
                        
 
 
 
 
 

Hochschule Ravensburg-Weingarten 
 

Master thesis 
 

 
Modelling the wheels of the Robot 

MAX2D and surfacing 
 
 

 

Sara Yeni González Endrinal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First Supervisor in HS: Prof. Andreas Paczynski         
Second Supervisor in HS: Prof. Ralph Stetter 
 
Supervisor in UC3M: Prof. Beatriz López Boada  
 
Duration time: Sep.2009 - Jan.2010 



                   
 

ACKNOWLEDGEMENTS 2

Acknowledgements 

I send many thanks to my professors in Hochschule Ravensburg-
Weingarten, Prof. Andreas Paczynski and Prof. Ralph Stetter. Thank you for 
giving me the opportunity to be part of this project and for facilitating my 
integration in the department.  

Thanks also to Beatriz López Boada, my adviser in the Universidad 
Carlos Tercero de Madrid. Without you this experience would have never been 
possible. 

My gratitude also goes to Sasha Tarbiat, who helped me in the writing of 
this report. Thank you for your patient and your time.  

I would like to express my appreciation to my friend Miguel Angel Gasca 
Escorial. Thanks for your advices, your help and your kindness.  

The most special thanks go to the four most important people in my life: 
my parents, my sister Virginia and my brother David. They have always given 
me their unconditional support and advice during these last hard years of 
study. Os quiero. 
 



                   
 

ABSTRACT 3

Abstract 

Energy is a scalar physical quantity that describes the amount of work that can 
be performed by a force, an attribute of objects and systems that is subject to a 
conservation law. Different forms of energy include kinetic, potential, thermal, 
gravitational, sound, light, elastic, and electromagnetic energy. The forms of energy 
are often named after a related force. 

Any form of energy can be transformed into another form, but the total energy 
always remains the same. There is no absolute measure of energy, because energy 
is defined as the work that one system does (or can do) on another. Thus, only the 
transition of a system from one state into another can be defined and thus measured. 
Here we will work on mechanical energy manifest in many forms, but it can be 
broadly classified into elastic potential energy and kinetic energy which is a function 
of its movement and electric energy. 

Saving energy may result in increase of financial capital, environmental value, 
national security, personal security, and human comfort. Individuals and 
organizations that are direct consumers of energy may want to conserve energy in 
order to reduce energy costs and promote economic security. Industrial and 
commercial users may want to increase efficiency and thus maximize profit. 

In this report we can see the transformation of the energy in a Robot where the 
input Energy is an Electrical Energy, and the Robot transfers this energy to the 
Mechanical Energy. Following in this project we can see the wasted energy in the 
Robot during this transformation. Wasted energy in this Robot is mostly found on the 
mechanical devices especially on the wheels. Wheels are in contact with the ground 
and according to the weight and acceleration of the Robot we will find the friction 
forces that are wasting the energy. The goal of this project is to define the value of 
the wasted energy in different kinds of movements.  

To reach the goal of this thesis it is necessary to have a program to simulate 
the movement of the Robot by taking care of the affection of the mechanical forces. 
The program that is used in this project is Matlab. This program is one of the most 
powerful tools in simulation and calculation in engineering. For programming we will 
use the dimension of the Robot and the Pacejka parameters that are characteristic of 
the tire of the Robot. We will give the necessary parameters to the program and 
according to the movement, velocity, contact surface and etc, the Matlab Program will 
simulate the behaviour of the energies and the forces of the Robot and its tires. 
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Nomenclature 

ac  
C  
Crr 
Ee 
Ef 
Ek 
Ekr 
F 
Fc 
Ff 
Fz 
G 
hGC 
I 
Ixx, Ixy… 
m 
r 
R 
s 
v 
vM 
vo 

V 
 
α 
γ 
Δ 
μ 
ω 
Ω 
 
(x, y) 
(ξ, ζ) 
 
i 
‘, ‘’ 

Centrifugal acceleration [m/s2] 
Gravity centre  [m,m] 
Rotation friction coefficient 
Electrical energy  [J] 
Friction energy  [N] 
Kinetic energy  [J] 
Kinetic rotation energy  [J] 
Total force  [N] 
Centrifugal force  [N] 
Friction force  [N] 
Force in z direction  [kN] 
Gravity  [m/s2] 
Height of the gravity centre  [m] 
Current  [A] 
Inertial moment of the Robot when it is rotating in different axis  [kg·m2] 
Mass  [kg] 
Distance  [m] 
Radius of rotation  [m] 
Slope 
Linear velocity  [m/s] 
Linear velocity of the wheels from the mobile reference system  [m/s]  
Linear velocity of the gravity centre  [m/s] 
Voltage  [V] 
 
Drift angle [grad] 
Fall angle  [grad] 
Increase 
Friction coefficient 
Angular velocity around the gravity centre  [r.p.m.] 
Angular velocity around the mobile reference system  [r.p.m.] 
 
Point of the trajectory in global coordinate system 
Point of the trajectory in mobile coordinate system 
 
In each point 
First and second derivatives 
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1. Introduction 

Energy is a scarce commodity. With the decline of non-renewable energy 
sources humans have tried to conserve non-renewable energy sources and are also 
working on improving the infrastructures and devices for a better use of the energy.  

On the other hand, in the industry, machines and the use of Robots are 
helping and improving production, in addition to saving the time, space and human 
work. At first the advancement in this technology was incompatible with necessary 
energy saving. This energy saving is interesting not only because of the energetic 
problem, but also because the more energy that is using, the price that’s pay for it 
increases. In other words, we can see this energy saving problem as a monetary 
travel. 

Is tested out that in wheeled vehicles the most wasted energy is dissipated 
through the friction between the wheels and ground. The rest of the wasted energy is 
dissipated for warming the electronic devices, as friction in the brakes and etc, and is 
really difficult to manage. As a result in this report we will consider the energy saving 
problem as a friction problem between the wheels and ground.  

This report is focused on one of these industrial Robots, in particular the new 
MAX2D (figure 1.1). This is a new special Robot with a high dynamic chassis that 
enables high mobility and freedom in a 2D dimension. The principal benefit of this 
high dynamic chassis is the saving of manoeuvring spaces and the rotation of the 
Robot around itself.  

This MAX2D Robot has an input current of 3 A and an internal battery which 
assists the movement of the Robot when the wheels speed is high enough. This 
Robot controlled by the Matlab Program that allows us to introduce the angular 
velocity of the wheels besides the direction of the movement of each wheel. 
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Figure 1.1:MAX2D. 

What makes this Robot so special is that in each of its four wheels we have a 
separate motor and a brake. This allows the wheels to rotate independently of each 
other and it gives us the high freedom that was explained above. For the revolution of 
each wheel the brake needs to be open. With an active brake there can be no vertical 
revolution, therefore there is forward movement. However when the brake is open the 
wheel rotates around the attachment point of the Robot and the Robot remains 
stationary. In figure 1.2 we can see one detail of MAX2D wheel. Figure 1.3 is an 
example of how the wheels are positioned at one of the movements, concretely in a 
rotation movement around itself. 

 
Figure 1.2:Detail of the wheels of MAX2D. 
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Figure 1.3:Movement of the wheels. 

As we can see in figure 1.3 the wheels are not rigid, so if the Robot is in a 
curve motion the tires of the wheels are deforming. This tire deformation is caused by 
forces that appear on the tire. Sometimes these forces are in the same direction as 
the friction forces, and sometimes these forces are in the opposite direction, hence 
forces that dissipate energy in the wheels are not only due to the weight but also due 
to the tire the force is supporting.   

To carry out the study of the friction forces, we have divided this project into 
two main blocks: 

1. In the first block we will study different trajectories. The objective is to 
determine theoretically how the wasted energy and the forces on the tires 
are. After finishing this study and comparison between the different 
obtained results, we will be able to determine in which point of the 
trajectories the forces are higher and in which points they are lower. 

2. The second block is the practical part. With the Robot moving in the 
straight line and also applying a pure rotation of the Robot around itself we 
will compare the theoretical results with the experimental measures that we 
would take. The objective is to determine the percentage of energy that is 
wasted through the friction between the wheels and the ground.  

For all of the parts that explained above, we will create some programs in 
Matlab that allow us to vary the different parameters and functions.  
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The application of this study is the energy saving of the Robot MAX2D. Friction 
forces and energy wasted depend on the Robot acceleration at each point of the 
trajectory. In future investigations, this report could be used to determine the optimum 
and less expensive trajectory between two points. 
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2. Literature review 

2.1. Rotation Centre 

Rotation centre can be defined as the point in the plane around which all the 
other points of the figure are rotating. This point is stationary at all times. 

To determine the rotation centre we have to consider that all the points of the 
mobile body are rotating on it. Therefore the velocity of each point is perpendicular to 
the connection line between this point and the instant centre of rotation. In the figure 
2.1 centre of rotation is obtained geometrically from the velocity of two points of the 
mobile solid.  
 

                                      
Figure 2.1:Centre of rotation from two known velocities. 

In vehicles, wheels are rotating round the centre of rotation. If the directions of 
the velocities on each wheel are known, centre of rotation could be easily defined in a 
geometrical way and it is following the explanation that mentioned above. In the figure 
2.2 this centre of rotation is acquired just when the car is turning the front wheels.  
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Figure 2.2:Centre of rotation in a vehicle. 

However, in this report studies a four wheeled Robot with high freedom on 
each wheel that can rotate independently. The velocities of the wheels are not 
known, neither the angle of the wheels; nevertheless the trajectory of this vehicle is 
defined. In this case, the formulas 2.1 and 2.2 for radius of rotation and instant centre 
of rotation can be applied [3]: 

[2.1]  ( )
''
'1 2

32

y
yR +

=            

[2.2]  ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+

+
−=

''
'1,

''
'1',

22

y
yy

y
yyxyxC   

R: Radius of rotation [m]. 
y=y(x): trajectory that the Robot is following. 
C: Centre of rotation [m, m]. 

2.2. Curve motion 

To start with, we consider a circular movement with radius and fixed centre of 
rotation. The linear velocity of the body is known, so angular velocity is easily 
obtained: 

[2.3] 
R
v

=ω  

ω: angular velocity [rad/s]. 
v: linear velocity [m/s]. 
R: Instant radius of rotation [m]. 
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In curve motion an instant circular motion could be applied at each point. The 
instant centre of rotation and radius of rotation above should be fixed for each instant. 
On the other hand we can not forget that the distance between the gravity centre and 
the instant centre of rotation is not the same as the distance between another point of 
the body and the centre of rotation, consequently; the linear velocity is different in 
each point of the Robot.  

By simplifying the calculations we can find out a mobile reference system is 
located in the gravity centre of the Robot. The static reference system is considered 
at one point of the surroundings. According to applying solids kinematic on the Robot, 
the velocity of each point of the Robot in an instant is [3]: 

[2.4]  ioii Rv ×=Ω   

[2.5]  ( )iaioiMai Rvvv Ω×++=  

Ω: Angular velocity of the robot from its gravity centre [rad/s]. 
vo: Linear velocity of the gravity centre of the Robot from the global coordinate 

system [m/s]. 
R: Instant radius of rotation [m] 
va: Linear velocity in one point of the Robot from the global coordinate system 

[m/s]. 
vM: Linear velocity in one point of the Robot from the gravity centre of the 

Robot (mobile coordinate system) [m/s]. 

In a body that is moving in a curve motion there is also a centrifugal radial 
force. This centrifugal force is actuating in outward radial direction, and applying 
Newton’s second law [3] its module could be acquired by: 

[2.6]  cc amF ⋅=  

[2.7]  
R
vmFc

2

⋅=  

Fc: Centrifugal force [N]. 
m: Mass of the body [kg]. 
v: Linear velocity of the gravity centre of the body [m/s]. 
ac: Centrifugal acceleration [m/s2]. 
R: Radius of rotation [m]. 



                   
 

2. LITERATURE REVIEW 14

2.3. Friction forces 

Friction is defined as the resisting force between two solids in contact. There 
are two types of friction forces [4]: 

1. Static friction force: between solids that are not moving relative to each 
other.  

2. Dynamic friction: between solids that are moving relative to each other.  

[2.8] gmFf ⋅⋅= μ  

Ff: Friction force in slide motion [N]. 
μ: Slide friction coefficient. 
M: mass of the solid [kg]. 
g: gravity. g=9.81m/s2. 

