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Abstract

Image classification is a burgeoning field of study. Despite the advances achieved

in this camp, there is no general agreement about what is the most effective methods for

the classification of digital images. This dissertation contributes to this line of research

by developing different statistical methods aim to classifying digital images. In Chap-

ter 1 we introduce basic concepts of image classification and review some results and

methodologies proposed previously in the literature. In Chapter 2 we propose a method

to classify images by their content. We are able to distinguish between landscape from

non-landscape pictures by using three features obtained directly from images. We ob-

tain better classification rates than those obtained by other authors dealing with similar

kind of scene classification. In Chapter 3 we address the handwritten digit recogni-

tion. We suggest a set of intuitive features to perform the classification. Since the

features are calculated with the binary image, we propose a novel technique to obtain

the optimum threshold to binarize images, based on statistical concepts associated to

the written trace of the digit. The classification is conducted by applying multivariate

and probabilistic approaches, concluding that both methods provide similar results in

terms of test-error rate (3.5%). In Chapter 4 we propose the application of Functional

Data Analysis to analyze and classify images. While a limited number of authors have

suggested the application of FDA for image classification [Florindo et al. (2010)], we

suggest that this branch of statistics has represents a promising approach and offers

several avenues for future research. We close the dissertation in Chapter 5 with a set of

concluding remarks. Overall, the methods suggested in this dissertation are simple to

apply, intuitive in their interpretation and their performance is comparable with other

complex methods applied to the same problem. Moreover, the features suggested re-

quire less processing time than other methods (as support vector machine classifiers)

and therefore require less computational capacity.



V

Resumen

La clasificación de imágenes es un campo de estudio de rápido crecimiento. A

pesar de los avances logrados en esta área, no existe un acuerdo generalizado acerca

de cuál es el método más eficaz para la clasificación de imágenes digitales. Esta tesis

contribuye a esta línea de investigación mediante el desarrollo de diferentes métodos

estadísticos que tienen como objetivo la clasificación de imágenes digitales. En el

capítulo 1 se introduce los conceptos básicos de clasificación y se revisan algunos re-

sultados de las metodologías propuestas previamente en la literatura. En el capítulo 2

se propone un método para clasificar las imágenes por su contenido. Somos capaz de

distinguir entre una imagen de un paisaje de una que no lo es a partir del uso de tres

variables obtenidas directamente de las imágenes. Obtenemos mejores tasas de clasifi-

cación que las alcanzadas por otros autores que han trabajado clasificación de escenas

similares. En el capítulo 3 abordamos el reconocimiento de dígitos escritos a mano.

Sugerimos una serie de variables intuitivas para llevar a cabo la clasificación. Dado

que las variables se calculan con imágenes binarias, se propone una novedosa técnica

para obtener el umbral óptimo para imágenes binarizadas, basado en los conceptos

estadísticos asociados al trazo de escritura del dígito. La clasificación se lleva a cabo

mediante la aplicación de métodos multivariantes y probabilísticos, concluyendo que

ambos métodos proporcionan resultados similares en términos de tasa de error (3,5 %).

En el capítulo 4 se propone la aplicación del Análisis Funcional de Datos para estudiar

y clasificar imágenes digitales. Mientras que un número limitado de autores han sug-

erido la aplicación de ADF para la clasificación de la imagen [Florindo et al. (2010)],

creemos que este rama de la estadística representa un enfoque prometedor y ofrece

diversas alternativas para la investigación futura. Cerramos la tesis en el capítulo 5

con un conjunto de observaciones finales. En general, los métodos propuestos en esta

tesis son fáciles de aplicar, intuitivos en su interpretación y su rendimiento es compa-

rable con otros métodos complejos aplicados al mismo problema. Por otra parte, las

características sugeridas requieren menos tiempo de procesamiento que otros métodos

(como los clasificadores de técnicas de vector soporte).
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CHAPTER 1

Introduction

In our daily lives, we are able to recognize and distinguish an innumerable amount

of information by simply observing our environment. For instance, we known whether

it is winter, spring, summer or fall by only observing the leaves of trees, or we can guess

the origin of a letter by looking at its zipcode. For years now, researchers have tried to

equip devices with the same ability by developing different algorithms that process the

quantitative information of images. From the simple internet search of images to the

diagnosis of lethal diseases, digital image analysis is gaining importance as a valuable

tool to recognize, order, and classify visual content. Despite the achievements obtained

thus far, this kind of tasks is still a challenge since there is no agreement about which

methods are the most appropriate. This thesis attempts to shed light on this issue as

it deals with the statistical classification of images. We propose different multivariate

methods to classify images using statistical measures to describe their content, such as

to capture the variability in colors or the shape of objects they contain.

The treatment of digital images is not a new phenomenon. One of the first appli-

cations of digital images techniques was in the 1920s by the Bartlane cable picture

transmission system. This system was named after Harry G. Bartholomew and May-

1



2 CHAPTER 1. INTRODUCTION

nard D. McFarlane and was developed in Great Britain. The technique allowed that

digitized newspaper pictures that were sent by submarine cable between London and

New York. Pictures were coded for cable transmission and then reconstructed at the re-

ceiving end on a telegraph printer. The early Bartlane systems were capable of coding

images in five distinct gray levels. This was increased to fifteen levels in 1929. Intro-

duction of the Bartlane cable picture transmission system in the early 1920’s reduced

the time required to transport a picture across the Atlantic from a week to less than

three hours. Although it was an advance at the time, the resulting pictures looked like

small, embroidered black and white pieces of paper. It is not until the 1950s and 1960s

when improvements in computer technology led to a surge of work in digital image

processing. During the 1970s the so-called mathematical morphology theory [Serra

(1984)] arose for the analysis of geometrical structures based on set theory, lattice the-

ory, topology, and random functions. This methodology is most commonly applied to

digital images analysis in geology and biology fields [see Castleman (1995), Duda and

Har (1973), Duda et al. (2000), Pratt (1991) and Serra (1984)]. Later, digital image

processing begins to be used in medical applications by the invention of tomography.

The mayor contribution in the 1980s is the development of algorithms to detect char-

acteristics like edge, lines [Hough transform, Duda and Hart (1972)] and textures in

images. Besides, the introduction of environment information to reconstruct scenes ac-

quired importance in the classification and segmentation of images [see Besag (1986),

Cross and Jain (1983) and German and Geman (1984)]. With the fast computers and

signal processors available in the 2000s, the analysis of digital images has become the

most common form of image processing and, generally, is used because it is not only

the most versatile method, but also the cheapest.

Today, the applications of digital image analysis are continuously expanding through

all areas of science and industry, and it is used to solve different kind of problems. For

example, in medicine it is used to detect diseases as cancer, through a magnetic reso-

nance imaging scan. In biometry, it is used to the recognition of faces, iris, handwritten

and fingerprints, sometimes for security reasons. The increasing number of applica-

tions that may use digital images creates the necessity to classify them by an easy and
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fast way. Besides, there are applications that can benefit from image classification.

For instance, the commonly used internet image search engine has poorly performance

in finding images due to the use of filenames instead of some content-based classifi-

cation method 1. Therefore, describing images by their content (rather than names)

constitutes an useful way to organize and group them to facilitate searches.

Image classification methods can be roughly divided into two approaches. On the

one hand, there are learning-based classifiers that require an intensive learning phase of

the classifier parameters. Nowadays, these techniques have attracted growing attention

for their wide applicability. Examples of these classifiers are neural networks [Shah

and Gandhi (2004), Ciresan et al. (2010)], radial basis functions [Yuchun (1991)], sup-

port vector machine [Varma (2007), Zhang et al. (2007)], boosting [Liu et al. (2004)],

learning vector quantization [Thulasiraman (2005)] and decision trees [specially ran-

dom forests, Bosch et al. (2007)]. On the other hand, there are classifiers that do

not require the learning process, such as the kernel estimation classifiers (specially k-

nearest neighbor) and the linear discriminant classifiers. These methods also report

good performance in classification.

Although there is a large number of classifiers available, there is no agreement

regarding which method is most appropriate. The reason is that a method works bet-

ter or worse depending on the database used. Despite the contributions and advances

produced thus far, the field still struggles to find fast and simple methods to perform

the classification easily. This dissertation attempts to contribute to the classification

of digital images by proposing different statistical methods that, compared to other

approaches, are easier to calculate, more intuitive and more generalizable to other

databases.

1Google has a recent Beta-version application to search images with similar content. However, this

search is still restricted to a limited set of images.
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1.1. Some basic concepts

In statistical classification of images a picture is associated with a group of vari-

ables or measures extracted from it and used to perform the analysis. The measures

used for classification in this thesis are called indistinctly features or variables. In the

general case, t features xi, for i = . . . , t, are used, forming the feature vector given by

x = (x1,x2, . . . ,xt).

Each feature vector identifies a single image. In this work, features and feature vectors

are treated as random variables and random vectors, respectively. Then, the goal in

classification is to find the feature vector which best differentiate two or more cate-

gories. The effectiveness of the feature vector is determined by how well images from

different classes can be separated, and it is measured by the error rate. There are dif-

ferent definitions of error rate commonly used in the literature. In this thesis we define

the error rate as a percentage of misclassified images 2.

A digital image can be observed in different levels: gray-level, color-level, and

binary-level. The term gray level image is related with a two-dimensional function

f (x,y), where x and y denote spatial coordinates and the value of the function f at any

point (x,y) represents the gray level of the image at that point. The x axis is usually

the horizontal axis, while the y axis is usually the vertical axis of the image. Then,

the function f (x,y) is discretized to be represented as a matrix, whose row and column

indices identify a point in the image. The corresponding matrix element values identify

the gray level at each point and are called image elements, picture elements or simply

pixels.

An image in color-level is represented in different models of color. We use one of

the most applied and developed by computer programs, that is, the RGB model. The

system RGB is based in human perception of colors and its name comes from the pri-

mary colors produced by light, Red, Green and Blue. This mixture is called additive
2In learning-based works the term error rate is used as synonyms of rejection error rate. That is, an

image is rejected to be classified in a class whenever the classification cannot be achieved with enough

confidence [Bottou and Vapnik (1992)].
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synthesis, and any combination of intensity of the three colors produces the majority

of colors in the visible spectrum. The main purpose of this model is the representa-

tion and display of images in electronic systems such as computers and televisions.

The representation of a color-level digital image is given by a 3-dimensional matrix

(R,G,B), constructed through the three primary colors. The tone of a particular pixel

of a picture is obtained by the combination of the information (red, green and blue

values) contained in each dimension (see Figure 1.1). Typically, pixel values vary

between (0,255). However, we change this scale to the range (0,1) for simplicity.

The color of a specific pixel in the position (x,y) will be (R(x,y),G(x,y),B(x,y)) .

For instance, a pixel with values (R(x,y),G(x,y),B(x,y)) = (0,0,0) corresponds with

a white pixel. In contrast, a pixel with values (1,1,1) corresponds with a black pixel.

Figure 1.1: RGB matrices

An image can be transformed from RGB level to gray-level, that is, from a 3-

dimensional matrix in RGB colors to a 2-dimensional matrix in gray level. This con-

version is established by the international norm for digital TV (CCIR-601). Each gray

pixel is obtained from RGB pixels through the following linear combination

graypixel(x,y) = 0.299×R(x,y)+0.587×G(x,y)+0.114×B(x,y), (1.1.1)

where R(x,y), G(x,y) and B(x,y) are the value of the pixel (x,y) in the red, green and

blue matrices respectively. The gray conversion arose during the 1930s as a necessity
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to combine the white and black television with the model of color used. Then, the

concept of lightness emerges to carry the information of bright and light of images,

that is the white and black color (or lightness component).

Finally, a binary image is a digital image that has only two possible values for each

pixel. Generally, the two colors used for a binary image are black and white, but any

two colors can be used. The color used for the object(s) in the image is the foreground

color, while the rest of the image is the background color. A binary white and black

image is the result of a thresholding operation applied to the gray level image. That

is, given a threshold the binary image has pixels with one value if they have the gray

intensity greater than the threshold, and pixels with value equal to zero if they are

lower than the established threshold in gray level image. Examples of the three levels

are given in Figure 1.2.

(a) Gray-level (b) Color-level (RGB) (c) Binary

Figure 1.2: Different color-level of images

1.2. Outline of the Thesis

This thesis addresses the classification of images by statistical techniques, that is,

given a set of images, our goal is to classify them into categories. This task is subject

of many recent works [Ayers and Boutell (2007), Bosch et al. (2007), Ciresan et al.

(2010), Gómez (2009), Liu et al. (2007), Nandgaonkar et al. (2010), Patino-Escarcina
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and Ferreira Costa (2008) and Qin and Yung (2010)], and tackled by different ap-

proaches. We will use statistical techniques, based on a combination of features which

show a good performance in classifying images.

There are at least two main branches that have images as objects of analysis: com-

puter vision and pattern recognition. There is a significant overlap in the range of

techniques and applications in both approaches. For instance, they share the problem

to determine whether or not the image data contains some specific object, feature or

activity. However, in computer vision the principal goal is to build a system that can

understand images as well as a human, while pattern recognition aims to classify data

(patterns) based on either a priori knowledge or on statistical information extracted

from the patterns. Chapter 2 and 4 of this thesis are closely related with computer

vision applications, while Chapter 3 is more connected with applications in pattern

recognition.

The thesis is structured as follows. Chapter 2 is devoted to the classification of

scene pictures. We describe four features to represent the variability and dependency

structure of pixels in the image, that show discriminative power to classify images

of landscape and non-landscape scenes. The analysis is done over two databases in

color-level. Additionally, we obtain results for the images converted to gray-level.

The classification is conducted by supervised methods, i.e., Linear Discriminant and

K-Nearest Neighbor classifiers. We obtain results comparable with complex methods

applied for the same issue. In Chapter 3 we study the classification of scanned hand-

written digit using three different databases. Although the datasets contain grayscale

digits, they were transformed to binary level since the features used require binary im-

ages. We carry out the classification comparing the results of the K-nearest neighbors

algorithm with a probabilistic approach based on the application of the Bayes‘s rule.

We obtain similar conclusions in both cases. Moreover, in this chapter we propose a

novel method to find the optimum threshold to binarize the digit. In Chapter 4, we

initiate the uses of Functional Data Analysis to classify images. We perform a prelim-

inary study over the scene databases (landscape & non-landscape). Finally, we close

this dissertation with a set of conclusion included in Chapter 5.
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CHAPTER 2

Landscape image classification

Computer vision is a discipline that extract information from images by automatic

techniques. An emerging research field in computer vision is content-based image

organization and retrieval (CBIR). One of its challenges is the classification of im-

age scenes (or simply scenes) using methods that best reproduce the human concepts

and thought. Several obstacles limit the success of this classification: the wide vari-

ety of scenes that describes each category; the illumination, the camera uses to obtain

the pictures and other factors that introduce noise into scenes. Besides, the human

visual classification of scenes has certain subjectivity depending on whoever makes

the observation of that scene. For example, Figure 2.1 shows a picture that can be

classified as indoor or outdoor scene depending on the individual interpretation of the

meaning outdoor and indoor. For that reason, there is an important semantic gap be-

tween the classification by automatic techniques and the classification carried out by

the subjective human thought. Consequently, research in this area is focused on di-

minishing this gap. In order to tackle this problem, there are two strategies commonly

used in the literature to perform the scene classification. The first one uses low-level

features extraction. The low-level features are referred to the characteristics extracted

9
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directly from the image, considering the scene as an individual object. Examples of

these features are the texture, color, geometric parameters, and statistics of color and

tones. Frequently, they are used in contexts with small number of categories. Previ-

ous work on this approach [e.g., Szummer and Picard (1998)] achieved a classification

rate around 90% in indoor-outdoor classification by using the K-nearest neighbor clas-

sifier. Vailaya et al. (1998) and Vailaya et al. (2001) tried to capture some concepts

by the low-level features extraction, reporting classification rates of 90.5% in indoor-

outdoor classification, 95.3% in city-landscape, 96.6% in sunset-forest & mountain,

and 96% in forest-mountain classification. Other references of this approach are Ayers

and Boutell (2007), Huang et al. (2007) and Nandgaonkar et al. (2010).

