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Abstract 
 

Time invariance of factor loadings is a standard assumption in the analysis of large 
factor models. Yet, this assumption may be restrictive unless parameter shifts are 
mild (i.e., local to zero).  In this paper we develop a new testing procedure to 
detect big breaks in these loadings at either known or unknown dates. It relies upon 
testing for parameter breaks in a regression of the first of the r̄   factors estimated by 
PCA on the remaining r̄ − 1 factors, where r̄ is chosen according to Bai and Ng’s 
(2002) information criteria. The test fares well in terms of power relative to other 
recently proposed tests on this issue, and can be easily implemented to avoid 
forecasting failures in standard factor-augmented (FAR, FAVAR) models where the 
number of factors is a priori imposed on the basis of theoretical considerations. 
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1 Introduction

Despite being well acknowledged that some parameters in economic relationships can
become unstable due to important structural breaks (e.g., those related to technological
change, globalization or strong policy reforms), a standard practice in the estimation of
large factor models is the assumption of time-invariant factor loadings. Possibly, one of the
main reasons for this benign neglect of breaks stems from the important results obtained
by Stock and Watson (2002, 2009) regarding the consistency of the estimated factors by
principal components analysis (PCA hereafter) when the loadings are subject to small (i.e.,
local to zero) instabilities. Accordingly, these authors conclude that the failure of factor-
based forecasts is mainly due to the instability of the forecast function, rather than of the
different components, and hence their advice is to use full sample factor estimates and
subsample forecasting equations to improve forecasts.

However, the main emphasis placed on local-to-zero breaks has been subsequently
questioned. For example, by means of a Monte Carlo study, Banerjee, Marcellino and
Masten (2008) conclude that, in contrast to Stock and Watson’s diagnosis, the instability
of factor loadings when big (i.e., not local to zero) breaks occur is the most likely reason
behind the worsening factor-based forecasts, particularly in small samples. Likewise, in
discussing Stock and Watson’s research on this topic, Giannone (2007) argues that"....to
understand structural changes we should devote more effort in modelling the variables
characterized by more severe instabilities...". In this paper, we pursue this goal by provid-
ing a precise characterization of the different conditions under which big and small breaks
in the factor loadings may occur, as well as develop a test to distinguish between them.
We conclude that, in contrast to small breaks, big breaks should not be ignored since they
may lead to misleading results in standard econometric practices using factor models.

A forerunner of our paper is Breitung and Eickmeier (2010, BE henceforth) who are
the first to propose a proper testing procedure to detect big breaks in the factor loadings.
Their test relies on the idea that, under the null of no structural break plus some additional
assumptions, the estimation error of the factors can be ignored and thus the estimated fac-
tors can be treated as the true factors. Consequently, a Chow-type test can be constructed
by regressing each variable in the data set on both the estimated factors using the whole
sample period and their truncated version from the date of the break onwards. Focusing on
the statistical significance of the estimated coefficients for the truncated factors, their test
compares the empirical rejection frequency among the individual regressions to a nominal
size of 5% under the null of no breaks. In our view, this approach suffers from two lim-
itations: (i) their test is mostly heuristic since its limiting distribution remains unknown
except in some restrictive cases; and (ii) it lacks power when the number of factors is not
correctly specified. This loss of power can be very serious. For example, as explained fur-
ther below, one of our main results is that a factor model withr original factors where the
loadings of one of them exhibit a big structural break at the same date admits a standard
factor representation withr +1 factors without a break. Hence, if the number of factors is
chosen asr +1, instead ofr, their testing approach may not detect any break at all when
in fact there is one.
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Our contribution here is to propose a simple testing procedure to detect breaks in the
factor loadings which allows for different types of breaks and does not suffer from the
previous shortcomings. In particular, we first derive some asymptotic results finding that,
in contrast to the consistency result for the original factor space under small breaks, the
number of factors will be over-estimated under big breaks. We argue that neglecting these
breaks can have serious consequences on the forecasting performance of some popular
regression-based models using factors whose number is a priori imposed without testing
for big breaks. To avoid this problem, we then propose a simple regression-based test-
ing procedure which, as sketched earlier, is based on the idea that that a model with big
breaks in the loadings can be reparameterized as a model with constant loadings but a
larger set of factors, where the number and the space spanned by the latter can be consis-
tently estimated by PCA under fairly standard assumptions. Hence, rather than directly
testing whether all the elements of the loadings matrix are stable, which will suffer from
an infinite-dimensionality problem as the number of variables in the panel data set grows,
one can instead test whether the relationships among the larger finite-dimensional set of
estimated factors are stable.

Specifically, our procedure consists of two steps. First, the number of factors for the
whole sample period is estimated as ˆr using Bai and Ng’s (2002) information criteria,
and then the ˆr factors are estimated by PCA. Next, one of the estimated factors (e.g., the
one associated to the largest eigenvalue) is regressed on the remaining ˆr −1 factors, and
the standard Chow Test or the Sup-type Test of Andrews (1993), depending on whether
the date of the break is treated as known or unknown, is then implemented to test for a
structural break in this regression. If the null of no breaks is rejected in the second-step
regression, we conclude that there are big breaks and, otherwise, that either no breaks exist
at all or that only small breaks occur. Further, we also provide some guidance, based on the
rank properties of the covariance matrix of the estimated factors in different subsamples,
on how to distinguish between breaks stemming from the loadings or from the DGP of
the factors. This difference is important since the latter may lead to reject the null of
constant loadings when it is true, leading to a misleading interpretation of the source of the
break. Finally, we illustrate the finite sample performance of our tests using simulations,
as well as provide a few empirical applications of how to implement our testing approach
in practice.

After completing a first draft of this paper, we became aware of a closely related un-
published paper by Han and Inoue (2011, HI hereafter) who, in independent research,
adopt a similar approach to ours in testing for big breaks. The two approaches, however,
differ. In effect, rather than using a simple regression-based approach to avoid the infinite-
dimensionality problem, as we do here, HI (2011) propose to test directly for differences
before and after the break in all the elements of the covariance matrix of the estimated
factors. We will argue below that, despite the fact that their tests use more information
than ours, the potential lack of power entailed by our much simpler approach only applies
to a very specific and highly unrealistic data generating process (DGP), where one of our
proposed tests based on the LM principle might be inconsistent. Yet, even in this special
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case, an alternative regression-based test based on the Waldprinciple has high power. We
also show that, in more general and realistic cases, both our LM and Wald test behave
well, with the Wald test being even more powerful than the corresponding HI’s test for
small sample sizes such asN = T = 50. An additional advantage of considering our sim-
ple linear-regression setup is that it permits to use many other existing methods for testing
structural breaks (see Perron, 2006, for an extensive review of these tests).

The rest of the paper is organized as follows. In Section 2, we present the basic no-
tation, assumptions and precise definitions of two types of instabilities considered here:
big andsmall breaks. In Section 3, we analyze the consequences of big breaks on the
choice of the number of factors and their estimation, as well as the effects of those breaks
on standard econometric practices with factor-augmented regressions. In Section 4, we
first derive the asymptotic distributions of our tests, and next discuss, when a big break
is detected, how one can identify whether it stems from the loadings or from the process
driving the factors; lastly we provide some analytical results on how our test fares in terms
of power relative to BE’s and HI’s tests. Section 5 deals with the finite sample perfor-
mance of our test relative to the competing tests using Monte-Carlo simulations. Section
6 provides two empirical applications. Finally, Section 7 concludes. Three appendices
contain detailed proofs of the main results.

2 Notation and Preliminaries

We consider factor models that can be rewritten in the static canonical form:

Xt = AFt +et (1)

whereXt is theN×1 vector of observed variables,A= (α1, . . . ,αN)
′ is theN× r matrix

of factor loadings,r is the number of common factors which is finite,Ft = ( ft1, . . . , ftr)′

is ther ×1 vector of common factors, andet is theN×1 vector of idiosyncratic errors.
In the case of dynamic factor models, all the common factorsft and their lags are stacked
into Ft . Thus, a dynamic factor model withr dynamic factors andp lags of these factors
can be written as a static factor model withr × (p+1) static factors. Further, given the
assumptions we make about theet error terms, the case analyzed by BE (2010) where the
eit disturbances are generated by individual specific AR processes is also considered. No-
tice, however, that our setup excludes the generalized dynamic factor models considered
by Forni and Lippi (2001) when the polynomial distributed lag possibly tends to infinity.

We assume that there is a single structural break in the factor loadings of all factors at
the same timeτ:

Xt = AFt +et t = 1,2. . . ,τ, (2)

Xt = BFt +et t = τ +1, . . . ,T (3)

whereB= (β1, . . . ,βN)
′ is the new factor loadings after the break. By defining the matrix

C = B−A, which captures the size of the breaks, the factor model in (2) and (3) can be
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rewritten as:
Xt = AFt +CGt +et (4)

whereGt = 0 for t = 1, . . . ,τ, andGt = Ft for t = τ +1, . . . ,T.

As argued by Stock and Watson (2002, 2009), the effects of some mild (local to zero)
instability in the factor loadings can be averaged out, so that estimation and inference
based on PCA remain valid. We generalize their analysis by allowing for two types of
break sizes:smallandbig. In contrast to the former, we will show that the latter cannot
be neglected. To distinguish between them, it is convenient to partition theC matrix as
follows:

C= [Λ H]

whereΛ andH areN× k1 andN× k2 matrices that correspond to thebig and thesmall
breaks, andk1+ k2 = r. In other words, we assume that, among ther factors,k1 andk2

factors are subject tobig andsmallbreaks in their loadings, respectively. Accordingly, we
can also partition theGt matrix intoG1

t andG2
t , such that (4) becomes:

Xt = AFt +ΛG1
t +HG2

t +et (5)

whereΛ = (λ1, . . . ,λN)
′ andH = (η1, . . . ,ηN)

′.

Once the basic notation has been established, the next step is to provide precise defini-
tions of the two types of breaks.

Assumption 1. Breaks

a. E||λi||4 < ∞. N−1 ∑N
i=1 λiλ ′

i → ΣΛ as N→ ∞ for some positive definite matrixΣΛ.

b. ηi =
κi√
NT

for i = 1,2, . . . ,N and E‖κi‖8 < ∞.

The matricesΛ andH are assumed to contain random elements. Assumption 1.a yields
the definition of a big break which also includes the case whereλi = 0 ( no break) for a
fixed proportion of variables asN → ∞. Assumption 1.b, in turn, provides the definition
of small breaks which, besides having some bounded moments, are characterized as being
of order 1/

√
NT so that they can be neglected asN andT go to infinity,.

To investigate the influence of the breaks on the number and estimation of factors,
some further assumptions need to be imposed. To achieve consistent notation with the
previous literature in the discussion of these assumptions, we follow the presentation of
Bai and Ng (2002) with a few slight modifications. Lettr(Σ) and||Σ||=

√
tr(Σ′Σ) denote

the trace and the norm of a matrixΣ, respectively, while[Tπ ] denotes the integer part of
T ×π for π ∈ [0,1]. Then

Assumption 2. Factors: E(Ft)=0, E||Ft ||8<∞, T−1 ∑T
t=1FtF ′

t →ΣF and T−1∑τ
t=1FtF ′

t →
π∗ΣF as T→ ∞ for some positive definite matrixΣF whereπ∗ = limT→∞

τ
T .

Assumption 3. Factor Loadings: E||αi||4 ≤ M < ∞, and N−1A′A→ ΣA, N−1Γ′Γ → ΣΓ
as N→ ∞ for some positive definite matrixΣA andΣΓ, whereΓ = [A Λ].
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Assumption 4. Idiosyncratic Errors: The error terms et , the factors Ft and the loadings
Ai satisfy the Assumption A, B, C, E, F1 and F2 of Bai (2003).

Assumption 5. Independence of Factors, Loadings, Breaks, and Idiosyncratic Errors:
[Ft ]

T
t=1, [αi]

N
i=1, [λi]

N
i=1, [κi]

N
i=1 and[et ]

T
t=1 are mutually independent groups, and for all i

1√
T

T

∑
t=1

Fteit = Op(1).

