) + arctan (2y)] .

Observe that for y′ = 0.91> y = 0.9 and x = 0.1,

F (x|y′)
f (x|y′)

= 0.366863 > 0.366686 =
F (x|y)
f (x|y)

,

which violates property (VI). On the other hand,

∂y [F (x|y)] =
2

1+4y2 − 2
1+4(x−y)2

arctan (2− 2y) + arctan (2y)

−
[arctan (2x− 2y) + arctan (2y)]

[
2

1+4y2 − 2
1+4(1−y)2

]
[arctan (2− 2y) + arctan (2y)]2

In the considered range, the above expression is non-positive, so that property (V) is
satisfied. Then, (V ) ; (V I).

Now, fix an ε < 1/2 and consider the symmetric density function over [0, 1]2 :

f (x, y) =
{

k1, if x + y 6 2− ε
k2, otherwise

where k1 > 1 > k2 = 2
[
1− k1

(
1− ε2/2

)]
/ε2 > 0 and ε ∈ (0, 1/2) . For instance,

we could choose ε = 1/3, k1 = 19/18 and k2 = 1/18. The conditional density
function is given by

f (y|x) =


1, if x 6 1− ε

k1
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x

k2
k2(x+ε−1)+k1(2−ε−x) , otherwise

and the conditional c.d.f. is given by:

F (y|x) =


1, if x 6 1− ε

k1y
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x
k2(y+x+ε−2)+k1(2−ε−x)

k2(x+ε−1)+k1(2−ε−x) , otherwise
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and

F (y|x)
f (y|x)

=

 1, if x 6 1− ε
y, if x > 1− ε and if y 6 2− ε− x
y + x + ε− 2 + k1/k2 (2− ε− x) , otherwise

Since 1 − k1/k2 < 0, the above expression is non-increasing in x for all y, so that
property (VI) is satisfied. On the other hand, it is obvious that property (VII) does not
hold:

f (0.5, 0.5) f
(
1− ε

2
, 1− ε

2

)
= k2k1 < k2

1 = f
(
0.5, 1− ε

2

)
f

(
0.5, 1− ε

2

)
.

This shows that (V I) ; (V II).�

Proof of Theorem 2
First, we prove that C\A is open. If f ∈ C\A, then f (x) f (x′) > f (x ∧ x′) f (x ∨ x′),
for some x, x′ ∈ [0, 1]n. Fix such x and x′ and define K = f (x)+f (x′)+f (x ∧ x′)+
f (x ∨ x′) > 0. Choose ε > 0 such that 2εK < f (x) f (x′) − f (x ∧ x′) f (x ∨ x′)
and let Bε (f) be the open ball with radius ε and centre in f . Thus, if g ∈ Bε (f),
‖f − g‖ < ε, which implies g (x) > f (x) − ε, g (x′) > f (x′) − ε, g (x ∧ x′) <
f (x ∧ x′) + ε, g (x ∨ x′) < f (x ∨ x′) +ε, so that

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)
> [f (x)− ε] [f (x′)− ε]− [f (x ∧ x′) + ε] [f (x ∨ x′) + ε]
= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− ε [f (x) + f (x′) + f (x ∧ x′) + f (x ∨ x′)]
= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− εK

> εK > 0,

which implies that Bε (f) ⊂ C\A, as we wanted to show.
Now, let us show that C\A is dense, that is, given f ∈ C and ε > 0, there exists

g ∈ Bε (f) ∩ C\A. Since f ∈ C, it is uniformly continuous (because [0, 1]n is
compact), that is, given η > 0, there exists δ > 0 such that ‖x− x′‖Rn < 2δ implies
|f (x)− f (x′)| < η. Take η = ε/4 and the corresponding δ.

Choose a ∈ (4δ, 1− 4δ) and define x (x′) by specifying that their first
⌊

n
2

⌋
co-

ordinates are equal to a − δ (a + δ) and the last ones to be equal to a + δ (a− δ).
Thus, x ∧ x′ = (a− δ, ..., a− δ) and x ∨ x′ = (a + δ, ..., a + δ). Let x0 denote the
vector (a, ..., a). For y = x, x′, x ∧ x′ or x ∨ x′, we have: |f (y)− f (x0)| < η. Let
ξ : (−1, 1)n → R be a smooth function that vanishes outside