Figure 2.1: Indoor or outdoor scene?

The second strategy is related with the use of high-level features that requires an

intermediate analysis of the images before the classification. The high-level concepts

are used by learning-based techniques trying to reproduce the human thought in clas-

sification process. They are often applied to situations with large number of scene

categories. An example of this approach is the reference of Bosch et al. (2007), who

detected objects into the scenes which helped in the classification. They used the

unsupervised probabilistic Latent Semantic Analysis followed by the K-nearest neigh-

bor classifier to perform the classification. Qin and Yung (2010) used contextual in-

formation (related words) to reduce the ambiguity of some pictures. Authors used

three databases with 8, 13 and 15 categories, obtaining classification rates of 90.30%,

87.63% and 85.16% respectively. Park et al. (2004) used neural network techniques
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on two different databases with 30 classes each, achieving classification rates of 81.7%

and 76.7%. Other references of this approach are Belongie et al. (1997), Boutell et al.

(2004), Liu et al. (2007), Shah and Gandhi (2004) and Wang et al. (2001).

Although the two strategies are applied to different contexts, some authors inte-

grated both in an attempt to reduce the semantic space between the content of images

and the features extracted from them. For instance, Luo and Savakis (2001) used a

Bayesian network to combine the knowledge of low-level and high-level features, ob-

taining a classification rate of 90.1% for indoor-outdoor classification. Serrano et al.

(2002) used Support Vector Machine to classify indoor-outdoor scenes obtaining a

classification rate of 90.2%.

This chapter deals with the classification between landscape and non-landscape

images scenes. Due to the low number of classes, we follow the strategy based on

low-level features extraction to classify these scenes. To this end, we consider three

statistical features that summarize useful information of the image. We perform the

classification on two different databases applying supervised classification (K-nearest

neighbor algorithm and the Linear Discriminant classifiers) to split landscape from

non-landscape scenes. The supervised classification is based on a priori knowledge of

the membership class of a group, used to classify another group with unknown mem-

bership classes. We obtain classification rates around 97% and 95%. These error-rates

improve the best methods reported in the literature for this kind of problem. Finally,

we conduct an unsupervised classification to form groups, in order to confirm the exis-

tence of two different sets in the databases. In unsupervised classification there is not

prior knowledge about the membership class of any element in the set. Example of

this is the k-means algorithm. Procedures are executed using color and grey levels and

results are later compared. We also perform the classification applying other competi-

tive procedures such as support vector machine classifier obtaining better performance

in our case.

This chapter is organized as follows. First, we describe the databases used in the

classification in Section 2.1. In Section 2.2, we describe the three statistical low-level

features. The first one is a measure of local variability obtained by the spatial changes
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of the pixels in the image. The second one is a measure of global variability based

on the singular value decomposition of the image matrices. The third variable mea-

sures the spatial correlation among the pixel intensities. In each section we analyze the

relevance of the features and characteristics obtained in order to perform the classifi-

cation of landscape vs- non-landscape image scenes. Section 2.3 and 2.5 are devoted

to classify the images by the application of supervised and unsupervised techniques.

Comparisons of results with other techniques are provided in Section 2.4. Finally,

Section 2.6 gives some conclusion and discusses different avenues for future work.

2.1. Databases

In this experiment we use two databases. One of them is a subset of 379 images in

color level, extracted from the collection of Wang, Li and Wiederhold pictures [Wang

et al. (2001)]1. We call it WLW set. The criteria to select the subset was to include

images with the same size (128× 96) in order to avoid possible distortions in the

proposed measures caused by the resizing methods. The set contains 213 landscape

images, and 167 pictures of other scenes as foods, buildings and monuments. Figure

2.2 includes some samples of this dataset.

(a) Landscapes (b) Non-landscape

Figure 2.2: Examples of images in WLW set

The other database is a group of images specially collected for this dissertation

1http://wang.ist.psu.edu/docs/related/
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from internet, by using the search engine Google Images. We call this database GLP

(Giuliodori-Lillo-Peña). It consists of 379 heterogeneous color-level images randomly

collected, with similar size than those in WLW. This set includes 85 landscape pictures,

and 294 images of other scenes, like faces, ID cards, babies, animals and paintings (see

Figure 2.3).

(a) Landscapes (b) Non-landscape

Figure 2.3: Examples of images in the GLP set

After making a visual inspection of both databases we observe that the GLP database

seems to be more heterogeneous than WLW set, that is, contents of images in GLP ap-

pear to be more varied. For instance, there are people, animals and textures in this

dataset, which cannot be found in the WLW set. Some of the following results will be

influenced by this heterogeneity.

2.2. Features

In this chapter we propose the use of three low-level features, that is, three charac-

teristics extracted directly from the image to conduct the classification. These variables

describe the variability and spatial correlation of images. They are: the local variabil-

ity, the effective variance, the spatial correlation and the spectral density function. The

analysis of the spectral density function, is later dismissed in the classification process

because do not show discriminant power among the classes we aim to classify.
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2.2.1. Local Variability

The first variable proposed is the local variability, denoted as δ (X). This feature,

introduced by Benito (2006), is a smoothing measure that represents the spatial depen-

dence within pixels. Given an image X of size n×m, the local variability is obtained

through the bi-dimensional derivative and is defined as follows. Given a pixel xi j, the

estimation of the derivative of the intensity value in this point, is defined as

∇i j(X) = xi+1, j+1− xi+1, j− xi, j+1 + xi, j.

Then, the local variability is the result of

δ (X) =
1
d̃

n−1

∑
i=1

m−1

∑
j=1
|∇i j(X)| ; for i = 1, . . . ,n and j = 1, . . . ,m (2.2.1)

where d̃ = (n−1)×(m−1) and the notation | • | represents the absolute value. Higher

values of δ are observed in images with abrupt changes of intensity. The maximum lo-

cal variability is achieved when the derivatives are maximum. For standardized values

of pixel xi j (in the range [0,1]), the derivative of a pixel is maximum when the neighbor

pixels are completely different. For example, given the elements of an 2×2 matrix as

follows,

xi, j xi, j+1

xi+1, j xi+1, j+1

considering abrupt changes in the neighbors, the previous matrix would look like

1 0

0 1

Henceforth, if derivatives are maximum, the value of the local variability is δ = 2. In

Figure 2.4 we generate an example of picture with maximum local variability.

In the datasets, we observed that images with high variability in colors show greater

local variability. As it is explained in next section, this measure is calculated for the

three RGB matrix in a color images. In Figure 2.5a it is shown an image with δ =

(0,0511, 0,0511, 0,0511) for the RGB matrices, while in Figure 2.5b the values for

the image are δ = (0,0154, 0,0154, 0,0154).
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Figure 2.4: Maximum Local variability

(a) (b)

Figure 2.5: Different values of Local variability

2.2.2. Effective Variance

The second variable that we propose is the effective variance. This concept is

introduced by Peña and Rodriguez (2003) to compare the variability in set of variables

with different dimensions. Specifically, let X be a matrix with dimension n×m where

its rows are the observations and its columns are the variables. The covariance matrix

of X , denoted as ΣX , is given by

ΣX = n−1(X−1x̄T )T (X−1x̄T ); for m < n, ,

where x̄ is the vector of means by columns of X , 1 ∈ Rn and it is a vector of ones.

Then, the effective variance is obtain as

EV (X) = (φ1φ2....φp)
1/p (2.2.2)

where p = min(n,m) and φ1 ≥ φ2 ≥ . . .φp are the eigenvalues of the matrix ΣX . Subse-

quently, this measure is adapted by Benito (2006), to consider the high dimensionality

of data in image analysis. The author introduced the concept of effective range to avoid

a large proportion of zero or small eigenvalues, frequently found in images due to their
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structure. The effective range, re, represents the number of eigenvalues (k) for which a

relative error of the matrix reconstruction (left term in the inequality of equation 2.2.3)

is less than ε . It is obtained as

re(X) = k = {]φ/‖X− X̂k‖
‖X‖

< ε}, (2.2.3)

where ‖ • ‖ represents the norm, the value of ε is a sufficiently small value, and X̂k is

obtained by the singular decomposition of X using only the k greatest eigenvalues (φ )

and theirs respective eigenvectors. That is,

X̂k =VkD1/2
k UT

k ,

where Vk and Uk are orthogonal matrices and theirs columns are the k eigenvectors of

matrices XXT and XT X , respectively and Dk is a diagonal matrix whose elements are

the kth greatest eigenvalues of XXT or XT X (are the same). Using the L2 norm, we

write

||X− X̂k||=
√

n

∑
i=1

m

∑
j=1

(xi j− x̂i j)2.

The procedure in equation (2.2.3) is repeated until we find the value of k for which

the relative error is less than ε . This final k represents the effective range re. The

parameters in equation (2.2.3) are selected in order to include the greater non-null

eigenvalues. We have used the following norms to obtain the effective variance in

order to compare classification results with each one. Let A be a matrix with elements

ai j,

Infinity norm: the largest row sum of a matrix,

||A||∞ = max
1≤ j≤n

m

∑
i=1
|ai j|.

1-norm: the largest column sum of the matrix.

||A||1 = max
1≤i≤m

n

∑
j=1
|ai j|.
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Frobenius-norm (also known as Hilbert-Schmidt),

||A||F =

√
n

∑
i=1

m

∑
j=1
|ai j|2.

Euclidean norm: the square root of the largest eigenvalue of the positive-semidefinite

matrix AT A,

||A||E =
√

λmax(AT A).

We deduce that in the particular case of this norm, the effective range re in equa-

tion (2.2.3) is reduced to

re = k = {]φ/
√

φk+1√
φmax

< ε},

Finally, the effective variance in (2.2.2) is expressed as

EV (X) = (φ1φ2....φre)
1/re (2.2.4)

where φi are the eigenvalues of the matrix X .

In the databases we observe that pictures with variability in colors show high ef-

fective variance. In Figure 2.6 there are two examples with different values of EV .

In Figure 2.6a the values for the three matrices are EV = (0.01,0.01,0.008), while in

Figure 2.6b the values are EV = (0.04,0.02,0.01).

(a) (b)

Figure 2.6: Different values of Effective variance

Besides, this measure assumes extreme values, for example in a completely random

image with standardized pixels (in the range [0,1]). In this case, the effective variance

is equal to 1 (see Figure 2.7a). Conversely, for an image with pixels of the same color,

the effective variance assumes the value 0 (see Figure 2.7b).
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(a) EV=1 (b) EV=0

Figure 2.7: Extreme values of Effective variance

A weak point of the effective variance is that it changes when the image is resized.

In Figure 2.8a we can see an image in its original size. The effective variance is equal

to EV = (0.69,0.71,0.67) for the RGB matrices. In Figure 2.8b there is the same

picture scaled to 1.5 times the size of the original one. Now the effective variance

is equal to EV = (1.30,1.31,1.22). Thus, changes the size of the pictures leads to

changes in the values of effective variance.

(a) 150 × 142 (b) 225 × 213

Figure 2.8: Image in different sizes

2.2.3. Spatial Correlation

The major part of the visual contribution of a single pixel to an image is redundant

and can be infered from its neighbors. This implies that there exists relatively depen-

dence between a pixel and its neighbors. In this context arises the concept of spatial

correlation [Ripley (2004)], that is the third variable proposed in this work. This mea-

sure represents the correlation between one pixel and its neighborhood located to a

distance h, where h assumes values from 1 to 15 (called spatial correlation of order h).
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The spatial correlation is denoted as ρh(X) and the values of h are defined in accor-

dance with the size of the images. The calculation is done for each pixel, considering

the ordination per row. Given a matrix X with size n×m, the simplest version of the

spatial correlation is defined as:

ρh(X) =
∑

n
i=1 ∑

m
j=1[∑

h
k=−h ∑

h
t=−h(xi j− x̄)(xi+k, j+t− x̄)]

∑
n
i=1 ∑

m
j=1[∑

h
k=−h ∑

h
t=−h(xi+k, j+t− x̄)2]

, (2.2.5)

where xi j is the element i j of the matrix X with range of variation [0,1], x̄ is the mean of

all pixels in the X matrix, xi+h, j+h are the values of the neighbor located to a distance h

from xi j, and h is the order of the spatial correlation, i.e., the distance between xi j and

its neighbors.

After calculating this measure, we detect some characteristics in the databases. In

general, the spatial correlation of the images decreases as the order h increases. An-

other characteristic is that the three RGB matrices often show similar spatial correlation

structure. Moreover, typical behaviors of spatial correlation are observed. For instance,

(a) (b)

Figure 2.9: Different structures of Spatial correlation

some images have high correlation at the first order and it decreases slowly along the

h-order (Figure 2.9b). Other images show a smaller spatial correlation at the first order

(h = 1) and even smaller value at greater order of h (Figure 2.9a). Lastly, we observe

an intermediate situation between the previous ones (see Figure 2.10). In the latter,
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Figure 2.10: Spatial correlation structure

there are also small differences among the correlations of the three RGB matrices. It

seems that the spatial correlations of middle orders are different in the three frequently

detected structures. As a conclusion, one interpretation of these results may be that

middle orders of spatial correlation could have discriminant power among images with

different structures of this measure.

2.2.4. Feature selection

In the classification we use color-level and gray-level images in order to compare

both results. Remark that our goal in this chapter is to use the features described

previously to classify images as landscape or non-landscape. Next, we describe the

variables considered to perform the classification.

In previous section we described four features to analyze the behavior in different

group of images. However, considering the classes we aim to classify, the spectral

density function do not show discriminant power between them. Thus, the variables

used in the classification are the local variability, the effective variance and the spatial

correlation.

For color-level images we calculate the variables for the three RGB matrices inde-

pendently. Firstly, we calculate the local variability for every picture in each database

(379 images each one). We denoted as δRr, δGr and δBr the local variabilities of matri-
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ces R, G and B respectively, for an image r, where r = 1, . . . ,379. Therefore, we have

a three-sized vector for each image.

δr = (δRr, δGr, δBr).

Afterwards, we calculate the effective variance of the three RGB matrices for every

image of the datasets. The value of ε and k were chosen to include the number of

eigenvalues that explained at least the 90% of the variability of the matrix, that is an

ε = 0.07 and an initial value of k = 0.3×min(n,m). We also selected the Frobenius-

norm because showed better performance in the classification.

The result for every picture is a three-sized vector given by

EVr = (EVRr, EVGr, EVBr).

where EVRr, EVGr, and EVBr are the effective variances of the matrix R, G and B

respectively, for the image r.

The third variable, the Spatial Correlation, is obtained for the RGB matrices and

for values of h = 1, . . . ,15. We get a vector of 15 elements for each RGB matrix of

every image, i.e.,

ρRr = (ρR1r, ρR2r, . . . ρR15r),

ρGr = (ρG1r, ρG2r, . . . ρG15r),

ρBr = (ρB1r, ρB2r, . . . ρB15r),

where ρRhr, ρGhr and ρBhr are the spatial correlation of order h for the matrix R, G and

B respectively, of the image r.

