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Abstract 
 
General-to-Specific (GETS) modelling has witnessed major advances over the last 
decade thanks to the automation of multi-path GETS specification search. However, 
several scholars have argued that the estimation complexity associated with financial 
models constitutes an obstacle to multi-path GETS modelling in finance. We provide a 
result with associated methods that overcome many of the problems, and develop a 
simple but general and flexible algorithm that automates financial multi-path GETS 
modelling. Starting from a general model where the mean specification can contain 
autoregressive (AR) terms and explanatory variables, and where the exponential 
variance specification can include log-ARCH terms, log-GARCH terms, asymmetry 
terms, Bernoulli jumps and other explanatory variables, the algorithm we propose 
returns parsimonious mean and variance specifications, and a fat-tailed distribution of 
the standardised error if normality is rejected. The finite sample properties of the 
methods and of the algorithm are studied by means of extensive Monte Carlo 
simulations, and two empirical applications suggest the methods and algorithm are very 
useful in practice. 
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1 Introduction

General-to-Specific (GETS) modelling has witnessed major advances over the last
decade thanks to the automation of multi-path GETS specification search, see
amongst others Hoover and Perez (1999), Hendry and Krolzig (2001, 2005), Krolzig
(2003) and Doornik (2009).1 Key to this success is that estimation is essentially
by means of ordinary least squares (OLS) procedures, something which renders
automation of GETS multi-path specification search feasible. By contrast, most
financial models are highly non-linear and require complex optimisation algorithms
and inference strategies in empirical application. Examples of some of the estimation
issues that may need careful attention include multiple optima, numerical approxi-
mation, convergence issues, negative variance, initial values, parameter constraints,
finite sample approximations, and so on. For models with few parameters this may
not pose unsurmountable problems. But as the number of parameters increase the
resources and effort needed for reliable estimation and model validation multiply.
Indeed, this may even become an obstacle to financial multi-path GETS modelling,
as for example argued by Granger and Timmermann (1999), and McAleer (2005)
regarding automated GETS modelling of financial volatility.

We provide an analytical result that enables consistent least squares estima-
tion and inference of power log-GARCH models under very general assumptions
on the standardised error.2 This enables flexible methods that overcome many of
the estimation and inference complexity issues typically associated with financial
models. Next, building on the work on automated GETS modelling by Hoover and
Perez (1999), Hendry and Krolzig (2005) and Doornik (2009), and on the study by
Bauwens and Sucarrat (2008) on GETS modelling of financial volatility, we propose
a general and flexible model framework and develop associated algorithms that au-
tomate multi-path GETS modelling. Starting from a general model where the mean
specification can include autoregressive (AR) terms and explanatory variables, where
the exponential variance specification can include log-ARCH and log-GARCH terms,
asymmetry terms, Bernoulli jumps and other explanatory variables, our algorithm
returns parsimonious mean and variance specifications, and a generalised error dis-
tribution (GED) of the standardised error. (Our algorithm can readily be extended
to include other densities in the search space like, say, the standardised Student’s
t and skewed versions, this is simply a programming issue.) The parameters of the
variance specifications in the model we propose are consistently estimated, and in-
ference regarding the parameters is performed by means of standard least squares
theory. The Bernoulli jumps in the variance specification can be stochastic in the
sense that they are not conditioned upon, so we label the model a stochastic expo-

1GETS specification search is closely related to, but not the same as, the GETS methodology,
see Campos et al. (2005) for a comprehensive overview of the GETS methodology, and Mizon
(1995) for a concise overview.

2“GARCH” is short for generalised autoregressive conditional heteroscedasticity, and the origins
of the acronym are Engle (1982) and Bollerslev (1986).
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nential ARCH (SEARCH) model. The acronym also connotates our main motivation
for the model, namely that it facilitates specification search.

The finite sample properties of the methods and algorithms we propose and de-
velop are evaluated by means of extensive Monte Carlo simulation, and by means of
two empirical applications. Under the null of financial returns being IID, our multi-
path GETS algorithm performs substantially better than the multi-path GETS al-
gorithms of Hoover and Perez (1999), PcGets (Hendry and Krolzig 2005) and Auto-
metrics (Doornik 2009). In particular, our algorithm is less likely to retain irrelevant
variables. This comes to some extent at the price of our algorithm’s power to de-
tect relevant variables, but we believe a conservative algorithm is more suitable for
financial economics and business finance. Financial markets are notoriously difficult
to predict ex ante, and falsely suggesting predictive or explanatory power by retain-
ing irrelevant variables may potentially lead to substantial losses and damage if the
model is used to guide investment decisions by business, or if the model is used to
guide policy decisions.

In addition to being a contribution to the GETS specification search literature,
the estimation and inference methods we propose is also a contribution to the theo-
retical literature on exponential volatility models. To our knowledge, there currently
exists no general estimation procedure that provides consistent estimates of general
classes of exponential variance specifications with ARCH, see Linton (2008), and
Mikosch and Straumann (2006).3 The least squares estimation methods we pro-
pose for the power log-GARCH(P, Q) model consistently estimates the parameters
of interest under very general assumptions on the standardised error. Also, our sim-
ulations suggest the least squares methods compares favourably to Quasi Maximum
Likelihood (QML) methods when the standardised error is non-normal.

The rest of the paper is organised into four sections and one appendix. The
next section, section 2, outlines the overall statistical framework and the SEARCH
model. Section 3 studies the properties of our automated GETS algorithm through
extensive Monte Carlo simulation. Section 4 contains two empirical applications
of the methods and algorithms. Section 5 concludes, whereas the final part of the
paper is an appendix with various supporting information.

3The only exception we know off is Dahl and Iglesias (2008), which proves consistency of Gaus-
sian Quasi Maximum Likelihood (QML) for an exponential GARCH(1,1) structure that nests the
(second power) log-GARCH(1,1), but not the EGARCH(1,1). Their result is limited, however,
since it assumes no mean specification, and since it does not apply to higher order GARCH mod-
els, say, log-GARCH(2,1).
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2 Statistical framework

2.1 The power log-GARCH model

The log-GARCH model can be viewed as a dynamic version of Harvey’s (1976)
multiplicative heteroscedasticity model, and the log-GARCH model was proposed
by Pantula (1986), Geweke (1986) and Milhøj (1987). One of the main motivations
for the log-GARCH is that it ensures non-negative variances. However, it does so
at the cost of possibly applying the log-operator on zero-values. If the residuals are
rarely equal to zero, then this is not a serious shortcoming in practice. Nevertheless,
this problem is not present in the EGARCH model of Nelson (1991), which might
explain why so little work has been explicitly devoted to the log-GARCH model
since the 1980s.4

The power log-GARCH model is given by

εt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, σt > 0 (1)

log σδ
t = α0 +

P∑
p=1

αp log |εt−p|δ +

Q∑
q=1

βq log σδ
t−q, δ > 0, (2)

where P is the ARCH order, Q is the GARCH order and δ is the power. If {εt}
are residuals resulting from an estimation procedure of a mean equation, then the
estimation methods we propose further below are generally valid as long as each
residual is a consistent estimate of the corresponding error with probability 1.

The error εt can be written as σtzt = σ∗t z
∗
t , where

σ∗t = σtE(|zt|δ)1/δ, z∗t =
zt

E(|zt|δ)1/δ
, E(|z∗t |δ) = 1. (3)

This decomposition is useful because it enables an ARMA representation of the
power log-GARCH specification that is readily estimable by means of ordinary es-
timation methods. For example, the power log-ARCH(1) specification is given by
log σδ

t = α0 +α1 log |εt−1|δ. Adding log E|zt|δ +log |z∗t |δ to each side and then adding
E(log |zt|δ) − E(log |zt|δ) to the right-hand side, yields the AR(1) representation
log |εt|δ = α∗0 + α1 log |εt−1|δ + u∗t , where α∗0 = α0 + log E|zt|δ + E(log |z∗t |δ), and
where u∗t = log |z∗t |δ − E(log |z∗t |δ) is a zero-mean IID process. For known power δ,
the parameters α∗0 and α1 can thus be estimated consistently by means of ordinary
estimation methods (least squares, QML, etc.) subject to usual assumptions. In or-
der to recover α0 we need estimates of log E|zt|δ and E(log |z∗t |δ), and the proposition
we state below provides very simple formulas for consistent estimation of log E|zt|δ

4Some of the theoretical results in later work, see for example Nelson (1991) and Dahl and
Iglesias (2008), apply to structures that nest the log-GARCH model. But these works do not have
the log-GARCH model as their main focus.

3



and E(log |z∗t |δ) under very general assumptions. More generally, the power log-
GARCH(P,Q) model with P ≥ Q admits the ARMA(P, Q) representation

log |εt|δ = α∗0 +
P∑

p=1

α∗p log |εt−p|δ +

Q∑
q=1

β∗qu
∗
t−q + u∗t , (4)

where

α∗0 = α0 + (1−
Q∑

q=1

βq) ·
[
log E|zt|δ + E(log |z∗t |δ)

]

α∗1 = α1 + β1

...

α∗P = αP + βP

β∗1 = −β1

...

β∗Q = −βQ,

and where u∗t = log |z∗t |δ − E(log |z∗t |δ) as earlier. When P > Q, then βQ+1 = · · · =
βP = 0 by assumption. Also, it should be noted that the equations are not affected
by the inclusion of explanatory variables in the log-variance specification (2). The
consequence of all this is that consistent estimates of all the ARMA parameters—and
hence all the log-GARCH parameters except α0—can readily be obtained by means
of common estimation procedures (least squares, QML, etc.) subject to usual as-
sumptions,5 as long as the power δ is known, and as long as P ≥ Q. If P < Q,
then non-standard, restricted estimation procedures are needed. To see this consider
for example a power log-GARCH(0,1) model whose ARMA(1,1) representation is
log |εt|δ = α∗0+β1 log |εt−1|δ−β1u

∗
t−1+u∗t (the AR and MA parts have common roots).

