Using a Mahalanobis-Like Distance to Train
Radial Basis Neural Networks

J.M. Valls, R. Aler, and O. Fernandez

Carlos III University - Computer Science Department,
Avenida de la Universidad, 30 - 28911 Leganés (Madrid), Spain
jvalls@inf.uc3m.es

Abstract. Radial Basis Neural Networks (RBNN) can approximate any
regular function and have a faster training phase than other similar neu-
ral networks. However, the activation of each neuron depends on the
euclidean distance between a pattern and the neuron center. Therefore,
the activation function is symmetrical and all attributes are considered
equally relevant. This could be solved by altering the metric used in
the activation function (i.e. using non-symmetrical metrics). The Maha-
lanobis distance is such a metric, that takes into account the variability
of the attributes and their correlations. However, this distance is com-
puted directly from the variance-covariance matrix and does not consider
the accuracy of the learning algorithm. In this paper, we propose to use
a generalized euclidean metric, following the Mahalanobis structure, but
evolved by a Genetic Algorithm (GA). This GA searches for the dis-
tance matrix that minimizes the error produced by a fixed RBNN. Our
approach has been tested on two domains and positive results have been
observed in both cases.

1 Introduction

Radial Basis Neural Networks (RBNN) [I1[2] are originated from the use of radial
basis functions, in the solution of the real multivariate interpolation problem
[B.4]. As the Multilayer perceptron (MLP) they can approximate any regular
function [5]. Due to its local behavior and to the linear nature of its output
layer, their training is faster than MLP training [5] and this fact makes them
useful for a wide variety of applications. The most used radial basis functions
are Gaussian functions, defined by equation [

llem —xc |12

d)m(mk) =€ 205 (1)
Where ¢,,(x) represents the activation function for neuron m when an input
pattern xj is presented. The vector ¢, is the center of the neuron m, and o, is

its deviation or width.
One of the problems of RBNN is the symmetrical nature of their activation
function, making that the activation of a neuron when a pattern is presented,
only depends on the euclidean distance from this pattern to the neuron center

-
1

Cita bibliográfica
Published in: Computational Intelligence and Bioinspired Systems, Springer Junio 2005, p. 257-263 (Lecture Notes in Computer Science; vol. 3512)

regardless of the importance of each attribute. This could be solved by altering
the metric used in the activation function.

The Mahalanobis distance is a metric used in Statistics in order to normalize
different attributes and take into account the correlation among them. This
distance is computed according to expression

dij = [(xi = x;)"S 7 (xi — xp)]"/? = [(x — x) "M M(xi — x))]2 (2)

Where d;; is the Mahalanobis distance between vectors x; and x;, S is the
variance-covariance matrix of all vectors in the data set and M is the so-called
Mahalanobis matrix[6L[7,[8]. This distance can be used to improve prediction
accuracy in those learning systems that use distances [9]. However, the Maha-
lanobis distance is independent of the learning system used and of the error
produced on the training data, because it is computed from the points in the
data set only (more specifically, it is computed from the variance-covariance
matrix).

In this paper, we propose to use a Mahalanobis-like distance in the activa-
tion function of the RBNN so that different attributes are treated differently
according to their relevance. But instead of computing the distance using the
variance-covariance matrix S, a matrix will be built in order to minimize the
error of the network. This will be achieved by a genetic algorithm [10] whose in-
dividuals are generalized euclidean distance matrices and whose fitness function
depends on the prediction accuracy attained by the network using the matrix.

2 Description of the Method

In this paper we use a standard Genetic Algorithm (GA) [I0] to evolve dis-
tance matrices. A genetic algorithm is a kind of heuristic search. The algorithm
maintains a set of candidate solutions (or population of individuals) and ap-
plies the search operators on them (also called genetic operators: mutation and
crossover). The search is guided by a heuristic (or fitness) function. We have
used a generational Genetic Algorithm with elitism and tournament selection.
Matrices in the individuals are coded by representing each of their components
in binary format. The fitness function is computed by training a RBNN on a
set of training data and determining the training error. Thus, the GA tries to
find the distance matrix that minimizes the RBNN training error. The number
of hidden neurons is fixed from the start.

In order to determine the appropriate M matrix by using GA, individuals
must be properly encoded. We have chosen matrix M to be symmetrical, to
ensure that MT M is invertible, although in the future this restriction could be
removed in favor of less restrictive conditions. In that case, only the diagonal
and the upper half of the matrix coefficients must be encoded to a binary rep-
resentation in order to build the chromosome of the individual. Each matrix
element is a real number that must be encoded to a binary representation with
a fixed number of bits, following a fixed-point representation with a single bit

2

for the sign. Hence, the chromosome is a string of bits formed by the binary
representation of each matrix element belonging to the diagonal or the upper
half of the matrix. Le. if the matrix is

mi; mMyo ... Mg

M921 Moo ... Moy
M=

md1 Mgq2 ... Mqq
The corresponding string chromosome will be:
{B(m11)7 B(mlg), ceay B(mld), B(TTLQQ), B<m23), ey B(mdd)}

where B(m;;) is the binary representation of m;.