Finally, for every image we obtained a feature vector of size 51 composed by the

effective variances, local variabilities and spatial correlations (for h = 1 . . . ,15) for the

three RGB matrices. Through the analysis of data we observed that some variables

presented similarities in values in the three RGB matrices of the image. For instance,

the local variability seemed to be the same for the three RGB matrices of all images.

Therefore, in order to confirm this intuition, we performed an analysis of variance

by considering the images of the dataset as the observations and the values of local
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variability in the R, G and B matrices as the three groups. The hypothesis for local

variabilities comparison were the following,

H0 : δ̄R = δ̄G = δ̄B

H1 : ∃ some δ̄ different,

where δ̄R, δ̄G, and δ̄B are the average local variabilities (for all the pictures in the

database) for the matrix R, G and B respectively. We assumed that the distributions of

the residuals are normal and the cases are independent. As a result, we obtained a p-

value equals to 0.951 for WLW database and 0.964 for GLP set (see Table 2.1). That is,

there was no evidence of meaningful difference among the means of local variability

for the three RGB matrices. Then, we calculated the mean of local variabilities to use

it as discriminative variable in the classification. It is obtained as follows,

δ̄r =
δR +δG +δB

3
. (2.2.6)

Besides, we also observed that the spatial correlations presented similarities among

the RGB matrices in some orders. Then, the analysis of variance was replicated for the

rest of variables in order to reduce the information.

In the case of the effective variance, the analysis suggested that there was meaning-

ful difference among the means of the effective variance for the three matrices with a

p-value equals to 0.002 in both databases. Thus, we kept the effective variances of the

three matrices for the classification. With respect to the spatial correlation, the analy-

sis of variance showed that there was no evidence of significant difference among the

mean correlations of the three RGB matrices for orders h = 8, 9, 10, 11, 12, 13, 14

and 15 in both databases. With respect to the spatial correlations of order h = 1, . . . ,7,

they did not show the same behavior in both sets. Whereas in WLW dataset, there was

evidence of significant difference among the mean spatial correlations of the RGB ma-

trices for these orders, in GLP dataset did not. Consequently, we did not reduce the

information of the spatial correlations of orders h = 1, . . . ,7, due to the different out-

comes obtained in the databases. Therefore, we kept for the classification the following
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Table 2.1: ANOVA results

Variable
WLW database GLP database

Significance p-value

Effective Variance 0.002 0.002

Local Variability 0.951 0.964

Spatial Correlation 1 0.000 0.401

Spatial Correlation 2 0.000 0.283

Spatial Correlation 3 0.000 0.361

Spatial Correlation 4 0.002 0.508

Spatial Correlation 5 0.010 0.660

Spatial Correlation 6 0.030 0.783

Spatial Correlation 7 0.064 0.856

Spatial Correlation 8 0.109 0.901

Spatial Correlation 9 0.160 0.934

Spatial Correlation 10 0.216 0.961

Spatial Correlation 11 0.273 0.982

Spatial Correlation 12 0.333 0.993

Spatial Correlation 13 0.391 0.993

Spatial Correlation 14 0.455 0.994

Spatial Correlation 15 0.532 0.996

information about the spatial correlations.

ρhr = (ρRhr,ρGhr,ρBhr), for h = 1, . . . ,7.

¯ρhr, for h = 8, . . . ,15,
(2.2.7)

where

¯ρhr =
ρRhr +ρGhr +ρBhr

3
(2.2.8)

After reducing the number of variables applying the ANOVA test, we keep for each

color-level image, 33 features out of the initial 51.

In order to study the performance of the classification in gray-level images, we

made the conversion from color-level (RGB) to gray-level (see equation 1.1.1 of In-

troduccion). Afterwards, we calculated the variables for the gray-level matrix of each
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image. As result, we obtained the following information: the effective variance EV ,

the local variability δ , and the spatial correlation for orders h = 1, . . . ,15 given by

ρr = (ρ1r ρ2r · · · ρ15r). Those variables were calculated for every image r, where

r = 1, . . . ,379. Gray-level images had a total of 17 features used for the classification.

2.3. Supervised classification

The distinctive characteristic of supervised classification techniques is that they

contain prior knowledge about the class each element in the set belongs to. In this

section we perform supervised classification by applying two different techniques, the

Linear Discriminant classifier (LDC) and the K- Nearest Neighbors algorithm (KNN).

The structure of data is given by two possible classes (landscape or non-landscape)

and a number of predictor variables (in our work, local variability, effective variance

and spatial correlation). These variables were calculated for the two databases previ-

ously described in Section 2.1. The distribution of classes in each databases is shown

in Table 2.2. The class composed by landscape images is denoted as c1 and the one

Table 2.2: Classes distribution

Databases WLW GLP

Landscape 213 85

Non-landscape 167 294

Total 379 379

composed by non-landscapes is denoted as c2. Both procedures are applied by splitting

data into two set: a training and testing set. In the training set the class to which each

element belongs is known. This set is used to classify the elements of the testing set.

The classification is performed using KNN and LDC techniques and initially using

a group of 33 variables for RGB images (and 17 variables for gray-level). We aim

to choose the combination of variables which best discriminate both classes. Due to

the large number of variables, it became infeasible to conduct the classification for all
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possible combinations of them. Thus, we make the classification through a sequential

forward selection [also known as wrapping procedures, see Karegowda et al. (2010)

and Kohavi and John (1997)]. We choose the forward selection in order to include the

minimum number of variables in the classification2. This technique, widely used in

regression problems [see Hastie et al. (2009)], permits to find the subset of variables

that minimize the error rate (percentage of misclassified images in the test set). The

selection of features is done sequentially [see Kohavi and John (1997), John et al.

(1994) and Karegowda et al. (2010)], by adding features to the model one at a time.

The procedure begins with an empty feature set and sequentially adds features. The

first feature included in the model is the one which individually has the lowest error-

rate. The next feature that enters the model is the one that, jointly with the first variable,

has the greatest reduction in the error-rate. The process of adding features continues

until including a new one does not decrease the error-rate. The resulting subset of

features is the ones used to discriminate both classes.

The sequential forward selection technique requires the application of cross-validation

method in order to avoid the overfitting of the error-rate. Cross-validation is used to

assess how the results of a statistical analysis (in our case, KNN and LDC) will gener-

alize to an independent data set. One round of cross-validation involves the partition of

the data into subsets, performing the analysis on one subset (i.e., training set), and vali-

dating this analysis on the other subset (i.e., testing set). To reduce variability, multiple

rounds of cross-validation (called K-fold cross-validation) are performed using dif-

ferent partitions, and the validation results are averaged over the rounds. Otherwise

stated, we divide the data into K roughly equals parts and for each k = 1, . . . ,K we

apply the classification method using a subset of p features Z = (Z1,Z2, . . . ,Zp). Then,

we compute the error rate for each k-fold as

Ek(Z) =
nEk

nk
,

where nEk is the number of misclassified observations (images) in the kth part (fold)

2We also perform the feature selection by backward elimination and some variables were retained

unnecessarily making the model less efficient.



26 CHAPTER 2. LANDSCAPE IMAGE CLASSIFICATION

and nk is the size of the kth fold. Hence, the overall cross-validation rate is

CVE(Z) =
1
K

K

∑
k=1

Ek(Z). (2.3.1)

The procedure repeats the cross-validation for different subset of features and selects

the combination of them that minimize the CVE(Z). For this work we choose the

commonly used 10-fold cross-validation.

To perform the classification we consider five different cases based on possible

combinations between different datasets.

1. Classification using the WLW database exclusively.

2. Classification using the GLP database exclusively.

3. Classification using the WLW as training set and GLP as testing.

4. Classification using the GLP as training set and WLW as testing.

5. Classification using both databases as a single set.

For every feature subset constituted by adding a new candidate feature, a 10-fold

cross validation is done by repeatedly applying either KNN or LDA, with different

training subsamples. In cases 3 and 4, where training and testing are given, the 10-fold

cross- validation is performed separating each training and testing set in ten randomly

selected subsets. Then, the classification is done considering one of the ten subsets

of training with one of the ten subsets of testing set and repeating the procedure 10

trials. In cases 1, 2 and 5 below, with only one database, the whole set is divided into

10 subsets, chosen randomly but with roughly equal size. The classification is done

using one of the 10 subsets as the test set and the other 9 subsets (all-together) as the

training set. The procedure is repeated 9 more times, and each time a different subset

is selected as test set. In all cases the misclassification rate of the candidate subset of

feature is calculated as the average error-rate across all 10 trials, as it was explained

above.
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Linear discriminant analysis

Linear discriminant analysis is a technique used in statistics, pattern recognition

and machine learning to find a linear combination of features which separate two or

more classes of objects. The purpose is to determine the membership class of a new

observation based on a linear combination of variables known as predictors and that

belong to a known group.

We have a set of elements (images) which come from two known classes C =

c1,c2 (landscape and non-landscape). In each element a set of p random variables

X = (X1,X2, . . . ,Xp) is observed. The purpose of the linear discriminant classifier is to

assign a new element, denoted as ω with known values of the variables Xω , in one of

the two classes. As we conduct the classification assuming unknown populations, the

covariance matrices of each class are estimated from the samples.

Let n be the total number of elements, nc the number of elements in class c, and X̄c

is the vector of mean variables within each class given by

X̄c =
1
nc

nc

∑
i=1

Xic,

where Xic is the row vector 1× p which contains the p values of the variables for

the element (image) i in the class c. The classification criterion used in our analysis

consists of assigning the element ω to the nearest class using the Mahalanobis distance:

D2
mahalc = (Xω − X̄c) Ŝ−1(Xω − X̄c)

′, (2.3.2)

where Ŝ is the estimated variance-covariance matrix given by

Ŝ =
C

∑
c=1

nc−1
n−C

Ŝc (2.3.3)

where

Ŝc =
1

nc−1

nc

∑
i=1

(Xic− X̄c)(Xic− X̄c)
′. (2.3.4)

Finally, the decision rule consists of assigning the element ω to the class c1 if D2
mahalc1

<

D2
mahalc2

, otherwise it is assigned to the class c2.
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The set of variables used in the classification are those chosen by forward selection

for the five cases already explained above. The error-rate and selected features for the

five cases are shown in Tables 2.3 and 2.4.

Table 2.3: Linear Discriminant Analysis results for RGB images

Databases Error-rate Variables used Generalization

WLW 3.69% EVR, ρR1, ρR2, ρR4, ¯ρ10 and ¯ρ12. 4.88%

GLP 5.14% EVR, EVG, δ̄ and ρ1G. 5.28%

Train=WLW, test=GLP 3.69% EVR, ρR1, ρR3 and ρ̄8. 5.15%

Train=GLP, test=WLW 5,14% EVR, EVG and ρ1G1. 5.20%

Both databases 5.34% EVR, EVG and ρG1.

Table 2.4: Linear Discriminant Analysis results for GRAY images

Databases Error-rate Variables used Generalization

WLW 4.61% δ , and ρ9. 5.41%

GLP 8.97% EV , δ , ρ1 and ρ9. 10.42%

Train=WLW, test=GLP 4.61% δ , and ρ9. 5.01%

Train=GLP, test=WLW 9.23% EV , δ , ρ1, ρ2 and ρ10. 11.21%

Both databases 7.78% EV and δ .

Comparing the results of both tables we observe that the error-rates obtained for

gray level images are worse than those for RGB images. This differences may be due

to in RGB images there are more information to classify than in gray-level images. The

results also suggest that WLW database lonely has better error-rate in gray and RGB

images than GLP set. Besides, when using the WLW set as training, the classification

results are better than when this set is used as testing. This is not surprising because

there is a greater heterogeneity of scenes observed in GLP database than in WLW set.

The GLP set seems to have, visually, more categories of scenes. For instance, scenes

with animals, paintings, people and texture can be found in this set, while these kind

of scenes does not appear in WLW database.
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With respect to the features, it seems to have coincidences among the group of

variables selected in each case. The correlations of order 8, 9, 10 and 12 may be

included because they give discriminative information about the classes. The structure

of the spatial correlation in the datasets shows that there is a group of images with

great values of correlation in the first seven orders, decreasing slowly as we increase

the order of the variable over to eight. Moreover, there is another group of images

where the spatial correlation begins with greater values and decrease quickly as we

increase the order of the variable. Therefore, it is reasonable to expect that correlations

of orders 8 to 12 have discriminant power between groups.

In order to present a general procedure to classify images with similar characteris-

tics like these databases, we perform the classification considering the variables which

are common to all databases. These are:EVR, EVG and ρG1 for RGB images, and EV

and δ for classifying gray-level images. The last column of Tables 2.3 and 2.4 describe

the classification results obtained in each case.

k Nearest Neighbor

The K-nearest-neighbor algorithm is carried out as follows. For each image in

the test set, the k closest members (nearest neighbors) in the training set are found.

This proximity is measure by some distance. We chose the cityblock distance (also

known as Manhattan) because this measure has provided the best results. The cityblock

distance between two variables xi and yi is given by

dcityblock =
m

∑
i=1
|xi− yi|

Then, we obtained the distances of each element in the test set to each member of the

training set, and for every test element the k nearest neighbors are recorded. Then, an

element is classified to the class most common amongst its k neighbors (majority rule).

The procedure is repeated for the remaining cases in the test set. The value of k is a

positive integer, typically small and even to avoid tie. There is no consensus in defining

the number k of nearest neighbors. Often, the value of k is chosen by cross-validation,

which is the method that we have used. In this work we consider k = 3.
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The results of the classification are shown in Tables 2.5 and 2.6. The error-

Table 2.5: K Nearest Neighbor results for RGB images

Databases Error-rate Variables used Generalization

WLW 3.16% EVR,δ̄ and ¯ρ12. 4.75%

GLP 5.01% EVG, EVB, and δ̄ . 6.60%

Train=WLW, test=GLP 3.43% EVR, δ̄ and ¯ρ12. 4.35%

Train=GLP, test=WLW 4.88% EVG, EVB, and δ̄ . 6.73%

Both databases 5.47% EVR, EVG and ρG1.

Table 2.6: K Nearest Neighbor results for GRAY images

Databases Error-rate Variables used Generalization

WLW 4.61% EV , δ and ρ8. 4.88%

GLP 9.36% EV , δ , ρ1 and ρ5. 11.48%

Train=WLW, test=GLP 4.61% EV , δ , and ρ13. 5.41%

Train=GLP, test=WLW 8.97% EV , δ , ρ1 and ρ2. 9.76%

Both databases 8.70% EV and δ and ρ2.

rates obtained with KNN are similar that those in LDA and for gray-level images are

worse than in RGB images. WLW also shows a better performance in classification.

Although the selected variables seems to be similar, the mean local variability (δ̄ )

acquires relevance in some cases of KNN classification. However, in both methods the

variables selected when both databases are merged are exactly the same. In order to

provide a generalization of the methods, we also obtained the classification rates when

the common variables are selected. The last columns of Tables 2.5 and 2.6 contain

the results. The variables used in the classification were EVR, EVG and ρG1 for RGB

images and EV and δ for gray-level images.

Some misclassified images in color-level picture are shown in Figure 2.11. Those

images correspond to the merged dataset classified by KNN algorithm. In (a) are

examples of pictures wrongly classified as landscapes, and in (b) are examples of those
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wrongly classified as non-landscape. As it is observed, the images wrongly classified in

(a) (b)

Figure 2.11: Examples of misclassified color-level pictures- Merged set

landscape group seems to have homogeneity in colors, one of the typical characteristic

of this group.