It is also worth noting the ease with which certain non-stationary power log-GARCH
specifications can be formulated and estimated. For example, an integrated power
log-GARCH(1,1) with specification log σδ

t = α0 + (1 − β1) log |εt−1|δ + β1 log σδ
t−1

can be written as the MA(1) representation ∆ log |εt|δ = α∗0 + β∗1u
∗
t−1 + u∗t . More

generally, if log σδ
t is I(1), then the estimates of the stationary AR(P ) represen-

tation ∆ log |εt|δ = α∗0 +
∑P

p=1 αp∆ log |εt−p|δ + u∗t can in many cases be used to
obtain estimates of the non-stationary representation, or at least as a reasonable
approximation.

In order to recover α0 we need estimates of log E(|zt|δ) and E(log |z∗t |δ), and
the following proposition gives very general conditions under which they can be
estimated consistently after estimation of the ARMA-representation (4).

5For example, in the case of estimating the AR(P ) representation by means of OLS, the most
important assumptions for the current purposes are that the roots of (1− α1c− · · · − αP cP ) = 0
are outside the unit circle, that E(u∗2t ) < ∞ and that E(u∗4t ) < ∞. The conditions E(u∗2t ) < ∞
and E(u∗4t ) < ∞ are satisfied when zt ∼ GED(τ).
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Proposition 1. Suppose the power δ is known and that P ≥ Q. Suppose further
that a consistent estimation procedure of the ARMA representation (4) of the power

log-GARCH model (1)-(2) exhibits the property û∗t
P−→ u∗t for each t, where {û∗t}

are estimates of {u∗t}. If 0 < E|zt|δ < ∞ and if |E(log |zt|)| < ∞ is an event with
probability 1, then

a) − log

[
1

T

T∑
t=1

exp(û∗t )

]
P−→ E(log |z∗t |δ) (5)

is an event with probability 1, and

b) − log

[
1

T

T∑
t=1

ẑ∗2t

]δ/2

P−→ log E|zt|δ (6)

is an event with probability 1, where {ẑ∗t } = {εt/
δ
√

σ̂∗δt }.
Proof: See appendix.

When the power δ is equal to 2, then log E|zt|δ = 0 and so the second correction b)
is not needed. The a) can thus be viewed as a correction due to the application of
the logarithm operator, and b) can be viewed as a “power correction”. The property

û∗t
P−→ u∗t is essentially a consequence of consistent estimation. For the two most

common powers, δ = 1 and δ = 2, the proposition holds under very general assump-
tions. Specifically, the conditions 0 < E|zt|δ < ∞ and |E(log |zt|)| < ∞ are satisfied
for the most commonly used densities in finance: The Normal, the GED and the
Student’s t (with an appropriate number of degrees of freedom). It should also be
noted that the proposition is likely to hold in many cases if the {εt} are estimated

in a previous step, as long as the estimation procedure exhibits ε̂t
P−→ εt for each

t. In words, in sufficiently large samples the estimated residuals are distributed as
the true errors, and so are the {log |ε̂t|δ} with probability 1 due to continuity. An
important example is the case where one fits a power log-ARCH(P ) specification to
log |ε̂t|δ by means of OLS. In particular, under well-known and general assumptions
the SEARCH model can consistently be estimated by means of OLS when there are
no log-GARCH terms in the mean specification. Table 1 contains some simulations
that sheds light on the finite sample accuracy of some ordinary estimation methods
for selected specifications. Table 2 compares OLS with Gaussian (Q)ML estimation
for the log-ARCH(1) case. Although the simulations are admittedly incomplete,
they nevertheless suggest that OLS compares favourably to QML when the stan-
dardised errors are non-Gaussian. When this is the case, then OLS exhibits smaller
finite-sample estimation bias of the parameters, and the estimation variances are
comparable to or smaller than those of QML.
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2.2 The SEARCH model

The power log-GARCH model is nested by the SEARCH model, and so it is useful
to establish a general and compact notation. We do this in terms of a “generalised
SEARCH” (GSEARCH) model, which nests the SEARCH model. Indeed, several of
the methods we discuss are applicable not only to the SEARCH model, but also to
many more general structures contained in the GSEARCH model. The GSEARCH
model is given by

rt = µ(ψ,vt) + εt, (7)

E(rt|It) = µ(ψ,vt), (8)

εt = σtzt, zt|It ∼ IID(0, 1), σt > 0, (9)

log σ2
t = g(γ,wt). (10)

The economic interpretation of rt we have in mind is financial return, but it can of
course be interpreted differently. The vt is a (1 × K) vector of contemporaneous
and/or lagged variables in the mean function µ, and the property (8) means the
expectation of rt conditional on the information set It (made precise below; for now
suffice to say that vt ⊂ It) is equal to the mean specification µ(ψ,vt). The wt

is a (1 × L) vector of contemporaneous and/or lagged variables in the logarithmic
variance specification log σ2

t . The dimensions of the parameter vectors ψ and γ
do not necessarily correspond to the dimensions of vt and wt, respectively, which
means that µ or g (or both) can be non-linear. The conditioning information It can
include both contemporaneous and/or lagged variables, and vt∪wt is not necessarily
contained in It. In particular, if some (or all) of the variables in wt are not contained
in It, that is, if wt − It 6= ∅ where “−” is the set-difference operator, then we may
refer to σ2

t as a stochastic variance or volatility (SV) specification.
If automated multi-path GETS modelling is an objective, then there are limits6

to the specification of µ and g. An example of a general and flexible structure that is
amenable to automated multi-path GETS modelling is what we label the SEARCH
model. It is for this model that we develop automated GETS multi-path algorithms
for. In words, the SEARCH model can be described as an AR(M) specification
with explanatory variables in the mean, and as a power log-GARCH(P, Q) specifi-
cation with an asymmetry term, Bernoulli jumps and explanatory variables in the

6One should maybe add the qualifier “current”, because future developments are likely to
broaden the class of models that are amenable to automated GETS modelling.
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logarithmic variance specification. Specifically, the SEARCH model is given by

rt = φ0 +
M∑

m=1

φmrt−m +
N∑

n=1

ηnxnt + εt (11)

εt = σtzt, zt
IID∼ GED(τ), τ > 1 (12)

log σδ
t = α0 +

P∑
p=1

αp log |εt−p|δ +

Q∑
q=1

βq log σδ
t−q + λ(log |εt−1|δ)I{zt−1<0}

+(log κδ)Jt + ω0 log EWMAt−1 +
D∑

d=1

ωdydt, P ≥ Q, δ > 0 (13)

Jt ∈ {0, 1}, Jt ∼ IID, Jt ⊥ zt, κ ≥ 1 (14)

In the mean specification (11) φ0 is the mean intercept, M is the number of autore-
gressive (AR) terms and N is the number of other conditioning variables that may
be contemporaneous and/or lagged. Moving average (MA) terms are not included in
the mean specification in order to simplify estimation and specification search. How-
ever, proposition 1 is valid subject to general conditions if MA terms are included.
One thing the proposition does not admit, though, is GARCH-in-mean terms.7 The
standardised errors {zt} are IID and follows a Generalised Error Distribution (GED)
with shape parameter τ . Hence, if vt ⊂ It, then E(zt|It) = 0 and V ar(zt|It) = 1 for
all t. When τ = 2 the GED is equal to the standard normal. When 1 < τ < 2 then
the GED has thicker tails than the standard normal, whereas when τ > 2 then the
GED has thinner tails than the standard normal. In particular, when τ → 1 then the
GED tends to a double exponential distribution, and when τ → ∞ then the GED
tends to a uniform distribution on the interval [−√3,

√
3]. An important motivation

for the GED is that, in addition to containing the normal as a special case, it allows
for both fatter and thinner tails than the normal. The former is a common property
of financial returns, whereas the latter is a real possibility in explanatory financial
return modelling, since the distributional properties of {zt} depends on the explana-
tory power of the information in the mean and variance specifications (cf. Bauwens
and Sucarrat 2008, and Sucarrat 2009). Another advantage of the GED is that,
under certain conditions, it ensures that the SEARCH exhibit finite moments, see
Nelson (1991). By contrast, a commonly used alternative distribution for which this
is not necessarily the case is the t distribution.8 In the logarithmic variance speci-
fication (13), P is the number of log-ARCH terms, Q is the number of log-GARCH

7This is not necessarily a serious drawback, since proxies for financial variability (functions of
past squared returns, bid-ask spreads, function so high-low values, etc.) that can be included as
regressors in the mean are readily available.

8On the other hand, an advantage with the t distribution relative to the GED distribution is
that the t distribution allows for fatter tails.
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terms and δ is the power. λ is the impact of the logarithmic asymmetry term analo-
gous to that of Glosten et al. (1993),9 κ ≥ 1 is the jump-size (κ = 1 means no jump)
of the Bernoulli jump process {Jt}, EWMAt−1 is an equally weighted moving aver-
age computed as (1/T ∗)

∑T ∗
t∗=1 |εt−t∗ |δ where T ∗ is the length of the moving average,

and D is the number of other conditioning variables that may be contemporaneous
and/or lagged.10 It should be noted that the term log EWMAt−1 can be viewed
as a local approximation to log σδ

t−1. The advantage with log EWMAt−1 compared
with log σδ

t , though, is that it is more general and flexible, it is simpler to estimate,
and ordinary least squares inference can be used regarding the parameter ω0. The
conditioning information set It contains past values of rt, contemporaneous and past
values of the xnt, contemporaneous and past values of σt, past values of zt, contem-
poraneous and past values of the jumps Jt, and contemporaneous and past values of
the ydt. In other words, It contains the contemporaneous jump Jt. When the condi-
tioning information set does not contain the contemporaneous jumps, a case which
we will label Isv

t , then the variance specification σδ
t is stochastic. However, the con-

temporaneous independence with zt implies nevertheless that the moment structure
is similar to that of ARCH models when δ = 2: E(εt|Isv

t ) = E(σt|Isv
t )E(zt|Isv

t ) = 0,
V ar(rt|Isv

t ) = V ar(εt|Isv
t ) = E(σ2

t |Isv
t )E(z2

t |Isv
t ) = E(σ2

t |Isv
t ), and conditional vari-

ability E(r2
t |Isv

t ) = [E(rt|Isv
t ]2 + E(σ2

t |Isv
t ). The conditional variance E(σ2

t |Isv
t ) =

σ2
t is equal to exp(α0 +

∑P
p=1 αp log ε2

t−p +
∑Q

q=1 βq log σ2
t−q + λ(log ε2

t−1)I{zt−1<0} +∑D
d=1 ωdydt) · E(κ2Jt), where the term E(κ2Jt) = [Prob(Jt = 0) + κ2 · Prob(Jt = 1)]

is due to the fact that the jumps are not in the conditioning set Isv
t . Note that

an equivalent parametrisation is simply to move E(κ2Jt) inside the exponent by
adding log E(κ2Jt) to the log-variance intercept α0. It should also be noted that
estimation remains straightforward when the jumps are not in the conditioning
set. The only changes are that α0 must be replaced by α0 + log E(κ2Jt), and
that zt must be replaced by κJtzt/

√
E(κ2Jt). Without jumps, that is, log κ2 =

0 (or alternatively κ = 1), then the conditional variance E(σ2
t |Isv

t ) is equal to
exp(α0 +

∑P
p=1 αp log ε2

t−p +
∑Q

q=1 βq log σ2
t−q + λ log ε2

t−1I{zt−1<0} +
∑D

d=1 ωdydt). Fi-
nally, if λ = κ = ω1 = · · · = ωD = 0, then modulus greater than one for all the roots
of the polynomial equation [1 − (α1 + β1)c − · · · − (αP + βP )cP ] = 0 is a sufficient
condition for stability in the variance of rt.