Each individual represents a matrix M that will determine the distance func-
tion to be used for the neurons activation (see Eq. 2]). The goal of this work
consists of improving the accuracy or the RBNN; hence, if the network error
is small it means that the corresponding distance function is good; thus, the
individual representing the M matrix must have a big fitness value. The fitness
function chosen in this work is given in equation

fitness = —loga E (3)

where E is the mean squared error committed by the network on the training
data. It has been chosen so that fitness increases when error decreases. This
function also manages to amplify differences between individuals whose error is
close to zero. This is important to increase evolutionary pressure in the latest
stages of GA-evolution, when all individuals are very good.

In the next the sequential structure of the proposed method is summarized.

1. Create the initial population. A set of random chromosomes is generated. These
chromosomes represent different distance functions to be used in the Radial Basis
Functions of the networks.

2. Evaluate the fitness of each element of the current population. In order to perform

this point, RBNN with a fixed number of hidden neurons are trained using the

distance function determined by each individual of the population. Training errors
of these networks are used to calculate the fitness of each individual.

Apply genetic operators to the population in order to create the next generation.

If the number of generations is lower than the maximum, go to step

5. Return the highest fitness matrix

-~

3 Empirical Evaluation

The purpose of this section is to validate empirically our approach. Two sets
of experiments will be carried out. First, a synthetic domain, where the solu-
tion is known, will be posed to the system. Next, the well-known Mackey-Glass
regression problem will be tested.

3

Table 1. Parameters of the Genetic Algorithm for the gaussian domain

Generations 30
Tournament size 2
Population size 20
Elitism 1

Crossover probability 0.6
Mutation probability 0.03

3.1 Synthetic Domain

This domain follows a bi-variate gaussian shape (u = (0.5,0.5), 02 = 0.002).
However, instead of the euclidean distance, a generalized euclidean distance with
matrix M will be used instead (see Eq.[2 and matrix). In euclidean space, the
result is a rotated and stretched gaussian (i.e. non-symmetrical). In short, the
goal is to approximate the function given by Eq. B where M is given by Eq. [l

0.2 0.75
M= (0‘75 1.0) “)
e_(x70.5)§*1\g.7(;(1)\;1(x70.5) (5>

Obviously, a RBNN with a single neuron centered on (0.5, 0.5) will not be able
to correctly learn this function, because the activation function uses a euclidean
distance which is symmetric. But our GA should be able to learn the matrix M
used to generate the domain. In order to get a proof-of-concept using this simple
problem, we trained our system using a single neuron centered on (0.5, 0.5) with
a 02 = 0.008 (four times the o2 used to generate the domain). The GA was run
using the parameters shown in Table 1.

In addition, 3 bits were used for the integer part, and 5 bits for the fractionary
part. Only symmetric matrices were allowed. After 30 generations, the following
matrix was obtained (see Eq. [@l), which approached very well the function (it
achieved a 5.8672107° error).

(6)

M= 0.46875 1.50000
~ \1.50000 2.00000

Matrix [l does not match matrix M (the one used to generate the domain),
although it can be seen that their components approximately double the ones in
the domain matrix. In any case, it is the activation functions that must be the
same, in order for the 1 neuron RBNN to approximate perfectly the function.
That is, the following equality has to be satisfied (see Eq. [):

(1/0)[M M) = (1/03)[Mg Ms] (7)

where o2 and M refer to the parameters used to generate the domain, o3 is the
variance of the neuron, and Ms is the matrix obtained by the genetic algorithm.
This equality is almost satisfied, as Eq. § shows.

4

301.25 450 N 283.2 421.8 (8)

450 781.25 421.8 757.8
It is interesting to remark that even though the o2 of the neuron (0.008) was
not the same than the one used to generate the domain (02 = 0.002), the GA

managed to fit the domain function by appropriately scalating the components
of the evolved matrix.

3.2 The Mackey-Glass Domain

The Mackey-Glass time series is widely regarded as a benchmark for comparing
the generalization ability of RBNNJ[ITI,[12],[13]. The task for the RBNN is to
predict the value of the time series at point z[t + 50] from the earlier points
(x[t], z[t — 6], z[t — 12], [t — 18]). It is a chaotic time series created by Eq.

dx(t)
dt

x(t—71)
1+z(t—71)10

= —bzx(t)+a (9)

1474 patterns were generated for the Mackey-glass series, and values were
normalized in (0,1). First, we ran some preliminary experiments in order to
determine the number of neurons required. The minimum error was obtained
with about 25 neurons. Also, these preliminary tests showed that 400 learning
cycles and a 0.002 learning rate were reasonable values in this domain.