2.4. Comparison to Support Vector Machine

In order to give an idea of the performance of the classification procedure proposed

in this chapter, we apply support vector machine statistical classifier (SVM) for binary

linear classification. In the support vector machines [see Boser and et al. (1992) and

Cortes and Vapnik (1995)], a data point is viewed as a p-dimensional vector and the

goal is to know whether such points can be separated with an hyperplane. Specifically,

in image analysis context, the p-dimensional vector is obtain as follows. Given an

image xi of size n×m, the information of each image is stored in a p-dimensional

vector formed by the concatenation of its column (or rows) pixels. Then, p is the

product of n and m, p = n×m. Then, xi ∈ Rp.

There are many hyperplanes that might classify the data. One reasonable choice

is to consider as the best hyperplane the one that represents the largest separation, or

margin, between the two classes. Then, it is chosen the hyperplane that maximizes the

distance from it to the nearest data point on each side. If such hyperplane exists, it is

known as the maximum-margin hyperplane and the linear classifier defined is known
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as a maximum margin classifier. In other words, it is given a training data T composes

by a set of n points of the form

T = {(xi,yi)/xi ∈ Rp,yi ∈ {1,−1}}n
i=1 (2.4.1)

where the yi is either 1 or −1, indicating the class to which the point xi belongs and

each xi is a p-dimensional vector. The goal is to find the maximum-margin hyperplane

that divides the points having yi = 1 from those having yi = −1. Any hyperplane can

be written as the set of points x satisfying

wT x+b = 0, (2.4.2)

where w ∈ Rp is a vector perpendicular to the hyperplane, and b is a constant that

determines the position. The values of w and b have to be chosen to maximize the

margin or distance between the parallel hyperplanes, that are as far apart as possible.

We are looking for an hyperplane such that by the projection of all observations of the

class 1, we obtain

wT xi +b≥ 1, (2.4.3)

and for class −1, we obtain

wT xi +b≤ 1. (2.4.4)

This can be rewritten as,

yi(wT xi +b)≥ 1 (2.4.5)

Moreover, the distance from any points to the hyperplane is obtained as

d(xi;w,b) =
|wT xi +b|
‖w‖

. (2.4.6)

The maximum margin classifier looks for the hyperplane that maximize the distance

between two set of points of two parallel hyperplanes (called support vectors, see Fig-

ure 2.12). Note that if the training data are linearly separable, we can select the two

hyperplanes of the margin in a way that there are no points between them, and then

try to maximize their distance. Therefore, we find that the distance between these two

hyperplanes is 2
‖w‖ , and the maximization of the margin is reduced to minimize the

norm ‖w‖ of the vector that is perpendicular to the optimum hyperplane.
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Figure 2.12: Maximum-margin hyperplane and margins for an SVM trained with data from

two classes. Points on the margin are called the support vectors.

In order to consider classes that are not linearly separable, it is introduced a slack

variable denotes as ξi which measure the degree of misclassification of the datum xi.

Thus, the optimum hyperplane is obtained solving the optimization problem given by

min
w,b,ξ

1
2

wT w+C
n

∑
i=1

ξi, (2.4.7)

subject to

yi(wT xi +b)≥ 1−ξi, ξi ≥ 0 (2.4.8)

where ξ = {ξ1, . . . ,ξn} is the vector of slack variables and C is the penalty parameter

of the error term. The solution of the constraint minimization problem of equation

2.4.7 can be solved using Lagrange multipliers.

The original optimal hyperplane algorithm proposed by Vapnik and Lerner (1963)

was a linear classifier. However, Boser and et al. (1992) suggested a way to create non-

linear classifiers by applying a kernel to maximum-margin hyperplanes. The resulting

algorithm is formally similar, except that the product wx is replaced by a nonlinear

kernel function. This allows the algorithm to fit the maximum-margin hyperplane in a

transformed feature space. The transformation may be nonlinear and the transformed
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space high dimensional. Then, the optimization problem is given by,

min
w,b,ξ

1
2

wT w+C
n

∑
i=1

ξi (2.4.9)

subject to

yi(wT
φ(xi)+b)≥ 1−ξi, ξi ≥ 0, (2.4.10)

where training vectors xi are mapped into a higher dimensional space by the function

φ . SVM finds a linear separating hyperplane with the maximal margin in this higher

dimensional space. Furthermore, K(xi,x j) = φ(xi)T φ(x j) is called the kernel function.

Finally, the decision rule for a new point z is given by the decision function

f (z) = {zT w+b} (2.4.11)

where w are the support vectors, and the sign of f (z) is negative if z belongs to class

−1 and positive if belongs to class 1.

For the application conducted in this Chapter we consider the image in RGB color.

Accordingly, each image is represented as a row-vector composed with the concate-

nated rows of the three RGB matrices. For instance, an image of size n×m = 80×120

gives an input row vector of 1× (n×m×3) = 1×28800. The procedure is conducted

applying 10-fold cross-validation. In each round of this cross validation we performed

another cross-validation to find the adequate penalty parameter C (see equation 2.4.9).

We use two different kernels given by

Linear

K(xi,x j) = xT
i · x j. (2.4.12)

Radial basis function (RBF)

K(xi,x j) = exp(−γ ‖xi · · ·x j‖2), γ > 0. (2.4.13)

where γ is a kernel parameter [see Buhmann (2003) for more information]. The pa-

rameter gamma is also selected by cross-validation in the same way as we calculate

the parameter C.
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As result, we achieve a mean error-rate of 12,46% obtained for the 10-fold as it is

explained in equation 2.3.1. Comparing this outcome with those from our methods,

we conclude that the variables and procedures proposed in this thesis are significant

superior in terms of classification rates. While in SVM the image is represented by

28800 variables, in our method an image is represented by only three low level features.

Consequently, our method is less time-consuming in terms of processing.

2.5. Unsupervised classification

The unsupervised classification is performed to confirm the fact that there are two

sets of images in the databases. We apply the cluster technique based on the k-means

algorithm, more appropriate for high dimensional data. The K-means algorithm re-

quires the number of clusters fixed a priori. The main idea of this algorithm is to

define k initial class centers, one for each cluster. In general, the class centers are

randomly selected or chosen as much as possible far away from each other. In each

iteration process, elements are assigned to the nearest class, and new class centers are

calculated. The new class centers are the points that minimizes the sum of the squared

distances between points in the class and the respective class center. In each new itera-

tion, class centers shift and the class assignments for some elements may change. The

process is repeated until some optimality criterion (previously defined) is achieved.

In this section we aim to form two groups and observe how the sum of squares

within groups decreases when going from one to two. In order to observe these

changes, we carry out the F test of variability reduction, frequently used to calcu-

lated the relative reduction of variability with the increase of an additional group. The

test compares the sum of squares within groups with k and k+1 groups. Specifically,

we compared the variability of having one group (k = 1) with that one obtained with

two groups (k = 2). Then, the F-test is given by

F =
SSW (K)−SSW (K +1)

SSW (K+1)
n−K−1

,
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where n is the sample size. The SSW is the sum of squares within groups obtained as

SSW =
K

∑
k=1

p

∑
j=1

nk

∑
i=1

(xi jk− x̄ jk)
2, (2.5.1)

where xi jk is the value of j-th variable, in the i-th element of k-th group, and x̄ jk is

the mean of the j-th variable in the group k. This F value is compared with a value

obtained using an F distribution with p, and p(n−K−1) degrees of freedom, where p

is the number of variables used in the grouping procedure.

We conducted the K-means algorithm using the set of variables selected in the case

5 of the previous section for RGB images . These variables are, EVR, EVG and ρG1.

The results are shown in Tables 2.7 and 2.8.

Table 2.7: K-MEANS algorithm information- WLW database

Cluster number
Sum of Squares

F-statistics
within groups

1 4.40

2 1.93 484.31

Table 2.8: K-MEANS algorithm information- GLP database

Cluster number
Sum of Squares

F-statistics
within groups

1 10.579

2 5.84 315.93

The outcomes suggest that in both databases two groups can be formed, because

the variability reduction is significant when going from one to two. Besides, in WLW

database the variability is lower. For instance, when two groups are formed, WLW

has a SSW = 1.93, while in GLP the SSW = 5.84. This behavior is coherent with the

results obtained in previous section which the classification shows better error-rates for

WLW dataset.
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2.6. Conclusions and contributions

The classification of images by scenes is a complex process, since sometimes the

differences among image scenes are not obvious, even for human vision. For that

reason, this kind of classification is influenced by the subjectivity of the human though.

Then, it becomes difficult the generalization of the techniques for the classification of

any scene.

In this chapter we propose three low-level features obtained by considering the

variability and dependency of pixels in the images. The proposed variables, through

different directions, capture the contrast of color intensities observed in images. This

contrast helps to differentiate the group of landscape and non-landscape scenes be-

cause, for instance, pixels composing an image of a sky are homogeneous with respect

to the heterogeneity of pixels in a Miró’s painting image. In addition, while the ef-

fective variance and spatial correlation show differences in the values obtained for the

three RGB matrices, the local variability do not show differences. Some variables cal-

culated initially are not considered in the classification through the sequential forward

selection. For example, the spatial correlations of first orders such as h = 1,2 and

middle orders such as h = 7,8and9 seem to be more powerful to discriminate both

groups than other orders of correlations. This greater discriminative power can be ex-

plained by the structures of correlation commonly observed in our databases, where

these orders of correlations show differences in both groups.

The classification rates obtained for color-level images are better than results ob-

tained for gray-level images. This behavior seems to be as a consequence of the greater

amount of information contained in the three RGB matrices than that in the gray-level

matrix. The classification rates achieved by the K-nearest neighbors and the linear dis-

criminant techniques do not seem to be significantly different. However, those classi-

fiers report a good performance having better results than the ones obtained by support

vector machine techniques over the same databases. Besides, our classification rates

improve results achieved by other authors in this kind of classification.
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2.7. Future work

There are several lines of research arising from this chapter which should be pur-

sued. Firstly, the application of the procedures to a different database with similar

characteristics, in order to observe the behavior of the proposed variables in classify-

ing other kind of scenes (e.g., texture vs. non-texture or indoor vs. outdoor scenes).

Secondly, we aim to study in depth the variation observed in the effective variance

when there is changes in matrix dimensionality. It is our goal to find the statistical

explanation of this behavior.

Finally, a line of investigation already in progress is the study of the spectral func-

tion obtained from the image. This is another possible classification measure which

uses all the correlations jointly. Some exploration conducted about this function is

shown following.

Intuitively, the spectral density (also known as power spectral density) captures

the frequency content a stochastic process and helps identify periodicity, for instance

in image’s rows. The spectral representation is related with the idea that a time se-

ries is composed by periodic components, appearing in proportion to the underlying

variances.

We analyze a digital image as a regularly spaced series of values, where the values

are the intensities red, green or blue of pixels. Each row (or column) can be seen

as a discrete time series or as a discrete values succession that can be transformed to

the frequency domain in order to study the rates of oscillation or frequencies of them.

Assuming that each row (or column) is an stationary process (i.e., constant variance),

the autocovariance function γ(h) satisfying
∞

∑
h=−∞

|γ(h)|< ∞

has the representation

γ(h) =
∫ 1/2

−1/2
e2πiνh f (ν)dν (2.7.1)

for h = 0, ±1, ±2, where f (ν) is the spectral density function and ν is the frequency

index, defined in cycles per unit time. That is, for ν = 1 the series makes one cycle
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per time unit; for ν = 0.5, the series make a cycle every two time units; for ν = 0.25

every four units, and so on. Normally, data that occurs at discrete time points, as in this

case, will need at least two points to determine a cycle. Then, the highest frequency of

interest is ν = 0.5 per point. The spectral density is obtained as the inverse transform

of the autocovariance function as

f (ν) =
∞

∑
h=−∞

γ(h)e−2πiνh (2.7.2)

for−1/2≤ ν ≤ 1/2. Since f (ν) is symmetric with respect to ν0, the range of variation

of this variables can be changed to 0 ≤ ν ≤ 1/2 [see Shumway and Stoffer (2010)].

Hence, the power spectral density (PSD) function in 2.7.2 can be rewritten as

f (ν) =
∞

∑
h=0

γ(h)[2 cos(2πν0h)] (2.7.3)

One way to estimate the spectral density function is through the analysis of the

periodogram. The periodogram is obtained as a sample version of the spectral density

function in expression 2.7.2,

P(ν j) =
4
n

n−1

∑
h=−(n−1)

γ̂(h)[2 cos(2πν0h)] (2.7.4)

However, the raw periodogram is not a good spectral estimate because of spectral bias

and the fact that the variance at a given frequency does not decrease as the number

of samples increases. The spectral bias problem can be reduced multiplying the finite

sequence by a window function which truncates the sequence gradually rather than

abruptly. The variance problem can be reduced by smoothing the periodogram. One

of the techniques commonly used to solve the variance problems is to apply a win-

dow. We apply the Blackman and the Bartlett windows to smooth the periodogram.

The Blackman window is based on Fourier transformation of the smoothed, truncated

autocovariance function and is defined as

w(n) = a0−a1 cos(
2πn

N−1
)+a2 cos(

4πn
N−1

) (2.7.5)

where a0 =
1−α

2 ; a1 =
1
2 ; a2 =

α

2 and α = 0.16.
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The Bartlett window with zero-valued end-points is obtained as

w(n) =
2

(N−1)
(
N−1

2
−|n− N−1

2
|) (2.7.6)

where N represents the width, in the sample, of a discrete-time window function and n

is an integer with values 0≤ n≤ N−1.

(a) (b) PSD without Bartlett filter (c) PSD with Blackman filter

Figure 2.13: Example of Periodogram for a texture image

(a) (b) PSD without Bartlett filter (c) PSD with Blackman filter

Figure 2.14: Example of Periodogram for a texture image

Graphically, Figures 2.14, 2.13 and 2.15 show the periodograms of two images

of textures and a picture of a tree. The x-axis represents the frequency ν and the y-

axis the power spectral density function. In every periodogram we represent the PSD

of each row of the image. The periodograms obtained with both windows are very

similar. Comparing the figure plots, it is observed that in Figure 2.13 the rows of the

image show cycles with similar frequencies, whereas in Figure 2.14 do not. Moreover,
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in Figure 2.15 all rows seem to have cycles with the same frequencies. This behavior

could be information about different groups such as textures.

(a) (b) PSD without Bartlett filter (c) PSD with Blackman filter

Figure 2.15: Example of Periodogram for a scene image

With this briefly exploration we believe that the spectral analysis represents an

issue in itself and probably deserves a separate study of its own. As such, we suggest

it as a promising avenue for future research.
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CHAPTER 3

Handwritten Digit Classification

In the field of digital image processing, pattern recognition is the research area

that studies the operation and design of systems that recognize patterns in data. Its

primary goal is the classification of objects into a number of categories or classes. De-

pending on the use, these objects can be images, signal waveforms or any other type

of measurements that need to be classified. Common applications of pattern recogni-

tion are automatic speech recognition, classification of text into several categories (e.g.

spam/non-spam email messages) and the automatic recognition of handwritten postal

codes on postal envelopes. Statistical approaches are one of the most widely studied

and used to perform pattern classification.

In statistical pattern recognition, an image is represented by a set of f features

which constitute a f -dimensional feature vector. A decision process (statistical clas-

sifier) based on this vector is used to establish boundaries between image classes and

then perform the classification. Thus, the classification success depends entirely on the

set of selected features and the classification scheme.

