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1. INTRODUCTIO~. 

The analysis of outliers from the Bayesian point of view has become increasingly 

interesting to the Statistical Profession because of the possibility of carrying out the diffi. 

cult computations involved using new algorithms such as the Gibbs sampling method (see 

Gelfand and Smith (1990), or Casella and George (1992)). Also, specific algorithms have 

been developed to deal with the Bayesian treatment of outliers (Pena and Tiao (1992)). 

Not only has the work on analysis of outliers proved useful in its own right, but it 

turns out that many other statistical problems can also be usefully analyzed by approaching 

these problems from the outlier point of view. As examples, we would cite: analysis of 

ullreplicated fractional factional factorial designs to detect significant effects, see Box and 

Meyer (1986), Juan and Pena (1992); detection of interaction in unreplicated ANOYA 

designs, see Tussell (1990); estimation of missing observations in time series models. see 

Ljung (1989) and PeIia and Maravall (1991). 

There have been three main approaches to the problem of outliers in the literature. 

Succinctly, these may be classified as (i) the diagnostic approach (ii) the Bayesian approach 

and (iii) 'robust' approach to estimation and tests of hypothesis in the presence of outliers. 

The first approach is clearly identified with the work of Cook and Weisberg (1982), Belsley, 

huh and \Velsch (1980), and Atkinson (1985). and the aim of\'lorkers in this area is mostly 

that of identification of observations that may be deemed outlying and/or influential. The 

approach listed as (iii) above has been motivated by the work of Huber (1981), and Hampel 

et al (1986), the aim here being to build estimatiors that are not affected by the fraction of 

tht> sample that is outlying. Truly in the middle and listed as such above, is the Bay('~jan 

approach, which seeks to combine identification with estimation: see for example Box aurl 

Tiao (1968); Guttman et al (19iS), etc. Here, the identification is carried out using the 

posterior proLabilities for an observation or a set of obsen-ations being outlying, and these 

are used as weights in estimation procedures. 
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conditional on (12, we have 
.
 

~ ""' N(B; (12(X' X)-l) (2.3) 

where iJ = (X'X)-lX'y I and p(a2Iy,x) is such that 

(n - p)s2 '" 2 
(12 Xn - p , (2.4) 

where 

(n - p)s2 =e'e =y'[I - H]y , (2.5) 

with H denoting the so called hat matrix 

H =X(X'X)-l X' . (2.6) 

'We denote a set of k distinct integers chosen from the set (1, ... ,n) by I. Then, the 

vector y can be decomposed as 

, (' , )y = YI Y(1) (2.7) 

where (I) means "delete set I". Similarly, the X matrix can be partitioned as 

(2.8) 

(The use of the symbol I without brackets means restrict information to the set I.) 

Consistent with the above notation, we wi~l use in the rest of the paper the designations 

(2.9) 

(2.10) 

that is. iJ (1) and $11) are estimators of ~ and (12 based on (X(I), Y(1)) , etc. 

In contrast with the null model (2.1) we will be concerned in this paper with two 

alternative models. The first is the mean-shift model and takes the form for the generation 

of the observations Y = (YI'Y(I))" 

YI=XI~+a+~1 
(2.11) 
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Here HI is the k x k block of the hat matrix H of (2.6) formed by using the k rows 
I 

~I
and columns of H indexed by 1, or I 

(3.4a) 

Indeed, HI is refereed to as the "leverage of obserVations YI " . 

Expression (3.2) could be written in another form that will be useful when comparing 
, 

it to the other approaches to be discussed in this paper. In order to do so, we use the 

identitJ, (see Cook and \Veisberg, 1982, pg. 191) 

(3.5) 
I 

)1
for then i 

I

L _n-p-k (1 eH1-HI)-leI) 
2 - + ) 2 (3.6)

8(I) n - p (n - p - k 8(1) 

Here, we have partitioned the residual vector e, 

e = (I - H)y (3.6a) 

using 

(3.6b) 

with X:::: (X1:X(I»)' used in constructing H = X(X'X)-lX'. Now, it can be shown 

that 

~ -1
YI-XI(J(I)=(I-HI) er (3.7) 

and, therefore, (3.4) itself can be written as 

_ ei(I - HI )-l eI
Q1- 2 (3.8)

(n - p - k)S(I) 

Hence, we may rewrite (3.2) as follows 

1.' 11 - HI1
1

/
2 

[1 Q ]-(n-p )/2I ) =.n1 -1/2 + I (3.9)p(YIY(I) 
n-p ~)

( n-p-1 '(1) 
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Following the results outlined in Section 2, we have that the posterio~. distribution of the 

ei , as given by (3.13) conditional on u2 , is easily seen to be on using (2.3), such that 