Assumptions 3 and 4 are standard in the literature on factor models allowing for weak
cross-sectional and temporal correlations between the errors ( see Bai and Ng, 2002). No-
tice that Assumption 3 excludes in our specific setup the case where a new (old) factor
appears (disappears) after the break since this event would imply thatΣΓ becomes singu-
lar. However, this is not restrictive since we could always envisage any potential factor as
having non-zero, albeit small, loadings in either of the relevant subsamples. Assumption
2, in turn, is a new one. Since factors and factor loadings cannot be separately identified,
we have to assume some stable properties for the factors in order to test the stability of
the loadings. We also allow the different factors to be correlated at all leads and lags.
Assumption 5 on the independence among the different groups is stronger than the usual
assumptions made by Bai and Ng (2002). Notice, however, that we could have also as-
sumed some dependence between these groups and then impose some restrictions on this
dependence when necessary. Yet, this would complicate the proofs without essentially
altering the insight underlying our approach. Thus, for the sake of simplicity, we assume
them to be independent in the sequel.

3 The Effects of Structural Breaks

In this section, we study the effects of the structural breaks on the estimation of factors
based on PCA, and on the estimation of the number of factors based on the information
criteria proposed by Bai and Ng (2002). Our main finding is that, in contrast to Stock and
Watson’s (2002, 2009) consistency result for the true factor space under small breaks, the
factor estimated by PCA is inconsistent for the true factor space, and the number of factors
tends to be overestimated under big breaks.

3.1 The estimation of factors

Let us rewrite model (5) withk1 big breaks andk2 small breaks, so thatr = k1+k2, in the
more compact form:

Xt = AFt +ΛG1
t + εt (6)

whereεt = HG2
t +et . The idea is to show that the new error termsεt still satisfy the nec-

essary conditions for (6) being a standard factor model with new factorsF∗
t = [F ′

t G1′
t ]

′

and new factor loadings[A Λ].
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Let r̄ be the selected number of factors, either by some prior knowledge or using the
information criteria, where notice that ¯r is not necessarily equal tor. Let F̂ be

√
T times

the r̄ eigenvectors corresponding to the ¯r largest eigenvalues of the matrixXX′, where the
T ×N matrix X = [X̄1, X̄2 . . . X̄T ]

′, X̄t = [Xt1,Xt2, . . . ,XtN]
′, F̂ = [F̂1, F̂2, . . . , F̂T ]

′. Then we
have:

Proposition 1. For any fixedr̄(1≤ r̄ ≤ r + k1), under Assumptions 1 to 5, there exists a
full rank r̄ × (r +k1) matrix D andδN,T = min{

√
N,

√
T} such that:

F̂t = DF∗
t +Op(δ−1

N,T). (7)

This result implies that̂Ft estimate consistently the space of the new factors,F∗
t , but

not the space of the true original factors,Ft .

Let us next consider two cases. First, whenk1= 0 (no big breaks), we have thatG1
t = 0,

andF∗
t = Ft , so that (7) becomes

F̂t = DFt +Op(δ−1
N,T) (8)

for a r̄ × r matrix D of full rank. This just trivially replicates the well-known consistency
result of Bai and Ng (2002)1.

Secondly, in the more interesting case wherek1 > 0 (big breaks exist), we can rewrite
(7) as

F̂t = [D1 D2]

(
Ft

G1
t

)
+op(1) = D1Ft +D2G1

t +op(1) (9)

where the ¯r × (r + k1) matrix D is partitioned into the ¯r × r matrix D1 and the ¯r × k1
matrix D2. Note that, by the definition ofGt , G1

t = 0 for t = 1,2, . . . ,τ, andG1
t = F1

t for
t = τ +1, . . . ,T, whereF1

t is thek1×1 sub-vector ofFt that is subject to big breaks in their
loadings. Therefore (9) can be expressed as:

F̂t = D1Ft +op(1) for t = 1,2, . . . ,τ, (10)

F̂t = D∗
2Ft +op(1) for t = τ +1, . . . ,T (11)

whereD∗
2 = D1+[D2 0], 0 is a ¯r × (r −k1) zero matrix, and in generalD2 6= 0. Hence,

sinceD1 6= D∗
2, this implies that, in contrast to small breaks whereD2 tends toD1 due to

the local-to-zero properties of the elements ofH in (5) (see Assumption 1.b), under big
breaks the estimated factorŝF will not be consistent for the space of the true factorsF
when these breaks are neglected. Accordingly, as will be explained below, imposing a
priori the number of estimated factors to be used as predictors or explanatory variables in
standard factor-augmented models may lead to misleading results.

To illustrate the consequences of having big breaks in the factor loadings, consider the
following simple Factor Augmented Regression (FAR) model (see Bai and Ng, 2006):

1Notice that for the estimatorŝF defined here, ¯r has to be smaller or equal tor for (8) to hold. If F̂t is
defined as the principal component ofXt , r̄ can be larger thanr.
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yt = a′Ft +b′Wt +ut , t = 1,2, ..,T (12)

whereWt is a small set of observable variables and ther × 1 vectorFt contains ther
common factors driving a large panel datasetxit (i =1,2, ...N; t = 1,2, ...T) which excludes
bothyt andWt . The parameters of interest are the elements of vectorb while Ft is included
in (12) to control for potential endogeneity arising from omitted variables. Since we cannot
identify Ft anda, only the producta′Ft is relevant. Suppose that there is a big break at date
τ. From (10) and (11), we can rewrite (12) as:

yt = (a′D−
1 )(D1Ft)+b′Wt +ut for t = 1,2, . . . ,τ,

yt = (a′D∗−
2 )(D∗

2Ft)+b′Wt +ut for t = τ +1, . . . ,T

whereD−
1 D1 = D∗−

2 D2 = Ir , or equivalently

yt = a′1F̂t +b′Wt + ũt for t = 1,2, . . . ,τ, (13)

yt = a′2F̂t +b′Wt + ũt for t = τ +1, . . . ,T (14)

wherea′1 = a′D−
1 anda′2 = a′D∗−

2 , andũt = ut +op(1).

If the number of factors is assumed to be known a priori, ¯r = r, then D−
1 = D−1

1 ,
D∗−

2 = D∗−1
2 . SinceD1 6= D∗

2, it follows thatD−1
1 6= D∗−1

2 and thusa1 6= a2. Thus, using
the indicator function1(t > τ ), (13) and (14) can be rewritten as

yt = a′1F̂t +(a2−a1)
′F̂t1(t > τ)+b′Wt + ũt , t = 1,2, ..,T. (15)

A straightforward implication is that if we were to impose on a priori grounds the number
of factors, ignoring therefore the set of regressorsF̂t1(t > τ) in (15), the estimation ofb
will, in general, become inconsistent due to omitted variables. There are many examples
in the literature where the number of factors is a priori imposed for theoretical or practical
reasons. For example, to name a few, a single common factor representing a global effect
is assumed in the well-known study by Bernanke, Boivin and Eliasz (2005) on measuring
the effects of monetary policy in Factor Augmented VAR (FAVAR) models, as well as
in the risk analysis in portfolios of corporate debt by Gourieroux and Gagliardini (2011)
where a single factor is supposed to capture a latent macro-variable. Likewise, two factors
are a priori imposed by Rudebusch and Wu (2008) in their macro-finance model.

Alternatively, if the number of factors is not assumed to be a priori known and instead
is estimated by means of some consistent information criteria, we will show in Proposition
2 in the next section that the chosen number of factors will tend tor + k1 as the sample
size grows. In this case,D1 andD∗

2 are(r +k1)× r, and by the definitions ofD1 andD∗
2,

it is easy to show that we can always find ar × (r +k1) matrix D∗ = D−
1 = D∗−

2 such that
D∗D1 = D∗D∗

2 = Ir . If we define
a∗ = a′D∗, (16)

thena′1 = a′2 = a∗ so that (13) and (14) can be rewritten as

yt = a∗F̂t +b′Wt + ũt , t = 1,2, ..,T, (17)
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such that the estimation of (12) will not be affected by the estimated factors under big
breaks if ¯r = r +k1.

In sum, the use of estimated factors as the true factors when assuming that the number
of factors is a priori known will lead to inconsistent estimates in a FAR under big breaks.
As a simple remedy,̂Ft1(t > τ) should be added as regressors when big breaks are detected
and the break date is located. Alternatively, without pretending to know as a priori the true
number of factors, the estimation of FAR will be robust to the estimation of factors under
big breaks if the number of factors is overestimated. Notice that a similar argument will
render inconsistent the impulse response functions in FAVAR models where the regressand
in (12) becomesyt+1 = (Ft+1, Wt+1)

′. As a result, in order to run regression (17), our
advice is not to impose a priori the number of factors unless a formal test of big breaks
exist is implemented. We will illustrate these points in Section 5 by means of simulations
in a typical forecasting exercise where the predictors are common factors estimated by
PCA.

3.2 The estimated number of factors

Breitung and Eickmeier (2010) have previously argued that the presence of structural
breaks in the factor loadings may lead to the overestimation of the number of factors.
Yet, since they do not have a formal proof of this result, we proceed to fill this gap by
providing a rigorous proof.

Let r̂ be the estimated number of factors in (6) using the information criteria proposed
by Bai and Ng (2002). Then the following result holds:

Proposition 2. Under Assumptions 1 to 5, it holds that

lim
N,T→∞

P[r̂ = r +k1] = 1.

Again, when there are no big breaks (k1 = 0), this result trivially replicates Theorem
2 of Bai and Ng (2002). However, under big breaks (k1 > 0), their information criteria
will overestimate the number of original factors by the number of big breaks (0< k1 ≤ r)
because, as shown above, a factor model with this type of break admits a representation
without break but with more factors.

Finally, it is important to stress that, although the presence of structural breaks in
the factor loadings may lead to wrong estimation of the factor space and the number of
factors, the common part of a factor model (AFt andBFt) can still be consistently estimated
if enough factors are extracted.

4 Testing for Structural Breaks

4.1 Hypotheses of interest and test statistics

From the previous discussion, we have found that the factor space and the number of
factors are both consistently estimated only when mild breaks occur. Therefore, our goal
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here is to develop a test for big breaks.

If we were to follow the usual approach in the literature to test for structural breaks, we
would consider the following null and alternative hypotheses in (2) and (3):H0 : A= B vs.
H1 : A 6= B. However, this standard formulation faces two problems. First, if only small
breaks occur, the alternative hypothesis may not be interesting sinceC = A−B vanishes
asN → ∞ andT → ∞. In other words, this kind of local alternatives, for which the usual
test should have no trivial power, is not relevant for the large factor models we consider
here. Secondly, and foremost, sinceA andB areN× r matrices, we would face an infinite-
dimensional parameter problem asN grows if we were to consider differences in all their
individual elements.

Relying upon the discussion in (10) and (11) about the inconsistency ofF̂ for the space
of the true factorsF when big breaks occur, our strategy to circumvent this problem is to
focus instead on how the dependence properties of ther̂ estimated factors (using the whole
sample) change before and after the potential break date. Since, in line with the standard
assumption in Bai and Ng (2002) and Stock and Watson (2002), the (unknown) number
of true factors,r, is considered to be invariant to the sample size, our previous result in
Proposition 2 ensures thatr +k1, with k1 ≤ r, is finite-dimensional. Hence, to detect big
breaks, we should rather consider:

H0 : k1 = 0,

H1 : k1 > 0,

where the new null and alternative hypotheses correspond to the cases where there are no
big breaks (yet there may be small breaks) and there is at least one big break, respectively.

To test the above null hypothesis, we consider the following two-step procedure:

1. In the first step, the number of factors to estimate,r̄ , is determined by Bai and Ng’s
(2002) information criteria (̄r = r̂) applied to the whole sample (t=1,...,T), and̄r
common factors (̂Ft) are estimated by PCA.

2. In the second step, we consider the following linear regression of the first estimated
factor on the remaininḡr −1 ones:

F̂1t = c2F̂2t + · · ·+cr̄ F̂r̄t +ut = c′F̂−1t +ut (18)

whereF̂−1t = [F̂2t · · · F̂r̄t ]
′ and c= [c2 · · ·cr̄ ]

′ are (r̄ −1)×1 vectors. Then we test for
a structural break of c in the above regression. If a structural break is detected, then
we reject H0 : k1 = 0; otherwise, we cannot reject the null stating that there are no
big breaks.

It is important to notice that, though ther estimated factors by PCA are orthogonal by
construction for the whole sample, and hence thec vector of coefficients in (18) is the zero
vector when the regression is run from 1 toT, this property is obviously not verified when
the sample is split into two subsamples, before and after the potential break date. Hence
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regression (18) is always meaningful and both steps in the testing procedure can be very
easily implemented in practice. In the second step, although there are many methods of
testing for breaks in a simple linear regression model, we follow Andrews (1993) to define
the LM and Wald tests when the possible break date is assumed to be known, and their
Sup versionswhen no prior knowledge about the break date exists. Moreover, since the
Wald, LR, and LM test statistics have the same asymptotic distribution under the null, we
focus on the LM and Wald tests because they are simpler to compute.