(
− δ

2 , δ
2

)n
and equals 1

in
(
− δ

4 , δ
4

)n
. Define the function g by

g (y) = f (y) + 2ηξ (y − x) + 2ηξ (y − x′)
−2ηξ (y − x ∧ x′)− 2ηξ (y − x ∨ x′) .
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Observe that ‖g − f‖ = 2η = ε/2, that is, g ∈ Bε (f). In fact, g ∈ Bε (f) ∩ C\A,
because

g (x) = f (x) + 2η > f (x0) + η;
g (x′) = f (x) + 2η > f (x0) + η;

g (x ∧ x′) = f (x ∧ x′)− 2η < f (x0)− η;
g (x ∨ x′) = f (x ∨ x′)− 2η < f (x0)− η,

which implies

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)

> [f (x0) + η]2 − [f (x0)− η]2

= 4η > 0.�

Proof of Theorem 6
The equilibrium existence follows from Milgrom and Weber (1982a)’s proof. For the
counterexample, consider the p.d.f. defined in the proof of Theorem 1:

f (x, y) =
d

1 + 4 (y − x)2
,

where d = [arctan (2)− ln (5) /4]−1. In the proof of Theorem 1, we established that
this p.d.f. satisfies Property V but not Property VI and that:

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]
arctan 2 (1− y) + arctan 2 (y)

.

From Theorem 7, it is sufficient to prove that

b (y) = y −
∫ y

0

exp
[
−1

2

∫ y

z

1
arctan 2w

dw

]
dz

cannot be an equilibrium, that is, to verify the existence of x and y such that

(y − b (y))F (y|y) < (y − b (x))F (x|y) .

This simplifies to the condition:∫ y

0
exp

[
− 1

2

∫ y

z
1

arctan 2wdw
]
dz

y − x +
∫ x

0
exp

[
− 1

2

∫ x

z
1

arctan 2wdw
]
dz

<
arctan 2 (x− y)

arctan 2y
+ 1.

Let y = 0.5 and x = 1. Mathematica gives
∫ y

0
exp

[
− 1

2

∫ y

z
1

arctan 2wdw
]
dz =

0.391128 and
∫ x

0
exp

[
− 1

2

∫ x

z
1

arctan 2wdw
]
dz = 0.745072. Thus, we have:

0.391128
−0.5 + 0.745072

= 1.59597 < 2 =
arctan 2 (x− y)

arctan 2y
+ 1,

which concludes the verification for the counterexample of PSE existence.
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Proof of Theorem 12
The dominant strategy for each bidder in the second price auction is to bid his value:
b2 (t) = t. Then, the expected payment by a bidder in the second price auction, P 2, is
given by:

P 2 =
∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=
∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx +
∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first price auctions. Thus, the
first integral can be substituted by

∫
[t,t]

∫
[t,x]

b
′
(y) F (y|y)

f(y|y) f (y|x) dy ·f (x) dx, from the

first order condition: b
′
(y) = [y − b (y)] f(y|y)

F (y|y) . The last integral can be integrated by
parts, to:

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=
∫
[t,t]

[
b (x) F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=
∫
[t,t]

b (x) F (x|x) · f (x) dx−
∫
[t,t]

∫
[t,x]

b
′
(y) F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first price
auction, P 1. Thus, we have

D = P 2 − P 1

=
∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)
f (y|y)

f (y|x) dy · f (x) dx

−
∫
[t,t]

∫
[t,x]

b
′
(y) F (y|x) dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)
f (y|y)

f (y|x)− F (y|x)
]

dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

Remember that b (t) =
∫
[t,t]

αdL (α|t) = t −
∫
[t,t]

L (α|t) dα, where L (α|t) =

exp
[
−

∫ t

α
f(s|s)
F (s|s)ds

]
. So, we have
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b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =
∫
[t,t]

∫
[t,x]

f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx

This is the desired expression. For the counterexample, consider the matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 1.6938 0.3812 0.4140
0.3812 2.1318 0.5817
0.4140 0.5817 2.4206

 ,

and define the p.d.f. as follows:

f (x, y) = amp if (x, y) ∈
(

m− 1
k

,
m

k

]
×

(
p− 1

k
,
p

k

]
,

for m, p ∈ {1, 2, 3} and k = 3. This distribution satisfies property V (but not property
VI) and has a pure strategy equilibrium. The expected revenue from a second price
auction is 0.4295, while the expected revenue of a first price auction is 0.4608, which
is nearly 7% above.

�
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