In this chapter we tackle the handwritten digit recognition problem. Our purpose

is to present alternative classification methods based on statistical techniques and with

43
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good performance for classifying handwritten digit images. We use two different sta-

tistical approaches. Firstly, we use a probabilistic approach assuming that the features

of images in the training set have a probability distribution in order to use the Bayes‘s

decision rule to classify images in the test set. Secondly, we conduct a supervised clas-

sification approach (where classes of sets are known), using the K-nearest neighbors

rule to classify images in the test set. The classification scheme is based on a set of

variables (feature vector) obtained by applying structural measures to detect the shape

and geometry of the numbers. Our methodology has the advantage that is more intu-

itive and generalizable over other methods that require the use of scanned digit with

the same size [see Lauer et al. (2007)]. Besides, our methodology do not need any

pre-processing (as deskew, noise removal or shift the edges) of images from databases

[see Decoste and Scholkopf (2002) and Keysers et al. (2007)].

Experiments are performed on two databases described in Section 3.1. The bina-

rization of the images is required to calculate the features used in this chapter. Thus,

in Section 3.2 we propose a new binarization method to find an optimum threshold

parameter for each image, which is based on the written trace of digit. Section 3.3

describes the construction of the variables proposed for the classification. Initially, the

feature vector is composed with the variables calculated in Section 3.3. However,

the final feature vector used to classify is selected by the application of the sequen-

tial forward selection technique, already explained in Section 2.3 in the Chapter 2. In

Section 3.4 we present the probabilistic approach which is performed by the appli-

cation of the Bayes’s rule, disjointing the variables into categorical and quantitative.

Section 3.5 is devoted to describe the application of the K-nearest method algorithm

to classify the digit images. Finally, the last Section 3.6 provides the conclusion of

the two classification methods. Both techniques provide similar results to handwritten

digit classification, despite the fact that in the probabilistic approach we consider the

distribution of the variables, whereas in the KNN algorithm only the distances are used

in the classification.
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3.1. Databases

The classification in this chapter is performed using two different databases con-

sisting of scanned digits, from 0 to 9. Datasets are partitioned in training and testing

sets in order to validate the technique. In general, as explained in Chapter 2, training

set is used to classify the testing set, being both independent.

MNIST database

The MNIST database was constructed from National Institute of Standards and

Technology (NIST) database of scanned handwritten digit.

NIST originally had the training set composed by a collection of digits written by

paid US census workers, while the testing set was collected from digits written by

uncooperative high-school students. This difference of origin of the data explains why

the classification errors obtained in each group were completely different with worse

performance on the test data. Therefore, the NIST database required a reorganization

in order to combine adequately training and test sets, forming the MNIST (Modified

NIST) set [LeCun et al. (1998)], which is the database that we use in this dissertation.

The MNIST database is composed by 60.000 handwritten digits in the training set

and 10.000 in the test set. Digits were size-normalized and centered in an image of size

28×28 by computing the center of mass of pixels, and translating the image to locate

this center point at the center of the 28×28 field [LeCun et al. (1998)]. The MNIST set

contains gray level images as a result of the anti-aliasing technique used by the normal-

ization algorithm conducted by the authors (http://yann.lecun.com/exdb/mnist/). The

distribution of digits in the training and testing sets are in Table 3.1.

Table 3.1: Distributions of MNIST sets

Digit 0 1 2 3 4 5 6 7 8 9 Total

Train 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000

Test 980 1135 1032 1010 982 892 958 1028 974 1009 10000
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Some examples of MNIST are in Figure 3.1. As a consequence of the origin of the

(a) MNIST training (b) MNIST test

Figure 3.1: Typical Images from MNIST sets

MNIST database, digits in the training and testing sets seem to have the same degree

of difficulty to be recognized.

USPS database

The USPS database comes from a set of digits automatically scanned from en-

velopes by the United State Postal Service. The original scanned digits were binary

and with different sizes and orientations. The segmentation procedure performed by

Postal Service caused that some digits were mis-segmented. Thus, the database was

generated with extreme difficulty to be recognized and classify, with a human error-

rate around the 2,5% [Simard et al. (1993)]. Images used in this work were deslanted 1

and size-normalized by LeCun et al. (1990), resulting in 16 x 16 grayscale images. The

training set is composed by 7291 images and the testing set contains 2007 images. The

distributions of digits in the training and testing sets is showed in Table 3.2. Examples

of this database are in Figure 3.2.

Although the completely set of numbers is not shown, it can be seen in the examples

of USPS presented in Figure 3.2 some clear differences between test and training sets.

In the testing set digits seem to be more unreadable than in the training set. Besides, the

testing has some mis-segmented digits, such as the digit 8 shown in Figure 3.2b. This

1Deslant is a term commonly used in handwritten recognition field to indicate the action of removing

the slant of the text by some specific technique.
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Table 3.2: Distributions of USPS sets

Digit 0 1 2 3 4 5 6 7 8 9 Total

Train 1194 1005 731 658 652 556 664 645 542 644 7291

Test 359 264 198 166 200 160 170 147 166 177 2007

(a) USPS training (b) USPS test

Figure 3.2: Typical Images from USPS sets

obvious discrepancy between sets represents a difficulty to classify both sets with the

same performance in terms of classification, because the training, set used to classify

images of the testing set, has less variability in the shape of digit.

3.2. Binarization

The variables proposed in this chapter to make handwritten digit classification re-

quire images in binary level. The binarization process assumes that images contain two

classes of pixel: the foreground (or white pixels, with maximum intensity, i.e., equal to

1) and the background (or black pixels with minimum intensity, i.e., equal to 0). The

goal of the method is to classify all pixels with values above of the given threshold as

white, and all other pixels as black. That is, given a threshold value t and an image X

with pixels denoted as x(i, j), the binarized image Xb with elements xb(i, j) is obtained

as follows.

If x(i, j)> t, xb(i, j) = 1 (object)

else xb(i, j) = 0 (background)
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However, this version of the algorithm assumes that we are interested in light objects

on a dark background. Then, in order to obtain dark objects on a light background we

would use,

If x(i, j)< t, xb(i, j) = 1 (object)

else xb(i, j) = 0 (background)

Then, the key problem in the binarization is how to select the correct threshold t

for a given image. We observe that the shape of any object in the image is sensitive

to variations in the threshold value, and even more sensitive in the case of handwritten

digit. Examples of digit binarized with different threshold value are shown in Figure

3.3. In the upper panel there is an example of gray level digits that appear binarized

by different threshold values in the middle and lower panels. A simple look to the

lower panel detects that some digits are partially missed by the binarization process.

In some cases, the trace of the digit line is cropped, making their recognition more

difficult. Therefore, we consider that a binary handwritten number is better recognized

Figure 3.3: Examples of binarized digits

computationally if its trace is complete and continuous, this is the criterion that we use

to the threshold, being its choice of crucial importance.

Although several methods exist for choosing a threshold, in an attempt to obtain a

threshold more adequate for digit binarization, we propose a novel method to find an

optimum threshold value. The procedure is based on statistical concepts that consider

the handwriting trace of the digit, finding an optimum threshold value associated with
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each image. In the process we use the median absolute deviation2 (mad) as a robust

variability measure. The algorithm to find the optimum threshold consists of assigning

an initial threshold value denoted as t and then binarize the image X , obtaining what

we call the local trace of the line in a digit. That is, for each white pixel xi jt (pixel

binarized with value 1, located in row i, column j and with a given threshold t), we

find the horizontal and vertical number of contiguous white pixels, denoted as hi jt and

vi jt respectively. Then, we choose the minimum of both values, indicated as Yi jt . That

is, Yi jt is the trace of the line at point (i, j) with threshold t. Thus, we define the

median absolute deviation of the values Yi jt as the global variability of the trace of

the line , denoted as gtr(X)t . The procedure is repeated for different threshold values

and the optimum threshold (top) for an image X is the value of t that has the minimum

global variability of the trace of the line, that is, the value that makes the trace more

homogeneous. Formally,

Yi jt = min(hi jt ,vi jt) (3.2.1)

gtr(X)t = mad(Yi jt) (3.2.2)

top = min
t
(gtr(X)t) (3.2.3)

Figure 3.4 shows the same digit with two different threshold values. In both cases

the digit is clear to be recognized as the number three by human eye. However, both

images are not clear enough for a computer to be classified in the same class. The digit

with a t = 0.001 is more difficult to recognize than the one that has top = 0.30.

3.3. Features extraction

The group of features used in the classification scheme considers the shape and

some structural characteristics of the digits. Some of them are calculated through the

2In general, the mad of a variable X is defined as mad(X) = mediani(|Xi−median j(X j)|), for i =

1, . . . ,n and j = 1, . . . ,n.
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(a) t = 0.001 (b) top = 0.30

Figure 3.4: The same digit with different threshold values

Hough transform and others are proposed, developed and programmed specifically for

this work, using the software MATLAB version 7.9 [see Gonzalez et al. (2004)]. All

the variables described in this section are obtained for every digit binarized with its

corresponding optimum threshold value described in the previous section. Since some

of the features are based on the Hough Transformation, we explain it in detail in the

next subsection.

3.3.1. Hough Transform

The Hough Transformation is a technique initially implemented to the identifica-

tion of lines in a binarized image. Later, it was extended to detect arbitrary shapes,

generally circles or ellipses [Ballard (1981)]. The HT, as it is universally used today

was developed by Duda and Hart (1972). However, the name comes from its inventor

Hough (1962). In this dissertation we use the HT to detect lines and circles in digit

images.

Straight lines detection

The main tenet of the HT is to detect the occurrence of figure points (pixels for us)

in an image, lying on a straight line. The equation for a straight line is represented in

the Cartesian coordinates as

yi = a xi +b, (3.3.1)
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and is graphically plotted for a pair of points (x1,y1) and (x2,y2) as in Figure 3.5a. The

HT aims to find points with coordinates (x,y) that satisfy the equation 3.3.1.

There exist infinite lines which pass through a particular point (xi,yi) in the Carte-

sian plane, but only one line satisfies the equation 3.3.1 for specific values of param-

eters a and b. Moreover, points lying on the same straight line in Cartesian plane can

be represented in the space of parameters a and b as it is shown in Figure 3.5b. That

(a) Cartesian plane (b) Parameter space

Figure 3.5: Representation of a line

means, two points lying on the same straight line with parameters a and b in the Carte-

sian plane are represented in the parameter space as two lines with an interception

point (a,b). Then, an arbitrary straight line can be represented by a single point in the

parameter space.

A disadvantage of using the equation 3.3.1 is that the slope can be infinite if the

straight line is vertical. This problem is solved by using the so-called normal represen-

tation of a straight line (also known as Hesse’s normal).

The general form of the linear equation 3.3.1 is

Ax+By+C = 0, (3.3.2)

and the normal representation is given by

x cosθ + y sinθ −ρ = 0. (3.3.3)

As both form represent the same line, their respected coefficients must be proportional.
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Therefore,

cosθ = k A

sinθ = k B

−ρ = k C,

(3.3.4)

where k is a coefficient of proportionality. Squaring and summing both sides of the

first and the second equation in 3.3.4, we obtain

cos2
θ + sin2

θ = k2(A2 +B2). (3.3.5)

Hence,

k =
1

±
√

A2 +B2
. (3.3.6)

Substituting in equation 3.3.4,

cosθ =
A

±
√

A2 +B2
,

sinθ =
B

±
√

A2 +B2
,

−ρ =
−C

±
√

A2 +B2
,

(3.3.7)

which are the coefficients of equation 3.3.3. In our case, A = a, B =−1 and C = b.

An example of a line (called `) obtained by the equation 3.3.1, with parameters a0

and b0 is represented in red color in Figure 3.6a. The parameter ρ is the vector that

(a) Cartesian plane (b) Parameter plane

Figure 3.6: Normal representation of a line.
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represents the distance between the line ` and the origin, while θ is the angle that forms

the vector ρ with the X-axis.

As a consequence of this representation, each point (x,y) in the normal form (Fig-

ure 3.6a) is represented as a curve in the parameter plane (Figure 3.6b). If we add the

restriction that θ belongs to the interval [0,π], the normal parameters for a line are

unique. With this restriction, every line in the cartesian plane corresponds to a unique

point in the parameter plane. The collinear points located in a straight line in normal

representation have a common point of intersection in the parameter plane. The point

(θ0,ρ0) in this plane defines the line passing through the collinear points in the Carte-

sian plane. Thus, the problem of detecting collinear points can be converted into a

problem of finding a common point of intersection.

The Hough transform algorithm uses an array (or matrix) called accumulator, to

detect the existence of straight lines in images. The dimension of the accumulator

is given by the number of unknown parameters in the equation 3.3.3, i.e. two. The

parameters are quantized to be represented in a two-dimensional array with size d1×
d2, where d1 is the number of values of θ uniformly spaced in the interval(0,π), and

d2 is the number of values in the ρ axis also uniformly spaced in an interval specified

as (−R,R). Then, for each pixel of the image, the accumulator eventually records the

total number of lines (with restricted parameters), passing through the pixel (see Figure

3.7). After all pixels are treated, the array is inspected to find cells with high counts,

(a) Cartesian plane (b) Parameter plane (c) Accumulator array

Figure 3.7: Hough Transform

called peaks (p). If the counts of a given cell is 10, then, there are precisely 10 points
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lying along the line whose normal parameters are (θp,ρp). In Figure 3.7c there is an

example of the accumulator array (or Hough matrix) where there is a peak p = 10.

Thus, there is a line in the image composed by 10 points (or pixels) represented as in

Figure 3.7a. In Figure 3.7b, the 10 lines are represented in the space of parameter a

and b. Finally, in Figure 3.7c is shown the resulting accumulator array of the Hough

transform. The matrix shows the lines that can be formed in a picture, where each cell

represents the number of pixels composing them. The longest line is the one which

has 10 points (pixels). However, there is one line with 6 points and four other lines

composed by 5 points. The lines to be selected depend on the goal of the study.

In the HT calculation, the parameters ρ and θ can be restricted to find lines with a

particular slope or position in an image. Also the minimum number of pixels required

to conform a line (the minimum value of a peak p) can be determined. After making

some analysis in our work, we consider interesting to find vertical (90o), horizontal (0o)

and diagonal (45o) lines to differentiate digits. Since images have small size we select

lines with at least two pixels. Therefore, the Hough transform detected all possible

lines with those characteristics in four stages.

1. In the first stage the binary image is split horizontally into two rectangular equal

parts and the largest horizontal line is registered from each part of the image.

2. In the second stage, the binary image is divided vertically into two rectangular

equal parts and the largest vertical line is detected from each part of the image.

3. In the third stage, the image is divided by its principal diagonal and the largest

upper and lower parallel to this diagonal are found.

4. In the four stage, the image is divided by its secondary diagonal and the largest

upper and lower parallel to this diagonal are found.

The features considered in the classification were obtained from the information

of the selected lines. Every line has two points, the start and the end-point. The

coordinates (xi,yi) which specify the start-point and end-point of a straight line are

what we call straight (S) to specify the coordinate of lines of 0o and 90o. Besides,
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we called diagonal (D) to refer the coordinates of a diagonal lines (with 45o). We also

include the length (Le) of each line as an additional variable. Therefore, we have a total

of 5 variables for every line (4 corresponding to the coordinates and 1 corresponding to

the length). Since we use four straight lines and four diagonals to defined the shape of

an image, we record 40 resulting values per image. Graphically, examples of straight

and diagonal lines are depicted in Figure 3.8.

(a) Straight lines (b) Diagonal line

Figure 3.8: Examples of lines

During the calculation of the Hough transform, we observe that some digits do not

have all the lines we want to extract, that is 2 horizontal, 2 vertical, and 4 diagonal lines

to define the shape of the digit. In these cases, we replace the missing information by

assigning the coordinates and length of a single point. The coordinates of those points

are determined by the location of them in the image. Each replacement point is located

in accordance with the line that is missed. The replacements points for each missing

line are shown in Figure 3.3.