Both of these frictions are for sliding movement. The wheels of the Robot in 
this project are not sliding wheels. Therefore these two friction forces do not have any 
effect on the tires of the Robot. The force that allows the wheel to roll is the rolling 
resistance. Its formula is similar than the dynamic and static friction forces, but the 
rolling resistance coefficient is much smaller than the coefficient for sliding friction 
forces.  

[2.9] gmCF rrf ⋅⋅=  

Ff: Friction force in roll motion [N]. 
Crr: Rolling resistance. 
m: mass of the solid [kg]. 
g: gravity. g=9.81m/s2. 

2.4. Tires 

The tire is the element of the wheel that is in contact with the ground. Its 
function is supporting the mass of the body, this mass generates a deformation on 
the tire. The contact between tire and ground is not just one point and it can be 
appreciated in figure 2.3.  
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Figure 2.3:Tire deformation. [2] 

As a result, supporting force is distributed in this contact surface and there are 
some forces acting on the tire: 

1. Lateral force. Is operating on the contact surface, perpendicular to the 
direction of movement. Its function is to change the direction of the 
wheel in curve motion.  

2. Slip angle is due to the lateral force and is defined by the angle between 
the longitudinal axis of the wheel and the direction of movement. 

3. Aligning moment. Aligns the wheel with the direction of the movement.  

4. Longitudinal force. Due to Newton’s second law there can not be 
acceleration (tangential acceleration in curve motion) without an applied 
force.  

These forces are depending on: 

1. Type of tire. 

2. Derive rigidity. 

3. Camber angle. Is the angle between the tire and the vertical plane 
(figure 2.4). Usually this angle is taken as zero. 
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Figure 2.4:Camber angle. [2] 

4.  Friction coefficient. 

5.  Supported mass for the wheel. 

6. Slip coefficient, can be defined as a comparison (in percentage) between 
the angular velocity of the wheel when the vehicle is moving and the 
angular velocity of the same wheel in free rolling. As we can see in 
figure 2.5, longitudinal force is increasing with the slip coefficient until 
maximum value is reached, the Normalized Traction Force then 
decreases slowly but remains at the Onset of spinning. 

 
Figure 2.5:Traction force versus slip angle. [2] 

7. Other factors like temperature and pressure of the wheel and speed of 
the vehicle, contact surfaces and etc. 
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There are some models that can give an approximation of the forces that are 
acting in the tire. Below there is a short description of three of them: brush model, 
finite element model and Pacejka formula. 
  

2.4.1. Brush model 

Since the tire is elastic, this model switches the contact area of the tire by a 
spring brush. There are two clear defined areas, the static area and the slide area as 
we can see in figure 2.6. Through some simplified formulas, this model allow us to get 
the longitudinal and transversal forces of the tire.  

 

 
Figure 2.6:Brush model. [2] 

 

2.4.2. Finite element method 

Is a computational method that solves the problem of force. It consists of 
dividing the tire in small easy geometrical shapes or elements and then the behaviour 
of each element with a finite number of parameters is studied. The behaviour of each 
element depends on the elements which are near to it. In figure 2.7 the finite 
elements grid of the tire is shown. 
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Figure 2.7:Discretized wheel by finite elements. [2] 

 

2.4.3. Pacejka formula 

This formula is known as and acts like a magic formula. It is estimation through 
equations and some experimental coefficients that are characteristic of the tire. 
Because the equations are easy, every simulation program can find the solution for 
the forces and the moment of the tire. The shape for these forces depends on the drift 
angle using Pacejka formulas which presented in figure 2.8. 

 
Figure 2.8:Forces and moments using the magic formula. [2] 
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If the tire is rotating fast enough (around º15º6 −=α ), there is a loss of 
adhesion in the contact surfaces and both the longitudinal and transversal forces are 
decreasing.  

Pacejka formula is a good estimation of the efforts of the tire. However it is 
only valid when longitudinal and transversal forces are acting in an independent way. 
Nevertheless, when longitudinal and transversal deformation forces are acting at the 
same time these forces need to be slightly modified by the combined efforts. 

COMBINED EFFORTS 

Combined efforts happen when deformation forces in longitudinal and radial 
direction are acting at the same time by using the friction circle that we can see in the 
figure 2.9. 

 The friction circle means that when both forces (longitudinal and transversal) 
are combined, the result can not exceed as a maximum value that is the radius of the 
friction circle.  
 

 
Figure 2.9:Friction circle. [2] 

One simple method to combine longitudinal and transversal force is the linear 
approximation [6]. To reach to the combined deformation forces we need to follow 
both steps below: 

1. Through Pacejka formula longitudinal and transversal deformation 
forces, Fx and Fy, are obtained. 
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2. Decreasing the transversal force until the vector (Fx, Fy) satisfies the 
equation 2.10 and do not exceed the radius in the friction circle. 

[2.10] 
2

0
0 1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

x

x
yy F

F
FF  

Fy: Combined transversal force. 
Fx: Combined longitudinal force. 
Fy0: Transversal force obtained through magic formula. 
Fx0: Maximum longitudinal force (D+Sv in Pacejka formula). 

This method gives priority to longitudinal forces instead transversal forces.  

2.4.4. Choosing the best model 

In the table 2.1 we can see a comparison between the tire’s models that were 
shortly explained above: 
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MODEL ADVANTAGES DISADVANTAGES 

Brush Model Simple High computational charge 

Finite element 
method 

Flexible. 
Personal for each 

tire. 

High computational charge. 
Difficult. 

Pacejka 

Standard model. 
Comun in 

automotion. 
Precise. 

Experimental tests. 
Not too many dates 

available. 

Table 2.1:Comparison for three different tire models. [2] 

Pacejka model has chosen because it is a standard model and easy to use to 
study the behaviour of the tire. The most important reason for this is that all the tire 
providers are using this method for testing their tires, therefore it is easier to obtain 
the needed parameters. Because it is complicated to programme the friction circle 
and it also takes a high computational charge, Pacejka simple model is used instead 
of complex model with combined efforts. Furthermore, the difference between this 
method and the simple Pacejka formula is not really significant.  

The Pacejka equations are summed in the table 2.2:  
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 PARAMETERS MAGIC FORMULA 

Transversa
l force 

30.1=C  
zz FaFaD 2

2
1 +=  

( )( )zFaaaBCD 5
1

43 tansin −=  

CD
BCDB =

 
87

2
6 aFaFaE zz ++=  

γ9aSh =  
( )γzzv FaFaS 11

2
10 +=  

BaB γ12−=Δ

( )( ) (( hh SB
B
ESE +++−= − ααφ 1tan1

 
( )( ) vy SBCDF += − φ1tansin  

Longitudin
al force 

65.1=C  
zz FbFbD 2

2
1 +=  

zFb
zz

e
FbFb

BCD
5

4
2

3 +
=

 

CD
BCDB =

 
87

2
6 bFbFbE zz ++=  

 

( ) ( )σσφ B
B
EE 1tan1 −+−=

 
( )( )φBCDFx

1tansin −=  

Aligning 
moment 

2812.2=C  
( )

z
zz F

rFcFcD ⋅+= 2
2

1

 
( ) ( )2

345 zz FcFccB ++=  
( ) ( )1287

2
6 1 ccFcFcE zz +⋅++=

γ9cSh =  
( )γzzv FcFcS 11

2
10 +=

( )
( )

( )( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

+

−+
−+=

−
h

h
h SB

SB
ESB

α

α
αφ

1tan
( ) vz SDM +⋅−= αφ coscos  

Table 2.2:Pacejka magic formula and its coefficients. [8] 
 
Fz: Vertical load in the tire [kN] 
Fx: Longitudinal deformation force [N]. 
Fy: Transversal deformation force [N]. 
Mz: Aligning moment [Nm]. 
ai, bi, ci: Pacejka coefficients.  
α: Slip angle [grad]. 
σ: Slip coefficient ratio.  
γ: Camber angle [grad]. 
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As can be seen in table 2.2 there are some unknown coefficients ( iii cba ,, ). 
These coefficients are characteristics of the tire and only the producer can give these 
parameters.  

2.5. Energy 

The final goal of the present study is the comparison between the energy that 
is given to the Robot and the energy that is wasted through the friction of the wheels. 
The Robot is receiving energy from an electronic power supply, so it is electric 
energy. This energy can be easily calculated by using the basics of electronics: 

[2.11]  IVEe ⋅=  

Ee: Electric energy [J]. 
V: Voltage [V]. 
I: Current [A]. 

On the other hand, the wheels are dissipating energy because of the friction 
forces and transversal forces in the tires (in curve motion). This energy is mechanical 
energy and can be founded by using formula 2.14. 

[2.12] drFE ⋅=  

[2.13] 
dt
drv =  

[2.14] αcos⋅⋅= vFE  

E: Displacement energy [J]. 
F: Applied force [N]. 
r: Distance [m]. 
v: Velocity of the body [m/s]. 
t: time [s]. 
α: Angle between the applied force and the displacement direction [rad]. 

Finally the Robot has kinetic energy because it is moving. This kinetic energy 
can be divided in translation kinetic energy and rotation kinetic energy (because of 
the rotation around its gravity centre). 
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[2.15] 2

2
1 vmEk ⋅=  

Ek: kinetic energy [J]. 
m: mass of the robot [kg]. 
v: velocity of the robot [m/s]. 

[2.16] ( )ωω
rr

IEkr 2
1

=  

Ekr: Rotation kinetic energy [J]. 
ω: Rotation velocity in vectorial form [rad/s]. 
I: Inertia matrix of the robot (3x3) [kg·m2]. 

The difference between the total energy and the friction and kinetic energy is 
the wasted energy in the components of the Robot (breaks, charging the battery, 
components efficiency…) 
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3. Procedure 

For the first step and before starting any calculation, the parameters of the 
trajectory should be defined. The figure 3.1 shows the Robot through the points a, b, 
c and d. The mobile reference system (ξ, ζ) is located at the centre of the mass of the 
Robot but the centre of rotation (x, y) has another reference system form each angle 
and we should measure these distances as well. In the figure 3.1 nomenclatures that 
will be used in the calculations and the programs can also be found. 

 
Figure 3.1:Robot geometry. 

Moreover, the dimensions of the Robot are needed and figure 3.2 
demonstrates a picture of the Robot with the dimensions that were measured. These 
parameters can be found at the table 3.1. 



                   
 

3. PROCEDURE 26

 
Figure 3.2:Robot MAX2D and its measures. 

 
VEH_B 0.5 M 
veh_h 0.69 m 
veh_gc 0.1259 m
wheel_h 0.1 m 

m 31 kg 
Table 3.1:Robot geometry. 

The parameter of wheel_h is the radius of the wheel and veh_gc is the height 
of the gravity centre of the Robot. It was obtained through the geometry of the Robot 
[3]: 

[3.1] kgmscreen 1=  

[3.2] 
∑
∑

=

i
i

i
ii

GC m

hm
h  

mi: mass each component of the robot [kg]. 
hi: Altitude of each component of the robot [m]. 

47 cm 

69 cm 

50 cm 

27,3 from 
grd/16 
inside 

24 cm 

14,2 cm 
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Considering that the mass of the Robot is divided between the screen and the 
electronic components (we assume as zero the mass of the top cover and the metal 
parts so as the mass of the wheels):  

[3.3] 
( )( )( ) ( )

( )total

totalscreenwheelplatformscreentotal
GC m

hmhhmm
h

⋅+−−
=  

[3.4] ( ) ( )( ) ( ) m
kg

mkgmkghGC 1259.0
31

3.271163.27130
=

⋅+−⋅−
=  

To reach to this point we can divide it to two main parts: 

1. Theoretical wasted energy in two different trajectories. Two trajectories 
would be studied at this first step. The first one will be y=x2 and the 
second one is y=x3. The wasted energy on the wheels and forces can 
be compared in both trajectories. For all of these a Matlab Program will 
be implemented (Appendix 11.1). 