9One may readily include more asymmetry terms, or alternatively consider other asymmetry
specifications, for example those of Ding et al. (1993). The question of which approach to asym-
metry that is most appropriate we leave for future research.

10The parametrisation (log κδ) is attractive because of its exponential counterpart. For example,
consider the specification log σδ

t = α0 +(log κδ)Jt. Most of the time, in the absence of jumps (that
is, when Jt = 0), the conditional standard deviation is σt = exp(α0/δ). When jumps occur then
σt = exp(α0/δ)κ. In words, the standard deviation σt is a κ multiple of the “normal” standard
deviation exp(α0/δ).
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2.3 Least squares inference in the SEARCH model

In many practical finance applications the mean is either equal to zero or ade-
quately treated as if equal to zero. Or, alternatively, the residuals from the mean
specification are treated as if observable. When this is the case, and when the log-
arithmic variance specification does not contain log-GARCH terms, then inference
regarding the parameters γ—apart from the first element α0—can be undertaken
by means of the usual ordinary least squares theory. When log-GARCH terms enter
the log-variance specification, then a different inferential approach is needed for the
log-ARCH and log-GARCH terms, but not for α0 and the vector ω.

Suppose no log-GARCH terms enter the log-variance. In this case, if W is the
matrix of observations on the regressors of the logarithmic variance specification
(13) fitted to log |εt|δ, that is, the first column consists of ones and each row of W
is equal to the vector wt, then the usual test statistic

γ̂∗k
se(γ̂∗k)

(15)

is approximately N(0, 1) in large samples for k = 2, . . . , K under the null of γk = 0.
The γ̂k is the OLS estimate of the kth. coefficient, and se(γ̂k) is the kth. ele-
ment of the diagonal of the ordinary covariance matrix estimate σ̂2

u∗t
(W′W)−1. The

σ̂2
u∗t

is the estimated standard error of u∗t and equal to 1
T−K

∑T
t=1 û∗t . In order to

conduct asymptotic inference regarding α0, we may proceed by means of a Wald
parameter restriction test. Specifically, when δ = 2, given the estimate α̂∗0, we may
straightforwardly test α = 0 by testing whether α̂∗0 is equal to − log Ê[exp(û∗t )]. The
Wald-statistic under the null of α = 0 then becomes

{α̂∗0 + log Ê[exp(û∗t )]}2

V̂ ar(α̂∗0)
,

where V̂ ar(α̂∗0) is the ordinary coefficient variance estimate of α∗0.
When the logarithmic variance specification contains log-GARCH terms, then

one might consider using the usual theory for inference regarding the parameters
of the ARMA representation. However, it is doubtful that this theory will be of
great value in practice, since the AR and MA coefficient estimates will typically be
strongly correlated. An alternative approach is to use the property that a stationary
log-GARCH specification is invertible. One may then approximate the log-GARCH
specification by means of a (possibly long) log-ARCH specification, and next conduct
inference on each of the lags. Another alternative approach is to use an information
criterion (in the standardised error {zt}) to select between alternative specifications.
A third approach is to treat the regressor log EWMAt−1 as a local approximation
to log σδ

t−1, and undertake ordinary inference on the associated parameter ω0.
Table 3 contains the simulated finite sample size for five coefficient tests when a

nominal size of 5% is used, and when δ = 2. The simulations suggest least squares
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inference is appropriately sized in finite samples for the first four tests, since the sim-
ulated rejection frequencies range between 4% and 6% for most sample sizes. There
are signs of over-sizedness in very small samples (T = 10) in the test of ω = 0. But
this is not serious because the oversizedness is small (between 3% and 4% points),
and because the convergence to around 5% is quick. Finally, the fifth coefficient test

is a two-sided test of the hypothesis α0 = 0 when rt
IID∼ GED(τ), which implies that

α0 = 0. The simulations suggest the Wald test is undersized, since the simulated
rejection frequencies are close to 0%. Deviations from the normal brings the size
closer to the nominal, but the discrepancy is nevertheless still substantial. This
might suggest that the test lacks power to reasonable departures from the null of
α0 = 0. However, additional simulations (not reported) suggest this is not the case.
Even though the Wald test is undersized under the null, the test carries reasonable
power even when the departure from the null is small.

3 Financial multi-path GETS modelling

In this section we propose and study a simple but straightforward and very flexible
algorithm for financial multi-path GETS modelling of the SEARCH model, in the
case where δ = 2. We underline that the algorithm can possibly be improved
in numerous ways that suggest themselves naturally, but we leave this for future
research. The results in this section should therefore be viewed as a “minimally”
achievable starting point or lower bound.

The automated GETS algorithm we propose can be viewed as consisting of three
stages, whose starting point is an overall General Unrestricted Model (GUM). That
is, a model with general unrestricted mean (MGUM) and variance (VGUM) spec-
ifications. The first stage consists of multi-path GETS specification search of the
MGUM specification, while the VGUM specification remains unchanged. The sec-
ond stage consists of multi-path GETS specification search of the VGUM specifi-
cation while the parsimonious mean specification remains unchanged. Finally, the
third stage consists of fitting a GED density to the standardised residuals and test-
ing against normality. If normality is rejected, then the estimated GED density
is returned as the distribution of the standardised residuals. The purpose of this
section is to study the properties of this algorithm through Monte Carlo simulations.

In the Monte Carlo simulations we will focus on three statistics. Let k0 denote
the number of relevant variables in the GUM, and let k1 denote the number of irrel-
evant variables in the GUM. The first statistic is simply the probability p(DGP ) of
recovering the DGP exactly, that is, the probability of selecting a model such that
p(k̂0 = k0, k̂1 = 0). This statistic is intimately related to what in a multiple hy-
pothesis testing context is called the Family-Wise Error (FWE), which is simply the
probability of making one or more false rejections.11 Specifically, in a GETS context

11The methods of White (2000), Hansen (2005), and Romano and Wolf (2005) are examples of
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the FWE is 1-p(DGP ), and consistent model selection implies that p(DGP ) tends
to 1 as the sample size goes to infinity, or alternatively that the FWE tends to 0.
As pointed out by Romano et al. (2008), however, the FWE is rather conservative,
and the FWE may at any rate not be the error rate of greatest interest. The two
statistics of (arguably) greatest interest in a GETS context are the average rele-
vance proportion M(k̂0/k0), which is analogous to statistical power in a hypothesis
testing context and which Doornik (2009) calls “potency”, an the average irrele-
vance proportion M(k̂1/k1), which is analogous to statistical size in a hypothesis
testing context and which Doornik (2009) terms “gauge”. These two statistics can
be viewed as a more detailed characterisation of the expected value of the False
Discovery Proportion (FDP), see Romano et al. (2008).

The section is divided into four subsections. In the first subsection we compare
our algorithm with other multi-path GETS algorithms. Since the other algorithms
have only been studied in modelling the mean with homoscedastic errors, the focus
in that subsection will exclusively be on modelling the mean with homoscedastic
errors. The second subsection studies the properties of our algorithm in modelling
the mean when the errors are heteroscedastic. The third subsection studies the
properties of our algorithm in modelling the conditional variance, whereas the final
subsection studies the properties of the automated density modelling part of our
algorithm.

3.1 Comparison with other multi-path GETS algorithms

Three multi-path GETS specification search algorithms have previously been studied
in the academic literature: The algorithm proposed by Hoover and Perez (1999,
henceforth HP), the PcGets algorithm proposed by Hendry and Krolzig (1999, 2001,
2005), and the Autometrics algorithm (Doornik and Hendry 2007, Doornik 2009).
The way our algorithm undertakes multi-path GETS specification search in stages
1 and 2 is essentially a straightforward improvement of the HP algorithm. But in
order to distinguish our algorithm from that of Hoover and Perez we will refer to
our algorithm as AutoSEARCH.12 The purpose of this subsection is to compare the
specification search properties of AutoSEARCH with HP, PcGets and Autometrics.
The latter three algorithms have all been developed for and studied in the modelling
of a mean specification with homoscedastic residuals, so the simulations in this
subsection will exclusively focus on modelling the mean under the assumption of
homoscedastic variance. In this case, AutoSEARCH proceeds as follows:

approaches that seek to control the FWE.
12We intend to make the code developed for this paper freely available as an (open source) R

package with the name AutoSEARCH. This is work in progress (Sucarrat 2009) and those who
are interested in the code are encouraged to email the corresponding author. Notification will be
given as soon as a beta version of the code—with documentation—is available.
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Step 1. Formulate a general unrestricted mean GUM (MGUM) of the form

rt = vtψ + εt, εt = σzt, zt ∼ IID(0, 1), (16)

where vt is (1 × k), and where vt includes a constant and possibly lags of rt and
other explanatory variables. By assumption, k0 ≥ 0 of the k regressors are relevant,
k1 ≥ 0 are irrelevant and k0 + k1 + 1 = k. The “+1” is due to the constant, which
is restricted from removal in the simulations of AutoSEARCH.