Circles detection

We also used the HT to detect circles in images. In an xy Cartesian plane (see

Figure 3.9), the circle with center coordinates (a,b) and radius r is the set of all points

(x,y) such that

(x−a)2 +(y−b)2 = r2 (3.3.8)

For a circle with radius r and center in the origin (0,0), equation 3.3.8 is rewritten
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Table 3.3: Missing straight lines

missing line graphically missing line graphically

horizontal up vertical left

horizontal down vertical right

principal diagonal secondary diagonal

as,

x2 + y2 = r2.

Then, the coordinates (x,y) in the Cartesian plane center in this origin are equal to

x = r cosφ

y = r sinφ ,

where φ is the angle that the radius forms with the x-axis, defined in a range (0,2π).

And, by axis translation, those coordinates center in (a,b) are equal to

x = r cosφ −a

y = r sinφ −b.

Resulting that

a = r cosφ − x

b = r sinφ − y.

The Hough transform finds all circles with an specific radius r, with an angle θ and

centered in the point (a,b) (see Figure 3.10). The accumulator array in this case has

3 dimensions given by the three parameters of equation 3.3.8. Then, each cell of the

accumulator array gives the number of pixels lying in a circle with parameters a, b and

r. The cell containing a peak represents the circle with highest number of pixels in

the image. However, the existence of a peak do not imply the presence of a circle in
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Figure 3.9: Cartesian plane

the image, because the number of pixels may be insufficient to form a circle. For that

reason, it is vital to specify for every radius, the number of pixels (value of the peak)

requires to get a circle. This is done in accordance with the circumference of a circle

given by

c = 2 π r. (3.3.9)

In our work, a circle is selected if at least the 80% of the points composing the cir-

cumference are lying on pixels. For our databases, we observe that in any case the

100% of the circle points are lying on the pixels of the digit. According to the size and

(a) Circles passing through

(x,y)

(b) Accumulator array

Figure 3.10: Hough transform

shape of the handwritten numbers, we fix the frequent radiuses of circles that can be

formed in the digits. We also analyze the alternative locations of those circles in order
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to fix the range of values of parameters a and b and select circles with radiuses equal

to 4, 5, 6, 7 and 8. Those values are chosen to capture the possible circles contained

in digits zero, six, eight and nine. In the case that a circle with r = 4 or r = 5 is found

in the upper part of the digit, another circle with similar radius is searched in the lower

part. This searching is done to find the two circles contained in digit eight. Finally,

the values of the variables selected for the classification are given by the radius and the

coordinates of the start and end-point of the selected circle. That represents a total of 5

variables per image corresponding to the circle detection, 4 values are the coordinates

of start and end-points and 1 value is the radius. Examples of circles found in the dig-

its are shown in Figure 3.11. In those cases where the digits do not have circles, these

(a) Radius=7 (b) Radius=4 (c) Radius=4

Figure 3.11: Examples of circles

variables assume value zero.

3.3.2. Euler number

The Euler number (E) is a measure of the topology of an image, specially used in

binary representation. The Euler number of binary images can be calculated based on

local measures, i.e., from pixel neighborhood relation. Suppose that we consider as

neighbors only the four pixels that share an edge (not a corner) with a particular pixel

(x,y). The neighbors are (x+1,y), (x−1,y), (x,y+1), and (x,y−1). In this situation

we have 4-connected neighbors and the connection is defined as 4-connectivity (see

Figure 3.12a). An alternative is to consider a pixel as connected not only by pixels

on the same row or column, but also by the diagonal pixels. The four 4-connected
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pixels plus the diagonal pixels are called 8-connected neighbors, and the connection

is defined as 8-connectivity (see Figure 3.12b). The alternative calculation of Euler

(a) 4-connectivity (b) 8-connectivity

Figure 3.12: Euler Number

number based on the connectivity is obtained differently in each case (Lin et al. (2006)

and Lin et al. (2007)). Denoting as E(4) and E(8) the euler number calculated by 4 or

8-connectivity respectively, then

E(4) =
(S1−S3 +2×X)

4

E(8) =
(S1−S3−2×X)

4
,

where S1 is the number of the following structures in the binary image

the S3 is number of the following structures that are in the binary image

and the X is the number of the following structures that are in the binary image

In our work we use the pixels neighborhood to find the Euler Number in 2D images,

which is the procedure used in some computational programs. Specifically, we use the

8-connectivity.
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3.3.3. Holes

The variable hole(H) is specially programmed for this work. It finds holes in the

digit and its location up and/or down. If the digit does not have a hole, the variable

assumes the value zero. We also consider the case of bigger holes which characterizes

the digit zero. In 3.13a the number zero has a bigger hole and in 3.13b the digit has

two holes, up and down.

(a) Bigger hole (b) Holes up and down

Figure 3.13: Hole variable

3.3.4. Right and left entries

The feature right entry (R) is programmed to find if a digit has a right entry and

if it is up or down. For example, the number five has a right up entry. The variable

left entry (L) finds if a digit contains a left entry located up, down or both, like a digit

three. If there is no entry, the variable assumes value zero. Examples of these variables

are shown in 3.14. In 3.14a the digit has an entry left down and also an entry right

up. The digit in 3.14b has two entry by left (up and down) and zero entry in the right.

The arrays in the figure indicate the orientation and location of the entries.

3.3.5. Cross in the center

The variable cross in the center (C) is defined to detect if a digit has a cross of the

digit trace in its center. The shape of a digit with this characteristic is shown in Figure

3.15. The number that contains exactly this shape in the center is digit eight. However,
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(a) L= down, R= up entry (b) L= up and down

Figure 3.14: Entry variables

we also consider a digit that has a middle cross to upwards or downwards like a nine

or six respectively. If the digit does not have cross in the center such as the digit one,

the variable assumes value zero.

Figure 3.15: Cross in the center variable

Examples of this feature are shown in Figure 3.16. In (a) the number has a complete

cross, in (b) the digit has a middle cross to downwards, and in (c) the nine has a middle

cross upwards.

(a) Cross in the center (b) Middle cross down (c) Middle cross up

Figure 3.16: Examples of cross in the center variable
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3.3.6. Extremes

The variable extreme (E) tries to define the contour of a digit by identifying four

extreme black pixels of it: the northernmost (En) , the southernmost (Es), the eastern-

most (Ee) and the westernmost (Ew) pixel. If there are more than one pixel occupying

one of these extreme location, the pixel situated nearest the central part of the image is

chosen. The values of the variable extreme are the coordinates of the extreme pixels.

As the extreme pixels are four, this variable is characterized by eight values. Examples

of this variable are shown in Figure 3.17 where the extreme pixels are depicted in red

color.

(a) (b)

Figure 3.17: Examples of extremes variable

3.3.7. Intersections

The variable intersections (I) is obtained considering the extreme pixels En,Es,Ee,

and Ew, previously defined. These pixels help to draw two imaginary lines in the im-

age. One of them goes from En to Es and the other line goes from Ee to Ew. Therefore,

the intersections variable counts the number of times that each imaginary line is inter-

cepted for the trace of the digit (continues trace that define the digit).

Due to we have two imaginary lines, the variable intersections has two values,

that is the number of intersections of each line. In the example (a) of Figure 3.18 the

variable has values (0,0) for both lines, while in example (b) the variable has values

(1,1). In Figure 3.18c the values of the variable are (0,1).
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(a) I= (0,0) (b) I= (1,1) (c) I= (0,1)

Figure 3.18: Examples of intersection variable

3.3.8. Distance

The distance variable is obtained by black pixels located as near as possible to

the corners of the image. The corner pixels are the black pixels of the digit located

at the northwest corner (coNW ), southwest corner (coSW ), northeast corner (coNE) and

southeast corner(coSE). Two distances are obtained from the coordinates of those pix-

els, the distance between the northeast and southwest corner pixels, denoted as dEW ,

and the distance between the northwest and southeast corner pixels denoted as dWE .

The distance used is the Euclidean. As results, two values per image are obtained, i.e.

dEW = d(coNE ,coSW ) and dWE = d(coNW ,coSE). Figure 3.19 illustrates the distances

of the digit nine.

Figure 3.19: Example of distance variable
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3.4. Probabilistic classification approach

Once the features that we use in the classification scheme are introduced, we give

some details of the two statistical approaches developed in this chapter.

In the first approach the classification is performed by the application of the Bayes’

Theorem. Being X the feature vector extracted of an image, the decision rule is stated

by deciding that an image belongs to the class ck if p(ck/X)> p(c j/X) for all k 6= j.

The posterior probability p(ck/X) is calculated using Bayes’ Theorem, as follows

p(ck/X) =
p(X/ck)p(ck)

p(X)
. (3.4.1)

Given that the ten classes of digits have almost the same proportion inside the databases,

in this dissertation we consider the same prior probability p(ck). Then, the posterior

probability can be expressed as

p(ck/X)∝ p(X/ck) , (3.4.2)

where p(X/ck) is the class-conditioned probability of a feature vector X . This prob-

ability is used to find p(ck/X), i.e., the membership probability to a class ck of an

image in the testing set with feature vector Xtest . In order to develop an appropriate

probabilistic background to find this probabilities, the variables involved in the classi-

fication are divided in categorical and quantitative, since we consider that each group

requires different technique to be statistically modelled. In the first group we include

the variables cross in the center (C), euler (E), hole (H), right entry (R) and left entry

(L), forming the feature vector called Xcat . In the second group, we consider the vari-

ables straight line coordinates (S), diagonal line coordinates (D), straight and diagonal

line length (Le), horizontal and vertical intersections (I) and extreme (Ex), composing

the feature vector denoted as Xquant . The training set is used to find the probability of

categorical and quantitative variables of each class expressed in equation 3.4.3. After

analyzing the data in training set we can conclude that each group of variables can be

treated as independent. In symbols, the probability that an image from training set with

feature vector X belongs to a class ck, is given by

P(X/ck)∝ P(Xcat/ck)×P(Xquant/ck). (3.4.3)
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To obtain the class-conditioned probabilities of the categorical feature vector we calcu-

late the join probabilities of occurrence of the five variables (C,E,H,R,L) for a given

class ck, using a frequentist procedure through the training set. Sometimes, this way

of calculation causes a problem due to the lack of observations in the combinations.

Besides, the analysis of data suggests that there exists dependence only among some

variables. To solve those troubles, we state by cross-validation that the best joint de-

pendence structure for categorical data can be defined by the specific scheme showed

in the following equation.

P(Xcat/ck)≈P(L/ck)×P(H/L, ck)×P(C/L, ck)×P(R/C, ck)×P(E/R, ck) (3.4.4)

The probability density function of quantitative data (S, D, Le, I, Ex) is modelled by

parametric estimation, assuming the multivariate normal distribution to calculate the

density inside each class, commonly used for integer-valued features [see Jain et al.

(2000)]. The density of an image with a feature quantitative vector Xquant given a class

ck, is obtained as follows

f (Xquant ,µ,Σ/ck) =
1√

|Σck |(2π)d
exp−

1
2 (x−µck )Σ

−1
ck

(x−µck )
′
, (3.4.5)

where the mean µ and covariance matrix Σ are estimated from training set in the refer-

ence class (equation 3.4.5). The probability density function of each class is valued at

the quantitative feature vector for every image in the test set. Moreover, the posterior

probability for categorical data in the test set is obtained by equation 3.4.4. Lastly,

assuming independence between quantitative and categorical data, the final posterior

probability that an image in the test set belongs to a class ck is given by equation 3.4.3.

The classification process is performed in two stages. In the first stage, we find

by cross-validation a cutting point (denoted as p) to classify a subset of the test set.

The cutting point value obtained is 0.999. That is, an image with a class probability

greater or equal to the cutting point is classified into this class. Otherwise, if none class

achieves the 0.999 of probability or more, the image is submitted to a second stage.

In the second stage we have a subgroup of images (called test2) that represents

the 16,29% of the test set. The procedure in this stage is similar to the previous one.
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However, in this case we consider as possible outcomes of each digit in test2, only a

pair of classes. These classes, denoted as ci and c j, are those that have the greatest

probabilities of occurrence in the first stage. Thus, we perform the application of

Bayesian rule by considering a particular feature vector with the variables considered

more discriminant between the classes ci and c j in each case. After the process is

finished, a digit is classified to a class with greater probability of both. Finally, the

test-error rate is calculated achieving a 4,3% for MNIST database and a test-error rate

of 9,7% in USPS dataset. Table 3.4 shows the classification rates for every number.

Table 3.4: Probabilistic approach results

database 0 1 2 3 4 5 6 7 8 9

MNIST 3.57% 2.82% 5.43% 5.05% 6.62% 4.82% 3.86% 7.78% 5.54% 7.53%

USPS 7.0% 8.0% 8.1% 14.5% 18.1% 11.1% 10.3% 9.5% 9.4% 4.0%

According with the results, the procedure has better performance in MNIST database

than in USPS. This behavior could be a consequence of the difficulty of digits in USPS

to be recognized. The results show that the digits with worse error rate are the seven

and nine in MNIST dataset and the digit three and four in the USPS dataset.

3.5. K nearest neighbor classification approach

In this approach, the classification is performed by the nearest neighbor method

[Cover (1968)], using the variables specially proposed in Section 3.3 for this kind of

problems 3.

By means of k-nearest-neighbor algorithm, the training set feature vectors are used

to classify the test set. An image is classified by a majority vote of its neighbors,

i.e., it is assigned to the class most common among its k nearest neighbors (majority

rule). The distance city-block, calculated as the sum of absolute differences, is chosen

3LeCun et al. (1998) and Smith et al. (1994) used all pixels of the image as feature vector, requiring

more computer memory and running time



3.5. K NEAREST NEIGHBOR CLASSIFICATION APPROACH 67

because it provides better performance with integer variables. With respect to the value

of the parameter k, there is no consensus in the bibliography in defining the adequate

number of k in nearest neighbor classification. Previous works [Hall et al. (2008)]

on nearest-neighbor classifiers held the value of k by cross-validation which is the

method that we use. Specifically, we choose 5 neighbors. The algorithm is applied to

the features defined in Section 3.3 following the sequential forward selection, already

explained in Section 2.3, in order to eliminate possible redundant information.

As a results of the sequential selection, 21 variables are included in the classifica-

tion of USPS database and 27 (5 additional different) variables in the MNIST database.

The excluded features are refereed to redundance information about coordinates of

straight and diagonal lines, coordinates of the extreme variable and the information

about circles in the image. The five additional variables included in the classification

of MNIST dataset are some coordinates of the extreme variable. One possible reason

to this discrepancy in the number of variables selected could be the fact that the USPS

set has more heterogeneity in digit shape. Thus, the extremes used in the variable do

not work as well as in MNIST dataset. The total error rate obtained for the MNIST

database is 3,65% and 4,39% for the USPS dataset. The outcomes for each database

are shown in Table 3.5.

Table 3.5: K- nearest neighbors results

database 0 1 2 3 4 5 6 7 8 9

MNIST 1.33% 0.79% 3.20% 5.64% 4.07% 4.15% 1.77% 3.40% 7.08% 5.25%

USPS 0.75% 1.52% 5.9% 6.3% 6.54% 3.91% 4.63% 1.36% 7.66% 4.2%

The results show that the digits with worse error rate in both databases are the three

and the eight. It is interesting to observe that in k-nearest neighbor the digits seven and

nine have much better error rates than digit eight, while in the probabilistic approach

occurs the opposite. This behavior may show a future line of investigation combining

both approaches in order to improve results.
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3.6. Conclusions and contributions

In general, previous work in handwritten digit recognition contemplate neural net-

work classifiers to perform the classification. In this paper we propose a method based

in a multivariate statistical approach. Our study is less sophisticated and obtain com-

petitive results in this area. Other authors work on this database usesing a baseline

nearest neighbor algorithm [see LeCun et al. (1998) and Smith et al. (1994)] to clas-

sify the digits directly by the pixels value (784 values per image). We perform the k

nearest neighbors technique on the feature vectors of the images (27 values per image)

which provides good results on the same dataset and requires less computer memory

and recognition time. The proposed variables were specially programmed for this work

and they can be easily generalized to be use in any digit database. As the variables are

calculated in binary image, we propose a novel method to binarize an image through

an optimization procedure that finds the best trace. In addition, we propose an alter-

native probabilistic approach with similar results than the k nearest rule. Differ from

other methods [see Bottou et al. (1994)], the proposed techniques permit to quantify

the individual contribution of the variables. They can also be applied easily to differ-

ent datasets and no changes in the values of the variables are observed by resizing the

image.

