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Abstract

The three chapters of this dissertation contribute to the understanding of strategic

�rm behavior in oligopolistic markets. In particular, I link spatial market features

to standard competition analysis, which enables new perspectives to explain market

outcomes in geographically de�ned markets and provide applications to the grocery

retail industry.

Chapter 1 studies the importance of returns to product di�erentiation and distribu-

tion economies for a �rm’s optimal location choice. Inspired by the empirical work

of Holmes (2011), I introduce endogenous distribution costs in the model of Hotelling

(1929). The proposed model shows an interesting trade-o� between demand and cost

considerations when a �rm plays a hybrid location strategy. Given the location of

local distribution centers and agents’ displacement cost parameters, it is shown that,

under certain conditions, the optimal locations of the �rms are in the interior of the

Hotelling line rather than at the edges of the line. The supply-cost e�ect which drives

this result diminishes with the distance of the distribution center from the market so

that the scale of the distribution area also becomes determinant for an optimal loca-

tion strategy.

Chapter 2 investigates empirically the e�ect of anticipated price competition and dis-

tribution costs in �rms’ location choices within an oligopolistic market. I set up a

static location-price game of incomplete information in which retailers choose their

locations based on (�rm-)location-speci�c characteristics, the expected market power

and the expected degree of price competition. In particular, I tie the �rms’ strategic

location incentives to the population distribution using the concept of captive con-

sumers. This approach is in line with theoretical spatial price competition models

and does not require price or quantity data. I address the computational di�culties of

the estimation using mathematical programming with equilibrium constraints. Ap-

plied to grocery stores operated by the two main conventional supermarket chains in

the US, the model con�rms the existence of bene�ts of spatial di�erentiation for the

�rms’ pro�ts and provides evidence that the �rms anticipate price competition and

distribution costs in their site selections.

Chapter 3 studies empirically the volatility of retail price indexes at the store level
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as a result of changes in the local market structure within an urban market. Us-

ing a reduced-form pricing equation, I decompose the potential competition e�ect in

the e�ect of incumbent retailers and the e�ect of new grocery store openings. Con-

sidering the Spanish supermarket industry, which is strongly regulated, I make use

of panel data and use a �rst-di�erence approach to estimate a distributed-lag model.

The results suggest an instantaneous price reaction to entry which is smaller than the

long-term competition e�ect. Possible explanations are constrained price-�exibility

for incumbent �rms in the short run or di�culties of the entrant in establishing them-

selves as coequal rivals. I �nd that this gradual price reaction is especially pronounced

for supermarkets positioned in the middle price-segment, and the strongest price re-

action has been found for high-price retailers.
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chapter 1

Hotelling meets Holmes

1.1 Introduction

For distribution-intensive industries with a strong cost focus and a high turnover

rate of merchandize, business concepts suggest that the optimization of logistic costs

plays a crucial role in being competitive (Andersen and Poulfelt, 2006). However,

most of the economic models either do not account at all for distribution costs or

else include them (implicitly) as exogenous �xed costs. Such a setting is in general

unproblematic for market entry models but may be problematic in the context of

optimal geographic di�erentiation between competing �rms. A certain location de-

cision considering demand and competition e�ects may be optimal for given �xed

costs, but once we consider supply costs as part of the �xed costs, depending on the

actual location of the �rm and its distribution center, it might be pro�table to locate

closer to the distribution facility to decrease supply costs (although this may imply

less di�erentiation to competitors). Inspired by the empirical work of Holmes (2011)

which suggests the economic importance of distribution costs in the optimal location

decision of a �rm (Wal-Mart), this paper introduces endogenous distribution costs in

the duopoly model of Hotelling (1929).

Such an environment causes a tension between the demand and supply strategy of

location choice, which to the best of my knowledge has not been analyzed in a the-

oretical model of product di�erentiation and has not been subjected to an empirical

analysis for oligopoly industries.

Considering the theoretical literature, the work-horse of spatial location choice is

Hotelling’s linear city model (1929) and the subsequent work by d’Aspremont et al.

(1979). This model of price competition allows us to analyze product di�erentiation in

a simple framework and has given rise to numerous extensions. For a review, see An-
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derson et al. (1992) or Tirole (1998). Recent examples are Meagher et al. (2008), analyz-

ing the equilibrium existence under di�erent consumer distributions, and Hamoudi

and Moral (2005), considering linear-quadratic transportation costs for consumers.

However, while the demand side has been extensively analyzed, the costs of the �rms

- in particular, product-speci�c �xed costs - have not received much attention. The

theoretical literature is complemented by empirical and computational papers. For

given supermarket locations, Matsa (2011) shows that the distance to a distribution

center has a negative e�ect on the store’s product availability. Considering endoge-

nous location choice, the seminal work by Mazzeo (2002) and Seim (2006) provides

empirical evidence for the market-power e�ect of product di�erentiation within a

market, but cost strategies that may alter the optimal location decision remain uncon-

sidered. The �rst empirical analysis incorporating supply aspects in an endogenous

location choice model is Holmes (2011). He uses a computational analysis to show

in a dynamic market entry model that the optimal location strategy of Wal-Mart is

based on a trade-o� between the proximity of stores to distribution centers and each

store’s demand cannibalization. His work has inspired other researchers to incorpo-

rate supply distances in empirical models of entry or location choice (e.g., Ellickson,

2010; Zhu and Singh, 2009; Vitorino, 2012).

This paper proposes a price-location game in which �rms use hybrid location strate-

gies considering cost-e�ciency and horizontal competition simultaneously. On the

demand side, consumers incur travel costs to buy at a certain store. On the supply

side, each �rm’s store is stocked up daily by an (owned) exogenous distribution cen-

ter, which can be located in or outside the linear market, and �rms have to bear the

supply costs. Consumers face quadratic travel costs while �rms’ displacement costs

are modeled as a linear-quadratic function of the supply distance to allow for a more

�exible shape since, in contrast to consumers, suppliers are allowed to ’travel’ to �rms

from outside the market. Solving for the optimal location choice shows an interesting

trade-o� between returns to product di�erentiation and distribution economies. It is

shown that, under certain conditions, and depending on the location of the distribu-

tion centers and the agents’ displacement cost parameters, the optimal location of the

�rms are in the interior of the Hotelling line rather than at the edges of the market

(maximal di�erentiation). The supply-cost e�ect, which drives this result through the
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compensation of lower revenues with lower distribution costs, diminishes with the

distance of the distribution center from the market so that the scale of the distribu-

tion area becomes crucial for an optimal location strategy. Finally, in the presence of

distribution costs, �rms are better o� in terms of net pro�ts when applying a hybrid

location strategy rather than a pure demand-based location strategy. Considering the

welfare implications of the dual location choice, it is shown that the incentive to gen-

erate market power through di�erentiation still leads to excessive di�erentiation, but

less so than in the standard model if the supply cost parameter is su�ciently high

relative to the consumers’ transportation cost parameter.

The theoretical results are complemented with an empirical example for distribution-

intensive grocery retailers using location data on the stores and distribution centers

of the two main conventional supermarket chains in the US, namely Kroger and Safe-

way. I �nd that the two chains target similar markets and include distribution cost

considerations in their location choice with respect to their competitors. In particular,

I �nd a U-shaped pattern between the distribution distance and the di�erentiation to

the competitor that is in line with the proposed theoretical model.

The next section presents the model and Section 1.3 provides the empirical applica-

tion. In this paper, I refer to di�erentiation as a geographic element, but the presented

mechanism can be generalized to further applications which are brie�y outlined in

Section 1.4.

1.2 The linear city with distribution costs

1.2.1 The model

The model setting is based on Hotelling’s linear city model (1929) with quadratic

transportation costs (d’Aspremont et al., 1979), which yields a well-de�ned equilib-

rium of maximal product di�erentiation. In this common setup, I introduce endoge-

nous distribution costs which are carried by the �rms as part of their �xed costs.

There are two �rms, �rm A and �rm B, selling both homogeneous grocery baskets

and competing in locations and prices. Fresh merchandize is delivered every day from
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a (�rm’s own) regional distribution center (DC). A continuum of consumers is uni-

formly distributed over a linear market of length r , X ∼ U [0, r] and each consumer

buys just one grocery basket.
1

In addition to the standard model, both types of agents,

consumers and �rms face displacement costs, which signi�cantly changes the equi-

librium location strategy. On the demand side, consumers incur travel costs to buy

at a certain store. On the supply side, each �rm’s store is stocked up daily by an ex-

ogenous DC, which can be located in or outside the linear market, and �rms have to

bear the supply costs.
2

The location of the DC in space is characterized as (za
1
, za

2
) and

(zb
1
, zb

2
) respectively. We use a reference coordinate system where the linear market

builds the horizontal axis and the left end of the market is de�ned as the origin of

the coordinate system.
3

Hence, the shortest distance from the DC to the market can

be directly indicated as |zj
2
| and the orthogonal projection of a DC onto the market is

just (zj
1
, 0), with j = {a, b}. Figure 1.1 illustrates exemplarily two possible situations

where both �rms are supplied by a common DC. While in Figure (a) the �rms are

supplied by a DC which is situated in the linear market (z2 = 0), Figure (b) illustrates

a situation where �rms are stocked up by a DC located outside the market. In the

following, I refer to these two cases as Market-DC and Non-Market-DC respectively.

Considering the consumer side, a consumer i who lives at xi faces quadratic travel

costs TCi(a) = t · (a–xi)2 if he buys from A and TCi(b) = t · (r –b–xi)2 if he buys from

B, where t is the travel cost parameter and a and r – b the respective �rms’ locations.

The �rms’ displacement costs are speci�ed in a similar way. Distribution costs are

modeled as linear-quadratic functions of the supply distance, which can be reduced

to a quadratic function for the simple case where the DC is located inside the market.

We choose this cost speci�cation to allow for a more �exible shape since, in contrast

to consumers, suppliers are allowed to ’travel’ to �rms from outside the market. The

distribution distance can be simply expressed as the hypotenuse of a right-angled tri-

1
All consumers are assumed to buy so that the market is fully served.

2
The exogeneity assumption of the DCs is easy to justify whenever the DCs belong to a third party

or a �rm leases already existing DCs of another chain (Recent example: Target entering the Canadian

market). If the DCs are a �rm’s own, the DC location may be considered as an endogenous decision of

the �rm. In this paper, we abstract from this special case, focusing on �rms that use ex ante established

facilities or third party service providers.

3
A similar framework of �rms choosing their locations on a line while the environment is allowed

to be two-dimensional is used by Thomadsen(2006). He places two heterogeneous fast-food stores

on a line and lets them choose their optimal locations in terms of the distance from the center while

consumers are distributed over a two-dimensional space.
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Figure 1.1

The linear city with distribution costs.

(a) Market-DC (b) Non-Market-DC

angle between the DC and the store location. Hence, given the location of �rm A’s

DC or exogenous supplier, the distribution costs for store A are given by

DCa(a; za) = d1 · (Supply Distance)2 + d2 · (Supply Distance)

= d1 ·
[
(a – za

1
)
2

+ (za
2
)
2

]
+ d2 ·

√
(za

1
– a)

2
+ (za

2
)
2

where d1 and d2 are distribution cost parameters capturing the linear-quadratic shape

of the supply cost function. To reduce the analysis to a non-negative, increasing and

convex supply cost function, I assume d1 ≥ 0, d2 ≥ 0.
4

The speci�cation includes the

case of quadratic costs (d2 = 0), which is illustrated in Figure 1.2. It is immediately

clear that the distribution costs increase with the distance of the DC from the market.

However, notice that the distribution cost e�ect of moving one unit closer to the pro-

jected distribution facility (z1) increases the closer that the supplier is to the market

(smaller z2).

With this in mind, the �rms’ strategic decisions take place in two stages. First, �rms

A and B simultaneously decide upon their store locations, a and r – b, respectively.

4
The linear-quadratic cost speci�cation in Hotelling’s model is not new. Hamoudi and Moral

(2005), for example, use a linear-quadratic cost speci�cation for consumers’ travel costs to allow for

concave transportation costs. We use a similar speci�cation for the supply costs but impose the re-

striction of a convex cost structure. Instead of assuming d1 ≥ 0, the assumption could be relaxed,

allowing for a non-monotonic shape of the cost function. In this case, and in order to guarantee a non-

negative cost function, one might extend the cost speci�cation to a general second-degree polynomial

DCa(a; za) = d0 + d2 · SDistance + d1 · (SDistance)2 with at most one root. The additional term d0 ≥ 0

could be interpreted as �xed operation costs.
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Figure 1.2

Distribution costs.

d1 > 0, d2 = 0

The feasibility constraint of the location choice, which is indicated in terms of the

distance from the market edges, implies that a, b ∈ [0, r]. Additionally, I assume that

a ≤ b. Once the two grocery �rms are established, they compete in prices. The

�rms set prices pa and pb depending upon the degree of di�erentiation. Based on

each �rm’s location and the prices o�ered, the utility-maximizing consumers face a

discrete choice problem at which store to buy.

1.2.2 Equilibrium locations

Given the environment presented in the previous section, the game is solved recur-

sively. Compared with the standard linear city model, the pricing stage does not

change, and hence I will refrain from a detailed discussion of this stage.
5

The indif-

ferent consumer is given by x̃ =
pb–pa

2t(r–b–a)
+

r–b+a
2

and the store demand is Da = x̃

and Db = r – x̃, respectively, so that the resulting optimal prices given any two store

locations (a, r – b) are p∗a(a, b) = c + t · (r – a – b)r + 1/3 · t · (r – a – b)(a – b) and

p∗b(a, b) = c + t · (r – a – b)r – 1/3 · t · (r – a – b)(a – b).

Given the optimal pricing decision and the exogenous locations of the DCs, �rm A

chooses its optimal location solving the following problem:

5
This is due to the setting analog Holmes (2011), de�ning the distribution costs as �xed costs

independent of the sales volume. (By extension, we may additionally allow the unit variable costs to

be an increasing function of the distribution distance so that the DC location determines directly the

optimal pricing decision.)
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Maxa[p∗a(a, b) – c]Da (p∗a(a, b)) – DCa
(
a; za

1
, za

2

)
s.t. a ∈ [0, r]


Note that the �rm’s location choice enters not only in the demand but also in the cost

function. Solving for a, under the �rst-order condition of the pricing stage, yields the

following optimality condition for the �rm’s location choice:

FOCa : (pa – c)
[
∂Da
∂a

+

∂Da
∂pb

∂pb
∂a

]
︸ ︷︷ ︸

MRPD

≤ ∂DCa
∂a︸ ︷︷ ︸

MRDE

(1.1)

The inequality condition (1) clearly indicates the trade-o� between marginal returns

on product di�erentiation (MRPDs), which re�ects the competition e�ect, and marginal

returns in the form of distribution economies (MRDEs). It captures the dual nature

of location choice and its e�ect on a �rm’s pro�ts. In other words, assuming a < za
1
,

if �rm A moves marginally away from the extreme towards �rm B, competition in-

creases and revenues decrease, but at the same time the �rm moves closer to the DC

such that the �rm saves on logistic costs.
6

If the savings on supply costs are bigger

than the loss of revenues, it is optimal for the �rm to move towards the competing

�rm at the cost of stronger price competition.

Figure 1.3

Best location response.

Figure 1.3 illustrates this trade-o�. The pro�t is maximized where the MRPD equals

the MRDE. The optimal location choice depends, on the one hand, on �rm B’s loca-

tion choice and the consumers’ travel cost parameter, which shifts the MRPD, and on

6
Note that a > za

1
can never be an optimal location for the �rm, since a marginal decrease in a

implies a reduction in distribution costs as well as an increase in market power.
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the other hand, on the �rm’s distribution cost parameters as well as the location of

the DC, which alter the degree of convexity of the MRDE.
7

However, the inequality in

the best response condition (1) indicates that there may be situations where �rm B’s

location and the set of displacement parameters is such that �rm A chooses a corner

solution locating at the market edge a = 0. Proposition 1 provides conditions which

guarantee a best location response inside the market, where MRPD equals MRDE,

with a view to the symmetric location choice.

Proposition 1.2.1. The �rm’s best location is an interior solution on the Hotelling line

if the consumers’ travel cost parameter is small enough (relative to the distribution cost

parameter).

In other words, a threshold value tcrit determines when the supply-side consideration

becomes relevant for the �rm’s location choice (see Appendix). Let us focus in the

following on the interesting case where t < tcrit .

The e�ect of the location of the DC on the �rm’s optimal location response can be

broken down into a local e�ect and a scale e�ect.

∂DCa
∂a = –

2d1 · (za1 – a) + d2︸ ︷︷ ︸
local–e�ect

·
(za

1
– a)√

(za
1

– a)
2

+ (za
2
)
2︸ ︷︷ ︸

scale–e�ect


The local e�ect is the MRDE if the DC is located at the orthogonal projection of the

DC on the linear market (za
1
, 0). This hypothetical location is used to identify the

impact of the size of the distribution area which I denote as the scale e�ect. The scale

e�ect is the part of the MRDE which is determined by the distance of the DC to the

market. The latter is especially relevant if we think of logistic centers being located

in industrial areas outside the town.
8

Proposition 1.2.2. The supply-cost e�ect on the optimal location response diminishes

with the distance of the DC from the market.

7
Exemplarily, in Figure 1.3, I set b = 0, 3 and the set of displacement parameters (t = d1 = d2 = 1)

with a DC at (za
1
, za

2
) = (0, 5; 0, 1).

8
An alternative argument would be �rms operating in several markets and being supplied by only

one DC (not captured in the model).
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The further away that the DC is with respect to the market (the shopping area), the

smaller the scale e�ect is and hence the absolute value of the MRDE. This implies that

the supply e�ect on the �rm’s optimal location choice is most relevant if the DC is

not too far from the market. The importance of this result lies in the dependence of

the �rm’s strategic location choice on the scale of its distribution area. Notice that

the MRDE is zero when A settles down at the projected location of the DC, i.e., at

a = za
1
. However, this would only be an optimal location if we consider only the

supply side, ignoring the demand side incentive of product di�erentiation to create

market power. In the following, I solve for the equilibrium considering both, supply

and demand side implications of location choice. Considering �rms A and B simul-

taneously yields a system of best responses. To solve for the optimal location choice,

as mentioned previously, I distinguish between the situation where the DCs are lo-

cated inside the market and a more general situation, allowing the DCs to be located

outside the market.

Distribution centers inside the market

It is helpful to �rst consider the case in which the DCs are located somewhere on the

Hotelling line. We refer to these as Market-DCs, since the DCs are located inside the

market such that za
2

= zb
2

= 0. From the optimal location condition as outlined in

equation (1), we get a best-response system BRa(b),BRb(a) which yields the following

polynomial system:

a2
(
–

1

6
t
)

+ a
(
–

1

2
t –

1

18
tr – 2d1

)
+ b
(
–

1

6
t +

1

18
tr
)

+ b2
(

1

18
t
)

+ ab
(

1

9

)
+(

2d1za1 + d2 –
1

6
tr
)

= 0

b2
(
–

1

6
t
)

+ b
(
–

1

2
t –

1

18
tr – 2d1

)
+ a
(
–

1

6
t +

1

18
tr
)

+ a2
(

1

18
t
)

+ ab
(

1

9

)
+(

2d1(r – zb
1
) + d2 –

1

6
tr
)

= 0

We can see from the polynomial structure that, under DC symmetry (i.e., if za
1

=

r – zb
1
, which includes the case of a co-located or joint DC at z1 =

1

r ), we will have

a symmetric location solution.
9

In the following, I focus on the symmetric location

equilibrium.
10

Solving for the optimal location choice yields the following symmetric

and unique Nash equilibrium:

9
The analytical derivation is provided in the Appendix.

10
Looking at real retail store locations, which I analyze in Part II, I �nd that in markets with a strong

distribution cost advantage only one chain is active, while in markets where two main supermarket
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a∗(z, t, d) = b∗(z, t, d) =

0 if t ≥ tcrit(d, z),(
12d1za1 + 6d2 – tr

)
/ (4t + 12d1) if t < tcrit(d, z),

(1.2)

The optimal location choice is characterized by the location of the DCs, captured in

the vector z, as well as the displacement cost parameters t and d = (d1, d2). Analo-

gous to Proposition 1, we can express the threshold of an interior solution as a critical

value of consumers’ transportation costs tcrit (or as function of the relative impor-

tance of transportation and distribution costs captured in γ = t/d1, which requires

γ < γcrit =
12za

1
+6

r ).
11

To summarize, for the union of the set of supply-side parame-

ters and the set of demand-side parameters ΘS ∪ΘS , with

ΘS =

{
(za

1
, d1, d2) : za

1
∈ [0, r]; d1, d2 ∈ <+

; za
1

> (tr – 6d1)/(12d1)

}
and

ΘD =

{
(t, r) : t, r ∈ <+

; t <
d1

r (12za
1

+ 6)

}
,

there exists a unique optimal location choice in the interior of the Hotelling line. This

result implies that, when allowing for the coexistence of demand and cost strategies,

we can establish interior locations on the product space (contrary to the maximal

product di�erentiation in the standard model, which analyzes the optimal product

location only from the demand-side perspective). It is easy to show that, if the DC

is su�ciently far from the market edges and t < tcrit , the optimal location choice of

the �rm exists and is a unique interior point of the Hotelling line, which solves the

trade-o� between the MRPD and the MRDE. A special case of an interior solution is

the situation where a = za
1

minimizes the distribution costs.

The result is consistent with standard models. If t = 0, such that there is no incen-

tive to di�erentiate geographically, �rms settle down at the location of their DCs to

minimize costs (za
1

= zb
1

= r/2 implies Bertrand’s equilibrium). The other extreme

comprises relatively high transportation costs for consumers. If the travel cost pa-

rameter t exceeds the critical threshold, which happens if t is much higher than the

chains are competing the DCs are in general co-located or very close to each other, such that the

symmetry assumption of the distribution costs is not too strong.

11
Alternatively, we could express the existence of an interior equilibrium as a function of a critical

za
1
(t, d).
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distribution cost parameter d1, the demand strategy becomes dominant and �rms

choose maximal di�erentiation. Finally, if d1 = d2 = 0, the optimal location is again

that of the d’Aspremont example. Hence, the presence of �rms’ distribution costs can

decrease the degree of product di�erentiation, which enhances price competition.

Generalization of the DCs’ locations

Let us now consider the more general case where �rms are supplied from DCs which

are allowed to be located outside the market, e.g. in an industrial area or another iso-

lated market. We now distinguish between Market-DCs and Non-Market-DCs, where

the latter refers to DCs which are located o� the Hotelling line. Given the location

of exogenous DCs and the displacement parameters of consumers and �rms, �rm A’s

implicit best response to B’s location choice becomes the following:

a2
(
–

1

6
t
)

+ a
(
–

1

2
t –

1

18
tr
)

+ b
(
–

1

6
t +

1

18
tr
)

+ b2
(

1

18
t
)

+ ab
(

1

9

)
+

(
–

1

6
tr
)
≤

–2d1

(
za

1
– a
)

– d2

(za
1
–a)√

(za
1
–a)

2
+(za

2
)
2

Firm B faces an analogous trade-o�. Note that whenever z2 6= 0 (Non-Market-DC),

the MRDEs are no longer linear in a. This is due to the diminishing supply-cost

e�ect as stated in Theorem 2. This implies that the chosen cost speci�cation of the

distribution costs is intuitive, but it comes at a cost, namely that the model is no

longer analytically solvable. However, focusing on the symmetric case of location

choice, i.e., za
1

= r – zb
1

and za
2

= zb
2

= z2 ∈ <, the solution can be plotted for any set

of displacement parameters (t, d).

Figure 1.4(a) illustrates the dependence of the location choice a on the location of its

DC at (za
1
, za

2
). Since I focus on the symmetric case, the graph depicts only the market

side for �rm A (mirrored for �rm B). It is easy to verify that, analogous the previous

section, the further away that the DC projection (za
1
, 0) is from the market edge, the

larger that a also is. However, and considering the transverse section of the graph,

depicted in Figure 1.4(b), note that the e�ect diminishes in |z2|, i.e., with the distance

from the market.

Analogous to the case of Market-DCs, the set of parameters for which an interior

solution exists for the general case is de�ned as follows:



1.2 The linear city with distribution costs 24

Figure 1.4

Market-DC and Non-Market-DC.

(a) a(z1, z2) (b) a(z2|z1 = 0.5)

Θ∗ =

{
(z, d, t, r) : za

1
∈ [0, r]; d1, d2 ∈ <+

; t, r ∈ <+
;

d2za2√
(za

1
)
2
+(za

2
)
2

+ 2d1za1 ≤
1

6
tr
}

.

Although I cannot solve for the general case analytically, the graphical illustration

on the one hand con�rms the results from the previous section and on the other

hand exposes the impact of the size of the distribution area in the location considera-

tions. That is, once �rms consider distribution costs in their location decisions, it may

no longer be optimal to employ maximal di�erentiation. However, the distribution

economies which drive this result diminish when the distance from the DC to the

market becomes great. In other words, the closer that the DC is to the market, the

stronger is the trade-o� between returns to product di�erentiation and returns in the

form of distribution economies.

Welfare implications

To push the analysis further, I consider the welfare implications when accounting for

distribution costs in the optimal location strategy. Maximizing social welfare in the

Hotelling framework is equivalent to minimizing costs. However, in the presented

model, there are two types of costs. While consumers’ transportation costs are mini-

mized at aTC = bTC =
r
4
, distribution costs are minimized at the projected DC location,

i.e., at aDC = bDC = za
1

= r – zb
1
. It is easy to deduce that, in the interval [

r
4
, za

1
], the

social planner will face a trade-o� between increasing total transportation costs and

decreasing distribution costs (or inversely if za
1

<
r
4
). In the following, I solve for the
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social optimum for the case where the DC is located in the market to make it com-

parable to the closed-form solution provided in Section 2.2.1. The planner faces the

following problem,

Min {T (a, b) + D(a, b)}
(a,b)

where T (a, b) are the total transportation costs paid by the consumers, i.e., T (a, b) =∫ x̃
0
t(a–x)

2f (x)dx+

∫ r
x̃ t(r–b–x)

2f (x)dx, andD(a, b) are the total distribution costs paid

by the �rms, so thatD(a, b|z2 = 0) = d1·
[
(za

1
– a)

2
+ (r – b – zb

1
)
2

]
+d2·

[
(za

1
– a) + (r – b – zb

1
)

]
.

Solving for the optimal locations yields the following �rst-order condition for a,

∂T (a,b)

∂a +
∂D(a,b)

∂a = t ·
(
a2

–

(
r–b–a

2

)
2

)
– d1 ·

(
2za

1
– 2a

)
– d2

and analogously for b with r – zb
1

= za
1
. Solving for the social optimum, under the

coexistence of positive travel costs and positive supply costs, the system yields, after

rearrangement, the following social optimal locations:

asocialH&H (z, t, d > 0) =

0.25tr2
+ 2z1d1 + d2

2d1 + tr
and bsocialH&H = r – asocialH&H (1.3)

Note that while in the standard Hotelling framework without distribution costs the

social optimum is independent of the consumers’ transportation cost parameter (t >

0), in my model,which internalizes distribution cost e�ects, the social optimum de-

pends upon the displacement parameters of consumers and �rms.

Figure 1.5

Optimal market location and social optimum (for firm A).
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θS = (z1 = 0.5, z2 = 0, d1 = 1, d2 = 0).

Moreover, note that lim
(d1,d2)→0

asocialH&H =
r
4
, which is consistent with the standard
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Hotelling setting. On the other hand, limt→0asocialH&H = z1 +
d2

d1

, which minimizes distri-

bution costs. Setting d2 = 0, which imposes quadratic distribution costs (although this

is no problem whenever the DC is located inside the market as in the present case),

the optimal location is just next to the DC. Finally, comparing the social optimum

with the market outcome, I �nd that the market forces still lead to excessive di�er-

entiation, i.e., a gap between the market outcome and the social optimum, but less

than in the standard model if the supply cost parameter is su�ciently high relative

to the consumers’ transportation cost parameter. We brie�y illustrate the excessive

di�erentiation (∆D) as a function of the relative importance of distribution costs and

transportation costs, de�ning γ ≡ t/d1 with t > 0, d1 > 0. I choose this representation

since it re�ects the relative importance of the competition e�ect which is the source

of the ine�ciency. Since this section considers the case of Market-DCs, without loss

of generality I set d2 = 0 and r = 1, such that the di�erentiation gap is given by

∆D(γ, za
1
) = aSH&H – a∗H&H =

2γ2
+ (5 – 4z1)γ

4γ2
+ 20γ + 24

∈

[0,
1

4
] if γ ≤ γ̄(za

1
),

[
1

4
,

1

2
] if γ > γ̄(za

1
),

(1.4)

Consequently, for γ ≤ γ̄(za
1
), where γ̄(za

1
) = 2za

1
+

√(
2za

1

)
2

+ 6, the gap between the

social optimal di�erentiation and the market outcome is smaller than in the standard

model. Figure 1.5 illustrated this result and provides, at the same time, a compari-

son of the market outcome (solid lines) and the social optimum (dashed line) for the

’Hotelling meets Holmes’(H&H)-model and the standard Hotelling model as a func-

tion of consumers’ transportation costs. Given any distribution cost setting θS , the

graph shows that the discrepancy between the optimal market location and the social

optimum increases in t for interior solutions and decreases if t ≥ tcrit , where the �rm

chooses a corner solution. Within the limit (t → ∞), the supply e�ect is dominated

by the competition e�ect and we are back at the standard model.

1.2.3 Robustness check: the e�ect of DCs on variable costs

We have considered distribution costs as �xed costs within a �rm’s pro�t function.

However, distribution costs may be ’passed on’ to consumers if we allow them to also
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e�ect the variable costs.
12

Hence, let us consider, in addition to the �xed distribution

costs as speci�ed in the previous section, the variable costs of �rm A such that they

increase with the distance of the �rm to its DC, i.e., ca(|za – a|) with
∂ca

∂|za–a|
≥ 0.

Analog for �rm B. For demonstration purposes, let us assume the functional form

ca = α · |za –a| with α ≥ 0, set d2 = 0 and r = 1, and solve by backwards induction for

the symmetric equilibrium (zb = 1 – za). The optimal location choice of �rm A also

now depends upon the parameter of the variable costs α, as follows:

a∗(z, t, d,α) = b∗(z, t, d,α) =

0 if t ≥ tcrit(d, z,α),(
12d1za1 – t + 5α

)
/ (4t + 12d1) if t < tcrit(d, z,α),

In equilibrium, an interior solution as well as a corner solution is possible, which

depends again upon the transportation cost parameter for consumers. Comparing

this model variation with the result in equation (2), note that tcrit increases, which

relaxes the condition to achieve an interior solution. In other words, if locating closer

to the distribution facilities not only implies savings on the �xed costs of the �rm

but also decreases marginal costs (α > 0), then an interior solution is even easier to

achieve.

1.3 An application to the location of supermarkets

In this section, I aim to verify the impact of distribution costs on �rms’ geographic dif-

ferentiation empirically for a particular example of a distribution-intensive industry.

I consider the leading conventional supermarket chains in the US, namely Kroger Co.

and Safeway Inc., both market-listed and operating predominantly as ’neighborhood

grocery stores’. With focus on the trade-o� between di�erentiation from competi-

tors and distribution economies, I have chosen competitors which are on a par with

each other and abstract from the competitive pressure of mass merchandisers, like

Wal-Mart, on traditional supermarkets (see, for example, Jia, 2008, or Matsa, 2011).
13

12
For a detailed discussion on ’cost pass-on’, depending upon the market structure and type of

competition, you may consider Stennek and Verboven (2001).

13
Originally, I considered also the big box chains Wal-Mart and Target but, in contrast to the neigh-

borhood stores of Kroger and Safeway, I �nd that these chains are not operating in the same geographic
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I also abstract from a possible trade-o� between di�erentiation and agglomeration

as considered by Datta and Sudhir (2011). I present �rst the data and the measure

of di�erentiation, and subsequently use a multivariate regression analysis to verify

whether the presented model o�ers a valid explanation for the �rm’s behaviour re-

vealed through the observed location choice.

1.3.1 Data

I use data on supermarket locations in the US for Kroger and Safeway. All the store lo-

cations have been identi�ed from POI datasets.
14

The advantage of this type of data

source is that locations are already geo-codi�ed, which avoids matching problems

with a manual geo-codi�cation (which would be necessary to measure e�ciently the

geographic di�erentiation between a huge number of stores). Additional informa-

tion from the respective �rms’ websites allows the identi�cation of the store format

which operates under a certain banner and the location of the regional DCs. More-

over stakeholder information, especially the ’Fact Book’ and ’Annual Report’, allows

the veri�cation of the consistency of the POI data, which turns out to be highly ac-

curate. The di�erences in the number of stores indicated by the POI dataset and the

o�cial �nancial publications are three stores for Kroger and 24 stores for Safeway.

Both are small deviations with respect to the total number of stores of the chains.

The di�erence is assigned to the time di�erence in the data collection for the POI

dataset and the corporate �nancial information. More detailed comments on the data

are provided in the appendix.

For the spatial analysis, in particular the calculation of geographic distances, I use

the Geographic Information System ArcGIS. Based on freely available polygon-shape

�les for di�erent spatial units in the US with associated demographic characteristics,

I de�ne reasonable geographic markets and construct the following cross-sectional

markets or else the markets would have to be de�ned as extremely large such that, assuming consumers

travel within such a large geographic area to purchase fresh grocery products, it becomes implausible

in terms of irrational travel distances. The data indicate that only 67% of Wal-Mart’s stores are located

in urban areas, while Target operates 81% of its stores in urban regions.

14
POI stands for ’Point of Interest’, an expression from GPS technology in which these datasets are

used to provide GPS customers of any brand with an update of locations which might be of interest

to them when on the road. Some common examples of POIs other than supermarkets are hospitals,

speed cameras or gas stations.
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datasets:

Markets =

{
Popm,HHm, SQMIm,NK

m ,N S
m,Dist_centroidDC,j

m

}
Stores =

{
Xs, Ys,Di�

comp
s ; Popmsj ,HHmsj , SQMImsj ,N own

m ,N comp
m ,DistDC,own

ms

}
The �rst dataset-type consists of market-level data. The observations comprise the

markets, indexed by ’m’, where at least one supermarket chain is active, associated

variables like the number of stores per chain in each market (NK
m for Kroger and N S

m

for Safeway), the population and the number of households per market (Popm,HHm),

the geographic market size in square miles (SQMIm) and the distance from the market

centroid to the closest regional DC of each �rm (Dist_centroidDC,j
m ).

The second dataset consists of store-level data and associated market data for a par-

ticular store s. The store data have been constructed using a vertical combination of

the store dataset for each �rm. The �nal dataset contains the projected store loca-

tions (Xs, Ys), the distance from each store to the closest regional DC of the relevant

chain a�liation (DistDC,own
ms ), and the distance to the closest competitor store within

a market (Di� comp
s ). The associated market features are as in the market-level data.

1.3.2 Descriptive proximity analysis

In total, Kroger counts 2.110 and Safeway 1.487 supermarket stores. Since I am inter-

ested in each �rms’ location choice inside a market, I need to de�ne reasonable shop-

ping areas to identify where the stores compete. In the literature based on Bresnahan

and Reiss (1990), markets are usually de�ned as isolated cities. Recently, Ellickson et

al.(2011) proposed a variation where this assumption is relaxed, allowing for market

spillover e�ects for metropolitan and micropolitan areas, but I �nd that this market

de�nition is too broad to be considered a shopping area for fresh grocery products.

Instead, I looked for a market area de�nition such that consumers can be assumed

to move within this area for grocery shopping given the data-availability constraints

of the demographic and geographic market characteristics.
15

I propose ’urban areas’

(UAs), densely-settled census-block groups that meet a minimum population density,

15
This is in line with the geographic market de�nition by the European Commission, which de�nes

a retail market for daily consumer goods as "the boundaries of a territory where the outlets can be

reached easily by consumers (radius of approximately 20 to 30 minutes driving time)" (COMP/M.5112

REWE/PLUS par.18, 2008).
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as natural shopping areas for neighborhood supermarkets. To the best of my knowl-

edge, this de�nition has not been used so far in this context, but the statistics show

that this market de�nition captures almost all supermarkets in the data and yields

reasonable travel dimensions for grocery products. I �nd that approximately 90 % of

all the neighborhood stores of the two considered chains are located in UAs, which is

taken as evidence of a natural shopping area for this type of store. To illustrate where

these markets are located, the appendix provides a map of the markets considered.

Table 1.1

Summary statistics.

Kroger Safeway

Summary:

Total number of stores in UAs [% Total] 1,870 [89%] 1,373 (92%)

Markets (UAs) 437 280

Markets with at least 2 stores of either of the chains 160 180

Duopoly markets (both �rms active) 67 67

Total number of Regional DCs 25 12

Proximity Measures:

All markets
E[Distance to closest own store] 2.82 (1.95) 2.68 (1.87)

E[Distance to closest DC] 68.59 (71.79) 57.20 (58.09)

E[number of stores in a market] 4.28 (12.70) 4.90 (13.67)

Duopoly markets
E[Distance to closest own store |Competition] 2.57 (2.03) 2.08 (1.97)

E[Distance to closest competitor|Competition] 1.96 (1.89) 1.96 (1.89)

E[Distance to closest DC|Competition] 30.96 (42.33) 44.13 (51.30)

E[number of stores in a market|Competition] 10.21 (24.53) 10.21 (20.97)

Average Market Characteristics:

E[Population in a market] 183,742 (738,431) 337,681 (1,470,633)

E[Number of Households in a market] 68,292 (256,462) 122,381 (525,735)

E[Geographic market size (in sq. miles)] 72 (198) 94 (321)

∗
Standard deviations in round brackets.

Table 1.1 provides a summary of the variables that will be used in the following anal-

ysis. Considering the continental United States, Kroger, as the leading supermarket

chain, operates in more markets than Safeway and counts more DCs. This observation
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is not surprising since, being active within a larger geographical space, its markets are

organized in more distribution areas. However, the statistics show that the two main

supermarket chains target similar markets. The data even suggest that their strategic

entry decision is statistically equal in markets where they compete with each other

(which I indicate in the statistics with the condition ’Competition’).
16

Section two of the summary statistics provides several proximity measures - the ex-

pected distances between stores of the same chain to competitors and to the closest

DC which supplies a given chain. All the distances are measured in Euclidean dis-

tances in miles.

Comparing the two main supermarket chains, on average, the distance between two

Kroger (Safeway) stores within the same geographic market is 2.5 (2.0) miles, while

the average distance with respect to the closest store of the competitor is 1.9 miles.
17

Taking into account that Safeway indicates to draw on average customers from a

2.0-2.5 mile radius, the average distance between competitors suggests the existence

of overlapping market areas between the rivals (analog the ’competitive areas’ from

the extended Hotelling model). Additionally, it calls attention that in the presence of

competition both �rms in question face a smaller average distribution distance than

in ’monopolistic’ markets.
18

This di�erence is more pronounced for Kroger than for

Safeway, with Kroger facing in competitive markets an average distance of 30 miles

to its regional DC compared to 68 miles in ’monopolistic’ markets. At this point you

may argue that the markets close to DCs may be more attractive or that DCs, which

are often located in industrial areas, are more likely to be located close to large mar-

kets where competition is more likely. We will have a detailed look at markets with

competition in order to study whether the joint consideration of supply and demand

in the location choice of the �rms may partially explain these observations.

16
I abstract from scale e�ects, which might be larger for Kroger as the leading supermarket chain.

17
Considering only markets where both �rms are present, the average distance between the �rm’s

own stores becomes even smaller which may suggest an intent of pre-emptive behaviour of the �rm,

e.g., packing stores close together to foreclose the market, but since we are interested in the spatial

di�erentiation with respect to the rival we don’t consider this aspect in the present paper.

18
In this context I use the term ’monopolistic’ for markets where only one of the two �rms in

question is present.
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Figure 1.6

Distance distributions.

(a) Di�erentiation (b) Supply-Distance

Figure 1.6 illustrates the distribution of the distance variables in more detail. Note

that the own-store di�erentiation of both supermarket chains follows a very similar

pattern. The same holds for the di�erentiation with competitors in those markets

where both chains are active, though with a shift to the left which re�ects the lower

expected di�erentiation compared to the closest �rm’s own store. Considering the

distribution of the supply distance, both �rms show a mode of around 30 miles, with

a �at tail from mile 200. I interpret this pattern as a potential colonization pattern

of stores close to DCs. Furthermore, the data let us suspect that there is a kind of

threshold region before the distance becomes so large that the DC is considered as

inaccessible.

1.3.3 Empirical analysis of supply-distance e�ects

In order to verify whether the proposed mechanism suggested by the model yields a

possible explanation for the observed pattern in the data, I run an empirical analy-

sis using continuous distance measures. The variable of interest is the geographical

di�erentiation between a store of chain i and a store of chain j, denoted as Di� comp
,

which is estimated as a function of demand shifters (X ) and distribution aspects from

the supply side (Y ).

E
[
Di� comp

|X , Y
]
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Recall that the constructed datasets of stores and markets, where at least one store

per market is active, captures thee possible market outcomes in terms of the market

presence of the supermarket chains. To verify if the proposed theoretical model can

provide a possible explanation for the observed pattern in the data, we select only

markets with competition, i.e. markets with NK ≥ 1,N S ≥ 1. Since the selection rule

is a deterministic function of the market presence, which is captured in the matrix X ,

the selection issue can be ignored.

As such, let us specify the model of geographic di�erentiation,

E
[
Di� comp

|X , Y
]

= β0 + β1X + β2Y

with X =

(
Pop, SQMI ,N own

,N comp)′
and Y =

(
DistDC,own

, (DistDC,own
)
2
)′

The underlying intuition of this speci�cation is based on the H&H model presented

in the previous chapter. Note that, if the DC costs are not considered in the �rm’s

location choice, the spatial di�erentiation with respect to the competitor should be

independent of the distribution distance. I expect that, if the DC is not too far away

from the market, the stores consider the distribution distance in their location choice

with respect to their competitors. However, when bringing the model to the data, I

face three potential problems which are discussed in the following.

Network problem. The ideal experiment to analyze whether there is a distribution ef-

fect as speci�ed in the model would be to take otherwise equal linear cities withN = 2

stores each and random DC locations in space. However, contrary to the simpli�ed

theoretical model, in the real world there are markets with more than two stores, i.e., a

store network for which our linear model does not account. In such markets, a super-

market has to consider the geographic di�erentiation with more than one competing

store. It seems reasonable that the closest store, in terms of the Euclidean distance,

matters most in the price competition, but considering only the ’closest neighbor’ ig-

nores possible competition e�ects of other stores.
19

19
A related problem arises for markets where A is the closest neighbor of B but where for A the

closest neighbor is C.
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Simultaneity problem. The aim is to explain the store-di�erentiation as a function

of the location of the closest DC. If I use the distance to the closest DC as an explana-

tory variable, I may introduce a simultaneity problem. If the distribution distance

is endogenously determined by the store’s location choice, which is captured in the

di�erentiation of the �rms, the estimated coe�cient β2 will be biased.

As a �rst step, to demonstrate the link between the geographic di�erentiation and

the distribution distance, I run an ad hoc analysis using the closest neighbor distances

as the dependent variable and the store distance to the closest DC as an explanatory

variable.

As the second step, I address both of the above-mentioned problems at once using

aggregated data. To address the network problem, the easiest solution to implement

is to rede�ne the dependent variable as the average di�erentiation within a market.

This might be interpreted as a kind of representative di�erentiation within a mar-

ket, but it comes at the cost of ’losing’ observations when going from store-level data

over to market-level data. For the analysis of the store di�erentiation with the closest

competitor, we are left with 67 observations (duopoly markets). For the purpose of

this analysis, I consider this small sample as still su�cient to eliminate the network

problem at low cost.
20

Hence, I implement the solution with aggregated data and

address the potential simultaneity problem of the distribution distance with an IV

approach, using the distance to the �rm’s exogenous DC location to the market cen-

troid (Dist_centroidDC) as instrument for the distance to the closest DC. The distance

to the market centroid is highly correlated with the store distance to the DC, and

is supposed to a�ect the di�erentiation between stores only through the store dis-

tance to the distribution center and therefore can be considered as exogenous, such

that the it provides a valid instrument for the distribution distance. Since I include

level as well as squared distribution distances, I use both the distance and the squared

distance from the market centroid to the closest DC, which are linearly independent

instruments.

20
A more sophisticated solution, using store-level data, would be to rede�ne nearness, taking the

weighted average di�erentiation over an x-miles radius around each store or to set up a structural

model. (For a discussion of "What is near?" see, for example, Miller(2004).) For both solutions, we

need a detailed geography setup which goes beyond the purpose of this paper.
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Table 1.2

Regression results.

Kroger Safeway

Panel A Store level - coe�cient estimates

Population (in 100T) -0.02047
∗∗∗

-0.01015
∗∗

Sqmi 0.00160
∗∗∗

0.00046
∗∗∗

NKroger
= {1, 2, ..., 10, 10

+
} 0.27559

∗∗∗
-0.56419

∗∗∗

N Safeway
= {1, 2, ..., 10, 10

+
} -0.36954

∗∗∗
0.62319

∗∗∗

DistDC (in 100 miles) -0.95976
∗∗

0.08477

(DistDC )
2

0.34582
∗∗

0.00189

cons 2.42450
∗∗∗

1.332342
∗∗∗

Panel B Market level - coe�cient estimates

Population (in 100T) 0.01797 0.04977
(∗)

Sqmi 0.00273
∗∗

0.00183
(∗)

NKroger
= {1, 2, ..., 10, 10

+
} -0.01569 -0.07802

∗∗∗

N Safeway
= {1, 2, ..., 10, 10

+
} -0.04202

∗∗
0.0217634

E[DistDC] (in 100 miles) -1.86810
∗∗∗

-1.87496
∗∗∗

E[DistDC]
2

0.5346217
∗∗∗

0.67567
∗∗∗

cons 2.48834
∗∗∗

2.53548
∗∗∗

∗∗∗
Signi�cant at 1% level,

∗∗
Signi�cant at 5% level,

∗
Signi�cant at

10% level and
(∗)

Signi�cant at 12% level by reason of small sample

properties; Instrumented variables: E[DistDC], E[DistDC]
2
, Instruments:

Dist_centroidDC , (Dist_centroidDC )
2

and the respective exogenous ex-

planatory variables.

Table 1.2, Panel A, presents the results of the ad hoc analysis based on store-level data,

with the geographic di�erentiation of Kroger (Safeway) from competing stores as the

dependent variable. Note that, additional to the problems that have been discussed

in the previous paragraph, the market structure in terms of the number of stores of

each chain is endogenous, i.e. more stores in a small area necessarily causes a smaller

store-di�erentiation and a smaller store-di�erentiation implies smaller market shares

for each store such that we will have more stores in the market. Since this is just a

preliminary regression and the aim of the empirical analysis is not to explain mar-

ket entry, let us ignore this fact assuming the number of stores as exogenous in the

location choice and focus on the e�ect of the distribution distance. Looking at the re-

sults for Kroger, the distribution distance is signi�cant in its location choice, while for

Safeway it is not. Notwithstanding the summary statistics suggest that the �rms fol-
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low similar strategies. As outlined previously, this regression is subject to a potential

simultaneity problem between the distribution distance and the spatial di�erentia-

tion to the competitor (if our theory is true) such that the estimates are potentially

biased. Interpreting these results, we may conclude that only Kroger internalizes the

distribution costs. However, we will see that this conclusion, based on the biased es-

timates, is misleading.

Let us now consider Table 1.2, Panel B, which presents the market-level regressions

with instrumented distribution distances. Note that now for both �rms the (level) dis-

tribution distance has a signi�cant negative e�ect. Moreover the signi�cant quadratic

terms in both regressions suggest a U-shaped pattern of the distance to the DC.

Together with the negative coe�cient of the level distance and the positive inter-

cept, the quadratic pattern implies that for ’small’ supply distances the di�erentia-

tion decreases with the supply distance, while for large distances the di�erentiation

increases. For Kroger, the average minimum di�erentiation is reached at 174 miles

and for Safeway at 138 miles respectively, which is in line with our conjecture about a

kind of distance threshold when interpreting the distribution of the supply distance in

Figure 1.6. With respect to the model, the results suggest that both �rms are playing

a hybrid location strategy, considering distribution costs in its strategic positioning

as outlined in the simple linear model with distribution costs. If the DC is more than

174 (or 138) miles away, a store di�erentiates more and more from its competitor,

since distribution economies become less important (which is in line with the exten-

sion of the Hotelling model when z2 > 0). Respective other location determinants,

we �nd that the size of the market area increases the di�erentiation between rival

stores, which is not surprising given that in a larger market there is more room for

di�erentiation. We do not �nd any signi�cant population e�ect. Assuming a uniform

population distribution within the market, this is in line with the standard Hotelling

model (which doesn’t allow for capacity constraints). Last, but not least, we �nd a

signi�cant negative e�ect of the number of the rival’s stores in the market. This re-

sult suggests that retail chains do not cluster own stores together but interlace their

stores with the stores of the rival such that more rival stores imply less di�erentiation

possibilities.



1.4 Discussion: alternative applications of the model 37

To summarize, the data suggest that, for close DCs, the di�erentiation decreases with

the distribution distance, while for su�ciently distant DCs, the di�erentiation be-

tween �rms increases, which can be justi�ed by our extension of the Hotelling model

introducing distribution costs. The signi�cant distribution e�ect is also related with

the empirical results of Matsa (2009), who shows that product availability in terms

of low stock-out rates, which decrease with distance to suppliers, are important to

maintain competitiveness.

Finally, note that a limitation of this application is that we abstract from other gro-

cery retailers. We may think of other supermarkets and alternatives like fresh stores,

organic food stores or small-format value-priced stores that may have an impact on

the di�erentiation between the two main conventional supermarkets. Ignoring gro-

cery retailers that ar not on a par with the �rms in question, I assume implicitly that

consumers regularly buy all their food products all at once at a single store, i.e., that

consumers are assumed to buy a ’standard shopping basket’, and I abstract from the

possibility of buying some items from other grocery retailers such that the most im-

portant rival for Safeway, who can steal a signi�cant part of its consumers, is Kroger

and vice versa.

For further empirical analysis of the location choice of Safeway and Kroger, I refer

to my second thesis chaper, which models the location choice as a discrete game (in

contrast to the continuous regression model presented in this paper).

1.4 Discussion: alternative applications of themodel

We can think of other applications of the extended version of the Hotelling model.

First at all, let us consider two service stations locating on a highway (the market)

with the locations of consumers being the kilometer mark when the fuel light goes

on, which can be assumed to be uniformly distributed over the highway and drivers

can stop at a service station at any time. In this setting, the DC can either be inter-

preted as an industrial area with the logistics centers of the service stations (on the

highway or ’outside’, i.e., on any other highway), or as the location of a city, close

to or apart from the highway, with the residences of potential employees and a labor

supply decreasing with distance such that the wage rate increases with distance and
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consequently the costs of the �rms. In any case, our model suggests that a maximal

di�erentiation (i.e., locating just after the motorway approach and just before the

motorway exit) may not be optimal if the service stations endogenize the �xed (labor

or/and distribution) costs.

So far, I have referred to di�erentiation as the geographic distance between �rms, but

the presented mechanism can be transferred to further problems of product di�eren-

tiation, in particular the decision of product design. Let us rede�ne the middle of the

line segment as a basic product which can be produced with the common knowledge

exhibited within the industry. Assume that any further development of the product

characteristics (e.g. tailoring to a speci�c consumer group) requires speci�c knowl-

edge which comes at a �xed cost that increases with specialization. In this context,

the ’DC location’ is the generic product and the ’distribution distance’ comprises the

development costs of more specialized products. The implication of a hybrid location

strategy is that the specialization cost can lead start-up �rms to choose more generic

products compared to the case where specialization costs remain unconsidered in the

product decision. Alternatively, we may think of two �rms being endowed ex-ante

with a particular technology (incumbent product) and having to decide whether to de-

velop it further in order to optimize their location in the product space. Some concrete

examples may be found in the software and automobile industries, both industries in-

volving labour-intensive and complex development processes that require specialized

skills. For instance, for software vendors, it may be more e�cient to sell relatively

generic software packages at competitive prices rather than more specialized soft-

ware solutions that imply high development costs. In the automobile industry, we

may think of a particular car model of each manufacturer and each of their decisions

about the new generation of cars, i.e., how far away the engineers move from the

characteristics of the original model. In other words, if the �xed R&D costs are inter-

nalized in the product design decision, the cost consideration can change the optimal

location in the product space relative to a pure demand-based decision.
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1.5 Conclusion

A theoretical model has been provided along with empirical evidence to explain how

the consideration of operational e�ciency, in terms of supply costs, in �rms’ opti-

mal location choices a�ects the degree of product di�erentiation among �rms. The

proposed model has shown that, by internalizing the �rms’ distribution costs in an

otherwise standard Hotelling framework, the maximal horizontal di�erentiation of

competing stores might no longer be optimal. Under weak conditions on the dis-

placement parameters, the trade-o� between demand and cost considerations in the

�rms’ hybrid location choice induces an optimal location in the interior of the mar-

ket. Although �rms earn less marginal revenues due to increased price competition,

in terms of net pro�ts they are better o� than they would be were they to ignore dis-

tribution economies and treat supply costs as exogenous once they are established.

However, and also, consumers bene�t from the hybrid location strategy of the �rms

since they face lower prices and incur lower (or equal) aggregate transportation costs

compared to the standard model. The empirical veri�cation of the model for optimal

supermarket locations suggests that supermarket chains consider distribution dis-

tances in their location choices. The optimal degree of geographic di�erentiation to

the competitor depending on the distance to the closest DC is U-shaped, declining

for small or moderate distribution distances and increasing for long distances. The

result is in line with the theoretical model, suggesting that a hybrid location strategy

is pro�t-maximizing.

The theory and the empirical data suggest that the trade-o� between competition

e�ects and distribution economies is strongest when the distribution facility is rela-

tively close to the market where the stores are operating. If the DC is too far away,

the distribution economies decrease and the competition e�ect dominates the degree

of product di�erentiation.

This paper is a �rst step for a better understanding of �rms’ optimal location choices

in distribution-intensive industries and provides incentives for further empirical re-

search on the identi�cation of location strategies.
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1.A Appendix: Proofs and algebraic details

Symmetric solution of location choice. We can either see it directly from the best

response function or solve for it analytically if we subtract BR1

a – BR1

b and solve the

quadratic equation under the feasibility constraint:(
a2

– b2
)
∗
(
–

2

9
t
)

+ (a – b)

(
–

1

3
t –

1

9
tr – 2d1

)
≤ 2d1

(
r – zb

1
– za

1

)
De�ne γ ≡ t

d and z̄ =
za

1
+zb

1

2
, then

a(b) =b if za
1

= r – zb
1

(
⇔ z̄1 =

1

2

)
,

–1 – 9/(2γ) +

√
[b + 1 + 9/(2γ)]

2
+ (9/γ)(2z̄1 – r) otherwise

In this paper, I focus on the symmetric location equilibrium, but I might conjecture

that whenever the symmetry condition za = r – zb does not hold, there exists an

asymmetric location equilibrium i� the cost advantage of the market leader is not too

strong.

General DC location. Under symmetry, the optimal location is implicitly given by

F = a
(
–

2

3
t – 2d1

)
+ d2 · 1√

1+

(
z
2

z
1

–a

)
2

–
1

6
tr + 2d1z1 ≤ 0. Since F (a = –∞) = –∞ and

F (a = +∞) = +∞ and F is continuous in a, there is at least one root. Moreover, since

all the summands of F are monotonic on the interval [0, r] or else constant, the root is

also unique. To check whether there is an interior solution on the Hotelling line, it is

enough to check for a positive root, which is the case whenever F (0) > 0. Evaluating

F at zero yields the following condition for an interior solution:
d2z2√
z1+z2

+2d1z1 ≤ 1

6
tr .

Proof Proposition 1. The �rm’s best location is an interior solution on the Hotelling

line if the consumers’ travel cost parameter is small enough (relative to the distribution-

cost parameter) such that t < tcrit(b) =

[
2d1za1 +

d2za1√
(za

1
)
2
+(za

2
)
2

] [
–

1

18
b2

+

(
1

6
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r
)
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6
r
]
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.

Under symmetry, the condition collapses to t < tcrit =
1

r

(
12d1za1 +

6d2za1√
(za

1
)
2
+(za

2
)
2

)
.

Since for z1 > a the MRDE(a) are strictly increasing in a and MRPD(a) are strictly

decreasing in a, if MRDE(a = 0) > MRPD(a = 0) the �rm chooses a corner solution,

a = 0. From the equilibrium condition (1), it can be seen that this is the case whenever
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(
1

18
t
)
b2

+

(
1

18
tr –

1

6
t
)
b –

1

6
tr < –2d1z1 –

d2z1√
z2

1
+z2

2

, and under rearrangement we can

establish a critical value tcrit(b; z, t, d). If t > tcrit , the demand e�ect dominates the

supply e�ect and the �rm �nds it optimal to choose maximal di�erentiation. Note

that, if z2 = 0, d2 = 0 or d1 = d2, I could de�ne a relative threshold (t/d1)crit.. Under

symmetry a = b, the threshold reduces to tcrit =
1

r

(
12d1z1 +

6d2z1√
z2

1
+z2

2

)
.

Proof of Proposition 2. First, recall that the e�ect of the market distance from

the exogenous DC location is linearly separable from the market events, i.e., the hy-

pothetical case where agents as well as DCs are located inside the market. Hence, I

take the derivative of the scale e�ect with respect to the distance between the market

and the DC’s location (z2):

∂2DCa
∂a∂za

2

=
d2(za

1
–a)za

2

[(za
1
–a)

2
+(za

2
)
2
]

2

3

≥ 0 for za
1
≥ a

Since the MRDEs are negative for any za
1

> a (indicating marginal cost-savings), the

positive sign of the second derivative implies diminishing distribution economies as

the distance of the DC to the market becomes large.
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1.B Appendix: Detailed explanation of the data

Kroger. To identify supermarkets which are operated by The Kroger Company, I

use a free POI �le from July 2012 identifying the geographic coordinates and banners

for all grocery stores which are under the �rm’s ownership (www.poi-factory.com).

Additional information from the �rm’s website allows us to identify the store format

operating under each banner (www.thekrogerco.com). The GPS data provide a to-

tal of 2.428 grocery retail stores in the US, of which 2.110 are supermarkets, 146 are

warehouse stores and 172 are multi-department stores (similar to super-centers). The

data are consistent with the �rm’s public information, indicating in May 2012 a total

number of 2.425 grocery retail stores, i.e., three stores less than the data which I as-

sign to the two-month di�erence between these data sources. (The data consistency

holds also for the �rm’s convenience stores, which di�er by only three stores, with

786 stores registered in the POI dataset and 789 stores indicated by the �rm in May

2012.) The locations of the distribution facilities are collected from the �rm’s ’Ship-to

Warehouse Location List’ for vendors, who are required to use an EDI (Electronic Data

Interchange). In 2012, the warehouse location list indicated 34 distribution divisions

of which 27 are local distribution divisions and seven are supra-regional consolida-

tion warehouses, denominated ’Peyton’s DC’ and ’Goddard Western DC’. While some

divisions have only one big local DC, others have several specialized warehouses lo-

cated next to each other; in the latter case, I took the street address of the most general

one for the geo-codi�cation. The information is consistent with other �rm’s sources,

such as the ’2011 Fact Book’, which indicates 34 DCs. It is worth mentioning that

some DCs are operated by the �rm itself while others are operated by third-party

service providers, which is as a result of Kroger’s outsourcing and remodeling of

its distribution network during recent years. When analyzing the sub-sample of the

supermarket format only, I exclude the FredMeyer Regional DC (division 22) which

supplies the multi-department stores that are operated under this banner.

Safeway. To identify the stores and DCs of Safeway, I use two types of sources.

First, I use a POI dataset which identi�es all Safeway facilities in the US and Canada

based on the �rm’s own information. The dataset provides locations for all stores of

any brand as well as associated DCs operating in March 2008. After sorting out the
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number of retail stores in the US, we are left with 1.545 store locations in the US, of

which 973 are operated under the Safeway banner, 300 Vons, 116 Randalls, 80 Do-

minick’s, 37 Genuardi’s and 39 Carrs (I eliminate one observation ’Citrine Bistro’). A

comparison with data from the ’SW Fact Book 2008’ and the ’2007 Annual Report’

shows an acceptable di�erence of 24 stores. The US stores are assigned to nine oper-

ational areas (divisions) which are supplied by 13 main DCs. In general, each division

has one regional DC, the exceptions being South California (Vons) and Texas (Ran-

dalls), which have two DCs each, and Seattle which is supplied by three di�erent DCs.

Complementary information from the �rm’s website allows us to match each store

with its corresponding DC by division.

Market de�nition. Markets for ’neighborhood grocery stores’ are de�ned as UAs.

We have shown that this particular de�nition is convenient for the Kroger/Safeway

data. To illustrate where these markets are located, the map below indicates all the

UAs where at least one of the �rms is present.

Considered markets (UAs) in the US with active Kroger stores and/or Safeway stores.



chapter 2

The role of captive consumers

in retailers’ location choices

2.1 Introduction

The grocery retail industry, as the endpoint in the food distribution chain, consti-

tutes a large fraction of the US economy, with supermarkets and their major chains

comprising the largest segment. The spatial nature of competition across supermar-

kets and potential cost advantages from an e�cient supply chain management leave

scope for retailers to bene�t from market power, and constitute an interesting in-

dustry regarding the study of the strategic location decision of retail stores under

price competition within a spatially di�erentiated market. This paper seeks to ana-

lyze empirically whether - in line with theoretical spatial competition models - �rms

anticipate price competition and distribution costs in their location decisions and, in

particular, how the population distribution within a market determines the �rms’ lo-

cation incentives. However, existing empirical entry or location models are usually

based on quantity competition, and this approach misses important features when

applied to markets where price competition is more reasonable. I therefore propose

an alternative econometric model based on price competition and provide an appli-

cation to study the location choice of the two largest retail grocery companies in the

US, namely Kroger and Safeway.

To be precise, I propose a static discrete-choice location model under incomplete in-

formation whereby two �rms compete in locations and prices within local duopolis-

tic markets. The model is formalized as a simultaneous-move location game. Since in

many cases we observe only the �nal location decision of the �rms, without price or
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quantity data, I exploit the information inherent in location data in a reduced-form

pro�t function using geospatial analysis. In particular, I propose the percentage of

’captive consumers’ in the �rm’s trade area as a new empirical measure of market

power under spatial di�erentiation. By the notion of ’captive’, I refer to consumers

who have access to one �rm but traveling to another �rm is not feasible, regardless of

the price. This is a concept from theoretical spatial competition models which, to the

best of my knowledge, has so far not received any explicit attention in econometric

models. In a similar manner, I use the di�erence in ’captive consumers’ between rivals

as a proxy for the degree of price-competition between �rms. The latter allows us to

identify whether �rms anticipate price competition in order to attract consumers in

overlapping market areas. Additionally, the model accounts for cost aspects, in terms

of the proximity of a store to the �rm’s distribution center, which on the one hand

serves for the model identi�cation, and on the other hand allows us to estimate the

e�ect of endogenized �xed distribution costs in the location choice. For the estima-

tion, I use a maximum likelihood approach and address the computational di�culties

of the game-theoretic setting through the reformulation of the optimization problem

as a mathematical program with equilibrium constraints (MPEC), as suggested by Su

and Judd (2012).

I apply the econometric model to study the strategic location determinants for the

supermarket industry. To be precise, I use point of interest (POI) data for traditional

supermarket stores as a novel type of freely available dataset and process the data

with the Geographic Information System tool ArcGIS. I �nd that, on average, 13% of

the �rm’s trade area comprises captive consumers. The location model identi�es an

incentive for generating local market power through spatial di�erentiation and �rms

anticipating price competition as well as distribution costs when choosing a location

for their stores. Leaving other rivals unconsidered, I �nd that the second e�ect of a

change in captive consumers, denoted as a price-competition e�ect, only has a nega-

tive pro�t e�ect if the percentage of captive consumers in the �rm’s trade area is small

enough (<60%). However, considering the market presence of rivals of a larger format

weakens the monopoly power of the �rms, and I �nd a clear negative price competi-

tion e�ect that becomes stronger as the competitive region becomes relatively more

important for the �rm.
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The main contribution of the paper is the explicit consideration of strategic aspects

of price competition in a spatial competition model based on observed location data.

In particular, I tie the �rms’ strategic behavior to the population distribution, which

has been discussed by Davis (2006) as long recognized as an important link in order

to evaluate any policy interest.

The literature on competition models without price and quantity data goes back to

Bresnahan and Reiss (1990), who use the fact that under quantity competition á la

Cournot, the reduced pro�t function can be expressed in terms of the number of

�rms in a market. A latent pro�t speci�cation is used to estimate a discrete-choice

market-entry model. Katja Seim (2006) extended the model to an entry-location game

where �rms additionally choose their locations within a market. In her approach, the

’measure of competition’ is the e�ect of an additional �rm in a certain concentric

ring (a ’donut’) around the store location, i.e., the corresponding location incentive is

independent of the population distribution. In recent years, her model has been ex-

tended to di�erentiation in more than one dimension (Datta and Sudhir, 2013) or else

allowing for asymmetries in competitive interaction (Zhu and Singh, 2009). However,

applying these models to industries where price competition seems more reasonable

(e.g., supermarkets), the implicit assumption of quantity competition or a �xed exoge-

nous market price does not allow us to identify the appropriate location incentives.

The two crucial limitations of this kind of ’donut-model’ are the following: First, the

strong assumption that a rival locating within a certain distance (ring) of the �rm has

a ’ring-uniform-competition e�ect’ disregards the population distribution within a

’distance ring’. In other words, considering two potential locations of the rival which

are at the same distance from the �rm but which di�er in terms of the associated

population density, this paper assumes that a rival locating at a sparsely populated

location exercises the same competitive pressure on the �rm as if it were located at

the densely populated location. Second, the model can only estimate the ’net e�ect’ of

competition but not the incentives that lead to the observed market structure. While

the latter is also discussed in Datta and Sudhir (2011), stating that these structural

models are "incapable of separating the ’net e�ect’ of competitors into a volume ef-

fect and a price competition e�ect", in their proposed solution and by additionally

using revenue and price data, they rely again upon the critical assumption of a ring-
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uniform-competition e�ect.

My model o�ers a way of determining strategic incentives of price competition with-

out additional data while at the same time getting rid of the ’ring-uniform-competition

e�ect’ assumption. Incorporating the e�ect of the population distribution within a

trade area, this approach builds on implicit distances instead of accounting for the

distance to the competitor straight away in the pro�t function. Since I focus on the

interplay between the population distribution within a market and the price compe-

tition strategies that �rms adopt after choosing the location, I refrain from modeling

how the market structure arises. Instead, for simplicity and with a view to the ap-

plication, I condition the analysis on duopoly markets with each �rm operating one

store.

Methodologically, the paper contributes to the application of recently developed com-

putational methods for the estimation of structural models. So far, the MPEC ap-

proach has been shown to be applicable to the structural estimation of dynamic dis-

crete choice models (Su and Judd, 2012), BLP demand estimation (Fox and Su, 2012) as

well as the estimation of static games (Su, 2012). While Vitorino (2012) provides the

�rst application of the MPEC approach to an empirical, static, binary choice model

of market entry, this paper provides an application to a multinomial location choice

model.

The paper is organized as follows. First, the reader is introduced to some key ele-

ments of price competition under spatial di�erentiation (theory) which will be used

in the model. Second, I set up the econometric location model and subsequently ex-

plain the estimation method and computational strategy. Finally, I present the data

used for the application and report the results. The paper �nishes with a comparison

of the main �ndings with alternative approaches in the literature and comments on

possible extensions of my framework.

2.2 Economic intuition

To get an economic intuition about the strategic price setting behavior of two spa-

tially di�erentiated retailers, let us make use of the Hotelling (1929) framework, the
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workhorse of theoretical spatial analysis, to highlight some key aspects and to identify

the observable strategic elements of price competition in space that will be consid-

ered later in the empirical model.

Consider two �rms, A and B, located at the extremes of a linear market. Consumers

are uniformly distributed over the line. Additionally, at each extreme, where the �rms

are located, there lives a consumer mass XA and XB respectively. Consumers have a

unit demand, face displacement costs and decide at which �rm to buy, maximizing

their utility. In addition to this textbook framework, consumers face an exogenous

restriction on the travel distance (Dmax ) which re�ects their time constraint for shop-

ping.

Figure 2.2.1 sketches this toy model. If Dmax is large enough, the market area between

the two �rms can be partitioned into a ’captive area of �rm A’, a ’competition area’

and a ’captive area of �rm B’. In the following, the notion ’captive’ refers to areas

where consumers only have access to one �rm since the cost of displacement to an-

other �rm is too high given their time constraint on shopping. The demand of �rm A

is given as the sum of those consumers that the �rm draws from the competitive re-

gion and the �rm’s captive consumers. Since the �rms cannot identify which region

the consumers come from when visiting the store, and since the consumers have a

unit demand, the �rms have to set uniform prices. Solving the simultaneous pro�t

maximization problem, the measure of captive consumers of a �rm plays an ambigu-

ous role. An increase in captive consumers causes an increase in the equilibrium price

of the �rm, which re�ects the market power e�ect. However, since consumers in the

competitive area are rational, buying from the �rm that minimizes the overall cost

in terms of price and transportation disutility, an increase in the di�erence of captive

consumers with respect to the rival decreases the demand drawn from the compet-

itive area. Thus, for a given number of captive consumers of �rm B, an exogenous

increase in the number of captive consumers of �rm A induces the �rm to exercise

this market power in setting a higher price, but the positive e�ect on revenues is mit-

igated through a decrease in the number of consumers drawn from the overlapping

market area where competition takes place.



2.2 Economic intuition 49

Figure 2.2.1

Stylized price setting under spatial differentiation and fixed trade areas.

Since the purpose of this toy model is to tell a story of price competition in space, I

brie�y summarize the main insights here (Appendix A gives an outline of the maths.)

1. An increase in the number of captive consumers of A increases the �rm’s price-

setting power.

This pro�t-enhancing e�ect of captive consumers is mitigated through a nega-

tive quantity e�ect on the demand from the competitive area.

2. If the di�erence in the number of captive consumers between the �rms (normal-

ized by the consumers in the competitive area) is small enough, in equilibrium

both �rms can draw demand from the competitive region.

However, if the reservation value of the consumers is high enough, there ex-

ists a critical percentage of captive consumers in the trade area such that, for

a higher fraction of captive consumers, the �rm is better-o� restricting the de-

mand to the captive area, setting the monopoly price.

3. If the number of captive consumers of A is su�ciently high with respect to the

captive consumers of B, an increase in the number of captive consumers of A

reduces the revenues that �rm A draws from the competitive area (operating

in the elastic section of the demand curve from the competitive area).
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An increase in the number of captive consumers of A always increases the total

revenues of the �rm.

In the following, I transfer this idea to a real geography, discrete, location-price game,

assuming �rms to anticipate the role of captive consumers when choosing from a

�nite number of locations to maximize their pro�ts.

2.3 An econometric spatial location-price game

Analyzing �rms optimal location choices empirically, it would be ideal to have ac-

cess to prices and sales data at the �rm level to model the demand side (e.g., Davis,

2006). Unfortunately, these �rm-speci�c data are generally not available, whether for

the researcher, the rival �rm or any third party (e.g., anti-trust organizations, local

government). