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Abstract

In this thesis, robust methods based on the notion of shrinkage are proposed for out-
lier detection and robust regression. A collection of robust Mahalanobis distances is
proposed for multivariate outlier detection. The robust intensity and scaling factors,
needed to define the shrinkage of the robust estimators used in the distances, are op-
timally estimated. Some properties are investigated, such as the affine equivariance
and the breakdown value. The performance of the proposal is illustrated through
the comparison to other robust techniques from the literature, in a simulation study
and with a real example of breast cancer data. The robust alternatives are also
reviewed, highlighting their advantages and disadvantages. The behavior when the
underlying distribution is heavy-tailed or skewed, shows the appropriateness of the
proposed method when we deviate from the common assumption of normality. The
resulting high true positive rates and low false positive rates in the vast majority of
cases, as well as the significantly smaller computational time show the advantages
of the proposal.

On the other hand, a robust estimator is proposed for the parameters that char-
acterize the linear regression problem. It is also based on the notion of shrinkages.
A thorough simulation study is conducted to investigate the efficiency with Normal
and heavy-tailed errors, the robustness under contamination, the computational
times, the affine equivariance and breakdown value of the regression estimator. It is
compared to the classical Ordinary Least Squares (OLS) approach and the robust
alternatives from the literature, which are also briefly reviewed in the thesis. Two
classical data-sets often used in the literature and a real socio-economic data-set
about the Living Environment Deprivation (LED) of areas in Liverpool (UK), are
studied. The results from the simulations and the real data examples show the
advantages of the proposed robust estimator in regression. Also, with the LED
data-set it is also shown that the proposed robust regression method has improved
performance than machine learning techniques previously used for this data, with
the advantage of interpretability.

Furthermore, an adaptive threshold, that depends on the sample size and the
dimension of the data, is introduced for the proposed robust Mahalanobis distance
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based on shrinkage estimators. The cut-off is different than the classical choice of
the 0.975 chi-square quantile providing a more accurate method to detect multivari-
ate outliers. A simulation study is done to check the performance improvement of
the new cut-off against the classical. The adjusted quantile shows improved per-
formance, even when the underlying distribution is heavy-tailed or skewed. The
method is illustrated using the LED data-set, and the results demonstrate the ad-
ditional advantages of the adaptive threshold for the regression problem.



Resumen

En esta tesis, se proponen métodos robustos basados en la noción de shrinkage para
la detección de at́ıpicos y la regresión robusta. Se propone una colección de dis-
tancias de Mahalanobis robustas para la detección de outliers multivariantes. Los
factores de intensidad y escala, necesarios para definir el shrinkage de los estimadores
robustos utilizados en las distancias, se estiman de manera óptima. Se investigan
algunas propiedades como la equivarianza af́ın y el breakdown value (valor de rup-
tura). El desempeño de la propuesta se ilustra mediante la comparación con otras
técnicas robustas de la literatura, en un estudio de simulación y con un ejemplo
real de datos de cáncer de mama. Las alternativas robustas también se revisan,
destacando sus ventajas y desventajas. El comportamiento cuando la distribución
subyacente es de cola pesada o asimétrica, muestra lo apropiado que es el método
propuesto cuando nos apartamos de la suposición común de normalidad. Las altas
tasas de verdaderos positivos y las bajas tasas de falsos positivos, en la gran mayoŕıa
de los casos, aśı como el tiempo de cómputo significativamente menor, muestran las
ventajas de la propuesta.

Por otro lado, se introduce un estimador robusto para los parámetros que ca-
racterizan la regresión lineal. También se basa en la noción de shrinkage. Se lleva
a cabo un estudio de simulación exhaustivo para investigar la eficiencia con erro-
res Normales y de cola pesada, la robustez bajo contaminación, los tiempos de
cómputo, la equivarianza af́ın y el valor de ruptura del estimador de regresión. Se
compara con el método Mı́nimos Cuadrados Ordinarios (OLS) clásico y las alter-
nativas sólidas de la literatura, que también se revisan brevemente en la tesis. Se
estudian dos conjuntos de datos clásicos que se utilizan a menudo en la literatura
y un conjunto de datos socioeconómicos reales sobre la privación del entorno vital
(LED) de las áreas de Liverpool (Reino Unido). Los resultados de las simulaciones y
los ejemplos de datos reales muestran las ventajas del estimador robusto propuesto
para regresión. Además, con el conjunto de datos LED también se muestra que el
método de regresión robusta propuesto presenta mejoras con respecto a las técnicas
de aprendizaje automático utilizadas anteriormente para estos datos, con la ventaja
de la interpretabilidad.
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Además, se introduce un recorte adaptativo, que depende del tamaño de la mues-
tra y la dimensión de los datos, para la distancia robusta de Mahalanobis propuesta,
basada en estimadores shrinkage. El valor de recorte es diferente a la opción clásica
del cuantil 0.975 de la chi-cuadrado, y proporciona un método más preciso para
detectar valores at́ıpicos multivariados. Se realiza un estudio de simulación para
verificar el rendimiento del nuevo punto de corte respecto al clásico. El cuantil ajus-
tado muestra un desempeño mejorado, incluso cuando la distribución subyacente es
de cola pesada o asimétrica. El método se ilustra utilizando el conjunto de datos
LED y los resultados demuestran las ventajas adicionales del recorte adaptativo para
el problema de regresión.



Contents

Acknowledgements i

Published and submitted contents iii

Abstract v

Resumen vii

1 Introduction 21
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Robust outlier detection 27
2.1 Minimum Covariance Determinant (MCD) . . . . . . . . . . . . . . . 27
2.2 Adjusted Minimum Covariance Determinant (Adj MCD) . . . . . . . 29
2.3 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Orthogonalized Gnanadesikan-Kettenring (OGK) . . . . . . . . . . . 31
2.5 Comedian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Robust outlier detection based on shrinkage 35
3.1 Location parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Dispersion parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Proposed Robust Mahalanobis Distances . . . . . . . . . . . . . . . . 41
3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 𝑡3-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Exponential distribution . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Summary and selection of one of our proposed distances . . . 44

3.5 Properties of the estimator . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.1 Correlation and affine equivariance . . . . . . . . . . . . . . . 45
3.5.2 Breakdown value . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.3 Computational times . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Real data-set example . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents x

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Robust regression 55

4.1 Least Absolute Deviation (LAD) regression . . . . . . . . . . . . . . . 55

4.2 M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 R-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Generalized M-estimator . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Least Median of Squares (LMS) regression . . . . . . . . . . . . . . . 57

4.6 Least Trimmed Squares (LTS) regression . . . . . . . . . . . . . . . . 57

4.7 S-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Generalized S-estimator . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 MM-estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 Covariance approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Robust and efficient weighted least square (REWLSE) . . . . . . . . 59

4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Robust regression based on shrinkage 61

5.1 Shrinkage reweighted regression estimator . . . . . . . . . . . . . . . 61

5.2 Simulation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Computational times . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Equivariance properties . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Breakdown property . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Real data-set examples . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7.1 Star data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7.2 Hawkins-Bradu-Kass data . . . . . . . . . . . . . . . . . . . . 76

5.7.3 Living Environment Deprivation data . . . . . . . . . . . . . . 76

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Adjusted quantile 83

6.1 Estimating the adjusted threshold . . . . . . . . . . . . . . . . . . . . 84

6.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2 𝑡3-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.3 Exponential distribution . . . . . . . . . . . . . . . . . . . . . 91

6.3 Real data-set example . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusions and Future research lines 97

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Appendix A Proofs from Chapter 3 103

A.1 Proof of Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.3 Proof of Proposition 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents xi

Appendix B Tables from Chapter 3 107
B.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Multivariate Student-t distribution with 3 d.g. . . . . . . . . . . . . . 113
B.3 Multivariate Exponential distribution . . . . . . . . . . . . . . . . . . 117

Appendix C Figures from Chapter 3 119

Appendix D Tables from Chapter 5 131

Bibliography 133



List of figures

2.1 Star data with 97.5% tolerance ellipses corresponding to MD and RMD. . . . . . 28

3.1 Standardized data with the “multivariate boxplot”. . . . . . . . . . . . . . . 50
3.2 Some of the alternative methods detected outliers belonging to the

50% of the most central data. . . . . . . . . . . . . . . . . . . . . . . 52
3.3 RMD-S detected outliers that belong to the 50% of the most central

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 𝑀𝑀𝑆𝐸(�̂�) with 𝑝 = 5, 𝑛 = 100, 𝛿 = 10%. . . . . . . . . . . . . . . . 66
5.2 (Zoom) 𝑀𝑀𝑆𝐸(�̂�) with 𝑝 = 5, 𝑛 = 100, 𝛿 = 10%. . . . . . . . . . . 67
5.3 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5, 𝑛 = 100 and 𝛿 = 10%. . . . . . 67
5.4 (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 10%. . . . . . 68
5.5 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 20%. . . . . . . . . . . 68
5.6 (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 20%. . . . . . 69
5.7 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 30 and 𝛿 = 10%. . . . . . . . . . 69
5.8 (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 30 and 𝛿 = 10%. . . . . . 70
5.9 Star data-set with OLS and SR regression fit. . . . . . . . . . . . . . 75
5.10 Correlation matrix for LED index data-set. . . . . . . . . . . . . . . . 77
5.11 Cross-validated 𝑅2 and median values (dashed line), with pca. . . . . 79
5.12 Cross-validated MSE and median values (dashed line), with pca. . . . 79
5.13 Cross-validated 𝑅2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.14 Cross-validated MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.15 Cross-validated 𝑅2 and median values (dashed line), for both pca and

spca. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Simulated 𝑝𝑛(𝛿) for multivariate Normal distributions with different
sample sizes (𝑥−axis) and dimensions 𝑝 ≤ 10. . . . . . . . . . . . . . 85

6.2 Slopes of lines from Figure 6.1 plotted against dimension 𝑝. . . . . . . 86
6.3 Simulated 𝑝𝑛(𝛿) for multivariate Normal distributions with different

sample sizes (𝑥−axis) and dimensions 𝑝 > 10. . . . . . . . . . . . . . 86
6.4 Slopes of lines from Figure 6.3 plotted against dimension 𝑝. . . . . . . 87
6.5 Cross-validated 𝑅2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Cross-validated MSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



List of figures xiii

7.1 fMRI scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.1 Standardized data with the “multivariate boxplot”. . . . . . . . . . . . . . . 119
C.2 Detected outliers by MCD. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.3 Detected outliers by Adjusted MCD. . . . . . . . . . . . . . . . . . . . . . 120
C.4 Detected outliers by Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.5 Detected outliers by OGK. . . . . . . . . . . . . . . . . . . . . . . . . . . 120
C.6 Detected outliers by COM. . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.7 Detected outliers by RMD-S. . . . . . . . . . . . . . . . . . . . . . . . . . 121
C.8 MCD detected outliers that belong to the 50% of the most central data. . . . . . 121
C.9 MCD detected outliers that belong to the 50% of the most central data. . . . . . 122
C.10 MCD detected outliers that belong to the 50% of the most central data. . . . . . 122
C.11 Adjusted MCD detected outliers that belong to the 50% of the most central data. 122
C.12 Adjusted MCD detected outliers that belong to the 50% of the most central data. 123
C.13 Adjusted MCD detected outliers that belong to the 50% of the most central data. 123
C.14 Kurtosis detected outliers that belong to the 50% of the most central data. . . . 123
C.15 Kurtosis detected outliers that belong to the 50% of the most central data. . . . 124
C.16 Kurtosis detected outliers that belong to the 50% of the most central data. . . . 124
C.17 Kurtosis detected outliers that belong to the 50% of the most central data. . . . 125
C.18 Kurtosis detected outliers that belong to the 50% of the most central data. . . . 125
C.19 OGK detected outliers that belong to the 50% of the most central data. . . . . . 126
C.20 OGK detected outliers that belong to the 50% of the most central data. . . . . . 126
C.21 OGK detected outliers that belong to the 50% of the most central data. . . . . . 127
C.22 OGK detected outliers that belong to the 50% of the most central data. . . . . . 127
C.23 OGK detected outliers that belong to the 50% of the most central data. . . . . . 128
C.24 Comedian detected outliers that belong to the 50% of the most central data. . . 128
C.25 Comedian detected outliers that belong to the 50% of the most central data. . . 129
C.26 RMD-S detected outliers that belong to the 50% of the most central data. . . . . 129



List of tables

3.1 Combinations of location and dispersion . . . . . . . . . . . . . . . . 41
3.2 True positive rates, with Normal distribution. . . . . . . . . . . . . . 43
3.3 True positive rates, with Normal distribution. . . . . . . . . . . . . . 43
3.4 Simulation results for correlated data. . . . . . . . . . . . . . . . . . . 46
3.5 True posive rates and false positive rates of RMD-S for transformed

data, 𝜆 = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 True posive rates and false positive rates of RMD-S for transformed

data, 𝜆 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Simulation results for breakdown value. . . . . . . . . . . . . . . . . . 48
3.8 Computational times with Normal data, 𝛿 = 5 and 𝜆 = 0.1. . . . . . . 49
3.9 Detected outliers inside and outside the fences. . . . . . . . . . . . . . 51
3.10 Detected outliers inside the “box” with the 50% of the most central

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.11 Computational times for each method with the WDBC data-set. . . . 53

5.1 Finite sample efficiency in case of Normal errors, scenario [NE] . . . . 65
5.2 MSE in case of 𝑡−student distributed errors, scenario [TE] . . . . . . 65
5.3 Computational times with Normal distribution 𝑝 = 5 and 𝑛 = 100 . . 70
5.4 Computational times with Normal distribution 𝑝 = 30 and 𝑛 = 500 . 70
5.5 𝑀𝑀𝑆𝐸𝜆(�̂�

𝑆𝑅
𝑛𝑒𝑤) for regression and y-equivariance . . . . . . . . . . . 72

5.6 𝑀𝑀𝑆𝐸𝜆(�̂�
𝑆𝑅
𝑛𝑒𝑤) for x-equivariance . . . . . . . . . . . . . . . . . . . . 73

5.7 MMMSE and MMBias, 𝑝 = 5 . . . . . . . . . . . . . . . . . . . . . . 73
5.8 MMMSE and MMBias, 𝑝 = 30 . . . . . . . . . . . . . . . . . . . . . . 74
5.9 Estimation of intercept and slope and detected outliers with star data. 75
5.10 𝑅2 for each method with stars data-set. . . . . . . . . . . . . . . . . . 76
5.11 Estimation of the parameters and detected outliers with HBK data. . 76
5.12 Adjusted 𝑅2 for each method with HBK data-set. . . . . . . . . . . . 76
5.13 𝑅2 with (pca transformed) LED index data-set. . . . . . . . . . . . . 78
5.14 Median cross-validated 𝑅2 with (pca transformed) LED index data-set. 79
5.15 Median cross-validated 𝑅2. . . . . . . . . . . . . . . . . . . . . . . . . 81
5.16 Results for the model estimated by SR with spca transformation and

the 𝑅2 for RF and GBR. . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of tables xv

6.1 FPR for Normal data with 𝛼 = 0%. . . . . . . . . . . . . . . . . . . . 88
6.2 𝐹−scores in case of Normal data. . . . . . . . . . . . . . . . . . . . . 88
6.3 FPR for 𝑡3-distributed data with 𝛼 = 0%. . . . . . . . . . . . . . . . 89
6.4 𝐹−scores in case of 𝑡3-distributed data. . . . . . . . . . . . . . . . . . 90
6.5 FPR for exponential distributed data with 𝛼 = 0%. . . . . . . . . . . 91
6.6 𝐹−scores in case of exponential distributed data. . . . . . . . . . . . 91
6.7 𝑅2 measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8 Median cross-validated 𝑅2. . . . . . . . . . . . . . . . . . . . . . . . . 93
6.9 Results for the model estimated by SR with spca transformation and

the 𝑅2 for RF and GBR. . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.1 False positive rates with Normal distribution 𝛼 = 0. . . . . . . . . . . 107
B.2 True positive rates with Normal distribution. . . . . . . . . . . . . . . 108
B.3 True positive rates with Normal distribution. . . . . . . . . . . . . . . 109
B.4 False positive rates with Normal distribution. . . . . . . . . . . . . . 110
B.5 False positive rates with Normal distribution. . . . . . . . . . . . . . 111
B.6 Computational times with Normal data 𝛿 = 5 and 𝜆 = 1. . . . . . . . 111
B.7 Computational times with Normal data 𝛿 = 10 and 𝜆 = 0.1. . . . . . 112
B.8 Computational times with Normal data 𝛿 = 10 and 𝜆 = 1. . . . . . . 112
B.9 False positive rates with Student-t distribution with 3 d.f, 𝛼 = 0. . . . 113
B.10 True positive rates with Student-t distribution with 3 d.f. . . . . . . . 113
B.11 True positive rates with Student-t distribution with 3 d.f. . . . . . . . 114
B.12 False positive rates with Student-t distribution with 3 d.f. . . . . . . 115
B.13 False positive rates with Student-t distribution with 3 d.f. . . . . . . 116
B.14 False positive rates with Exponential distribution, 𝛼 = 0. . . . . . . . 117
B.15 True positive rates with Exponential distribution. . . . . . . . . . . . 117
B.16 False positive rates with Exponential distribution. . . . . . . . . . . . 118

D.1 MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 5 and 𝛿 = 10%. . . . . . . 131
D.2 MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 5 and 𝛿 = 20%. . . . . . . 131
D.3 MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 30 and 𝛿 = 10%. . . . . . 132
D.4 MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 30 and 𝛿 = 20%. . . . . . 132





CHAPTER 1

Introduction

The detection of outliers in multivariate data is an important task in Statistics
since that kind of observations can distort any statistical procedure. In data mining
and machine learning contexts, many standard techniques such as principal compo-
nent analysis and linear discriminant analysis are inherently susceptible to atypical
observations (Tarr et al. [2016]). The task of detecting multivariate outliers can
be useful in various fields (Vargas N [2003], Brettschneider et al. [2008], Hubert
et al. [2008], Hubert and Debruyne [2010], Perrotta and Torti [2010] and Choi et al.
[2016]). However, nowadays, there are several real situations from the outlier detec-
tion field, in which the data contains a large number of variables. For example, in
neuroimaging, data almost surely contains rare observations due to problems like ac-
quisition, pre-processing artifacts, or inter-subject variability. Functional Magnetic
Resonance Imaging (fMRI) is a concrete example. In the analysis of fMRI data, even
small movements of the head of the patients, or even the subject’s heartbeat and
breathing, may produce large artifacts in the signals and noise directly in the data
(Wager et al. [2005], Lazar [2008], Lindquist [2008], Monti [2011], Poline and Brett
[2012]). High-dimensional data are increasingly encountered in other applications of
statistics, e.g., in biological and financial studies (Chen et al. [2010] and Zeng et al.
[2015]), and also geochemical data (Reimann and Filzmoser [2000], Templ et al.
[2008]), which practically always contains outliers.

The definition of outlier is not unique, but they are generally defined as ob-
servations resulting from a secondary process, which differs from the background
distribution. This kind of data does not need to be especially high or low concern-
ing all values of the variables in the data-set. Thus, this is the reason why the task
of identifying multivariate outliers with the classical univariate methods commonly
fail. In the multivariate case, there must be considered both the distance of an ob-
servation from the centroid of the data, and the shape of the data. The covariance
matrix characterizes the shape of multivariate observations, and the Mahalanobis
distance (MD) (see Mahalanobis [1936]) is a well-known measure which takes it into
account.
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The classical Mahalanobis distance is defined for every 𝑝−dimensional observa-
tion x𝑖 of the multivariate sample {x1, ...,x𝑛}, as:

𝑀𝐷(x𝑖) =
(︁
(x𝑖 − �̂�) Σ̂−1 (x𝑖 − �̂�)𝑡

)︁1/2
,

where �̂� is the estimated multivariate location (sample mean) and Σ̂ is the estimated
covariance matrix (sample covariance matrix).

The problem with this definition is that the classical estimates of location and
covariance matrix are often highly influenced by the presence of outliers (Rousseeuw
et al. [1986], Rousseeuw and Van Zomeren [1990]). This means that a single extreme
observation or groups of observations, departing from the main data structure can
have a high influence on the distance measure. Two problems can arise, there might
be outliers with not a large MD value, which is called a masking problem, and not all
observations with large MD values are necessarily outliers, which is called swamping
problem (Hadi [1992]). The problems of masking and swamping arise due to the
influence of outliers on classical location and scatter estimates (sample mean and
sample covariance matrix), which implies that the estimated distance will not be
robust. The solution is to consider robust estimators to obtain a robust Mahalanobis
distance (RMD):

𝑅𝑀𝐷(x𝑖) =
(︁
(x𝑖 − �̂�𝑅) Σ̂

−1
𝑅 (x𝑖 − �̂�𝑅)

𝑡
)︁1/2

, (1.1)

where �̂�𝑅 and Σ̂𝑅 are robust estimators of centrality and covariance matrix, respec-
tively.

For multivariate normally distributed data, the distribution of the classical squared
Mahalanobis distance, 𝑀𝐷2, is known (Gnanadesikan and Kettenring [1972]) to be
chi-squared with 𝑝 (the dimension of the data) degrees of freedom, i.e., 𝜒2

𝑝. Then,
the adopted rule for identifying the outliers is selecting the threshold as the 0.975
quantile of the 𝜒2

𝑝. However, the squared RMD does not necessarily follow a chi-
squared distribution when the data are not Gaussian distributed. Thus, determining
exact cut-off values for outlying distances continues to be a difficult problem and
has found much attention because no universally applicable method has been pro-
posed. Despite this fact, the 𝜒2

𝑝;0.975 quantile is often considered as the threshold
for recognizing outliers in the robust distance case, but this approach may have
some drawbacks. Evidence of this behavior is now well documented even in mod-
erately large samples, especially when the number of dimensions increases (Becker
and Gather [1999], Hardin and Rocke [2005], Cerioli et al. [2009] and Riani et al.
[2008]).

On the other hand, one special case in the multivariate space is the linear regres-
sion problem, which is widely used in numerous fields. Consider the linear regression
model:

𝑦𝑖 = 𝛼 + x𝑡
𝑖𝛽 + 𝜖𝑖 ,
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for 𝑖 = 1, ..., 𝑛, where 𝑛 is the sample size, 𝛼 is the unknown intercept, 𝛽 is the un-
known (𝑝× 1) vector of regression parameters, the error terms 𝜖𝑖 are i.i.d and they
are also independent from the 𝑝-dimensional carriers x𝑖 (often also called regressor
or explanatory variables).

The classical approach to estimate the parameters of the model is the Ordinary
Least Squares (OLS) estimator of Gauss and Legendre, which minimizes the sum of
squared residuals:

�̂�𝑂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑛∑︁
𝑖=1

(𝑦𝑖 − x𝑡
𝑖𝛽)

2 . (1.2)

However, OLS estimator is not robust to the presence of outliers. The efficiency
and breakdown point (bdp) are two traditionally used criteria to compare the ex-
isting robust methodologies. Since OLS has the smallest variance among unbiased
estimates when the errors are normally distributed, and there are no outliers, in
this scenario, OLS has maximum efficiency. Thus, the relative efficiency of the ro-
bust estimate compared to OLS when the error distribution is exactly Normal, and
the data is clean, is often considered as a measure to study the performance of the
methods and to compare them with each other. The bdp measures the proportion of
outliers an estimate can tolerate. Usually, the definition of finite sample bdp is used
(Donoho and Huber [1983]). Given any sample z = (z1, ..., z𝑛), with z𝑖 = (x𝑖, 𝑦𝑖),
where x𝑖 is of dimension 1× 𝑝, for all 𝑖 = 1, ..., 𝑛, denote by 𝑇 (z) an estimate of the
parameter 𝛽. Let ̃︀z be the corrupted sample where any 𝑞 of the original points of z
are replaced by arbitrary outliers. Then the finite sample bdp 𝛾* is defined as:

𝛾*(𝑇, z) = 𝑚𝑖𝑛
1≤𝑞≤𝑛

{ 𝑞
𝑛
: 𝑠𝑢𝑝̃︀𝑧 ||𝑇 (̃︀z)− 𝑇 (z)|| = ∞} ,

where || · || is the Euclidean norm. The asymptotic bdp is understood as the limit
of the finite sample bdp when 𝑛 goes to infinity. Intuitively, the maximum possible
asymptotic bdp is 1/2 because if more than half of the observations are contami-
nated, it is not possible to distinguish between the background data and the con-
tamination (Leroy and Rousseeuw [1987]). OLS has a finite sample bdp of 1/𝑛, i.e.,
the occurrence of even a single outlier can affect the results drastically. Therefore,
its asymptotic bdp is 0.

OLS estimator can be alternatively expressed as follows. Denote the joint vari-
able of the response and carriers as z = (x,y). Denote the location of z by 𝜇 and
the scatter matrix by Σ. Partitioning 𝜇 and Σ yields the notation:

𝜇 =

(︂
𝜇𝑥

𝜇𝑦

)︂
, Σ =

(︂
Σ𝑥𝑥 Σ𝑥𝑦

Σ𝑦𝑥 Σ𝑦𝑦

)︂
.

Traditionally they are estimated by the empirical mean �̂� and the empirical
covariance matrix Σ̂. OLS estimators of 𝛽 and the intercept 𝛼 can be written as
functions of the components of �̂� and Σ̂, namely

�̂� = Σ̂−1
𝑥𝑥 Σ̂𝑥𝑦, �̂� = �̂�𝑦 − �̂�

𝑡
�̂�𝑥 . (1.3)
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The drawback is that the classical sample estimators (sample mean and sample
covariance matrix) are sensitive to the presence of outliers. Through all these past
three decades there have been different approaches attempting the robustification
of the procedure of finding the regression parameters, by either changing the sum
of squares criteria in the definition of the OLS estimator from Equation 1.2 or us-
ing robust estimators in the analogous definition from Equation 1.3. Although no
consensus establishes which method is recommended in practical situations. The
diversity of data makes the estimation problem extremely difficult, because not all
available methods work well for high dimension, high sample size, not all are suf-
ficiently resistant to the presence of anomalous values, and are computationally
feasible at the same time.

In summary, there are three main issues when we are dealing with multivariate
data:

1. Robust outlier detection needs to be done.

2. A robust regression method is crucial in case of regression problems.

3. An accurate threshold needs to be used for the robust Mahalanobis distance.

In this thesis, we propose a solution to each of those issues. The approach is
going to be based on a notion, frequently used in finance and portfolio optimization,
known as shrinkage. It is widely used in those fields because its good performance
even for large dimension 𝑝 and small sample size 𝑛 problems (see Couillet and McKay
[2014], Chen et al. [2011] and Steland [2018]). Here, we focus on data with 𝑛 > 𝑝.
The shrinkage estimator relies on the fact that “shrinking” an estimator �̂� of a
parameter, towards a target estimator 𝑇 , would help to reduce the estimation error
because although the shrinkage target is usually biased, it also contains less variance
than the estimator �̂�. Therefore, under general conditions, there exists a shrinkage
intensity 𝜂, so the resulting shrinkage estimator would contain less estimation error
than �̂� (James and Stein [1992]).

�̂�𝑆ℎ = (1− 𝜂)�̂� + 𝜂𝑇 . (1.4)

The main advantage of using a shrinkage estimator is to obtain a trade-off be-
tween bias and variance. This approach can be applied to estimate both the location
and dispersion. In the case of covariance matrices, the shrinkage has the additional
advantage that it provides a positive definite and well-conditioned estimate, which
is of crucial importance whenever we have to invert that estimate to use it in the
definition of a Mahalanobis distance.

The contributions of this thesis to solve the previous list of issues are:

1. A robust outlier detection method is proposed, which uses the definition of a
robust Mahalanobis distance based on the notion of shrinkage (RMD-S).

2. For linear regression, a robust approach is proposed, based on the idea of
using robust estimators based on shrinkage in Equation 1.3 and weighting the
observations using RMD-S, which gives place to a robust shrinkage reweighted
(SR) regression estimator.



Chapter 1. Introduction 25

3. An adjusted quantile, which can be estimated adaptively from the data, is pro-
posed as the threshold for the robust Mahalanobis distance based on shrinkage,
giving place to a more accurate method of outlier detection: RMD-SAQ, and
it can be used in the weighting step of method SR which gives an alternative
method: SR-AQ.

On the other hand, we also contribute to the analysis of real data-sets of great
importance.

4. One of them is an outlier detection study on the Breast Cancer Wisconsin
(Diagnostic) Data-Set (WDBC), containing features from a digitized image of
a breast mass.

5. The other is the robust regression study of the Living Environment Depriva-
tion (LED) index. This measure allows studying the urban quality of life, an
essential matter for environmental research, citizens, and political actions.

1.1 Structure of the thesis

The structure of the thesis is the following. First, in Chapter 2, a review of the
most popular robust estimators in the literature for the definition of robust Maha-
lanobis distances is presented. Their properties and their drawbacks are analyzed.
The reviewed methods are the Minimum Covariance Determinant (MCD) estima-
tor, which is based on the computation of the ellipsoid with the smallest covariance
determinant that would encompass at least half of the data points. The adjusted
MCD (Adj MCD), which uses an adjusted quantile, instead of the classical quantile,
for the RMD based on MCD. Kurtosis method, based on the analysis of the projec-
tions of the sample points onto a certain set of directions obtained by maximizing
and minimizing the kurtosis coefficient of the projections, and some random direc-
tions generated by a stratified sampling scheme. The Orthogonalized Gnanadesikan-
Kettenring (OGK ) estimator and the Comedian method (COM ).

Then, in Chapter 3, a collection of robust Mahalanobis distances based on the
notion of shrinkage are proposed for the outlier detection problem. The approaches
are studied through simulations and compared to the robust alternatives from the
literature. Simulations were performed with Normal data, and also with heavy-tailed
and skewed distributed data, to study the case in which we deviate from the normal-
ity assumption. From these studies, the proposed RMD with the best performance
is selected, and called RMD-S. Some properties are studied for RMD-S: the affine
equivariance, the breakdown value, and the performance under correlations. It is
shown that the proposed procedure has an advantageous behavior in all the simu-
lation results, especially when dimension increases. Finally, a real data-set example
about the Breast Cancer Wisconsin (Diagnostic) Data, illustrates that the proposed
method works well in practice and requires reasonable computational times, even
for large problems.

Chapter 4 summarizes the state-of-the-art about robust regression in the litera-
ture, their properties, their advantages, and disadvantages. The reviewed methods
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are: M-estimation, MM-estimation, Generalized M-estimation (GM), R-estimate,
S-estimation, Generalized S-estimation (GS), Least Absolute Deviation (LAD) re-
gression, Least Median of Squares (LMS) regression, Least Trimmed Squares (LTS)
regression, Covariance approach and the “robust and efficient weighted least square”
estimator (REWLSE).