We tested two configurations of the system: allowing only diagonal matrices,
and allowing general symmetrical matrices. The first case is equivalent to have
a generalized euclidean distance, where every attribute is weighted by a factor.
The most relevant attributes will be weighted by a larger number (see Eq. [I0).
The second case (the symmetrical matrix) can also consider correlations between
attributes. Table 2 summarizes the parameters used. Two bits were used for the
integer part, and three for the fractionary part.

i=N

d(A,B) = | (Y Ci=(A; — B:)?) (10)

=0

Table 3 displays the results comparing performance of a RBNN using an
euclidean distance and evolved distances. 5-fold crossvalidation results are shown
for both a diagonal matrix and a general symmetric matrix. Improvements of

Table 2. Parameters of the Genetic Algorithm for the Mackey-Glass problem

Generations 50
Tournament size 2
Population size 15
Elitism 1

Crossover probability 0.7
Mutation probability 0.01

Table 3. Comparison of results between euclidean and evolved distances (5-fold cross-

validation)
Distance used Error Improvement (%)
RBNN euclidean 0.013981
RBNN GA diagonal 0.010337 26%
RBNN euclidean 0.015789

RBNN GA symmetrical 0.014835 6%

26% and 6% (respectively) can be observed. In this domain, using a diagonal
matrix is better than using a symmetrical matrix.

In order to get a better understanding of results in this domain, we observed
the values of the components of the matrices evolved by the GA. As we used
a b-fold crossvalidation procedure, 5 matrices were evolved. It can be observed
that none of the components outside the diagonal are significantly different than
0 (taking into account the 5 folds, the median for these components is very
close to 0). This means that for this domain, a symmetrical matrix does not
give any advantage and that only a diagonal matrix is required. It can also be
observed in both the diagonal and symmetrical matrices, that attributes 1 and
4 get larger components in the matrix than attributes 2 and 4. This means that
in this domain, variables 1 and 4 are more relevant for the regression problem.

4 Conclusions

One of the problems of RBNN is the symmetrical nature of their activation
function: the activation of a neuron only depends on the euclidean distance
from the input pattern to the neuron center, without taking into account the
importance of different attributes. This problem can be solved by altering the
metric used in the activation function. The learning method presented in this
work uses a Mahalanobis-like distance function: instead of computing the Maha-
lanobis matrix from the variance-covariance matrix of all vectors in the data set,
it is determined in such a way that minimizes the error of the network. This is
achieved by a genetic algorithm whose individuals are generalized distance ma-
trices and whose fitness function depends on the prediction accuracy attained
by the network.

Our GA approach has been tested on two domains: a simple synthetic one
and the Mackey-Glass time series. It has been shown that using both diagonal
and symmetrical evolved matrices improves prediction accuracy over a purely
euclidean distance.

In the future, we would like to test our approach using problems with a larger
dimensionality, to study the effect of evolving large matrices. We would also like
to explore other evolutionary approaches, like evolution strategies, which are
perhaps more suited to evolve structures with real numbers. Finally, it would
be interesting to understand the characteristics of domains where a symmetrical
matrix is better than a purely diagonal one.

6

References

1.

2.

10.

11.

12.

13.

J.E. Moody and C. Darken. Fast learning in networks of locally tuned processing
units. Neural Computation, 1:281-294, 1989.

Joydeep Ghosh and Arindam Nag. An Overview of Radial Basis Function Net-
works. R.J. Howlett and L.C. Jain (Eds). Physica Verlag, 2000.

D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adapta-
tive networks. Complex Systems, 2:321-355, 1988.

. M. Powell. The theory of radial basis function approximation in 1990. Advances

in Numerical Analysis, 3:105-210, 1992.

J. Park and I. W. Sandberg. Universal approximation and radial-basis-function
networks. Neural Computation, 5:305—-316, 1993.

C.G.Atkenson, A.W.Moore, and S.Schaal. Locally weighted learning. Artificial
Intelligence Review, 11:11-73, 1997.

J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley,
1974.

S. Weisberg. Aplied Linear Regression. New York: John Wiley and Sons, 1985.

F. Babiloni, L. Bianchi, F. Semeraro, J. del R-Millan, J. Mourino, A. Cattini,
S. Salinari, M.G. Marciani, and F. Cincotti. Mahalanobis distance-based classifiers
are able to recognize eeg patterns by using few eeg electrodes. In Engineering in
Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International
Conference of the IEEE, volume 1, pages 651-654, 2001.

John H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

A. Leonardis and H. Bischof. An efficient mdl-based construction of rbf networks.
Neural Networks, 11:963-973, 1998.

M. J. L. Orr. Introduction to radial basis neural networks. Technical Report.
Centre for Cognitive Science, University of Edinburgh, 1996.

L. Yingwei, N. Sundararajan, and P. Saratchandran. A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation, 9:461-478, 1997.