Step 2. Define the number of paths to be searched as equal to the number of
insignificant variables in the GUM. The first insignificant variable constitutes the
first variable to be removed in path 1, the second insignificant variable constitutes
the first variable to be removed in path 2, and so on.

Step 3. After removal of the first variable in a path in step 2, then subsequent sim-
plification in each path is undertaken using a stepwise step-down procedure (“single-
path” GETS), where the regressor with highest p-value is deleted at each removal
until all remaining regressors are significant. At each removal the standardised resid-
uals are checked for autocorrelation and ARCH using a Bonferroni correction.13 If
removal induces either autocorrelation or heteroscedasticity (or both), then the vari-
able is re-included and subsequently restricted from removal in the simplification
search in that path (but the variable is not restricted from removal in other paths).
The single-path GETS is undertaken for each of the paths.

Step 4. Form a list of models that contain the distinct models of the multi-path
simplification search in steps 2 and 3. The GUM and an empty model, which
contains none of the k0 + k1 regressors under consideration, are included in the list.
But the empty model is included in the list only if it passes the diagnostic tests.

Step 5. Select the best model from the list according to an information criterion
(Schwarz is used in the simulations) that is computed using the log-likelihood of the
standardised residuals.

The AutoSEARCH algorithm can be viewed as a modified version of the HP al-
gorithm of Hoover and Perez (1999). The most important differences between the
two algorithms are two. First, the HP algorithm is restricted to search a maximum
of 10 paths, because this—in Hoover and Perez’s view—resembled what users of
the GETS methodology did in practice (prior to the existence of multi-path GETS
specification search software). The number of paths in the AutoSEARCH algorithm

13For example, if a nominal level of 5% is chosen, then the autocorrelation and ARCH tests are
each checked for significance using a level equal to the chosen nominal level divided by the number
of diagnostic tests. Here, the number of tests is two and so the Bonferroni adjusted level is 2.5%.
Simulations (not reported) suggests the Bonferroni correction is appropriate as long as the sample
size is greater than 50.
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by contrast is not limited to 10, but to the number of insignificant variables in the
GUM. This change improves the ability to detect relevant variables. The second
important difference compared with HP is that AutoSEARCH always tries to in-
clude an empty model in the list of models that are compared. The empty model
contains none of the considered regressors, but it is included only if it passes the
diagnostic tests. The effect of this is that the ability to exclude irrelevant variables
is improved, and a much better capacity to recover the simulation DGP when the
left-side variable is IID and not under the influence of any of the regressors con-
sidered. This capacity is a desirable property, since the IID assumption is a very
common and useful structure in many financial applications. Further differences
(of less importance) between HP and AutoSEARCH concern which and how many
diagnostic checks that are performed.

The first main difference between the PcGets algorithm of Hendry and Krolzig
(2005) on the one hand and the HP and AutoSEARCH algorithms on the other,
is that PcGets is a “multi-round” algorithm, whereas HP and AutoSEARCH are
“single-round” algorithms. Whereas HP and AutoSEARCH select between models
from a first-round multi-path GETS simplification search, PcGets goes on to do
a second round multi-path search if more than one model results from the first
round. Starting from a GUM made up of the union of the models from the first
round, PcGets continues the multi-round search until only a single model results, or
alternatively until the resulting models are equal to the models from the previous
round. The main effect of multi-round search is an increased ability to retain relevant
variables. However, it does to some extent come at the cost of excluding irrelevant
variables. The Autometrics of Doornik (2009) proceeds similarly to PcGets, but
Autometrics searches more paths (by means of a “tree search” method) than PcGets
at each round. A second main difference between HP and AutoSEARCH on the one
hand and PcGets and Autometrics on the other, is that the latter two are calibrated
such that the average irrelevance proportion is equal to the chosen nominal size.
In HP and AutoSEARCH by contrast the design philosophy is that the average
irrelevance proportion should tend to a value bounded from above by means of
the chosen overall diagnostic level as the sample goes to infinity. For example, if
the overall chosen diagnostic level is 5% (as in the simulations), then the average
irrelevance proportion will tend to a value somewhere between 0 and 0.05. The exact
value will depend on the exact nature of the DGP. Similarly, p(DGP ) will tend to a
value about 1 minus the chosen overall diagnostic level. For example, for an overall
diagnostic level is 5%, then p(DGP ) will tend to about 1 - 0.05 = 0.95.

In order to compare AutoSEARCH with HP, PcGets and Autometrics, we study
AutoSEARCH in Monte Carlo experiments that have previously been run for the
three other algorithms. The experiments are listed in table 4, and the results of
experiments HP0, HP2’ and HP7’ are contained in table 5. The first important fea-
ture that emerges from the results is that AutoSEARCH fares very well in deleting
irrelevant variables compared with the other algorithms. In experiment HP0, where
none of the regressors matter, AutoSEARCH recovers the DGP about 94% of time.
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Having in mind that the GUM contains as many as 40 variables (all irrelevant) and
that the sample size is (only) 139 observations, this is impressive. By contrast, HP
and PcGets recover the simulation DGP a maximum of 45% of the time. The sim-
ulation results also suggest quite clearly why AutoSEARCH fares so much better
than the other algorithms in deleting irrelevant variables. The most important rea-
son is that it includes an empty model (if it passes the diagnostic tests) in the list of
considered models. The other reason, which is less important, is that AutoSEARCH
by default does not undertake a parsimonious encompassing test (PET). A second
important feature of the simulation results is that the average irrelevance proportion
M(k̂1/k1), a measure of “overfitting”, is as low or lower for AutoSEARCH as for the
other algorithms. And this is the case across experiments. The ability to remove
irrelevant variables is likely to come at the cost of the ability to retain variables that
matter. However, in the experiments that contain variables that matter, experi-
ments HP2’ and HP7’, AutoSEARCH performs equally well in retaining relevant
variables as measured by the average relevance proportion M(k̂0/k0). Nevertheless,
it should be pointed out though that in experiments HP2’ and HP7’ the signal of the
variables that matter is relatively high. So possibly a different experimental design
is needed in order to provide a more accurate comparison of the relative potency of
the algorithms.

3.2 Multi-path GETS of the mean with heteroscedastic er-
rors

When modelling financial returns the errors very often remain heteroscedastic even
after including explanatory information in the mean specification. So it is of interest
to study the properties of multi-path GETS when the errors are heteroscedastic.14

In doing so, we modify our multi-path algorithm from the previous section in three
straightforward ways. First, we use White (1980) standard errors when computing
the coefficient test-statistics instead of the ordinary standard errors. Second, we turn
off ARCH diagnostic checking and designate all the diagnostic checking significance
level (5% in the simulations) to the test for serial correlation. Third and finally,
we use the Gaussian likelihood of the standardised residuals when computing the
information criterion.15

Table 6 contains the results of four Monte Carlo experiments, all with a persistent
log-GARCH(1,1) specification on the errors as part of the simulation DGP. The
first two experiments, HP0∗ and HP2’∗, are essentially equal to HP0 and HP2’,
respectively, but for the heteroscedastic errors.16 The results of HP0∗ are very

14To our knowledge, no one has studied the properties of multi-path GETS specification search
of the mean when the errors are heteroscedastic.

15In additional simulations we studied whether modelling the variance and fitting a GED log-
likelihood to the standardised residuals improved the algorithm. The simulations did not suggest
a clear performance gain.

16In HP0∗ and HP2’∗ the parameter α0 of the log-GARCH specification has been calibrated.
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similar to those of HP0. This suggests that persistent heteroscedasticity of the
ARCH type does not affect multi-path GETS specification search very much when
no regressor in the GUM matters. When regressors do matter, though, as in HP2’∗,
then heteroscedasticity worsens the ability to delete irrelevant variables. Specifically,
the irrelevance proportion increases and p(DGP ) falls. The relevance proportion is
unaffected, but this result may be misleading since the signal of the regressor is
very high. Moreover, there are two other aspects of the DGP in HP2’∗ that suggest
the results may not be so indicative of how multi-path GETS actually performs in
modelling financial returns. Firstly, the DGP in HP2’∗ is very persistent in the mean
since the AR(1) coefficient is as high as 0.75 (this affects the relevance and irrelevance
proportions). In empirical finance, however, the AR(1) coefficient is typically equal
to zero or rarely higher than 0.1 in absolute value. Secondly, one may argue that
a sample size of 139 observations is small in financial contexts. These two aspects
motivates two additional Monte Carlo experiments, namely SE1 and SE2, which
better correspond to a modelling situation of financial return. In the DGP of SE1
there are no relevant regressors, whereas in SE2 there is one, namely an AR(1)
term with coefficient equal to 0.1. When no regressors matter, as in SE1, then the
previous results of HP2’∗ are confirmed. Multi-path GETS recovers the DGP with
a probability equal to about 0.9, and the irrelevance proportion remains below the
chosen regressor significance level of 5%. Also in SE2 does the irrelevance proportion
remain below the chosen regressor significance level. However, p(DGP ) is relatively
low in small samples. For example, a p(DGP ) equal to 17% when T = 200 in SE2
does not suggest the algorithm works very differently from HP2’∗, where p(DGP )
is equal to 15% when T = 139. In other words, although both the DGPs and
GUMs differ substantially between HP2’∗ and SE2, the algorithm exhibits similar
properties in small samples.

Specifically, the limit of the unconditional variance of a model with log-GARCH(1,1) specification
log σ2

t = α0 + α1 log ε2t−1 + β1 log σ2
t−1 is

exp
(

α0

1− α1 − β1

)
· lim

Q→∞

Q∏
q=1

E
[
z
2α1(α1+β1)

q−1

t−q

]
.