Chapter 5 introduces the proposed robust regression approach called shrinkage
reweighted (SR) regression estimator. The performance of SR is compared to the
classical OLS and the other existing robust alternative methods. The advantages
of using the shrinkage are shown in the simulation study. SR approach yields com-
petitive results compared to the alternatives from the literature for the regression
problem, even in high dimension, heavy-tailed distributed errors, large contamina-
tion or transformed data. Furthermore, SR is quite stable computationally. Finally,
the results with the real data-set examples bear out with the conclusions from the
simulation study. Especially with the Living Environment Deprivation (LED) index
example, where SR approach provides an improvement with respect to classical OLS
and machine learning techniques RF and GBR while maintaining the advantage of
interpretability.

In Chapter 6, an adjusted quantile is proposed as the threshold for the robust
distance RMD-S introduced in Chapter 3, because the latter uses the classical chi-
squared quantile as the cut-off value for detecting outliers in multivariate data.
The adaptive approach RMD-SAQ was studied by means of simulations that show
the efficiency improvement, even when the underlying distribution is heavy-tailed
or skewed, evidencing the advantages of the adjusted quantile even when we de-
viate from the common assumption of normality. On the other hand, the overall
improvement in performance is reflected in the rest of simulation scenarios, when
the adaptive threshold is considered. Finally, the LED index example is studied
to investigate if the estimated model can be improved with the introduction of the
adjusted quantile, which is referred to as method SR-AQ. In summary, the use of
the adaptive threshold provides advantages in robust outlier detection and robust
regression.

Finally, Chapter 7 provides general conclusions and the proposed continuity of
the research lines for future work.



CHAPTER 2

Robust outlier detection

In multivariate data, the presence of outliers is of crucial importance. The robust
Mahalanobis distance (RMD) is commonly used for detecting multivariate outliers,
because the classical version uses the sample estimators, which are sensitive to the
presence of atypical values. The definition for an RMD is not unique because several
robust estimators of location and covariance matrix from the literature can be used
to define it (Equation 1.1). In this chapter, a review is made of some of the most
used robust estimators for this task.

2.1 Minimum Covariance Determinant (MCD)

The MCD estimator was proposed by Rousseeuw [1985], and it consists on deter-
mining the subset 𝐻 of observations of size ℎ which minimizes the determinant of
the sample covariance matrix, computed from only these ℎ points. The choice of
ℎ determines the robustness of the estimator, in fact, it is a compromise between
robustness and efficiency. The breakdown value of the MCD estimator is (𝑛− ℎ)/𝑛
approximately. Thus, ℎ = 0.75𝑛 gives a breakdown value of approximately 25%.
Once this subset of size ℎ is found, it is possible to estimate the centrality (�̂�𝑀𝐶𝐷)
and the covariance matrix (Σ̂𝑀𝐶𝐷), based only upon that subset, and they will be
robust estimates.

𝐻 = {set of ℎ points : |Σ̂𝐻 | ≤ |Σ̂𝐾 |,
for all subsets K s.t. #𝐾 = ℎ}

�̂�𝑀𝐶𝐷 =
1

ℎ

∑︁
𝑖∈𝐻

x𝑖

Σ̂𝑀𝐶𝐷 =
1

ℎ

∑︁
𝑖∈𝐻

(x𝑖 − �̂�𝑀𝐶𝐷)(x𝑖 − �̂�𝑀𝐶𝐷)
𝑡 ,

where |𝐴| denotes the determinant of the matrix 𝐴, and #𝐾 denotes the cardinality
of the subset 𝐾.
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Using the MCD robust estimators in the definition of the Mahalanobis distance
gives place to a robust measure.

𝑅𝑀𝐷𝑀𝐶𝐷(x𝑖) =
(︁
(x𝑖 − �̂�𝑀𝐶𝐷) Σ̂

−1
𝑀𝐶𝐷 (x𝑖 − �̂�𝑀𝐶𝐷)

𝑡
)︁1/2

. (2.1)

The rule in this approach for detecting outliers is usually based on the classical
threshold 𝑐 = 𝜒2

𝑝;0.975, i.e., the 0.975 quantile of the 𝜒2 distribution with 𝑝 degrees
of freedom. When the distance of an observation x𝑘 is higher than the cut-off,
𝑅𝑀𝐷𝑀𝐶𝐷(x𝑘) > 𝑐, the observation is declared as an outlier.

Figure 2.1 shows an example of the difference between considering robust and
non-robust Mahalanobis distance to detect outliers. The observations are from the
Hertzsprung-Russell Diagram of the Star Cluster CYG OB1 (Leroy and Rousseeuw
[1987]). It contains 47 stars data. In the figure, there are the 97.5% tolerance ellipses
corresponding to the classical and a robust Mahalanobis distance. It is obvious how
the presence of outliers influences the ellipsoid corresponding to the threshold for
the classical Mahalanobis distance, masking the outliers 7, 9 and 14. Meanwhile,
the robust distance correctly detects the atypical observations.

Figure 2.1: Star data with 97.5% tolerance ellipses corresponding to MD and RMD.

The procedure to find the MCD estimates required naive subsampling for min-
imizing the objective function, but an improvement much more effective, the Fast-
MCD, was introduced by Rousseeuw and Driessen [1999] and the code is available
in Matlab (Verboven and Hubert [2005]). Unfortunately, Fast-MCD still requires
substantial running times for large dimension 𝑝, because the number of candidate so-
lutions grows exponentially with the dimension of the sample and, as a consequence,
the procedure becomes computationally expensive for even moderately sized prob-
lems.
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2.2 Adjusted Minimum Covariance Determinant

(Adj MCD)

For the RMD based on MCD estimators, the classical quantile 𝜒2
𝑝;0.975 is often used

as the threshold to detect outliers. The problem is that fixing this threshold value
is rather subjective in the robust distance case because there is no demonstration
of the true distribution of the squared robust Mahalanobis distance. Furthermore,
there is no reason why this fixed threshold should be appropriate for every data-set.
The cut-off value should be adjusted to the sample size (Reimann et al. [2005]). On
the other hand, if the data is clean and the observations come from a single mul-
tivariate Normal distribution, there are no outliers, no observations coming from a
different distribution, there are only extremes. In this case, the threshold should be
infinity.

Since the squared RMD does not necessarily follow a chi-squared distribution,
the problem of the selection of the cut-off value continues to be of crucial impor-
tance, because there is no consensus. Filzmoser et al. [2005] proposed to use an
adjusted quantile, instead of the classical choice. The adjusted threshold is esti-
mated adaptively from the data, but their proposal is defined for a specific robust
Mahalanobis distance, the one based on the MCD estimator.

The idea was based on measuring the difference between the empirical distri-
bution of the squared robust distances and the distribution considered in theory,
the chi-squared. Consider a sample {x1, ...,x𝑛} of dimension 𝑝. Let 𝐺(𝑢) be the
distribution function of 𝜒2

𝑝 and let 𝐺𝑛(𝑢) denote the empirical distribution function
of the squared robust Mahalanobis distance 𝑅𝑀𝐷𝑀𝐶𝐷(x𝑖) from Equation 2.1.

For multivariate normally distributed samples, 𝐺𝑛 converges to 𝐺. Therefore,
the next step is to compare the tails of 𝐺𝑛 and 𝐺 in order to detect outliers. The
maximum possible positive difference between the two distributions is defined as
𝑝𝑛(𝛿), where 𝛿 = 𝜒2

𝑝;0.98 is the quantile that define the tails. In case of clean multi-
variate normally distributed background data, the threshold should be infinity and
no observation should be declared as an outlier. In this case, observations with a
large RMD should be seen as extremes of the distribution. Therefore, it is necessary
to consider a critical value 𝑝𝑐𝑟𝑖𝑡, which will help to distinguish between outliers and
extremes, if the departure in the tails between 𝐺𝑛 and 𝐺 is higher enough. The
author derived the equation for the critical value 𝑝𝑐𝑟𝑖𝑡 by simulations and defined a
measure of outliers in the sample as:

𝛼𝑛(𝛿) =

{︂
0, if 𝑝𝑛(𝛿) ≤ 𝑝𝑐𝑟𝑖𝑡

𝑝𝑛(𝛿), if 𝑝𝑛(𝛿) > 𝑝𝑐𝑟𝑖𝑡
.

Then, in case of no contamination, i.e., no outliers, the maximum difference
between the empirical and the distribution considered in theory, the chi-squared,
should not be greater than the 𝑝𝑐𝑟𝑖𝑡 value. On the other hand, when the difference
(in the tail) between the two distributions is big enough (greater than the 𝑝𝑐𝑟𝑖𝑡 value),
then the 𝑝𝑛(𝛿) should be selected as the 𝛼 value for calculating the threshold 𝑐𝑛(𝛿),
which is determined as:
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𝑐𝑛(𝛿) = 𝐺−1
𝑛 (1− 𝛼𝑛(𝛿)) . (2.2)

Let us call this method Adj MCD. The idea of Filzmoser is an improved manner of
estimating the threshold adaptively from the data. This procedure can be applied to
any robust distance, other than the robust Mahalanobis distance based on the MCD
estimator, the one used by Filzmoser. The only difference is to properly estimate the
equations for the 𝑝𝑐𝑟𝑖𝑡 value based on the distance measure selected. The advantage
is that the cut-off is adaptively estimated from the data and it improves the false
positive rates, while maintaining the same true positive rates, except in some cases
where the true positive rates can also be slightly declining.

2.3 Kurtosis

Another approach is the one proposed by Peña and Prieto [2001] and Peña and Prieto
[2007], which is based on the idea that high or low values of the kurtosis coefficient
suggest the presence of outliers. The authors take the projections of the sample
points onto the set of directions obtained by maximizing and minimizing the Kurtosis
coefficient, and they also consider a set of random directions generated by a stratified
sampling scheme. The authors proposed to project the “𝑛” cloud of points in R𝑝 over
two new 𝑝−dimensional spaces: the first one obtained with the maximum kurtosis
orthogonal direction, and the second one with the minimum kurtosis orthogonal
direction, and also over a set of random directions. After obtaining the whole set
of directions, the next step is to determine a “measure of outlyingness” for each
observation (actually for their univariate projections 𝑧

(𝑗)
𝑖 ) as:

𝑟𝑖 = 𝑚𝑎𝑥1≤𝑗≤𝑑
|𝑧(𝑗)𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(z(𝑗))|

𝑀𝐴𝐷(z(𝑗))
,

where 𝑑 is the total number of directions in which the data are projected, the
univariate projections are z(𝑗) = (𝑧

(𝑗)
1 , ..., 𝑧

(𝑗)
𝑛 ), 𝑚𝑒𝑑𝑖𝑎𝑛 is the univariate median and

𝑀𝐴𝐷 denotes the Median Absolute Deviation (Gauss [1816], Rousseeuw and Croux
[1993], Leys et al. [2013]), which is a robust measure of the variability of a univariate
sample and it is defined as the median of the absolute deviations from the data’s
median:

𝑀𝐴𝐷(z(𝑗)) = 𝑚𝑒𝑑𝑖𝑎𝑛
(︁ ⃒⃒⃒
𝑧
(𝑗)
𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(z(𝑗))

⃒⃒⃒ )︁
.

With the above measure 𝑟𝑖, a given observation is considered as an outlier if the
condition 𝑟𝑖 being greater than a certain cut-off value holds. If the condition holds
for some 𝑖, a new sample composed of all observations whose 𝑟𝑖 is less than the cut-
off value is formed, and the procedure is applied again to the reduced sample. This
is repeated until either no additional observations satisfy that their 𝑟𝑖 is greater than
the cut-off value, or the number of remaining observations is less than ⌊(𝑛+𝑝+1)/2⌋.
Finally, a Mahalanobis distance is computed for all observations labeled as outliers
in the preceding steps, using the mean and the covariance estimator based upon the
remaining observations. Let 𝑈 be the set of observations not labeled as outliers by
the method, then the estimates of location �̂�𝐾 and covariance matrix Σ̂𝐾 (where the
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subscript 𝐾 stands as a notation for “Kurtosis”), based upon this subset 𝑈 defines
a robust Mahalanobis distance as:

𝑅𝑀𝐷𝐾(x𝑖) =
(︁
(x𝑖 − �̂�𝐾) Σ̂

−1
𝐾 (x𝑖 − �̂�𝐾)

𝑡
)︁1/2

.

The final step is using this Mahalanobis distance to recover observations “mis-
labeled” as outliers, i.e., if the observation 𝑖 /∈ 𝑈 has 𝑅𝑀𝐷𝐾(x𝑖) < 𝜒2

𝑝;0.99, then x𝑖

is included in 𝑈 . The process is repeated until no more such observations are found
or 𝑈 becomes the set of all observations.

This method is a powerful approach for robust estimation and outlier detection.
However, when the dimension 𝑝 of the sample space increases, the method wors-
ens its performance, and in the presence of correlation between the variables, the
method loses power (Marcano and Fermin [2013]). On the other hand, it is not very
efficient computationally because of the optimization problem associated with the
computation of the directions.

2.4 Orthogonalized Gnanadesikan-Kettenring (OGK)

Maronna and Zamar [2002] proposed the Orthogonalized Gnanadesikan-Kettenring
(OGK) estimator. It was the result of applying a general method to a pairwise
robust scatter matrix that may be non-positive definite, in order to obtain a positive-
definite matrix. The method was applied to the robust covariance estimator from
Gnanadesikan and Kettenring [1972], which calculated a robust covariance estimate
for two variables 𝑋 and 𝑌 based on the following identity.

𝑐𝑜𝑣(𝑋, 𝑌 ) =
1

4

(︀
𝜎(𝑋 + 𝑌 )2 − 𝜎(𝑋 − 𝑌 )2

)︀
.

where 𝜎 is a robust estimate of the standard deviation. The drawback is that
these pairwise estimates will not necessarily be positive definite. So, Maronna and
Zamar [2002] propose an eigen-decomposition based procedure to obtain positive-
definiteness. The variables in an eigenvector space are orthogonal, which means the
covariances are zero and it is sufficient to obtain robust variance estimates of the data
projected onto each eigenvector direction. In OGK procedure, the eigenvalues are
replaced with these robust variances, and the eigenvector transformation is applied
in reverse to yield a positive semi-definite robust covariance matrix. OGK estimate
is scale invariant of the original data matrix is robustly scaled, i.e., each component
is divided by its robust variance. The authors stated that the procedure could
be iterated, although it is not always better. They also find that using weighted
estimates may improve the performance, in which case the observations are weighted
according to their robust distances:

𝑅𝑀𝐷𝑂𝐺𝐾(x𝑖) =
(︁
(x𝑖 − �̂�𝑂𝐺𝐾) Σ̂

−1
𝑂𝐺𝐾 (x𝑖 − �̂�𝑂𝐺𝐾)

𝑡
)︁1/2

,

with �̂�𝑂𝐺𝐾 and Σ̂𝑂𝐺𝐾 the robust OGK estimates. They use hard rejection weights,
of the form 𝐼(𝑅𝑀𝐷𝑂𝐺𝐾 < 𝑐), where 𝐼(·) is the indicator function and 𝑐 is the
threshold value, which results from:
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𝑐 =
𝜒2
𝑝;𝛽 𝑚𝑒𝑑(𝑅𝑀𝐷𝑂𝐺𝐾1 , ..., 𝑅𝑀𝐷𝑂𝐺𝐾𝑛)

𝜒2
𝑝;0.5

,

where 𝑚𝑒𝑑 denotes the median, and 𝜒2
𝑝;𝛽 is the 𝛽-quantile of the 𝜒2

𝑝 distribution.
The observations have full weight unless their robust distance is greater than 𝑐, in
which case they will have zero weight.

2.5 Comedian

Sajesh and Srinivasan [2012] proposed a method, called the Comedian method to
detect outliers from multivariate data based on the comedian matrix estimator from
Falk [1997], which is also a robust estimate of scatter but it can be non-positive
semi-definite. With the Comedian method, a positive definite scatter matrix can
be obtained. The idea is based on the concept of comedian between two random
variables 𝑋 and 𝑌 , which is defined as:

𝐶𝑂𝑀(𝑋, 𝑌 ) = 𝑚𝑒𝑑((𝑋 −𝑚𝑒𝑑(𝑋))(𝑌 −𝑚𝑒𝑑(𝑌 ))) . (2.3)

The comedian is a robust measure of dependence between 𝑋 and 𝑌 . Based on
the median concept as a robust measure of location, there is a robust measure of
dispersion for a random variable 𝑋, which is the Median Absolute Deviation (MAD)
from the data’s median:

𝑀𝐴𝐷(𝑋) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|) .

A comedian matrix can be defined based on a multivariate version of (2.3). Let
x = {x1, ...,x𝑝} be the 𝑛 × 𝑝 data matrix with 𝑛 being the sample size and 𝑝 the
number of variables. Then the comedian matrix is defined as:

𝐶𝑂𝑀(x) = ( 𝐶𝑂𝑀(x𝑗,x𝑡) ) 𝑗, 𝑡 = 1, ..., 𝑝 . (2.4)

Sajesh and Srinivasan [2012] also defined the correlation median matrix, based
on the comedian matrix:

𝛿(𝑋) = 𝐷𝐶𝑂𝑀(𝑋)𝐷𝑡 ,

where 𝐷 is a diagonal matrix with diagonal elements 1/𝑀𝐴𝐷(x𝑖), 𝑖 = 1, ..., 𝑝.
Then, they adopted some transformations based on the eigenspace of the correlation
median matrix and projections of the data, to overcome the non-positive semi-
definiteness of the comedian matrix and to obtain robust estimates for location
�̂�𝐶𝑂𝑀 and scatter Σ̂𝐶𝑂𝑀 . The authors claim that the estimates can be improved
through an iterative process, by replacing in the first step 𝛿 by the estimated Σ̂𝐶𝑂𝑀

and repeat the other steps. For the outlier detection problem, a robust Mahalanobis
distance can be defined.

𝑅𝑀𝐷𝐶𝑂𝑀(x𝑖) =
(︁
(x𝑖 − �̂�𝐶𝑂𝑀) Σ̂−1

𝐶𝑂𝑀 (x𝑖 − �̂�𝐶𝑂𝑀)𝑡
)︁1/2

.

They defined the threshold value to detect outliers as
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𝑐 = 1.4826
𝜒2
𝑝;0.95 𝑚𝑒𝑑(𝑅𝑀𝐷𝐶𝑂𝑀1 , ..., 𝑅𝑀𝐷𝐶𝑂𝑀𝑛)

𝜒2
𝑝;0.5

.

Then, if any 𝑅𝑀𝐷𝐶𝑂𝑀(x𝑖) > 𝑐, the corresponding observation x𝑖 is labeled
as an outlier. By using this cut-off value and the robust Mahalanobis distance, a
weight function can be defined and robust estimates for location and scatter can
be obtained. The authors proved that these estimates are positive definite and
approximately affine equivariant. They also study the breakdown value through
simulations and the method showed good performance. Another conclusion of their
work was that the efficiency of the method increases with the increase in dimension
𝑝, as examined through various numerical studies.

2.6 Summary

Through this chapter, a review of some of the most used robust estimators of loca-
tion and covariance matrix is done. Rousseeuw [1985] proposed the MCD estimator
which has good properties but becomes computationally expensive for even mod-
erately sized problems. On the other hand, Filzmoser et al. [2005] proposed to
use an adjusted quantile for this particular RMD definition (Adj MCD), estimated
adaptively from the data. In general, the advantages over MCD with classical quan-
tile, are that it holds the same properties but the false positive rate gets decreased,
especially when there are no outliers in the data-set and the observations are gen-
erated from a Normal distribution. Peña and Prieto [2001] and Peña and Prieto
[2007] proposed the Kurtosis approach based on the idea that maximizing and min-
imizing the kurtosis coefficient is an indicator of the presence of outliers. It is a
powerful procedure for robust estimation and outlier detection. However, it has
some drawbacks when the dimension 𝑝 of the sample space grows, it is not very
efficient computationally and in the presence of correlation between the variables,
the method loses power. Maronna and Zamar [2002] proposed the OGK estimator,
applying a general method to the pairwise robust scatter matrix from Gnanadesikan
and Kettenring [1972]. With this procedure, a positive-definite scatter matrix can
be obtained, which is of great importance when it is used in the Mahalanobis dis-
tance since inversion of the covariance matrix is done. Sajesh and Srinivasan [2012]
proposed the Comedian method (COM ) to detect outliers from multivariate data
based on the comedian matrix estimator from Falk [1997]. Stated by their authors,
OGK and Comedian method seems to have good performance for high dimension
and good properties like high efficiency and approximate affine equivariance.





CHAPTER 3

Robust outlier detection based on shrinkage

In this section, a collection of RMD’s is proposed for outlier detection, especially
in high dimension. They are based on considering different combinations of robust
estimators of location and covariance matrix. Two basic options are considered for
the location parameter: a component-wise median and the 𝐿1 multivariate median
(Gower [1974], Brown [1983], Dodge [1987], Small [1990]). The notion of shrinkage
(Ledoit and Wolf [2003a], Ledoit and Wolf [2003b], Ledoit and Wolf [2004], DeMiguel
et al. [2013]) described in Chapter 1, is considered. Recall the shrinkage definition,
from Equation 1.4, which is based on the fact that shrinking a sample estimator to-
wards a target estimator would help to reduce the estimation error. The shrinkage
can be applied to both location and dispersion estimates, obtaining different combi-
nations to define robust Mahalanobis distances. In the case of covariance matrices,
the shrinkage provides positive definite and well-conditioned estimates, which is an
additional advantage when the matrix needs to be inverted in the definition of an
RMD. As for the covariance matrix, the proposed estimates consists on a shrink-
age estimator over special cases of comedian matrices (Hall and Welsh [1985], Falk
[1997]), as the sample estimator to base the shrinking on. The comedian matrix is a
robust estimator of scatter, and its definition is stated in Equation 2.4, Section 2.5,
Chapter 2, where it is also described in terms of its properties. The special cases of
comedian matrices that are proposed are based upon a location parameter, which
will be estimated using the robust estimator of centrality (or its shrinkage), in a
way that an RMD can be obtained with meaningful combinations of both location
and covariance matrix estimators. In this chapter, we analyze the best option for
shrinking the location and the scale. Through a simulation study, the satisfactory
practical performance is shown, especially when the dimension of the problem grows.
The computational cost is studied by both simulations and a real data-set example.

3.1 Location parameter

Let x = {x1, ...,x𝑝} be the 𝑛×𝑝 data matrix with 𝑛 being the sample size and 𝑝 the
number of variables. Based on the fact that the 𝑚𝑒𝑑𝑖𝑎𝑛 is a better choice in terms
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of robustness, we start by considering as a location estimator the component-wise
median:

�̂�𝐶𝐶𝑀 = (𝑚𝑒𝑑𝑖𝑎𝑛(x1), ...,𝑚𝑒𝑑𝑖𝑎𝑛(x𝑝)), (3.1)

where 𝑚𝑒𝑑𝑖𝑎𝑛 denotes the univariate median and (x𝑗) = (𝑥1𝑗, ..., 𝑥𝑛𝑗)
𝑇 for all

𝑗 = 1, ..., 𝑝 is the 𝑗-th column of x.

Another option is to consider a multivariate median �̂�𝑀𝑀 called 𝐿1−median
which is a robust and highly efficient estimator of central tendency (Lopuhaa and
Rousseeuw [1991], Vardi and Zhang [2002], Hubert [2011]). It is defined as:

�̂�𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛x𝑚, 𝑚∈{1,...,𝑛}
1

𝑛

𝑛∑︁
𝑖=1

||x𝑚 − x𝑖||1 . (3.2)

DeMiguel et al. [2013] proposed a shrinkage estimator over the sample mean,
towards a scaled vector of ones as the target. In the same way we propose to study
shrinkage estimators for both (3.1) and (3.2). Consider 𝜈𝜇e as the target estimator,
where e is the 𝑝−dimensional vector of ones, and consider �̂�𝐶𝐶𝑀 as the sample
estimator �̂�. Then, the shrinkage estimator over the component-wise median is:

�̂�𝑆ℎ(𝐶𝐶𝑀) = (1− 𝜂)�̂�𝐶𝐶𝑀 + 𝜂𝜈𝜇e .

The scaling factor 𝜈𝜇 and the intensity 𝜂 should minimize the expected quadratic
loss, that is:

min𝜈𝜇,𝜂 𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝐶𝐶𝑀) − 𝜇
⃦⃦2
2

]︁
s.t. �̂�𝑆ℎ(𝐶𝐶𝑀) = (1− 𝜂)�̂�𝐶𝐶𝑀 + 𝜂𝜈𝜇e,

(3.3)

where ‖x‖22 =
∑︀𝑝

𝑗=1 𝑥
2
𝑗 .

Proposition 1 The solution of the problem in (3.3) is:

𝜈𝜇 =
�̂�𝐶𝐶𝑀e

𝑝
, 𝜂 =

𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜈𝜇e‖22

]︀ . (3.4)

See the proof in Appendix A.1. Note that the denominator in the above ex-
pression (3.4) is estimable, but the numerator is not straightforward because 𝜇 is
unknown. Then, it is necessary to provide another expression for the numerator.
Chu [1955] investigated the distribution for the sample median estimator and ob-
tained the following result about the variance in presence of normality. Fix 𝑗, for
𝑗 ∈ {1, ..., 𝑝}:

𝜎2
�̂�𝐶𝐶𝑀𝑗

= 𝑉 𝑎𝑟(�̂�𝐶𝐶𝑀𝑗) =
𝜋

2𝑛
𝜎2
xj
.

Therefore, the numerator in the expression (3.4) for determining the 𝜂 in Propo-
sition 1 is:
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𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
= 𝐸

[︃
𝑝∑︁

𝑗=1

(�̂�𝐶𝐶𝑀𝑗 − 𝜇𝑗)
2

]︃

=

𝑝∑︁
𝑗=1

𝜎2
�̂�𝐶𝐶𝑀𝑗

=
𝜋

2𝑛

𝑝∑︁
𝑗=1

𝜎2
x𝑗
. (3.5)

We need to estimate 𝜎2
x𝑗

robustly, and we will do so as explained in the next
Section 3.2, with property (3.10). The estimate for 𝜂 in expression (3.4) can be
calculated as stated in Equation 3.11 in next Section 3.2.

On the other hand, consider 𝜈𝜇e again as the target estimator and consider
�̂�𝑀𝑀 as the sample estimator. Then, the shrinkage estimator over the multivariate
𝐿1−median is:

�̂�𝑆ℎ(𝑀𝑀) = (1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e .

The scaling factor 𝜈𝜇 and the intensity 𝜂 should minimize the expected quadratic
loss:

min𝜈𝜇,𝜂 𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝑀𝑀) − 𝜇
⃦⃦2
2

]︁
s.t. �̂�𝑆ℎ(𝑀𝑀) = (1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e,

(3.6)

where ‖x‖22 =
∑︀𝑝

𝑗=1 𝑥
2
𝑗 .

Proposition 2 The solution of the problem in (3.6) is:

𝜈𝜇 =
�̂�𝑀𝑀e

𝑝
, 𝜂 =

𝐸
[︀
‖�̂�𝑀𝑀 − 𝜇‖2

]︀
𝐸
[︀
‖�̂�𝑀𝑀 − 𝜈𝜇e‖2

]︀ . (3.7)

The proof is Appendix A.2. As in the previous case, the denominator in the 𝜂
expression (3.7) can be described as:

𝐸
[︀
‖�̂�𝑀𝑀 − 𝜇‖22

]︀
= 𝐸

[︃
𝑝∑︁

𝑗=1

(�̂�𝑀𝑀𝑗 − 𝜇𝑗)
2

]︃
=

𝑝∑︁
𝑗=1

𝜎2
�̂�𝑀𝑀𝑗

.

Bose and Chaudhuri [1993], Bose [1995] and Möttönen et al. [2010] investi-
gated the asymptotic distribution for the 𝐿1−median. In page 184, section 3, from
Möttönen et al. [2010], the authors describe the necessity of the following two as-
sumptions, for x a 𝑝−variate random vector with cdf 𝐹 , density function 𝑓 and
𝑝 > 1:

� (C1) The 𝑝−variate density function of x is continuous and bounded.

� (C2) The spatial median of the distribution of x is zero and unique.
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According to Theorem 2, page 185, section 3 in Möttönen et al. [2010], under
assumptions C1 and C2,

√
𝑛�̂�𝑀𝑀 →𝑑 𝑁𝑝(0, 𝐴

−1𝐵𝐴−1), where �̂�𝑀𝑀 is the observed
spatial median, and 𝐴 and 𝐵 are the following:

𝐴(x) =
1

||x||

[︂
𝐼𝑝 −

xx𝑡

||x||2

]︂
𝐵(x) =

xx𝑡

||x||2
.

In section 4, page 185 from Möttönen et al. [2010], the authors also provide an
estimation for the asymptotic covariance matrix 𝐴−1𝐵𝐴−1 of the spatial median.
They are assuming the true value �̂�𝑀𝑀 = 0 is zero (condition C2). Then they write
𝐴 = 𝑎𝑣𝑒{𝐴(x𝑖 − �̂�𝑀𝑀)} and �̂� = 𝑎𝑣𝑒{𝐵(x𝑖 − �̂�𝑀𝑀)} and prove that under C1 and
C2: 𝐴→𝑃 𝐴 and �̂� →𝑃 𝐵, which means that the estimators converge in probability
to the population values 𝐴 and 𝐵, respectively. This result is Theorem 3, section
4, page 185 from Möttönen et al. [2010]. According to the authors (stated in page
186), Theorems 2 and 3 suggest that the distribution of �̂�𝑀𝑀 can be approximated

by 𝑁𝑝

(︁
𝜇, 1

𝑛
𝐴−1�̂�𝐴−1

)︁
, where 𝐴(x𝑖) =

1
||x𝑖||2

(︁
𝐼𝑝 − x𝑖x

𝑡
𝑖

||x𝑖||22

)︁
and �̂�(x𝑖) =

x𝑖x
𝑡
𝑖

||x𝑖||22
, with

x𝑖 ∈ R𝑝, for each 𝑖 = 1, ..., 𝑛.

The asymptotic result is also given in page 9-11 of Becker et al. [2014] as well as
the estimate for the approximate covariance matrix on page 11. The assumptions in
that paper are analogous, but it can be seen that C2 assumption about the spatial
median being zero is not necessary, only that it is unique and the density function
𝑓 is bounded and continuous at 𝜇 (Section 1.4, page 9 from Becker et al. [2014]).
The difference is that when approximating the covariance matrix, the data should
be centered around the estimated spatial median.

The numerator 𝐸
[︀
‖�̂�𝑀𝑀 − 𝜇‖2

]︀
from the expression (3.7) can be approximated

with 𝑡𝑟𝑎𝑐𝑒
(︁

1
𝑛
𝐴−1�̂�𝐴−1

)︁
, as suggested by Möttönen et al. [2010]. Then the estima-

tors for 𝜈 and 𝜂 in Equation 3.7 would be estimated as:

𝜈𝜇 =
�̂�𝑀𝑀e

𝑝
and 𝜂 =

𝑡𝑟𝑎𝑐𝑒
(︁

1
𝑛
𝐴−1�̂�𝐴−1

)︁
‖�̂�𝑀𝑀 − 𝜈𝜇e‖2

.

3.2 Dispersion parameter

Based on the median concept, which is a robust measure of location, there is a
robust measure of dispersion for a random variable 𝑋, which is the Median Absolute
Deviation (MAD) from the data’s median:

𝑀𝐴𝐷(𝑋) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|) .

Falk [1997] showed the following relation, assuming normality, between the𝑀𝐴𝐷
and the standard deviation 𝜎𝑋 :

𝑀𝐴𝐷(𝑋) = 𝜎𝑋Φ
−1(3/4) , (3.8)

where Φ denotes the standard normal cdf. Taking the square in (3.8) we obtain a
relation between the variance 𝜎2

𝑋 and 𝑀𝐴𝐷2(𝑋):
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𝜎2
𝑋 = 2.198 ·𝑀𝐴𝐷2(𝑋) .

Extending the idea of the 𝑀𝐴𝐷, a robust measure of dependence between two
random variables 𝑋 and 𝑌 is the comedian (Falk [1997]):

𝐶𝑂𝑀 (𝑋, 𝑌 ) = 𝑚𝑒𝑑 ((𝑋 −𝑚𝑒𝑑 (𝑋)) (𝑌 −𝑚𝑒𝑑 (𝑌 ))) . (3.9)

The comedian generalizes the MAD because 𝐶𝑂𝑀(𝑋,𝑋) = 𝑀𝐴𝐷2(𝑋), and
also has the highest possible breakdown point (Falk [1997]). An important fact is
that the comedian parallels the covariance, but the latter requires the existence of
the first two moments of the two random variables, whereas the comedian always
exists. Other known properties of the comedian are that it is symmetric, location
invariant and scale equivariant. Furthermore, Hall and Welsh [1985] discussed the
strong consistency and asymptotic normality of the MAD, and Falk [1997] estab-
lished similar results for the comedian.

Finally, let us recall that a comedian matrix can be defined based on a multi-
variate version of (3.9). Let x = {x1, ...,x𝑝} be the 𝑛× 𝑝 data matrix with 𝑛 being
the sample size and 𝑝 the number of variables. Then the comedian matrix is defined
as:

𝐶𝑂𝑀(x) = (𝐶𝑂𝑀(x𝑗,x𝑡)) , 𝑗, 𝑡 = 1, ..., 𝑝 .

Note that from relation described in (3.8), one can consider the adjusted come-
dian:

𝑆𝐶𝐶𝑀 = 2.198 · 𝐶𝑂𝑀(x) .

Recall the previous Section 3.1 in which we needed to provide a robust estimator
for 𝜎2

x𝑗
, for each 𝑗 = 1, ..., 𝑝 (Equation 3.5) note that, because of the relation in

(3.8):

𝑡𝑟𝑎𝑐𝑒(𝑆𝐶𝐶𝑀) =

𝑝∑︁
𝑗=1

2.198 · 𝐶𝑂𝑀(x𝑗,x𝑗)

=

𝑝∑︁
𝑗=1

2.198 ·𝑀𝐴𝐷2(x𝑗) =

𝑝∑︁
𝑗=1

𝜎2
x𝑗
. (3.10)

Thus, when considering a shrinkage estimator of the component-wise median,
in order to estimate the variance of �̂�𝐶𝐶𝑀 needed in the expression (3.4) for the
shrinkage intensity 𝜂, and according to the relation (3.5), we propose to estimate∑︀𝑝

𝑗=1 𝜎
2
x𝑗

using the 𝑡𝑟𝑎𝑐𝑒(𝑆𝐶𝐶𝑀). Therefore, the estimates for 𝜈𝜇 and 𝜂 in expression
(3.4) can be calculated as:

𝜈𝜇 =
�̂�𝐶𝐶𝑀e

𝑝
and 𝜂 =

(𝜋/2𝑛)𝑡𝑟𝑎𝑐𝑒(𝑆𝐶𝐶𝑀)

‖�̂�𝐶𝐶𝑀 − 𝜈𝜇e‖22
. (3.11)

Note that 𝑆𝐶𝐶𝑀 is a robust alternative for the covariance matrix, but in general,
it is not positive (semi-) definite (see Falk [1997]). Since we need this property for
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inverting the covariance matrix in a Mahalanobis distance, we propose a shrinkage
over 𝑆𝐶𝐶𝑀 , because of its advantage of always providing a positive definite and
well-conditioned matrix. Therefore, if a shrinkage estimator is considered for the
dispersion parameter:

Σ̂𝑆ℎ = (1− 𝜂)�̂� + 𝜂𝑇 , (3.12)

we propose to use in (3.12), the estimator �̂� = 𝑆𝐶𝐶𝑀 .

Several choices for the shrinkage target 𝑇 have been proposed in the literature.
For example, Ledoit and Wolf [2003b] proposed a weighted average of the sample
covariance matrix and a single-index covariance matrix. Ledoit and Wolf [2003a]
proposed selecting the shrinkage target as a “constant correlation matrix”, whose
correlations are set equal to the average of all sample correlations. Finally, Ledoit
and Wolf [2004] proposed to use a multiple of the identity matrix as the shrink-
age target. The authors proved that the resulting shrinkage covariance matrix is
well-conditioned, even if the sample covariance matrix is not. There is also another
approach introduced by DeMiguel et al. [2013]. The authors proposed a shrinkage
estimator both for the covariance matrix and its inverse. The estimators were con-
structed as a convex combination of the sample covariance matrix or its inverse,
respectively, and a scaled shrinkage target, which they consider the scaled identity
matrix as Ledoit and Wolf [2004]. Therefore, we propose to use as shrinkage target
𝑇 = 𝜈Σ𝐼. Thus (3.12) results in:

Σ̂𝑆ℎ(𝐶𝐶𝑀) = (1− 𝜂)𝑆𝐶𝐶𝑀 + 𝜂𝜈Σ𝐼 .

Finally, the scaling parameter 𝜈Σ and the shrinkage intensity parameter 𝜂 needs
to be estimated. They both are chosen to minimize the expected quadratic loss as
in Ledoit and Wolf [2004]:

min𝜈Σ,𝜂 𝐸

[︂⃦⃦⃦
Σ̂𝑆ℎ − Σ

⃦⃦⃦2]︂
s.t. Σ̂𝑆ℎ = (1− 𝜂)𝑆𝐶𝐶𝑀 + 𝜂𝜈Σ𝐼,

(3.13)

where ‖𝐴‖2 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝐴𝑇 )/𝑝.

Proposition 3 The solution of the problem (3.13) is:

𝜈Σ = 𝑡𝑟𝑎𝑐𝑒(𝑆𝐶𝐶𝑀)/𝑝, 𝜂 =

𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − Σ

⃦⃦⃦2]︂
𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − 𝜈Σ𝐼

⃦⃦⃦2]︂ .
The proof can be found in Appendix A.3. In practice, we propose to estimate

the numerator of the expression for 𝜂 as Ledoit and Wolf [2003a], Ledoit and Wolf
[2003b] and Ledoit and Wolf [2004], but considering 𝑆𝐶𝐶𝑀 instead of the sample
covariance matrix, as the estimator of Σ.

Note that the comedian matrix depends on centered data considering the component-
wise median �̂�𝐶𝐶𝑀 . A special case of comedian matrix can be defined if the data
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are centered using a different location estimator. We propose to center the data
using the other location estimators described in Section 3.1, i.e., the multivariate
𝐿1−median �̂�𝑀𝑀 , and the shrinkage estimators �̂�𝑆ℎ(𝐶𝐶𝑀) and �̂�𝑆ℎ(𝑀𝑀). We will
consider shrinkages over those special comedian matrices.

1. Σ̂𝑆ℎ(𝑀𝑀) = (1− 𝜂)𝑆𝑀𝑀 + 𝜂𝜈Σ𝐼, with for 𝑗, 𝑡 = 1, ..., 𝑝:

𝑆𝑀𝑀 = 2.198 · 𝐶𝑂𝑀𝑀𝑀(x) = 2.198 · (𝑚𝑒𝑑((x𝑗 − (�̂�𝑀𝑀)𝑗)(x𝑡 − (�̂�𝑀𝑀)𝑡)) .

2. Σ̂𝑆ℎ(𝑆ℎ(𝐶𝐶𝑀)) = (1− 𝜂)𝑆𝑆ℎ(𝐶𝐶𝑀) + 𝜂𝜈Σ𝐼, with for 𝑗, 𝑡 = 1, ..., 𝑝:

𝑆𝑆ℎ(𝐶𝐶𝑀) = 2.198 · 𝐶𝑂𝑀𝑆ℎ(𝐶𝐶𝑀)(x) = 2.198 · (𝑚𝑒𝑑((x𝑗 − (�̂�𝑆ℎ(𝐶𝐶𝑀))𝑗)(x𝑡 −
(�̂�𝑆ℎ(𝐶𝐶𝑀))𝑡)) .

3. Σ̂𝑆ℎ(𝑆ℎ(𝑀𝑀)) = (1− 𝜂)𝑆𝑆ℎ(𝑀𝑀) + 𝜂𝜈Σ𝐼, with for 𝑗, 𝑡 = 1, ..., 𝑝:

𝑆𝑆ℎ(𝑀𝑀) = 2.198 · 𝐶𝑂𝑀𝑆ℎ(𝑀𝑀)(x) = 2.198 · (𝑚𝑒𝑑((x𝑗 − (�̂�𝑆ℎ(𝑀𝑀))𝑗)(x𝑡 −
(�̂�𝑆ℎ(𝑀𝑀))𝑡)) .

The optimal expression for the parameters 𝜂 and 𝜈Σ in the above cases is analo-
gous to the Proposition 3, but considering in each case the sample estimator as the
corresponding special comedian matrix.

3.3 Proposed Robust Mahalanobis Distances

A robust Mahalanobis distance can be defined for each of the following six possible
combinations for the location and the dispersion estimators (see Table 3.1). Note
that they are meaningful combinations because the shrinkage estimator of dispersion
is made upon a special comedian matrix closely based on the location estimator
jointly considered for defining the RMD.

Table 3.1: Combinations of location and dispersion

Name RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

�̂�𝑅 �̂�𝐶𝐶𝑀 �̂�𝑆ℎ(𝐶𝐶𝑀) �̂�𝑆ℎ(𝐶𝐶𝑀) �̂�𝑀𝑀 �̂�𝑆ℎ(𝑀𝑀) �̂�𝑆ℎ(𝑀𝑀)

Σ̂𝑅 Σ̂𝑆ℎ(𝐶𝐶𝑀) Σ̂𝑆ℎ(𝐶𝐶𝑀) Σ̂𝑆ℎ(𝑆ℎ(𝐶𝐶𝑀)) Σ̂𝑆ℎ(𝑀𝑀) Σ̂𝑆ℎ(𝑀𝑀) Σ̂𝑆ℎ(𝑆ℎ(𝑀𝑀))

For all our proposed combinations, the threshold considered to detect the outliers
is the 𝜒2

𝑝;0.975 quantile, because it is the cut-off used in the literature for most of the
robust distances. Although, since explained in the Introduction of the thesis, it does
not necessarily have to be that one.

3.4 Simulation results

3.4.1 Normal distribution

A simulation study is performed considering a 𝑝−dimensional random variable 𝑋
following a contaminated multivariate normal distribution given as a mixture of Nor-
mals of the form (1− 𝛼)𝑁(0, 𝐼) + 𝛼𝑁(𝛿e, 𝜆𝐼), where e denotes the 𝑝−dimensional
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vector of ones. This model is analogous to the one used by Rousseeuw and Driessen
[1999], Peña and Prieto [2001], Filzmoser et al. [2005], Peña and Prieto [2007],
Maronna and Zamar [2002] and Sajesh and Srinivasan [2012]. This experiment has
been conducted for different values of the sample-space dimension 𝑝 = 5, 10, 30, 50,
and the chosen sample size in relation to the dimension was 𝑛 = 100, 100, 500, 1000,
respectively. The contamination levels were 𝛼 = 0, 0.1, 0.2, 0.3, the distance of the
outliers 𝛿 = 5 and 10 and the concentration of the contamination 𝜆 = 0.1 and 1.
For each set of values, 100 random sample repetitions have been generated.

For the methods mentioned in previous sections some measures are studied: the
true positive rate (TPR) and the false positive rate (FPR). If we call 𝑁𝑂 the real
number of not outlying observations and 𝑇𝑂 the real number of outliers, then:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑂
and 𝐹𝑃𝑅 =

𝐹𝑃

𝑁𝑂
,

where 𝑇𝑃 means true positives and are the outliers correctly identified by the
method, while 𝐹𝑃 means false positives and are the observations incorrectly de-
tected as outliers by the method. The TPR is also equal to 1 − 𝐹𝑁𝑅 = 1 − 𝐹𝑁

𝑇𝑂
,

where 𝐹𝑁 means False Negatives and are the outliers that the approach fails to
identify as such.

Then the two measures 𝑇𝑃𝑅 and 𝐹𝑃𝑅 are selected to study the performance
of the methods. The method MCD refers to the RMD based on the MCD esti-
mator and with the classical threshold, the method Adj MCD refers to the latter
distance considering the adjusted quantile of Filzmoser et al. [2005], the method
Kurtosis refers to the Peña and Prieto [2007] approach, the method OGK refers
to the Orthogonalized Gnanadesikan-Kettenring method proposed by Maronna and
Zamar [2002] and COM is the Comedian method proposed by Sajesh and Srini-
vasan [2012]. We have also presented the results for the collection RMDv1 -RMDv6
proposed in Table 3.1. All simulations were performed in Matlab.

Appendix B.1 contains the tables corresponding to all simulation scenarios with
Normal data. Here we show only the most significant and representative results.
Nevertheless, the tables show overall outcomes. For example, Adj MCD, actually
improves MCD with respect to the FPR, lowering it, and in most cases maintaining
the same TPR. Although, in other cases, it also slightly lowers the TPR. On the
other hand, the FPR in case of no contamination is sufficiently low for all methods,
but our proposed collection shows the lowest values especially in high dimension,
actually here the best performance is observed for RMDv6. With certain percent of
contamination, the worst behavior of our proposed methods is when the dimension
is low and the highest percentage of outliers are considered to be near the center
of the data. This matter can be seen in Table 3.2, which corresponds to the TPR.
When the outliers are near the center of the data (𝛿 = 5), in case of low dimension
(𝑝 = 5), with 30% of outliers, Kurtosis has better performance. This happens also
with 𝑝 = 10, but in all other cases MCD, Adj MCD, Kurtosis and OGK are the ones
with the worst behavior about the TPR. Meanwhile, COM is a good alternative,
but the overall best performance is made by RMDv6 especially in high dimension
and even with large contamination.
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Table 3.2: True positive rates, with Normal distribution.

𝛿 = 5 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 0.9000 1 1 1 1 1 1 1 1
0.2 0.8700 0.8700 0.5100 0.9500 0.9941 1 1 1 1 1 1
0.3 0.0600 0.0600 0.9800 0.1500 0.5719 0.8766 0.8782 0.8782 0.9146 0.9090 0.9130

10 0.1 0.9900 0.9900 0.8600 1 1 1 1 1 1 1 1
0.2 0.2800 0.2800 0.4600 0.9416 1 1 1 1 1 1 1
0.3 0 0 0.9900 0.1612 0.7205 0.8774 0.8747 0.8750 0.9711 0.9672 0.9711

30 0.1 0.1900 0.1900 1 1 1 1 1 1 1 1 1
0.2 0 0 0.1000 1 1 1 1 1 1 1 1
0.3 0 0 0.6100 0.0100 0.9407 0.5308 0.5275 0.5286 0.9990 0.9988 0.9991

50 0.1 0 0 1 1 1 1 1 1 1 1 1
0.2 0 0 0 1 1 1 1 1 1 1 1
0.3 0 0 0 0 0.9839 0.5021 0.5000 0.5000 0.9939 0.9932 0.9942

Another situation is when outliers are far from the center of the data, i.e., 𝛿 = 10.
This scenario is shown in Table 3.3.

Table 3.3: True positive rates, with Normal distribution.

𝛿 = 10 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8480 0.8465 0.9900 1 1 1 1 1 1 1 1
0.3 0.2190 0.1976 0.9307 0.9591 0.9991 1 1 1 1 1 1

10 0.1 1 1 0.9800 1 1 1 1 1 1 1 1
0.2 0.8623 0.8548 0.6558 1 1 1 1 1 1 1 1
0.3 0.2280 0.2046 0.4618 0.9911 1 1 1 1 1 1 1

30 0.1 1 1 0.8919 1 1 1 1 1 1 1 1
0.2 0.4879 0.4654 0.0125 1 1 1 1 1 1 1 1
0.3 0.0810 0.0509 0.1087 1 1 1 1 1 1 1 1

50 0.1 1 1 0.6017 1 1 1 1 1 1 1 1
0.2 0.2695 0.2348 0.0017 1 1 1 1 1 1 1 1
0.3 0.0643 0.0378 0.0006 1 1 1 1 1 1 1 1

It is clear from Table 3.3 that when outliers are far from the center, our proposed
methods lead to the best performance, achieving 100% of TPR, for all dimension
and percentage of contamination considered. 𝑂𝐺𝐾 and 𝐶𝑂𝑀 are good alternatives
in case of high dimension 𝑝 = 30, 50. Other tables about the TPR can be found
in Appendix B.1, as well as the FPR tables, which show that in the vast majority
of cases our proposed distances have an FPR value equal to zero and when not, a
value very close to zero, which is what is desirable.

3.4.2 𝑡3-distribution

In order to check the behavior of the methods when the distribution deviates from
normality, a simulation study is performed considering a 𝑝−dimensional random
variable 𝑋 following a contaminated multivariate 𝑡-distribution with 3 degrees of
freedom of the form (1 − 𝛼)𝑇3(0, 𝐼) + 𝛼𝑇3(𝛿e, 𝜆𝐼). The first parameter of the no-
tation of 𝑇3(·, ·) refers to the mean and the second one to the covariance matrix.
The parameters for the contamination are the same considered above and the same
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measures TPR and FPR are studied. All the results can be found in Appendix
B.2. It should be noted the unsatisfactory behavior of the alternative methods with
respect to the TPR especially in high dimension or with large contamination level,
meanwhile, in most cases we attain a 100% TPR. Concerning the FPR value, all
methods show non-zero FPR values, and the best performance is shown by COM
and our proposed methods.

3.4.3 Exponential distribution

We considered also a 𝑝−dimensional random variable 𝑋 following a contaminated
multivariate exponential distribution given as a mixture (1−𝛼)𝐸𝑥𝑝(0)+𝛼𝐸𝑥𝑝(𝛿e).
The parameter of the notation 𝐸𝑥𝑝(·) refers to the mean. This case is analogous
to the previous ones, with the difference that only the schemes associated with the
distance of the outliers are considered. Tables in Appendix B.3 show all the results
and it can be seen that our proposed methods achieve 100% of TPR in the majority
of cases. The highest value of TPR is also achieved by 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 𝑂𝐺𝐾 and 𝐶𝑂𝑀 ,
when dimension is high. When dimension is low, the TPR is high in most situations
for all 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 𝑂𝐺𝐾, 𝐶𝑂𝑀 and 𝑅𝑀𝐷𝑣1−𝑅𝑀𝐷𝑣6, but in the majority of cases
our proposed method’s TPR is higher. 𝑀𝐶𝐷 and 𝐴𝑑𝑗𝑀𝐶𝐷 decreases their TPR
value with the increase of dimension or contamination level. With respect to the
FPR value of 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 and 𝑂𝐺𝐾 their FPR is high in most cases. 𝐶𝑂𝑀 , 𝑀𝐶𝐷
and 𝐴𝑑𝑗𝑀𝐶𝐷 have low FPR values. 𝑅𝑀𝐷𝑣1−𝑅𝑀𝐷𝑣6 also have low FPR values
in the majority of cases, except in some cases when the level of contamination is
the lowest. On the other hand, in case of no contamination, 𝑀𝐶𝐷 and 𝐴𝑑𝑗𝑀𝐶𝐷
show more or less the same FPR value than our proposed methods, while the other
alternatives 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 𝑂𝐺𝐾 and 𝐶𝑂𝑀 show higher values than them. Considering
both the TPR and the FPR, the best overall performance is showed by RMDv6.

3.4.4 Summary and selection of one of our proposed dis-
tances

In the simulation study, for each contamination scheme we have also calculated a
measure called F-score (Goutte and Gaussier [2010], Sokolova et al. [2006], Powers
[2011]), often used in Engineering, which is a measure of a test’s accuracy. Its
expression is F-score= 2𝑃𝑅/(𝑃 + 𝑅), where 𝑃 is called precision and 𝑅 is known
as the recall. The precision 𝑃 is the number of correctly detected outliers divided
by the total number of detected outliers, and the recall 𝑅 is the number of correctly
detected outliers divided by the real total number of outliers. The recall coincides
with the TPR.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
and 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

This measure provides a trade-off between the two desired outcomes: a high rate
of correctly identified outliers and a low rate of observations mislabel as outliers.
The results are not included for avoiding large extension, but the method with the
overall classification between the top 3 best positions ranking with respect to the
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F-score, is method RMDv6.

It is clear the out-performance of our proposed methods with Gaussian data,
especially in high dimension and even when we deviate from the normality assump-
tion, for example when considering heavy-tailed and skewed distributions like the
multivariate 𝑡3-distribution and the multivariate exponential distribution. From all
of our six proposed robust distances, the one that shows the best results in the vast
majority of cases is RMDv6. Thus, we decided to select it as the best one in the
matter of performance, and from now on we will refer to it as RMD-S. The definition
is the following:

𝑅𝑀𝐷-𝑆(x𝑖) =
(︁(︀

x𝑖 − �̂�𝑆ℎ(𝑀𝑀)

)︀
Σ̂−1

𝑆ℎ(𝑆ℎ(𝑀𝑀))

(︀
x𝑖 − �̂�𝑆ℎ(𝑀𝑀)

)︀𝑡)︁1/2
,

where the location estimator is:

�̂�𝑆ℎ(𝑀𝑀) = (1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e , (3.14)

and the covariance estimator is:

Σ̂𝑆ℎ(𝑆ℎ(𝑀𝑀)) = (1− 𝜂)𝑆𝑆ℎ(𝑀𝑀) + 𝜂𝜈Σ𝐼 , (3.15)

with, for 𝑗, 𝑡 = 1, ..., 𝑝:

𝑆𝑆ℎ(𝑀𝑀) = 2.198·𝐶𝑂𝑀𝑆ℎ(𝑀𝑀)(x) = 2.198·(𝑚𝑒𝑑((x𝑗−(�̂�𝑆ℎ(𝑀𝑀))𝑗)(x𝑡−(�̂�𝑆ℎ(𝑀𝑀))𝑡)) .

3.5 Properties of the estimator

In this section, some properties like the behavior under correlated data, the affine
equivariance, the breakdown value, and the computational times are studied.

3.5.1 Correlation and affine equivariance

Consider 𝑋 = {x1, ...,x𝑛} and a pair of multivariate location and covariance esti-
mators (𝑚,𝑆). In general, these estimators are called affine equivariant if for any
nonsingular matrix 𝐴 it holds that:

𝑚𝐴 = 𝑚(𝑋𝐴) = 𝐴𝑚(𝑋) and 𝑆𝐴 = 𝑆(𝑋𝐴) = 𝑆(𝑋)𝐴𝑡 . (3.16)

The affine transformation of 𝑋 is 𝑋𝐴 = {𝐴x1, ..., 𝐴x𝑛}. Affine equivariance implies
that the estimator transforms well under any nonsingular reparametrization of the
space of the x𝑖. The data might for instance be rotated, translated or rescaled (for
example through a change of the measurement units).

The method RMD-S is ultimately based on not affine equivariant estimators
which are the 𝐿1-median (Lopuhaa and Rousseeuw [1991]) and the comedian ma-
trix. However, the 𝐿1-median is orthogonal equivariant, i.e., it satisfies Equation
(3.16) with 𝐴 any orthogonal matrix (𝐴𝑡 = 𝐴−1). This implies that the 𝐿1-median
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transforms appropriately under all transformations that preserve Euclidean dis-
tances (such as translations, rotations and reflections). About the comedian matrix,
which always exists, it is symmetric, location invariant and scale equivariant (Falk
[1997]), i.e., 𝐶𝑂𝑀(𝑋, a𝑌 + b) = a𝐶𝑂𝑀(𝑋, 𝑌 ) = a𝐶𝑂𝑀(𝑌,𝑋). Since the pro-
posed method is not affine equivariant, it is important to investigate the behavior
under correlated data. Devlin et al. [1981] used a correlation matrix 𝑃 for gener-
ating Monte Carlo data from different distributions of moderate dimension 𝑝 = 6.
The matrix has the form:

𝑃 =

[︂
𝑃1 0
0 𝑃2

]︂

𝑃1 =

⎡⎣ 1 0.95 0.3
0.95 1 0.1
0.3 0.1 1

⎤⎦ , 𝑃2 =

⎡⎣ 1 −0.499 −0.499
−0.499 1 −0.499
−0.499 −0.499 1

⎤⎦ .

The reason for the selection of the matrix 𝑃 is because the dimension is large
enough to study multivariate estimators and the range of correlation values is large.
This way the differences in the abilities of the methods to detect outliers from highly
correlated data can be observed. For the simulations, 𝑛 = 100 observations were
generated from a mixture of Normals (1−𝛼)𝑁(0, 𝑃 )+𝛼𝑁(5e, 𝑃 ). The contamina-
tion level 𝛼 = 10%, 20%, 30%.

Table 3.4 shows that the TPR and FPR of MCD, Adj MCD, Kurtosis and OGK
are worse than that of our proposal. On the other hand, COM shows more or less
the same behavior in case of 10% and 20% of contamination, and slightly worse
than our proposal when the contamination level increases to 30%. The methods
MCD, Adj MCD and Kurtosis are affine equivariant, while OGK and COM are
not. Hence, the proposed procedure RMD-S is more efficient than other affine and
not affine equivariant methods in case of correlated data-sets. Also the FPR is very
low even in this case of presence of correlation.

Table 3.4: Simulation results for correlated data.

MCD Adj MCD Kurtosis OGK COM RMD-S

𝛼 TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

0.1 1 0.0397 1 0.0226 1 0.0371 1 0.0736 1 0.0025 1 0.0128
0.2 0.8659 0.0127 0.8565 0.0062 0.8771 0.0453 0.9792 0.0533 1 0.0011 1 0.0013
0.3 0.1504 0.0762 0.1238 0.0614 0.8186 0.0443 0.4780 0.0460 0.8302 0.0001 0.9274 0

Affine equivariance of the estimators is equivalent to say that the robust Maha-
lanobis distance is affine invariant:

𝑅𝑀𝐷(Axi,mA) = (Axi −mA)SA
−1(Axi −mA)

𝑡 = 𝑅𝑀𝐷(xi,m) .

Maronna and Zamar [2002] and Sajesh and Srinivasan [2012] proposed to inves-
tigate the lack of equivariance with transformed data, by simulations. We study
the same for our proposal. They propose to generate random matrices as 𝐴 = 𝑇𝐷,
where 𝑇 is a random orthogonal matrix and 𝐷 = 𝑑𝑖𝑎𝑔(𝑢1, ..., 𝑢𝑝), where the 𝑢𝑗’s
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are independent and uniformly distributed in (0, 1). Then, the proposed simula-
tions consist on affinely transform each generated data matrix 𝑋 in each repetition,
by applying the random matrix of transformation 𝐴 to 𝑋, in order to obtain 𝑋𝐴.
The contamination scheme consist in data generated from a mixture of Normals
(1 − 𝛼)𝑁(0, 𝐼) + 𝛼𝑁(𝛿e, 𝜆𝐼). The dimension 𝑝 = 5, 10, 30, 50, with sample size
𝑛 = 100, 100, 500, 1000 respectively, the contamination level 𝛼 = 10, 20, 30%, the
distance of the outliers 𝛿 = 5 and 10, and the concentration of the contamination
𝜆 = 0.1 and 1. Table 3.5 and 3.7 show the obtained results about the TPR and
FPR. As it can be observed, even under affine transformations, RMD-S is able to
detect all the outliers, except for a few cases (in bold type) that corresponds to large
contamination level (30%) in case of outliers close to the center of the distribution.
However, it can be noted that these cases improve in performance when dimension
increases.

Table 3.5: True posive rates and false positive rates of RMD-S for transformed data,
𝜆 = 0.1.

𝛿 = 5 𝛿 = 10

𝑝 𝛼 TPR FPR TPR FPR

5 0.1 1 0.0454 1 0.0455
0.2 1 0.0155 1 0.0165
0.3 0.9709 0.0034 1 0.0023

10 0.1 1 0.0328 1 0.0252
0.2 1 0.0088 1 0.0062
0.3 0.9844 0.0023 1 0.0009

30 0.1 1 0.0089 1 0.0074
0.2 1 0.0006 1 0.0003
0.3 1 0 1 0

50 0.1 1 0.0008 1 0.0004
0.2 1 0.0002 1 0.0001
0.3 1 0 1 0

Table 3.6: True posive rates and false positive rates of RMD-S for transformed data,
𝜆 = 1.

𝛿 = 5 𝛿 = 10

𝑝 𝛼 TPR FPR TPR FPR

5 0.1 1 0.0451 1 0.0400
0.2 1 0.0189 1 0.0120
0.3 0.9344 0.0039 1 0.0046

10 0.1 1 0.0282 1 0.0279
0.2 1 0.0113 1 0.0071
0.3 0.9872 0.0020 1 0.0010

30 0.1 1 0.0093 1 0.0072
0.2 1 0.0006 1 0.0004
0.3 1 0 1 0

50 0.1 1 0.0009 1 0.0002
0.2 1 0.0002 1 0.0001
0.3 1 0 1 0
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3.5.2 Breakdown value

For an estimator, the maximum proportion of outliers that it can safely tolerate is
known as the breakdown value. For an outlier detection method, the breakdown
value can be defined as the maximum 𝑚* outliers that the procedure can success-
fully detect, so that if the data is contaminated with 𝑚 outliers and 𝑚 > 𝑚* the
method will fail to identify most of the true outliers and it will falsely detect many
inliers, reducing the true positive rate drastically, and inflating the false positive rate
(Sajesh and Srinivasan [2012]). Thus, it is necessary to use the true positive and false
positive rates for studying the breakdown value of the outlier detection procedure.
Analogously as in Sajesh and Srinivasan [2012], 𝑛 observations were generated from
a 𝑝−dimensional 𝑁(0, 𝐼) and two forms of contamination are considered: 𝛼 percent
symmetric, for which the 𝑖th observation is multiplied by 100𝑖, and 𝛼 percent asym-
metric, for which the 𝑖th observation is replaced by (100𝑖)e, 𝑖 = 1, ..., 𝑛𝛼, where
e = (1, ..., 1). In the first case the outliers are symmetrically distributed, and asym-
metrically in the second case. The dimensions considered are 𝑝 = 10, 30, 50, 80, 100
and the sample size 𝑛 = 1000. The contamination level 𝛼 = 10, 20, 30, 40, 45%.
Table 3.7 gives the resulting TPR and FPR for both forms of contamination.

Table 3.7: Simulation results for breakdown value.

𝑛 = 1000 Symmetric Asymmetric

𝑝 𝛼 TPR FPR TPR FPR

10 0.1 1 0.0055 1 0.0047
0.2 1 0.0001 1 0.0002
0.3 1 0 1 0
0.4 1 0 1 0
0.45 1 0 1 0

30 0.1 1 0.0002 1 0.0002
0.2 1 0 1 0
0.3 1 0 1 0
0.4 1 0 1 0
0.45 1 0 1 0

50 0.1 1 0 1 0
0.2 1 0 1 0
0.3 1 0 1 0
0.4 1 0 1 0
0.45 1 0 1 0

80 0.1 1 0 1 0
0.2 1 0 1 0
0.3 1 0 1 0
0.4 1 0 1 0
0.45 1 0 1 0

100 0.1 1 0 1 0
0.2 1 0 1 0
0.3 1 0 1 0
0.4 1 0 1 0
0.45 1 0 1 0

It can be seen that the TPR is not affected and the FPR is zero for most cases
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or it is very reduced and near zero, then RMD-S can successfully detect the outliers
even when there is large contamination and even in high dimension, without falsely
detect many inliers.

3.5.3 Computational times

Table 3.8 show the resulting computational times in seconds for the Normal case
when outliers are close to the center of the data and they are concentrated.

Table 3.8: Computational times with Normal data, 𝛿 = 5 and 𝜆 = 0.1.

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMD-S

5 0.1 1.0951 0.7670 0.1880 0.1087 0.0228 0.0096
0.2 0.7619 0.7910 0.0499 0.0203 0.0088 0.0085
0.3 0.7605 0.8304 0.0266 0.0196 0.0089 0.0074

Mean 0.8725 0.7961 0.0882 0.0495 0.0135 0.0085

10 0.1 1.3184 0.9970 0.2191 0.1626 0.0247 0.0200
0.2 1.0329 1.0477 0.1358 0.0793 0.0120 0.0118
0.3 0.9685 1.0641 0.0482 0.0865 0.0128 0.0108

Mean 1.1066 1.0363 0.1344 0.1095 0.0165 0.0142

30 0.1 6.2387 6.0934 0.7154 0.8969 0.2000 0.2206
0.2 5.8676 6.3999 1.4635 0.8158 0.1687 0.1804
0.3 5.9453 7.0405 1.6572 0.8407 0.1669 0.1674

Mean 6.0172 6.5113 1.2787 0.8511 0.1785 0.1895

50 0.1 7.3521 7.2307 2.2497 1.2854 0.2174 0.2053
0.2 7.2501 7.2337 2.2778 1.2678 0.2166 0.2018
0.3 7.2479 7.2376 2.3753 1.2774 0.2169 0.2099

Mean 7.2834 7.2340 2.3009 1.2769 0.2169 0.2057

The other tables can be founded in Appendix B.1. The experiment is carried
out on a PC with a 3.40 GHz Intel Core i7 processor with 32GB RAM. On average,
the fastest methods are COM and RMD-S with very similar computational times.
Compared to the MCD and its adjusted version Adj MCD, the latters are much
more slower than our proposal. Depending on the dimension of the data, MCD and
Adj MCD are between 31-93 and 34-102 times slower than RMD-S, respectively.
Kurtosis and OGK are not as slower as MCD and Adj MCD, but they show worse
computational times than COM and RMD-S. Kurtosis and OGK are between 6-11
and 4-8 times slower than our proposal. Thus, RMD-S shows competitive compu-
tational times as well as COM.

3.6 Real data-set example

The proposed RMD is applied to a real data-set to evaluate its performance. The fol-
lowing data-set was taken from the UCI Knowledge Discovery in Databases Archive
(Bay [1999]). Specifically, we have chosen the Breast Cancer Wisconsin (Diagnos-
tic) Data-Set (WDBC). Features are computed from a digitized image of a fine
needle aspirate of a breast mass. They describe 30 characteristics of the cell nuclei
present in the image, for 569 samples, from which 357 are benign and 212 malign.
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We propose to study only the 357 benign data. In Maronna and Zamar [2002] the
authors analyzed several data-sets but they only show the results of four of them.
Specifically, in section 4.5 page 314 the authors mention the data we used and they
specify that the dimension was 𝑝 = 30 and the sample size 𝑛 = 357, which means
that they selected only the 357 observations corresponding to benign data. This is
the same that they do with the study of Ionospheric data (section 4.3, page 312),
since the classification of the observations is previously known and it makes sense
to study only one of the two groups because they come from a different distribution
and the observations from the “bad” group are almost half of the entire data-set.
The data is available at UCI repository. The archive has 32 columns but the first
two are (1) the ID number and (2) Diagnosis (good or bad), which leaves us with
30 features. Therefore, this example has dimension 𝑝 = 30 and sample size 𝑛 = 357.
We applied each method for detecting outliers and we retained the results, along
with the computational times.

In order to interpret the outcome, we show the standardized data (after the
detection) only for better visualization aim. We have also plotted the multivariate
𝐿1 median and a kind of “multivariate boxplot”, which is based on the idea from Sun
and Genton [2011] method, but for finite dimensional. What the “box” would be is
constructed sorting the data according to their 𝐿1 depth value. The corresponding
𝑄1 and 𝑄3 “quartiles” delimiting the “box” are in fact the minimum and maximum
values for each coordinate taking only into account the 50% of the most central data.
Thus, the “fences” can be constructed with the same approach 𝐹1 = 𝑄1 − 1.5𝑅𝐼
and 𝐹2 = 𝑄3 + 1.5𝑅𝐼, where the “interquartile range” is 𝑅𝐼 = 𝑄3 −𝑄1. Then, we
can look for each method’s result how many detected outliers are inside the “fences”
for all their coordinates, and how many are outside the “fences”. Figure 3.1 shows
the data in blue color plotted in parallel coordinates (Inselberg and Dimsdale [1990],
Wegman [1990], Inselberg [2009]), the “box” delimiting the 50% of most central data
in yellow color, the “fences” in red and the multivariate 𝐿1−median in cyan.

Figure 3.1: Standardized data with the “multivariate boxplot”.

Table 3.9 shows the detected outliers by each method. Outside the “fences” there
are 3 or 4 for all the methods. Also, the method Kurtosis detected 162 outliers out
of the 357 data. More or less like OGK, which detected 148. Furthermore, our
method RMD-S is the one that labels less amount of data as outliers.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Table 3.9: Detected outliers inside and outside the fences.

Method Inside Outside Total

MCD 72 4 76
Adj MCD 64 4 68
Kurtosis 158 4 162
OGK 144 4 148
COM 59 4 63
RMD-S 25 3 28

Table 3.10 shows how many outliers belong to the 50% of the most central data,
i.e., the observation that fall inside the “box” of the multivariate box-plot.

Table 3.10: Detected outliers inside the “box” with the 50% of the most central
data.

Method Inside Total

MCD 29 76
Adj MCD 27 68
Kurtosis 65 162
OGK 58 148
COM 20 63
RMD-S 7 28

We can investigate the shape of the detected outliers that are inside the “multi-
variate box”, in order to see if they are similar or near to the median, or if they have
a distinct shape. The motivation is that in case of real data we do not know the
true outliers. Thus, we propose to study the shape of these observations in parallel
coordinates (similar as in Maronna and Zamar [2002] with Ionospheric data, where
they studied the shape of each observation’s sequence of coordinates). Then, since
the methods detected a large number of observations as outliers, the multivariate
boxplot is used to study the shape of the ones that are closest to the multivariate
median, i.e., the ones belonging to the “box” of the multivariate boxplot. Figure 3.2
shows the shape of some of the outliers detected by the alternative methods that
belong to the 50% of the most central data. The figures to see all the observations
detected by the alternative methods can be found in Appendix C. In cyan color is the
multivariate median, in yellow color the “box” and in blue color the detected outlier.
The title of each subplot represents the index of the observation. The three subplots
from the first column correspond to observations 236 (detected by MCD, AdjMCD,
KUR and OGK), 155 (detected by KUR) and 212 (detected by KUR and OGK).
The next three from the second column of subplots correspond to observations 254
(detected by MCD, AdjMCD, KUR and OGK), 182 (detected by KUR and OGK)
and 234 (detected by MCD, AdjMCD, KUR, OGK and COM). The observation’s
sequence of coordinates can be considered similar to the multivariate median.

The general outcomes are that Adj MCD detected the same outliers as MCD
except for the observations 266 and 332 which shape can be considered near the
median. This makes sense since with the adjusted quantile the false positive rate
decreases. Kurtosis and OGK detected a lot of observations as outliers and some
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Figure 3.2: Some of the alternative methods detected outliers belonging to the 50%
of the most central data.

of the ones inside the “box” are very similar to the multivariate median in parallel
coordinates. Comedian method’s detected outliers also have some observations sim-
ilar to the median. In summary, for all of the alternative methods there seems to
be some outliers having a shape very alike to the multivariate median or close to it
for all the values of its components, leading us to think that maybe the alternative
methods are detecting too many observations as outliers, in other words, the false
positive rate is inflated. However, in Figure 3.3, we can see that all outliers detected
by RMD-S, belonging to the “box”, are quite different than the multivariate median,
in fact, they might be “shape outliers”. For a final argument, we can say that all
the outliers inside the “box”, detected by method RMD-S, are recognized by the
alternative methods, so this also makes us think that our proposed method detects
just enough.

Figure 3.3: RMD-S detected outliers that belong to the 50% of the most central
data.

Table 3.11 shows the computational times for each method in the task of detect-
ing outliers with this example of a real data-set. The results demonstrate that the
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alternative methods are much slower than our proposal, except for COM which has
a similar computational time.

Table 3.11: Computational times for each method with the WDBC data-set.

Method MCD Adj MCD Kurtosis OGK COM RMD-S

Times in sec. 12.155 12.3378 6.3077 3.5325 0.3534 0.3299

3.7 Summary

Correct detection of outliers in the multivariate case is well-known to be a crucial
task for thorough data analysis. In order to reach that goal properly, it is necessary
to consider the shape of the data and its structure in the multivariate space. That
is the reason why the Mahalanobis distance approach is frequently used for the task
of identifying the outliers. Various robust Mahalanobis distances can be defined
according to the selected robust location and dispersion estimators. A collection
of different combinations of robust location and covariance matrix estimators based
on the notion of shrinkage is proposed, in order to define with each combination a
robust Mahalanobis distance for the outlier detection problem. The performance of
the proposed RMD’s and the others from the literature is shown through a simu-
lation study. It can be concluded that the alternative methods increase their FPR
and decrease the TPR in the presence of contamination, especially in high dimen-
sion. The proposed RMD’s have the ability to discover outliers with high TPR and
low FPR in the vast majority of cases in the simulations, with Gaussian data and
with skewed or heavy-tailed distributions. RMD-S is the most competitive version,
as the simulation results showed. That is the reason why it is selected and some
properties are investigated. The behavior under correlated and transformed data
shows that RMD-S is approximately affine equivariant. With highly contaminated
data it is shown that the approach has high breakdown value even in high dimen-
sion. There is also evidence of its reasonable computational time. The behavior is
studied with a real data-set example and it shows that the proposed method works
well in practice and require reasonable computational times, even for large problems.





CHAPTER 4

Robust regression

Linear regression problems are widely used. The model is defined as:

𝑦𝑖 = 𝛼 + x𝑡
𝑖𝛽 + 𝜖𝑖 , (4.1)

for 𝑖 = 1, ..., 𝑛, where 𝑛 is the sample size, 𝛼 is the unknown intercept, 𝛽 is the
unknown (𝑝 × 1) vector of regression parameters, and the error terms 𝜖𝑖 are i.i.d
and they are also independent from the 𝑝-dimensional carriers x𝑖 (often also called
regressor or explanatory variables).

Classical ordinary least squares (OLS) regression consists on minimizing the sum
of the squared residuals (Equation 1.2). But in spite of its mathematical beauty
and computational simplicity, the OLS estimator lacks of robustness, since this
approach is not robust to the presence of outliers in the data. In the literature,
several authors have proposed robust versions of this estimator, for example, by
replacing the sum of squares of the residuals by other function of the residuals. The
alternative approach is to use robust estimators of location and covariance matrix
in the analogous definition for the OLS regression estimator described previously in
Equation 1.3.

4.1 Least Absolute Deviation (LAD) regression

A first proposal of a robust estimate came from Edgeworth [1887] who proposed to
replace the squared residuals by the absolute values of them:

�̂�𝐿𝐴𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑛∑︁
𝑖=1

|𝑦𝑖 − x𝑡
𝑖𝛽| (4.2)

This was also called 𝐿1 estimate because of the use of the 𝐿1 norm. It was
more resistant than OLS against outlying values in the response variable 𝑦, but still
couldn’t resist outlying values in the carriers. These kinds of outliers are called
“leverage points”, which have a large effect on the fit. Thus, the bdp of the LAD
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estimate is 1/𝑛.

4.2 M-estimator

The next idea was made by Huber [1964] (also see Huber [1973] and Huber [1981])
which proposed to “huberize” the residuals replacing the least-square criterion by a
function 𝜌(·) of the residuals, where this function had to be symmetric with a unique
minimum at zero. It was called 𝑀−estimator.

�̂�𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑛∑︁
𝑖=1

𝜌

(︂
𝑦𝑖 − x𝑡

𝑖𝛽

�̂�

)︂
(4.3)

The function 𝜌(·) is a robust loss function of the residuals and �̂� is an error’s scale
estimate. Since this method did not yield estimators with the invariant property
with respect to an increase of the error scale (Rousseeuw [1984]), Huber proposed
to estimate the scale parameter simultaneously, making use of a function 𝜓(·) which
is the derivative of 𝜌. This function was called the influence function. With a
minimax procedure, such 𝑀−estimators were more efficient than LAD at a central
model with Gaussian errors. However, the bdp of both of them tend to 0 (since
it was 1/𝑛), because of the possibility of leverage points (Maronna et al. [2006]).
Besides, the method implies one first decision: which loss function should be used.
It is usually used the Huber’s loss function or the Tukey’s bisquare function, but
there are no rules for which should be selected when we are dealing with real data.
Furthermore, they depend on a constant 𝑐, which determines the efficiency of the
estimator. The authors give their recommendation for the constant to achieve 95%
approximately, but this might be a problem as well in practice.

4.3 R-estimator

Another proposal was made by Jaeckel [1972] which consisted on minimizing the
sum of some scores of the ranked residuals:

𝑛∑︁
𝑖=1

𝑎𝑛(𝑅𝑖)𝑟𝑖 (4.4)

where 𝑅𝑖 represents the rank of the 𝑖th residual 𝑟𝑖 and 𝑎𝑛(·) is a monotone score
function that satisfies:

𝑛∑︁
𝑖=1

𝑎𝑛(𝑖) = 0 (4.5)

The problem is that the optimal choice of the score function is unclear, and the
bdp is 1/𝑛.
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4.4 Generalized M-estimator

Due to the vulnerability of M-estimators, generalized M-estimators (also called GM-
estimators) were proposed, which consisted on the idea to bound the influence of
outlying carriers making use of some weight function. This way, the problem of rec-
ognizing leverage points was solved because they were downweighted. Some authors
developed their methods with this idea (Mallows [1975], Hill [1977], Hampel [1978],
Krasker [1980], Krasker and Welsch [1982], Ronchetti and Rousseeuw [1985]). But
another problem arose, it cannot distinguish between “good” and “bad” leverage
points. And if good leverage points that fall in line with the pattern of the data are
down-weighted, this results in a loss of efficiency. On the other hand, they depend
on the selection of some constants, which is a nontrivial task in case of real data.
Moreover, all 𝐺𝑀−estimators decrease the bdp with the increase of the dimension
𝑝 of the carriers.

4.5 Least Median of Squares (LMS) regression

On the other hand, Siegel [1982] proposed a near 50% bdp technique: the Least
Median of Squares (LMS), for which the estimates are found by minimizing the
median of the squared residuals.

�̂�𝐿𝑀𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

𝑀𝑒𝑑{(𝑦𝑖 − x𝑡
𝑖𝛽)

2} (4.6)

However, the procedure had a disadvantage in the order of convergence (see
Rousseeuw [1984]), and the ability to provide reasonable estimates when the as-
sumption of Gaussian errors is met was not very good (see Rousseeuw and Croux
[1993]).

4.6 Least Trimmed Squares (LTS) regression

Another approach was proposed by Rousseeuw [1985], called Least Trimmed Squares
(LTS) estimator and consisted on minimizing the sum of the ℎ (less than and at
most 𝑛) ordered squared residuals.

�̂�𝐿𝑇𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

ℎ∑︁
𝑖=1

(𝑟(𝑖))
2 (4.7)

where 𝑟(𝑖) are the ordered squared residuals, and ℎ = [𝑛(1−𝛼)+1] is the proportion
of trimming. Usually ℎ = 𝑛/2 + 1 results in a bdp of 50% and better convergence
rate than LMS. The problem is LTS suffers badly in terms of very low efficiency
relative to OLS (see Stromberg et al. [2000]). Nevertheless, both LMS and LTS are
traditionally used as the initial estimate for some other high bdp and high efficient
robust methods.
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4.7 S-estimator

Robust regression by means of S-estimator came by hands of Rousseeuw and Yohai
[1984]. The method has greater asymptotic efficiency than LTS, although not high
enough. It is based on residual scale of M-estimation.

�̂�𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

�̂� (𝑟1, ..., 𝑟𝑛) (4.8)

where �̂� (𝑟1, ..., 𝑟𝑛) is a scale M-estimate. For the biweight scale, S-estimate can
attain a high bdp. The matter is that again this approach requires the specification
of some constants, the efficiency depends on the values selected, and it is not very
high. The computation is not at all scalable, even if there is an iterative procedure
or a projection pursuit technique.

4.8 Generalized S-estimator

Croux et al. [1994] proposed the generalized S-estimator (GS-estimator) in an at-
tempt to improve the low efficiency of S-estimators. Again there was a constant to
define, which depends on 𝑛 and 𝑝. Overall, the GS-estimator achieves a bdp as high
as S-estimator but with higher efficiency.

4.9 MM-estimates

These popular robust estimators were proposed by Yohai [1987] and consisted in
three basic steps. The first one is to compute an initial consistent robust estimate of
the regression parameters that has high bdp but not necessary high efficiency. The
second phase is to use the initial estimator to compute a robust M-estimate of scale
of the residuals. The final stage consists on finding an M-estimate of the regression
parameters starting at the initial regression estimator. In practice, the typical initial
estimators are LMS or S-estimate with Huber or bisquare functions. Playing with
the constants necessary for the estimators in the three stages, MM-estimates can
attain high efficiency without affecting its bdp. However, the author recognizes in
Yohai [1987] that if the constant that handles the efficiency is increased, then the
estimates get more sensitive to outliers.

4.10 Covariance approach

Another idea was proposed by Maronna and Morgenthaler [1986] and it was based on
covariance estimation. Denote the joint variable as z = (x,y), which is of dimension
𝑛× (𝑝+ 1), where x is the 𝑛× 𝑝 data matrix of the independent variables and 𝑦 is
the 𝑛× 1 response variable from the regression problem (Equation 4.1). Denote the
location of z by 𝜇 and the scatter matrix by Σ. Partitioning 𝜇 and Σ yields the
notation:
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𝜇 =

(︂
𝜇𝑥

𝜇𝑦

)︂
, Σ =

(︂
Σ𝑥𝑥 Σ𝑥𝑦

Σ𝑦𝑥 Σ𝑦𝑦

)︂
(4.9)

Traditionally they are estimated by the empirical mean �̂� and the empirical
covariance matrix Σ̂. It turns out that the OLS estimators of 𝛽 and the intercept
𝛼 can be written as functions of the components of �̂� and Σ̂, namely

�̂� = Σ̂
−1

𝑥𝑥 Σ̂𝑥𝑦

�̂� = �̂�𝑦 − �̂�
𝑡
�̂�𝑥 (4.10)

But, since the sample estimators are sensitive to the presence of outliers, we
should not use them to estimate the regression parameters. Instead, robust estima-
tors should be used in Equation 4.10. In the literature, there are many proposals
of robust location and covariance estimators. For example, the multivariate M-
estimators that Maronna and Morgenthaler [1986] considered, or the S-estimator
that Croux et al. [2003] considered.

4.11 Robust and efficient weighted least square

(REWLSE)

The so-called “robust and efficient weighted least square” estimator (REWLSE) was
proposed by Gervini and Yohai [2002]. The authors demonstrate that the method
simultaneously achieves maximum bdb and full efficiency under Gaussian errors.
The idea is similar to weighted least squares, but the weights are calculated from
an initial robust estimator. The weighting scheme is hard rejection (0 or 1), and
the cut-off depends on the distribution of the standardized absolute residuals that
are computed using the initial robust estimators of regression parameters and scale.
Because of the adaptive cut-off, the method is asymptotically equivalent to OLS
and hence its full asymptotic efficiency.

4.12 Summary

In summary, all these least squares alternatives have some drawbacks. M-estimation
is robust to outliers in the response variable, but it is not resistant to outliers in the
explanatory variables (leverage points). Thus, the method has the same bdp as OLS.
LAD, R-estimate and GM-estimator suffer the same low bdp. To overcome the lack
of resistance, LTS, LMS, S-estimates, MM-estimates, covariance approach with S-
estimator and REWLSE are viable alternatives. However, LTS, LMS and S-estimate
have low efficiency. GS-estimate improves the efficiency compared to S-estimator
but not high enough. MM-estimator, covariance approach with S-estimator and
REWLSE estimator seem to be the best alternatives because of their high bdp and
high asymptotic efficiency.
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It is important to note that even though some mentioned estimators have high
bdp, their computation is very challenging, especially in case of large data-sets or
high dimension. That is why approximate algorithms have to be used for this task.
The problem is that this results in worse performance about consistency and bdp,
than the exact theoretical estimator would have had. And it gets worse with the
increase of the sample size 𝑛 and/or the dimension 𝑝 of the samples (Stromberg
et al. [2000], Hawkins and Olive [2002]).

Furthermore, with all these methods, there always have to be a decision of which
tuning constant choose, which function of the residuals should be used, which first
initial estimator use. The problem becomes complicated with all of these decisions
in case of real data.



CHAPTER 5

Robust regression based on shrinkage

In Chapter 3, the notion of shrinkage was used to define robust estimators for loca-
tion and covariance matrix, with the goal of using them to define robust Mahalanobis
distances. In summary, from the collection of RMD’s, the RMD-S approach was se-
lected as the one with the best performance through the simulation study. In the
present chapter, the estimation of the regression parameters in the linear regression
model, using these robust estimators based on shrinkage, is proposed.

5.1 Shrinkage reweighted regression estimator

Denote the joint variable of the response and carriers as z = (x,y). Denote the
location of z by 𝜇 and the scatter matrix by Σ. Partitioning 𝜇 and Σ yields the
notation:

𝜇 =

(︂
𝜇𝑥

𝜇𝑦

)︂
, Σ =

(︂
Σ𝑥𝑥 Σ𝑥𝑦

Σ𝑦𝑥 Σ𝑦𝑦

)︂
. (5.1)

In Chapter 1, it was mentioned that OLS estimator can be expressed equivalently
as:

�̂� = Σ̂−1
𝑥𝑥 Σ̂𝑥𝑦, �̂� = �̂�𝑦 − �̂�

𝑡
�̂�𝑥 . (5.2)

Robust estimates should be used in Equation 5.2. The shrinkage estimators for
the location and covariance matrix of z are used for this purpose. They are defined
in Chapter 3 in Equations 3.14 and 3.15, respectively. Let us denote them as �̂�𝑆ℎ

and Σ̂𝑆ℎ, respectively, for simplicity and let us call them the initial shrinkage robust
estimators of central tendency and covariance matrix of z. These robust estimators
define the RMD-S. For each observation z𝑖, with 𝑖 = 1, ..., 𝑛:

𝑑2(z𝑖) = 𝑅𝑀𝐷-𝑆(z𝑖) = (z𝑖 − �̂�𝑆ℎ)Σ̂
−1
𝑆ℎ(z𝑖 − �̂�𝑆ℎ)

𝑡 . (5.3)

Since in Chapter 3, RMD-S shows to be a robust and advantageous method for
outlier detection, a weight function can be defined depending on the robust squared
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Mahalanobis distance 𝑤𝑖 = 𝑤(𝑑2(z𝑖)). The second step is to obtain �̂�𝑆𝑊
𝑆ℎ and Σ̂𝑆𝑊

𝑆ℎ ,
the shrinkage weighted estimator for the mean and covariance matrix:

�̂�𝑆𝑊
𝑆ℎ =

∑︀𝑛
𝑖=1𝑤𝑖z𝑖∑︀𝑛
𝑖=1𝑤𝑖

, Σ̂𝑆𝑊
𝑆ℎ =

∑︀𝑛
𝑖=1𝑤𝑖(z𝑖 − �̂�𝑆𝑊

𝑆ℎ )(z𝑖 − �̂�𝑆𝑊
𝑆ℎ )𝑡∑︀𝑛

𝑖=1𝑤𝑖

. (5.4)

Based on �̂�𝑆𝑊
𝑆ℎ and Σ̂𝑆𝑊

𝑆ℎ we can obtain �̂�
𝑆𝑊

and �̂�𝑆𝑊 which are initial estimates
for the regression parameters. Let us call them shrinkage weighted (SW) regression
estimators :

�̂�
𝑆𝑊

= (Σ̂𝑆𝑊
𝑆ℎ )−1

𝑥𝑥 (Σ̂
𝑆𝑊
𝑆ℎ )𝑥𝑦, �̂�𝑆𝑊 = (�̂�𝑆𝑊

𝑆ℎ )𝑦 − (�̂�
𝑆𝑊

)𝑡(�̂�𝑆𝑊
𝑆ℎ )𝑥 . (5.5)

The SW estimate of the residual’s scale is:

�̂�𝑆𝑊 = (Σ̂𝑆𝑊
𝑆ℎ )𝑦𝑦 − (�̂�

𝑆𝑊
)𝑡(Σ̂1

𝑆ℎ)𝑥𝑥�̂�
𝑆𝑊

.

The third step is reweighting, taking into consideration the residuals based on
the SW regression estimators:

𝑟𝑆𝑊𝑖 = 𝑦𝑖 − (�̂�
𝑆𝑊

)𝑡x𝑖 − �̂�𝑆𝑊 . (5.6)

Define the Mahalanobis distance for the SW residuals:

𝑑(𝑟𝑆𝑊𝑖 ) = ((𝑟𝑆𝑊𝑖 )𝑡(�̂�𝑆𝑊 )−1𝑟𝑆𝑊𝑖 )1/2 . (5.7)

Let 𝑤𝑟𝑖 = 𝑤(𝑑2(𝑟𝑆𝑊𝑖 )) a weighting function that depends on the Mahalanobis
distance of the SW residuals. Note that the weights now depend on the size of the
residual distance. This way, the good leverage points, which are observations with
large distance in the x-space but small residual distance, are no longer outliers for
the regression model because they are not downweighted. This is a necessary step
in the regression problem because these types of observations are not outliers in the
regression sense, even if they are atypical in the multivariate space.

Now, define u𝑖 = (x𝑡
𝑖, 1)

𝑡 and obtain:

�̂�𝑆𝑅 = ((�̂�
𝑆𝑅

)𝑡, �̂�𝑆𝑅)𝑡 =

(︃
𝑛∑︁

𝑖=1

𝑤𝑟𝑖u𝑖u
𝑡
𝑖

)︃−1 𝑛∑︁
𝑖=1

𝑤𝑟𝑖𝑦𝑖u𝑖 . (5.8)

Then, �̂�𝑆𝑅 =

(︂(︁
�̂�

𝑆𝑅
)︁𝑡
, �̂�𝑆𝑅

)︂𝑡

are the shrinkage reweighted (SR) regression es-

timators.

For the weighting functions the inverse of the squared robust Mahalanobis dis-
tance was studied, but the indicator function in both cases (as in Rousseeuw et al.
[2004]) had improved performance. The first weight function is 𝑤𝑖 = 𝑤(𝑑2(z𝑖)) =
𝐼(𝑑2(z𝑖) ≤ 𝑞1), which assigns weight 1 to the z𝑖, for 𝑖 = 1, ..., 𝑛, with a robust squared
Mahalanobis distance less than certain quantile 𝑞1 of the chi-square distribution with
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𝑝 + 1 degrees of freedom. The second weighting function is 𝑤𝑟𝑖 = 𝑤(𝑑2(𝑟𝑆𝑊𝑖 )) =
𝐼(𝑑2(𝑟𝑆𝑊𝑖 ) ≤ 𝑞2), which assigns weight 1 to the residuals 𝑟𝑆𝑊𝑖 with a Mahalanobis
distance less than certain quantile 𝑞2 of the chi-square distribution with 1 degree of
freedom.

The quantiles:

𝑞1 = 𝜒2
𝑝+1,1−𝛿1

and 𝑞2 = 𝜒2
1,1−𝛿2

, (5.9)

depend on the significance levels 𝛿1 and 𝛿2, for which 0.025 and 0.01 are chosen,
respectively, as in Rousseeuw et al. [2004], because those are the classical choices for
the threshold to detect outliers (Leroy and Rousseeuw [1987]).

5.2 Simulation structure

In this section, a simulation study is conducted to investigate the performance of
the proposed SR regression estimator and compare it with OLS and some of the pre-
viously mentioned robust regression methods: LTS, MM, method S and REWLSE.
The simulations were done in Matlab. The fitlm function was used for OLS. The
ltsregres function from LIBRA library (see Verboven and Hubert [2005]) consider-
ing the default option for the proportion of trimming which is ℎ = 𝑛/2 + 1 and
the default fraction of outliers the algorithm should resist which is equal to 0.75,
was used for LTS. MM was computed with the MMreg function from the FSDA
toolbox (see Riani et al. [2012]), with default values for the nominal efficiency: 0.95
and the rho function to weight the residuals as the bisquare which uses Tukey’s
functions. Method S was calculated with the function SEst from the Discriminant
Analysis Programme toolbox which computes the biweight multivariate S-estimator
for location and dispersion (see Ruppert [1992]). REWLSE was computed with the
functions that Gervini and Yohai [2002] kindly provided, with hard rejection weights
and starting from an initial S-estimator.

Consider the linear regression model in matrix form:

y = 𝛼 +𝑋𝛽 + 𝜖 , (5.10)

where 𝑋 is of size 𝑛×𝑝, 𝛽 = (𝛽1, ..., 𝛽𝑝)
𝑡 is the unknown 𝑝×1 vector of regression pa-

rameters, 𝛼 the unknown intercept, and the errors 𝜖 are i.i.d and independent from
the carriers. The independent variables are distributed according to a multivariate
standard Gaussian distribution𝑋 ∼ 𝑁(0𝑝, 𝐼𝑝), where 0𝑝 is the 𝑝−dimensional vector
of zeros and 𝐼𝑝 is the 𝑝−dimensional identity matrix. The simulation parameters are
the following sets of dimension and sample size: 𝑝 = 5 with 𝑛 = 20, 30, 50, 100, 1000,
𝑝 = 20 with 𝑛 = 80, 100, 200, 500, 5000 and 𝑝 = 30 with 𝑛 = 100, 150, 300, 500, 5000.
The simulations are repeated 𝑀 = 1000 times and each time the parameter esti-
mates are drawn anew.

Three simulation scenarios are proposed, analogously as the simulation models
found in the literature (Maronna and Morgenthaler [1986], Gervini and Yohai [2002],
Croux et al. [2003], Rousseeuw et al. [2004], Agulló et al. [2008], Yu and Yao [2017]).
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(NE): The response is generated from a standard Normal distribution 𝑁(0, 𝐼), which
corresponds to putting 𝛽 = 0 and 𝛼 = 0 when Gaussian errors are considered.

(TE): The response is generated from a 𝑡-distribution with 3 d.f, which corresponds
to putting 𝛽 = 0 and 𝛼 = 0 when 𝑡3-distributed errors are considered.

(NEO): Normal errors as in [NE], but with probability 𝛿 the randomly selected observa-

tions in the independent variables were generated as 𝑁(𝜆
√︁
𝜒2
𝑝,0.99, 1.5) and the

new response as𝑁(𝑘
√︁
𝜒2
1,0.99, 1.5) where 𝜆, 𝑘 = 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10.

For the last simulation scenario [NEO], the levels of contamination considered
were 𝛿 = 10%, 20%. Note that if 𝜆 = 0 and 𝑘 > 0 we obtain vertical outliers, if
𝜆 > 0 and 𝑘 = 0 we obtain good leverage points and if 𝜆 > 0 and 𝑘 > 0 we obtain
bad leverage points. On the other hand, large values of 𝜆 and 𝑘 produce extreme
outliers, whereas small values produce intermediate outliers (see Croux et al. [2003]
and Agulló et al. [2008]).

5.3 Efficiency

It is known that under simulation scheme [NE] the OLS estimator has maximum
efficiency. The efficiency for each robust estimator, for finite samples, is calculated
relative to OLS, considering the sum of squared deviations from the true coefficients
and averaging over all repetitions. Consider the joint vector of regression parameters
including the intercept 𝜙 = (𝛽𝑡, 𝛼)𝑡, which has dimension (𝑝+1)× 1. For a certain
robust method 𝑅, the finite sample efficiency for the joint estimator �̂�𝑅 is defined
as:

Eff =
1/𝑀

∑︀𝑀
𝑚=1 ||�̂�

(𝑚)
𝑂𝐿𝑆 −𝜙||22

1/𝑀
∑︀𝑀

𝑚=1 ||�̂�
(𝑚)
𝑅 −𝜙||22

. (5.11)

Table 5.1 shows the simulated efficiencies relative to OLS, for the joint regression
estimator �̂� obtained with the proposed approach SR and the other robust regres-
sion methods, under simulation scheme [NE]. In each row, the bold letter represents
the higher efficiency, and the italic letter represents the lowest efficiency. The results
show that for a fixed dimension when the sample size is increased, all methods im-
prove the resulting finite sample efficiency. LTS is the method that behaves poorly
even when the sample size increases. S, REWLSE and MM require large samples
in order to have efficiencies higher than 90%. The proposed method SR has higher
efficiency for every dimension and sample sizes considered.
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Table 5.1: Finite sample efficiency in case of Normal errors, scenario [NE]

𝑝 = 5 𝑛 SR LTS S REWLSE MM

20 0.9182 0.2352 0.2715 0.2346 0.2272
30 0.9828 0.3486 0.4292 0.5026 0.4915
50 0.9833 0.5061 0.5070 0.5129 0.5047
100 0.9839 0.5870 0.7051 0.7441 0.7192
1000 0.9859 0.7816 0.8691 0.9570 0.9159

𝑝 = 20 80 0.9852 0.3763 0.6786 0.2809 0.2963
100 0.9956 0.3973 0.7966 0.5028 0.4955
200 0.9900 0.4971 0.8630 0.5811 0.8015
500 0.9951 0.6163 0.8719 0.8737 0.8393
5000 0.9981 0.6822 0.9461 0.9611 0.9068

𝑝 = 30 100 0.9900 0.4458 0.5068 0.3622 0.2978
150 0.9927 0.4699 0.5155 0.4347 0.5532
300 0.9933 0.5110 0.5187 0.7524 0.5770
500 0.9970 0.6467 0.8660 0.8479 0.8486
5000 0.9980 0.6504 0.9646 0.9863 0.9781

In the simulation scenario [TE], OLS is not a maximum efficient estimator, due to
the heavy-tailed errors. Therefore, Table 5.2 shows the mean squared errors (MSE)
instead. The results show that, for all methods, a large sample size translates
into a decrease of the MSE, but method SR outperformed, in general, the other
alternatives.

Table 5.2: MSE in case of 𝑡−student distributed errors, scenario [TE]

𝑝 = 5 𝑛 SR LTS S REWLSE MM

20 0.1499 0.2980 0.3634 0.4892 0.3193
30 0.0579 0.0745 0.0662 0.1074 0.0713
50 0.0304 0.0479 0.0409 0.0548 0.0322
100 0.0114 0.0125 0.0150 0.0115 0.0116
1000 0.0012 0.0016 0.0015 0.0017 0.0014

𝑝 = 20 80 0.0244 0.0443 0.0293 0.1218 0.0881
100 0.0126 0.0376 0.0228 0.0720 0.0364
200 0.0107 0.0108 0.0114 0.0117 0.0118
500 0.0033 0.0039 0.0036 0.0039 0.0034
5000 0.0003 0.0004 0.0004 0.0003 0.0003

𝑝 = 30 100 0.0202 0.0637 0.0375 0.1767 0.0855
150 0.0110 0.0208 0.0157 0.0328 0.0240
300 0.0052 0.0067 0.0074 0.0075 0.0055
500 0.0032 0.0040 0.0038 0.0039 0.0033
5000 0.0003 0.0005 0.0005 0.0003 0.0003
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5.4 Robustness

Simulations to study the robustness are carried out, considering the third simulation
scheme [NEO]. The most significant results are those consisting on dimensions 𝑝 =
5, 30 with sample sizes 𝑛 = 100, 500, respectively. The two statistical criteria used
to compare the estimators from the different approaches were the squared Bias and
the MSE for the estimated parameter vector �̂� and for the estimated intercept �̂�
averaging over all 𝑀 simulation runs (see Gervini and Yohai [2002], Croux et al.
[2003], Rousseeuw et al. [2004]). The following figures show, for each value of 𝜆, the
maximal value of MSE or Bias, obtained over all possible values of 𝑘.

𝑀𝑀𝑆𝐸𝜆(·) = 𝑚𝑎𝑥𝑘∈{0,...,10}𝑀𝑆𝐸𝜆,𝑘(·)
𝑀𝐵𝑖𝑎𝑠𝜆(·) = 𝑚𝑎𝑥𝑘∈{0,...,10}𝐵𝑖𝑎𝑠𝜆,𝑘(·) , (5.12)

for each 𝜆 ∈ {0, ..., 10}. Figure 5.1 shows the 𝑀𝑀𝑆𝐸(�̂�), in case of low dimension
𝑝 = 5 with sample size 𝑛 = 100 and when the data is contaminated with a level of
10%. OLS shows high MSE when the data contains atypical observations, especially
for vertical outliers and bad leverage observations associated with the first values of
𝜆.

Figure 5.1: 𝑀𝑀𝑆𝐸(�̂�) with 𝑝 = 5, 𝑛 = 100, 𝛿 = 10%.

If the previous image is zoomed, Figure 5.2, it can be seen that for vertical
outliers, i.e., 𝜆 = 0, all robust methods have similar MSE, but for the remaining
values of 𝜆, the smallest errors correspond to the proposed method SR and method
S.
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Figure 5.2: (Zoom) 𝑀𝑀𝑆𝐸(�̂�) with 𝑝 = 5, 𝑛 = 100, 𝛿 = 10%.

For the MSE of �̂�, and for the Bias of both �̂� and �̂�, similar conclusions are ob-
tained. In order to see these results from a different perspective, the error measures
are summarized in a single graph for each dimension, sample size and contamination
level. Figure 5.3 corresponds to 𝑝 = 5, 𝑛 = 100 and 𝛿 = 10%. Each line represents
a method. In the x-axis each number from 1 to 4 represents the maximum error
measures: 1-MMMSE(�̂�), 2-MMMSE(�̂�), 3-MMBias(�̂�) and 4-MMBias(�̂�), over all
possible values of 𝜆.

𝑀𝑀𝑀𝑆𝐸(·) = 𝑚𝑎𝑥𝜆∈{0,...,10}𝑀𝑀𝑆𝐸𝜆(·)
𝑀𝑀𝐵𝑖𝑎𝑠(·) = 𝑚𝑎𝑥𝜆∈{0,...,10}𝑀𝐵𝑖𝑎𝑠𝜆(·) , (5.13)

for each 𝜆 ∈ {0, ..., 10}.

Figure 5.3: 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5, 𝑛 = 100 and 𝛿 = 10%.
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Figure 5.4: (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 10%.

Figure 5.4 is a zoom of the previous Figure 5.3. We can see in Figure 5.4 that
in the majority of cases the proposed method SR has the lowest maximum MSE or
Bias, except for one case in which method S has slightly lower maximum Bias(�̂�),
but this happens only under low level of contamination.

When the contamination level 𝛿 increases to 20%, method S worsens its perfor-
mance as it can be seen in Figure 5.5.

Figure 5.5: 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 20%.

Zoomed Figure 5.6 shows that, in case of higher contamination level, SR is the
overall best performance method taking into account that although MSE(�̂�) and
Bias(�̂�) are slightly lower for LTS, the MSE and Bias of the �̂� for LTS is much
higher than SR, REWLSE and even MM estimator.
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Figure 5.6: (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 5 and 𝛿 = 20%.

Figure 5.7 shows that when the dimension is increased to 𝑝 = 30, and the
contamination is 𝛿 = 10%, the most affected methods are OLS and S. Method SR
is the one that has the lowest maximum value for the MSE and Bias of both 𝛽 and
𝛼.

Figure 5.7: 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 30 and 𝛿 = 10%.

Figure 5.8 is a zoom of Figure 5.7 so we can see the four methods with lowest
errors. A similar situation happens in case of 𝛿 = 20% of contamination.



Chapter 5. Robust regression based on shrinkage 70

Figure 5.8: (Zoom) 𝑀𝑀𝑀𝑆𝐸 and 𝑀𝑀𝐵𝑖𝑎𝑠, with 𝑝 = 30 and 𝛿 = 10%.

Appendix D contains the Tables with the numerical results, showing for each
method the maximum (across 𝜆 and 𝑘) MSE and Bias for both �̂� and �̂� for each
combination of the dimension 𝑝 and the contamination level 𝛿. In bold letter are
the lowest error and in italic letter are the highest error after OLS.

5.4.1 Computational times

The computational times in seconds for each method in the simulation scenario
[NEO] are also measured. The study was performed in a PC with a 3.40 GHz
Intel Core i7 processor with 32GB RAM. The results are averaged for 10% and
20% of contamination since they were similar. OLS is the fastest one because of its
simplicity. Following OLS, the proposed method SR is the second fastest method
because it does not relies on iterative algorithms to calculate the estimations. The
other robust alternatives are between 3 and 9 times slower than our proposal SR for
low dimension, and between 3 and 12 times slower for higher dimension.

Table 5.3: Computational times with Normal distribution 𝑝 = 5 and 𝑛 = 100

𝛼 SR OLS LTS S REWLSE MM

0.1 0.0206 0.0126 0.0989 0.0515 0.0572 0.1816
0.2 0.0200 0.0102 0.0966 0.0514 0.0545 0.1862

Table 5.4: Computational times with Normal distribution 𝑝 = 30 and 𝑛 = 500

𝛼 SR OLS LTS S REWLSE MM

0.1 0.1246 0.0120 0.4350 0.3825 0.3967 1.5263
0.2 0.1209 0.0104 0.4102 0.3820 0.4192 1.5456
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5.5 Equivariance properties

The initial shrinkage robust estimators �̂�𝑆ℎ and Σ̂𝑆ℎ are approximately affine equiv-
ariant, as it was studied in Chapter 3. This means that the equivariance property
cannot be demonstrated analytically because only part of the property holds, but
it can be studied by means of simulations (as in Maronna and Zamar [2002] and
Sajesh and Srinivasan [2012]). Then, the distance defined in Equation 5.3 and used
in the weights for the SW estimators of mean and covariance matrix (Equation 5.4)
remains approximately invariant under affine transformations. Since the weights
considered are hard rejection depending on an approximately invariant robust dis-
tance, the estimators �̂�𝑆𝑅

𝑆ℎ and Σ̂𝑆𝑅
𝑆ℎ should hold the property.

Thus, we propose to study the equivariance property on the parameter estima-
tors, denoted as:

�̂�𝑆𝑅 =

(︂(︁
�̂�

𝑆𝑅
)︁𝑡
, �̂�𝑆𝑅

)︂𝑡

.

Affine equivariance in regression can be split in the three following properties
(Rousseeuw et al. [2004] and Maronna and Morgenthaler [1986]):

1. Regression equivariance: If a linear function of the explanatory variables
is added to the response, then the coefficients of this linear function are also
added to the estimators.

2. y-equivariance: If the response variable is transformed linearly, then the es-
timators transform correctly.

Property (1) and (2) can be seen together as:

�̂�𝑆𝑅(𝑋,y𝑐+𝑋g + 𝑣) = �̂�𝑆𝑅(𝑋,y)𝑐+ (g𝑡, 𝑣)𝑡 , (5.14)

where 𝑐 ∈ R is any non-zero constant, g is any 𝑝× 1 vector and 𝑣 ∈ R is any
constant. This means that, keeping the same𝑋, and transforming the response

as y𝑐+𝑋g+ 𝑣, the resulting transformed estimators are: �̂�
𝑆𝑅

𝑛𝑒𝑤 = 𝑐(�̂�
𝑆𝑅

) + g
and �̂�𝑆𝑅

𝑛𝑒𝑤 = 𝑐�̂�𝑆𝑅 + 𝑣.

3. x-equivariance: Also called carrier equivariance. It says that if the explana-
tory variables are transformed linearly (coordinate system transformation),
then the estimators transform correctly.

�̂�𝑆𝑅(𝑋𝐴,y) = ((�̂�
𝑆𝑅

)𝑡(𝐴−1)𝑡, �̂�𝑆𝑅)𝑡 . (5.15)

This means that if the carriers are transformed as 𝑋𝐴 with any non-singular

𝑝×𝑝 matrix 𝐴, the resulting estimators are: �̂�
𝑆𝑅

𝑛𝑒𝑤 = 𝐴−1�̂�
𝑆𝑅

and the intercept
should remain the same �̂�𝑆𝑅

𝑛𝑒𝑤 = �̂�𝑆𝑅.
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Exploring all possible transformations is infeasible, that is the reason whyMaronna
and Zamar [2002] and Sajesh and Srinivasan [2012] proposed to generate the random
matrices 𝐴 for the x-equivariance as 𝐴 = 𝑇𝐷, where 𝑇 is a random orthogonal
matrix and 𝐷 = 𝑑𝑖𝑎𝑔(𝑢1, ..., 𝑢𝑝), where the 𝑢𝑗’s are independent and uniformly dis-
tributed in (0, 1), for all 𝑗 = 1, ..., 𝑝. Then, each generated data matrix 𝑋 in each
repetition, is transformed with a random transformation 𝐴. We propose to gener-
ate 𝐴 as the authors indicated, and following this idea generate randomly for each
repetition the the non-zero 𝑐, the g and the 𝑣 for the equivariance properties.

The MSE of the proposed method SR is studied when the transformations de-
scribed above are made to the simulated data-set. Consider the simulation scenario
[NE] for Normal data without outliers (𝛿 = 0%) and scenario [NEO] when there is
𝛿 = 10%, 20% of contamination, to see the impact of the presence of outliers. The
vector of regression parameters �̂�𝑆𝑅 is estimated with the untransformed data and
saved. After that, the data is transformed according to Equation 5.14 for the re-
gression and y-equivariance and according to Equation 5.15 for the x-equivariance.
Next, the method SR is applied to the transformed data and the resulting �̂�𝑆𝑅

𝑛𝑒𝑤 are
saved. The MSE is calculated between the obtained �̂�𝑆𝑅

𝑛𝑒𝑤 and what it should be ob-
tained if the equivariance properties hold. Table 5.5 shows for each 𝜆, the resulting
𝑀𝑀𝑆𝐸𝜆(�̂�

𝑆𝑅
𝑛𝑒𝑤) in case of regression and y-equivariance. For vertical outliers, i.e.,

when 𝜆 = 0, the error increases with the increase in dimension and contamination
level, a fact that is influenced mostly by the error of the intercept. Nevertheless, for
the rest of the cases, the maximum possible error is low.

Table 5.5: 𝑀𝑀𝑆𝐸𝜆(�̂�
𝑆𝑅
𝑛𝑒𝑤) for regression and y-equivariance

𝑝 = 5 𝑝 = 30

𝜆 𝛿 = 0% 𝛿 = 10% 𝛿 = 20% 𝛿 = 0% 𝛿 = 10% 𝛿 = 20%

0 0.01205 0.04173 0.12625 0.00006 0.26366 0.30312
0.5 0.00567 0.01994 0.03135 0.00009 0.00267 0.00085
1 0.00645 0.01206 0.00876 0.00005 0.00272 0.00066
1.5 0.00615 0.00924 0.00373 0.00009 0.00428 0.00046
2 0.00686 0.00822 0.00384 0.00008 0.00156 0.00037
3 0.01718 0.00521 0.00454 0.00008 0.00215 0.00057
4 0.00726 0.00905 0.00756 0.00008 0.00298 0.00068
5 0.00863 0.01228 0.00737 0.00007 0.00208 0.00063
6 0.00586 0.01305 0.00677 0.00004 0.00166 0.00034
7 0.00822 0.00934 0.00550 0.00003 0.00265 0.00044
8 0.00707 0.01955 0.00628 0.00007 0.00227 0.00056
9 0.00545 0.00948 0.01328 0.00002 0.00306 0.00077
10 0.00676 0.02298 0.00686 0.00009 0.00409 0.00037

Table 5.6 shows the results for the x-equivariance. In this case, both for vertical
outliers and leverage points, the error remains low. Thus, since the errors are mostly
controlled, the proposed robust regression estimator is approximately regression, y-
and x-equivariant.
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Table 5.6: 𝑀𝑀𝑆𝐸𝜆(�̂�
𝑆𝑅
𝑛𝑒𝑤) for x-equivariance

𝑝 = 5 𝑝 = 30

𝜆 𝛿 = 0% 𝛿 = 10% 𝛿 = 20% 𝛿 = 0% 𝛿 = 10% 𝛿 = 20%

0 0.00206 0.00421 0.01874 0.00005 0.01324 0.09468
0.5 0.00162 0.00456 0.01310 0.00003 0.00026 0.00008
1 0.00178 0.00348 0.00493 0.00003 0.00030 0.00003
1.5 0.00153 0.00392 0.00132 0.00004 0.00012 0.00006
2 0.00198 0.00320 0.00234 0.00003 0.00034 0.00003
3 0.00144 0.00293 0.00208 0.00003 0.00016 0.00002
4 0.00177 0.00329 0.00359 0.00005 0.00026 0.00005
5 0.00194 0.00339 0.00182 0.00003 0.00020 0.00001
6 0.00173 0.00481 0.00205 0.00005 0.00016 0.00002
7 0.00214 0.00329 0.00184 0.00002 0.00012 0.00002
8 0.00186 0.00415 0.00177 0.00004 0.00013 0.00002
9 0.00242 0.00356 0.00188 0.00004 0.00016 0.00001
10 0.00193 0.00287 0.00250 0.00003 0.00011 0.00001

5.6 Breakdown property

The bdp measures the maximum proportion of outliers that the estimator can safely
tolerate. The highest possible value for the bdp is 50%. The empirical breakdown
value can be examined through simulations, as in Sajesh and Srinivasan [2012], con-
sidering high contamination levels. Although these situations are not that relevant
in practice because low levels of contamination should be expected, we propose to
study if the error and the bias are controlled in these scenarios in order to see the
performance of the proposed SR estimator. For this, [NEO] contamination scheme
is used, but considering higher levels of contaminations 𝛿 = 30%, 40%, 45%. Table
5.7 shows the resulting MMMSE and MMBias for �̂�𝑆𝑅

𝑛𝑒𝑤 in the low dimension 𝑝 = 5
case.

Table 5.7: MMMSE and MMBias, 𝑝 = 5

𝛿 = 30% 𝛿 = 40% 𝛿 = 45%

Method MMMSE MMBias MMMSE MMBias MMMSE MMBias

OLS 6.9013 5.9143 7.5851 6.3344 7.6727 6.3215
SR 0.1216 0.1160 0.2733 0.1343 0.3314 0.1301
LTS 6.0032 5.6686 6.6864 6.3431 6.9428 6.4081
S 6.0679 5.7893 7.2842 7.0237 7.2403 6.7814
REWLSE 0.3251 0.2994 1.0797 0.7422 1.7883 1.0121
MM 0.5190 0.4884 1.4912 1.1475 3.6681 2.6982

Table 5.8 shows the results for higher dimension 𝑝 = 30. The bold letter repre-
sents lower error or bias and the italic letter represents the highest measures after
OLS, which is the method with worse results. LTS, S and MM have high error
and bias for both low and high dimension, especially with the increase of the con-
tamination level. REWLSE is competitive with SR in high dimension, but in low
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dimension, REWLSE shows higher errors. The MSE and Bias of SR remain low,
especially in high dimension and even with large contamination in the data, com-
pared with the other robust methods supposedly having a high bdp. As discussed
in Yu and Yao [2017] where the authors review and compare some robust regression
approaches, the issue here is that although LTS, S and MM have high bdp, the com-
putation is very challenging (Hawkins and Olive [2002] and Stromberg et al. [2000]).
That is why resampling algorithms are used to obtain a number of subsets and then
compute the robust regression estimate from some initial estimates. However, the
high breakdown property usually requires that the number of elementary sets goes
to infinity. For example, Hawkins and Olive [2002] proved that LTS computed with
fast-LTS algorithm had zero bdp. In order to compute these estimators with high
bdp, one should consider all possible elemental sets. SR approach shows high re-
sistance to large contamination even in high dimension, which can be translated in
high empirical bdp.

Table 5.8: MMMSE and MMBias, 𝑝 = 30

𝛿 = 30% 𝛿 = 40% 𝛿 = 45%

Method MMMSE MMBias MMMSE MMBias MMMSE MMBias

OLS 1.2970 1.0677 1.3839 1.0666 1.2738 1.0701
SR 0.0131 0.0025 0.0642 0.0182 0.1138 0.0232
LTS 0.6640 0.1567 1.0824 0.2211 0.9589 0.1980
S 0.2660 0.0678 0.3764 0.0665 0.3042 0.0749
REWLSE 0.0218 0.0034 0.0977 0.0310 0.2184 0.0630
MM 0.0732 0.0677 0.2274 0.0668 0.4012 0.0675

5.7 Real data-set examples

In this section, we study two known data-sets, very often used in the literature, to
illustrate the performance of the proposed robust regression method comparing to
the other robust alternatives. And also a socioeconomic and environmental related
data-set that explains the Living Environment Deprivation of areas of Liverpool
through remote-sensed data obtained from Google Earth technologies (Arribas-Bel
et al. [2017]).

5.7.1 Star data

The first example is the star data-set, and it is reported in Leroy and Rousseeuw
[1987], and based on Humphreys [1978] and De Grève and Vanbeveren [1980]. It
has become a benchmark for robust regression methodologies. It consists on 𝑛 = 47
observations corresponding to 47 stars of the CYG OB1 cluster in the direction
of Cygnus. There is only one carrier 𝑥, which is the logarithm of the effective
temperature at the surface of the star. The response variable 𝑦 is the logarithm of
its light intensity. There is a positive linear relationship between the response and
the explanatory variables, except for four red giant stars (observations 11, 20, 30
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and 34) which are outliers because they have low temperatures and a high output
of light (the four observations on the upper left corner in Figure 5.9).

Figure 5.9: Star data-set with OLS and SR regression fit.

These giant stars represent a different population. They are bad leverage points
because they influence the OLS regression line due to the poor estimation of the
parameters. Figure 5.9 shows how the four giant stars pull the OLS line towards
them. Observations 7 and 9 are intermediate outliers. And finally, in the multivari-
ate sense, observation 14 is often detected as an outlier, but in the regression sense,
it is a good leverage point because it follows the same linear pattern than the bulk
data. Robust regression fit made by the proposed method SR detected the giant
stars 11, 20, 30, 34 and the intermediate outliers 7 and 9.

Table 5.9 summarizes all method’s estimation of the intercept and slope, and the
outliers detected by the robust techniques. Note that OLS estimates are entirely
changed, they have even different signs. SR and REWLSE correctly detect the
regression outliers, method S detects the good leverage point, observation 14, as an
outlier. LTS identifies observation 18 as atypical when it is not. In Figure 5.9, it
can be seen that observation 18 is an example of the swamping effect problem. On
the other hand, the MM approach only detects as outliers the giant stars (masking
effect).

Table 5.9: Estimation of intercept and slope and detected outliers with star data.

Method �̂� 𝛽 Detected outliers

OLS 6.7935 -0.4133
SR -7.4035 2.9028 7 9 11 20 30 34
LTS -8.5001 3.0462 7 9 11 18 20 30 34
S -10.5034 3.4994 7 9 11 14 20 30 34
REWLSE -7.5001 3.0462 7 9 11 20 30 34
MM -5.1234 2.2879 11 20 30 34
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The 𝑅2 values for the linear regression models fitted by each method are sum-
marized in Table 5.10. OLS’s coefficient of determination is low, while that of the
robust methods is high, except for the MM approach, which is lower than the rest.

Table 5.10: 𝑅2 for each method with stars data-set.

Method OLS SR LTS S REWLSE MM

𝑅2 0.0443 0.7113 0.7006 0.7035 0.7095 0.5578

5.7.2 Hawkins-Bradu-Kass data

HBK data-set was artificially created by Hawkins et al. [1984] and it was also used
in Leroy and Rousseeuw [1987], and many others. It contains 𝑝 = 3 explanatory
variables and a response variable. The first 14 observations are leverage points: 1-10
of bad type and 11-14 of good type. Thus, only observations 1-10 are outliers in
the regression sense. Table 5.11 shows the estimation by all methods for the three
parameters, and it can be seen that OLS is highly influenced by the presence of
these leverage points. Also, the parameters estimated by S method are different
than that of the other robust approaches, and the reason for this is that all robust
methods correctly detect the true outliers, except for method S, which also includes
the good leverage points 11-14.

Table 5.11: Estimation of the parameters and detected outliers with HBK data.

Method 𝛽0 𝛽1 𝛽2 𝛽3 Detected outliers

OLS -0.3875 0.2392 -0.3345 0.3833
SR -0.1800 0.0836 0.0396 -0.0518 1 2 3 4 5 6 7 8 9 10
LTS -0.1805 0.0814 0.0399 -0.0517 1 2 3 4 5 6 7 8 9 10
S -0.0174 0.0957 0.0041 -0.1286 1 2 3 4 5 6 7 8 9 10 11 12 13 14
REWLSE -0.1805 0.0814 0.0399 -0.0517 1 2 3 4 5 6 7 8 9 10
MM -0.1913 0.0860 0.0412 -0.0541 1 2 3 4 5 6 7 8 9 10

The adjusted 𝑅2 values are summarized in Table 5.12. Here, all robust methods,
except S, have high and similar 𝑅2.

Table 5.12: Adjusted 𝑅2 for each method with HBK data-set.

Method OLS SR LTS S REWLSE MM

𝑅2 0.5850 0.9818 0.9816 0.9002 0.9817 0.9811

5.7.3 Living Environment Deprivation data

In Arribas-Bel et al. [2017], the authors studied the Living Environment Deprivation
(LED) index. This measure allows studying quantitatively the concept of quality
of the local environment, known also as urban quality of life, which is a qualita-
tive concept. This is an essential matter for environmental research, citizens and
politics. This kind of indices can be explained through remote sensing data, i.e.,
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information collected without making physical contact, for example, from satellite
technologies. The authors in Arribas-Bel et al. [2017] proposed to model the LED
index of Liverpool (UK) based on four sets of explanatory variables extracted from
a very high spatial resolution (VHR) image downloaded from Google Earth. The
four groups are called: land cover (LC), spectral (SP), texture (TX) and structure
features (ST). See Arribas-Bel et al. [2017] for more detailed description of the fea-
tures. The authors first propose to explain the LED index with a linear combination
of the four sets of variables. The linear regression model is the following:

𝐿𝐸𝐷 = 𝛼 + 𝛽𝐿𝐶 + 𝛾𝑆𝑃 + 𝛿𝑇𝑋 + 𝜁𝑆𝑇 + 𝜖 . (5.16)

There are 35 explanatory variables, 𝛽, 𝛾, 𝛿 and 𝜁 are vectors, containing the
parameters for each carrier, and 𝜖 is an error term assumed to be i.i.d., following a
Gaussian distribution. The classical approach to estimate the regression parameters
is using Ordinary Least Squares (OLS). The problem here is that the way of acqui-
sition of the data, which is obtaining features from processing images from satellite
technology, may imply the presence of atypical observations that could invalidate
the results. Therefore, robust methodologies need to be used.

On the other hand, the large number of variables derived from the Google Earth
image, particularly those of spectral, texture and structure types, are substantially
correlated (Figure 5.10).

Figure 5.10: Correlation matrix for LED index data-set.

The multicollinearity issue violates another assumption for using OLS to esti-
mate the parameters of the model. The authors propose to use a dimensionality-
reduction step to preserve as much of the variation contained in the entire data-set
while avoiding collinearity. They performed a principal components analysis (pca)
(Jolliffe [2011], Ballabio [2015]) on all the spectral, texture and structure variables,
which makes a total of 27 variables, and after the analysis, they propose to use



Chapter 5. Robust regression based on shrinkage 78

only the first four components because they accounted for 90% of the total variance.
Other methods for data containing columns of uninformative variables in the regres-
sion problem have been proposed in the literature as well (Hoffmann et al. [2015],
Li et al. [2018], Wang et al. [2019]). The four extracted components were used as
regressors, together with the three land cover variables that prove most relevant:
water, shadow, and vegetation. They came up with this result about the relevance
by using another approach, but from machine learning area, which is the random
forest (RF), since one of the main objectives of the paper was to study the potential
of modern machine learning techniques: RF and gradient boost regressor (GBR),
in the estimation of socioeconomic indices with remote-sensing data. Focusing on
the classical OLS regression, the authors obtained that the third and fourth compo-
nents were significant, as well as the proportion of an area occupied by water and
vegetation.

We propose to study if the results can be improved by using robust regression
methods. Let us apply the proposed SR approach and compare it with LTS, S,
REWLSE and MM. The raw data, kindly provided by the authors was pre-processed
the same way as they propose, by applying pca to the last 27 explanatory variables
and join the first four components with the three land cover variables: water, shadow
and vegetation, which makes a total of 7 explanatory variables. Table 5.13 shows
the adjusted 𝑅2 of the models estimated by each method.

Table 5.13: 𝑅2 with (pca transformed) LED index data-set.

Method OLS SR LTS S REWLSE MM

𝑅2 0.5059 0.6716 0.6287 0.6031 0.5904 0.6166

Variables PC3, PC4, water and vegetation resulted significant in the model ob-
tained by the methods. The percentage of variability explained by the robust meth-
ods shows the advantage of robust regression. The 𝑅2 of SR is higher than that of
the other approaches, although not as high as one would wish. The authors compare
the results from OLS with the application of the two machine learning approaches.
RF showed an 𝑅2 = 0.9354 and GBR an 𝑅2 = 0.8320. They were interested in
finding the best possible model with the ability to capture the highest possible pro-
portion of the variation inherent in the data. But the problem here is the drawback
both machine learning methods have in terms of interpretability. Also, as the au-
thors point out, RF and GBR suffer from the issue of overfitting.

That is why they propose a cross-validation (CV) study. It consisted on dividing
the data into two groups, one to train the model, and the other one to test its
predictive performance. The 5-fold CV was used and the procedure was repeated
250 times, to obtain the scores for the 𝑅2, as in Arribas-Bel et al. [2017]. The
scores for the MSE of the response are also saved. Table 5.14 shows the median
cross-validated 𝑅2 obtained by the authors for RF and GBR together with the one
we obtained for method SR. The results show that SR is more robust to overfitting
since the 𝑅2 is reduced slightly, while that of RF and GBR are significantly reduced.
Between the three values, SR has the highest median cross-validated 𝑅2. On the
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other hand, for method SR, the median absolute deviation from the data’s median
(MAD) of these scores is 0.0145 which is low, meaning that the uncertainty is under
control.

Table 5.14: Median cross-validated 𝑅2 with (pca transformed) LED index data-set.

Method SR RF GBR

𝑅2 0.6704 0.54 0.50

Figure 5.11: Cross-validated 𝑅2 and median values (dashed line), with pca.

Figure 5.11 shows the distribution of the cross-validated scores for the 𝑅2 ob-
tained with method SR and the median value in a dashed line. Figure 5.12 shows
the results for the MSE. The median of the cross-validated MSE is equal to 2.6260
and the MAD is 0.1199 which are also low values.

Figure 5.12: Cross-validated MSE and median values (dashed line), with pca.

Since it was mentioned before, the same pca transformation the authors proposed
for the data was made for this research. Now, we propose another transformation



Chapter 5. Robust regression based on shrinkage 80

that improves the performance according to the results: sparse pca (spca) (Zou et al.
[2006], Gajjar et al. [2017]), which has advantages in case of high correlated vari-
ables since it is a kind of variable selection transformation. The spca was made over
the 27 variables of the three last groups and the first 10 components were selected
since they account for 92.04% of the total variance. These 10 components and the
three most relevant land cover variables: water, shadow and vegetation were used
to estimate the model.

Figure 5.13 shows the distribution of the cross-validated 𝑅2 and the median
value in a dashed line obtained with SR, which is 0.8530. The MAD of these scores
increases to 0.0346 but it is still a low value.

Figure 5.13: Cross-validated 𝑅2

Figure 5.14 shows the distribution for the MSE. The median MSE reduces to
0.7244 and the MAD reduces to 0.0177.

Figure 5.14: Cross-validated MSE

Table 5.15 shows that the median cross-validated 𝑅2 is higher than that obtained
with pca transformation but also higher than the obtained with both machine learn-
ing techniques, reported in Arribas-Bel et al. [2017].
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Table 5.15: Median cross-validated 𝑅2.

Method SR spca SR pca RF GBR

𝑅2 0.8530 0.6704 0.54 0.50

The uncertainty of the obtained 𝑅2 is slightly higher with spca transformation,
compared to that with the pca transformation. But Figure 5.15 shows that the
distributions of the 𝑅2 scores are quite separated, and the gain is evident because
of the increase in the median value.

Figure 5.15: Cross-validated 𝑅2 and median values (dashed line), for both pca and
spca.

Finally, Table 5.16 contains the estimated coefficients, the p-values and the 𝑅2

estimated by SR with spca transformation using the complete data-set, which is
competitive with respect to the 𝑅2 of RF and GBR reported in Arribas-Bel et al.
[2017]. As the results point out, the same land cover variables as in the paper re-
mained significant and with the same negative sign, meaning that larger proportions
of water and vegetation are associated with smaller deprivation.

Table 5.16: Results for the model estimated by SR with spca transformation and
the 𝑅2 for RF and GBR.

coefficient p-value RF GBR

constant 0.27191 2.03E-05
water -1.42641 2.00E-16
vegetation -0.44513 2.00E-05
SPC2 -0.04409 4.51E-03
SPC3 0.13215 1.52E-06
SPC4 0.32566 1.03E-15
SPC5 -0.26745 2.35E-11
SPC7 -0.13735 2.24E-03
SPC8 0.19544 1.64E-03

𝑅2 0.86820 0.9354 0.8320
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5.8 Summary

The proposed SR approach is compared to classical OLS and other existing robust
regression methods. The robust alternatives have some drawbacks and their per-
formance depends on decisions that, in case of real data, increase the difficulty of
robustly estimate the regression parameters. On the other hand, not all available
methods have good behavior in case of large data-sets, high dimension, not all are
scalable in terms of computational time, and sufficiently resistant to the presence
of outliers. The proposal is to use robust estimators based on shrinkage in the
alternative definition for the OLS estimators based on estimates of location and
covariance of the joint vector of response and independent variables. The approach
passes through a pair of weighting steps depending on robust Mahalanobis distances,
which results in the shrinkage reweighted (SR) regression estimator. The advantages
of using the shrinkage are shown in the simulation study and some conclusions can
be noted. SR approach yielded competitive results compared to the alternative ro-
bust methods from the literature for the regression problem, even in high dimension,
heavy-tailed distributed errors, large contamination or transformed data. Further-
more, SR is quite stable computationally since it involves contributions from all the
observations instead of sub-sample iterations from the data. Finally, the results with
the real data-set examples bear out with the conclusions from the simulation study.
This is shown especially with the LED index data where the SR approach provides
an improvement of the cross-validated 𝑅2 and MSE with respect to classical OLS
and machine learning techniques RF and GBR while maintaining the advantage of
interpretability.



CHAPTER 6

Adjusted quantile

The rule for identifying outliers in multivariate data when the robust Mahalanobis
distance is used consists on a threshold value. If the squared RMD of the obser-
vation in question exceeds that cut-off value, it is considered as an outlier because
it is far from the center of the underlying distribution. The squared classical MD
(with sample mean and sample covariance matrix estimators) has a chi-squared dis-
tribution with 𝑝 degrees of freedom, where 𝑝 is the dimension of the data. This does
not need to be true for the robust measure when other robust estimators are used.
Although, the classical threshold value 𝜒2

𝑝;0.975, used for the classical MD, is often
used in the case of RMD.

The problem is that this assumption has some drawbacks. For example, if the
data is clean and comes from a multivariate Normal distribution, no outliers should
be detected. Filzmoser et al. [2005] proposed to use an adjusted quantile, instead
of the classical choice, estimated adaptively from the data, depending on 𝑛 and
𝑝, which is based on the difference between the 𝜒2 distribution and the empirical
distribution of the squared RMD. The authors proposed the adjusted cut-off for a
specific robust Mahalanobis distance, the one based on the Minimum Covariance
Determinant (MCD) robust estimator proposed by Rousseeuw [1985]. This method
was introduced in Chapter 2 as Adj MCD.

In this chapter, we propose to find an adjusted quantile as the adaptive threshold,
following the idea from Filzmoser et al. [2005], adapted to the RMD-S introduced
in Chapter 3. A simulation study is done to check the performance improvement of
the new cutoff against the classical. The behavior when the underlying distribution
is heavy-tailed or skewed shows the appropriateness of the method when we deviate
from the common assumption of normality. The approach is illustrated using the
Living Environment Deprivation (LED) example introduced in Chapter 5.
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6.1 Estimating the adjusted threshold

Let us recall the estimators that defined the RMD-S. In Chapter 3, RMD-S, a
robust distance based on shrinkage, is introduced. The shrinkage estimator �̂�𝑆ℎ was
proposed as a robust estimator of central tendency.

�̂�𝑆ℎ = (1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e .

where �̂�𝑀𝑀 is the multivariate 𝐿1−median which is a robust and highly efficient
estimator of location. The scaling factor 𝜈𝜇 and the intensity 𝜂 are obtained mini-
mizing the expected quadratic loss. The solution can be found in Proposition 2 from
Chapter 3. On the other hand, an adjusted special comedian matrix 𝑆𝑆ℎ, based on
the classical definition of comedian from Falk [1997], was proposed:

𝑆𝑆ℎ = 2.198 · (𝑚𝑒𝑑𝑖𝑎𝑛((x𝑗 − (�̂�𝑆ℎ)𝑗)(x𝑡 − (�̂�𝑆ℎ)𝑡)) ,

for 𝑗, 𝑡 = 1, ..., 𝑝, and with it, a shrinkage estimator for the covariance matrix can
be obtained:

Σ̂𝑆ℎ = (1− 𝜂)𝑆𝑆ℎ + 𝜂𝜈Σ𝐼 .

The idea came from the fact that the comedian matrix is a robust alternative
for the covariance matrix, but in general, it is not positive (semi-)definite, and with
the shrinkage approach applied to the comedian, a robust and well-conditioned esti-
mate is obtained. The optimal expression for the parameters 𝜂 and 𝜈Σ is described
in Proposition 3 from Chapter 3.

These robust estimators of location �̂�𝑆ℎ and covariance matrix Σ̂𝑆ℎ based on
shrinkage are used to define an RMD, called RMD-S, and it was proved through
a simulation study that the proposal has advantages compared to other existing
methods for robust multivariate outlier detection. But since the threshold used to
declare observations as outliers was the classical choice, we propose in this section
to find an adaptive quantile following the idea from Filzmoser et al. [2005] adapted
to the RMD-S.

Denote by 𝐺𝑛(𝑢) the empirical distribution function of the squared robust Ma-
halanobis distances 𝑅𝑀𝐷-𝑆2

𝑖 , and by 𝐺(𝑢) the distribution function of 𝜒2
𝑝, the

distribution used in theory. It is known that for multivariate normally distributed
samples, 𝐺𝑛 converges to 𝐺. Then, 𝐺𝑛 and 𝐺 can be compared in the tails to
detect outliers. The tails will be defined by 𝛿 = 𝜒2

𝑝;1−𝛼 and 𝛼 can be for example
0.02. Then, the difference between the empirical and the chi-squared distribution
functions, in the tail, is:

𝑝𝑛(𝛿) = 𝑠𝑢𝑝𝑢≥𝛿(𝐺(𝑢)−𝐺𝑛(𝑢))
+ , (6.1)

where + means positive differences. The measure 𝑝𝑛(𝛿) is not used as a measure of
outliers, because the cut-off should be infinity in case of clean multivariate normally
distributed data. In this case, no observation should be declared as atypical, and
observations with a large RMD should be seen as extremes of the distribution.



Chapter 6. Adjusted quantile 85

To distinguish between the two cases, a critical value 𝑝𝑐𝑟𝑖𝑡 is introduced. If the
difference between the two distributions in the tails is lower than the critical value,
the measure of outliers should be considered as zero. If the difference is higher than
the critical value, it can be considered as a measure of outliers:

𝛼𝑛(𝛿) =

{︂
0, if 𝑝𝑛(𝛿) ≤ 𝑝𝑐𝑟𝑖𝑡

𝑝𝑛(𝛿), if 𝑝𝑛(𝛿) > 𝑝𝑐𝑟𝑖𝑡
.

With this condition, the threshold value for detecting outliers with the robust
Mahalanobis distance is:

𝑐𝑛(𝛿) = 𝐺−1
𝑛 (1− 𝛼𝑛(𝛿)) .

The critical value 𝑝𝑐𝑟𝑖𝑡 should be adjusted to data, depending on the dimension
and the sample size. It can be obtained by simulations, which are analogous as
the study of Filzmoser et al. [2005] for Adj MCD. For different sample sizes 𝑛 and
dimensions 𝑝, data from a multivariate Normal distribution are simulated. Next
step is to apply Equation 6.1 for computing the value 𝑝𝑛(𝛿) for a fixed 𝛿. The fixed
value considered is the same as in Filzmoser et al. [2005], 𝛿 = 𝜒2

𝑝;0.98. For every
combination for the value of 𝑛 and 𝑝, this is repeated 100 times.

The results are how the differences between the chi-squared and the empirical
distributions, 𝐺(𝑢) − 𝐺𝑛(𝑢), should be if the data are sampled from multivariate
Normal distributions. From these results, the 95% percentile of the 100 simulated
values is selected, and these percentiles are shown for 𝑝 = 2, 4, 6, 8, 10 by different
symbols in Figure 6.1. The x-axis is transformed by the inverse of

√
𝑛.

Figure 6.1: Simulated 𝑝𝑛(𝛿) for multivariate Normal distributions with different
sample sizes (𝑥−axis) and dimensions 𝑝 ≤ 10.

In Figure 6.1 it can be seen that the points lie on a line, at least for higher
sample sizes. The lines are estimated by LTS regression because the less precise
simulation results for smaller sample sizes should have less influence. Also, the lines
should have zero intercept because for 𝑛 tending to infinity the difference between
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the empirical and the chi-squared distribution is zero. The slopes of the different
lines estimated by LTS from Figure 6.1 are shown in Figure 6.2.

Figure 6.2: Slopes of lines from Figure 6.1 plotted against dimension 𝑝.

The resulting points can again be approximated by a straight line, which allows
the definition of the critical value as a function of 𝑛 and 𝑝:

𝑝𝑐𝑟𝑖𝑡(𝛿, 𝑛, 𝑝) =
0.4686− 0.0278𝑝√

𝑛
for 𝑝 ≤ 10 .

Figure 6.3: Simulated 𝑝𝑛(𝛿) for multivariate Normal distributions with different
sample sizes (𝑥−axis) and dimensions 𝑝 > 10.

For larger dimension (𝑝 > 10) the same procedure can be applied. The 95% per-
centiles of 100 simulated values for different sample sizes and dimensions are shown
in Figure 6.3. The linear dependency becomes worse for high dimension and low
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sample size.

The estimated slopes from the LTS regression lines are shown in Figure 6.4.

Figure 6.4: Slopes of lines from Figure 6.3 plotted against dimension 𝑝.

The resulting formula for the definition of the critical value as a function of 𝑛
and 𝑝, for higher dimension is:

𝑝𝑐𝑟𝑖𝑡(𝛿, 𝑛, 𝑝) =
0.0219− 0.0005𝑝√

𝑛
for 𝑝 > 10 .

6.2 Simulations

In this section, a simulation study is performed in order to investigate the behavior
of the RMD-S with the new adaptive threshold with respect to the true positive
rate (TPR) and false positive rate (FPR), in different scenarios. From now on let
us refer the RMD-S with the adjusted quantile as RMD-SAQ.

6.2.1 Normal distribution

Consider a 𝑝−dimensional random variable 𝑋 following a contaminated multivari-
ate Normal distribution given as a mixture of Normals of the form (1−𝛼)𝑁(0, 𝐼)+
𝛼𝑁(𝛿e, 𝜆𝐼), where e denotes the 𝑝−dimensional vector of ones. The dimensions
𝑝 = 5, 10, 30, 50, and the sample sizes 𝑛 = 100, 100, 500, 10000, respectively. The
contamination levels 𝛼 = 0, 0.1, 0.2, 0.3, the distance of the outliers 𝛿 = 5 and 10
and the concentration of the contamination 𝜆 = 0.1 and 1. For each set of values,
100 random repetitions are generated.

The method is considered improved if the FPR decreases and the TPR increases
or remains the same. Table 6.1 shows the results for the FPR when there is no
contamination. As it can be seen, for all dimensions the FPR decreases when the
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Table 6.1: FPR for Normal data with 𝛼 = 0%.

RMD-S RMD-SAQ

𝑝 = 5 𝑛 = 100 0.003162 0.000092
𝑝 = 10 𝑛 = 100 0.001601 0.000014
𝑝 = 30 𝑛 = 500 0.000012 0.000001
𝑝 = 50 𝑛 = 1000 0.000011 0.000001

adjusted quantile is used. This traduces in an efficiency improvement with method
RMD-SAQ.

Table 6.2 shows the 𝐹−scores in case of contamination.

Table 6.2: 𝐹−scores in case of Normal data.

𝑝 = 5 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.9672 0.9937 0.1 0.9633 0.9832
0.2 0.9909 0.9929 0.2 0.9986 1
0.3 0.8881 0.8795 0.3 1 1

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.9664 0.9903 0.1 0.9658 0.9926
0.2 0.9986 0.9998 0.2 0.9968 0.9997
0.3 0.9443 0.9305 0.3 1 1

𝑝 = 10 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.9840 0.9972 0.1 0.9870 0.9966
0.2 1 1 0.2 1 1
0.3 0.9595 0.9538 0.3 1 1

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.9882 0.9887 0.1 0.9878 0.9907
0.2 0.9994 0.9996 0.2 0.9993 1
0.3 0.9744 0.9680 0.3 1 1

𝑝 = 30 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.9996 1 0.1 0.9993 1
0.2 1 1 0.2 1 1
0.3 0.9880 0.9889 0.3 1 1

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.9996 1 0.1 0.9996 1
0.2 1 1 0.2 1 1
0.3 0.9998 0.9999 0.3 1 1

𝑝 = 50 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.9997 1 0.1 0.9995 1
0.2 1 1 0.2 1 1
0.3 0.9898 0.9925 0.3 1 1

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.9998 1 0.1 0.9997 1
0.2 1 1 0.2 1 1
0.3 0.9999 1 0.3 1 1
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The motivation for the 𝐹−score measure is that in case of contamination, the
FPR value always reduces when the adjusted quantile is considered and in the vast
majority of cases the TPR increases or remains the same, except in a few cases where
the TPR slightly decreases. The 𝐹−score is considered to measure the trade-off be-
tween the TPR and the FPR. Its expression is 𝐹−score= 2𝑃𝑅/(𝑃 +𝑅), where 𝑃 is
called precision and 𝑅 is known as the recall. It was described previously, in Chap-
ter 3, but let us remember that the precision 𝑃 is the number of correctly detected
outliers divided by the total number of detected outliers, and the recall 𝑅 is the
number of correctly detected outliers divided by the real total number of outliers.
Thus, this measure provides a balance between the two desired outcomes: a high
rate of correctly identified outliers and a low rate of observations mislabel as outliers.

Table 6.2 shows that the adjusted quantile improves the performance in the
majority of cases, except when the dimension is low or moderate (𝑝 = 5 and 10), the
atypical observations are near the center of the data (𝛿 = 5) and there is a high level
of contamination (𝛼 = 30%), in which cases the 𝐹−score slightly decreases. When
the outliers are more separated from the background data (𝛿 = 10), RMD-SAQ
is more or equally accurate than RMD-S for all dimensions and all contamination
levels. In the high dimension case (𝑝 = 30 and 50) the use of the adjusted quantile
exhibits clear advantages over the classical one, even if the outliers are near the
center of the data and even with high contamination.

6.2.2 𝑡3-distribution

Let us study the performance of the methods when the distribution deviates from
normality, considering a 𝑝−dimensional random variable𝑋 following a contaminated
multivariate 𝑡-distribution with 3 degrees of freedom of the form (1 − 𝛼)𝑇3(0, 𝐼) +
𝛼𝑇3(𝛿e, 𝜆𝐼). The first parameter of the notation of 𝑇3(·, ·) refers to the mean and
the second one to the covariance matrix. The parameters for the contamination
are the same considered above and the same measures TPR and FPR are studied.
For the case when the contamination level is 0%, Table 6.3 shows the FPR values.
The fact that the data are not Normal, but heavy-tailed, influences the FPR values.
Nevertheless, for every dimension, method RMD-SAQ decreases the FPR, improving
the performance.

Table 6.3: FPR for 𝑡3-distributed data with 𝛼 = 0%.

RMD-S RMD-SAQ

𝑝 = 5 𝑛 = 100 0.183703 0.166825
𝑝 = 10 𝑛 = 100 0.127602 0.108975
𝑝 = 30 𝑛 = 500 0.114004 0.072873
𝑝 = 50 𝑛 = 1000 0.071239 0.056921

As in the previous case when the data came from a multivariate Normal distribu-
tion, for the remaining contamination scenarios, we show in Table 6.4 the 𝐹−score
as the trade-off between the TPR and the FPR. But in general, the 𝐹−score value
gets influenced mainly due to the high levels of the FPR for contamination level
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𝛼 = 10%, in which case for RMD-S is around 0.12. In any case, the distance with
the adjusted quantile improves the FPR because it always reduces its value, al-
though for 𝛼 = 10% contamination level, the FPR remains around 0.10. This fact
reflect in the 𝐹−scores results, in the rows for 𝛼 = 10% in Table 6.4.

Table 6.4: 𝐹−scores in case of 𝑡3-distributed data.

𝑝 = 5 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.7378 0.7731 0.1 0.7328 0.7719
0.2 0.8692 0.8916 0.2 0.8757 0.9003
0.3 0.8512 0.8536 0.3 0.9534 0.9623

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.7329 0.7686 0.1 0.7426 0.7785
0.2 0.8600 0.8824 0.2 0.8776 0.9003
0.3 0.8020 0.7976 0.3 0.9644 0.9743

𝑝 = 10 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.7287 0.7628 0.1 0.7728 0.8067
0.2 0.8528 0.8757 0.2 0.8703 0.8968
0.3 0.8286 0.8336 0.3 0.9587 0.9699

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.7206 0.7549 0.1 0.7062 0.7407
0.2 0.8655 0.8894 0.2 0.8576 0.8812
0.3 0.9064 0.9069 0.3 0.9575 0.9684

𝑝 = 30 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.7907 0.7933 0.1 0.7815 0.7844
0.2 0.8635 0.8962 0.2 0.8806 0.9125
0.3 0.8802 0.8889 0.3 0.9684 0.9789

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.7836 0.7849 0.1 0.7852 0.7974
0.2 0.8545 0.8887 0.2 0.8695 0.9032
0.3 0.9392 0.9396 0.3 0.9702 0.9811

𝑝 = 50 𝛿 = 5 , 𝜆 = 0.1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 0.1 RMD-S RMD-SAQ

0.1 0.8104 0.8237 0.1 0.8099 0.8121
0.2 0.8836 0.9169 0.2 0.8909 0.9311
0.3 0.8968 0.9089 0.3 0.9713 0.9849

𝛿 = 5 , 𝜆 = 1 RMD-S RMD-SAQ 𝛿 = 10 , 𝜆 = 1 RMD-S RMD-SAQ

0.1 0.8091 0.8125 0.1 0.8151 0.8272
0.2 0.8814 0.9078 0.2 0.8991 0.9362
0.3 0.9497 0.9599 0.3 0.9790 0.9912

On the other hand, the use of the adjusted quantile, instead of the classical one,
improves the performance according to the 𝐹−score in the majority of cases. One
case is the exception: when the dimension is low (𝑝 = 5), the atypical observations
are near the center of the data (𝛿 = 5), the concentration is one (𝜆 = 1) and the
level of contamination is high (𝛼 = 30%), in which the 𝐹−score slightly decreases
from 0.8020 to 0.7976. In all remaining cases, the improvement is reflected.
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6.2.3 Exponential distribution

We considered also a 𝑝−dimensional random variable 𝑋 following a contaminated
multivariate exponential distribution given as a mixture (1−𝛼)𝐸𝑥𝑝(0)+𝛼𝐸𝑥𝑝(𝛿e).
The parameter of the notation 𝐸𝑥𝑝(·) refers to the mean. This case is analogous
to the previous ones, with the difference that only the schemes associated with the
distance of the outliers are considered. Table 6.5 shows the FPR values when there
is no contamination.

Table 6.5: FPR for exponential distributed data with 𝛼 = 0%.

RMD-S RMD-SAQ

𝑝 = 5 𝑛 = 100 0.112803 0.102572
𝑝 = 10 𝑛 = 100 0.136090 0.125437
𝑝 = 30 𝑛 = 500 0.184643 0.156330
𝑝 = 50 𝑛 = 500 0.117781 0.108962

With the multivariate exponential distribution, the TPR values of RMD-S are
high in the majority of cases, and it gets improved or remains the same in the vast
majority of cases, by means of the adjusted quantile. On the other hand, the FPR
values of RMD-S are low and decrease even more with RMD-SAQ. Table 6.6 shows
the 𝐹−score values in case of contamination.

Table 6.6: 𝐹−scores in case of exponential distributed data.

𝑝 = 5 𝛿 = 5 RMD-S RMD-SAQ 𝛿 = 10 RMD-S RMD-SAQ

0.1 0.8555 0.8583 0.1 0.8549 0.8577
0.2 0.8785 0.8809 0.2 0.8506 0.8734
0.3 0.8899 0.8985 0.3 0.9560 0.9667

𝑝 = 10 𝛿 = 5 RMD-S RMD-SAQ 𝛿 = 10 RMD-S RMD-SAQ

0.1 0.8503 0.8528 0.1 0.8505 0.8531
0.2 0.8937 0.9186 0.2 0.9087 0.9350
0.3 0.9120 0.9293 0.3 0.9426 0.9573

𝑝 = 30 𝛿 = 5 RMD-S RMD-SAQ 𝛿 = 10 RMD-S RMD-SAQ

0.1 0.8448 0.8474 0.1 0.8477 0.8507
0.2 0.8948 0.9297 0.2 0.9593 0.9905
0.3 0.9460 0.9694 0.3 0.9798 0.9919

𝑝 = 50 𝛿 = 5 RMD-S RMD-SAQ 𝛿 = 10 RMD-S RMD-SAQ

0.1 0.8601 0.8790 0.1 0.8707 0.8946
0.2 0.9149 0.9417 0.2 0.9643 0.9980
0.3 0.9667 0.9789 0.3 0.9819 0.9988

As it can be seen, the robust distance with the adjusted quantile has advan-
tages with asymmetric distributions as well, since the performance according to the
𝐹−score in all the simulation scenarios is improved.
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6.3 Real data-set example

In Chapter 5 the Living Environment Deprivation (LED) index of Liverpool (UK)
was introduced as an example to study the robust regression methods and the pro-
posed Shrinkage Reweighted (SR) regression estimator. The linear regression model
is the following:

𝐿𝐸𝐷 = 𝛼 + 𝛽𝐿𝐶 + 𝛾𝑆𝑃 + 𝛿𝑇𝑋 + 𝜁𝑆𝑇 + 𝜖 .

Arribas-Bel et al. [2017] propose to use a principal component analysis (pca) on
the data to eliminate the multicollinearity problem. In Chapter 5, the proposed
robust regression approach based on shrinkage makes use of the robust Mahalanobis
distance from Chapter 3, the RMD-S with the classical quantiles from the chi-
squared distribution. In Chapter 5, the LED index data was studied and good
results are obtained with SR method. Another transformation that improves the
performance is proposed there: sparse pca (spca), which has advantages in case of
highly correlated variables since it is a kind of variable selection transformation.
The spca was made over the 27 variables of the three last groups and the first 10
components were selected since they account for 92.04% of the total variance. These
10 components and the three most relevant land cover variables: water, shadow and
vegetation were used to estimate the model.

The authors from Arribas-Bel et al. [2017] compared the results from OLS with
the application of the two machine learning approaches Random Forest (RF) and
Gradient Boost Regressor (GBR). The problem is both machine learning methods
lacks of interpretability. Table 6.7 shows the 𝑅2 obtained for method SR with pca
and spca transformations, together with the 𝑅2 obtained by Arribas-Bel et al. [2017]
for RF and GBR with pca transformed data.

Table 6.7: 𝑅2 measures.

Method SR spca SR pca RF GBR

𝑅2 0.8682 0.6716 0.9354 0.8320

To avoid overfitting, a cross-validation (CV) study is proposed both in Arribas-
Bel et al. [2017] and in Chapter 5. The 5-fold CV was used and the procedure
was repeated 250 times, to obtain the scores for the 𝑅2, as well as the MSE of the
response. In Chapter 5, the CV study is performed with method SR and the trans-
formed data with both pca and spca. SR showed to be more robust to overfitting
than RF and GBR. Between the four methods, SR with spca transformation had
the highest median cross-validated 𝑅2, and the MAD of those scores was low, which
means that the uncertainty is under control.

In this section, we propose to study if the results can be improved by using RMD-
SAQ, i.e., the adjusted quantile instead of the classical quantile 𝑞1 from Equation
5.9, in the robust Mahalanobis distance based on shrinkage RMD-S, used in the
robust SR regression approach proposed in Chapter 5. With spca transformation,
we estimated the model using SR approach with RMD-SAQ, which we call from now
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on method SR-AQ (Shrinkage reweighted regression estimator with the adjusted
quantile). We also performed a cross-validation study, with the same characteristics
as in Arribas-Bel et al. [2017] and Chapter 5, to investigate if there can be an
improvement with respect to the 𝑅2 and the MSE by using SR-AQ. Table 6.8 shows
the resulting cross-validated 𝑅2 of SR-AQ and SR with classical quantile, both with
spca transformed data, and also RF and GBR, both with pca transformed data.
SR-AQ provides an improvement because the median cross-validated 𝑅2 increases.

Table 6.8: Median cross-validated 𝑅2.

Method SR-AQ SR RF GBR

𝑅2 0.9135 0.8530 0.54 0.50

Figure 6.5 shows the distribution of the cross-validated 𝑅2 and the median value
in a dashed line obtained with SR. The MAD of those scores also reduces from
0.0346 (SR) to 0.0142 (SR-AQ).

Figure 6.5: Cross-validated 𝑅2.

Figure 6.6 shows the distribution for the cross-validated MSE, with method
SR-AQ considering spca transformation. The median cross-validated MSE for SR
obtained in Chapter 5 was of 0.7244 (with MAD 0.0177) and the one we obtained
for SR-AQ results to be 0.4138 (with MAD 0.0150). Then, the error reduces with
controlled uncertainty. In summary, the cross-validation showed that RF and GBR
are sensitive to overfitting, reducing largely their 𝑅2, while SR (with classical thresh-
old) and SR-AQ (with adjusted quantile) are more robust and showed higher median
cross-validated 𝑅2, with an improvement on behave of SR-AQ, with low values of
MSE.
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Figure 6.6: Cross-validated MSE.

Table 6.9 contains the results of the model estimated by SR-AQ. The p-values
show that the same land cover variables remained significant and with the same
negative sign, meaning that larger proportions of water and vegetation are associated
with smaller deprivation. The 𝑅2 estimated with SR-AQ is higher than SR, so the
method provides an advantage compared to the classical quantile as threshold. It
is also competitive with respect to the 𝑅2 of RF and GBR reported in Arribas-Bel
et al. [2017].

Table 6.9: Results for the model estimated by SR with spca transformation and the
𝑅2 for RF and GBR.

SR-AQ SR RF GBR

coefficient p-value coefficient p-value

constant 0.35191 4.61E-04 0.27191 2.03E-05
water -1.12131 3.12E-10 -1.42641 2.00E-16
vegetation -0.64527 1.45E-08 -0.44513 2.00E-05
SPC2 -0.01406 4.21E-05 -0.04409 4.51E-03
SPC3 0.19925 2.62E-07 0.13215 1.52E-06
SPC4 0.56633 4.09E-09 0.32566 1.03E-15
SPC5 -0.41745 1.39E-10 -0.26745 2.35E-11
SPC7 -0.31453 2.69E-12 -0.13735 2.24E-03
SPC8 0.15433 3.90E-08 0.19544 1.64E-03

R2 0.9094 0.8682 0.9354 0.8320

6.4 Summary

In this chapter, an adjusted quantile is proposed as the threshold for method RMD-
S presented in Chapter 3 in which it was used the classical chi-squared quantile as
the cut-off value for detecting outliers in multivariate data. RMD-SAQ was studied
by means of simulations, and the results showed that for all dimensions the FPR
decreases with the adjusted cut-off. This fact evidence the efficiency improvement,



Chapter 6. Adjusted quantile 95

even when the underlying distribution is heavy-tailed or skewed, which evidence the
advantages of the adjusted quantile even when we deviate from the common as-
sumption of normality. On the other hand, the overall improvement in performance
is reflected by the high 𝐹−score measures in the rest of simulation scenarios, when
the adaptive threshold is considered.

Finally, a real data-set example is studied to investigate if the estimated model
can be improved with the introduction of the adjusted quantile. In Arribas-Bel
et al. [2017] the authors explain the Living Environment Deprivation (LED) index
of areas of Liverpool (UK), through remote sensing data. They studied the linear
regression model with the classical OLS approach and two machine learning tech-
niques: Random Forest (RF) and Gradient Boost Regressor (GBR). In Chapter 5,
this data is studied with the proposed robust regression approach, the Shrinkage
Reweighted (SR) regression estimator, which is based on RMD-S, the robust Ma-
halanobis distance based on shrinkage, for which we propose the adjusted quantile.
Then, it was logical to analyze if the model could be improved by the introduction
of the adaptive threshold method RMD-SAQ in the SR robust regression approach,
which we called method SR-AQ. The results with the real example were that the
median cross-validated 𝑅2 of the resulting model based on spca transformed data,
estimated with SR-AQ, increases a 7% with respect to SR. On the other hand, the
median cross-validated MSE with SR-AQ decreases a 43% with respect to SR. Then,
the use of the adjusted quantile provides advantages in robust outlier detection and
robust regression.





CHAPTER 7

Conclusions and Future research

This thesis addresses the problem of the presence of outliers in multivariate data and
regression. In general, it is known that the classical sample estimators, i.e., the sam-
ple mean and the sample covariance matrix are sensitive to the presence of outliers.
The same happens in regression with Ordinary Least Squares estimator because a
single atypical observation can highly distort the results. A thorough review of the
existing robust approaches in the literature is presented in two of the chapters of the
thesis to introduce the background of the problem. There are several methods for
robust estimation of location, covariance and regression parameters to overcome the
influence of outliers. Although, no consensus establishes which technique is recom-
mended in practical situations. Furthermore, not all available methods work well for
high dimension, high sample size, not all are sufficiently resistant to the presence of
anomalous values, and are computationally feasible at the same time. The decision
of which method should be used in practice is a difficult task because of the trade-off
between efficiency and breakdown value. Finally, the need for an adaptive threshold
to detect outliers with a robust Mahalanobis distance is essential, since the classical
choice of the chi-squared quantile is not completely accurate.

The first contribution of the thesis is a robust approach, RMD-S, to detect out-
liers in multivariate data, based on the robust Mahalanobis distance. The robust
estimators to define the proposed distance are based on the notion of shrinkage. The
shrinkage has the advantages of reducing the estimation error, obtaining a trade-off
between bias and variance. In the case of covariance matrices, the shrinkage has the
additional advantage that it provides a positive definite and well-conditioned esti-
mate, which is of crucial importance because the inverse of the covariance matrix is
needed in the definition of the Mahalanobis distance. The performance of RMD-S
and the other alternatives from the literature is shown through a simulation study
measuring the True Positive Rates (TPR) and the False Positive Rates (FPR). The
alternative methods decrease their TPR and increase their FPR in most cases when
the data is contaminated, especially in high dimension. While RMD-S has the abil-
ity to discover outliers with high TPR and low FPR in the vast majority of cases
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in the simulations, with Gaussian data and with skewed or heavy-tailed distribu-
tions. On the other hand, some properties of RMD-S are investigated. Correlated
and transformed data show that RMD-S is approximately affine equivariant. Highly
contaminated data show that the approach has a high breakdown value even in high
dimension. The method has a competitive computational time. A real data-set
about outlier detection with benign breast cancer data shows that the proposed
method works well in practice and require reasonable computational times, even for
large problems.

The second contribution of the thesis is a robust regression approach using robust
estimators based on shrinkage in the alternative definition for the OLS estimator.
The method is based on weighting the observations using RMD-S, which gives place
to a robust shrinkage reweighted (SR) regression estimator. The performance of
the proposed SR approach is compared by simulations to the classical OLS and
other existing robust regression methods. SR approach yielded competitive results
compared to the alternative robust methods, even in high dimension, heavy-tailed
distributed errors, large contamination or transformed data. Computationally, SR
results to be stable with low computational times. A couple of typical real data-set
examples are introduced, together with a high dimensional example about the ro-
bust regression to explain the LED index based on remote sensing data. The SR
approach provides an improvement in the real example, especially with the LED
index data. The cross-validated 𝑅2 and MSE with respect to classical OLS and
machine learning techniques RF and GBR, are improved with method SR, that also
has the advantage of interpretability over the machine learning approaches.

The third contribution of the thesis is the adjusted quantile as the adaptive
threshold for RMD-S, giving place to a more accurate cut-off for outlier detection.
The distance with the adjusted threshold is denoted as RMD-SAQ. The simulation
study showed that for all dimensions, the FPR decreases with method RMD-SAQ
with respect to RMS-S with classical quantile. Thus, there is efficiency improvement,
even when we deviate from the common assumption of normality with heavy-tailed
or skewed distributions. The high 𝐹−score measures in the simulations with con-
tamination evidence the advantages of using the adjusted quantile instead of the
classical threshold. On the other hand, since the method SR for robust regression
weights observations based on RMD-S, the adjusted threshold can be used to im-
prove the performance of method SR, which gives the alternative: SR-AQ. The real
data-set example of the LED index data is studied to investigate if the estimated
model can be improved with SR-AQ. The median cross-validated 𝑅2 of the resulting
model increases and the median cross-validated MSE with method SR-AQ decreases,
with respect to the results with SR. Therefore, the adjusted quantile has advantages
in both robust outlier detection and robust regression.

7.1 Future work

In relation to Chapter 3, it remains to be examined some theoretical properties of
the proposed robust estimators of location and covariance matrix that defines the
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robust Mahalanobis distance RMD-S, such as asymptotic distribution, consistency,
and others. In the definition of shrinkage, other target estimators, different than
the scaled identity matrix, could also be studied to see how it affects the results.
Furthermore, since the shrinkage can be defined for an scenario where the dimension
is much higher than the sample size 𝑝 >> 𝑛, this situation could be investigated
because of its high importance in practice, for example in Genetics. An additional
possibility to further investigate is to consider multivariate depth measures instead
of the multivariate median, as it is known that depth is a robust measure for loca-
tion (Tukey [1975], Liu et al. [1990], Serfling [2002], Chen et al. [2008], Agostinelli
and Romanazzi [2011], Paindaveine and Van Bever [2013]), and see if the outlier
detection approach can be improved with these kind of estimators.

In relation to Chapter 5, it could also be an interesting matter to study whether
the use of the different definitions of depth in the literature could improve the perfor-
mance of the approach. In the proposed robust regression method SR, other weights
different than hard rejection, could also be investigated, for example, weights de-
pending on a depth measure. Additionally, other quantities could also be considered
as the cut-off measures, different than the classical choices proposed in Chapter 5
and the adjusted quantile proposed in Chapter 6. Finally, the multivariate regression
problem, in which the response has more than one variable, could also be investi-
gated with the proposed method SR or the other possible variations proposed for
future work. In this case, the robust alternatives studied in Chapter 4 cannot be
used, but there are other approaches proposed in the literature for this problem,
such as multivariate Least Trimmed Squares regression (Agulló et al. [2008]) or the
the LR-weighted MCD regression (Rousseeuw et al. [2004]).

On the other hand, the first goal of the early work of this thesis was to proposed a
robust outlier detection method for functional Magnetic Resonance Imaging (fMRI)
data. Through the years of research it was decided to develop the approach for
general multivariate data and general regression. But we are currently working on
the application to fMRI problem. The aim of fMRI data analysis is to determine
which regions of the brain are either activated or inactivated with respect to an
experimental design. In order to do this, one must consider a partition of the whole
brain, consisting of a set of very small cuboid elements called voxels, each of one
representing a million of brain cells. After the patient is subjected to some type of
stimulus (auditory, visual, mechanical, etc), the result of the entire procedure is an
image of the brain, as it can be seen in Figure 7.1.

Those colored spots in the image above, designate the activated zones in the
brain that were related to the experiment. Note that they are actually clusters of
voxels, perhaps hundreds of them. And the rest of the area, designated by a gray
color, represents the non activated zones, i.e. the areas that did not have relation at
all with the experiment. The exact size of a voxel may vary, although they typically
represent a volume of 27𝑚𝑚3 (a cube with 3𝑚𝑚 length sides), meaning that the
partition of the brain will consist in a set of 20.000 up to 100.000 voxels. This leads
to the statistical problem of how to manage this kind of data (Lazar [2008], Budde
[2012]). Also, small movements of the head, and even heartbeat and breathing can
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Figure 7.1: fMRI scan.

induce pulsatile motion in the brain, which creates physiological noise artifacts in
the signals. Various kinds of acquisition artifacts may be present in fMRI data, that
can influence an individual subject’s regression parameter estimates dramatically.
Complexity and massive amount of this kind of data, and the presence of different
types of noises and atypical observations, makes the fMRI data analysis a chal-
lenging one, that demands robust and computationally efficient statistical analysis
methods. For further research, it remains to be examined the parallelization of the
algorithms, to gain in computational efficiency.

The Mahalanobis distance is used in many other Statistical analysis, a fact that
provides additional lines of future research to investigate the performance of the
proposed robust Mahalanobis distance for these tasks. For example, Hotelling’s t-
squared statistic distribution (Hotelling et al. [1931]), is used in multivariate statis-
tics as a generalization of the Student’s t-distribution, which is used in the univariate
case when the scatter in unknown. Hotelling’s t-squared statistic is defined as:

𝑡2 = (x− 𝜇)Σ−1
𝑥 (x− 𝜇)𝑡

It can also be defined for two samples in hypothesis tests for the differences be-
tween the multivariate means of different populations. More robust and powerful
tests can be found in the literature, such as the interpoint distance based tests which
can be applied also when the dimension 𝑝 is comparable with, or even larger than,
the sample size 𝑛 (Marozzi [2015], Marozzi [2016]), or the test based on pseudo-
Mahalanobis ranks (Hallin et al. [2002]). Thus, our proposed distance may be of
interest in this analysis.

Furthermore, a distance measure is needed in several machine learning algo-
rithms. For example, k-means and k-nearest neighbor (kNN) classifier, need a suit-
able distance metric to identify neighboring data points. The Euclidean distance
is commonly used, but it assumes that each feature of the observations is equally
important and independent from the others. In practice, these assumptions may
not be always satisfied, especially in high dimension. The Mahalanobis distance has
been used for clustering and classification algorithms, such as kNN, discriminant
analysis, and many others (Xing et al. [2003], Xiang et al. [2008], Weinberger and
Saul [2009], Zhang et al. [2011], Morozova et al. [2013]). Then, it is another field in
which the performance of the proposed distance can be studied.
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APPENDIX A

Proofs from Chapter 3

Here are the proofs of the Propositions from Chapter 3.

A.1 Proof of Proposition 1.

The optimization problem is:

min𝜈𝜇,𝜂 𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝐶𝐶𝑀) − 𝜇
⃦⃦2
2

]︁
s.t. �̂�𝑆ℎ(𝐶𝐶𝑀) = (1− 𝜂)�̂�𝐶𝐶𝑀 + 𝜂𝜈𝜇e,

(A.1)

where ‖x‖22 =
∑︀𝑝

𝑗=1 𝑥
2
𝑗 and the associated inner product is: ⟨𝑥, 𝑦⟩ =

∑︀𝑝
𝑗=1 𝑥𝑗𝑦𝑗.

The objective function is equivalent to:

𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝐶𝐶𝑀) − 𝜇
⃦⃦2
2

]︁
= 𝐸

[︀
‖(1− 𝜂)�̂�𝐶𝐶𝑀 + 𝜂𝜈𝜇e− 𝜇‖22

]︀
= (1− 𝜂)2𝐸

[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
+ 𝜂2 ‖𝜈𝜇e− 𝜇‖22

+ 2𝐸 [⟨(1− 𝜂)(�̂�𝐶𝐶𝑀 − 𝜇), 𝜂(𝜈𝜇e− 𝜇)⟩] .

The latter element in the above expression is equal to zero because 𝐸(�̂�𝐶𝐶𝑀) = 𝜇
(see Chu [1995]). Then, the optimization problem (A.1) reduces to minimize:

𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝐶𝐶𝑀) − 𝜇
⃦⃦2
2

]︁
= (1− 𝜂)2𝐸

[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
(A.2)

+ 𝜂2 ‖𝜈𝜇e− 𝜇‖22 .

In order to find the optimal 𝜈𝜇, it is necessary to minimize only the right element
of the above expression.

||𝜈𝜇e− 𝜇||22 = 𝜈2𝜇 ‖e‖22 + ‖𝜇‖22 − 2𝜈𝜇 ⟨e,𝜇⟩ .
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Then, with respect to the scaling parameter, the first order optimality condition
give:

0 = 2𝑝𝜈𝜇 − 2 ⟨e,𝜇⟩ = 2

(︃
𝑝𝜈𝜇 −

𝑝∑︁
𝑗=1

𝜇𝑗

)︃
.

Thus:

𝜈𝜇 =
1

𝑝

𝑝∑︁
𝑗=1

𝜇𝑗 .

Estimating 𝜇 with �̂�𝐶𝐶𝑀 , we obtain:

𝜈𝜇 =
�̂�𝐶𝐶𝑀e

𝑝
.

In (A.2), with respect to the shrinkage intensity parameter 𝜂, the first order
optimality condition give:

0 = 2(1− 𝜂)𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
+ 2𝜂 ‖𝜈𝜇e− 𝜇‖22 .

Hence:

𝜂 =
𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜇‖22

]︀
𝐸
[︀
‖�̂�𝐶𝐶𝑀 − 𝜈𝜇e‖22

]︀ .
A.2 Proof of Proposition 2.

The optimization problem is:

min𝜈𝜇,𝜂 𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝑀𝑀) − 𝜇
⃦⃦2
2

]︁
s.t. �̂�𝑆ℎ(𝑀𝑀) = (1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e,

(A.3)

where ‖𝑥‖22 =
∑︀𝑝

𝑗=1 𝑥
2
𝑗 .

Similarly to the previous demonstration, we can consider the following expression
for the objective function:

𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝑀𝑀) − 𝜇
⃦⃦2
2

]︁
= 𝐸

[︀
‖(1− 𝜂)�̂�𝑀𝑀 + 𝜂𝜈𝜇e− 𝜇‖22

]︀
= (1− 𝜂)2𝐸

[︀
‖�̂�𝑀𝑀 − 𝜇‖22

]︀
+ 𝜂2 ‖𝜈𝜇e− 𝜇‖22

+ 2𝐸 [⟨(1− 𝜂)(�̂�𝑀𝑀 − 𝜇), 𝜂(𝜈𝜇e− 𝜇)⟩] .

The expectation of the inner product is equal to zero because Bose and Chaud-
huri [1993], Bose [1995], Möttönen et al. [2010], and Becker et al. [2014] in-
vestigated the asymptotic distribution for the 𝐿1−median. According to the au-

thors the distribution of �̂�𝑀𝑀 can be approximated by 𝑁𝑝

(︁
𝜇, 1

𝑛
𝐴−1�̂�𝐴−1

)︁
, where
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𝐴(x𝑖) =
1

||x𝑖||2

(︁
𝐼𝑝 − x𝑖x

𝑇
𝑖

||x𝑖||22

)︁
and �̂�(x𝑖) =

x𝑖x
𝑇
𝑖

||x𝑖||22
, with x𝑖 ∈ R𝑝, for each 𝑖 = 1, ..., 𝑛.

Then, the optimization problem (A.3) reduces to minimize:

𝐸
[︁⃦⃦

�̂�𝑆ℎ(𝑀𝑀) − 𝜇
⃦⃦2
2

]︁
= (1− 𝜂)2𝐸

[︀
‖�̂�𝑀𝑀 − 𝜇‖22

]︀
(A.4)

+ 𝜂2 ‖𝜈𝜇e− 𝜇‖22 .

Then, the optimal parameter 𝜈𝜇 can be found minimizing only the right element
of the above expression, which is the only one depending on that parameter.

||𝜈𝜇e− 𝜇||22 = 𝜈2𝜇 ‖e‖22 + ‖𝜇‖22 − 2𝜈𝜇 ⟨e,𝜇⟩ .

The associated first order optimality condition give:

0 = 2𝑝𝜈𝜇 − 2 ⟨e,𝜇⟩ = 2

(︃
𝑝𝜈𝜇 −

𝑝∑︁
𝑗=1

𝜇𝑗

)︃
.

Therefore:

𝜈𝜇 =
1

𝑝

𝑝∑︁
𝑗=1

𝜇𝑗 .

In practice, we propose to estimate 𝜇 with �̂�𝑀𝑀 . Thus:

𝜈𝜇 =
�̂�𝑀𝑀e

𝑝
.

With respect to the shrinkage intensity parameter 𝜂, the first order optimality
condition associated to (A.4), give:

0 = 2(1− 𝜂)𝐸
[︀
‖�̂�𝑀𝑀 − 𝜇‖22

]︀
+ 2𝜂 ‖𝜈𝜇e− 𝜇‖22 .

Hence:

𝜂 =
𝐸
[︀
‖�̂�𝑀𝑀 − 𝜇‖22

]︀
𝐸
[︀
‖�̂�𝑀𝑀 − 𝜈𝜇e‖22

]︀ .
A.3 Proof of Proposition 3.

The optimization problem is:

min𝜈Σ,𝜂 𝐸

[︂⃦⃦⃦
Σ̂𝑆ℎ − Σ

⃦⃦⃦2]︂
s.t. Σ̂𝑆ℎ = (1− 𝜂)𝑆𝐶𝐶𝑀 + 𝜂𝜈Σ𝐼,

(A.5)

where ‖𝐴‖2 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝐴𝑇 )/𝑝, and the associated inner product is ⟨𝐴1, 𝐴2⟩ = 𝑡𝑟𝑎𝑐𝑒(𝐴1𝐴
𝑇
2 )/𝑝.
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Analogous to the previous Propositions, the objective function in the above
minimization problem (A.5) can be seen as:

𝐸

[︂⃦⃦⃦
Σ̂𝑆ℎ − Σ

⃦⃦⃦2]︂
= 𝐸

[︂⃦⃦⃦
(1− 𝜂)𝑆𝐶𝐶𝑀 + 𝜂𝜈Σ𝐼 − Σ

⃦⃦⃦2]︂
= (1− 𝜂)2𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − Σ

⃦⃦⃦2]︂
+ 𝜂2 ‖𝜈Σ𝐼 − Σ‖2

+ 2𝐸
[︁⟨

(1− 𝜂)(𝑆𝐶𝐶𝑀 − Σ), 𝜂(𝜈Σ𝐼 − Σ)
⟩]︁

.

In this case, note that the latter element in the above expression is equal to zero
because 𝐸(𝑆𝐶𝐶𝑀) = Σ. Hence, the optimization problem (A.5) reduces to minimize
the following expression:

𝐸

[︂⃦⃦⃦
Σ̂𝑆ℎ − Σ

⃦⃦⃦2]︂
= (1− 𝜂)2𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − Σ

⃦⃦⃦2]︂
+ 𝜂2 ‖𝜈Σ𝐼 − Σ‖2 . (A.6)

The optimal 𝜈Σ can be obtained by minimizing only the right element of the
above expression, because it is the only one depending on that parameter. Also,
note that:

||𝜈Σ𝐼 − Σ||2 = 𝜈2Σ ‖𝐼‖2 + ‖Σ‖2 − 2𝜈Σ ⟨𝐼,Σ⟩ .

Then, the first order optimality condition with respect to the scaling parameter,
give:

0 = 2𝜈Σ − 2 ⟨𝐼,Σ⟩ .
𝜈Σ = ⟨𝐼,Σ⟩ = 𝑡𝑟𝑎𝑐𝑒(Σ𝐼𝑇 )/𝑝 .

Therefore:
𝜈Σ = 𝑡𝑟𝑎𝑐𝑒(Σ)/𝑝 .

In practice, we propose to estimate Σ with 𝑆𝐶𝐶𝑀 , thus:

𝜈Σ = 𝑡𝑟𝑎𝑐𝑒(𝑆𝐶𝐶𝑀)/𝑝 .

In (A.6), with respect to the shrinkage intensity parameter 𝜂, the first order
optimality condition give:

𝜂 =

𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − Σ

⃦⃦⃦2]︂
𝐸

[︂⃦⃦⃦
𝑆𝐶𝐶𝑀 − 𝜈Σ𝐼

⃦⃦⃦2]︂ .



APPENDIX B

Tables from Chapter 3

Here are the tables that were not included in the main text from Chapter 3.

B.1 Normal distribution

Table B.1 shows the false positive rates (FPR) when there is no contamination. The Tables
B.2-B.3 show the true positive rates (TPR) and Tables B.4-B.5 the FPR, for each method,
corresponding to the simulations with multivariate Normal distribution, for contamination
levels 𝛼 = 0.1, 0.2, 0.3, dimension 𝑝 = 5, 10, 30, 50, distance of the outliers 𝛿 = 5 and 10,
and concentration of the contamination 𝜆 = 0.1 and 1.

Table B.1: False positive rates with Normal distribution 𝛼 = 0.

𝑝 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.06440 0.04640 0.02630 0.08120 0.00480 0.03140 0.02820 0.02770 0.03100 0.02900 0.00316
10 0.11760 0.09830 0.07110 0.09580 0.00217 0.00245 0.00222 0.00215 0.00172 0.00161 0.00160
30 0.06276 0.03922 0.00804 0.09084 0.00008 0.00003 0.00003 0.00003 0.00003 0.00002 0.00001
50 0.05860 0.03460 0.00630 0.08670 0.00005 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
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Table B.2: True positive rates with Normal distribution.

𝛿 = 5 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 0.9000 1 1 1 1 1 1 1 1
0.2 0.8700 0.8700 0.5100 0.9500 0.9941 1 1 1 1 1 1
0.3 0.0600 0.0600 0.9800 0.1500 0.5719 0.8766 0.8782 0.8782 0.9146 0.9090 0.9130

10 0.1 0.9900 0.9900 0.8600 1 1 1 1 1 1 1 1
0.2 0.2800 0.2800 0.4600 0.9416 1 1 1 1 1 1 1
0.3 0 0 0.9900 0.1612 0.7205 0.8774 0.8747 0.8750 0.9711 0.9672 0.9711

30 0.1 0.1900 0.1900 1 1 1 1 1 1 1 1 1
0.2 0 0 0.1000 1 1 1 1 1 1 1 1
0.3 0 0 0.6100 0.0100 0.9407 0.5308 0.5275 0.5286 0.9990 0.9988 0.9991

50 0.1 0 0 1 1 1 1 1 1 1 1 1
0.2 0 0 0 1 1 1 1 1 1 1 1
0.3 0 0 0 0 0.9839 0.5021 0.5000 0.5000 0.9939 0.9932 0.9942

𝛿 = 5 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8578 0.8486 0.9602 0.9654 0.9975 1 1 1 1 1 1
0.3 0.1955 0.1664 0.9336 0.5792 0.8735 0.8935 0.8947 0.8938 0.8740 0.8698 0.8755

10 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.9016 0.8935 0.7212 0.9993 1 1 1 1 1 1 1
0.3 0.2375 0.2080 0.5935 0.6108 0.9505 0.8846 0.8838 0.8838 0.9608 0.9581 0.9621

30 0.1 1 1 0.8816 1 1 1 1 1 1 1 1
0.2 0.4461 0.4232 0.0154 1 1 1 1 1 1 1 1
0.3 0.0823 0.0532 0.1483 0.9772 0.9990 0.7142 0.7035 0.7059 1 1 1

50 0.1 0.0901 0.0801 0.6708 1 1 1 1 1 1 1 1
0.2 0.0801 0.0515 0.0019 1 1 1 1 1 1 1 1
0.3 0.0671 0.0367 0.0111 0.9087 0.9987 0.5425 0.5339 0.5363 0.9997 0.9997 0.9997
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Table B.3: True positive rates with Normal distribution.

𝛿 = 10 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 0.9200 1 1 1 1 1 1 1 1
0.2 0.8200 0.8200 0.6500 1 1 1 1 1 1 1 1
0.3 0.1000 0.1000 1 0.7400 1 1 1 1 1 1 1

10 0.1 1 1 0.9200 1 1 1 1 1 1 1 1
0.2 0.7200 0.7200 0.4400 1 1 1 1 1 1 1 1
0.3 0.0500 0.0500 0.9700 0.7500 1 1 1 1 1 1 1

30 0.1 0.8800 0.8800 1 1 1 1 1 1 1 1 1
0.2 0 0 0.1200 1 1 1 1 1 1 1 1
0.3 0 0 0.5400 0.9300 1 1 1 1 1 1 1

50 0.1 0 0 1 1 1 1 1 1 1 1 1
0.2 0 0 0 1 1 1 1 1 1 1 1
0.3 0 0 0 0.9787 1 1 1 1 1 1 1

𝛿 = 10 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8480 0.8465 0.9900 1 1 1 1 1 1 1 1
0.3 0.2190 0.1976 0.9307 0.9591 0.9991 1 1 1 1 1 1

10 0.1 1 1 0.9800 1 1 1 1 1 1 1 1
0.2 0.8623 0.8548 0.6558 1 1 1 1 1 1 1 1
0.3 0.2280 0.2046 0.4618 0.9911 1 1 1 1 1 1 1

30 0.1 1 1 0.8919 1 1 1 1 1 1 1 1
0.2 0.4879 0.4654 0.0125 1 1 1 1 1 1 1 1
0.3 0.0810 0.0509 0.1087 1 1 1 1 1 1 1 1

50 0.1 1 1 0.6017 1 1 1 1 1 1 1 1
0.2 0.2695 0.2348 0.0017 1 1 1 1 1 1 1 1
0.3 0.0643 0.0378 0.0006 1 1 1 1 1 1 1 1
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Table B.4: False positive rates with Normal distribution.

𝛿 = 5 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0327 0.0184 0.0336 0.0640 0.0040 0.0080 0.0070 0.0073 0.0069 0.0067 0.0076
0.2 0.0265 0.0171 0.0512 0.0600 0.0028 0.0015 0.0015 0.0012 0.0013 0.0013 0.0013
0.3 0.1504 0.1247 0.0373 0.1641 0.0015 0 0 0 0 0 0

10 0.1 0.0735 0.0529 0.1167 0.0823 0.0027 0.0055 0.0057 0.0048 0.0025 0.0024 0.0027
0.2 0.1566 0.1330 0.2803 0.0667 0.0023 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001
0.3 0.2485 0.2206 0.0767 0.2502 0.0010 0 0 0 0 0 0

30 0.1 0.0767 0.0507 0.0078 0.0699 5E-05 0.0007 0.0006 0.0006 0.0001 4.4E-05 0.0001
0.2 0.1079 0.0784 0.0565 0.0552 3E-05 0 0 0 0 0 0
0.3 0.1491 0.1150 0.0547 0.5030 3E-05 0 0 0 0 0 0

50 0.1 0.0679 0.0411 0.0010 0.0688 0.0003 0.0001 0.0001 0.0001 0 0 0
0.2 0.0916 0.0609 0.0045 0.0529 0 0 0 0 0 0 0
0.3 0.1362 0.1013 0.0174 0.6761 0 0 0 0 0 0 0

𝛿 = 5 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0339 0.0198 0.0341 0.0636 0.0033 0.0084 0.0073 0.0069 0.0075 0.0071 0.0077
0.2 0.0110 0.0055 0.0347 0.0507 0.0017 0.0014 0.0012 0.0012 0.0010 0.0009 0.0012
0.3 0.0374 0.0260 0.0379 0.0383 0.0001 0 0 0 0 0 0

10 0.1 0.0704 0.0505 0.0917 0.0842 0.0023 0.0047 0.0042 0.0041 0.0027 0.0022 0.0029
0.2 0.0270 0.0171 0.0860 0.0610 0.0010 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001
0.3 0.0851 0.0706 0.0782 0.0457 0.0003 0 0 0 0 0 0

30 0.1 0.0347 0.0115 0.0081 0.0713 0.0001 0.0008 0.0007 0.0007 0.0001 0.0001 0.0001
0.2 0.0357 0.0198 0.0066 0.0544 0 0 0 0 0 0 0
0.3 0.0552 0.0343 0.0077 0.0366 0 0 0 0 0 0 0

50 0.1 0.0273 0.0046 0.0006 0.0710 0.0002 0.0001 0.0001 0.0001 0 0 0
0.2 0.0466 0.0259 0.0008 0.0540 0 0 0 0 0 0 0
0.3 0.0491 0.0277 0.0009 0.0361 0 0 0 0 0 0 0
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Table B.5: False positive rates with Normal distribution.

𝛿 = 10 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0309 0.0154 0.0301 0.0681 0.0022 0.0090 0.0076 0.0066 0.0066 0.0058 0.0069
0.2 0.0337 0.0248 0.0414 0.0485 0.0036 0.0005 0.0004 0.0004 0.0011 0.0008 0.0007
0.3 0.1434 0.1183 0.0309 0.0603 0.0031 0 0 0 0 0 0

10 0.1 0.0665 0.0464 0.1147 0.0772 0.0017 0.0041 0.0047 0.0042 0.0034 0.0030 0.0035
0.2 0.0809 0.0647 0.2827 0.0606 0.0022 0.0002 0.0001 0.0001 0 0 0
0.3 0.2353 0.2088 0.0934 0.0895 0.0008 0 0 0 0 0 0

30 0.1 0.0415 0.0174 0.0081 0.0715 4E-05 0.0011 0.0010 0.0011 0.0001 0.0001 0.0001
0.2 0.1072 0.0776 0.0481 0.0561 3E-05 0 0 0 0 0 0
0.3 0.1500 0.1163 0.0578 0.0623 0.0001 0 0 0 0 0 0

50 0.1 0.0698 0.0426 0.0006 0.0704 0.0002 0.0003 0.0002 0.0003 0 0 0
0.2 0.0954 0.0642 0.0032 0.0534 0.0001 0 0 0 0 0 0
0.3 0.1257 0.0913 0.0091 0.0400 0 0 0 0 0 0 0

𝛿 = 10 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0332 0.0174 0.0297 0.0682 0.0021 0.0076 0.0068 0.0069 0.0058 0.0052 0.0062
0.2 0.0136 0.0058 0.0352 0.0535 0.0023 0.0011 0.0012 0.0011 0.0008 0.0008 0.0007
0.3 0.0385 0.0289 0.0372 0.0397 0.0007 0 0 0 0.0001 0 0

10 0.1 0.0668 0.0469 0.0907 0.0771 0.0020 0.0036 0.0036 0.0031 0.0025 0.0021 0.0026
0.2 0.0278 0.0170 0.0930 0.0629 0.0009 0.0002 0.0001 0.0002 0 0 0
0.3 0.0856 0.0694 0.0685 0.0440 0.0004 0 0 0 0 0 0

30 0.1 0.0351 0.0122 0.0077 0.0735 4E-05 0.0009 0.0008 0.0009 0.0001 2.21E-05 0.0001
0.2 0.0334 0.0181 0.0053 0.0535 0 0 0 0 0 0 0
0.3 0.0577 0.0368 0.0085 0.0388 0 0 0 0 0 0 0

50 0.1 0.0249 0.0033 0.0003 0.0717 0.0007 0 0 0 0 0 0
0.2 0.0377 0.0204 0.0002 0.0552 0.0005 0 0 0 0 0 0
0.3 0.0493 0.0264 0.0002 0.0373 0 0 0 0 0 0 0

Table B.6: Computational times with Normal data 𝛿 = 5 and 𝜆 = 1.

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMD-S

5 0.1 0.8547 0.8078 0.0959 0.0181 0.0070 0.0029
0.2 1.2146 0.7129 0.0763 0.0186 0.0061 0.0034
0.3 1.0064 0.7544 0.0612 0.0176 0.0063 0.0025

Mean 1.0252 0.7584 0.0778 0.0181 0.0065 0.0030

10 0.1 1.0090 1.1250 0.1592 0.0793 0.0113 0.0047
0.2 1.0135 1.0448 0.1679 0.0623 0.0100 0.0025
0.3 1.0335 1.0595 0.1515 0.0612 0.0091 0.0009

Mean 1.0187 1.0765 0.1595 0.0676 0.0101 0.0027

30 0.1 6.5263 6.2629 0.4788 0.9623 0.2530 0.2752
0.2 6.1268 6.2031 0.5737 0.8317 0.1700 0.2139
0.3 5.9068 6.1767 0.5034 0.9472 0.1791 0.2101

Mean 6.1866 6.2142 0.5186 0.9137 0.2007 0.2331

50 0.1 7.3298 7.2712 2.3726 1.2543 0.2172 0.2122
0.2 7.2441 7.2303 2.3827 1.2277 0.2165 0.2066
0.3 7.2472 7.2544 2.5319 1.2322 0.2167 0.2105

Mean 7.2737 7.2520 2.4291 1.2381 0.2168 0.2098
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Table B.7: Computational times with Normal data 𝛿 = 10 and 𝜆 = 0.1.

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMD-S

5 0.1 0.7704 0.7425 0.1090 0.0195 0.0107 0.0026
0.2 0.6878 0.6534 0.0573 0.0195 0.0079 0.0033
0.3 0.6990 0.7434 0.0294 0.0268 0.0072 0.0054

Mean 0.7191 0.7131 0.0652 0.0219 0.0086 0.0038

10 0.1 1.0631 1.1115 0.1297 0.0824 0.0101 0.0066
0.2 1.1940 0.9625 0.1179 0.0719 0.0080 0.0041
0.3 1.0673 0.9902 0.0756 0.0663 0.0097 0.0047

Mean 1.1081 1.0214 0.1077 0.0735 0.0093 0.0051

30 0.1 6.0350 6.0913 0.7347 0.8205 0.1701 0.1697
0.2 6.4506 6.1627 0.7385 0.7491 0.1837 0.1572
0.3 6.2114 6.1146 1.1310 0.7342 0.1714 0.1281

Mean 6.2324 6.1229 0.8681 0.7679 0.1750 0.1517

50 0.1 7.3524 7.2659 2.3297 1.3001 0.2170 0.2167
0.2 7.2749 7.2592 2.4093 1.2846 0.2166 0.2132
0.3 7.2559 7.2307 2.4729 1.2732 0.2166 0.2091

Mean 7.2944 7.2519 2.4040 1.2860 0.2167 0.2130

Table B.8: Computational times with Normal data 𝛿 = 10 and 𝜆 = 1.

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMD-S

5 0.1 0.7956 0.8301 0.0814 0.0176 0.0078 0.0037
0.2 0.7939 0.7684 0.0836 0.0189 0.0124 0.0019
0.3 0.8614 0.7207 0.0662 0.0183 0.0049 0.0014

Mean 0.8170 0.7731 0.0770 0.0183 0.0084 0.0023

10 0.1 0.9990 1.0609 0.1350 0.0634 0.0117 0.0047
0.2 1.0917 1.1028 0.1613 0.0682 0.0093 0.0049
0.3 1.0111 1.1860 0.1610 0.0766 0.0089 0.0025

Mean 1.0340 1.1166 0.1524 0.0694 0.0100 0.0040

30 0.1 5.7161 5.6622 0.5731 0.7563 0.1693 0.1220
0.2 5.6394 5.6993 0.5821 0.7191 0.1654 0.1083
0.3 5.7104 5.7975 0.9465 0.7193 0.1561 0.1138

Mean 5.6886 5.7197 0.7006 0.7316 0.1636 0.1147

50 0.1 7.3088 7.2330 2.2537 1.2833 0.2170 0.2081
0.2 7.2340 7.2334 2.2005 1.2644 0.2165 0.2055
0.3 7.2644 7.2349 2.2755 1.2685 0.2166 0.2055

Mean 7.2691 7.2338 2.2432 1.2720 0.2167 0.2063
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B.2 Multivariate Student-t distribution with 3 de-

grees of freedom

Table B.9 shows the false positive rates (FPR) when there is no contamination. Ta-
bles B.10-B.11 show the true positive rates (TPR) and Tables B.12-B.13 the FPR, for
each method, corresponding to the simulations with multivariate Student-t distribution
with 3 degrees of freedom, for contamination levels 𝛼 = 0.1, 0.2, 0.3, dimension 𝑝 =
5, 10, 30, 50, distance of the outliers 𝛿 = 5 and 10, and concentration of the contamination
𝜆 = 0.1 and 1.

Table B.9: False positive rates with Student-t distribution with 3 d.f, 𝛼 = 0.

𝑝 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.12860 0.11060 0.17670 0.21320 0.07730 0.20290 0.20070 0.20030 0.17950 0.17660 0.18370
10 0.17560 0.15640 0.31610 0.24330 0.08410 0.19040 0.19550 0.19570 0.11780 0.11220 0.12760
30 0.15820 0.13530 0.20380 0.28760 0.08270 0.16660 0.16430 0.16490 0.11220 0.11130 0.11400
50 0.15280 0.12920 0.12620 0.30900 0.07660 0.07152 0.07143 0.07156 0.07113 0.07108 0.07124

Table B.10: True positive rates with Student-t distribution with 3 d.f.

𝛿 = 5 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.9300 0.9300 0.4900 1 1 1 1 1 1 1 1
0.2 0.1800 0.1800 0.2902 0.5300 0.6872 1 1 1 0.9927 0.9915 0.9915
0.3 0.0007 0.0007 0.6890 0.0007 0.0411 0.6573 0.6446 0.6441 0.6878 0.6758 0.7072

10 0.1 0.5107 0.5107 0.3407 0.9800 1 1 1 1 1 1 1
0.2 0.0009 0.0009 0.1809 0.3709 0.6576 1 1 1 0.9997 0.9997 1
0.3 0.0100 0.0100 0.6200 0.0203 0.0400 0.6500 0.6525 0.6522 0.8021 0.7947 0.8137

30 0.1 0.0003 0.0003 0.2000 1 1 1 1 1 1 1 1
0.2 0.0004 0.0004 0.1703 0.1905 0.6055 1 1 1 1 1 1
0.3 0 0 1 0.0002 0 0.1689 0.1638 0.1649 0.7437 0.7417 0.7628

50 0.1 0 0 0.4000 1 1 1 1 1 1 1 1
0.2 0 0 0.4000 0 0.9004 1 1 1 1 1 1
0.3 0 0 0.7900 0.0003 0 0.4200 0.4210 0.4180 0.8937 0.8938 0.8939

𝛿 = 5 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.7445 0.7263 0.8974 0.9177 0.9155 0.9970 0.9952 0.9952 0.9922 0.9919 0.9924
0.3 0.1844 0.1591 0.8421 0.4498 0.4732 0.8442 0.8485 0.8457 0.8411 0.8360 0.8377

10 0.1 0.9826 0.9819 0.9492 1 1 1 1 1 1 1 1
0.2 0.5344 0.5237 0.5320 0.9341 0.9629 1 1 1 1 0.9996 0.9996
0.3 0.1864 0.1637 0.6358 0.3756 0.4901 0.8602 0.8571 0.8575 0.9126 0.9063 0.9126

30 0.1 0.9923 0.9917 0.4932 1 1 1 1 1 1 1 1
0.2 0.1823 0.1581 0.2148 1 1 1 1 1 1 1 1
0.3 0.1658 0.1403 0.5935 0.4170 0.8556 0.6581 0.6485 0.6501 0.9670 0.9664 0.9689

50 0.1 0.7572 0.7464 0.1536 1 1 1 1 1 1 1 1
0.2 0.1718 0.1407 0.1394 1 1 1 1 1 1 1 1
0.3 0.1656 0.1401 0.5530 0.4156 0.9948 0.6716 0.6626 0.6644 0.9989 0.9839 0.9991
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Table B.11: True positive rates with Student-t distribution with 3 d.f.

𝛿 = 10 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.9900 0.9900 0.6600 1 1 1 1 1 1 1 1
0.2 0.5400 0.5400 0.4700 0.9600 1 1 1 1 1 1 1
0.3 0.0400 0.0400 0.8985 0.3803 0.7211 0.9900 0.9900 0.9900 1 1 0.9900

10 0.1 0.9300 0.9300 0.4900 1 1 1 1 1 1 1 1
0.2 0.1000 0.1000 0.2200 0.9300 1 1 1 1 1 1 1
0.3 0 0 0.7804 0.2200 0.7709 1 1 1 1 1 1

30 0.1 0.0200 0.0200 0.2594 1 1 1 1 1 1 1 1
0.2 0 0 0.3098 1 1 1 1 1 1 1 1
0.3 0.0001 0.0001 1 0.0003 0.7862 1 1 1 1 1 1

50 0.1 0 0 0.1000 1 1 1 1 1 1 1 1
0.2 0.0004 0.0004 0.2004 1 1 1 1 1 1 1 1
0.3 0 0 1 0.0003 0.8174 1 1 1 1 1 1

𝛿 = 10 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8890 0.8859 0.9580 1 1 1 1 1 1 1 1
0.3 0.2324 0.2127 0.9470 0.7598 0.9791 0.9998 0.9998 0.9998 1 1 1

10 0.1 1 1 0.9830 1 1 1 1 1 1 1 1
0.2 0.7050 0.6964 0.5019 1 1 1 1 1 1 1 1
0.3 0.2563 0.2314 0.6768 0.8453 0.9914 1 1 1 1 1 1

30 0.1 1 1 0.5614 1 1 1 1 1 1 1 1
0.2 0.2407 0.2166 0.2203 1 1 1 1 1 1 1 1
0.3 0.1640 0.1394 0.7130 0.9624 1 1 1 1 1 1 1

50 0.1 0.9179 0.9141 0.1338 1 1 1 1 1 1 1 1
0.2 0.1828 0.1595 0.1487 1 1 1 1 1 1 1 1
0.3 0.1571 0.1304 0.6445 0.9791 1 1 1 1 1 1 1
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Table B.12: False positive rates with Student-t distribution with 3 d.f.

𝛿 = 5 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0901 0.0741 0.2020 0.1840 0.0641 0.1305 0.1293 0.1289 0.1155 0.1153 0.1208
0.2 0.1591 0.1381 0.3055 0.2014 0.0494 0.0741 0.0743 0.0748 0.0668 0.0656 0.0694
0.3 0.2237 0.1972 0.2046 0.4273 0.0654 0.0299 0.0300 0.0300 0.0298 0.0298 0.0310

10 0.1 0.1724 0.1528 0.3689 0.2149 0.0703 0.1876 0.1851 0.1874 0.1289 0.1259 0.1377
0.2 0.2460 0.2224 0.4709 0.2743 0.0534 0.0896 0.0882 0.0890 0.0643 0.0636 0.0687
0.3 0.2978 0.2723 0.3106 0.5624 0.0833 0.0411 0.0411 0.0410 0.0375 0.0364 0.0387

30 0.1 0.1775 0.1523 0.3154 0.2626 0.0717 0.3472 0.3450 0.3452 0.1563 0.1557 0.1581
0.2 0.2116 0.1831 0.4937 0.4232 0.0551 0.1459 0.1454 0.1452 0.0779 0.0777 0.0785
0.3 0.2562 0.2235 0.1669 0.8151 0.0991 0.0418 0.0418 0.0417 0.0401 0.0400 0.0446

50 0.1 0.1769 0.1506 0.1672 0.2841 0.0653 0.2589 0.2566 0.2574 0.1150 0.1144 0.1144
0.2 0.2013 0.1720 0.4487 0.5081 0.0639 0.1124 0.1130 0.1127 0.0680 0.0680 0.0680
0.3 0.2552 0.2213 0.1423 0.9152 0.1091 0.0424 0.0431 0.0430 0.0412 0.0410 0.0364

𝛿 = 5 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0809 0.0662 0.2027 0.1903 0.0664 0.1361 0.1333 0.1346 0.1194 0.1183 0.1232
0.2 0.0619 0.0500 0.1846 0.1613 0.0513 0.0800 0.0799 0.0796 0.0711 0.0702 0.0727
0.3 0.1098 0.0951 0.1537 0.1340 0.0362 0.0375 0.0370 0.0372 0.0384 0.0380 0.0394

10 0.1 0.1209 0.1032 0.2985 0.2166 0.0769 0.1922 0.1910 0.1927 0.1414 0.1383 0.1497
0.2 0.1235 0.1073 0.2940 0.1805 0.0538 0.0986 0.0960 0.0962 0.0710 0.0701 0.0754
0.3 0.1705 0.1523 0.2096 0.1712 0.0360 0.0392 0.0394 0.0397 0.0361 0.0355 0.0375

30 0.1 0.1039 0.0819 0.1931 0.2587 0.0694 0.3466 0.3454 0.3460 0.1547 0.1540 0.1570
0.2 0.1514 0.1291 0.1888 0.2311 0.0557 0.1524 0.1519 0.1520 0.0781 0.0778 0.0788
0.3 0.1525 0.1304 0.1681 0.2248 0.0392 0.0445 0.0447 0.0444 0.0364 0.0363 0.0368

50 0.1 0.1154 0.0922 0.1403 0.2909 0.0684 0.2425 0.2411 0.2415 0.1111 0.1109 0.1111
0.2 0.1568 0.1351 0.1239 0.2575 0.0658 0.1174 0.1179 0.1174 0.0672 0.0672 0.0678
0.3 0.1523 0.1295 0.1082 0.2502 0.0432 0.0568 0.0562 0.0562 0.0408 0.0408 0.0405
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Table B.13: False positive rates with Student-t distribution with 3 d.f.

𝛿 = 10 𝜆 = 0.1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0831 0.0669 0.2094 0.1955 0.0636 0.1378 0.1352 0.1368 0.1234 0.1222 0.1273
0.2 0.1090 0.0935 0.2544 0.1602 0.0442 0.0693 0.0690 0.0687 0.0629 0.0609 0.0647
0.3 0.2158 0.1904 0.1578 0.2988 0.0365 0.0330 0.0327 0.0331 0.0294 0.0295 0.0314

10 0.1 0.1272 0.1091 0.3392 0.2118 0.0737 0.1874 0.1851 0.1839 0.1316 0.1285 0.1387
0.2 0.2362 0.2148 0.4324 0.2050 0.0603 0.1033 0.1023 0.1013 0.0776 0.0761 0.0818
0.3 0.3045 0.2798 0.2388 0.4548 0.0346 0.0321 0.0320 0.0330 0.0253 0.0250 0.0277

30 0.1 0.1785 0.1533 0.3069 0.2618 0.0702 0.3474 0.3449 0.3457 0.1545 0.1530 0.1572
0.2 0.2129 0.1841 0.4603 0.2327 0.0529 0.1384 0.1382 0.1379 0.0647 0.0641 0.0659
0.3 0.2611 0.2282 0.1588 0.7518 0.0391 0.0387 0.0386 0.0387 0.0258 0.0258 0.0264

50 0.1 0.1835 0.1567 0.1968 0.2834 0.0643 0.3222 0.3212 0.3233 0.1381 0.1372 0.1395
0.2 0.2118 0.1824 0.3996 0.2598 0.0600 0.1305 0.1306 0.1316 0.0649 0.0648 0.0653
0.3 0.2589 0.2246 0.1458 0.8799 0.0390 0.0408 0.0405 0.0409 0.0236 0.0236 0.0238

𝛿 = 10 𝜆 = 1

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0843 0.0660 0.1778 0.1854 0.0636 0.1368 0.1353 0.1361 0.1221 0.1213 0.1264
0.2 0.0454 0.0343 0.1855 0.1658 0.0506 0.0774 0.0779 0.0788 0.0670 0.0666 0.0684
0.3 0.0964 0.0818 0.1508 0.1287 0.0264 0.0287 0.0276 0.0274 0.0269 0.0269 0.0272

10 0.1 0.1151 0.0973 0.2771 0.2101 0.0716 0.1870 0.1859 0.1872 0.1325 0.1295 0.1403
0.2 0.0892 0.0768 0.2694 0.1759 0.0531 0.0896 0.0872 0.0887 0.0641 0.0635 0.0682
0.3 0.1494 0.1337 0.2122 0.1437 0.0328 0.0371 0.0360 0.0360 0.0305 0.0300 0.0318

30 0.1 0.1027 0.0803 0.1994 0.2635 0.0710 0.3423 0.3417 0.3420 0.1523 0.1509 0.1552
0.2 0.1451 0.1233 0.1937 0.2297 0.0551 0.1453 0.1453 0.1455 0.0685 0.0679 0.0699
0.3 0.1501 0.1279 0.1633 0.1997 0.0409 0.0390 0.0388 0.0389 0.0244 0.0243 0.0250

50 0.1 0.1111 0.0885 0.2218 0.2853 0.0680 0.3711 0.3687 0.3690 0.1408 0.1397 0.1432
0.2 0.1578 0.1340 0.3384 0.2537 0.0578 0.1173 0.1175 0.1170 0.0682 0.0680 0.0687
0.3 0.1546 0.1329 0.1106 0.4323 0.0431 0.0433 0.0435 0.0433 0.0226 0.0226 0.0230
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B.3 Multivariate Exponential distribution

Table B.14 shows the false positive rates (FPR) when there is no contamination. Table
B.15 shows the true positive rates (TPR) and Table B.16 the FPR, for each method,
corresponding to the simulations with multivariate Exponential distribution, for contam-
ination levels 𝛼 = 0.1, 0.2, 0.3, dimension 𝑝 = 5, 10, 30, 50 and distance of the outliers
𝛿 = 5 and 10.

Table B.14: False positive rates with Exponential distribution, 𝛼 = 0.

𝑝 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.15070 0.13310 0.29900 0.26540 0.21340 0.16060 0.15850 0.16090 0.11820 0.11580 0.11280
10 0.18710 0.16890 0.36000 0.26580 0.38930 0.13638 0.15970 0.15910 0.13454 0.13920 0.13609
30 0.14292 0.11952 0.13558 0.27938 0.44708 0.13324 0.13266 0.13246 0.18204 0.18092 0.18464
50 0.13280 0.11900 0.12880 0.27950 0.42860 0.11788 0.11787 0.11787 0.11778 0.11777 0.11778

Table B.15: True positive rates with Exponential distribution.

𝛿 = 5

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8578 0.8486 0.9602 0.9654 0.9975 1 1 1 0.9993 0.9993 0.9993
0.3 0.1955 0.1664 0.8336 0.5792 0.8735 0.8935 0.8947 0.8938 0.8740 0.8698 0.8755

10 0.1 0.9983 0.9976 0.9974 0.9983 0.9975 0.9993 0.9993 0.9993 0.9995 0.9995 0.9999
0.2 0.9671 0.9649 0.9893 0.9984 0.9923 0.9992 0.9992 0.9992 0.9984 0.9984 0.9986
0.3 0.7821 0.7792 0.9847 0.9887 0.9832 0.9957 0.9958 0.9957 0.9951 0.9951 0.9958

30 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.9985 0.9985 0.9987 1 1 1 1 1 1 1 1
0.3 0.7829 0.7550 1 1 1 1 1 1 1 1 1

50 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.8916 0.8511 1 1 1 1 1 1 1 1 1
0.3 0.5916 0.5715 1 1 1 1 1 1 1 1 1

𝛿 = 10

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.9991 0.9970 1 1 0.9991 0.9991 0.9991 0.9991 1 1 1
0.2 0.9770 0.9733 0.9991 0.9991 0.9927 0.9961 0.9961 0.9961 0.9952 0.9952 0.9997
0.3 0.8185 0.7952 0.9900 0.9966 0.9853 0.9916 0.9919 0.9919 0.9906 0.9903 0.9911

10 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.9756 0.9756 1 1 1 1 1 1 1 1 1
0.3 0.7905 0.7902 1 1 1 1 1 1 1 1 1

30 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.9987 0.9987 1 1 1 1 1 1 1 1 1
0.3 0.7719 0.7601 1 1 1 1 1 1 1 1 1

50 0.1 1 1 1 1 1 1 1 1 1 1 1
0.2 0.9711 0.9614 1 1 1 1 1 1 1 1 1
0.3 0.6711 0.6662 1 1 1 1 1 1 1 1 1
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Table B.16: False positive rates with Exponential distribution.

𝛿 = 5

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0339 0.0198 0.0341 0.0636 0.0033 0.0084 0.0073 0.0069 0.0075 0.0071 0.0077
0.2 0.0110 0.0055 0.0347 0.0507 0.0017 0.0014 0.0012 0.0012 0.0010 0.0009 0.0012
0.3 0.0374 0.0260 0.0379 0.0383 0.0001 0 0 0 0 0 0

10 0.1 0.1194 0.1018 0.3285 0.2299 0.0683 0.2380 0.2362 0.2372 0.2302 0.2258 0.2442
0.2 0.0315 0.0235 0.2634 0.1838 0.0466 0.1176 0.1183 0.1182 0.1338 0.1302 0.1479
0.3 0.0021 0.0016 0.1890 0.1445 0.0258 0.0575 0.0576 0.0576 0.0722 0.0681 0.0803

30 0.1 0.0887 0.0639 0.1276 0.2371 0.0335 0.4021 0.4020 0.4015 0.2726 0.2697 0.2781
0.2 0.0239 0.0099 0.1390 0.2022 0.0202 0.1751 0.1750 0.1754 0.1531 0.1504 0.1583
0.3 0.0001 0 0.1196 0.1734 0.0111 0.0525 0.0528 0.0524 0.0551 0.0541 0.0580

50 0.1 0.0796 0.0541 0.2255 0.2429 0.0401 0.4072 0.4070 0.4076 0.2168 0.2146 0.2213
0.2 0.0224 0.0089 0.2350 0.2065 0.0431 0.1354 0.1360 0.1355 0.1342 0.1325 0.1371
0.3 0 0 0.2295 0.1732 0.0380 0.0426 0.0427 0.0430 0.0320 0.0314 0.0328

𝛿 = 10

𝑝 𝛼 MCD Adj MCD Kurtosis OGK COM RMDv1 RMDv2 RMDv3 RMDv4 RMDv5 RMDv6

5 0.1 0.0842 0.0679 0.2846 0.2198 0.0799 0.1567 0.1572 0.1557 0.1659 0.1631 0.1708
0.2 0.0271 0.0176 0.2408 0.1824 0.0551 0.0743 0.0752 0.0754 0.1015 0.0994 0.1039
0.3 0.0011 0.0006 0.1969 0.1451 0.0288 0.0302 0.0299 0.0289 0.0460 0.0443 0.0470

10 0.1 0.1148 0.0961 0.3201 0.2284 0.0620 0.2103 0.2121 0.2131 0.2015 0.1963 0.2161
0.2 0.0357 0.0261 0.2647 0.1841 0.0404 0.0895 0.0906 0.0890 0.0942 0.0912 0.1032
0.3 0.0028 0.0022 0.1873 0.1474 0.0240 0.0298 0.0293 0.0309 0.0411 0.0388 0.0463

30 0.1 0.0863 0.0621 0.1343 0.2416 0.0334 0.3536 0.3530 0.3536 0.2394 0.2371 0.2450
0.2 0.0253 0.0116 0.1179 0.2043 0.0213 0.1053 0.1056 0.1058 0.0913 0.0899 0.0944
0.3 0 0 0.1240 0.1662 0.0108 0.0127 0.0128 0.0130 0.0146 0.0144 0.0156

50 0.1 0.0814 0.0557 0.1262 0.2436 0.0405 0.3465 0.3463 0.3475 0.1063 0.1045 0.1098
0.2 0.0256 0.0185 0.1235 0.2121 0.0316 0.1002 0.1007 0.1010 0.0895 0.0881 0.0902
0.3 0 0 0.1238 0.1762 0.0257 0.0054 0.0054 0.0052 0.0091 0.0088 0.0095



APPENDIX C

Figures from Chapter 3

The following are figures corresponding to the real dataset example from Chapter 3.

Figure C.1: Standardized data with the “multivariate boxplot”.

Figure C.2: Detected outliers by MCD.
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Figure C.3: Detected outliers by Adjusted MCD.

Figure C.4: Detected outliers by Kurtosis.

Figure C.5: Detected outliers by OGK.
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Figure C.6: Detected outliers by COM.

Figure C.7: Detected outliers by RMD-S.

Figure C.8: MCD detected outliers that belong to the 50% of the most central data.
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Figure C.9: MCD detected outliers that belong to the 50% of the most central data.

Figure C.10: MCD detected outliers that belong to the 50% of the most central data.

Figure C.11: Adjusted MCD detected outliers that belong to the 50% of the most central data.
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Figure C.12: Adjusted MCD detected outliers that belong to the 50% of the most central data.

Figure C.13: Adjusted MCD detected outliers that belong to the 50% of the most central data.

Figure C.14: Kurtosis detected outliers that belong to the 50% of the most central data.
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Figure C.15: Kurtosis detected outliers that belong to the 50% of the most central data.

Figure C.16: Kurtosis detected outliers that belong to the 50% of the most central data.
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Figure C.17: Kurtosis detected outliers that belong to the 50% of the most central data.

Figure C.18: Kurtosis detected outliers that belong to the 50% of the most central data.
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Figure C.19: OGK detected outliers that belong to the 50% of the most central data.

Figure C.20: OGK detected outliers that belong to the 50% of the most central data.
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Figure C.21: OGK detected outliers that belong to the 50% of the most central data.

Figure C.22: OGK detected outliers that belong to the 50% of the most central data.



Appendix C. Figures from Chapter 3 128

Figure C.23: OGK detected outliers that belong to the 50% of the most central data.

Figure C.24: Comedian detected outliers that belong to the 50% of the most central data.
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Figure C.25: Comedian detected outliers that belong to the 50% of the most central data.

Figure C.26: RMD-S detected outliers that belong to the 50% of the most central data.





APPENDIX D

Tables from Chapter 5

Tables D.1 - D.4 show the numerical results from Chapter 5, in simulation scheme [NEO].
For each method, the maximum (across 𝜆 and 𝑘) MSE and Bias for both �̂� and �̂� for each
combination of the dimension 𝑝 and the contamination level 𝛿, is showed. In bold letter
are the lowest error and in italic letter are the highest error after OLS.

Table D.1: MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 5 and 𝛿 = 10%.

Method MSE(�̂�) MSE(�̂�) BIAS(�̂�) BIAS(�̂�)

OLS 2.9065 5.5593 2.7004 5.3280
SR 0.0230 0.0351 0.0093 0.0168
LTS 0.1116 0.0688 0.0832 0.0275
S 0.0249 0.0512 0.0083 0.0361
REWLSE 0.0919 0.0474 0.0493 0.0260
MM 0.1033 0.0441 0.0785 0.0235

Table D.2: MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 5 and 𝛿 = 20%.

Method MSE(�̂�) MSE(�̂�) BIAS(�̂�) BIAS(�̂�)

OLS 3.7360 29.9723 3.6101 29.4112
SR 0.0470 0.1720 0.0287 0.1075
LTS 0.8779 0.1508 0.3028 0.0947
S 1.3853 5.4441 0.6577 3.8112
REWLSE 0.1422 0.2556 0.1018 0.2124
MM 0.1688 0.3120 0.1478 0.2954
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Table D.3: MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 30 and 𝛿 = 10%.

Method MSE(�̂�) MSE(�̂�) BIAS(�̂�) BIAS(�̂�)

OLS 0.1995 6.7748 0.0610 6.7250
SR 0.0033 0.0101 0.0009 0.0030
LTS 0.0139 0.0145 0.0102 0.0060
S 0.1079 2.9888 0.0584 2,9439
REWLSE 0.0077 0.0165 0.0070 0.0080
MM 0.0120 0.0134 0.0101 0.0116

Table D.4: MMMSE and MMBias of �̂� and �̂�, for 𝑝 = 30 and 𝛿 = 20%.

Method MSE(�̂�) MSE(�̂�) BIAS(�̂�) BIAS(�̂�)

OLS 0.2317 25.5388 0.0639 25.3395
SR 0.0044 0.0596 0.0011 0.0554
LTS 0.0450 0.3952 0.0400 0.3677
S 0.1710 15.0446 0.0635 14.8378
REWLSE 0.0120 0.0980 0.0017 0.0930
MM 0.0356 0.1994 0.0262 0.1860
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Regression. 2004.

D. Ruppert. Computing S Estimators for Regression and Multivariate Loca-
tion/Dispersion. Journal of Computational and Graphical Statistics, 1(3):253,
1992.

T. A. Sajesh and M. R. Srinivasan. Outlier detection for high dimensional data using
the Comedian approach. Journal of Statistical Computation and Simulation, 82
(5):745–757, 2012.

R. Serfling. A depth function and a scale curve based on spatial quantiles. In
Statistical Data Analysis Based on the L1-Norm and Related Methods, pages 25–
38. Springer, 2002.

A. F. Siegel. Robust Regression Using Repeated Medians. Biometrika, 69(1):242,
1982.

C. G. Small. A survey of multidimensional medians. International Statistical Re-
view/Revue Internationale de Statistique, pages 263–277, 1990.

M. Sokolova, N. Japkowicz, and S. Szpakowicz. Beyond Accuracy, F-Score and ROC:
A Family of Discriminant Measures for Performance Evaluation. In Australasian
Joint Conference on Artificial Intelligence, pages 1015–1021. Springer, 2006.



A. Steland. Shrinkage for covariance estimation: asymptotics, confidence intervals,
bounds and applications in sensor monitoring and finance. Statistical Papers,
pages 1–22, 2018.
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