(3.14) 

where fi = Yi - x~/J is the residual of the observation Yi, and hi is the i -th diagonal 

element of H given in (2.6), which is to say, hi is the leverage of Yi. Chaloner and Brant 

(1988) have shown that Pi of (3.12) can be written in the form 

(3.15) 

Xn
2 

pwhere r = (1-2, so that p(rly,x) is the density ofa - variable, with 
(n - p)s2 

(q - e.,j'T) (q + ei.;'T) 
Zl = Viii ' Z2 = .,j'hi (3.16) 

Chaloner and Brant (1988) discuss appropriate choices of q and then declare an observa­

tion Yi to be an "outlier" if its Pi is large. 

To help us interpret the properties of the Chaloner-Brant procedure, we will obtain 

an explicit formula for (3.15) as a function of the standard diagnostic measures. We may, 

of course, write P(ci,u2 IY,X) as 

(3.17) 

and from (3.14) and results of Section 2, we have that the right hand side of (3.17) is 

1 exp {-~(Ci _ei )2}. K(u2)-[(n-p )/2+1] exp _ {_I_(n - p)s2} . (3.18) 
V27ru 2hi 2u2hi 2u2 

Now p. as given in (3.15) may be written as Pi = p'1 + Pi2 , where 

PH = P(ei > quly; X) , Pi2 =P(ci < -quly; X) (3.19) 

Now 

(3.20) 
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(3.26a) 

J! 
I 
I

Hence, 

(3.2i) 

.), 

To summarize we have 
I 

(3.28) 

with ) 

(3.28a) 

and > 
(~-*) 

ti2 = ) (3.28b) 
~ /1 + ~;V 2h,(n-p),2 

It can be shown that til and ti2 can be written as: 1:_) 

I 
I 

(3.29) 

(~-*) 
ti2 = (3.30). I 1 r?

VI + 2(n-p). t 
e· 

where 1', is the studentized residual' ~ 'and I, is the measure of leverage giwn
yls2(1 - hd '.)j 

by 

(3.31 ) 

~ow, suppose that 7', is positive and fixed. If we now let hi - 1, that is. the lewrage of 

the ohsen-ation is very high, then li - 00 and Ul - q. U2 - -q and from (3.28). we 

see that P, goes to 2cJl( -q) , which is the conditional probability, given fJ. (12 that Vi is 

outl;ying in the Chaloner-Brant sense, that is, 

2cJl(-q) = P[lYi -x~fJl > q(1I/l,(12] (3.3:2) 
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C by I to be spuriously generated is 

(4.1 ) 

c where 

(4.2) 

and where the sum is taken over all sets 1 of size k of distinct integers from (1, ... , n). 

Now, on the other hand, it is interesting to note that for the variance inflation model 

(2.12), the probability that k observations indexed by 1 are generated with 'noise' ~ 

given by N(O,62q2) , 62 > 1, and (n - k) generated by N(O,q2) takes the form, as 

proved in Box and Tiao (1968), 

WI = C ( 
a )Ir -Ir ( IX'XI )1/2 ( 

1 _ Q 6 IX'X ­ ~XIXII 
s2 ) 

SlI) 
T 

, 
(4.3) 

'-.. 

(4.30 ) 

where C is a normalizing constant that can be shown to be the probability of no outliers, 

and ~ = 1 - 6-2 . (For a precise definition of .s~l) see Box and Tiao (1968),) When IJ' IS 

large, it can be shown (Pelia and Tiao (1992)) that WI is approximately 

1/2 ( !!.=.Z ) 

U'I _ C (~)Ir 6-K ( IX'XI) (~) 2 

. - 1 ­ Q IX(l)X(l)I sll) . 
Adding up the values U'I for all sets of size k we obtain the probability of exactly k 

outliers in the sample, and, in turn, by adding all the U'I 's up. the constant C could be 

obtained, 

For fixed k and 6 large, the conditional probabilit~· that a particular set of k 013­

sen'ations indexed by I are spuriously generated with noise variances 62 (12 is (Pelia and 

Tiao (1992)): 
1/2 !!.=.Z 

'( IX'XI) (S2) 2PI = C -, -2­
1-\l)X(l)I S(l) 

which in turn can be written as 

(-1.4) 

(4.5 ) 
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Pi given by (3.15) with q =2 , and the Ci as given by (4.1), which is, as demonstrated 

in Section 4, inversely proportional to the predictive ordinate. As anticipated, tht' values 

for Pi are all very small, except for a large value of .9552 at i = 11 , whkh is 2.2 

times greater than the next largest value that occurs at i = 14. As far as the Ci, the 

largest occurs at i = 11 with a value of .9708 which is 511 times greater than the next 

largest value, that occurs at i = 20. We note that the outlier will be idenitified by both 

procedures, although in a more powerful way by Ci then by Pi. 