2. Friction in MAX2D. At the second part of the study, different velocities 
will be studied in the trajectory y=x (movement on the straight line) and 
also in simple rotation of the Robot around its centre of the mass. Both 
theoretical results (using also the Matlab Program attached in Appendix 
11.1 and Appendix 11.2) will be compared with experimental measures. 

3.1. Theoretical wasted energy in two different 
trajectories 

3.1.1. Geometry 

The first step is defining the geometry and positioning of the different rotation 
centres, on each point of trajectory, radius of rotation, position of the wheels, direction 
of the velocities of the wheels and etc. 

Radius and centre of rotation will be obtained by applying the formulas 2.1 and 
2.2. Notice that if ( ) 0'' =xy  for any point of the trajectory (x, y); both formulas tend to 
be infinity. This means that at this point that we have a relative maximum, minimum 
or inflexion point, so the Robot is not rotating at this point. We consider ( )xy ''  is small 

enough when ( ) 610'' −<xy . For instance this value is multiplying by 10-6 and the 
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problem will be solved. Logically this is not an exact value and the obtained forces will 
have an error around 10-6 N, that is small enough to be an acceptable error.  

Two supporting programs are created:  

1.  The first one is a program that is called ang_xy.m (Appendix 11.5) that 
is returning the angles between the vectors that is defined for two 
points; the x-axis and its complementary angle. This is used to obtain 
the ang_rad and the ang_veh when the gravity centre (located at one 
point of the trajectory) and the rotation’s centre (x, y) are known. 

2.  The second one is createvector_la.m, (Appendix 11.6) used to define a 
vector that is used for the complex numbers if the length and the angle 
of the x-axis are known.  

All the calculations for the geometry of the Robot will be done by using the 
complex numbers. 

To sum up, the figure 3.3 displays a diagram displaying how the calculations 
were completed for the geometry of the Robot and the chosen trajectory. The used 
parameters can be checked in figure 3.1. 
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Figure 3.3:Calculation diagram of the geometry. 

Finally we can see that the representation of the geometry is complete. In 
figures 3.4 and 3.5 it is possible to see the differences between the centres of the 
rotations and the radius of the rotations at each point of the trajectory for the different 
studies of the functions. 

TRAJECTORY 
y=f(x) 

GEOMETRY OF 
THE ROBOT 

ang_veh 

Centre rof 
rotation 

Radius of 
rotation 

VEC_radius 

ang_rad 

VEC_vehicle Each wheel 
VEC_veh_a 

Each wheel 
VEC_rad_wheel1 

Each wheel 
ang_wheel1 

Each wheel 
VEC_wheel1 

+

++

+

+

+
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Figure 3.4:Function 
3xy =  

 

 

Figure 3.5:Function 
2xy =  

3.1.2. Velocities of the wheels 

The linear velocity of the gravity centre of the Robot is known, so angular 
velocity is easily obtained by using equation 3.4 this is the same at all the points of 
the Robot. On the other hand, the direction of this linear velocity is the same as the 
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VEC_vehicle vector direction and to get this linear velocity we need to apply the 
equation 3.5:  

[3.5] [ ]
unito vehicleVECvs

mv _⋅=   

vo: Linear velocity of the gravity centre of the robot in vectorial form (vx, vy). 
v: Module of the linear velocity of the gravity centre of the robot [m/s]. 
VEC_vehicleunit: Vector which module is 1 that has the same direction as the 

movement of the robot. 

Two supporting programs are created to get this point: 

1. The crossvecinv.m (Annex 11.7): If the result of a cross vector 
operation is known and the vectors of ‘a’ and ‘b’ are perpendicular 
(formula 3.5) this program gives us the module of the vector ‘b’. 

[3.6] ba
b

aa
kji

ba =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×

3

21

00
0   

The program is used to find the angular velocity of the Robot when the radius 
of rotation and the linear velocity at the vectors form are known as itis shown in 
formula 3.6. 

2. The crossvec.m (Appendix 11.8): Gives us the cross product between a 
complex number and the module of a vector perpendicular to the first 

one, in the other words the values 321 ,, baa  of the formula 3.6 are known 
and this program returns the cross product ba×  at the vector form. 

Applying equation 2.5 the velocity of the wheels (vel_a of the first wheel) can 
be obtained. The independent movement of the wheels is considered as a pure 
rotation from around itself, so linear velocity of the wheel from the mobile reference 

system is zero ( 0=MV ).   

Also angular velocities of the wheels around centre of rotation will be obtained. 
To reach to these values, equation 2.5 needs to be used, but in this case the velocity 
of the wheel is vel_a (for the first wheel) and this is not the same as the linear velocity 
of the gravity centre of the Robot. The radius of the rotation is the distance between 
the wheel and the centre of rotation VEC_rad_wheel1. 
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3.1.3. Friction forces 

Once the geometry has been completed the forces can be obtained. 
Centrifugal force on the curve motion can be applied in the gravity centre of the 
Robot. Since the radius of rotation is known the module of this force can be founded 
from the formula 2.7, this force has applied on the outward radial direction (same 
direction than the radius of rotation vector). 

For the acquirement of the friction forces, mass distribution is needed (formula 
2.9). For a vehicle that is not moving or is moving linear with constant velocity, mass 
is equally distributed on the wheels. On a curve motion, there are two wheels of the 
Robot that they are out of the curve and two are inside the curve and their radiuses of 
the rotation are different (For example, in figure 2.1 radius of rotation at ‘a’ and ’d’ is 
different form the radius of rotation at ‘b’ and ‘c’). Centrifugal force was calculated 
previously, so we will focus on the coordinate system that is fixed on the vehicle. 
According to this coordinate system the vehicle is not turning over any of its wheels, 
moment equilibrium on the Robot can be applied. In figure 3.6 all the forces are 
represented, so the mass of the wheels can be easily obtained:  

                 
Figure 3.6:Forces in a curve motion. 

Moment equilibrium (left wheel): 

[3.7]  

[3.8] 
( ) ( ) ( ) 0__

2
_

=⋅−⋅−⋅ bvehgmgcvehFbvehmg adc
 

[3.9]  

By using formulas 3.7, 3.8 and 3.9, mass distribution is clearly defined: 

GC 

mbcg 

Fc 

mg 
madg 

Ffr=μmbcg 

veh_b 

Ffr=μmadg 

veh_gc 

∑ = 0M

bcad mmm +=
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[3.10] 

( ) ( )
( )bvehg

gcvehFbvehmg
m

c

ad _

_
2
_

⋅

⋅−⋅
=

 

[3.11] adbc mmm −=  

m: Mass of the robot [kg]. 
g: Gravity g=9.81m/s2. 
Fc: Centrifugal force [N]. 
veh_gc, veh_b: dimensions of the robot [m]. 
mad: Mass supported by the wheels a and b [kg]. 
mbc: Mass supported by the wheels b and c [kg]. 

Emphasize of these masses, are for two wheels, so mass of each wheel is half 
of the obtained value.  

Friction coefficient μ is a constant that depends of the contact surfaces. In this 
case, materials are considered as rubber and dry concrete, so for the rolling 
resistance coefficient we will use Crr=0.02 [7]. Applying equation 2.9, friction forces on 
each wheel are acquired.       

3.1.4. Pacejka magic formula application 

Pacejka method returns the forces that are making deformations on the tires 
with the slip angle and the vertical applied force on the wheel as inputs. The vertical 
applied force is coming of the supporting mass of each tire. The slip angle is the 
difference between the longitudinal direction of the wheel and the direction of the 
movement of the wheel. This angle is the difference between angle of vel_a (for the 
first wheel) and the angle of VEC_vehicle. Furthermore the characteristic parameters 
of the wheels need to be implemented in the program. 

In Pacejka magic formula we have to take care of the units, because forces 
are given in kN and angles are in grades [2] [6]. Additionally we have to pay attention 
the reference systems, because in the Pacejka formula these forces are given iny in 
module and we need the vector form.   

The program pacejka.m (Appendix 11.3) is a direct application of the formulas 
that are summed in table 1.2. Camber angle is assumed like as zero and the 
maximum slip angle is assumed as 75º.  

Tables 3.2, 3.3 and 3.4 represent a diagram about how Pacejka formula is 
working. We can obtain the different coefficients by multiplying below parameters Fz 
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and Fz
2 by bi. For example, to find the Ex coefficient ‘ 87

2
6 bFbFbE zz ++= ’. These 

coefficients are directly used in formulas 3.12, 3.13 and 3.14 and finally transversal 
and longitudinal forces and aligning moment are obtained. 
 

FZ FZ
2 COEFFICIENT  

  0a+ yC Shape factor 
a1  2a+ ynup  

ynup    yD Peak factor 
  ( )( )zFaaa 543 arctansin yBCD Slip stiffness 

  γ12a− yBΔ  

  ( )y
yy

y B
DC

BCD
Δ+1 yB   

a7 a6 8a+ yE Curvature factor 
  γ9a ySh Horizontal shift 

a11 a10  γ⋅  ySv Vertical shift 

Table 3.2:Coefficients for transversal force. 
 

[3.12] 
( )( ) ( )( ) vyhyy

y

y
hyyyyyy SSB

B
E

SEBCDF +⎟
⎟

⎠

⎞

⎜
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⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−= −− αα 11 tan1tansin

 

FZ FZ
2 COEFFICIENT  

  0b+ xC Shape factor 
b1  2b+ xnup  

xnup    xD Peak factor 
b4 b3 zFbe 5−⋅ xBCD Slip stiffness 

  
xx

x

DC
BCD

xB   

b7 b6 8b+ xE Curvature factor 
b9  10b+ xSh Horizontal shift 

Table 3.3:Coefficients for longitudinal force. 

[3.13] 
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FZ FZ

2 COEFFICIENT  
  0c+ mC Shape factor 

c2 c1 
zF

r
+ mD  Peak factor 

c4 c3 C5 mB Stiffness factor 
c7 c6 8c mEΔ  
  ( )121 cEm +⋅Δ mE Curvature factor 
  γ9c mSh Horizontal shift 

c11 c10 γ⋅ mSv Vertical shift 

Table 3.4:Coefficients for aligning moment. 

[3.14]  ( ) ( ) ( )( )( )( ) vhhhz SSBSBESBDM +⋅+−+−+−= − αααα costancos 1
 

Fz: Vertical load in the tire [kN] 
Fx: Longitudinal deformation force [N]. 
Fy: Transversal deformation force [N]. 
Mz: Aligning moment [Nm]. 
ai, bi, ci: Pacejka coefficients.  
α: Slip angle [grad]. 
σ: Slip coefficient ratio.  
γ: Camber angle [grad]. 

3.1.5. Deformation forces on tires 

The total force acting on the tire is the friction force plus the deformation forces 
that are obtained from Pacejka formula. Friction forces are measured from a static 
coordinate system and deformation forces are measured from the mobile coordinate 
system. This coordinate system is located at the gravity centre of the Robot. For 
operating the forces, they need to be referred to the same coordinate system.  

Mobile coordinate system is rotated around the static coordinate system. 
Figure 3.7 is a representation of the action of both reference systems.  
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Figure 3.7:Rotation of coordinate systems [3]. 

Point A could be defined from the (x, y) coordinate system as [3]: 

[3.15] jyixA aa +=  

xa, ya: Coordinates of the point A in the fixed reference system. 

If point A is needed in (x’, y’) reference system, formula 3.16 [3] can be used to 
get its coordinates. 

[3.16]  

α: Rotation angle of the rotated coordinate system [rad]. 

To simplify this transformation, an equation system can be used. The objective 
is to obtain the forces that are given in the rotated coordinate system in an orthogonal 
coordinate system. The angle that the Robot is rotated is the same as the angle of 
VEC_vehicle. Transformation matrix should be the inverse of the used in formula 3.17 
that is used, because now forces are given in (x’, y’) system.  

[3.17] 
⎥
⎦

⎤
⎢
⎣

⎡ −
=

ββ
ββ

cossin
sincos

transM
 

β: Angle between the linear trajectory that the Robot is following and the x-axis 
in the fixed reference system [rad]. 