Numerical simulation suggests the limit of the power term is approximately equal to 0.3167 when
zt ∼ N(0, 1) for α1 = 0.1 and β1 = 0.8. In order to calibrate the DGP in HP0∗ such that its
unconditional variance equals the constant variance of the DGP in HP0, we thus need to solve

1302 = exp
(

α0

1− α1 − β1

)
· 0.3167

for α0, which yields α0 ≈ 1.0885. Similarly, in HP2’∗ we obtain α0 ≈ 1.0058.
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3.3 Multi-path GETS modelling of the log-variance

The purpose of this subsection is to study the properties of AutoSEARCH in mod-
elling the log-variance specification. Specification search of the variance proceeds
in a similar way to specification search of the mean, but for one difference. Au-
toSEARCH undertakes diagnostic checks of the standardised residuals {ẑt} instead
of the residuals {û∗t} of the fitted ARMA representation of log ε2

t . Table 7 contains
the simulation results of the four experiments SE3 to SE6. In experiment SE3 the
simulation DGP contains no relevant variables, whereas in SE4 the simulation DGP
contains a single relevant variable, a log-ARCH(1) term, with a moderate value of
α1 = 0.2. These two experiments start from a GUM that contains five log-ARCH
terms, an asymmetry term, the contemporaneous and lagged variable of an unre-
lated but strongly persistent AR(1) process, two standard normal IID processes
and two exponentially distributed IID processes with shape parameter equal to 1.
The strongly persistent process may be interpreted as proxying variables that may
explain the level of volatility (say, the level of trading volume), the normally dis-
tributed variables may be interpreted as proxying “short-term” relative changes in,
say, trading volume, whereas the exponentially distributed variables may be inter-
preted as proxying the square of, say, stock market return, interest rate changes,
or similarly. The objective of experiments SE5 and SE6 is to study the properties
of a very common situation in financial practice, namely that of fitting a GARCH
structure to a financial return series. In both SE5 and SE6 the GUM is a log-

GARCH(1,1) model, but the simulation DGPs differ. In the former rt
IID∼ GED(τ)

which implies that α0 = 0, whereas in the latter the simulation DGP is a persistent

log-GARCH(1,1) with log σ2
t = α0 = 0, α1 = 0.1, β1 = 0.8 and zt

IID∼ GED(τ).
The first main property of table 7 is that the irrelevance proportion is either

approximately equal to or lower than the chosen nominal level across experiments,
and that this property is robust to the tail-thickness of the standardised error.
In other words, the asymptotic property holds in finite samples across the four
experiments. The second main property is that in SE3 and SE5 the DGPs are
recovered with a probability equal to or almost equal to 1 - the overall diagnostic
significance level, even in small samples. With an overall diagnostic significance level
of 5%, the asymptotic probability of recovering the DGP is 0.95, and the results
suggests that this probability is reached very fast when there are no variables that
matter. In particular, the probability of retaining a log-GARCH(1,1) model when
in fact returns are IID—thick-tailed or not, is a maximum of 6.4% when the sample
is as small as 200 observations. By contrast, in SE4 and SE6, where there are
variables that matter, then p(DGP ) is more variable as it depends to a greater
extent on sample size, tail thickness and experiment. Specifically, the minimum
p(DGP ) is 0.30 in SE4 when T = 200, and the maximum is 0.97 in SE6 when
T = 1000. The third and final main property of the results is that tail-thickness has
a notable bearing upon the ability to recover the DGP. The more thick-tailed, the
more difficult. This is the case both when the DGP contains relevant variables and

16



when it does not, but the effect is greater when there are variables that matter.

3.4 Modelling of the density of the standardised error

A consistent estimate of τ that is efficient and numerically robust can be obtained
as the inverse of a moment estimator of a kurtosis index, see Mineo (2003, 2008),
and Mineo and Ruggieri (2005). The estimator is based on the observation that

V I =

√
m2

m1

=

√
Γ(1/τ)Γ(3/τ)

Γ(2/τ)
(17)

is an index of kurtosis, where mr is the absolute moment of grade r. The sample
counterpart of (17) is

V̂ I =

√
T

∑T
t=1 z2

t∑T
t=1 |zt|

, (18)

and the simulations of Mineo (2003) shows that the inverse of (18) compares favourably
to other estimators of τ , including maximum likelihood (ML) methods.

Given consistent estimates {ẑt} of the standardised errors {zt}, we may thus
undertake asymptotically valid inference regarding the value of τ in terms of an
LR-test. Table 8 compares the finite sample properties of the LR-test with three
other normality tests, namely Jarque and Bera (1980), Anscombe and Glynn (1983),
and Bonett and Seier (2002). The first is the commonly used joint test for skewness
and kurtosis in excess of that of the normal, whereas the next two are tests for
only kurtosis in excess of that of the normal. Overall, the results suggest that the
likelihood ratio test is the preferred test. Although somewhat undersized under the
null in small samples (up to T = 100), the test has substantially greater power than
the three other tests to detect fat-tailed departures (τ < 2) from the null. This comes
to some extent at the cost of detecting thin-tailed distributions (τ > 2), since in these
cases the Anscombe-Glynn test is more powerful. However, the Anscombe-Glynn
test is not as powerful in detecting fat-tailedness. Since financial data typically are
more fat-tailed than the normal, a test that is more powerful to detect fat-tailed
alternatives is preferred.

4 Empirical evaluation

In this section we assess the methods and algorithm through two empirical applica-
tions.

4.1 How well do volatility proxies forecast variability?

Volatility is by definition a conditional forecast of price variability when the condi-
tional mean is zero. The economic meaning of a mean equal to zero is essentially
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that the direction of the financial price change is unpredictable, which explains the
importance of volatility forecasts in derivative pricing. Indeed, volatility forecasts
are arguably the most important inputs in derivative pricing, and so volatility fore-
casting is of great importance in the financial industry.

The volatility forecasting literature has experienced major developments over
the last decade. One of the developments is the increased production, dispersion
and availability of high-frequency data, and the increased and cheaper computing
power to handle the larger datasets. A second development of great importance is
theoretical. The last ten years have witnessed many theoretical contributions that
enables efficient volatility forecasting by making use of high-frequency data. The
most well-known of the estimators is realised volatility (RV, sums of squared intra-
period high-frequency returns), but numerous relatives have also been proposed and
studied. How well do all these volatility proxies actually forecast price variability? If
the underlying continuous time model is a valid or “true” representation of the DGP
in some appropriate sense—this is effectively the assumption RV and its cousins rely
upon, then this has three important implications. First, the standardised residuals
defined as ẑt = rt/

√
RV t should be serially uncorrelated and exhibit no ARCH.

Second, the coefficient restrictions α0 = 0 and ω = 1 in the SEARCH specification
log σ2

t = α0 + ω log RVt should not be rejected. Third, RVt should parsimoniously
encompass models that make use of the same data. If it does not, then this means
the other models make more efficient use of the data.

The first two implications are readily investigated via logarithmic Mincer-Zarnowitz
regressions (MZ), which amounts to fitting

log σ2
t = α0 + ω log RVt. (19)

Next, the hypotheses of no serial correlation and ARCH in the standardised error,
and whether α0 = 0 and ω = 1, can readily be tested. Table 9 contains logarithmic
MZ-regressions of daily stock return (IBM) on three different volatility proxies. This
data series is of interest because Patton (2008) use them to illustrate how volatility
proxies can improve volatility forecast evaluation. However, table 9 shows that the
first and second proxies employed by Patton both invalidate the hypotheses of no
serial correlation and no ARCH in the standardised residuals. And at 6% percent or
lower the nulls of α0 = 0 and ω = 1 are rejected for the third volatility proxy as well.
In other words, the basic diagnostic tests and the coefficient restriction tests do not
suggest that the theory upon which the volatility proxies is based on holds. The
only candidate that comes close to satisfy the basic diagnostics is the third proxy,
that is, RV made up of 5-minute intra-day returns.

Whether a volatility proxy parsimoniously encompasses other models that make
use of the same data is readily investigated by means of automated multi-path GETS
modelling. Table 10 contains the results of a parsimonious encompassing test for the
third volatility proxy. MGUM is the general and unrestricted mean specification,
whereas VGUM1 and VGUM2 are two different variance GUMs. VGUM1 contains
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only the constant and log RV 5m
t as regressor, and the ARCH diagnostic test suggests

log RV 5m
t does not capture all the volatility persistence. This motivates VGUM2

where we add log-ARCH lags and an asymmetry term to the VGUM. This improves
the ARCH diagnostics. MSPEC and VSPEC are the specifications obtained after
multi-path GETS specification search of MGUM and VGUM2: First MSPEC is
obtained by holding the variance specification constant and equal to VGUM2, and
next VSPEC is obtained by holding the mean specification constant and equal to
MSPEC. The conclusion is that RV 5m

t does not parsimoniously encompasses the
other terms. A positive and significant constant is retained in the specific mean
equation, which means there is a slight daily drift upwards of about 0.075% in the
IBM stock value over the sample. Also, a 4th. order log-ARCH term is statistically
significant in the variance specification in addition to log RV 5m

t .
These two simple exercises show that the SEARCH model can be useful in testing

volatility proxies for bias and parsimonious encompassing. Also, if RV does not pass
the diagnostic tests, and/or if RV does not parsimoniously encompass the alternative
information available, then it can still be used as a regressor in the development of
ex post volatility models that passes the diagnostic tests of relevance.

4.2 Value-at-Risk forecasting

Value-at-Risk (VaR) analysis plays an important role in financial decision making,
and here we evaluate the methods and algorithm in forecasting the VaR of the daily
Standard & Poor’s 500 (SP500) US stock market index. This index appears fre-
quently in VaR forecast evaluations, so it suggests itself naturally for comparison
purposes. In our forecast evaluation we divide the sample in two. The estimation
and design sample runs from Monday 1 January 2001 to Friday 30 December 2005
(1305 observations), and the forecast evaluation sample runs from Monday 2 Jan-
uary 2006 to Tuesday 24 February 2009 (821 observations).17 No re-estimation is
undertaken after 2005, so the forecast comparison is a true out-of-sample evalua-
tion. Six models are included in our comparison. The first model is a constant
model of volatility equal to the sample variance in the estimation and design sam-
ple. The second model is a twenty-day equally weighted moving average (EWMA)
of the sample variance. Twenty trading days corresponds to four calendar weeks,
and EWMA at day t is computed as (

∑20
i=1 r2

t−i)/19, where rt is the daily end-of-
day log-return of SP500 at t. It should be noted that the EWMA can be viewed
as a restricted SEARCH model with α0 equal to zero and the coefficient value of

17The choice of the sample dates is the result of several considerations. The sample is relatively
recent in that it does not include periods that differ substantially from today’s financial regulatory
and institutional architecture, and the sample contains both upswings and downturns. So the
results of the forecast evaluation exercise are likely to be indicative of how the models would fare
in the future. Moreover, both the estimation and forecast samples are sufficiently large for the
asymptotic theory that several of the methods rely upon to be adequate. Finally, including the
periods of recent financial turmoil means the evaluation provides a real test of the methods.
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log EWMAt equal to one. The third model is an integrated GARCH(1,1) model
with parameter values known as the “RiskMetrics” specification. The fourth model
is a stationary but highly persistent GARCH(1,1) model, whereas the fifth model is
a stationary but highly persistent log-GARCH(1,1) model. The final specification
is a parsimonious SEARCH model obtained through multi-path GETS specification
search of the general and unrestricted log-variance specification

log σ2
t = α0 +

5∑
p=1

αp log ε2
t−p + λ(log ε2

t−1)Izt−1<0

+ω1 log EWMAt + ω2tuet + ω3wedt + ω4thut + ω5frit.

In words, the GUM nests the EWMA and a log-ARCH(5) model with asymmetry,
and in addition the GUM also contains the impulse dummies tuet, wedt, thut and
frit that accommodates the possibility of deterministic day-of-the-week dependency
in the conditional variance.

Table 11 contains the estimation results and associated diagnostic tests of the
six models, and figure 1 plots the standardised residuals of the six models over the
whole sample. The figure is particularly informative. As expected, the figure shows
that the constant model does not capture the time-varying conditional variance of
SP500 returns, since there is clear evidence of ARCH in the standardised residuals
both in-sample and out-of-sample. The two simplest of the time-varying volatility
models, however, the EWMA and RiskMetrics, perform remarkably well. Visually,
the variance of their standardised residuals is constant across both the estimation
and forecast samples. This is impressive when one haves in mind all the financial
turmoil that has occurred during the forecast period. By contrast, the two more “ad-
vanced” models, the GARCH(1,1) and log-GARCH(1,1) specifications, both exhibit
clear structural breaks going from the estimation sample to the forecast sample. Fi-
nally, the parsimonious SEARCH model obtained through multi-path GETS, which
is essentially an unrestricted EWMA, also exhibits relatively constant variance (vi-
sually) in the standardised residuals. This suggest that the EWMA, RiskMetrics and
SEARCH specifications are more likely to do well in the out-of-sample comparison.

Table 12 contains the forecast evaluation results, which follows the methodol-
ogy proposed by Christoffersen (1998). The upper panel contains the results when
the forecasted density of the standardised error is specified as standard normal,
whereas the lower panel contains the results when the forecasted density is specified
as a GED with estimated shape parameter τ . The best performing models in both
panels are EWMA, RiskMetrics and SEARCH, that is, the models that exhibit rel-
atively stable standardised residuals over the whole sample. The GARCH(1,1) and
log-GARCH(1,1) specifications are the worst, even worse than the constant variance
model. This underlines the importance of properly accounting for the time-varying
ARCH in the conditional variance. The results strongly suggest that stationary but
strongly persistent GARCH(1,1) and log-GARCH specifications are not capable of
this. The results of EWMA, RiskMetrics and SEARCH are very similar across the
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panels, and they are usefully close to the density quantiles. However, since the esti-
mated out-of-sample coverages are sometimes significantly different (at conventional
significance levels) from their quantile values in both panels, there is still room for
further improvement of the density modelling part of the algorithm. But overall the
out-of-sample VaR forecast evaluation suggests the methods and algorithms can be
of great value in practice, as long as the variance GUM nests a specification that
adequately describes the time-varying volatility process.

5 Conclusions

We have proposed methods that resolves many of the problems earlier faced in
the implementation of automated multi-path GETS specification search of finan-
cial models. The simulations and empirical applications suggest the methods can
be of great value in practice. However, there is still substantial room for further
improvement, generalisation and exploration. Here, we only suggest five lines of
further research and exploration, several of which is already work in progress by
the authors. First, a line of research that naturally suggests itself is to improve the
efficiency of the least squares estimation procedures, both in the variance and in the
mean specifications, for example through feasible generalised least squares and/or
iterated least squares procedures. Similarly, there are numerous possibilities to ex-
plore in an attempt to improve inference while trying to keep estimation simple.
Indeed, as recently stressed by Hamilton (2008), the importance of appropriately
accounting for ARCH in the estimation and inference about the mean is possibly
even more important in macroeconomics. Second, key to our methods is the propo-
sition that enables consistent estimation of the power log-GARCH structures by
means of standard estimation procedures, subject to very general conditions on the
distribution of the standardised error. A consequence of this is that certain classes
of multivariate power log-GARCH models can be straightforwardly estimated by
means of least squares through the associated VARMA representation. This may
prove very useful since multivariate ARCH models are very difficult to estimate in
practice. A third line of possible research is to study in more depth the properties
of logarithmic Mincer-Zarnowitz regressions. Such regression are straightforwardly
implemented due to our results, as in our first empirical application, since they are
nested within the SEARCH model. A fourth line of possible research is to exper-
iment with the search order. For our algorithm we chose the simplest and most
straightforward order, namely to first model the mean, then the variance, and then
finally the density. Another option that seems natural to consider is to model the
variance first, and then use the variance-specification to improve inference in the
mean, before finally modelling the density. Or, alternatively, a third option is to
model the mean and variance simultaneously, before modelling the density. There
are numerous options and strategies that one may consider. Finally, the ultimate
test for any new method is usefulness in econometric practice, and there are nu-
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merous applications that suggest themselves in addition to those of section 4. An
example of particular interest is the modelling of electricity prices, where both the
mean and variance specifications typically require many terms in both the mean and
variance equations, see Escribano et al. (2002).
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Appendix

The generalised error distribution

The generalised error distribution (GED) normalised to have a mean of zero and a
variance of one can be parametrised as

f(z; τ) =
τΓ(3/τ)1/2

2Γ(1/τ)3/2
exp

[
−|z|τ ·

(
Γ(3/τ)

Γ(1/τ)

)τ/2
]

, −∞ < z < ∞, τ > 1, (20)

where Γ(1/τ) is the Gamma-function equal to
∫∞
0

t(1/τ)−1 exp(−t)dt. The parameter
τ is a shape or “tail-thickness” parameter. When τ = 2 then (20) equals the standard
normal, when τ < 2 then (20) has thicker tails than the standard normal, and when
τ > 2 then (20) has thinner tails than the standard normal. In particular, when
τ → 1 then (20) tends to the double exponential distribution, and when τ → ∞
then (20) tends to a uniform distribution on the interval [−3(1/2), 3(1/2)] (Nelson
1991, pp. 352-353). The distribution (20) is a special case of the exponential power
distribution, and the generation of random variates, computation of distribution
values, etc., are readily performed by means of the R package normalp, see Mineo
(2008).18 In that package the density of the exponential power distribution is given
by

f(x, µ, σ, p) =
1

2p1/pΓ(1 + 1/p)σ
exp

(−|x− µ|p
pσp

)
, (21)

18Further analysis of the exponential power distribution is contained in, amongst others, Box
and Tiao (1973, pp. 156-160), Harvey (1990, pp. 117-118), Nelson (1991, pp. 352-353), Mineo
(2008), and Mineo and Ruggieri (2005).
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and the GED(τ) density given by (20) is obtained by setting τ = p, µ = 0 and

σ =
Γ(1/τ)(1/2)

τ (1/τ)Γ(3/τ)(1/2)
. (22)

For estimation of τ see Mineo (2003), and Mineo and Ruggieri (2005).

Proof of proposition 1

In proving a), we first show that log E[exp(u∗t )] = −E(log |z∗t |δ), then that 1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )]. Since u∗t = log |z∗t |δ − E(log |z∗t |δ) straightforward algebra yields

log E[exp(u∗t )] = log E{exp[log |z∗t |δ − E(log |z∗t |δ)]}
= log E

{ |z∗t |δ
exp[E(log |z∗t |δ)]

}

= log

{
E|z∗t |δ

exp[E(log |z∗t |δ)]
}

= log E|z∗t |δ − E(log |z∗t |δ)
= −E(log |z∗t |δ),

since E|z∗t |δ = 1 and since |E(log |z∗t |δ)| < ∞. The latter follows from the assump-
tions 0 < E|zt|δ < ∞ and |E(log |zt|)| < ∞. Accordingly, (−1) · log E[exp(u∗t )] =

E(log |z∗t |δ). We now turn to the proof of 1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )]. We have

that 1
T

∑T
t=1 exp(u∗t )

P−→ E[exp(u∗t )] due to Khinshine’s theorem (see for example
Davidson 1994, theorem 23.5) since {u∗t} is IID, and the properties E|z∗t |δ = 1
and |E(log |z∗t |δ)| < ∞ ensure that E[exp(u∗t )] exists. Consider 1

T

∑T
t=1 exp(û∗t ) −

1
T

∑T
t=1 exp(u∗t ), which can be rewritten as 1

T

∑T
t=1[exp(û∗t )− exp(u∗t )]. Since û∗t

P−→
u∗t for each t, we have that exp(û∗t )

P−→ exp(u∗t ) for each t due to the conti-
nuity of the exp(·) function. Accordingly, 1

T

∑T
t=1 exp(û∗t ) → 1

T

∑T
t=1 exp(u∗t ) as

T → ∞, and since 1
T

∑T
t=1 exp(u∗t ) → E[exp(u∗t )] as T → ∞ it follows that

1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )].
We now prove b). Due to the continuity of the exp(·) operator, the assumption

of consistent estimation of the ARMA representation ensures that the fitted values
{σ̂∗δt } are consistent estimates of their true counterparts. Next, taking the δth.

square root and dividing each εt by means of δ
√

σ̂∗δt means the {ẑ∗t } are consistent
estimates of their true counterparts {z∗t }. Finally, using a similar argument to the

proof of a) yields that 1
T

∑
t=1 ẑ∗2t

P−→ 1/E(|zt|δ)2/δ, and so − δ
2
log( 1

T

∑T
t=1 ẑ∗2t )

P−→
log E|zt|δ.
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Table 2: Finite sample precision of estimation methods: OLS vs. ML for a log-
ARCH(1)
Method f(zt) T M(α̂0) V (α̂0) M(α̂1) V (α̂1)
OLS N(0, 1) 200 -0.013 0.020 0.093 0.005

500 -0.008 0.008 0.096 0.002
1000 -0.005 0.004 0.098 0.001

GED(1.1) 200 -0.025 0.039 0.094 0.005
500 -0.012 0.017 0.097 0.002

1000 -0.001 0.008 0.099 0.001

st(4.1) 200 -0.040 0.065 0.093 0.005
500 -0.019 0.024 0.099 0.002

1000 -0.015 0.014 0.097 0.001

ML N(0, 1) 200 0.013 0.014 0.107 0.003
500 0.000 0.005 0.104 0.001

1000 0.001 0.003 0.101 0.000

GED(1.1) 200 0.038 0.039 0.114 0.004
500 0.035 0.015 0.112 0.002

1000 0.027 0.009 0.109 0.001

st(4.1) 200 0.023 0.078 0.116 0.005
500 0.035 0.039 0.115 0.002

1000 0.027 0.026 0.111 0.001

The DGP of the simulation is rt = σtzt, zt
IID∼ f(zt), log σ2

t = α0 + α1ε
2
t−1 with α0 = 0 and

α1 = 0.1. N(0, 1) is short for standard normal, GED(1.1) is short for Generalised Error
Distribution with shape parameter 1.1 and st(4.1) is short for standardised t-distribution with
4.1 degrees of freedom. ML estimation consists of Gaussian maximum likelihood estimation with
initial parameter values provided by OLS. ML estimation is implemented as a Newton-Raphson
algorithm with analytical gradient and Hessian, unit step-size and 0.0001 as convergence criterion
in the log-likelihood. M(·) and V (·) are the sample mean and variances of the estimates, respec-
tively. Simulations in R with 1000 replications, and a prior burn-in sample of 100 observations
were discarded at each replication in order to avoid initial value issues.
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Table 3: Finite sample size in the logarithmic variance specification, using a nominal
level of 5%
H0 H1 Fitted specification T τ = 1.1 τ = 2 τ = 3
α1 = 0 α1 6= 0 α0 + α1 log ε2t−1 10 0.054 0.049 0.047

100 0.047 0.046 0.044
1000 0.052 0.049 0.051

10000 0.048 0.049 0.048

λ = 0 λ 6= 0 α0 + λ(log ε2t−1)I{zt−1<0} 15 0.054 0.052 0.055
100 0.048 0.047 0.043

1000 0.050 0.051 0.044
10000 0.050 0.051 0.051

ω = 0 ω 6= 0 α0 + ωy
N(0,1)
t 10 0.089 0.081 0.083

100 0.056 0.052 0.051
1000 0.054 0.049 0.050

10000 0.050 0.051 0.048

ω = 0 ω 6= 0 α0 + ωy
EXP (1)
t 10 0.085 0.079 0.100

100 0.051 0.047 0.040
1000 0.050 0.046 0.057

10000 0.044 0.050 0.046

α0 = 0 α0 6= 0 α0 10 0.070 0.044 0.027
100 0.027 0.004 0.001

1000 0.015 0.001 0.000
10000 0.020 0.001 0.002

The simulation DGP is rt = εt, εt = σtzt, zt
IID∼ GED(τ), log σ2

t = 0, for t = 1, . . . , T .
Tests are two-sided and {y(·)

t } is IID and mutually independent with {zt}. “N(0,1)”
denotes standard normal and “EXP(1)” denotes an exponentially distributed variable
with shape parameter equal to 1. Simulations in R with 10 000 replications.
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Table 5: Comparison of multi-path GETS algorithms: Specification search in the
mean with Gaussian homoscedastic errors

k0 k1 Algorithm T M(k̂0/k0) M(k̂1/k1) p̂(DGP )
HP0 0 40 AutoSEARCH 139 0.004 0.942

AutoSEARCH w/PET 0.038 0.825
AutoSEARCH w/PET, no empty 0.068 0.280
HP 0.045 0.292
PcGets ≈ 0.04 ≈ 0.45

HP2’ 1 39 AutoSEARCH 139 1.000 0.043 0.285
HP 1.000 0.107 0.000
PcGets ≈ 0.97 ≈ 0.05 ≈ 0.32
Autometrics 1.000 0.063 0.119

HP7’ 3 37 AutoSEARCH 138 0.999 0.044 0.309
HP 0.967 0.082 0.040
PcGets ≈ 1.00 ≈ 0.04 ≈ 0.37
Autometrics 0.999 0.021 0.111

Simulations of the AutoSEARCH algorithm are in R with 1000 replications using the data and
DGPs of Hoover and Perez (1999). M(k̂0/k0) is the average proportion of relevant variables k̂0

retained relative to the number of relevant variables k0 in the DGP. M(k̂1/k1) is the average
proportion of irrelevant variables k̂1 retained relative to the number of irrelevant variables k1 in
the GUM. p̂(DGP ) is the proportion of times the DGP is found exactly. The properties of the
HP algorithm are from Hoover and Perez (1999, table 3 on p. 179). The properties of the PcGets
algorithm are from Hendry and Krolzig (2005, figure 1 on p. C39), and the properties of the
Autometrics algorithm are from Doornik (2009). A constant is included in all the regressions but
ignored in the evaluation of successes and failures. This is in line with Hoover and Perez (1999)
but counter to Hendry and Krolzig (2005), and Doornik (2009). PET is short for Parsimonious
Encompassing Test.

Table 6: Comparison of multi-path GETS algorithms: Specification search in the
mean with heteroscedastic errors

k0 k1 Algorithm T M(k̂0/k0) M(k̂1/k1) p̂(DGP )
HP0∗ 0 40 AutoSEARCH 139 0.010 0.893

HP2’∗ 1 39 AutoSEARCH 139 1.000 0.076 0.147

SE1 0 9 AutoSEARCH 200 0.014 0.922
500 0.019 0.883

1000 0.018 0.895

SE2 1 8 AutoSEARCH 200 0.251 0.019 0.172
500 0.548 0.030 0.387

1000 0.825 0.039 0.586
Simulations of the AutoSEARCH algorithm are in R with 1000 replications. In each replication a
prior burn-in sample of 100 observations is discarded in order to avoid initial value issues.
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Table 7: Properties of multi-path GETS in experiments SE3 - SE6

k0 k1 Algorithm T τ M(k̂0/k0) M(k̂1/k1) p(DGP )
SE3 0 12 AutoSEARCH 200 2.0 0.005 0.951

1.1 0.016 0.850
500 2.0 0.003 0.976

1.1 0.017 0.866
1000 2.0 0.003 0.971

1.1 0.016 0.860

SE4 1 11 AutoSEARCH 200 2.0 0.464 0.035 0.303
1.1 0.265 0.034 0.140

500 2.0 0.911 0.044 0.571
1.1 0.609 0.034 0.353

1000 2.0 0.995 0.046 0.624
1.1 0.902 0.045 0.537

SE5 0 2 AutoSEARCH 200 2.0 0.047 0.953
1.1 0.064 0.936

500 2.0 0.055 0.945
1.1 0.057 0.943

1000 2.0 0.045 0.955
1.1 0.051 0.949

SE6 2 0 AutoSEARCH 200 2.0 0.471 0.471
1.1 0.267 0.267

500 2.0 0.824 0.824
1.1 0.487 0.487

1000 2.0 0.979 0.979
1.1 0.783 0.783

1000 replications in R, each replication with a prior burn-in sample of 100 observations in SE3,
SE4 and S6 in order to avoid initial value issues (there are no initial value issues in SE5). In SE3
and SE4 the simulations are undertaken using a nominal regressor significance level of 5%, and
in SE4 the parameter values of the simulations DGP are (α0, α1) = (0, 0.2). In SE5 and SE6 no
regressor is tested for significance but two specifications (The empty model and the GUM) are
evaluated in terms of diagnostics and information criterion, and in SE6 the parameter values of
the simulation DGP are (α0, α1, β1) = (0, 0.1, 0.8). The nominal level used for the two diagnostic
tests Ljung-Box AR(1) and Ljung-Box ARCH(1), respectively, is 2.5%. Estimation in SE3 and
SE4 is by OLS, and in SE5 and SE6 by means of 2-step OLS. k0 is the number of relevant variables
(apart from the constant) in the simulation DGP, and k1 is the number of irrelevant variables in
the GUM.
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Table 8: Rejection probabilities of normality (τ = 2) for various values of
τ using a nominal level of 5%
Jarque-Bera:

T τ = 1.1 τ = 1.3 τ = 1.5 τ = 1.7 τ = 2 τ = 2.3 τ = 2.5 τ = 3
25 0.2320 0.1300 0.0710 0.0580 0.0260 0.0170 0.0080 0.0050

100 0.6730 0.4310 0.2390 0.1390 0.0390 0.0100 0.0090 0.0020
200 0.9010 0.6720 0.4020 0.1980 0.0500 0.0090 0.0210 0.1090
500 0.9990 0.9620 0.7290 0.3610 0.0500 0.0660 0.1820 0.7330

1000 1.0000 1.0000 0.9460 0.5530 0.0490 0.1930 0.5770 0.9920
10000 1.0000 1.0000 1.0000 1.0000 0.0550 1.0000 1.0000 1.0000

Anscombe-Glynn:
T τ = 1.1 τ = 1.3 τ = 1.5 τ = 1.7 τ = 2 τ = 2.3 τ = 2.5 τ = 3
25 0.2480 0.1330 0.0750 0.0600 0.0550 0.0490 0.0550 0.0690

100 0.6600 0.4100 0.2000 0.1130 0.0510 0.0880 0.1470 0.3400
200 0.8960 0.6630 0.3680 0.1690 0.0510 0.1380 0.2570 0.6560
500 0.9980 0.9580 0.7300 0.3370 0.0660 0.2630 0.5370 0.9580

1000 1.0000 1.0000 0.9520 0.5540 0.0520 0.4650 0.8380 0.9990
10000 1.0000 1.0000 1.0000 1.0000 0.0570 1.0000 1.0000 1.0000

Bonett-Seier:
T τ = 1.1 τ = 1.3 τ = 1.5 τ = 1.7 τ = 2 τ = 2.3 τ = 2.5 τ = 3
25 0.2940 0.1730 0.1010 0.0630 0.0610 0.0510 0.0590 0.0750

100 0.8020 0.5350 0.2570 0.1190 0.0350 0.0760 0.1140 0.2510
200 0.9740 0.8270 0.4780 0.1970 0.0530 0.1090 0.2070 0.5060
500 1.0000 0.9950 0.8470 0.4230 0.0470 0.2350 0.4310 0.8970

1000 1.0000 1.0000 0.9880 0.6560 0.0410 0.4120 0.7840 0.9980
10000 1.0000 1.0000 1.0000 1.0000 0.0500 1.0000 1.0000 1.0000

Likelihood-Ratio (LR):
T τ = 1.1 τ = 1.3 τ = 1.5 τ = 1.7 τ = 2 τ = 2.3 τ = 2.5 τ = 3
25 0.3340 0.1710 0.0960 0.0600 0.0390 0.0430 0.0390 0.0600

100 0.8200 0.5270 0.2490 0.1250 0.0270 0.0520 0.1110 0.2760
200 0.9750 0.8350 0.4640 0.1980 0.0520 0.1100 0.2380 0.5820
500 1.0000 0.9970 0.8510 0.4220 0.0580 0.2570 0.5020 0.9450

1000 1.0000 1.0000 0.9900 0.6660 0.0400 0.4560 0.8460 0.9990
10000 1.0000 1.0000 1.0000 1.0000 0.0520 1.0000 1.0000 1.0000

Kurtosis ≈ 5.3 ≈ 3.9 = 3.0 ≈ 2.6 ≈ 2.4
Simulations in R with 1000 replications.
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Table 9: Logarithmic Mincer-Zarnowitz regressions of variability (squared return)
on volatility proxies

Model α̂
[p−val]

β̂
[p−val]

χ2(2)
[p−val]

AR(1)
[p−val]

ARCH(5)
[p−val]

JB
[p−val]

log σ2
t = α + β log RV 65m

t −0.04
[0.85]

2.17
[0.00]

72.81
[0.00]

−0.04
[0.04]

0.06
[0.00]

6301.47
[0.00]

log σ2
t = α + β log RV 15m

t −0.58
[0.03]

1.87
[0.00]

19.22
[0.00]

−0.01
[0.45]

0.11
[0.00]

58.80
[0.00]

log σ2
t = α + β log RV 5m

t −0.64
[0.05]

1.55
[0.02]

5.69
[0.06]

−0.01
[0.76]

0.02
[0.36]

4.68
[0.10]

All calculations and tests are based on the assumptions that rt = σtzt, zt ∼ IID(0, 1) and
log σ2

t = α + β log RV
(·)
t , where rt is daily IBM return 4 January 1993 - 31 December 2003 (2772

observations). The data are from Patton (2008), where RV 65m
t , RV 15

t and RV 5m
t are realised

volatilities made up of 65-minute, 15-minute and 5-minute intra-day returns. The p-values in the
α̂ and β̂ columns are from Wald coefficient restriction tests of α = 0 and β = 1, respectively,
whereas the p-values in the χ2(2) column are from the joint test. The ordinary variance-covariance
matrix is used for the Wald tests. AR(1) is a Ljung and Box (1979) test of 1st. order serial
correlation in the standardised residuals {zt}, ARCH(5) is a Ljung and Box (1979) test of 5th.
order serial correlation in the squared standardised residuals {z2

t }, and JB is the Jarque and Bera
(1980) test for normality.
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Table 10: Parsimonious encompassing test of RV 5m
t

MGUM: r̂t
[p.val.]

= 0.048
[0.25]

− 0.036
[0.12]

rt−1 − 0.028
[0.22]

rt−2 + 0.004
[0.08]

RV 5m
t−1 + 0.002

[0.54]
RV 5m

t−2

VGUM 1: log σ̂2
t

[p.val.]

= −0.192
[0.01]

+ 1.08
[0.00]

log RV 5m
t

AR(3)
[p.val.]

: −0.02
[0.40]

ARCH(5)
[p.val.]

: 0.05
[0.03]

VGUM 2: log σ̂2
t

[p.val.]

= −0.191
[0.01]

− 0.027
[0.31]

log ε̂2t−1 − 0.001
[0.95]

log ε̂2t−2 − 0.015
[0.41]

log ε̂2t−3 + 0.031
[0.09]

log ε̂2t−4

+0.024
[0.49]

(log ε̂2t−1)Î{εt−1<0} + 1.077
[0.00]

log RV 5m
t

AR(3)
[p.val.]

: −0.02
[0.40]

ARCH(5)
[p.val.]

: 0.05
[0.20]

MSPEC: r̂t
[p.val.]

= 0.075
[0.07]

VSPEC: log σ̂2
t

[p.val.]

= −0.170
[0.02]

+ 0.035
[0.05]

log ε̂2t−4 + 1.065
[0.05]

log RV 5m
t

AR(1)
[p.val.]

: −0.01
[0.61]

ARCH(5)
[p.val.]

: 0.05
[0.04]

rt is daily IBM return 4 January 1993 - 31 December 2003 (2772 observations). The data are from
Patton (2008), where RV 5m

t is realised volatility made up of 5-minute intra-day returns. MGUM
is short for mean GUM, VGUM is short for variance GUM, MSPEC is short for specific mean
specification and VSPEC is short for specific variance specification. In all the mean specifications
White (1980) standard errors are used in the computations of the p-values, whereas in all the
variance specifications the ordinary variance-covariance matrix is used. AR(1) is a Ljung and Box
(1979) test of 1st. order serial correlation in the standardised residuals {zt} and ARCH(5) is a
Ljung and Box (1979) test of 5th. order serial correlation in the squared standardised residuals
{z2

t }.
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Table 11: Estimation results of VaR models
Model α̂0 α̂1 β̂ ω̂1 AR1

[p.val.]
ARCH1

[p.val.]
ARCH2

[p.val.]
ARCH5

[p.val.]
τ̂

[p.val.]

Constant 1.27 -0.040 0.176 0.247 0.207 1.040
[0.15] [0.00] 0.000 0.000 [0.00]

EWMA 0.00 1.00 -0.046 -0.028 0.025 0.028 1.484
[0.10] [0.31] [0.40] [0.23] [0.00]

RiskMetrics 0.06 0.94 -0.045 -0.028 0.023 0.013 1.492
[0.10] [0.31] [0.42] [0.57] [0.00]

GARCH 0.01 0.07 0.92 -0.049 -0.069 0.019 0.012 1.891
[0.07] [0.01] [0.04] [0.13] [1.00]

log-GARCH 0.07 0.05 0.93 -0.021 -0.003 0.065 0.091 1.336
[0.46] [0.90] [0.06] [0.00] [0.00]

SEARCH 0.09 0.89 -0.045 -0.029 0.033 0.036 1.500
[0.11] [0.29] [0.29] [0.08] [0.00]

The models are of daily SP500 return (in %) variability 1 January 2001 - 30 December 2005
(1305 observations). The AR1 column contains the first order autocorrelation of the standardised
residuals together with the p-value of the associated Ljung and Box (1979) test, the ARCH(·)
columns contain the first, second and fifth order autocorrelations of the squared standardised
residuals together with the p-values of the associated Ljung and Box (1979) tests, and the τ̂
column contains the estimate of the GED-shape parameter together with the p-value of an LR-test
for normality. Estimation and computations in R and EViews.
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Table 12: Out-of-sample VaR forecast evaluation results of SP500 returns
1% 5% 10%

Model p̂1
[p.val.]

π̂11
[p.val.]

p̂1
[p.val.]

π̂11
[p.val.]

p̂1
[p.val.]

π̂11
[p.val.]

Constant-N(0, 1) 0.050 0.013 0.082 0.025 0.110 0.032
[0.00] [1.00] [0.00] [1.00] [0.36] [1.00]

EWMA-N(0, 1) 0.030 0.000 0.071 0.003 0.110 0.015
[0.00] [1.00] [0.01] [1.00] [0.36] [1.00]

RiskMetrics-N(0, 1) 0.034 0.000 0.068 0.006 0.110 0.015
[0.00] [1.00] [0.02] [1.00] [0.36] [1.00]

GARCH(1,1)-N(0, 1) 0.000 0.000 0.001 0.000 0.001 0.000
[0.00] [1.00] [0.00] [1.00] [0.00] [1.00]

log-GARCH(1,1)-N(0, 1) 0.000 0.000 0.001 0.000 0.004 0.000
[0.00] [1.00] [0.00] [1.00] [0.00] [1.00]

SEARCH-N(0, 1) 0.030 0.000 0.065 0.003 0.108 0.012
[0.00] [1.00] [0.07] [1.00] [0.43] [1.00]

Constant-GED(τ̂) 0.037 0.013 0.084 0.025 0.110 0.032
[0.00] [1.00] [0.00] [1.00] [0.36] [1.00]

EWMA-GED(τ̂) 0.024 0.000 0.068 0.003 0.118 0.015
[0.00] [1.00] [0.02] [1.00] [0.09] [1.00]

RiskMetrics-GED(τ̂) 0.026 0.000 0.068 0.006 0.118 0.018
[0.00] [1.00] [0.02] [1.00] [0.09] [1.00]

GARCH(1,1)-GED(τ̂) 0.000 0.000 0.001 0.000 0.001 0.000
[0.00] [1.00] [0.00] [1.00] [0.00] [1.00]

log-GARCH(1,1)-GED(τ̂) 0.000 0.000 0.001 0.000 0.004 0.000
[0.00] [1.00] [0.00] [1.00] [0.00] [1.00]

SEARCH-GED(τ̂) 0.030 0.000 0.065 0.003 0.108 0.012
[0.00] [1.00] [0.07] [1.00] [0.43] [1.00]

The VaR forecasts are of daily SP500 returns (in %) 2 January 2006 - 24 February 2009 (821
observations).Estimates and tests are based on the methodology proposed by Christoffersen
(1998). p̂1 is the estimated unconditional probability of returns being lower than the quantile
in question (unconditional coverage), 1%, 5% or 10%, and p̂11 is the estimated probability of a
sequential pair of returns both being lower than the quantile in question. The p-values are χ2(1)
distributed tests of unconditional coverage and first-order Markov independence, respectively. All
computations in R.
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Figure 1: Standardised residuals of forecast models over the estimation and design
sample 1 January 2001 - 30 December 2005, and over the forecast sample 2 January
2006 - 24 February 2009
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