3.7. Future works

There are some natural extensions to this work that would help expand and strengthen

the results.

Firstly, we aim to combine the binarization method proposed in this dissertation

with other methods. We observe that our procedure is based on the trace of the digit,

while, for instance, the Otsu’ method [see Otsu (1979)] is based on minimizing the

variances between the blacks and white pixels. We are interested in setting out the

binarization problem in terms of a family of thresholds.

Secondly, we aim to analyzed the inclusion of different coefficients of weight for
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each variable, in accordance with their contribution in the classification process.

Finally, we are concerned about studying the combination of the classification pro-

cedures proposed in section 3.4 and 3.5. We think that the performance of K-nearest

neighbor technique could be improved, may be by adding some information about the

nearest neighbors [see Domeniconi et al. (2005), Han et al. (2001), Hastie and Tibshi-

rani (1996), Dudani (1976) and Bailey and Jain (1978)].

One extension that would be interesting is to estimate the posterior probability

by the application of the K-nearest neighbor classifier [Atiya (2005) and Fukunaga

and Hostetler (1975)]. In this regard, we already initiated some studies during the

development of this dissertation but without concluding results.
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CHAPTER 4

Functional Data Analysis for images

The main goal of this chapter is to build a link between functional data analysis and

digital images, in order to explore how this characterization can be useful in classifying

or recognizing images. Functional Data Analysis (FDA) has received increased atten-

tion during the last decade. It is a vast topic where there are still many open questions.

Recent and notable introductions to this application and computational methodologies

can be found in Ramsay and Silverman (2006) and Ferraty and Vieu (2010).

Functional data sprung in the last two decades since modern data loggers have

permitted to sample and store physical quantities at high frequencies and the Internet

made it easy and fast to share high quantity of information. For example, in meteorol-

ogy: temperatures, pressures and humidities if sampled every minute or every second

can be considered functional data. In finance: inter-diary stock prices can be seen

as functional. In engineering: per minute electrical energy demand and production

is functional. In medicine: measuring a patient temperature, pressure or heart beats

count every minute will generate functional data. In environmental sciences we can

find functional data sampling a river flow or the amount of CO2 in the air.

Clearly, data in many fields come to us through a process naturally described as

71
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functional. For instance, a random variable can be observed at different point in time

in a range (tmin, tmax), where the grid becomes finer and finer meaning that consecutive

instant are closer and closer. One way to analyze these data is to consider them as a

single observation over a continuum. The continuum is often time, but may also be the

spatial location, probability, wavelength, etc.

Similarly, an image can be analyzed as a set of functions where each row (or col-

umn) denoted as yi is a particular function that repeats n times with similar charac-

teristics. Usually, a functional datum for the replication i is seen as a set of discrete

measured values yi1, . . . ,yin. These values are converted to a function xi with values

xi(t) calculated for any desired argument value t.

Unfortunately, we rarely receive data in their functions form but they come in tab-

ular format. It is our task to transform all of them into functions, i.e., to transform

observations into functions. We propose the use of functional data analysis to reduce

image dimension through the extraction of functional principal components (FPCA).

As a first approximation to the classification problem under the functional data view-

point, we suggest selecting a group of representative FPCA of each image. Then,

we use their information as a measure of distance among the groups and perform the

classification. The problem of classifying landscape and non-landscape described in

Chapter 2 is used to give an example on how the proposed procedure works.

This chapter is organized as follows. In Section 4.1 we describe the basis func-

tions used in the application, to transform observations into functions. We describe

the Fourier basis expansion. Then, we analyze a particular case of Wavelet basis that

is, the Haar basis. We also give some alternatives to find the best number of K basis

functions, according with the smoothing implemented. Section 4.2 is devoted to ex-

plain the smoothing and penalization in FDA. In Section 4.3 we describe the functional

principal components characteristics. We give in Section 4.3.1 an application to im-

age classification using images scenes from the databases already described in Section

2.1 of Chapter 2. Finally, Section 4.4 provides some concluding remarks and discuss

different avenues for future research.
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4.1. Basis Functions

Generally, we are concerned about a sample of functional data, rather than just in

a single function x. Particularly, the observation of the function xi might consist on ni

pairs (ti j,yi j), for j = 1, . . . ,ni. Often, the argument values ti j are the same for each

record (as it is our case), but this is not always the case since in other contexts those

arguments may vary from record to record.

Functions will never be expressed in their closed analytical form, but as a linear

combination of a set of predefined functions called ”basis functions”.

Functional data analysis needs data to be represented as a function. The most

commonly used strategy is to work with a set of functional building blocks φk, for k =

1, . . . ,K, called basis functions. The basis functions are mathematically independent

of each other and they have the property to be approximated arbitrarily well to any

function, by taking a weighted sum or linear combination of a large number K of these

functions. Given a basis functions {φ1,φ2, . . .}, we want to create another function x(t)

that is the finite linear combinations of all φi and that approximates well our numerical

data. More precisely, given a set of numerical observations yi that we suppose are taken

at time ti, we want to choose a basis functions {φi} i ∈ I, a natural number K and a set

of coefficients {ci}, i = 1, . . . ,K, such that x(t) = ∑
K
k=1 ckφk(t)

x(ti) ≈ yi.
(4.1.1)

In matrix notation, we can write

x = c’Φ = Φ
′c. (4.1.2)

The construction of an actual function becomes a matter of selecting the basis func-

tions and the value of K. The coefficients ck are obtained in accordance with the se-

lected basis functions, as it is explained in section 4.2.

There are different basis functions commonly used in the literature. Examples of

these are: spline, polynomial, Fourier and Wavelet basis functions. One possible cri-

terion to select basis functions is according to the data structure if the data is periodic
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or non-periodic. Most applications involving non-periodic data frequently use spline

basis functions, while applications which involve periodic data often use Fourier basis.

Due to the observed periodicity in the data of image structure, we use in this disserta-

tion Fourier and wavelet basis, as a first analysis of them in functional data context.

4.1.1. Fourier Basis

Fourier basis allows us to decompose any periodic function into the sum of a set

of simple oscillating functions with different frequency and width, namely sines and

cosines. Following Ramsay and Silverman (2006) notation, the Fourier basis are given

by

x(t)≈ co + c1 sen(rwt)+ c2 cos(rwt)+ c3 sen(rwt)+ c4 cos(rwt)+ ... (4.1.3)

defined by the basis 
φ0(t) 1

φ2r−1(t) sinrωt

φ2r(t) = cosrωt.

(4.1.4)

where r = 1,2, ....., period
2 is the observed number of complete cycles, c0, . . . ,ck are

the elements ck of the coefficient matrix, i.e., the coefficients of the functional basis.

The period is determined by the parameter ω as 2π

ω
. In Figure 4.1 it is shown the

decomposition of the Fourier basis with different periods.

Figure 4.1: Fourier basis

If the values of t are equally spaced on m and the period is equal to the length
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of function m, then the basis functions are orthogonal, i.e., the product matrix φ ′φ is

diagonal.

4.1.2. Haar Basis

The Haar basis is the simple case of wavelet basis functions. The term wavelet

is referred to an oscillation with an amplitude that starts out at zero, increases, and

then decreases back to zero. Wavelets are a family of orthonormal basis functions

[see Mallat (2008)] obtained by translation and dilatation of a mother wavelet ψ with∫
ψ(t)dt = 0 and a father wavelet or scaling function1 φ with

∫
φ(t)dt = 1. From ψ

and φ , we can define

ψp,q(t) =
1√
2p

ψ(
t−2p q

2p ) = ψp,q(t) = 2
p
2 ψ(2p t−q). (4.1.5)

and

φp,q(t) =
1√
2p

φ(
t−2p q

2p ) = φp,q(t) = 2
p
2 φ(2p t−q). (4.1.6)

If we consider a binary scaling of the form a = 2p and bivalent2 translations b = q 2p,

where p = 0, ...,(n−1), and q = 0, ...(2p−1), we obtain a bivalent orthogonal wavelet

basis of the form

ψ(t) =


1 0≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise

(4.1.7)

and scaling function equals to

φ(t) =

 1 0≤ t < 1

0 otherwise
(4.1.8)

Therefore, the Haar wavelet basis expansion (see Figure 4.2) for the function x(t)

is given by

x(t)≈ c00 φ(t)+
n−1

∑
p=0

2p−1

∑
q=0

dp,qψp,q(t) (4.1.9)

1Also known as the wide wavelet
2A bivalent translation is given by q2p, that is a multiple integer q of the binary factor 2p.
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where φ(t)= 1 is the scaling function, c00 is the scaling coefficient, dp,q are the wavelet

coefficients and ψp,q are the wavelet basis functions. The length of the data function

is given by N = 2n, where n can be obtained as n = logN
log2 or n = log2 N. Therefore,

a disadvantage of using this kind of basis to image analysis is that it requires images

which one of the dimensions is equal to 2n.

Figure 4.2: Haar wavelet

4.1.3. Number of K basis

There is no consensus about what the number K of basis functions is more appro-

priate. A number of K too small implies that we may miss some important aspects of

the function. Larger K is better, although there is the risk to add noise or variation that

we want to avoid. One way to analyze the problem of selecting the number of K is by

the minimization of the mean squares error given by

MSE[x̂(t)] = Bias2[x̂(t)]+Var[x̂(t)], (4.1.10)

where the bias in estimating x(t) is given by

Bias[x̂(t)] = x(t)−E[ ˆx(t)],

and the variance of estimate x(t) is equal to

Var[x̂(t)] = E[{x(t)−E[ ˆx(t)]}2].
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However, other methods are preferable when the presence of outliers, in particular, the

minimization of E[| ˆx(t)−x(t)|]. Moreover, in literature the stepwise variable selection

(see 2.2.4 in chapter 2) is also used to find the adequate number of K, by adding basis

functions one after another, testing at each time whether the added function signifi-

cantly improves fit.

In the cases treated in our thesis, we have images of size n×m, then the maximum

number of basis functions is given by the min(n,m). Moreover, the number of func-

tions xi is the max(n,m). A perfect representation of functions xi is given when K is

this maximum.

4.2. Smoothing and penalization

Functional data analysis assumes that the curve being estimated is smoothed, but

this is not always true. Two possible strategies are described in the literature in this

regards. The first one considers smoothing the raw data and then performing the anal-

ysis, whereas the second one decides to leave the noise in the estimated function and

then smooth the results of the analysis. We choose to follow the latter method and thus

we smooth the results after the applications conducted in this chapter.

The goal in FDA is to fit the discrete observations y j, for j = 1, . . . ,n using the

model

y j = x(t j)+ ε j (4.2.1)

where ε j is the noise, disturbance or error that contributes a roughness to the raw data.

Therefore, the basis function expansion is used to obtain x(t) in matrix notation as

x = c’Φ = Φ
′c (4.2.2)

where c is the vector of coefficients ck with size K, and Φ is the functional vector

whose elements are the basis functions φk. May be one of the tasks in representing raw

data as functions is to attempt to filter out the noise as efficiently as possible.

There are three different methods considered [see Ramsay and Silverman (2006)]

to perform smoothing. The first one considers to smooth the function fitting the data
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by minimizing the sum of squared errors. The second one, to smoothes the function

by applying a penalization term, and the third method consists of including a smooth-

ing parameter in the penalization term that regulates the importance of the roughness

penalty term. We will briefly explain this techniques in the following subsections.

4.2.1. Smoothing by least squares

A simple linear smoother is obtained if we determine the coefficients of the expan-

sion ck by minimizing the least squares criterion given by

SMSSE(y/c) =
n

∑
j=1

[y j−
K

∑
k

ckΦk(t j)]
2. (4.2.3)

or in matrix term as

SMSSE(y/c) = (y−Φc)′(y−Φc) = ‖y−Φc‖. (4.2.4)

Taking derivatives of SMSSE with respect to c and solving for c, we can find the

estimate coefficient vector ĉ that minimizes SMSSE as follows,

ĉ = (Φ′Φ)−1
Φ
′y. (4.2.5)

The least squares criterion in 4.2.3 is adequate if we assume that the residuals ε j

about the true curve are independently and identically distributed with zero mean and

constant variance σ2. To deal with nonstationary and/or autocorrelated errors, we may

need to bring in a differential weighting of residuals by extending the least squares

criterion to the form

SMSSE(y/c) = (y−Φc)′W(y−Φc). (4.2.6)

where W is a symmetric positive definite matrix. If the variance-covariance matrix Σe

is known for the residuals ε j, then

W = Σ
−1
e ,

Then, the vector of expansion coefficient is equal to

ĉ = (Φ′WΦ)−1
Φ
′ W′y, (4.2.7)
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where, as it said, Φ is an n by K matrix that contains the values of the K basis functions

at the n sampling points, and y is the vector of discrete data to be smoothed.

4.2.2. Smoothing with penalization

A strong option for approximating discrete data to a function is to use the roughness

penalty or regularization approach. A commonly way to quantify the notion of rough-

ness is by a penalization term that measures the function’s roughness as the integrated

squared of the q derivative, i.e.,

PENq(x) =
∫

[Dqx(t)]2dt, where q≥ 2.

With the introduction of the penalization term, we need to modify the least squares fit-

ting criterion of equation 4.2.6. Let x(t) be the vector resulting from function evaluated

at the vector t of argument values. Thus, the least square criterion is defined as

SMSSE(y|x) = [y− x(t)]′W[y− x(t)].

The penalized residual sum of squares is defined as

PENSSE(y|x) = SMSSE(y|x)+PENq(x). (4.2.8)

Redefining the roughness penalty PENq(X) in matrix term we have

PEN(x) =
∫

[Dqx(t)]2dt = c′Rc, (4.2.9)

where R =
∫

Dqφ(s)Dqφ ′(s)ds contains the penalized basis functions and c is the co-

efficient vector. The coefficient matrix for smoothing with penalization is obtained

as

ĉ = (Φ′WΦ
′+R)−1

Φ
′Wy (4.2.10)

4.2.3. Smoothing with parametric penalization

This approach introduces a measure of the function’s roughness by including a

smoothing parameter in the SMSSE, as follows,
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PENSSEλ (y|x) = SMSSE(y|x)+λPEN(x) (4.2.11)

where λ is a smoothing parameter that measures the rate of exchange between fit to the

data and variability of the function x(t), quantified by the penalization term PEN(x).

The coefficient matrix forsmoothing with parametric penalization is obtained as

ĉ = (Φ′WΦ
′+λR)−1

Φ
′Wy (4.2.12)

4.3. Functional Principal Components

Functional Principal Components is a branch of Functional Data Analysis. It is

the analog of Multivariate Principal Components but applied to functional data. Put

simply, it is a technique that transforms a number of (possibly) correlated variables

into a (smaller) number of uncorrelated variables called principal components. The

counterpart of variables values xi j in the multivariate context are function values x(t)

in the functional context.

In the latter context, the principal component analysis can be defined as the task of

finding a linear combination of the functions values, such as

fi =
∫

ξ (t)xi(t)dt (4.3.1)

where ξ (t) is a weight functions and xi(t) are the function values. The fi represents

the principal component scores corresponding to the weight function ξ (t).

In functional data analysis, as we explained before, we can apply smoothing meth-

ods in preprocessing the data to obtain functional observations and/or we can incor-

porate it into the results, that is, into the principal component analysis. In FPCA the

smoothing is somewhat different in the sense that we may include into the function

the penalization or regularization term of the estimated principal component curves.

That is, we can apply smoothing or penalization to the functional principal compo-

nents (FPCA) by considering the options described in the previous Subsection 4.2.2

and 4.2.2.
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In the case of unsmoothed functional PCA, in order to find the components, we

used the sample variance PCASV of the principal component scores
∫

ξ xi over the

observations xi. Then, the first principal component weight function of equation 4.3.1

is chosen to maximize the PCA sample variance given by

PCASV = var(
∫

ξ1xi(t)) = N−1
∑

i
(
∫

ξ1xi(t))2, (4.3.2)

subject to:

∫
ξ1(t)2ds =

∫
ξ 2

1 = 1.

In the case of smoothed functional PCA, we aim to prevent the roughness of the

estimated principal component ξ from being too large. Then, the penalized sample

variance (PCAPSV) is obtained as

PCAPSV (ξ ) =
var(

∫
ξ xi)

‖ξ‖2 +PENp(ξ )
. (4.3.3)

Finally, a smoothing parameter λ can be introduce in the penalization term, which

regulates the importance of the roughness penalty term. Hence, the first principal

component weight function is chosen to maximize the penalized parametric sample

variance (PCAPPSV) that is obtained as

PCAPPSV (ξ ) =
var(

∫
ξ xi)

‖ξ‖2 +λPENp(ξ )
. (4.3.4)

In all applications shown in this chapetr we do not smooth the raw data, but smooth

the functional principal components.

4.3.1. Application with Fourier basis

As it was explained we perform functional principal components analysis on im-

ages in order to reduce their dimensions. We expect that the principal components give

us insights into patterns of variation amongst images to perform classification between

landscape and non-landscape image scenes (as described in Chapter 2). As we treat

the image in gray-level (see Introduction), the values of the functions are gray-color
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intensities. Then, the term image variability is referred in this work as the changes of

gray intensities.

The first application shown in this section employs the Fourier basis to perform the

extraction of the functional principal components. Then, we calculate the FPCA for

each gray-level image.

Given an image of size r× s, we convert the raw data as functional (see equation

4.1.3), by considering the maximum number of basis functions, that is, k = min(r,s).

Consequently, the number of functions xi is given by max(r,s). Next, we extract the

number of FPCA that jointly explain at least the 90% of the variability in the image. We

use different images from the WLW and GLP databases, already described in Section

2.1, Chapter 2. In the first analysis we do not smooth neither the functional data, nor

the principal components. The variability in all images considered, is explained in 90%

by four or five components.

Figure 4.3a shows an example of one of the images used to perform the analysis

using Fourier basis. The functions in this image are represented by their columns

because the max(r,s) = s.

An interesting analysis is to compare the functional principal component obtained

without penalization and with the maximum number of K fourier basis functions with

the principal components obtained in the multivariate case by considering the Fourier

coefficients as the variables. The results of the four principal components extracted to

the Example 1 in both cases are shown in Figures 4.4b and 4.4a.

(a) Original (b) Rotated

Figure 4.3: Example 1
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(a) PCA (b) FPCA

Figure 4.4: Example I: four FPCA-Fourier basis

As it can be seen, both plots are identical. This is as a consequence of the orthog-

onality of the Fourier basis functions, where the coefficient matrix of equation 4.2.5is

reduced to

ĉ = Φ
′y. (4.3.5)

Then, the FPCA without penalization using Fourier basis and the maximum k leads to

the same outcomes obtained by applying multivariate PCA over the Fourier coefficient

matrix.

Next, we include the penalization term in the FPCA by penalizing the curves with

the second derivative, i.e., with q = 2 (see equation 4.2.9). We also include the penal-

ized parameter λ = 0.1, chosen by cross-validation. The four penalized FPCA of the

Example I are in Figure 4.5. In order to have a better interpretation of the functional

principal component curves, we rotate the image as in Figure 4.3b. From the analysis

of the FPCA of Figure 4.5, we observe that the first component explains the 80% of

the total variability.

The first component contains the information about changes of color intensities in

the image. Its shape shows that the principal component scores has opposite sign in

both sides of the curve. These changes can be observed in the image, since the right

side of the Example 1 in Figure 4.3b has brighter intensities than the left side. The
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Figure 4.5: Example I:FPCA with penalization-Fourier basis

second FPCA in Figure 4.5 explains the 17.8% of the variability in the image. The

shape of this component seems to show the periodicity present in the image. It may

suggests that the difference between the left and right side of the picture, is located in

the center of it.

Another example (Example 2) is shown in Figure 4.6. For this image we extract

four FPCA that better explain the behavior of functions xi in the image. The functions

are represented by the rows of the image because the max(r,s) = r. From the analysis

Figure 4.6: Example 2

emerges that the first component explains almost 80% of the variability (see Figure

4.7). The shape of this curve represents the changes of color intensities contained in

the image. In this case, the first FPCA shows that in the center of the image the color

intensities change with respect to the rest of the curve. This variability can be observed
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in the image of Example 2, where the brighter color of the sun is located at the middle

of the landscape. The examples above seem to indicate a possible discriminant power

Figure 4.7: Example II: FPCA with penalization-Fourier basis

that the functional principal component may contain. Although we consider that fur-

ther analysis are needed to have a clear conclusion about this issue, specially in terms

of penalized functional principal component, in subsection 4.3.3 we conduct a prelim-

inary study about the performance of function principal component as a discriminative

variable of classification.

4.3.2. Application with Haar basis

The second application conducted in this chapter involves the Haar basis functions.

Due to the structure of these basis, one of the dimension of the image have to be N = 2n

(see Subsection 4.1.2). For that reason, we choose images with size r× s = 210×128.

We transform the raw data into functional, applying Haar basis functions, without

penalization. We use an arbitrary number of basis functions equals to K = 0.10×
min(r,s).

Then, we extract the number of principal component that jointly explains at least

the 90% of the total variability in the image. Although this is a simple case, we aim
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at comparing results obtained with Fourier basis and with Haar basis functions. The

FPCA extracted to the image of Example 3 are shown in Figure 4.9.

Figure 4.8: Example 3

(a) Fourier basis (b) Haar basis

Figure 4.9: Example III: FPCA, comparison between Haar and Fourier basis

After a brief preliminary analysis, we observe that there is no evident differences

between the FPCA extracted through both basis functions. However, we consider that

further studies have to be done in this regards, since penalization or complex situations

were not taken into account in the analysis.
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4.3.3. Classification with functional principal components

In this section we describe a line of investigation, still in progress, to use the FPCA

in the classification of digital images. We select a number of components that explain

the greatest percentage of variability in the image. Thus, those components are used in

the classification process to assign an image to a group.

Images used in this analysis come from the GLP database, already described in

Section 2.1 Chapter 2. Same size images (r×s) are required in order to have functional

components also with same size. Then, 100 images are selected, 52 landscape scenes

and 48 non-landscape scenes. In addition, all studies performed in this Section were

done with the application of Fourier basis functions.

The procedure that we propose consists of extracting all possible functional prin-

cipal components of every image to be classified. Then, we select a P number of them

as a way to reduce image dimension, in order to perform the classification. In the

application described in this chapter, the criterion considered is to choose the FPCA

that explain the greatest percentage of variability in the image. Specifically, we select

P = 4 FPCA that explain at least the 80% of the variability of each picture.

After selecting the FPCA, we work with the principal component to define a dis-

tance between the groups. In order to calculate the distances, we first obtain the vector

of the median of all FPCAs in each group, denoted as fpGi . We have tried also the

mean and trimmean3 to compare results. That is, given two groups, G1 and G2, for

every FPCAp, p = 1, . . . ,P, where P = 4, we calculate the median function of each

component for each group. Figure 4.10 shows the median, mean and trimmean curves

obtained for the first FPCA extracted from the 100 images. The red line corresponds

to landscape pictures (G1) and blue line corresponds to non-landscape images (G2).

Analyzing the median plot (lower panel of Figure 4.10), we observe that the curves of

both groups (landscape or non-landscape) present some significant differences given

by the peaks with opposite sign. Moreover, the curves contain noise given by differ-

ences between both groups that do not seem to be significant. This behavior is also

3The trimmean or trimmed mean is the mean excluding outliers.
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Figure 4.10: First functional principal component: measures

observed in the mean and trimmean plots. Therefore, in order to remove the noise and

keep the significant differences between both groups, we redefined the curves in term

of their significant values as follow

f̄pGi(h) =

 0 i f | fpGi(h)±mad[ fpGi]| < 0

fpGi(h) i f | fpGi(h)±mad[ fpGi]| > 0
(4.3.6)

where mad is the median absolute deviation of all values considered to evaluate fpGi .

The resulted curve is called the modified median, denoted as f̄pGi . The new plots for

the first functional principal component are shown in Figure 4.11.

In order to assign each image to the landscape or non-landscape group, we calculate

the distance of an image i to each group. For this calculation we introduce a weight

ωp to each FPCA, that is the average of the percentage of variability explained for the

FPCAp in each group. Hence, the distance between an image i and the first group (G1)

is given by

DiG1 =
P

∑
p=1

ωp d(FPCAip, f̄pG1), (4.3.7)
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Figure 4.11: First functional principal component: modified measures

and the distance between an image i and the second group (G2) is

DiG2 =
P

∑
p=1

ωp di(FPCAip, f̄pG2), (4.3.8)

where di is the Euclidean distance. Finally, an image is classified to group G1 if

DiG1 < DiG2, (4.3.9)

otherwise, it is assigned to group G2. The resulted error rate is 29%. Although the

error is not good enough, the degree of complexity of this analysis is very low. We are

working on improving this outcomes by inspecting some lines of research.

4.4. Conclusions and future works

Functional data analysis is a field relatively unexplored in the past but recently has

received increasing attention. Indeed, it represents an area with enormous potential for

researchers who want to extend the knowledge on image classification. Our work is
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simply a first step in this direction. We propose to continue this study by different lines

of investigation.

The use of principal component to perform classification (in the multivariate con-

text) does not necessarily lead to good results in term of classification rate, since the

classification success depends on the relative discriminant power of each component

to separate as much as possible the groups to be classified. Therefore, an interesting

future work could be to choose the functional principal components that maximize the

distances among the groups, instead of using those that explains the greater percentage

of image variability. With this regards it is also promising to study the functional prin-

cipal component scores in a multivariate context.

One of the assumption in functional data analysis is that the construction of the

functional observations xi using the discrete data yi j takes place independently for each

record i. However, our data , by construction, do not fulfill this assumption. Therefore,

other future avenue could explore in depth the classification of images using functional

principal component for dependent data [see Hörmann and Kokoszka (2010)].

We think that the use of functional data analysis techniques on other databases with

other types of images can shed light on the usefulness of such techniques. In addition,

another interesting line for future work (although unrelated to image classification) is

the application of these methods in image reconstruction as we believe functional data

analysis can be informative in the process of rebuilding an image.

Finally, a more complex future avenue is to study the image as a function R2→ R,

extending the functional data theory to this context.
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Final Conclusions and future works

This thesis deals with different statistical techniques to classify digital images. The

large number of applications in this field, ranging from the classical ones such as,

medical diagnosis, to the more modern ones such as iris recognition, have attracted

considerable research effort with many methods developed in the last few years. In

this dissertation, we proposed statistical methods to classify images by their content.

In addition, we suggest a group of variables to recognize handwritten digits by their

shape. We contribute to the field of image analysis in several ways.

Chapter 2 addresses the classification of images based in their content, an aspect

that prior research has been studied without agreement regarding the best method to

classify. We propose three features extracted directly from images to discriminate

groups. Specifically, we show the application of our proposal to separate landscapes

from non-landscapes scenes. Two databases come from different sources are used to

conduct the classification. The procedure is carried out by the application of two su-

pervised classifiers, the linear discriminant and the K-nearest neighbors techniques.

We achieve an error rate around 3.6%, which is better than the error rate obtained by

other authors to similar kind of scene classification. Our method has the benefit to be

91
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intuitive, easy and fast to calculate and uses known techniques. Moreover, we probe

that our methodology reports better classification rate than other methods such as, sup-

port vector machine technique. We applied both techniques to the same databases

and showed that our methods is superior as it classifies with an error rate around 4%

while support vector machine offers a 12.4% error-rate. Our results suggest that, K-

nearest neighbor technique and linear discriminant classification might be a relevant

techniques in the classification of images by their content.

With regards to future works in scene classification, we aim at exploring in depth

the analysis of the spectral density to discriminate images with different contents, such

as textures. In addition, we are interested in applied our procedure to other databases.

Chapter 3 deals with handwritten digit classification. We suggest the calculation of

variables that detect the shape and geometry of numbers. All the variables used in the

classification were specially programmed for this work. Since the features are calcu-

lated using binary images, we propose a novel method to find an optimum threshold

to binarize them. This methodology is concerned about finding the threshold that min-

imize the variability in the trace of the digit. We have worked with two well- known

databases, the MNIST and the USPS applying different statistical approaches. The first

one, the multivariate approach, is based on the application of the K-nearest neighbors

algorithm. The second one is a probabilistic approach that involves the use of the

Bayes’theorem. We achieve a classification rate around 3.5%. The main contribution

of this Chapter is that the procedure we propose is intuitive and easy to be generalized

to other digits databases or a images with different sizes with competitive classification

rates.

We have several lines of research already in progress to further explore and advance

knowledge to handwritten digit recognition. In particular we are interested in including

weights coefficients for the variables used in the classification, that will be selected in

accordance with their discriminative power. We are also concerned about improving

the classification procedure by the combination of the probabilistic and multivariate

approaches. One extension in which we are interested is on estimating the posterior

probability by the application of the K-nearest neighbor classifier. We believe that this
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line of research will produce more robust results.

In Chapter 4 we describe a line of investigation related with the use of functional

data analysis to classify images. We first propose to reduce image dimension by the ex-

traction of functional principal components of them. Then, we selected those compo-

nent that best discriminate the images of the groups, instead of those that best explain

the variability of the images. Finally, by using the more useful functional principal

component we perform the classification considering a previously defined distance or

semi distance. Due to this study is still in progress we do not have concluding results.

However preliminary results are promising and we are committed to pursue this line

of inquiry.

Our work has also implication for practice. Perhaps one of the most appealing

characteristic of this field of study is its practical application in various areas such

as medicine (e.g., diagnosis through images), security (e.g., face and iris recognition),

finance (e.g. detection of illegal bills) and communication (e.g., handwritten characters

recognition). Indeed, recent newspaper articles has emphasize the opportunities and

challenges of image classification. For instance, a recent article in a Spanish newspaper

(El País - June 14th) informed that the Internet search company Google was launching

its application to search images by content including colors and textures (as opposed to

its traditional service that searches images by keywords or labels) but it was severely

limited because the system is not able to identify objets. Practical applications of our

methods can add value to different companies and organizations that deal with image

classification dilemmas.

Summarizing, our work has provided more nuances to the understanding of image

classification by applying different statistical methods and developing different statis-

tical features. Yet, this a field where there is a lot to be done and learnt. Challenges

like improving methodologies or exploring potential classification tools are just a few

of the many that remain. It is our future responsibility as scholars to address them

successfully.
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