The next experiment we carried out was to introduce to the original set of data of 

Table 5.1 an outlier at the high leverage point X20 =40, by again adding 4 to the original 

Table 5.1. 

Data for the simulated example 

x y h 
1 1 1.955 .13 
2 2 2.201 .11 
3 3 3.235 .10 
4 4 5.862 .09 
5 5 5.944 .08 
6 6 7.514 .07 
7 7 8.397 .06 
8 8 9.756 .06 
9 9 .10.401 .05 

10 10 9.659 .05 
11 11 12.375' . .05 
12 12 14.125 .05 
13 13 14.729 .05 
14 14 12.622 .05 
15 15 15. ~'26 .06 
16 16 16.677 .06 
17 17 18.318 .07 
18 18 18.489 .08 
19 19 19.998 .09 
20 40 42.607 .62 

observed data point. Here, however, the largest Pi value is .6758 and occurs at i = 14, 

instead of the expected i = 20. Indeed the next largest of the Pi'S is P20 , with the value 

14 

r) 

I, 

,~ 

.) 

), 
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country involved in this set of data. \Ve should note that the data is from 1959 and 1960 

UN data. 

Table 5.2.
 

Probability of k outliers for the logistic model with Zellner-Moulton data.
 

1 2 3 4k I 0
p(k) .3566 .3732 .1961 .0611 .0130 
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APPENDIX I. The non-central T -distribution. 

Vle remind the reader that the definition of the classical non-central T -variable comes 

about as follows. Suppose Z and l-r are independent random variables with distributions 

given by 

Z '" N(O, 1) and lV '" \~ (AI.1 ) 

Then the non-central T -variable with non-central parameter ~. degrees of freedom t·. 

is defined as 

T = (Z + ~) (.41.2)
Jlr/v 

It is wry easy to see that the density of the random variable T as defined in (:\1.2) may 

be written as 

(AI.3) 
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or 

P(T :5 t) == P (z S ;q) = iP(u) (AI.10) 
1 + .c.

2" 

where u = (t-6) , and, Z '" N(O,l). Hence, the density function of T IS ,Jl + t 2 /2v 
differentiating, such that 

(AI.11) 

where of course ~(u) is the density of a N(O,l) random variable, and, to repeat. )1 
I 

(t - 6) 
(AI.12) 

u = .J1 + .~ 
2" 

,) 

\\ie haye that the Jacobian of the transformation from t to u given by (AI.12) has absolute 

value 

1 
111 = I~~ I 

so that the density of U IS 

that is, the density of U IS 

g(u) = 6(u) , 

and \\'e haw that, approximately, U has the density of a standard normal 

aLle. for large v, and the theorem is proyed. 
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1. INTRODUCTION.
 

The analysis of outliers from the Bayesian point of view has become increasingly 

interesting to the Statistical Profession because of the possibility of carrying out the diffi­

cult computations involved using new algorithms such as the Gibbs sampling method (see 

Gelfand and Smith (1990), or Casella and George (1992)). Also, specific algorithms have 

been developed to deal with the Bayesian treatment of outliers (Pefia and Tiao (1992)). 

Not only has the work on analysis of outliers proved useful in its own right, but it 

turns out that many other statistical problems can also be usefully analyzed by approaching 

these problems from the outlier point of view. As exanlples, we would cite: analysis of 

unreplicated fractional factional factorial designs to detect significant effects, see Box and 

Meyer (1986), Juan and Pefia (1992); detection of interaction in unreplicated ANO'-A 

designs, see Tussell (1990); estimation of missing observations in time series models, s~e 

Ljung (1989) and Pefia and Maravall (1991). 

There have been three main approaches to the problem of outliers in the literature. 

Succinctly, these may be classified as (i) the diagnostic approach (ii) the Bayesian approach 

and (iii) 'robust' approach to estimation and tests of hypothesis in the presence of outliers. 