The problem could be solved with by following system: 

[3.18] trans
y

x
GLOBAL M

F
F

F ⎥
⎦

⎤
⎢
⎣

⎡
=   

( ) ( ) jyxiyxA aaaa αααα cossinsincos +−++=
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FGLOBAL: Force in fixed reference system [N]. 
Fx, Fy: Force in mobile coordinate sysyem (located in the gravity centre of the 

robot) [N]. 
Mtrans: Transformation matrix. 

3.1.6. Energy 

The final objective of the study is to calculate the energy that is wasted through 
the friction of the wheels. By applying equation 3.190, this energy could be 
measured.  The force that we have to use in this formula should be constant, 
because it is variable and the forces are changing, therefore average of the force 
values could be accepted. The velocity that is in the formula 2.5 is the velocity of the 
wheels and should be also constant, so as in the force case the average would be 
used. Finally we can get the formula 3.20. 

[3.19] αcos
22

11 ⋅
+

⋅
+

= ++ iiii vvFF
E  

Fi: Force in a point i of the trajectory [N]. 
vi: Velocity in a point i of the trajectory [m/s]. 
α: Angle between the applied force and the direction of the movement [rad]. 

Total energy that is wasted on the Robot is the sum of the wasted energy on 
each wheel.     

3.2. Friction in MAX2D 

3.2.1. Straight motion 

1. PRACTICAL METHOD 

The energy that we used for the Robot needs to be measured. The input 
energy of our Robot is getting from an Electronic power supply source and an internal 
battery. The overall used current for the movement of the Robot is the input current 
minus the current that is used for the screen that is located at the top the Robot 
(figure 3.8) and minus the used current for the battery. Observe that the screen uses 
always the same current whether the Robot is standing or moving.  
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Figure 3.8:Screen situated at the top of the Robot. 

For the first step we need to move the Robot on a straight line, the front 
wheels and the back wheels must be parallel to each other. To obtain this, we used 
some mechanical fixation parts for the wheels. The second step is applying different 
velocities by the program that is controlling the Robot and measure the main input 
current of the Robot with an Ampermeter for different velocities. We know the current 
values of the screen, the battery and the main current that the Robot needs to move 
therefore, we can find the current value of the motors and so the energy can be easily 
calculated.    

To reach to this point we started to do the first measurement, and we found the 
first problem: the internal battery sometimes is charging and discharging, therefore 
the input current has high variations so the values that we took were not correct. The 
battery was needed to run the Robot because the main power supply could support 
maximum 3 A which was not enough to run the Robot on high speeds. To avoid this 
problem, we removed the internal battery and connected another power supply in 
parallel to the first one. Then we had 3 A maximum from each power supply (6 A in 
total) and a fixed input current. The overall used current is the input measured current 
minus the current used for the screen. 

2. THEORICAL METHOD 

The Robot is moving on a straight line, so to apply this movement in the 
Matlab Program we use the function xy = . Notice that in this function, the Robot is 
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not on the curve motion at any point, so Pacejka forces will be constant and equal to 
zero for all the studied velocities. 

3.2.2. Turning motion 

1. PRACTICAL METHOD 

As we can see at the previous case, the wheels need to be fixed mechanically. 
For this movement, wheels must have an angle of 45º. The top screen is also working 
during this movement, and the current that is needed for it is the same as that we 
measured above. First we must apply different velocities in the program to run the 
Robot, and then measure the input current with an Ampermeter.  

In this occasion the battery was removed from the beginning, so measures did 
not need to be taken twice. The overall used current in the anterior case is the input 
measured current minus the current of the screen. 

2. THEORICAL METHOD 

In this second case the Robot is rotating around a vertical axis through the 
gravity centre. This function could not be directly implemented in the program that 
was created; indeed this Matlab Program needs to be slightly modified. The points 
that need to be changed are described on below: 

1.  The geometrical calculations with the centre of rotation, radius of rotation 
and direction of all the wheels have to be removed.  

2. Linear velocities of the wheels are known and its trajectory is circular 
around the gravity centre. The trajectory of the wheels can be calculated 
through a circular function, where the radius (formula 3.20) is the distance 
between the wheel and the gravity centre. 

[3.20] 
222 Ryx =+   

[3.21] 
22

2
_

2
_

⎟
⎠
⎞

⎜
⎝
⎛+⎟
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⎜
⎝
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2
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⎝
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(x,y): Point of the circular trajectory. 
R: Radius of the circular trajectory [m]. 
veh_h, veh_b: dimensions of the robot [m]. 

3.  The slip angle of the wheels has always kept the same value and, as an 
approximation, could be obtained like the angle between the straight line 
that has connected two consecutive points of the trajectory (i, i+1) and the 
derivative function at the point where the wheel is (figure 3.9).   

                                  
Figure 3.9:Movement and derivative function between two points of the trajectory. [3] 

The next step is the obtaining of the angle of the wheels. With this angle the 
position of the wheels and the direction where these wheels are moving can be 
settled by using complex numbers.  

Velocity of the wheels, friction forces and Pacejka forces are obtained by using 
the same formulas that we had in the first Matlab Program 
(friction_pacejka_energy.m). The only variation that we have now is; the equality of 
the mass distributed on the wheels. 

Pacejka forces need to be changed also to a global static coordinate system. 
By using the same correlations, we can easily obtain these forces. 

Total forces on tires and energy calculation are finding the same as in the 
anterior case. 

i 

i + 1 

Slip 
angle 

y’(x) 
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4. Measures and results 

4.1. Problem and fix values 

The first important problem was to find the parameters that are needed for 
using the Pacejka formula, for the calculation of the deformation forces of the tire of 
the Robot. These parameters are the characteristic of each tire and only the producer 
can provide them. 

The tire of the Robot, is P7 LMT 44-27/80, with a radius r=0.1m. By asking  
some important tire manufactures such as Michelin, Dunlop and Continental we tried 
to get necessary coefficients for the tire of the Robot. These manufactures have only 
the Pacejka parameters for the tires on the car that are different from the tires that we 
used for the Robot. Because the forces that we will obtain are not exactly the same 
as the forces that deform the tire therefore we can not reach to the correct 
conclusion. Nevertheless this study can give us an idea about how the deformation 
forces are changing with the trajectory and where the critical points are so as where 
the maximum and minimum forces are.  

The parameters that have been chosen for the study are given from Dunlop 
and specific for MF-TYRE 5.0, with radius 0.2159 m and width of 0.1905 m [9]: 
 

3.10 =a  
0815.11 −=a  

34037.02 =a  
799.113 −=a  

24 =a  
91533.05 =a  

06 =a  
934.27 −=a  

012111098 ===== aaaaa

65.10 =b  
01 =b  
12 =b  
03 =b  
154 =b  

2.05 =b  
0109876 ===== bbbbb  

2812.20 =c  
042392.01 =c  
24857.02 =c  
0413.23 =c  
5386.14 =c  

3244.75 −=c  
010808.06 =c  

0029542.07 −=c  
3854.18 =c  

011109 === ccc  
0021268.012 =c  

We consider also that the maximum slide angle as given by Dunlop 
is º18014.0max =α . 
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The last concern that we had was that the wheels are rolling without sliding 
along the ground. This means that the friction coefficient and the force that make the 
wheel moves satisfy the equation [3]: 

[4.1] R
r

mg
F

e
21

3
−≥μ

 

μe= friction coefficient. 
F= Applied force in the gravity centre of the wheel [N]. 
R= radius of the wheel [m]. 
r=radius with the wheel with applied load [m]. 

4.2. Forces in two different trajectories 

In this part of the study we will obtain the friction and the deformation forces for 
two different motions. In the first case we will study these deformation and friction 

forces when the Robot is moving through the curve 
3xCy ⋅=  for different values of C 

and in the second case the curve 
2xCy ⋅=  will be studied for different values of C. 

The values for the linear velocity and the module of the rolling resistance factor 

that where used in the program are s
mv 1=

 and 02.0=rrC . Furthermore fixed 
parameters of the Robot same as its geometry, mass and etc should be used in this 
program (these values can be found in table 3.1). 

4.2.1. Curve y=Cx3 

Six different curves will be studied for six different values of C, C=1, 2, 4… 20. 
In the figure 4.1 all these trajectories are represented. Notice that when C is 
increasing, the curve will be sharper, so if we anticipate the results, we can say that 
the forces that are acting on the tire will increase also. 
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Figure 4.1:Function 
3xCy ⋅= . 

First of all is interesting to know that how the friction forces and the 
deformation forces in both axis (x and y) are varying. The shape of the curves are 
almost the same for each C value, so in figure 4.2 and figure 4.3 only the C=1 value 
is showed because for the other values would be the same. 
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Figure 4.2:Friction forces in curve 
3xy = . 
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In figure 4.2 we can see how the friction forces are varying on each wheel. The 
maximum and minimum values are obtained at the point of the trajectory that has the 
minimum instant radius of rotation. This point is also varying when C coefficient is 
changing, but it is not a goal of the study to determine that where this point is. 
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Figure 4.3:Deformation forces in curve
3xy = . 

In the figure 4.3 deformation forces are represented. We can see how Pacejka 
forces in y axis are near to 0 when the vehicle is moving on a straight line (for 
negative or positive values). For the force on longitudinal direction (x axis) the 
maximum value is obtained at the extremes of the trajectory. We can see how the 
tires that are in the same axis have almost the same value from these forces; 
however when the instant radius of rotation is minimum, Pacejka forces at the tires 
that are in the same axis begin to show differences.  

The values that we can see in table 4.1 are the values that are obtained from 
the Matlab Program. Observe that the Pacejka forces that are noted in the table are 
the maximum values. It is important to know how high the force on the tire is. 
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C 1 2 4 6 8 10 

Ff maximum [N] 1.6577 1.7118 1.7949 1.8207 1.8648 1.9318 
Ff minimum [N] 1.3803 1.3262 1.2431 1.2173 1.1732 1.1062 

 Maximum Pacejka Fx [N] 0.0537 0.0750 0.0760 0.0760 0.0760 0.0759 
Maximum Pacejka Fy [N] 0.0196 0.0196 0.0196 0.0196 0.0199 0.0203 

 
C 12 14 16 18 20 

Fr maximum [N] 1.9887 2.0344 2.0696 2.0949 2.1111
Fr minimum [N] 1.0524 1.0067 0.9715 0.9462 0.9300

 Maximum Pacejka Fx [N] 0.0758 0.0760 0.0759 0.0759 0.0760
Maximum Pacejka Fy [N] 0.0206 0.0209 0.0211 0.0212 0.0213

Table 4.1:Forces in the tires for the curve 
3xCy ⋅=  

4.2.2. Curve y= Cx2 

In the first case, six different curves will be studied for six different values of C 
(C=1, 2, 4, 6… 20). In the figure 4.4 there is a representation of all these curves and 

as in the anterior case
3xCy ⋅= the curve is sharper when the coefficient C is 

increasing. Deformation forces on the tire should increase also with C, but at this 
point it is easy to notice that the maximum values will be obtained at the point of the 
trajectory (x, y)=(0, 0). 
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Figure 4.4:Function 
2xCy ⋅= . 
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In figures 4.5 and 4.6 the friction and Pacejka forces will be presented for C=1 
and we can see how the forces vary. The shapes of the curves are almost the same 
for the different values of C; obviously the maximum values for the friction and 
Pacejka forces are different.  
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Figure 4.5:Friction forces in curve 
2xCy ⋅= . 

As we predicted before, the maximum values in the friction forces are obtained 
for the point (x, y) = (0, 0) that has the minimum instant radius of rotation. This critical 
point is unchanged for all the trajectories.  
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Figure 4.6:Deformation forces in curve 
2xCy ⋅= . 

Figure 4.6 represents Pacejka forces in radial and longitudinal directions. 
Because the curve that the vehicle is following is always in the same direction, these 
forces do not change the sign. The maximum value for x axis now is at the point with 
the minimum radius of rotation. In y axis we have the maximum value when the 
trajectory is almost straight. In this case the tires that are in the same axis have 
almost the same value for the deformation forces; and these forces at the points that 
are close to the minimum radius of rotation start to be different.   

For our study is interesting to know that how the maximum values are varying. 
In the table 4.2 we can see the different C coefficients and the forces at the tires.  
 