Define D∗ = V−1/2Γ′Σ1/2
A as the limit of the matrixD in equation (8), whereV =

diag(v1,v2, . . . ,vr), v1 > v2 > .. . > vr are the eigenvalues ofΣ1/2
A ΣFΣ1/2

A , andΓ is the
corresponding eigenvector matrix (See Bai, 2003). DefineF1t =D∗

1Ft andF−1t = D∗
−1Ft ,

whereD∗
1 is the first row ofD∗ andD∗

−1 is the matrix containing the second to last rows of
D∗. Finally, let the(r −1)× (r −1) matrixS= limVar

(
1
T ∑T

t=1F−1tF1t
)
.

Following Andrews (1993), the LM test statistic is defined as:

L (π̄) =
T

π̄(1− π̄)

( 1
T

τ

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

τ

∑
t=1

F̂−1t ût

)
(19)

whereπ̄ = τ/T, τ is a pre-assumed date for the potential break, ˆut is the residuals in the
OLS regression of (18)2, andŜ is a consistent estimator ofS.3

The Sup-LM statistic is defined as:

L (Π) = sup
π∈Π

T
π(1−π)

( 1
T

[Tπ]

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

[Tπ]

∑
t=1

F̂−1t ût

)
(20)

whereΠ is any set with closure lies in(0,1).

Similarly, the Wald and Sup-Wald test statistics can be constructed as:

L
∗(π̄) = π(1−π) ·T

(
ĉ1(π̄)− ĉ2(π̄)

)′
Ŝ−1
(

ĉ1(π̄)− ĉ2(π̄)
)

(21)

and
L

∗(Π) = sup
π∈Π

π(1−π) ·T
(

ĉ1(π)− ĉ2(π)
)′

Ŝ−1
(

ĉ1(π)− ĉ2(π)
)

(22)

whereĉ1(π) andĉ2(π) are OLS estimates ofc using subsamples before and after the break
point : [Tπ ]4.

2By construction, ˆut = F̂1t .
3See Appendix A.3 for discussions on the estimation ofS.
4We can also construct the Wald test asT

(
ĉ1(π̄)− ĉ2(π̄)

)′(
Ŝ1
π̄ + Ŝ2

(1−π̄)

)−1(
ĉ1(π̄)− ĉ2(π̄)

)
and the Sup-

Wald test similarly, wherêS1 andŜ2 are estimates ofS using subsamples. Yet, in all our simulations, the
results based on these two methods are very similar. Therefore, for brevity, we focus on the ones using the
full sample estimation ofS, as in (21) and (22).
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To illustrate why our two-step procedure is able to detect thebig breaks, it is useful to
consider a simple example wherer = 1, k1 = 1 (one common factor and one big break).
Then (6) becomes:

Xt = A f1t +Bgt +et

wheregt = 0 for t = 1, . . . ,τ, andgt = ft for t = τ +1, . . . ,T. By Proposition 2, we will
tend to get ˆr = 2 in this case. Suppose now that we estimate 2 factors (¯r = 2). Then, by
Proposition 1, we have: (

f̂t1
f̂t2

)
= D

(
ft
gt

)
+op(1)

whereD =

(
d1 d2

d3 d4

)
is a non-singular matrix. By the definition ofgt we have:

f̂t1 = d1 ft +op(1) f̂t2 = d3 ft +op(1) for t = 1, . . . ,τ,

f̂t1 = (d1+d2) ft +op(1) f̂t2 = (d3+d4) ft +op(1) for t = τ +1, . . . ,T,

which imply that:

f̂t1 =
d1

d3
f̂t2+op(1) for t = 1, . . . ,τ,

f̂t1 =
d1+d2

d3+d4
f̂t2+op(1) for t = τ +1, . . . ,T.

Thus, we can observe that the two estimated factors are linearly related and that the co-
efficients d1

d3
and d1+d2

d3+d4
before and after the break date must be different due to the non-

singularity of theD matrix. As a result, if we regress one of the estimated factors on the
other and test for a structural break in this regression, we should reject the null of no big
break. The case whered3 = 0 (although excluded by our Assumptions) may render the
above regression for the first subsample invalid. In section 4.5.2, we will consider such an
special alternative where our LM test may become inconsistent while our Wald test still
exhibits very high power.

Likewise, if the break dateτ is not a priori assumed to be known, the Sup-type test
will yield a natural estimate ofτ at the date when the test reaches its maximum value. In
what follows, we derive the asymptotic distribution of the test statistics (19) to (22) under
the null hypothesis, as well as extend the intuition behind this simple example to the more
general case to show that our test has power against relevant alternatives.

4.2 Limiting distributions under the null hypothesis

Since in most applications the number of factors is estimated by means of the information
criteria, and it converges to the true one under the null hypothesis of no big break, we start
with the most interesting case where ¯r = r.

As discussed earlier, under the null, the use of PCA implies that∑T
t=1 F̂−1t F̂1t = 0

for any T by construction, so we have ˆc = 0 in (18) and ˆut = F̂1t in (19). To derive the
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asymptotic distributions of the LM and Wald statistics, we adopt the following additional
assumptions:

Assumption 6.
√

T/N → 0 as N→ ∞ and T→ ∞.

Assumption 7. {Ft} is a stationary and ergodic sequence, and{Fit Fjt −E(Fit Fjt ),Ωt} is
an adapted mixingale withγm of size−1 for i, j = 1,2, . . . , r, that is:

√
E
(

E(Yi j ,t |Ωt−m)2
)
≤ ctγm

where Yi j ,t = Fit Fjt −E(Fit Fjt ), Ωt is a σ−algebra generated by the information at time
t, t−1, . . ., {ct} and{γm} are non-negative sequences andγm=O(m−1−δ ) for someδ > 0.

Assumption 8. supπ∈[0,1]
∥∥∥ 1√

NT ∑Tπ
t=1∑N

i=1 αiF ′
t eit

∥∥∥
2
= Op(1).

Assumption 9.
∥∥Ŝ−S

∥∥ = op(1), and S is a(r −1)× (r −1) symmetric positive definite
matrix.

Assumption 10. The eigenvalues of the r× r matrix ΣAΣF are distinct.

Assumption 6 and 8 are required to bound the estimation errors ofF̂t , while Assump-
tion 7 is needed to derive the weak convergence of the test statistics using the Functional
Central Limit Theorem (FCLT). Assumption 10 is the Assumption G of Bai (2003), which
is necessary forD

p→ D∗.
Note that these assumptions are not restrictive. Assumption 6 allowsT to beO(N1+δ )

for −1 < δ < 1. As for Assumption 7, it allows one to consider a quite general class of
linear processes for the factors:Fit = ∑∞

k=1 φikvi,t−k, wherevt = [v1t . . .vrt ]
′ are i.i.d with

zero means, andVar(vit ) = σ2
i < ∞. In this case, it can be shown that:

√
E
(

E(Yi j ,t |Ωt−m)2
)
≤ σiσ j

(
∞

∑
k=m

|φik|
)(

∞

∑
k=m

|φ jk|
)

for which it suffices that (
∞

∑
k=m

|φik|
)

= O(m−1/2−δ )

for someδ > 0, which is satisfied for a large class of ARMA processes. Assumption 8
is similar to Assumption F.2 of Bai (2003), which involves zero-mean random variables.
Finally, a consistent estimate ofScan be calculated by a HAC estimator yielding positive
definite estimates of the covariance matrix like, e.g., the popular Newey and West’s (1987)
estimator which is the one used in our simulations below.5

Let ”
d→ ”denoteconvergence in distribution, then:

5Though not reported, other estimators like those based on Parzen kernels, yield similar results in our
simulations about the size and power properties of the LM and Wald tests.
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Theorem 1. Under the null hypothesis H0 : k1 = 0 and Assumptions 1 to 10, as N,T → ∞
, we have that both the LM and Wald tests verify

L (π̄), L ∗(π̄) d→ χ2(r −1)

whereπ̄ = τ/T for a givenτ; and

L (Π), L
∗(Π)

d→ sup
π∈Π

(
Wr−1(π)−πWr−1(1)

)′(
Wr−1(π)−πWr−1(1)

)
/[π(1−π)]

for any setΠ with closure lies in(0,1), whereWr−1(·) is a r−1 vector of independent
Brownian Motions on[0,1] restricted toΠ.

The critical values for the Sup-type test are provided in Andrews (1993).

It is easy to show that Theorem 1 still holds when ¯r < r. However, when ¯r > r, the
matrixD∗ may not be asymptotically full ranked. Yet, as simulations in section 5 show, in
such an instance Theorem 1 still provides a reasonably good approximation of the distri-
bution of test statistics in finite samples. Moreover, the case where ¯r > r can be avoided
if, instead of relying on a priori choice of ¯r, practitioners follow Bai and Ng’s (2002)
information criteria, in line with the result in Proposition 2.

4.3 Behavior of LM and Wald tests under the alternative hypothesis

We now extend the insight of the simple example considered in section 4.1 to show that,
under the alternative hypothesis (k1 > 0), the linear relationship between the estimated
factors (with the whole sample) changes at timeτ, so that big breaks can be detected.

First, let us consider the case wherer < r̄ ≤ r +k1 so thatD1 andD∗
2 in (10) and (11)

become ¯r × r matrices with full column rank. Notice that, sincer < r̄, we can always find
r̄ ×1 vectorsρ1 andρ2 which belong to the null spaces ofD′

1 andD∗′
2 separately, that is,

ρ ′
1D1 = 0 andρ ′

2D∗
2 = 0. Hence, premultiplying both sides of (10) and (11) byρ ′

1 andρ ′
2

leads to:

ρ ′
1F̂t = op(1) t = 1,2. . . ,τ,

ρ ′
2F̂t = op(1) t = τ +1, . . . ,T

which, after normalizing the first elements ofρ1 andρ2 to be 1, implies that:

F̂1t = F̂ ′−1tρ∗
1 +op(1) t = 1,2. . . ,τ, (23)

F̂1t = F̂ ′−1tρ∗
2 +op(1) t = τ +1, . . . ,T. (24)

Next, to show thatρ∗
1 6= ρ∗

2 , we proceed as follows. Suppose thatγ ∈ Null(D′
1) and

γ ∈ Null(D∗′
2 ), then by the definitions ofD1 andD∗

2 and by the basic properties of full-
rank matrices, it holds thatγ ∈ Null(D′). SinceD is full rank r̄ × (r + k1) matrix, then
Null(D′) = 0 and thusγ = 0. Therefore, the only vector that belongs to the null space of
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D1 and D∗
2 is the trivial zero vector. Further, because the rank of the null space ofD1 and

D∗
2 is r̄ − r > 0, we can always find two non-zero vectors such thatρ1 6= ρ2 .

Notice that when ¯r ≤ r, the rank of the null spaces ofD1 andD∗
2 becomes zero. Hence,

the preceding analysis does not apply in this case despite the existence of linear relation-
ships among the estimated factors. If we regress one of the estimated factors on the others,
with ρ̂1 andρ̂2 denoting the OLS estimates of the coefficients using the two subsamples
before and after the break, it is easy to show thatρ̂1 → θ1 andρ̂2 → θ2, but generally we
cannot verify thatθ1 6= θ2.

In the case where ¯r > r +k1, the rank of null space ofD defined in Proposition 1 be-
comes ¯r − (r + k1). Applying similar arguments as above, we can find a non zero ¯r ×1
vectorρ such thatρ ′D = 0. Then, by premultiplying both sides of (7) byρ ′ and normaliz-
ing the first element ofρ to be 1, it follows that:

F̂1t = F̂ ′−1tρ∗+op(1) for t = 1,2, . . . ,T.

Hence, there is still a linear relationship between the estimated factors, but this relationship
(ρ∗) is constant over time.

Consequently, as will be confirmed by our simulations below, our test may fail to detect
the breaks when a value of ¯r is a priori imposed such that ¯r ≤ r or r̄ > r+k1. However, this
is unlikely to happen due to two reasons. First, we usually equate the number of factors
with the estimated ones, ( ¯r = r̂) and we have shown thatP[r̂ = r + k1] → 1. Secondly,
instead of using a single value, we can try different values of ¯r . Then, under the null, we
should not detect any break no matter which value of ¯r is used while, under the alternative,
we should detect breaks when ¯r lies betweenr andr +k1.

4.4 Disentangling breaks in loadings from breaks in factors

A potential critique of our LM and Wald tests is that they cannot differentiate between
breaks in factor loadings and breaks in the covariance matrix of factors. For illustra-
tive purposes, consider a factor model where the factor loadings are constant but the

covariance matrix of the factors breaks:r = 2, E(FtF ′
t ) =

(
1 ρ
ρ 1

)
for t = 1, . . . ,T/2,

andE(FtF ′
t ) =

(
1 −ρ
−ρ 1

)
for t = T/2+1, . . . ,T, with ρ 6= 0 and 1. If we further as-

sumeΣA = limN→∞ A′A/N is a diagonal matrix, then, in view of Bai (2003), we have that
F̂t = Ft +op(1), whereF̂t is a 2×1 vector. In this case, regressingF̂1t on F̂2t will yield
estimated coefficients close toρ and−ρ before and after the break. As a result, our tests
will detect a big break in the factor loadings, while the true DGP has a break in the factors
and not in the constant loadings.

Although the above example has been excluded by our Assumptions 2 and 7, in prac-
tice, it is plausible that the factor dynamics are also subject to structural breaks. For in-
stance, if the factors are interpreted as common shocks to the economy, then it is likely that
the volatilities of these shocks have decreased since the beginning of 1980s as evidenced
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by recent studies on the effect of the Great Moderation (see, e.g., Gali and Gambetti, 2009).
Hence, for interpretational purposes, it becomes relevant to identify whether breaks stem
from changes in the factors themselves or in their loadings.

The main difficulty in doing so lies in the fact that, since they are multiplicative, factors
and loadings can not be separately identified using PCA, so that breaks in the former
can be easily expressed as breaks in the latter, and conversely. It is noteworthy that this
identification problem not only affects our test but also the competing ones in the literature.
For example, as discussed in the Introduction, the HI tests, being based on the comparison
of the covariance matrices of the estimated factors before and after the break, will also
exhibit power against breaks in the factors as long as the estimated factors are consistent.6

As regards the BE test, though in principle seems to be robust to breaks in the true factors
because it is conditional on the estimated factors, Hansen’s (2000) results imply that the
asymptotic distribution is bound to differ when the marginal distributions of the regressors
(i.e., the estimated factors) change.

Yet, in spite of these shortcomings, we briefly outline here a procedure that allows to
differentiate the source of breaks by examining the rank of the covariance matrices of the
estimated factors. To illustrate this idea, consider first the simple example in subsection 4.1
where the DGP has 1 factor and 1 break in the loadings at dateτ. As shown in Proposition
2, the estimated number of factors will converge to 2, and our test will detect the break.
Next, consider an alternative DGP, this time with 2 factorsFt = [F1t ,F2t ]

′, constant factor
loadings, and a break in the covariance matrix of the factors at dateτ such thatE(FtF ′

t ) =
Σ1 in the first subsample andE(FtF ′

t ) = Σ2 in the second subsample. Under this DGP, as
long as 1/T ∑T

t=1FtF ′
t converges to some positive matrix, the estimated number of factors

will also converge to 2, and both will be consistently estimated. Hence, as discussed above,
our tests may also detect a big break in the factor loadings when it actually happens in the
covariance matrix of the factors.

To differentiate between these two cases, notice that, in the first DGP, the covariance
matrices of the estimated factors before and after the break converge to matrices with
reduced rank ( i.e, equal to 1 in this example) given by

Σ̂1 ⇒ E( f 2
t )D1D

′
1 for t = 1, ..,τ,

Σ̂2 ⇒ E( f 2
t )(D1+D2)(D1+D2)

′ for t = τ +1, ..,T.

whereD1 andD2 denote the first and second 2x1 column vectors, respectively, of the 2x2

full-ranked matrix given byD =

(
d1 d2

d3 d4

)
in this DGP.

By contrast, in the second DGP, the corresponding covariance matrices will converge

6In view of Bai and Ng (2002), the estimated number of factors and the factors themselves are still
consistent as long as 1/T ∑T

t=1 FtF ′
t converges to some positive matrix.
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to matrices with full rank (i.e., equal to 2 in this example) given by

Σ̂1 ⇒ DΣ1D
′

f or t = 1, ..,τ,
Σ̂2 ⇒ DΣ2D

′
f or t = τ +1, ..,T.

Therefore, when our tests detect a break in the factor model, a rank test could be
applied to the covariance matrices of the estimated factors in the subsamples before and
after the break date. If the break happens in the loadings, the matrices should have reduced
rank and, as result, separate application of Bai and Ng’s (2002) consistent information
criteria to the respective data sets will choose a single factor in each of the two subsamples.
Conversely, if the break happens in the factors, the matrices should have full rank and, as
a result, the information criteria will choose this time 2 factors in each subsample.7

4.5 Comparison with other available tests

4.5.1 Comparison with the BE test

BE (2010) is, to our knowledge, the first paper that proposes a test for big breaks. Thus,
it seems natural to start comparing our testing procedure with theirs. In our view, the BE
test suffers from three shortcomings which are worth mentioning before the comparison is
made.

First, the BE test will lose power when the number of factors is overestimated. The
BE test is equivalent to the Chow test in the regressionXit = αiFt +eit whereFt is replaced
by F̂t . However, as shown in equation (5), a factor model with big breaks in the factor
loadings admits a new representation with more factors but no break. In other words,
when the number of factors is overestimated, the PCA estimators consistently estimate
(up to a linear transformation) the new factors and loadings which are stable in the new
representation. Thus the BE test may fail to detect breaks in this case. Although the
authors are fully aware of this problem (see Remark B in their paper) and suggest to split
the sample to estimate the correct number of factors, in principle this is not feasible when
the break date is considered to be unknown. Using a Sup-type Test, as BE propose, solves
the problem of the unknown break date but, since the number of factors will tend to be
overestimated, lack of power will still be a problem.

Secondly, their testing procedure is mainly heuristic. Their null hypothesis isA= B,
or αi = βi for all i = 1, . . . ,N, rather thanα j = β j for a specific j.8 They constructN
test statistics (denoted bysi , i = 1, . . . ,N) for each of theN variables, but do not derive

7In Chen, Dolado and Gonzalo (2011, in process) we are currently working on the asymptotic distribution
of the rank test based on the eigenvalues of the sample covariance matrices ofF̂t in each of the subsamples,
as an alternative approach to the direct use of Bai and Ng’s (2002) criteria. Interestingly, notice that this rank
test could also account for the possibility of new factors arising after the break date (excluded by Assumption
3), since in this case the rank will be larger in the second than in the first subsample.

8The authors do not mention this, but it is implicitly assumed because they need the factors to be consis-
tently estimated under the null, which will hold only ifαi = βi for all i = 1, . . . ,N, or alternatively if the the
break is small according to our previous definition.
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a single statistic forH0 : A = B. One possibility that the authors mention is to combine
the N individual statistics to obtain a pooled test which is asymptotically normal, but
this requires the errorseit and ejt to be independent ifi 6= j, an assumption which is
too restrictive. In their simulations and applications, the decisions are merely based on
the rejection frequencies, i.e., the proportion of variables that are detected to have breaks
using the individual statisticssi . As shown by their simulation, this rejection frequency,
defined byN−1 ∑N

i=11(si > α) whereα is some critical value, may converge to some
predetermined nominal size (typically 5%). Yet, in principle, it cannot be considered as a
proper test insofar as its limiting distribution is not derived.

Finally, the individual tests for each of the variables may lead to incorrect conclusions
about which individual variables are subject to breaks in their loadings of the factors, as
BE seemingly do.9 A key presumption for their individual test to work properly is that
the estimated factorŝFt can replace the true factors, even under the alternative hypothesis
(given that the number of factors is correctly estimated). As we have shown before, the
true factor space can only be consistently estimated under the null of no break at all or
only small breaks. By contrast, when big breaks exist, the space of the true factors is not
well estimated (see equations (10) and (11)). If we plug in the estimated factors in this
case, some variables that have constant loadings may be detected to have breaks due to the
poor estimation of the factors. To illustrate this caveat, let us consider a factor model with
big breaks in the factor loadings where we select the right number of factors ¯r = r, and
there is one of the variablesXit that has constant loadings:10

Xit = α ′
i Ft +eit .

Then, from (10) and (11), we can also write the above-mentioned equation as follows:

Xit = (α ′
i D

−1
1 )(D1Ft)+eit = (α ′

i D
−1
1 )F̂t + ẽit t = 1,2. . . ,τ,

Xit = (α ′
i D

∗−1
2 )(D∗

2Ft)+eit = (α ′
i D

∗−1
2 )F̂t + ẽit t = τ +1, . . . ,T

whereẽit = eit +op(1). Notice thatα ′
i D

−1
1 6=α ′

i D
∗−1
2 sinceD1 6=D∗

2. As a result, the factor
loadings will exhibit a break when the true factors are replaced by the estimated factors.
Hence if we apply the individual test toXit usingF̂t , we may wrongly conclude that there
is a big break in that variable when there is none.

To analyze how serious this problem could be in practice, we design a simple simu-
lation. First, we generate a factor model withN = T = 200, r = 1, where the first 100
variables have constant factor loadings while the remaining 100 variables have big breaks
in their loadings. Then we estimate the factors by PCA and apply the individual tests for
all the 200 variables.11 Applying the BE test, we find that rejection frequency for all the

9For example, in BE (2010, Section 6, pg. 26), it is stated that "there seems to be a break in the loadings
on the CPI and consumer expectations,..., but not in the loadings of commodity prices".

10Notice that this is possible because of Assumption 1.a.
11For simplicity, all the loadings, factors and errors are generated as standard normal variables, the mean

of the factor loadings of the second 100 variables are shifted by 0.3 at timeτ = 100. The reported numbers
are averages of 1000 replications.
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200 variables is 53.07%, close to the proportion of variables that have breaks. However,
the rejection frequencies for the first and second 100 variables are 52.98% and 53.15%,
respectively, which means that we falsely reject the null for more than half of the variables
that are stable while we reject the null correctly for only half of the variables that have
breaks. Further, we have checked that, by increasing the size of the breaks, the rejection
frequency can rise up to 90% while the true fraction is 50%.

Our LM and Wald tests cannot either identify which particular variables are subject to
breaks in the factor loadings but can circumvent the other two problems. Regarding the
first problem, we have derived its limiting distribution in Theorem 1 both for the cases of
known and unknown breaking dates. As for the second one, contrary to the BE test, our
test needs more estimated factors than the true number(r +k1 ≥ r̄ > r) to maintain power.
However, this overestimation it is still preferable to using the BE test because in practice
the number of factors to estimate is chosen by means of the information criteria(r̄ = r̂),
and we have shown in Proposition 2 thatP[r̂ = r +k1]→ 1.

4.5.2 Comparison with the HI test

The HI (2011) test is based on the comparison of the covariance matrices of the esti-
mated factors before and after the break. In view of our results in equation (10) and (11),
1
τ ∑τ

1 F̂t F̂ ′
t = D1Σ̂FD′

1+op(1), and 1
T−τ ∑T

τ+1 F̂t F̂ ′
t = D∗

2Σ̂FD∗′
2 +op(1). Therefore, the HI

test is able to detect breaks ifΣ̂F → ΣF andD1 andD∗
2 converge to different limits asN

andT go to infinity. Specifically, their test is defined as:

T
(
A(π)′V̂−1A(π)

)

where

A(π) = vech

[
1
τ

τ

∑
1

F̂t F̂
′
t −

1
T − τ

T

∑
τ+1

F̂t F̂
′

t

]
.

andV̂ is a HAC estimator of the covariance matrix ofA(π) which is either constructed
using the whole sample (LM version of the test) or using subsamples before and after the
break (Wald version).

Basically, the HI test exploits the same insight as our tests in converting an infinite-
dimensionality problem to a finite one, except that it relies on a different use of the es-
timated factors. Compared to ours, the HI test uses more information since our LM test
only uses the first row (except the first element) of1

τ ∑τ
t=1 F̂t F̂ ′

t , while our Wald test uses
all the elements of the matrix except the first one (1

τ ∑τ
1 F̂2

1t).

In principle, it may look that the use of less information is the price one has to pay to
render our testing procedure much simpler than theirs. After all, both steps in our approach
can be easily implemented in any conventional statistical software used by practitioners,
such as Eviews, etc., while theirs is computationally more burdensome. Yet, our claim in
what follows is that, despite exploring less information, our tests are still consistent and
exhibit very similar power to theirs, with the only exception of the LM test (not the Wald
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test) that may be less powerful than the HI test for a rather specific type of alternatives
suggested by HI (2011) to be discussed in the sequel.

Consider the simple case wherer = 1 andk1 = 1. Then we can write the factor model
as:

Xt = A1 f1t +A2 f2t +et

whereA1 and A2 are N × 1 vectors of factor loadings before and after the break,τ is
the break date,f1t = ft1(t ≤ τ) and f2t = ft1(t > τ). In this case,Σ̂F = 1

T ∑T
t=1FtF ′

t

is diagonal by construction. If it is further assumed that1
NA′A is diagonal for given

N, whereA = [A1,A2]. Then, it can be shown that̂f1t = Op(1) and f̂2t = Op(δ−1
N,T) for

t = 1, . . . ,τ, so that1T ∑τ
t=1 f̂ 2

2t = Op(δ−2
N,T), and 1

T ∑τ
t=1 f̂1t f̂2t = Op(δ−2

N,T) (see Bai and Ng,

2011). AlthoughŜ−1 diverges in this case at a rateOp(T−1/5δ 2
N,T),

12 our LM/ Sup-LM
tests may fail to achieve consistency since they rely exclusively on the (squared) covari-
ance term weighted bŷS−1. A heuristic explanation of this problem is that, combining
the previous probabilistic orders of magnitude, the LM/Sup-LM tests behave in general as
Op(T4/5δ−2

N,T) which, forT <N, becomesOp(T−1/5) rendering the test inconsistent while,

for N < T, is Op(T4/5/N) which might lead (albeit not necessarily so) to inconsistency
given that our Assumption 6 only assumes

√
T/N → 0 as bothN andT increase.

Nonetheless, our Wald and Sup-Wald tests are always consistent (including for this
DGP), as will be confirmed by the simulations in section 5. The insight is that, in contrast
to the LM tests which only involve the comparison of the covariance terms off̂1t and f̂2t

in each of the two subsamples, the Wald tests rely on a similar comparison of the ratios
between such a covariance and the variance off̂2t ( i.e., the OLS-estimated slopes in re-
gression (18) for the two subsamples). Thus, though under the previous DGP1

τ ∑τ
t=1 f̂1t f̂2t

is a small term converging to zero, the fact that1
τ ∑τ

t=1 f̂ 2
2t also converges to zero at the

same rate implies that the difference in estimated slopes isOp(1).13 Yet, there could be
some odd draws in the simulations (see the discussion in subsection 5.4 below) where this
Op(1) term might not be bounded away from zero because the numerator in these peculiar
realizations turns out to be very small in absolute value for finite samples. Except in these
cases, the previous reasoning implies that

√
T(ĉ1(π)− ĉ2(π)) is Op(

√
T). However, even

when (ĉ1(π)− ĉ2(π)) is very small in this special DGP, the fact thatŜ−1 diverges at a
rateOp(T−1/5δ 2

N,T), makes our Wald test quite powerful. Indeed, except for the above-
mentioned draws, our Wald tests diverge under this DGP at a much faster rate than the
corresponding HI tests. To see this, notice that, since the elements inA(π) are always
Op(1) and bounded away from zero so that

√
TA(π) is Op(

√
T), HI’s (2011, Assumption

9’a) computation ofV̂ implies that their test becomesOp(T/BT) = Op(T4/5), whereBT

= Op(T1/5) is the Bartlett bandwidth parameter in the HAC estimator. In turn, our Wald

12Notice that, as shown in Appendix 3, sinceŜ is a HAC estimator using a Bartlett kernel, this matrix is
always positive definite and thereforeŜ= Op(T1/5δ−2

N,T) implies thatŜ−1 = Op(T−1/5δ 2
N,T).

13Note that, although1τ ∑τ
t=1 f̂ 2

2t converges to zero in probability in the first subsample, is always positive
by construction, therefore ˆc1(π) is Op(1), as is obviously the case of ˆc2(π) in the second subsample where

1
1−τ ∑τ

t=1 f̂ 2
2t converges to a positive constant.
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test with such a bandwidth isOp(Tδ 2
N,T/BT) = Op(T4/5δ 2

N,T)> Op(T4/5). Hence, its rate
of divergence under this specific departure from the null will be in general (i.e., except for
the odd simulation draws) larger than the rate of HI’s tests.

It is also noteworthy that the assumption made by HI (2011) aboutA′A/N being ex-
actly a diagonal matrix for a given value ofN is extremely restrictive, making the special
DGP considered above of very little practical relevance. In the slightly more plausible
case where, in the limit,ΣA = lim Σ̂A is diagonal (although this case is also excluded by
our Assumptions 1 and 5) but the elements in the sequence{A′A/N} do not satisfy exactly
the previous assumption, both our LM and Wald tests would be consistent. Indeed, our
simulations reported in section 5 below show that ours and HI’s tests perform very simi-
larly in terms of power under the type of breaks allowed by our Assumptions 1 and 5, and
that our Wald test has even better power properties than theirs in small samples(T and
N ≤ 100).

Finally, since our tests are based on a linear regression model, many other available
methods in the literature can also be applied to our second-step procedure. For instance,
when the break date is not known as a priori, one can use the CUSUM type-test first
proposed by Brown, Durbin and Evans (1975), and also Chen and Hong’s (2011) test via
nonparametric regression. Thus, this flexibility allows practitioners to draw conclusions
about breaks based on broader evidence than just a single test.

Summing up, compared to the HI tests, our tests use less information but are much
easier to implement. The price we pay for using less information in our simpler and
more flexible procedure is that our LM and Sup-LM tests (but not the Wald tests) may be
inconsistent for a special class of DGPs that have very little practical relevance. For less
restrictive DGPs, both the LM and Wald tests are consistent, and the latter turns out to be
even more powerful than HI’s test in small samples. Simulation results supporting these
statements are provided in the next section.

5 Simulations

In this section, we first study the finite sample properties of our proposed LM/Wald and
Sup-LM/Wald tests. Then comparisons are made with BE test and HI test by means of sim-
ulations. Since the only BE test with a known limiting distribution is their pooled statistic
when the idiosyncratic components in the factor model are independent, we restrict the
comparison to this specific case instead of using their rejection frequency approach whose
asymptotic distribution remains unknown. For HI test, we first show the case where our
LM and Sup-LM tests lose powers due to the use of less information, and where our Wald
and Sup-Wald test are still consistent. Then we compare our Wald test and HI test for
small samples. Finally, we use a simple factor-based forecasting model to illustrate the
consequences of ignoring big breaks as discussed in Section 3.1.
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5.1 Size properties

We first simulate data from the following DGP:

Xit =
r

∑
k=1

αikFkt +eit

wherer = 3, αik andeit are generated as i.i.d standard normal variables, and{Fkt} are
generated as:

Fkt = φkFk,t−1+vkt

whereφ1 = 0.8, φ2 = 0.5, φ3 = 0.2, andvkt is another i.i.d standard normal error term.
The number of replications is 1000. We consider both the LM and Wald tests and their
Sup-type versions defined in (19)-(20) and (21)-(22). The potential breaking dateτ is
considered to be a priori known and is set atT/2 for the LM/Wald tests whileΠ is chosen
as[0.15,0.85] for the Sup-type versions of the tests. The covariance matrixS is estimated
using the HAC estimator of Newey and West (1987).

Table 1 reports the empirical sizes (in percentages) for the LM/Wald tests and Sup-
LM/Wald tests using 5% critical values for sample sizes (N andT) equal to 100, 150,
200, 250, 300 and 1000.14 We consider three cases regarding the choice of the number
of factors to be estimated by PC: (i) the correct one (¯r = r = 3 ), (ii) smaller than the
true number of factors (¯r = 2 < r = 3), and (iii) larger than the true number of factors
(r̄ = 4> r = 3).15

Broadly speaking, the LM and Wald tests are slightly undersized forr = 2 and 3 and
more so whenr = 4. Yet the effective sizes converge to the nominal size asN andT
increase. This finite sample problem is more accurate with the Sup-LM test especially for
smallT, in line with the findings in other studies (see, Diebold and Chen, 1996). This is
hardly surprising because, for instance, whenT = 100 andΠ = [0.15,0.85], we only have
15 observations in the first subsample. By contrast, the Sup-Wald test is too liberal for
T = 100. Therefore, although we impose that

√
T/N goes to zero, a largeT is preferable

when the Sup-LM test is used. Another conclusion to be drawn is that, despite some
minor differences, the tests perform quite similarly in terms of size even when the selected
number of factors is not correct.

5.2 Power properties

We next consider similar DGPs but this time withr = 2 and now subject to big breaks
which are characterized as deterministic shifts in the means of the factor loadings.16 The
factors are simulated as AR(1) processes with coefficients of 0.8 for the first factor and 0.2

14As mentioned earlier, the critical values of the Sup–type tests are taken from Andrews (1993).
15Notice that the choice ofr = 3 allows us to analyze the consequences of performing our proposed test

with the under-parameterized choice ofr = 2, where two factors are needed to perform the LM/Wald test in
(18). Had we chosenr = 2 as the true number of factors, the test could not be performed for ¯r = 1.

16The results with other types of breaks such as random shifts are similar.
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for the second. The shifts in the loadings are 0.2 and 0.4 at timeτ = T/2. Table 2 reports
the empirical rejection rates of the LM/Wald and Sup-LM/Wald tests in percentage terms
using again 1000 replications.

As expected, both tests are powerful to detect the breaks as long asr = 2< r̄ ≤ r+k1 =
4, while the power is trivial when ¯r = r = 2. Moreover, the power is low for the Sup-LM
test whenT ≤ 150, which is not surprising given that the Sup-LM test is undersized. This
problem could be fixed by either using size-corrected critical values, or by the Sup-Wald
test that is more powerful in finite samples. For safety, we recommend to use data sets
with largeT (at least around 200), withN > 100, in order to run these tests reliably in
practice.

5.3 Power comparison with the BE test

To compare our test to the BE test, we need to construct a pooled statistic as suggested at
the beginning of this section. The pooled BE test is constructed as follows:

∑N
i=1si −Nr̄√

2Nr̄

wheresi is the individual LM statistics in BE (2010). This test should converge to a
standard normal distribution as long aseit andejt are independent, an assumption we also
adopt here. For simplicity, we only report results for the case of known break dates.

We first generate factor models withr = 2, and compare the two tests under the null.
The DGPs are similar to those used in the size study. The second column of Table 3 (no
break) reports the 5% empirical sizes. In general, we find that the pooled BE and the LM
tests exhibit similar sizes.

Then, we generate a break in the loadings of the first factor while the other parts of the
models remain the same as in the DGP where we study the power properties. The break
is generated as a shift of 0.1 in the mean of the loadings. We consider two cases: (i) the
number of factors is correctly selected: ¯r = r = 2; and (ii) the selected number of factors
is larger than the true one: ¯r = 3> r = 2. The third and fourth columns in Table 3 report
the empirical rejection rates of both tests. In agreement with our previous discussion, the
differences in power are striking: when ¯r = 2, the pooled BE test is much more powerful
while the opposite occurs when ¯r = 3. However, according to our result in Proposition 2,
the use of Bai and Ng’s (2002) selection criteria will yield the choice of ¯r = 3 as a much
more likely outcome asN andT increase.

5.4 Power comparison with the HI test

We first consider the following DGP borrowed from HI(2011):ft = ρ ft−1 + ut , A1 =√
0.8[L′

1,L
′
1]
′, A2=

√
1.2[L′

2,−L′
2]
′, Xit =A1i ft +eit for t = 1, . . . ,T/2, andXit =A2i ft +eit

for t = T/2+ 1, . . . ,T, whereL1 andL2 are 1
2N× 1 vectors with standard normal i.i.d

elements,ut ,eit ∼ i.i.d N(0,1), andρ = 0.8.
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This is the very special DGP discussed in subsection 4.5.2 where A′A is an exact di-
agonal matrix, a feature which may lead to the inconsistency of our LM and Sup-LM due
to the use of less information. The results presented in Table 4 provide evidence for this
theoretical result by showing that, even forT = N = 500 the rejection rates of these tests
do not exceed 70%. On the contrary, the power of the Wald and Sup-Wald tests is very
close or even equal to 100% in all cases. Moreover, in line with our previous argument,
it can also be observed that the latter diverge at much faster rate than HI’s tests. This can
be verified in the last column of Table 4 which displays is log of the average ratios of
Wald/WaldHI , whereWald andWaldHI denote are Wald test in (21) and the Wald test of
HI respectively for a given break date. Yet, despite this much higher divergence rate on
average, the power of our Wald test sometimes does not reach 100% because, as discussed
above, there are a few (≤ 0.5%) simulation draws where the numerator in (21) is very
close to zero. Nonetheless, power is always very close to 100%.

For more general alternatives, whereA′A is not an exact diagonal matrix, both our
LM and Wald tests and HI test perform equally well forN andT larger than 100. These
results, omitted to save space, are available upon request. However, for smaller sample
sizes between 50 and 100, our test outperforms HI test. To illustrate this feature, the
(size-adjusted) power curves of ours (solid line) and HI’s Wald tests (thin lines), using
the Bartlett kernel, are plotted in Figure 1 for the following DGP:ft = ρ ft−1+ut , Xit =
A1i ft +eit for t = 1, . . . ,T/2, andXit = (A1i +b) ft +eit for t = T/2+1, . . . ,T, Ait ,ut,eit ∼
i.i.d N(0,1), ρ = 0.8, andb is the break size which ranges from 0 to 0.5. As can be
observed, our Wald test has better power properties that HI’s test in all these cases.

5.5 The effect of big breaks on forecasting

Finally, in this section we consider the effect of having big breaks in a typical forecasting
exercise where the predictors are estimated common factors. First, we have a large panel
of dataXt driven by the factorsFt which are subject to a break in the factor loadings:

Xt = AFt1(t ≤ τ)+BFt1(t > τ)+et .

Secondly, the variable we wish to forecastyt , which is excluded from toXt, is assumed to
be related toFt as follows:

yt+1 = a′Ft +vt+1.

We consider a DGP whereN = 100, T = 200, τ = 100, r = 2, a′ = [1 1], Ft are gener-
ated as two AR(1) processes with coefficients 0.8 and 0.2, respectively,et andvt are i.i.d
standard normal variables, and the break size is characterized by a range of mean shifts
between 0 and 1 occurring at half of the time sample size.

The following forecasting procedures are compared in our simulation:

Benchmark Forecasting: The factorsFt are treated as observed and are used directly
as predictors. The one-step-ahead forecast ofyt is defined asyt(1) = â′Ft , whereâ is the
OLS estimate ofa in the regression ofyt+1 on Ft .
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Forecasting 1: We first estimate 2 factorsF̂t from Xt by PCA, which are then used as
predictors inyt(1) = â′F̂t , whereâ is the OLS estimate ofa in the regression ofyt+1 on F̂t .

Forecasting 2: We first estimate 2 factorsF̂t from Xt by PCA, and then usêFt and
F̂t1(t > τ) as predictors.yt(1) = â′[F̂ ′

t F̂t1(t > τ)′]′, whereâ is the OLS estimate ofa in
the regression ofyt+1 on F̂t andF̂t1(t > τ)].

Forecasting 3: We first estimate 4 factors (replicatingr +k1 = 4) F̂t from Xt by PCA,
which are then used as predictors inyt(1) = â′F̂t , whereâ is the OLS estimate ofa in the
regression ofyt+1 on F̂t .

The above forecasting exercises are implemented recursively, e.g., at each timet, the
dataXt ,Xt−1, . . . ,X1 andyt ,yt−1, . . . ,y1 are treated as known to forecastyt+1. This process
starts fromt = 149 tot = 199, and the mean square errors (MSEs) are calculated by

MSE=
199

∑
t=149

(yt+1−yt(1))2

51
.

To facilitate the comparisons, the MSE of the Benchmark Forecasting is standardized to
be 1.

The results obtained from 1000 replications are reported in Figure 2 with the different
break sizes ranging from 0 to 1. It is clear that the MSE of the Forecasting 1 method in-
creases drastically with the size of the breaks, in line with our discussion in Section 3. By
contrast, the Forecasting 2 and 3 procedures perform equally well and their MSEs remain
constant as the break size increases, although they cannot outperform the benchmark fore-
casting due to the estimation errors of the factors for the chosen sizes ofN andT. In line
with our analysis, the lesson to be drawn from this exercise is that, in case of a big break,
imposing the number of factors a priori can worsen forecasts.

6 Empirical Applications

To provide a few empirical applications of our test, we first use the data set of Stock and
Watson (2009). This data set consist of 144 quarterly time series of nominal and real vari-
ables for the US ranging from 1959:Q1 to 2006:Q4. Since not all variables are available
for the whole period, we end up using their suggested balanced panel of standardized vari-
ables withT = 190,N = 109 which more or less correspond to the case whereT = 200,
N = 100 in Table 2, where no severe size distortions are found. We refer to Stock and
Watson (2009) for the details of the the data description and the standardization procedure
to achieve stationarity.

Since the estimated numbers of factors using various Bai and Ng’s (2002) information
criteria range from 3 to 6, we implement the test for ¯r = 3,4,5 and 6. For the Sup- LM and
Wald tests, though other trimmings have been used, we report result usingΠ = [0.3,0.7]
since beingN not too large it is preferable to use longer subsamples to compute the max-
ima. It corresponds to the time period ranging from 1973Q3 to 1992Q3 which includes
several relevant events like, e.g., the oil price shocks (1973, 1979) and the beginning of
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great moderation period (1984). The graphs displayed in Figure 3 are the series of LM and
Wald tests for different values of ¯r, with the horizontal lines representing the 5% critical
values of the Sup-type test.

When compared to the critical values of theχ2 distributions, the LM and the Wald tests
reject the null of no big breaks (i.e., exceeds the lower horizontal line) for ¯r = 4,5,6 when
the break date is assumed to be known at 1984 in agreement with the results in BE (2010).
Stock and Watson (2009) get similar conclusions about the existence of breaks around the
early 1980s. However, one important implication of our results is that the breaks should
be interpreted as being big and thus should not be neglected in subsequent forecasting
practices with these factors.

As for the case when the break date is not assumed to be a priori known, we find that,
while the Sup-LM test cannot reject the null for all values of ¯r, the Sup-Wald test rejects
the null when ¯r = 5,6 (i.e., exceeds the upper horizontal line). The estimate of the break
date provided by the last test is around 1979 (second oil price shock), rather than 1984
which, as mentioned before, is the only date considered by BE (2010) as a potential break
date in their empirical application using the same dataset. Using Bai and Ng’s (2002)ICp2
criterion (the one that chooses ¯r = 6) separately for each the two subsamples pre and post-
1979 we cannot find evidence that the chosen number of factors is smaller that 6. Thus,
following our results in subsection 4.4, we interpret the break as stemming from the factor
loadings rather than from an abrupt change in the variance of the factors.

A second empirical application relies on another standardized dataset use by Stock
and Watson (2003). It consists of 240 monthly macro series (N = 240) from 11 European
countries from 1982M1 to 1997M8 (T = 188) and again we refer to the original paper
for the details of the standardization of this panel. SinceN is quite large in this case, we
report results for the trimmingΠ = [0.15,0.85] which spans the period from 1984M12
to 1995M6, during which the Maastricht Treaty was signed and the European Union was
created. The results of the LM and Wald tests are shown in Figure 4 with the 5% critical
values of the Sup-type test for ¯r = 3 to 6.

It is clear that, under the assumption of a known break date, comparison of the test
values to the 5% critical values of aχ2 distribution implies that we can easily reject the
null of no big break around 1994. However, in contrast to previous results for the U.S data
set, a similar comparison of the maxima of the LM and Wald tests to the critical values of
the Sup-type tests, indicates that no big breaks are present in this European data set during
the sample period at hand.

7 Conclusions

In this paper, we propose a simple two-step procedure to test for big structural breaks
in the factor loadings of large factor models that circumvents some limitations affecting
other available tests, like BE (2010). In particular, we derive the limiting distributions of
our test, while theirs remains unknown, and show that it has much better power properties
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when the choice of the number of factors is based upon Bai and Ng’s (2002) consistent
information criteria. We also compare our tests to those developed in independent work by
HI (2011, unpublished) which are closely related to ours but differ in their implementation.
We claim that our regression-based tests are simpler than theirs and that, though we use
less information in exchange for simplicity, the one used in our approach is combined in a
more efficient way so that in general the power of both testing approaches is similar. There
is however an rather implausible DGP where our LM test may be inconsistent. Yet, for this
very particular case, the power our Wald test and HI’s tests is similar. We also show that for
general cases our Wald test has better powers in very small samples (N < 100,T < 100).

Our method can be easily implemented in practice by means of PCA when either the
break date is considered to be known or unknown, and can be adapted to a sequential pro-
cedure when the number of factors might not be correctly chosen in finite samples. Lastly,
and foremost, our testing procedure is useful to avoid serious forecasting/estimation prob-
lems in standard econometric practices with factors, like FAR and FAVAR models, when
the factor loadings are subject to big breaks and the number of factors is a priori deter-
mined (as is conventional in several macroeconomic and financial applications).

In the second step of our testing approach, a Sup-type test is used to detect a break of
the parameters in that regression when the break date is assumed to be unknown. As the
simulations show, this test does not perform very well especially whenT is not too large
(T < 200). As other studies on the size of sup-type tests suggest, bootstrap can improve
the finite sample performance of the test compared to the tabulated asymptotic critical
values of Andrews (1993). It is high in our research agenda to explore this possibility.

Further research is also needed if we were to allow for multiple breaks. As BE (2010)
point out, sequential estimation, like in Bai and Perron (1998), or an efficient search pro-
cedure, like in Bai and Perron (2003), for locating the candidate break dates may be em-
ployed, an issue which remains high in our research agenda.

Finally, though we have outlined a simple testing procedure to identify whether breaks
stem from loadings or the volatility of the factors, we plan to derive other alternative
tests based on the rank of the covariance matrix of the estimated factors using different
subsamples which can also be extended to test for other sources of parameter instability,
like e.g., the appearance of new factors or abrupt changes in the DGP of the idiosyncratic
errors.
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Appendix

A.1: Proof of Propositions 1 and 2

The proof proceeds by showing that the errors, factors and loadings in model (6) satisfy Assump-
tions A to D of Bai and Ng (2002). Then, once these results are proven, Propositions 1 and 2
just follow immediately from application of Theorems 1 and 2 of Bai and Ng (2002). Define
F∗

t = [F ′
t G1′

t ]
′, εt = HGt

2+et , andΓ = [A Λ]. The proofs of Lemma 1 to Lemma 8 are simi-
lar to those in Bai and Ng (2002). To save space and avoid repetition, we put them in our online
appendix (http://www.eco.uc3m.es/ jgonzalo/WP1.html).

Lemma 1. E||F∗
t ||4 < ∞ and T−1∑T

t=1F∗
t F∗′

t → Σ∗
F as T→ ∞ for some positive matrixΣ∗

F .

Lemma 2. E||Γi||4 < ∞, and N−1Γ′Γ → ΣΓ as N→ ∞ for some positive definite matrixΣΓ.

The following lemmae involve the new errorsεt . Let M andM∗ denote some positive con-
stants.

Lemma 3. E(εit ) = 0, E|εit |8 ≤ M∗.

Lemma 4. E(ε ′
sεt/N)=E(N−1∑N

i=1 εisεit )= γ∗N(s, t), |γ∗N(s,s)| ≤M∗ for all s, and∑T
s=1γ∗N(s, t)2 ≤

M∗ for all t and T.

Lemma 5. E(εit ε jt ) = τ∗
i j ,t with |τ∗

i j ,t | ≤ |τ∗
i j | for someτ∗

i j and for all t; and N−1∑N
i=1 ∑N

j=1 |τ∗
i j | ≤

M∗.

Lemma 6. E(εit ε js) = τ∗
i j ,ts and(NT)−1∑N

i=1∑N
j=1∑T

t=1∑T
s=1 |τ∗

i j ,ts| ≤ M∗.

Lemma 7. For every(t,s), E|N−1/2∑N
i=1[εisεit −E(εisεit )]|4 ≤ M∗.

Lemma 8. E
(

1
N ∑N

i=1

∥∥∥ 1√
T ∑T

t=1F∗
t εit

∥∥∥
2)

≤ M∗.

As mentioned before, once it has been shown that the new factors:F∗
t , the new loadings:Γ and

the new errors:εt all satisfy the necessary conditions of Bai and Ng (2002), Propositions 1 and 2
just follow directly from their Theorems 1 and 2, withr replaced byr +k1 andFt replaced byF∗

t .

A.2: Proof of Theorem 1

We only derive the limiting distributions for the two versions of the LM test, since the proofs for
the Wald tests are very similar. LetF̂t define ther ×1 vector of estimated factors. Under the null:
k1 = 0, when ¯r = r we have

F̂t = DFt +op(1).

Let D(i·) denote theith row of D, andD(· j) denote thejth column ofD. DefineF̂t = DFt , and
F̂kt = D(k·)×Ft as thekth element ofF̂t . Let F̂1t be the first element of̂Ft , andF̂−1t = [F̂2t · · · F̂rt ],
while F̂1t andF̂−1t can be defined in the same way. Note thatF̂t depends onN andT because
D = (F̂F/T)(A′A/N) (see Bai and Ng, 2002). For simplicity, letTπ denote[Tπ].
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Note that underH0, we allow for the existence of small breaks, so that the model can be written
as Xit = AiFt + eit +ηiG2

t . However, sinceηiG2
t is Op(1/

√
NT) by Assumption 1, we can use

similar methods as in Appendix A.1 to show that an error term of this order can be ignored and
that the asymptotic properties ofF̂t will not be affected (See Remark 5 of Bai, 2009). Therefore,
for simplicity in the presentation below, we eliminate the last term and consider instead the model
Xit = AiFt +eit in the following lemmae (9 to 13) required to prove Lemma 14 which is the key one
in the proof of Theorem 1.

Lemma 9.

sup
π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

(F̂t − F̂t)F
′
t

∥∥∥= Op(δ−2
N,T).

Proof. The proof is similar to Lemma B.2 of Bai (2003). For details see our online appendix.

Lemma 10.

sup
π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

∥∥∥= Op(δ−2
N,T).

Proof. Note that:

1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

=
1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

(DFt)(F
′

t D′)

=
1
T

Tπ

∑
t=1

F̂t(F̂
′
t −F ′

t D′)+
1
T

Tπ

∑
t=1

(F̂t −DFt)(F
′

t D′)

=
1
T

Tπ

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′+

1
T

D
Tπ

∑
t=1

Ft(F̂t −DFt)
′+

1
T

Tπ

∑
t=1

(F̂t −DFt)(F
′
t D′).

Thus,

sup
π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

∥∥∥

≤ sup
π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′
∥∥∥+2‖D‖ sup

π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

(F̂t −DFt)F
′
t

∥∥∥

≤ 1
T

T

∑
t=1

∥∥F̂t −DFt

∥∥2
+2‖D‖ sup

π∈[0,1]

∥∥∥ 1
T

Tπ

∑
t=1

(F̂t −DFt)F
′
t

∥∥∥

since 1
T ∑T

t=1

∥∥F̂t −DFt
∥∥2

= Op(δ−2
N,T) and supπ∈[0,1]

∥∥∥ 1
T ∑Tπ

t=1(F̂t −DFt)F ′
t

∥∥∥ is Op(δ−2
N,T) by Lemma

9, the proof is complete.

The next two lemmae follow from Lemma 10 and Assumption 6:
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Lemma 11.

sup
π∈[0,1]

∥∥∥ 1√
T

Tπ

∑
t=1

F̂−1t F̂1t −
1√
T

Tπ

∑
t=1

F̂−1tF̂1t

∥∥∥= op(1).

Proof. See Lemma 10 and Assumption 6.

Lemma 12. ∥∥∥ 1√
T

T

∑
t=1

F̂−1t F̂
′
1t

∥∥∥= op(1).

Proof. By construction we have1T ∑T
t=1 F̂−1t F̂ ′

1t = 0, and then the result follows from Lemma 11.

Let⇒ denoteweak convergence, then:

Lemma 13.
1√
T

Tπ

∑
t=1

(
F−1tF1t −E(F−1tF1t)

)
⇒ S1/2

Wr−1(π)

for π ∈ [0,1], whereWr−1(·) is a r−1 vector of independent Brownian motions on[0,1].

Proof. The proof is a standard application of Functional CLT. For details see our online appendix.

Lemma 14.
1√
T

Tπ

∑
t=1

F̂−1t F̂1t ⇒ S1/2
B

0
r−1(π)

for π ∈ [0,1], where the processB0
r−1(π) = Wr−1(π)− πWr−1(1) indexed byπ is a vector of

Brownian Bridge on[0,1].

Proof. If we show that

1√
T

Tπ

∑
t=1

[
F−1tF1t −T−1

T

∑
s=1

F−1sF1s

]
⇒ S1/2

B
0
r−1(π) (A.5)

for π ∈ [0,1] and

sup
π∈[0,1]

∥∥∥∥
1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

Tπ

∑
t=1

[
F−1tF1t −T−1

T

∑
s=1

F−1sF1s

]∥∥∥∥= op(1), (A.6)

then the result follows from Lemma 11.
First note that

1√
T

Tπ

∑
t=1

[
F−1tF1t −T−1

T

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(
F−1tF1t −E(F−1tF1t)

)
+

1
T

Tπ

∑
t=1

(
1√
T

T

∑
s=1

(
F−1sF1s−E(F−1sF1s)

))
,

hence A.5 can be verified by applying Lemma 13.
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To prove A.6, we first defineD−1 as the second to last rows ofD, andD1 as the first row ofD.
Then we have

F̂−1tF̂1t = D−1FtF
′

t D′
1

and
F−1tF1t = D∗

−1FtF
′
t D∗′

1 .

It follows that:

1√
T

Tπ

∑
t=1

(
F̂−1tF̂1t −F−1tF1t

)

=
1√
T

Tπ

∑
t=1

(
D−1FtF

′
t D′

1−D−1FtF
′
t D∗

1+D−1FtF
′
t D∗

1−D∗
−1FtF

′
t D∗

1

)

= D−1

(
1√
T

Tπ

∑
t=1

FtF
′

t

)
(
D′

1−D∗′
1

)
+
(
D−1−D∗

−1

)
(

1√
T

Tπ

∑
t=1

FtF
′
t

)
D∗′

1 .

Next, defineF−1tF1t =
1
T ∑T

s=1F−1sF1s, andF−1tF1t =
1
T ∑T

s=1F−1sF1s, then:

1√
T

Tπ

∑
t=1

(
T−1

s

∑
s=1

F−1sF1s

)

= D∗
−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D∗′

1

= D∗
−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D∗′

1 −D−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D∗′

1 +D−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D∗′

1

−D−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D′

1+D−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
D′

1

=
(
D∗
−1−D−1

)
(

1√
T

Tπ

∑
t=1

F−1tF1t

)
D∗′

1 +D−1

(
1√
T

Tπ

∑
t=1

F−1tF1t

)
(
D∗′

1 −D′
1

)
+

1√
T

Tπ

∑
t=1

( 1
T

T

∑
s=1

F̂−1sF̂1s

)
.

Combining the above results gives:

1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

Tπ

∑
t=1

[
F−1tF1t −T−1

T

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(
F̂−1tF̂1t −F−1tF1t

)
+

1√
T

Tπ

∑
t=1

(
T−1

T

∑
s=1

F−1sF1s

)

= D−1

(
1√
T

Tπ

∑
t=1

(
FtF

′
t −F−1tF1t

)
)
(
D′

1−D∗′
1

)
+
(
D−1−D∗

−1

)
(

1√
T

Tπ

∑
t=1

(
FtF

′
t −F−1tF1t

)
)

D∗′
1

+
1√
T

Tπ

∑
t=1

( 1
T

T

∑
s=1

F̂−1sF̂1s

)
.

Following the similar arguments of Lemma 13, we can prove that

sup
π∈[0,1]

∥∥∥ 1√
T

Tπ

∑
t=1

(
FtF

′
t −F−1tF1t

)∥∥∥= Op(1).
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Moreover, it is easy to check that‖D‖ = Op(1) and ‖D−D∗‖ = op(1) (See Bai 2003). Finally,∥∥∥ 1√
T ∑T

s=1F̂−1sF̂1s

∥∥∥ is op(1) by Lemma 12. Then A.6 has been shown and the proof is complete.

Theorem 1:

Proof. The results for LM and Sup-LM tests follow from Assumption 9, Lemma 14, and Continu-
ous Mapping Theorem.

For the Wald and Sup-Wald tests, notice that:

√
T
(
ĉ1(π)− ĉ2(π)

)
=
(
1/T

τ

∑
t=1

F̂−1t F̂
′
−1t

)−1(
1/
√

T
τ

∑
t=1

F̂−1tF̂1t
)
−
(
1/T

T

∑
t=τ+1

F̂−1t F̂
′
−1t

)−1(
1/
√

T
T

∑
t=τ+1

F̂−1t F̂1t
)

=

[
(
1/T

τ

∑
t=1

F̂−1t F̂
′
−1t

)−1
+
(
I −1/T

τ

∑
t=1

F̂−1t F̂
′
−1t

)−1

]
(
1/
√

T
τ

∑
t=1

F̂−1t F̂1t
)
.

By Lemma 10 and thatD−D∗ = op(1), we have:

1/T
τ

∑
t=1

F̂−1t F̂
′
−1t = π

1
τ

τ

∑
t=1

F̂−1tF̂
′
−1t = π

1
τ

τ

∑
t=1

F−1tF
′
−1t +op(1). (A.7)

whenτ = T (π = τ/T = 1), this implies

Ir−1 = 1/T
T

∑
t=1

F̂−1t F̂
′
−1t =

1
T

T

∑
t=1

F−1tF
′
−1t +op(1).

By LLN we haveE(F−1tF
′
−1t) = Ir−1. Applying LLN again to A.7 gives:

1/T
τ

∑
t=1

F̂−1t F̂
′
−1t

p→ πIr−1

asN andT go to infinity. It then follows from Lemma 14 that:

√
T
(
ĉ1(π)− ĉ2(π)

)
⇒ S1/2B0

r−1(π)
π(1−π)

and the limit distributions of the Sup-Wald and Wald tests follow easily.

A.3: Consistent Estimator of S

We now discuss the consistent estimator ofSusing the HAC estimator of Newey and West (1987).

Recall thatS= limVar
(

1√
T ∑T

t=1F−1tFit

)
.

Notice thatE(F−1tF1t)= 0, because1T ∑T
t=1F−1tF1t =

1
T ∑T

t=1 F̂−1t F̂1t +op(1), and 1
T ∑T

t=1F−1tF1t →
E(F−1tF1t) by Assumption 7 and1T ∑T

t=1 F̂−1tF̂1t = 0.
First, we define the infeasible estimator ofS:

Ŝ(F ) = Γ̂0(F )+
m

∑
j=1

w( j,m)[Γ̂ j(F )+ Γ̂ j(F )′]
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wherem= Op(T
1
5 ), w( j,m) = 1− j

m+1 is the Bartlett kernel, and

Γ̂ j(F ) =
1
T

T

∑
t= j+1

F−1tF1tF1t− jF
′
−1t− j .

Since the above estimator is a HAC, it is natural to make the following assumption:

Assumption 11.
∥∥Ŝ(F )−S

∥∥= op(1).

Next we consider a feasible estimator ofSwhereFt is replaced byF̂t :

Ŝ(F̂) = Γ̂0(F̂)+
m

∑
j=1

w( j,m)[Γ̂ j(F̂)+ Γ̂ j(F̂)′]

where

Γ̂ j(F̂) =
1
T

T

∑
t= j+1

F̂−1t F̂1t F̂1t− jF̂
′
−1t− j .

If we further assume:

Assumption 12.
∥∥D∗−D

∥∥= op(T− 1
5 ).

then we have the following results:

Proposition 3. Assume that Assumptions 1 to 12 hold, under the null H0 : k1 = 0, we have
∥∥Ŝ(F̂)−S

∥∥= op(1).

Proof. Given Assumption 10, it suffices to show that
∥∥Ŝ(F̂)− Ŝ(F )

∥∥ = op(1).

It is easy to see that:
∥∥Ŝ(F̂)− Ŝ(F )

∥∥ ≤ 2
m

∑
j=0

∥∥Γ̂ j(F̂)− Γ̂ j(F )
∥∥,

and
∥∥Γ̂ j(F̂)− Γ̂ j(F )

∥∥

≤ 1
T

T

∑
t=1

∥∥∥F̂−1tF̂1t F̂1t− j F̂
′
−1t− j −F−1tF1tF1t− jF

′
−1t− j

∥∥∥

= Op(
∥∥F̂t −Ft

∥∥)
= Op(δ−1

N,T)+Op(
∥∥D∗−D

∥∥).
Notice that the result in the last line follows from the fact that

∥∥F̂t −Ft
∥∥≤

∥∥F̂t −DFt
∥∥+

∥∥DFt −D∗Ft
∥∥

and
∥∥F̂t −DFt

∥∥= Op(δ−1
N,T).

Finally we have
∥∥Ŝ(F̂)− Ŝ(F )

∥∥ = Op(T
1
5 δ−1

N,T)+Op(
∥∥D∗−D

∥∥)Op(T
1
5 ) = op(1)

by Assumptions 6 and 11.
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Table 1: Actual Size of the Nominal 5% Size Tests for DifferentSample Sizes and Differ-
ent Choices of the Number of Factors (r) in a Factor Model withr = 3.

N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 5.0 1.0 5.9 4.8 2.3 0.2 4.2 6.7 0.5 0.2 1.3 11.6
100 150 5.0 1.9 4.9 3.1 3.5 0.7 3.7 4.8 1.1 0.3 1.9 7.0
100 200 5.7 2.7 5.0 4.0 4.9 1.8 4.0 3.5 3.0 0.5 2.9 3.9
100 250 5.3 3.2 5.3 3.9 4.4 1.8 4.7 3.2 2.3 0.9 3.4 3.1
100 300 6.2 4.5 6.7 4.0 5.3 2.0 5.1 3.4 3.8 1.1 4.7 3.9

150 100 5.3 1.2 5.9 5.1 2.6 0.2 4.0 7.9 0.8 0.2 2.3 12.9
150 150 5.9 1.8 5.2 4.0 2.9 0.5 3.4 4.0 1.3 0.3 2.7 6.1
150 200 5.5 2.6 6.2 4.5 3.5 1.2 5.1 3.4 2.3 0.9 3.0 4.3
150 250 6.0 2.9 6.9 3.8 3.5 1.6 5.7 3.1 3.2 0.5 3.6 4.7
150 300 5.8 3.7 6.3 4.4 3.9 2.5 5.1 4.0 3.5 1.3 4.0 3.7

200 100 4.6 1.1 5.4 5.0 2.3 0.1 3.0 8.6 0.4 0.4 1.5 15.6
200 150 4.7 2.3 5.6 3.2 2.8 0.2 3.7 4.3 1.2 0.1 2.7 5.6
200 200 5.4 3.0 5.1 2.9 4.0 1.6 3.4 2.5 2.6 1.3 3.2 3.5
200 250 6.2 3.7 7.0 4.0 3.8 2.0 6.8 4.1 2.4 1.1 4.1 5.2
200 300 5.3 3.1 5.5 4.6 3.2 1.5 3.5 4.0 3.4 1.3 2.6 4.5

250 100 5.2 0.8 7.4 5.1 2.1 0.4 4.5 7.0 0.6 0.2 3.5 12.9
250 150 4.1 2.5 5.7 3.6 2.9 0.5 3.9 4.2 1.6 0.0 2.4 6.4
250 200 5.3 2.6 6.5 4.9 3.5 0.8 4.6 5.0 2.9 0.3 3.4 5.2
250 250 5.3 3.1 6.2 4.3 4.7 1.8 5.6 3.1 4.0 0.7 3.5 3.6
250 300 5.5 4.0 5.1 3.7 4.3 1.5 4.0 3.3 3.4 1.4 2.9 3.7

300 100 4.7 0.6 5.2 5.4 1.5 0.2 3.4 8.5 0.3 0.3 2.9 14.0
300 150 4.6 1.8 6.4 5.4 2.9 0.8 4.8 4.7 1.7 0.5 2.8 7.0
300 200 3.7 2.6 7.0 4.0 3.2 0.8 6.5 4.1 1.7 0.5 4.2 5.5
300 250 5.9 3.5 6.3 4.1 4.8 1.7 5.2 3.4 2.7 1.0 3.3 3.5
300 300 5.7 4.2 4.2 4.1 6.2 3.2 4.4 3.4 3.9 1.4 2.8 3.2

1000 1000 5.7 6.1 7.1 5.9 5.8 4.2 6.2 4.9 6.5 4.7 5.8 3.5

Notes: The DGP isXit = ∑3
k=1 αikFkt +eit whereFkt = φkFk,t−1+ vkt; αik,eit andvkt are i.i.d standard nor-

mal variables, andφ1 = 0.8, φ2 = 0.5, φ3 = 0.2. The number of replications is 1000. The reported sizes

correspond to the LM and Wald tests and their Sup-type versions. The potential breaking dateτ = T/2 is

considered to be a priori known for the LM/Wald tests whileΠ is chosen as[0.15,0.85] for the Sup-type

versions. The covariance matrixS is estimated using the HAC estimator of Newey and West (1987).
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Table 2: Power of Nominal 5% Size Tests for Different Sample Sizes and Different
Choices of the Number of Factors (¯r) in a Factor Model withr = 2 and Shifts in the
Factor Loadings.

N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald

100 100 6.3 1.8 8.1 5.4 77.9 1.8 100 98.3 41.7 0.5 100 97.3
100 150 8.9 2.5 10.0 4.8 95.8 24.0 100 100 88.8 2.8 100 99.9
100 200 8.9 4.1 9.3 5.4 97.6 72.9 92.0 92.0 95.5 39.6 91.8 92.5
100 250 12.0 5.3 12.4 6.5 99.1 98.0 97.4 97.4 99.0 77.9 97.4 97.4
100 300 13.0 6.5 11.6 6.0 99.6 98.0 83.6 83.6 99.4 94.1 83.5 83.7

150 100 6.1 2.2 7.8 5.9 77.9 1.4 99.7 99.5 41.6 0.6 99.8 99.0
150 150 7.5 2.2 8.3 5.0 95.4 24.5 100 100 88.5 2.2 100 100
150 200 8.8 4.1 9.8 5.4 98.8 76.5 100 100 97.7 40.2 100 100
150 250 9.7 4.8 10.3 6.0 99.4 94.4 99.0 99.1 98.5 79.1 99.0 99.1
150 300 11.4 6.3 10.8 7.1 99.7 98.6 90.5 91.1 99.7 94.5 90.7 91.1

200 100 6.4 1.5 7.6 4.6 79.4 2.3 100 97.7 42.9 0.7 100 99.2
200 150 8.5 3.4 9.5 6.3 97.0 24.1 100 100 89.0 3.0 100 100
200 200 8.6 3.5 9.3 4.5 99.0 77.6 100 100 98.0 38.8 100 100
200 250 11.5 4.5 12.3 5.7 100 96.8 100 100 100 82.7 100 100
200 300 11.2 5.4 12.6 6.4 99.8 98.8 99.9 99.9 99.7 95.1 99.9 99.9

250 100 5.1 1.4 6.7 4.5 80.4 1.8 100 99.7 45.2 1.0 100 99.2
250 150 6.7 2.4 7.8 5.0 97.0 24.5 99.9 100 90.7 3.2 100 100
250 200 7.2 3.4 7.8 5.0 99.2 78.9 100 100 98.4 40.9 100 100
250 250 10.5 5.5 11.3 5.8 99.8 95.6 100 100 99.7 82.4 100 100
250 300 11.5 5.7 12.0 7.6 99.9 99.2 100 100 99.9 95.1 100 100

300 100 6.0 1.6 7.0 6.7 80.1 1.2 100 99.1 45.4 0.3 100 98.9
300 150 8.6 2.1 9.9 4.7 97.3 24.9 100 100 91.5 3.4 100 100
300 200 8.6 4.3 9.2 6.8 99.3 79.0 100 100 98.4 43.3 100 100
300 250 11.4 4.4 11.9 5.8 99.8 94.3 100 100 99.5 82.6 100 100
300 300 11.3 5.9 12.1 7.7 99.8 99.0 100 100 99.8 96.3 100 100

Notes: The DGP isXit =∑2
k=1 αikFkt+eit whereFkt = φkFk,t−1+vkt; αik,eit , andvkt are i.i.d standard normal

variables, andφ1 = 0.8, φ2 = 0.2. The number of replications is 1000. The shifts in the means of the factor

loadings are 0.4 and 0.2 atτ = T/2. The other characteristics of the Monte Carlo experiment are as in Table

1.
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Table 3: Size and Power Comparison of BE and LM Tests at Nominal5% Size for Differ-
ent Sample Sizes and Different Choices of ¯r in a Factor Model withr = 2 and No Shift or
One Shift in the Factor Loadings.

N T no break, ¯r = 2 1 break, ¯r = 2 1 break, ¯r = 3

BE LM BE LM BE LM

100 100 6.0 3.9 100 5.6 21.9 96.8
100 150 5.9 5.2 100 7.2 18.2 100
100 200 5.2 4.3 100 6.2 26.0 89.8
100 250 5.3 4.8 100 8.7 17.9 97.7
100 300 5.7 4.3 100 7.4 30.2 83.9

150 100 6.4 4.3 100 5.8 18.3 94.6
150 150 5.9 5.7 100 6.6 16.2 100
150 200 5.6 4.3 100 6.2 12.5 100
150 250 5.5 4.5 100 5.7 14.9 98.3
150 300 4.9 4.0 100 5.6 20.6 89.7

200 100 5.5 4.1 100 4.1 20.0 95.8
200 150 5.4 4.8 100 6.6 15.8 100
200 200 7.0 4.5 100 6.3 14.0 100
200 250 6.5 4.7 100 7.5 12.6 100
200 300 5.0 4.7 100 7.8 12.0 99.7

250 100 6.8 3.9 100 4.2 18.8 97.0
250 150 5.4 5.3 100 5.9 14.9 100
250 200 4.5 4.6 100 6.1 11.3 100
250 250 5.1 4.2 100 6.6 10.9 100
250 300 6.6 4.9 100 8.3 7.9 100
300 100 7.3 4.7 100 5.4 19.7 96.3
300 150 7.0 3.6 100 6.1 14.4 100
300 200 5.9 3.4 100 6.0 13.6 100
300 250 5.9 5.4 100 6.7 12.0 100
300 300 5.7 6.1 100 7.0 10.0 100

Notes: The DGP is as in Table 2. The shift in the mean of the factor loadings is either zero (no break) or 0.1

(break).
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Table 4: DGP:Xt = λ1 f1t +λ2 f2t +et ,λ1 =
√

0.8[L′
1,L

′
1]
′,Λ2 =

√
1.2[L′

2,−L′
2]
′, whereL1

andL2 areN/2×1 matrices with i.i.d normal elements,f1t = ft ∗1(t < τ), f2t = ft ∗1(t ≥
τ), ft = 0.8 ft−1+ut , utandeit ∼ i.i.d N(0,1). r̄ = 2.

N T LM Sup LM Wald Sup Wald log
(

Wald
WaldHI

)

100 100 54.0 39.3 99.5 100 7.20
100 150 58.0 48.7 99.5 100 7.14
100 200 61.3 52.2 99.4 100 7.07
100 250 61.0 51.1 99.6 100 6.97
100 300 63.6 55.1 99.4 100 6.91

150 100 58.0 43.4 99.9 100 8.11
150 150 61.1 50.5 99.6 100 7.96
150 200 61.0 52.5 100 100 7.79
150 250 64.7 57.6 99.7 100 7.77
150 300 62.7 53.9 99.9 100 7.75

200 100 56.5 42.0 99.9 100 8.64
200 150 59.5 49.9 100 100 8.50
200 200 64.0 57.5 99.9 100 8.42
200 250 63.6 54.7 100 100 8.30
200 300 62.8 55.2 100 100 8.28

250 100 56.2 41.9 99.6 100 9.04
250 150 59.7 49.4 99.8 100 8.94
250 200 63.3 53.9 99.7 100 8.82
250 250 64.4 57.0 99.9 100 8.81
250 300 65.0 59.1 99.8 100 8.77
300 100 55.9 42.1 99.8 100 9.46
300 150 57.7 48.0 99.8 100 9.27
300 200 60.6 50.2 99.5 100 9.23
300 250 64.4 56.2 99.7 100 9.19
300 300 64.6 57.0 99.9 100 9.17
500 500 67.4 61.8 100 100 10.03
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Figure 1: Comparisons of Wald tests.
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Figure 2: The MSEs of different forecasting methods (see Section 5.4).
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Figure 3: US data set. The LM test (dotted) and Wald test (solid) using the trimming
Π = [0.3,0.7], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values
(horizontal dotted lines) for the Sup-type Test.
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Figure 4: EU data set. The LM test (dotted) and Wald test (solid) using the trimming
Π = [0.15,0.85], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values
(horizontal dotted lines) for the Sup-type Test.
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