The first approach is clearly identified with the work of Cook and Weisberg (1982), Belsley, 

huh and \Velsch (1980), and Atkinson (1985), and the aim of workers in this area is mostly 

that of identification of observations that may be deemed outlying and/or influential. The 

approach listed as (iii) above has been motivated by the \'v'ork of Huber (1981), ancl Hamp~l 

et al (1986), the aim here being to build estimatiors that are not affected by the fraction of 

tht> sample that is outlying. Trul~' in the middle and listed as such above, is the Bay{'~ian 

approach, which seeks to combine identification with estimation: see for example Box and 

Tiao (1968); Guttman et al (19i8), etc. Here, the identification is carried out using the 

posterior probabilities for an observation or a set of obsen'ations being outlying, ancl these 

are used as weights in estimation procedures. 
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In the Bayesian approach, two main categories have emerged. The first of these COIl­
" 

fines itself to postulating a (null) model for the generation of the data and then seek" 

identification methods for outliers with no alternative model to the null entertained. Ex­

amples of work in the category are (i) use of the predictive distribution for detection (ii) 

using the posterior probabilities of various unobserved pertubations and (iii) looking at 

the change in a posterior of interest when some observations are deleted. These methods 

will be discussed in Section 3 of this paper. 

The second category that has emerged takes into account an alternative model for 

the generation of a subset of the sample. As examples, various authors have proposed 

and utilized the mean-shift model and the variance-inflation model. These methods are 

discussed in Section 4 of this paper. 

All of the above will be compared and discussed in Section 5, where an illustrative 

example based on real data will be given. 

2, THE BASIC MODEL. 

In this paper we will be concerned with the univariate linear model 

y =,XfJ + f: (2.1 ) 

where y is a (n X 1) vector of normal random variables, X is a (71. X p) matrix of full 

column rank p < 12. fJ is a (p xl) vector of parameters and f: is a (71 xl) '·ector of 

normal ,·ariables. mean wctor 0 and with coval'iance matrix (12 In. This will be callf'tl 

the llull model in the rest of the paper. The estimation of the parameters (fJ, (12) will lJt' 

done assuming a non-infonnath'e prior 

(2.2 ) 

It is well known that in this case the posterior distribution for the parameters is such that 
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conditional on (12, we have 
-


fJ - N($;(12(X'X)-I) (2.3) 

where /J = (X'X)-lX'y, and p((12Iy,x) is such that 

(n - p)s2 
..0.-""";;"':"'_....., v 2(12 I\.n-p , (2.4) 

where 

(n - p)S2 =e'e =y'[I - H]y , (2.5) 

with H denoting the so called hat matrix 

H = X(X'X)-I X' . (2.6) 

We denote a set of k distinct integers chosen from the set (1, ... ,n) by I. Then, the 

vector y can be decomposed as 

I (' I )Y = Yl Y(1) (2.7) 

where (1) means "delete set I". Similarly, the X matrix can be partitioned as 

X' == [Xl X(I)] . (2.8) 

(The use of the symbol I without brackets means restrict information to the set I. ) 

Consistent with the above notation, we wi~l use in the rest of the paper the designations 

/J (1) = (X(l)X(1») -IX(l)Y(1) (2.9) 

s~1) == (Y(1) - X(1)/J(1»)I(Y(1) - X(1)/J(1»)/(n - p - k) (2.10) 

that is. /J (1) and $~l) are estimators of fJ and (12 based on (X(1),y(1»). etc. 

In contrast with the null model (2.1) we will be concerned in this paper with hvo 

alternative models. The first is the mean-shift model and takes the form for the generation 

of the observations y == (yj, Y(l))I • 

YI == X I fJ + a +El 
(2.11) 

4 



.
)'

I 

where a is a (k x 1) vector of mean-shift constants, and £ 1'" N(O,02 h) indf'pt'ndent 
0)'-

of £ (I) '" N(O, 0 
2 In-le). This model was used by Guttman (1973) and further utilized 

by Guttman et al (1978). 

The second model we will be involved with is the so-called variance-inflation model I) 
o. I 

which says that the distribution of £ of (2.11) is such that 

(2.12) 

where C\' is small and 62 > 1 is usually thought of as being large. These models haw 

been compared in Freeman (1980), Eddy (1980) and Pettit and Smith (1985). 

3. BAYESIAN IDENTIFICATION METHODS USING THE NULL MODEL. 

Several authors (for example, see Box (1980) , Geisser (1980,1987,1988), Pettit and 
~)	 I 

ISmith (1985) and Pefia and Tiao (1992)) have advocated the use of the predictive dish'i­

bution to arrive at methods for detecting outlying observations. A main idea here is to 

compute the predictive density 

(3.1 ) 

where Y1 is a vector of k observations, and where Y(l) is the sample data at hand on 

which the posterior for the vector of parameters 0' is based. For the linear models with 
()'

I 

I 

normal noise as given in (2.1), it is well known that for the non-informative prior (2.2) 

(3.2) 

where 
r (!!..=.£)

/{_	 2 (3.3 ) 
-	 r (t)'= r (n-r le ) (Tt _ P _ k)le/2 

and 

(3.4) 

5 



Here HI is the k x k block of the hat matrix H of (2.6) formed by using the 

and columns of H indexed by 1, or 

k rows 

HI = XI(X'X)-1 X} . (3.4a) 

Indeed, HI is refereed to as the "leverage of observations YI". 

Expression (3.2) could be written in another form that will be useful when comparing 

it to the other approaches to be discussed in this paper. In order to do so, we use the 

identity (see Cook and Weisberg, 1982, pg. 191) 

(n ­ P ­ k)S(I) = (n - p)s2 - e~{I - HI )-1 eI , (3.5) 

for then 
S2 n ­ p ­ k ( ej{I ­ HI)-1 eI )
-2-= 1+ 2
S(l) n-p (n-p-k)s(l) 

Here, we have partitioned the residual vector e, 

(3.6) 

e = (1 ­ H)y (3.6a) 

;'
'", 

usmg 

with X 

that 

= 

e = (ej,e(I»)' = (1 ­ H)(yj'Y(I»)' 

(Xj:X(I»)' used in constructing H = X(X' X)-1 X'. 

A -1
YI- XIfl(l) = (1 ­ HI) eI 

(3.6b) 

Now, it can be shown 

(3.7) 

c 

and, therefore, (3.4) itself can be written as 

Q 
ej{I ­ HI)-1 eI 

1 = 2(n - p - k)s(l) 

Hence, we may rewrite (3.2) as follows 

11 - HI1 1 
/ 
2 

( )/2
p(YIIY(l») = K 1 -1c/2 [1 +QI]- n-p 

( 
n-p .2)

n-p-1c .ll) 

6 

(3.8) 

(3.9) 

c 



and using (3.6), we find 

(3.10) 

where 

K = (n -p)S2 )_k/2 K. 
1 (3.11 ) 

n-p-k 

Note that p(YrIY(r») behaves in a rather expected way: the larger the studentized residual 

statistic (3.8), as measured by the quadratic function (3.8) that takes into account the 

leverage - the smaller the ordinate of the density (3.10). We also note that small ordinates 

could occur because of large leverage, due to the presence of the factor 11 - Hr1 1/ 2 in 

(3.10). Because of all this, many authors use the predictive to rank sets Yr, deeming 

these with lowest p(Yrly(/») as outliers. 

Another approach that utilizes the predictive distribution is the one by Johnson and 

Geisser (1983). They showed that when monotoring the change in the predictive distri­

bution when some observations are dropped, measures of influence and outlyingness can 

be built that are related to the standard ones used in the literature. Johnson and Geisser 

(1985) and Guttman and Peila (1988) extended these ideas to changes in certain posterior 

distributions. Recently, Guttman and Peiia (1992) ha\'e shown that the beha\'iour of thesE' 

changes are related to the probability of a group of observations being spuriously gener­

ated that is, generated not according to the null model. The probability will be precisdy 

defined and discussed in section 4. 

The third approach has been suggested by ChaloneI' and Brant (1988) and is bRs('(1 

011 the posterior probabilities 

P, = P(I£,I > qO'ly·X) (3.12) 

where the c, are the unobserved residuals, given by 

Cl = YI - x~fJ (3.13) 

7 
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Following the results outlined in Section 2, we have that the posterior distribution of the 
" 

Ci , as given by (3.13) conditional on 0'2 , is easily seen to be on using (2.3), such that 

(3.14) 

where fi = Yi - xi/J is the residual of the observation Yi, and h, is the i -th diagonal 

eleme~t of H given in (2.6), which is to say, hi is the leverage of Yi. Chaloner and Brant 

(1988) have shown that Pi of (3.12) can be written in the form 

(3.15) 

2 
2where r == 0- , so that p(rly,x) is the density of a ( Xn-j 2 variable, with 

n-ps 

(3.16) 

Chaloner and Brant (1988) discuss appropriate choices of q and then declare an observa­

tion Yi to be an "outlier" if its Pi is large. 

To help us interpret the properties of the Chaloner-Brant procedure, we will obtain 

an explicit formula for (3.15) as a function of the standard diagnostic measures. We may, 

of course, write p(ci,u2Iy,X) as 

(3.17) 

and from (3.14) and results of Section 2, we have that the right hand side of (3.17) is 

Now Pi as given in (3.15) may be written as Pi == Pil +Pi2 , where 

Pi1 == P(ei > quly; X) , Pi2 = P(ei < -quly; X) (3.19) 

Now 

(3.20) 

8 



and in view of (3.14), \Ve have 
j 
.I 

) 
1 

(3.21 ) 

and letting w =(n ­ p)s2 / (12 , we find that 

100 ( ~ )ea w q
Pli = 0 ~ .;riiSf n ­ p - v'hi hn _l'(w)dw, (3.22) 

::J 
1 

where, in general, 

(3.23) 

) 

is the density ofax~ -variable. Now it is proved in Appendix I of this paper that the 

right hand side of (3.22) is in the form of the probability that a non-central T -variable 

with (n - p) degrees of freedom, non-central parameter tJ. = q/A has value less than 

ei 1 . or equal to t = 1L7i' t lat IS, 
y hi s2 

" )1 

-.Ji 

Pli = P(T::; 
ea

1'L'""':21tJ. 
V hi s2 

= 
q
;r; Z! = 

yhi 
n - p) (3.24) 

and, as is well known, (details given in Appendix I), (3.24) has as an approximation, for 

moderate to large n, given by 

PI' 
I 
~ P(Z < 

-

t ­ Do 
)J . 2 

1 + 2(~-P) 
(3.25) 

" I
,) 

I 

where Z '" N(O, 1). that is, we have 

(3.25(1) 
'.J 1 

1 

Similarily. we may easily find that 

P2i =P(ci < -q(1ly; X) 

=1-100 ~ [~ 
o hi s2 C£+ ( ~)l hn _l'(w)dwV--;;=P Y hi 

(3.26 ) 

9 
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(3.26a) 

Hence, 

(3,2i) 

To summarize we have 

(3.28) 

with 

(3.28a) 

and 

U2 

(~-*) 
= J 21 e.+ 2h;(n:'p).2 

(3.28b) 

It can be shown that Ul and U2 can be written as: 

(~+*)
 
(3,29)

. / ---L- r~
V 1 + 2(n-p) "t 

(~-*)
 
U2 = --;======::;: (3.30)

. / ---L- r~
V1 + 2(n-p) "t 

where 1'i is the studentized residual ..js2(~i_ hi) ; 'and li is the measure of leverage giYt'll 

by 

(3.31 ) 

Now, suppose that 1'i is positive and fixed. If we now let hi --+ 1, that is. the If'Yt'Htge of 

the ohservation is very high, then li --+ 00 and Ul --+ q, U2 --+ -q and from (3.28). wt' 

see that Pi goes to 24>( -q) , which is the conditional probability, givell f:J, (12 that Yi is 

outlying ill the Chaloner-Brant sense, that is, 

24>(-q) == P[\Yi - x~f:J1 > qO'lp,(j2] (3.32) 

10 
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Therefore, the P03 terior probability of a high leverage observation Yi (hi ~ 1) being an 

outtier in the Chaloner-Brant sense, is, in moderate to large samples, very nearly 

'.) I 

lim Pi =24>( -q)
h,-l 

(3.33) 

regardle33 of the data, so that leverage is not always being treated by Pi of (3.15) in the 

way we would wish in moderate to large numbers. 

It is interesting to note the similarities between the Chaloner and Brant (1988) result 

for Pi, as stated in (3.15), and the approximation derived in this paper stated in (3.28). 

In fact, it is easy to see that after setting T in (3.15) equal to 

w 2 
T = ( ) 2 ' W '" Xn-pn-ps 

that Pi of (3.15) can be written as 

100 ( e' ~ q)4> -~ - - tr hn_p(w)dw 
o h i s2 n - p V hi 

100 ( ei ~ q)+ 4> .Ii:""'":'2 --- tr hn- p(w )dw 
o v hiS· n - p V hi 

while the approximation (3.28) is of course, 

(3.34) 

(3.35) 

) 

(3.36) 

where 

a= (3.36a) 

ei q
\\'e note that in (3.35) and (3.36). the signs attached to ~.2 and fr,. that appear in 

V HiS· V Hi 

4> functions are the same, but that the (approximate) effect of integration with respect to 

2' ~ I 1 . '1 1 I 'I I . q qu· '" 'xn- IS to remove -­ anc rep ace It WIt 1 -, W 11 e c langmg fr to tr' . 
P 12 - P a V hi aV hi 

4. BAYESIAN IDENTIFICATION METHODS USING ALTER~ATIVE ~10DELS . 

•Starting with the mean-shift model (2.11), it can be shown (see Guttman and Pena 

(1992)) that, conditional on k, the probability for a given set of k observations indexed 

11 

i 

)1 



c 

l- by I to be spuriously generated ise 
I 
I 
I	 (4.1 ) 

where 
( 

\. 

(4.2) 

and where the sum is taken over all sets I of size k of distinct integers from (1, ... ,11). 

C	 Now, on the other hand, it is interesting to note that for the variance inflation model 

(2.12), the probability that k observations indexed by I are generated with 'noise' e 

2given by N(O,62a ), 62 > 1, and (n-k) generated by N(O,a2 ) takes the form, as 

C proved in Box and Tiao (1968), 

0: ) k -k	 ( IX'XI ) 1/2 ( 82 ) 7
WI=C (	 - 6 - (4.3) 

1 - 0: IX'X - ~X}Xll sll) , 
.C	 where C is a normalizing constant that can be shown to be the probability of no outliers, 

and <:P = 1 - 6-2 
• (For a precise definition of .slI) see Box and Tiao (1968).) When ~ is 

large, it can be shown (Pelia and Tiao (1992)) that WI is approximately 

!e 
0: )k -K	 ( IX'XI )1/2 ( s2 )(7)

U'I-C	 -- 6 - (4.3a)(- 1 -	 0: IX(I)X(I) I slI) . 

\	 

Adding up the values WI for all sets of size k we obtain the probability of exactly k 

l outliers in the sample, and, in turn, by adding all the U'I'S up, the constant C could be 

obtained. 

For fixed k and 6 large, the conditional probability that a particular set of k ob­

2servations indexed by I are spuriously generated with noise \"ariances 62a is (Peiia and 

Tiao (1992)): 

(-1.4) 

which in	 turn can be written as 

(4.5) 

12 



and henee, for large n and small k, both probabilities C] and PI are essentially the ~.J 

same. 

As indicated in section 3 the predictive density has been advocated as a diagnostie tool. 

Interestingly, there is a strong connection between both C] (or PI) with the pl'edietive 

)density (3.2). 'Writing C] from (4.1) as v' 

(4.6) 

and using (3.6) and (3.8) we then have 

(4.7) 

Henee, from (3.10), we see that 

(4.8) 

that is to say that the posterior probability Cl is inversely proportional to the ordinate of a 

predictive density function with is related to the general k -variate student- t distribution 

with n - k - P degrees of freedom. The smaller the predictive ordinate, which occurs 

for large residuals in absolute value, the large the probability Cl that the corresponding 

observations are spuriously generated. 
..
i '. 

. /[ 
I 

5. T\VO ILLUSTRATIVE EXAMPLES. 

, .',\\Ve first illustrate the behaviour of the predietive and posterior probabilities for the 

residuals with a simulated example. \re have generated 20 observations using the model 

Y = 1 + J' +~, where € is N(O, 1). The values for y,J' are given in Table 5.1. 'We lHiH' 

induded a potential influential point by loeating X20 at 40. Then, we introduced an (HIt­ I 

Y 

lier by adding 4 to the original Yll , and proeeeding by then computing for this new set of 

data the probabilities for each observation to be an outlier using the posterior probabilities 

13 

, ) 
- I 



f Pi given by (3.15) with q = 2, and the Ci as given by (4.1), which is, as demonstrated 

in Section 4, inversely proportional to the predictive ordinate. As anticipated, tIlt' values 

for Pi are all very small, except for a large value of .9552 at i = 11, which is 2.2 

times greater than the next largest value that occurs at i = 14. As far as the Ci, the 

largest occurs at i = 11 with a value of .9708 which is 511 times greater than the next 

largest value, that occurs at i = 20. We note that the outlier will be idenitified by both 

procedures, although in a more powerful way by CS then by Pi. 

The next experiment we carried out was to introduce to the original set of data of 

Table 5.1 an outlier at the high leverage point X20 = 40 , by again adding 4 to the original 

Table 5.1. 

t, Data for the simulated example 

x y h 
1 1 1.955 .13 
2 2 2.201 .11 
3 3 3.235 .10 
4 4 5.862 .09 
5 5 5.944 .08 
6 6 7.514 .07 
7 7 8.397 .06 
8 8 9.756 .06 
9 9 .10.401 .05 
10 10 9.659 .05 
11 11 12.375' . .05 
12 12 14.125 .05 
13 13 14.729 .05 
14 14 12.622 .05 
15 15 15.726 .06 
16 16 16.677 .06 
17 17 18.318 .07 
18 18 18.489 .08 
19 19 19.998 .09 
20 40 42.607 .62 

observed data point. Here, however, the largest Pi value is .6758 and occurs at i == 14, 

instead of the expected i = 20. Indeed the next largest of the Pi'S is P20 , with the value 

14 



\.) 

.3761. This is in contrast to the behaviour of the Ci: the largest v~lue is C20 = .n393 

with the next largest Cu = .0326, that is C20 = 28.8cu . 

These results are in agreement with the theoretical results of Section 3, in which w\:, 

have shown that the behaviour of Pi could be unsatisfactory for high leverage points. 

As a second example we have chosen a set of data in which there are not pronounced 

differences among the leverages. For this purpose, we will use the consumption/income 

data, reported by Zellner and Moulton (1985). They compared the linear, log and logistic 

transformation for data obtained from 26 countries. The model we will use as our example 

is described as follows. Let, for the i th country, Zi be the permanent consumption 
,) 

"Iexpenditures and Ui be the permanent disposable income, both in a per capita basis and 
, 

define 
Z'!U·

Xi = log Ui and Yi = log • I (5.1 )
1 - Zi/Ui 

i 

The logit model is, in terms of Xi and Yi, is estimated by 
!) 

I 

2Yi =3.828 - .215,ri j 8 = .2236 . (5.2) 

Let us compare the behaviour of Pi and Ci for the logit model applied to this set 

of data. In order to have a prior probability that an observation is 'not an outHer equal 

to .99;. the value of q should be 3. Now for q = 3, the maximum Pi is PI. = .1634, 

followed by Pl8 = .0020. We conclude that the use of the Pi'S does not focus attention 

on anyone observation. 

Table 5.2 provides the probabilities of having exactly k outHers in the sample using 

the scale contaminated linear model (4.3a). for 6 = 5 and the prior probability of no 

ontliers equalling .95, as before. It can be seen that the most likely event is the presence' 

of one outlier. To identify which point has been spuriously generated, we turn to the 

conditional probabilities Ci as given by (4.1). The largest value is attained at £=14. and 

is Cl. = .5665, followed in magnitude by C18 = .0813, a factor of 7, approximately. The 

eighteenth observation corresponds to Japan, and, as it happens, it was the only Asian 

15 
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country involved in this set of data. We should note that the data is from 1959 and 1960 

UN data. 

Table 5.2.
 

Probability of k outliers for the logistic model with Zellner-Moulton data.
 

1 2 3 4
 
.3732 .1961 .0611 .0130
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APPENDIX I. The non-central T -distribution. 

c We remind the reader that the definition of the classical non-central T -variable comes 

about as follows. Suppose Z and IV are independent random variables with distributions 

given by 

Z '" N(O, 1) and W "" \~ (AI.l) 

Then the non-central T -variable with non-central parameter 6, degrees of freedom t'. 

is defined as 

T= (Z+6) (AI.2 )..jn-/v 
It is very easy to see that the density of the random variable T as defined in (A1.2) may 

be written as 

1pet) = /00 fii_ exp {_! [r;;t _A]2 11,,(w)dw (AI.3)Jo V-;; $ 2 V-;; 
16 



where h.,(w) is as given in (3.23). Now consider P(T ::; to) - we have Y 
i
i 

-" 

P(T ::; to) = -00 p(t)dt (ilIA)j 
t o 

so that, inverting the order of integration, we easily find (dropping the subscript zero on 

the particular value of T given by to that we were concerned with) that 

(AI.5) 

Hence, the right hand side of (3.22) and the integral of the second line of (3.26) are easily 

related to (AI.5), as indicated in (3.24) and (3.26a) respectively. 

Now in general, P(T ::; t) , where T is non-central with v, degrees of freedom and 

non-central parameter 6, has, for moderate to large v, a well known approximation, 

which we used in Section 2. This approximation, as we will see, rests on the well known 

result that for moderate or large v, that JW' = a has the approximate distribution 

given by (,:..- denotes "approximately distributed as") 

(AI.6) 

This result is easily obtained from the results of Fisher as quoted in Kendall and Stuart 

(1977, pg 400). Now we have that 

P(T::; t) = P(Z +6 $ :VJW) (AI.7) 

so that 

(AI.S) 

But for large v, using (AI.6), we have that 

(AI.9) 

Hence we have that 

P(T::; t) ~ P(U ::; -6) 

17 
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ie 
! 

or 
I 

C 
I 

peT ~ t) == P (z ~ g) = 4'(u) (041.10) 
1+~

2" 

where u = (t - ~) , and, Z '" N(O,I). Hence, the density function of T IS, 

'\

( 
.. 

Jl + t 2 /2v 
differentiating, such that 

p(t)~~(u)1~~ I , (041.11 ) 

C where of course ~(u) is the density of a N(O,I) random variable, and, to repeat. 

(t - ~) 
(.41.12) 

u= Jl+~ . 
2tl 

We have that the Jacobian ofthe transformation from t to u given by (AI.12) has absolute 

value
 

1
 

III = I~~ I 
so that the density of U is 

(Al.13)g(ti) ,: Il( ti) I~~ Ix ItI 
( 

that is, the density of U IS 

g(u) = 6(u) , 

and we ha\'e that, approximately, U has the density of a standard normal J\'(0.1) van­

able. for large v, and the theorem is proved. 
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