C 1 2 4 6 8 10 
Ff maximum [N] 1.6765 1.8325 2.1445 2.4565 2.7685 3.0805
Ff minimum [N] 1.3646 1.2086 0.8966 0.5846 0.2726 0.0394
Pacejka Fx [N] 0.0403 0.0419 0.0480 0.0571 0.0667 0.0738
Pacejka Fy [N] 0.0196 0.0196 0.0196 0.0196 0.0196 0.0196

 
C 12 14 16 18 20 

Fr maximum [N] 3.3939 3.7062 4.0184 4.3306 4.6429 
Fr minimum [N] 0.3528 0.6651 0.9773 1.2895 1.4760 
Pacejka Fx [N] 0.0760 0.0760 0.0760 0.0760 0.0760 
Pacejka Fy [N] 0.0057 0.0112 0.0171 0.0236 0.0305 

Table 4.2:Forces in the tires for the curve 
2xCy ⋅= . 
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4.3. Friction in MAX2D 

4.3.1. Straight motion 

1. PRACTICAL METHOD 

The first step is to measure the main input current, battery’s current and the 
current of the screen when the Robot is not moving. These values (table 4.3) will be 
used for the calculations of the energy used by the Robot. 
 

DEVICE CURRENT [A]
Screen 0.62 

Input main current 1.09 
Battery current 0.005 

Table 4.3:Measures in standing Robot for straight motion with battery supply.  

 The program that is controlling the Robot can change the angular velocity of 
the wheels. Formula 2.3 is used to find the linear velocity from this studied angular 
velocity. In table 4.4 there are the values that were used in the program to find the 
friction forces in the tires. 
 

R.P.M. VELOCITY [M/S]
200 0.087267 
400 0.174533 
600 0.2618 
800 0.349067 

1000 0.436333 
1200 0.5236 
1400 0.610867 
1600 0.698133 
1800 0.7854 
2000 0.872667 
2500 1.090833 
3000 1.309 
3500 1.527167 
4000 1.745333 

Table 4.4:Calculation of the linear velocity. 

In the first measurements, the battery was used during the running of the 
Robot; we believed that the best option was measuring the main current input and 
current of the battery. The final current used by the Robot can be acquired with 
formula 4.2. Input current was almost fixed for each velocity but there was no fixed 
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value for the current of the battery. It is possible that these measurements are not 
correct. Therefore, we can not conclude the study with these measures. Nevertheless 
we continued using the calculations from the first test. 

[4.2]  [ ] bateryscreentotalused IIIAI +−=  

Iused: Used current by the robot [A]. 
Itotal: Input current [A]. 
Iscreen: Used current by the screen [A]. 
Ibatery: Used current by the battery [A]. 
 

R.P.M. TOTAL INPUT [A] BATERY CURRENT [A] USED CURRENT [A]
200 1.9 0.26 1.54 
400 1.9 0.17 1.45 
600 1.9 0.2 1.48 
800 1.9 0.25 1.53 
1000 1.9 0.32 1.6 
1200 1.9 0.46 1.74 
1400 1.9 0.55 1.83 
1600 1.9 0.7 1.98 
1800 1.9 0.84 2.12 
2000 1.9 1.05 2.33 
2500 1.9 1.5 2.78 
3000 1.9 2.15 3.43 
3500 1.9 3.5 4.78 
4000 1.9 5 6.28 
Table 4.5:Measured and obtained current for straight motion with battery supply. 

 Figure 4.7 represents the relationship between the used current for 
running the Robot and the linear velocity of the Robot.   
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Figure 4.7:Current versus speed for straight motion with battery supply. 

According to the formula 2.14, the current that the Robot uses for movement 
(on the straight line while the velocity is constant) should be linearly dependent on the 
speed. Is it evident that our test this is not accurate; in figure 4.7 we have a curve that 
is a direct representation of the measurements we have completed. The reason for 
the inaccurate measurements is that the battery is charging or discharging; therefore 
in these moments the battery is using or giving the current. The battery was needed 
to support the high current needed for high speeds and to start of the Robot. Due to 
the problem mentioned above, we decided to remove the battery and repeat all the 
measurements; we used another power supply in parallel to the initial power supply 
that is necessary to give enough current to the Robot without using a battery. 

SOLVING THE PROBLEM: THE BATERY REMOVAL 

To measure the accurate current we need to remove the battery and measure 
the current of the screen and main input current of the Robot. We hope that the 
screen current is the same as the value that was previously measured, because this 
current is not variable. In table 4.6 we can see the new values that we will use for our 
calculations: 
 

DEVICE CURRENT [A]
Screen 0.62 

Main current 1.1 
Table 4.6:First measures for standing Robot. 
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Obviously is not necessary to repeat the calculations for the linear velocity for 
each angular velocity, instead we can check all the values in table 4.4. In this new 
measurement (without battery), we don’t have any device that is consuming power 
from the main power supply, hence we can obtain the current used for the Robot 
through formula 4.3. The results for these calculations are shown in table 4.7.  

[4.3]  [ ] screentotalused IIAI −=  

Iused: Used current by the robot [A]. 
Itotal: Input current [A]. 
Iscreen: Used current by the screen [A]. 
 

R.P.M. TOTAL INPUT 
CURRENT [A] 

USED 
CURRENT 

[A] 
200 1.6 0.98 
400 1.7 1.08 
600 1.8 1.18 
800 2 1.38 
1000 2.2 1.58 
1200 2.3 1.68 
1400 2.4 1.78 
1600 2.6 1.98 
1800 2.9 2.28 
2000 3.2 2.58 
2500 3.4 2.78 
3000 3.6 2.98 
3500 4.3 3.68 
4000 5.1 4.48 

Table 4.7:Measured and used current for straight motion. 

In order to find out that whether these values are accurate, the current used 
should be represented, current versus speed, as we did in figure 4.8. We concluded 
that this dependence is almost linear, this means the values that were measured with 
the Amperemeter are accurate and we can complete the energy calculation. 
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Current versus speed
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Figure 4.8:Current versus speed for straight motion. 

We have a little disturbance around s
mv 1=

, although the slope of the function 
after and before this point is almost the same we still consider the values as trustable 
enough for following analysis. 

After we collect all the currents of the Robot in different velocities we will obtain 
the energy of the Robot that it used in each velocity. This energy could be calculated 
from electrical power as it is shown in formula 2.14. The voltage in the Robot is 
always constant, 24 V, hence the used energy for each velocity is: 
 

VELOCITY
[M/S] 

CURRENT 
[A] 

ELECTRIC POWER 
[W]= [J/S] 

0.087267 0.98 23.52 
0.174533 1.08 25.92 
0.2618 1.18 28.32 

0.349067 1.38 33.12 
0.436333 1.58 37.92 
0.5236 1.68 40.32 

0.610867 1.78 42.72 
0.698133 1.98 47.52 
0.7854 2.28 54.72 

0.872667 2.58 61.92 
1.090833 2.78 66.72 

1.309 2.98 71.52 
1.527167 3.68 88.32 
1.745333 4.48 107.52 

Table 4.8:Electrical energy calculation for straight motion. 
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2. THEORETICAL METHOD 

In this theoretical method we will make a comparison between the energy that 
is given to the Robot by the main power supply and the energy that is wasted through 
the friction in the wheels. In straight motion Pacejka forces are zero; due to the forces 
that are depending on the mass distribution on the tires (which is fixed because there 
is no acceleration) and the drift angle (that is zero for straight motion). Kinetic energy 
needs to be obtained also. 

Friction forces are constant for all the points of trajectory. For each velocity 
that we calculated in Table 4.4, the friction forces that the program 
friction_and_pacejka.m returns are: 
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VELOCITY

[M/S] 
FRICTION FORCE IN EACH TIRE 

(FROM MATLAB) [N] 
0.087267 1.5206 
0.174533 1.5206 

0.2618 1.5206 
0.349067 1.5206 
0.436333 1.5206 

0.5236 1.5206 
0.610867 1.5206 
0.698133 1.5206 

0.7854 1.5206 
0.872667 1.5206 
1.090833 1.5206 

1.309 1.5206 
1.527167 1.5206 
1.745333 1.5206 

Table 4.9:Friction forces for the Robot for straight motion. 

By viewing formulas 2.14 and 2.15 it is possible to find the energy that is 
wasted due to tire friction we can also obtain the kinetic energy of the Robot. Observe 
that when the Robot is moving in a straight line, angular velocity around its gravity 
centre is zero, thus there is no rotation energy. In the table 4.10 we can see the 
wasted friction energy on the Robot (this means that this value is the wasted energy 
on all the tires) and kinetic energy of the Robot for each velocity. 
  

VELOCITY 
[M/S] 

ENERGY WASTED  
THROUGH FRICTION [J/S]

KINETIC ENERGY 
[J] 

0.087267 0.530791 0.11804 
0.174533 1.061582 0.472159 

0.2618 1.592372 1.062358 
0.349067 2.123163 1.888637 
0.436333 2.653954 2.950995 

0.5236 3.184745 4.249433 
0.610867 3.715535 5.78395 
0.698133 4.246326 7.554547 

0.7854 4.777117 9.561224 
0.872667 5.307908 11.80398 
1.090833 6.634885 18.44372 

1.309 7.961862 26.55896 
1.527167 9.288839 36.14969 
1.745333 10.61582 47.21592 

Table 4.10:Energy calculation for straight motion. 
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4.3.2. Turning motion 

1. PRACTICAL METHOD 

For second experiment, battery was removed from the beginning, we have 
correct measurements and it was not necessary to measure twice. Screen and main 
input currents were measured again when the Robot is standing. Both values should 
be the same and in table 4.11 you can see the values taken, however input current is 
a little bit higher. These values will also be used in the calculations of the current 
used by the Robot. 
 

DEVICE VOLTAGE 
[A] 

Computer 0.62 
Main current 1.5 

Table 4.11:Second measures for standing Robot. 

For the linear velocities we can go back to the table 4.11. For the straight 
motion we could measure currents until to an angular velocity with 4000 r.p.m. but in 
this measurement we could measure only until 3500 r.p.m., Due to the sliding of the 
wheels of the Robot we can not move the Robot faster. The current that the Robot is 
using for its movement can be obtained through formula 4.3.   
 

R.P.M. INPUT 
CURRENT [A] 

CURRENT
[A] 

200 1.7 1.08 
400 1.8 1.18 
600 2.05 1.43 
800 2.2 1.58 
1000 2.4 1.78 
1200 2.6 1.98 
1400 2.75 2.13 
1600 2.9 2.28 
1800 3.1 2.48 
2000 3.3 2.68 
2500 3.7 3.08 
3000 4.3 3.68 
3500 5 4.38 

Table 4.12:Measured and used current for turning motion. 

A representation of the current versus the linear speed of the Robot is 
necessary to have an idea about the credibility of the values.  
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Current versus speed
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Figure 4.9:Current versus speed for turning motion. 

In figure 4.9 we can see how the main current of the Robot is increasing while 
the velocity is increasing and following with an almost perfect linear tendency. This 
demonstrates that the measurements are correct.  

Used energies by the Robot for each velocity were finally obtained through the 
formula 2.14 and they are collected in the following table: 
 

VELOCITY
[M/S] 

CURRENT
[A] 

ELECTRIC 
POWER 

[W]=[J/S] 
0.087267 1.08 25.92 
0.174533 1.18 28.32 
0.2618 1.43 34.32 

0.349067 1.58 37.92 
0.436333 1.78 42.72 
0.5236 1.98 47.52 

0.610867 2.13 51.12 
0.698133 2.28 54.72 
0.7854 2.48 59.52 

0.872667 2.68 64.32 
1.090833 3.08 73.92 

1.309 3.68 88.32 
1.527167 4.38 105.12 

Table 4.13:Electrical energy calculation for turning motion. 
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2. THEORICAL METHOD 

The Robot is turning around its gravity centre so mass distribution and friction 
forces will be the same on each wheel. On the other hand, Pacejka forces depend on 
the drift angle and the weight the tire is supporting. This drift angle is constant 
because the wheels are fixed and is the same for each wheel. Pacejka forces and 
friction forces do not depend on the velocity of this motion. The values for the forces 
that were given by the program are: 
 

PACEJKA FORCE IN X 
AXIS  

(FROM MATLAB) [N] 

PACEJKA FORCE IN Y 
AXIS  

(FROM MATLAB) [N] 

FRICTION FORCE IN 
EACH TIRE 

(FROM MATLAB) [N]
0.039729 -0.01752 1.5206 

Table 4.14:Friction and Pacejka forces at the Robot for turning motion. 

By reapplying the formula 2.14, wasted energy on the tires will be acquired. In 
this case kinetic velocity is not needed because the Robot has no forward movement. 
However, this turning motion is associated with a rotation kinetic energy that is given 
by the equation 2.15, angular velocity is also needed and we can obtain it from the 
program pacejka_dunlop.m Pacejka forces are deformation forces, so we can 
associate them with deformation energy on the tires that can not be calculated. 

Because we do not have the inertia matrix that is necessary in the energy 
calculation, we can not compare it with the other energies that were obtained. 
Nevertheless we can find this rotation energy by the formula 4.5: 
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E: Rotation kinetic energy [J]. 
ω: Angular velocity of the turning motion from the gravity centre of the robot 

[rad/s]. 
Ixx, Iyy, Izz: Intertia moment in rotations over the x, y and z axis. 
Ixy,Ixz,Iyz: Inertia matrix elements. 

Where Izz is the inertia of the Robot and when the Robot is rotating directly 
over its gravity centre in z-direction. This inertia is constant and depends only on the 
geometry of the Robot, so we can use the formula: 

[4.5]  
2

2
1ω=

zzI
E
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VELOCITY 
[M/S] 

ANGULAR 
VELOCITY 

[S-1] 
ENERGY WASTED 

THROUGH FRICTION [J/S]
ROTATION 
ENERGY 

[J/IZZ] 
0.087267 0.102412 1.5206 0.005244 
0.174533 0.204824 1.5206 0.020976 

0.2618 0.307236 1.5206 0.047197 
0.349067 0.409647 1.5206 0.083905 
0.436333 0.512059 1.5206 0.131102 

0.5236 0.614471 1.5206 0.188787 
0.610867 0.716883 1.5206 0.256961 
0.698133 0.819295 1.5206 0.335622 

0.7854 0.921707 1.5206 0.424771 
0.872667 1.024118 1.5206 0.524409 
1.090833 1.280148 1.5206 0.819389 

1.309 1.536178 1.5206 1.179921 
1.527167 1.792207 1.5206 1.606003 

Table 4.15:Energy calculation for turning motion. 
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5. Discussion of the results 

5.1. Functions y=C·x3 and y=C·x2 

5.1.1. Friction forces 

The figure 5.1 shows the maximum values of the friction forces for each C 
coefficient. This maximum force is given by the wheels conforming to the figures 4.2 
and 4.5. 
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Figure 5.1:Friction force versus C coefficient. 

In both cases maximum friction forces are following a linear function. For the 

obtained representation of the function
3Cxy =  the slope is lower because the 

trajectory the Robot is following has a softer curve. 

Because friction forces depend on the trajectory that the Robot is following, we 
can obtain this friction force as a function of the C coefficient.  
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(x, y): Point of the trajectory [m,m]. 
s: Slope of the curve. 
Ffmax: Maximum friction force [N]. 

On the other hand, we can say that the radius of rotation where these 
maximum forces occur is also varying according to the coefficient C used in the 
function. With equation 2.1, radius of rotation can be found. If the point of maximum 

friction force and the coefficient C is known (for example, in function 
2Cxy =  this 

point is always the coordinate origin) maximum friction forces can be easily acquired. 
 

3Cxy =  

( )( )
( )Cx

CxR
⋅⋅

+
=

23
31 2

322

 

2Cxy =  
( )( )
( )C
CxR
2

21 2
32+

=

 
(x, y): Point of the trajectory [m,m]. 
R: Radius of rotation [m]. 

5.1.2. Pacejka forces 

Figure 5.2 displays the maximum longitudinal deformation force at the tire. 
Notice that this maximum force is given in the extremes of the trajectory for the curve 

3Cxy =  and near the critical point (0, 0) for the curve
2Cxy = . 
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Figure 5.2:Pacejka longitudinal force versus C coefficient. 
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Forces in axis x for the functions that were studied are the same (F=0.0760 N) 
for the C values that are approximately 11 and above, this value is asymptotic. 

Nevertheless this value is growing faster for the function
3Cxy = than

2Cxy = . In 
2Cxy =  that we can see the curve is growing at a slower rate, so instantaneous 

radius of rotation will be higher in 
3Cxy =  than in 

2Cxy =  therefore longitudinal 
friction forces will be higher. When C is high enough, the curve will be “straight 
enough” for the maximum value for the longitudinal deformation of the tire to be 
reached. We can conclude that the force on the tire can not be higher than 0.0760 N 
and that this value is not depending on the trajectory the vehicle is following.  

Finally, in figure 5.3 maximum Pacejka force in radial direction is shown. We 
can see how there is a minimum value for the transversal deformation force but this 
minimum is not the same for both trajectories. We can also see that after reaching the 
minimum point both graphs grow as a linear function.  
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Figure 5.3:Pacejka transversal force versus C coefficient. 

Remember that transversal Pacejka force occurs at point (0, 0) when the curve 

is
2Cxy = . Because the curve needs to be two times derivable (otherwise the 

equation 2.1 can not be applied to obtain the radius of rotation) we completed an 
approximation in our program. This approximation was explained before in the point 
“procedure: friction forces” the results near to the critical point are not 100% accurate. 
In this case it only affects on the transversal deformation force when the trajectory 

is
2Cxy = . 
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Notice that when Pacejka forces in radial direction are minimum, Pacejka 
forces in longitudinal direction are at a maximum. Critical points below obtain the 
minimum radius of rotation: 
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In the case 
33xy =  radius is also extreme when (x, y) = (0, 0) (R’=0). In this 

case the curve that defines the trajectory is not derivable, so this value is not useful 

for the study. For the curve 
210xy =  we do not need to calculate at which points the 

radius is maximum or minimum, because we know that it only occurs at point (0, 0). 
The radius where the Pacejka forces are critical (maximum values in longitudinal 

direction and minimum values in transversal direction) is higher in 
33xy =  than 

in
210xy = . 

5.2. Experimental results in MAX2D 

5.2.1. Straight motion 

In this case the results that are interesting for us are the energies that are 
given to the Robot, energy that is wasted through the wheels and kinetic energy of 
the Robot. In figure 5.4 we can see how these energies are varying according to the 
velocity.  
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Figure 5.4:Energy versus speed in straight motion. 

Observe that each movement can be divided into two simple movements: a 
translation or movement in a straight line and a rotation around its gravity centre. 
Translation movement is related to the kinetic energy (formula 2.15). This energy can 
be easily founded and represented because we have all the values of the formula.  
Rotation movement is related to the rotation energy that is defined through the 
formula 2.16; because we do not have inertial moment of the Robot this energy can 
not be found.  

Friction energy follows a linear function according to the velocity. Kinetic 
energy, rotation energy and energy given by the main power supply depend on the 
velocity power two. It means that when the linear velocity of the Robot is increasing, 
the difference between the energy the Robot is using and the kinetic energy is 
increasing.  

Through figure 5.4 we can also see how the friction force is just a small 
percentage of the total energy. We can conclude that the main part of the energy is 
transformed into kinetic energy. The difference between electric power, friction and 
kinetic energy is shared between rotation energy and wasted energy by the electronic 
devices of the Robot.  

5.2.2. Turning motion 

The Robot is moving in turning motion around its gravity centre. This motion 
has not kinetic energy, because the Robot is not moving its gravity centre (there is no 
displacement). The energy that is used in this movement is called rotation kinetic 
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energy, and due to not having the inertial moment of the Robot we can not acquire 
the values of kinetic rotation energy.  
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Figure 5.5:Energy versus speed in turning motion. 

In figure 5.5 energy given to the Robot and friction energy are represented. 
Friction forces in straight motion and in turning motion are exactly the same, so 
energy wasted through friction would be also the same. Rotation energy is following a 
quadratic function. In this case, electric power function is growing faster, so the 
difference between electric power and friction energy is greater. This difference is 
shared among rotation energy, wasted energy by the electronic devices and 
deformation energy of the tires. This deformation energy is not easily found; we will 
need the characteristics of the tire, material, pressure, temperature and etc.  

Pacejka forces in turning motion are the same for each velocity. This means 
that the deformation in the tires is always the same so deformation energy is 
constant. If we suppose that the electronic devices energy does not depend on the 
Robot’s movement, the rotation energy is much greater than the energy used in a 
straight motion.  

5.2.3. Comparison between straight and turning motions. 

The last step in this discussion of results will be the comparison between the 
input energy when the Robot is moving in a straight line and input energy when the 
Robot is turning over its gravity centre. Figure 5.6 represents clearly the variation 
between the two energies. 
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Figure 5.6:Used energy versus speed in straight and turning motion. 

 

In straight motion there is kinetic energy, friction energy and wasted energy by 
the electronic devices. In turning motion we have turning energy, deformation 
energies on the tires and wasted energy through friction forces. These friction forces 
are the same in both motions. Turning motion energy is always greater than straight 
motion, nevertheless when the velocity is increasing the functions have a greater 
different. This means that turning energy is growing at a faster rate with velocity than 
kinetic energy.  
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6. Conclusion 

The aim of this project is to study the friction and deformation forces in the tires 
of the robot MAX2D. We need to find these forces in the tires to discover how much 
energy is wasted during the movement of the Robot due to the weight and the 
accelerations that the tires should support.   

To discover these forces in different points of trajectory we have had to 
simulate the movement of the Robot with the Matlab Program. This program shown 
us how friction forces and deformation forces in the tires vary along the trajectory of 
the Robot.  

In this program we need to give the positioning and movement of the Robot, 
velocity, mass distribution in the wheels, deformation forces and friction forces in the 
tires.  

To reach to this point we need the parameters of the shape of the Robot, the 
trajectory that the Robot is following and the Pacejka coefficients of the tires.  

To get the shape parameters of the Robot we simply measured the 
dimensions of the Robot. The trajectory depends on the path the Robot follows. 
Pacejka coefficients are the characteristics of the tire according to the material, type 
of the wheels, pressure and temperature which varies between different tire 
manufactures. 

We used the program to study two different movements; y=x2 and y=x3.  

At last we have to define the energy that is given by power supply to run the 
Robot and the mechanical energy that is wasted in the tires. We will use these two 
energy values to get the optimum acceleration and path the Robot has to follow to 
save as much energy is possible.  

According to the study of the two different movements mentioned above figure 
5.2 demonstrates the two different curves that show us the behaviour of the 
maximum longitudinal deformation of the tires. From the results of this test we can 
see that the deformation forces in the tires can not be higher than F=0.0760 N. This 
means that the tire can not become more deformed from acceleration after this rate. 
As we can see in figure 5.2 the minimum value in transversal deformation of the tire 
has the maximum value in longitudinal deformation.  
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As we stated above we have electrical energy that is given to run the Robot, 
mechanical energy that is wasted through friction and deformation in the tires and 
also kinetic energy that is due to the velocity of the Robot.  

In figure 5.4 and figure 5.5 we can see how the given energy and wasted 
energies are varying according to the different velocities. The higher the speed there 
is more energy needed to run the Robot and more energy will be wasted on the tires.   

We can run the Robot in two different movements, straight and turning motion.  

Figure 5.4 shows the energies of the Robot in straight motion. As the speed is 
constant in a straight movement there will not be any acceleration and deformation in 
the tires. Therefore Robot needs less energy in this movement.  

But as we can see in figure 5.5 as the speed is constant when the Robot has 
the turning movement, we will have centrifugal acceleration and deformation in the 
tires. Therefore Robot will need more energy for its movements because more energy 
will be wasted on the tires.  

If we compare the two given energy curves in straight movement and turning 
movement of the Robot (figure 5.6) we can see that the Robot needs more energy to 
run in straight motion than in a turning motion. As mentioned above more energy 
would be wasted in the tires because of the acceleration and deformation in turning 
motion therefore we can see more energy is used. 
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7. Next steps 

Due to the rapid progress of today’s technologies it is possible that in the near 
future developments will be made that will allow us to upgrade and complete these 
kinds of appliances. It is for this reason that I have prepared some suggestions that 
could be completed in the next steps of the project. 

In this project it was not necessary to consider different weights and 
accelerations of the Robot because the goal of the project was to obtain the friction 
forces, deformation of the tire and different energies. In fact all our calculations in this 
project are for the fixed parameters of the weight and acceleration of the Robot.  

For the next step we want to see the behavior of the Robot by changing the 
load on the Robot and measuring the main current that the Robot uses with the same 
accelerations that we tried in the last assignment.  

In this new step we will change the program and apply different accelerations 
to see the effects of different loads on the energy and mechanical parameters of the 
tires of the Robot. According to the different loads that we will try on the Robot and 
comparing them with the last tests, it could be possible that we see a change in the 
currents, friction and deformation forces on the tires of the Robot.   

The goal of this step can be achieved by observing the behavior of the Robot 
in different conditions and defining satisfactory parameters of the Robot; managing 
energy, economy and safety. 
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11. Appendix 

11.1. Matlab Program: friction_and_pacejka.m 

% This script give us friction forces in the tires, Pacejka forces in the 
% tires and slip angle in each point of a trajectory.  
  
% Size of the Robot 
veh_h=.69; 
veh_b=.5; 
wheel_h=.1; 
% Mass 
m=31; 
% Height of the GC 
veh_gc=0.1259; 
  
% Module of the linear velocity of the wheels 
modv=1; 
  
% Friction rolling coefficient 
fr=0.02; 
  
g=9.81; 
  
% Trajectory of the gravity centre of the Robot 
syms x; 
y=12*x^2;  
  
% First calculations with the trajectory. We need to consider that 
% sometimes the first and the second derivative could be constant or cero, 
% so we create the loops below to solve this problem. 
[dy, d2y]=matfuc1(y); 
x=-5:0.1:5; 
yn=eval(y); 
trajectory=complex(x,yn); 
dyn=eval(dy); 
d2yn=eval(d2y); 
  
if (length(dyn)<length(trajectory)) 
     
    aux=dyn; 
    clear dyn 
     
    for (k=1:length(trajectory)) 
        dyn(k)=aux; 
    end 
     
end 
  
clear k 
  
if (length(d2yn)<length(trajectory)) 
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    aux=d2yn; 
    clear d2yn 
     
    for (k=1:length(trajectory)) 
        d2yn(k)=aux; 
    end 
     
end 
  
s=sign(d2yn); 
s(s==0)=1; 
index=find(abs(d2yn)<10^(-6)); 
d2yn(index)=s(index)*10^(-6); 
  
% Radius and center of rotation 
radius=abs(((1 + dyn.^2) .^(3/2) ) ./ d2yn); 
center=complex(  x-(dyn.*(1+(dyn.^2))./(d2yn))  ,  yn+(1+(dyn.^2))./(d2yn) 
); 
  
for (i=1:length(trajectory)) 
     
     j=sqrt(-1); 
      
     % Because the position of the wheels needs to be known, we need the 
     % some geometrical calculations 
     [ang_rad(i), ang_veh(i)]=ang_xy(trajectory(i),center(i));   
     VEC_radius(i)=createvector_la(radius(i),ang_rad(i)); 
     VEC_vehicle(i)=createvector_la(veh_h/2,ang_veh(i)); 
     
VEC_veh_a(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+atan(
veh_b/veh_h)); 
     VEC_veh_b(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)-
atan(veh_b/veh_h)); 
     
VEC_veh_c(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+pi+at
an(veh_b/veh_h)); 
     
VEC_veh_d(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+pi-
atan(veh_b/veh_h)); 
     VEC_rad_wheel1(i)=VEC_radius(i)+VEC_veh_a(i); 
     VEC_rad_wheel2(i)=VEC_radius(i)+VEC_veh_b(i); 
     VEC_rad_wheel3(i)=VEC_radius(i)+VEC_veh_c(i); 
     VEC_rad_wheel4(i)=VEC_radius(i)+VEC_veh_d(i); 
     ang_wheel1(i)=angle(VEC_radius(i))-angle(VEC_rad_wheel1(i)); 
     ang_wheel2(i)=angle(VEC_radius(i))-angle(VEC_rad_wheel2(i)); 
     ang_wheel3(i)=angle(VEC_rad_wheel3(i))-angle(VEC_radius(i)); 
     ang_wheel4(i)=angle(VEC_rad_wheel4(i))-angle(VEC_radius(i)); 
     VEC_wheel1(i)=createvector_la(wheel_h,angle(VEC_vehicle(i))-
ang_wheel1(i)); 
     VEC_wheel2(i)=createvector_la(wheel_h,angle(VEC_vehicle(i))-
ang_wheel2(i)); 
     
VEC_wheel3(i)=createvector_la(wheel_h,angle(VEC_vehicle(i))+ang_wheel3(i)); 
     
VEC_wheel4(i)=createvector_la(wheel_h,angle(VEC_vehicle(i))+ang_wheel4(i));     
        
     % Linear velocity of the gravity center (vo) and angular velocity of 
the 
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     % gravity center (omega) 
     vo1(i)=modv*(VEC_vehicle(i)./(abs(VEC_vehicle(i)))); 
     omega(i)=crossvecinv(vo1(i), VEC_radius(i), s(i)); 
         
     % Linear velocity of the wheels and module of this linear velocity. 
     vel_a(i)=vo1(i)+crossvec(VEC_veh_a(i),omega(i)); 
     vel_b(i)=vo1(i)+crossvec(VEC_veh_b(i),omega(i)); 
     vel_c(i)=vo1(i)+crossvec(VEC_veh_c(i),omega(i)); 
     vel_d(i)=vo1(i)+crossvec(VEC_veh_d(i),omega(i)); 
     mod_a(i)=abs(vel_a(i)); 
     mod_b(i)=abs(vel_b(i)); 
     mod_c(i)=abs(vel_c(i)); 
     mod_d(i)=abs(vel_d(i));    
      
     % Angular velocity of the wheels 
     w_a(i)=crossvecinv(vel_a(i), VEC_rad_wheel1(i), s(i)); 
     w_b(i)=crossvecinv(vel_b(i), VEC_rad_wheel2(i), s(i)); 
     w_c(i)=crossvecinv(vel_c(i), VEC_rad_wheel3(i), s(i)); 
     w_d(i)=crossvecinv(vel_d(i), VEC_rad_wheel4(i), s(i)); 
      
     % Direction of the movement  
     unit_a(i)=VEC_wheel1(i)./(abs(VEC_wheel1(i))); 
     unit_b(i)=VEC_wheel2(i)./(abs(VEC_wheel2(i))); 
     unit_c(i)=VEC_wheel3(i)./(abs(VEC_wheel3(i))); 
     unit_d(i)=VEC_wheel4(i)./(abs(VEC_wheel4(i))); 
     
     if (s(i)>0) 
         unit_a(i)=-real(unit_a(i))+imag(unit_a(i))*j; 
         unit_b(i)=-real(unit_b(i))+imag(unit_b(i))*j; 
         unit_c(i)=-real(unit_c(i))+imag(unit_c(i))*j; 
         unit_d(i)=-real(unit_d(i))+imag(unit_d(i))*j; 
     end 
     
     % Centrifugal force 
     modFc(i)=m*((abs(vo1(i))^2)/(abs(VEC_radius(i)))); 
     Fc(i)=-(VEC_radius(i)./(abs(VEC_radius(i))))*modFc(i); 
     
     % Calculation of the mass in the interior and exterior wheels 
     m_ad(i)=(((m*g*veh_b/2)-(modFc(i)*veh_gc*s(i)))/(veh_b*g)); 
     m_bc(i)=m-m_ad(i); 
      
     % Friction forces 
     Fr_a(i)=-fr*(m_ad(i)/2)*g*unit_a(i); 
     Fr_b(i)=-fr*(m_bc(i)/2)*g*unit_b(i); 
     Fr_c(i)=-fr*(m_bc(i)/2)*g*unit_c(i); 
     Fr_d(i)=-fr*(m_ad(i)/2)*g*unit_d(i); 
  
     % Slip angle in each wheel in grades 
     anga(i)=(angle(vel_a(i))-angle(VEC_vehicle(i)))*(180/pi); 
     angb(i)=(angle(vel_b(i))-angle(VEC_vehicle(i)))*(180/pi); 
     angc(i)=(angle(vel_c(i))-angle(VEC_vehicle(i)))*(180/pi); 
     angd(i)=(angle(vel_d(i))-angle(VEC_vehicle(i)))*(180/pi); 
     
     % Forces because of the tire deformation. These forces are FROM THE 
     % GRAVITY CENTER 
     [Fp_ax(i), Fp_ay(i), Mya(i)]=pacejka_dunlop((m_ad(i)/2)*g, anga(i), 
0); 
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     [Fp_bx(i), Fp_by(i), Myb(i)]=pacejka_dunlop((m_bc(i)/2)*g, angb(i), 
0); 
     [Fp_cx(i), Fp_cy(i), Myc(i)]=pacejka_dunlop((m_bc(i)/2)*g, angc(i), 
0); 
     [Fp_dx(i), Fp_dy(i), Myd(i)]=pacejka_dunlop((m_ad(i)/2)*g, angd(i), 
0); 
  
     % Forces because of the tire deformation FROM THE STATIC COORDINATE 
     % SYSTEM 
     beta=angle(VEC_vehicle(i))*s(i); 
     Mtrans=[cos(beta) -sin(beta); sin(beta) cos(beta)]; 
     F_pa(:,i)=[Fp_ax(i) Fp_ay(i)]*(Mtrans); 
     F_pb(:,i)=[Fp_bx(i) Fp_by(i)]*(Mtrans); 
     F_pc(:,i)=[Fp_cx(i) Fp_cy(i)]*(Mtrans); 
     F_pd(:,i)=[Fp_dx(i) Fp_dy(i)]*(Mtrans); 
      
     % TOTAL forces in tires 
     F_a(i)=F_pa(1,i)+F_pa(2,i)*j-Fr_a(i); 
     F_b(i)=F_pb(1,i)+F_pb(2,i)*j-Fr_b(i); 
     F_c(i)=F_pc(1,i)+F_pc(2,i)*j-Fr_c(i); 
     F_d(i)=F_pd(1,i)+F_pd(2,i)*j-Fr_d(i); 
     
     % TOTAL forces in tires (direccion del movimiento en abs) 
     F_ax(i)=Fp_ax(i)-abs(Fr_a(i)); 
     F_bx(i)=Fp_bx(i)-abs(Fr_b(i)); 
     F_cx(i)=Fp_cx(i)-abs(Fr_c(i)); 
     F_dx(i)=Fp_dx(i)-abs(Fr_d(i));      
  
end 
  
% Representation of the forces in the tires 
subplot(2, 1, 1) 
plot(x,abs(F_a),'b') 
hold on 
plot(x,abs(F_b),'r') 
hold on 
plot(x,abs(F_c),'k') 
hold on 
plot(x,abs(F_d),'g') 
title 'Total forces in tires (-)' 
  
subplot(2, 1, 2) 
plot(x,abs(Fr_a),'b','LineWidth', 2) 
hold on 
plot(x,abs(Fr_b),'r','LineWidth', 2) 
hold on 
plot(x,abs(Fr_c),'k') 
hold on 
plot(x,abs(Fr_d),'g') 
title 'Friction forces (-)' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 
  
% Representation of the Pacejka forces 
figure(2) 
subplot(2, 1, 1) 
plot (x,(Fp_ay),'b','LineWidth', 2) 
hold on 
plot (x,(Fp_by),'r','LineWidth', 2) 
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hold on 
plot (x,(Fp_cy),'k') 
hold on 
plot (x,(Fp_dy),'g') 
title 'Pacejka transversal force' 
  
subplot(2, 1, 2) 
plot (x,(Fp_ax),'b','LineWidth', 2) 
hold on 
plot (x,(Fp_bx),'r','LineWidth', 2) 
hold on 
plot (x,(Fp_cx),'k') 
hold on 
plot (x,(Fp_dx),'g') 
title 'Pacejka longitudinal force' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 
  
% Representation of the slip angle 
figure(3) 
plot(x, anga,'b','LineWidth', 2) 
hold on 
plot(x, angb,'r','LineWidth', 2) 
hold on 
plot(x, angc,'k') 
hold on 
plot(x, angd,'g') 
title 'Slip angle' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 

11.2. Matlab Program: rotation.m 

% This script give us friction forces in the tires, Pacejka forces in the 
% tires and slip angle in each point of a turning motion.  
  
% Size of the Robot 
veh_h=.69; 
veh_b=.5; 
wheel_h=.1; 
% Mass 
m=31; 
% Height of the GC 
veh_gc=0.1258; 
  
% Module of the linear velocity of the wheels 
modv=0.174533333; 
  
% Friction rolling coefficient 
fr=0.02; 
  
g=9.81; 
  
% Trajectory of the wheels. Turning motion 
syms x; 
y=sqrt((sqrt((veh_h/2)^2+(veh_b/2)^2))-(x^2));  
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x=-
(sqrt((veh_h/2)^2+(veh_b/2)^2)):(((sqrt((veh_h/2)^2)+(veh_b/2)^2))/10):(sqr
t((veh_h/2)^2+(veh_b/2)^2)); 
yn=eval(y); 
trajectory=complex(x,yn); 
  
% Slip angle in each wheel. Is the same angle all the wheels 
j=sqrt(-1); 
anga=90-(angle((x(2)-x(1))+yn(2)*j)*(180/pi)); 
angb=90-(angle((x(2)-x(1))+yn(2)*j)*(180/pi)); 
angc=90-(angle((x(2)-x(1))+yn(2)*j)*(180/pi)); 
angd=90-(angle((x(2)-x(1))+yn(2)*j)*(180/pi)); 
      
for (i=1:length(trajectory)) 
     
     j=sqrt(-1); 
      
     % Because the position of the wheels needs to be known, we need the 
     % some geometrical calculations 
     ang_veh(i)=atan(veh_b/veh_h)-atan(yn(i)/x(i));  
     
VEC_veh_a(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+atan(
veh_b/veh_h)); 
     VEC_veh_b(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)-
atan(veh_b/veh_h)); 
     
VEC_veh_c(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+pi+at
an(veh_b/veh_h)); 
     
VEC_veh_d(i)=createvector_la(sqrt((veh_h/2)^2+(veh_b/2)^2),ang_veh(i)+pi-
atan(veh_b/veh_h)); 
      
     VEC_wheel1(i)=createvector_la(wheel_h,ang_veh(i)+angle(VEC_veh_a(i))); 
     VEC_wheel2(i)=createvector_la(wheel_h,ang_veh(i)+angle(VEC_veh_b(i))); 
     VEC_wheel3(i)=createvector_la(wheel_h,ang_veh(i)+angle(VEC_veh_c(i))); 
     VEC_wheel4(i)=createvector_la(wheel_h,ang_veh(i)+angle(VEC_veh_d(i)));     
         
     % Linear velocity of the wheels 
     vel_a(i)=createvector_la(modv, ang_veh(i)+angle(VEC_veh_a(i))); 
     vel_b(i)=createvector_la(modv, ang_veh(i)+angle(VEC_veh_b(i))); 
     vel_c(i)=createvector_la(modv, ang_veh(i)+angle(VEC_veh_c(i))); 
     vel_d(i)=createvector_la(modv, ang_veh(i)+angle(VEC_veh_d(i)));  
      
     % Direction of the movement  
     unit_a(i)=VEC_wheel1(i)./(abs(VEC_wheel1(i))); 
     unit_b(i)=VEC_wheel2(i)./(abs(VEC_wheel2(i))); 
     unit_c(i)=VEC_wheel3(i)./(abs(VEC_wheel3(i))); 
     unit_d(i)=VEC_wheel4(i)./(abs(VEC_wheel4(i))); 
     
     % Friction forces 
     Fr_a(i)=-fr*(m/4)*g*unit_a(i); 
     Fr_b(i)=-fr*(m/4)*g*unit_b(i); 
     Fr_c(i)=-fr*(m/4)*g*unit_c(i); 
     Fr_d(i)=-fr*(m/4)*g*unit_d(i); 
     
     % Pacejka forces. These forces are FROM THE GRAVITY CENTER 
     [Fp_ax(i), Fp_ay(i), Mya(i)]=pacejka_dunlop((m/4)*g, anga, 0); 
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     [Fp_bx(i), Fp_by(i), Myb(i)]=pacejka_dunlop((m/4)*g, angb, 0); 
     [Fp_cx(i), Fp_cy(i), Myc(i)]=pacejka_dunlop((m/4)*g, angc, 0); 
     [Fp_dx(i), Fp_dy(i), Myd(i)]=pacejka_dunlop((m/4)*g, angd, 0); 
  
end 
  
% Representation of the forces in the tires 
plot(x,abs(Fr_a),'b','LineWidth', 2) 
hold on 
plot(x,abs(Fr_b),'r','LineWidth', 2) 
hold on 
plot(x,abs(Fr_c),'k') 
hold on 
plot(x,abs(Fr_d),'g') 
title 'Friction forces (-)' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 
  
% Representation of the Pacejka forces 
figure(2) 
subplot(2, 1, 1) 
plot (x,(Fp_ay),'b','LineWidth', 2) 
hold on 
plot (x,(Fp_by),'r','LineWidth', 2) 
hold on 
plot (x,(Fp_cy),'k') 
hold on 
plot (x,(Fp_dy),'g') 
title 'Pacejka transversal force' 
  
subplot(2, 1, 2) 
plot (x,(Fp_ax),'b','LineWidth', 2) 
hold on 
plot (x,(Fp_bx),'r','LineWidth', 2) 
hold on 
plot (x,(Fp_cx),'k') 
hold on 
plot (x,(Fp_dx),'g') 
title 'Pacejka longitudinal force' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 
  
% Representation of the slip angle 
figure(3) 
plot(x, anga,'*b','LineWidth', 2) 
hold on 
plot(x, angb,'*r','LineWidth', 2) 
hold on 
plot(x, angc,'*k') 
hold on 
plot(x, angd,'*g') 
title 'Slip angle' 
legend 'wheel a' 'wheel b' 'wheel c' 'wheel d' 
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11.3. Matlab Program: pacejka_dunlop.m 

function [Fx0, Fy0, My]=pacejka_dunlop(Fz, alpha, gamma) 
% Give us the longitudinal, transversal and aligning moment in a tire 
% applying Pacejka's formulas. 
  
% Parameters: 
% alpha --> slip angle 
% gamma --> camber angle 
% Fz --> Vertical load at the tire 
% s --> percent slip 
  
% Vertical load. Should be in kN 
Fz=Fz/1000; 
% Radius of the tire 
r=0.1;  
  
% Angles should be in degrees. 
alphamax=0.18014; 
s=(alpha*100)/alphamax; 
  
% Tire MF-TYRE 5.0 (Dunlop) coefficients.  
a0=1.30; 
a1=-1.0815; 
a2=0.34037; 
a3=-11.799; 
a4=2; 
a5=(1/1.0925); 
a6=0; 
a7=-2.934; 
a8=0; 
a9=0; 
a10=0; 
a11=0; 
a12=0; 
b0=1.65; 
b1=0; 
b2=1; 
b3=0; 
b4=15; 
b5=0.2; 
b6=0; 
b7=0; 
b8=0; 
b9=0; 
b10=0; 
c0=2.2812; 
c1=0.042392; 
c2=0.24857; 
c3=2.0413; 
c4=1.5386; 
c5=-7.3244; 
c6=0.010808; 
c7=-0.0029542; 
c8=1.3854; 
c9=0; 
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c10=0; 
c11=0; 
c12=0.0021268; 
  
  
%% LONGITUDINAL FORCES 
% Svx y Shx avoid values Fx=0 when s=0. Usually, Sv and Sh are zero.  
  
Svx=0; 
  
Cx=b0; 
  
nupx=(b1*Fz)+b2; 
Dx=nupx*Fz; 
  
BCDx=((b3*(Fz^2))+(b4*Fz))*(exp(-b5*Fz)); 
  
Bx=BCDx/(Cx*Dx); 
  
Ex=(b6*(Fz^2))+(b7*Fz)+b8; 
  
Shx=(b9*Fz)+b10; 
  
% Magic formula for longitudinal force 
Fx0=Dx*sin(Cx*atan(Bx*(1-Ex)*(s+Shx)+(Ex*atan(Bx*(s+Shx)))))+Svx; 
  
  
%% TRANSVERSAL FORCES 
  
Cy=a0; 
  
nupy=(a1*Fz)+a2; 
Dy=nupy*Fz; 
  
BCDy=a3*sin(a4*atan(a5*Fz)); 
  
By=BCDy/(Cy*Dy); 
  
Ey=(a6*(Fz^2))+(a7*Fz)+a8; 
  
Shy=a9*gamma; 
  
Svy=((a10*(Fz^2))+(a11*Fz))*gamma; 
  
ABy=-a12*abs(gamma)*By; 
  
By=By+ABy; 
  
% Magic formula for transversal force 
Fy0=Dy*sin(Cy*atan(By*(1-Ey)*(alpha+Shy)+(Ey*atan(By*(alpha+Shy)))))+Svy; 
  
  
%% ALIGNING MOMENT 
% Is the moment exerted by the ground on the tire. 
  
Cm=c0; 
  
Dm=c1*(Fz^2)+(c2*Fz)*(r/Fz); 
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Bm=c5+(c4*Fz)+(c3*(Fz^2)); 
  
Em=((c6*(Fz^2))+(c7*Fz)+c8)*(1+c12); 
  
Shm=(c9*gamma); 
  
Svm=((c10*(Fz^2))+(c11*Fz))*gamma; 
  
% Magic formula for aligning moment 
My=(-Dm*(cos(Cm*(atan((Bm*(alpha+Shm))-(Em*((Bm*(alpha+Shm))-
atan(Bm*(alpha+Shm))))))))*cos(alpha)+Svm)*Fy0; 

11.4. Matlab Program: matfuc1.m 

% computing of matematicaly described function 
  
function [dy, d2y]=matfuc1(fun) 
  
dy=diff(fun); 
d2y=diff(dy); 
end 

11.5. Matlab Program: ang_xy.m 

function [ang1, ang2] = ang_xy(a,b) 
% angle between vectors that are given by their imaginary numbers 
  
syms zmx; 
if((real(b)-real(a))~=0) 
pr=((imag(b)-imag(a))/(real(b)-real(a)))*(zmx-real(a))+imag(a); 
    if(real(a)<real(b)) 
        ang1=pi+atan(eval(diff(pr))); 
    else 
        ang1=atan(eval(diff(pr))); 
    end 
    if(imag(a)<imag(b)) 
        ang2=ang1+pi/2; 
    else 
        ang2=ang1-pi/2; 
    end     
else 
ang1=pi/2; 
ang2=0; 
end 
end 

11.6. Matlab Program: createvector_la.m 
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function v = createvector_la(l, a) 
% from [length, angle]  to complex 
  
% This function create an imaginary number from the length of its vector 
% and its angle 
  
v = l * exp(i * a); 

11.7. Matlab Program: crossvecinv.m 

function escinv = crossvecinv(v1, v2, s) 
% Give us the cross product between a complex number and the module of the  
% second one that is in z-axis (mod(w)) 
  
modv1=sqrt((real(v1)^2)+(imag(v1)^2)); 
modv2=sqrt((real(v2)^2)+(imag(v2)^2)); 
if (s>0) 
    escinv=modv1/modv2; 
else 
    escinv=-modv1/modv2; 
end 
end 

11.8. Matlab Program: crossvec.m 

function esc = crossvec(v1, w) 
% Give us the cross product between a complex number and the module of the  
% second one that is in z-axis (mod(w)) 
  
v1=[real(v1),imag(v1),0]; 
v2=[0,0,w]; 
pr=cross(v2,v1); 
esc=pr(1)+pr(2)*i; 
end 
 
 


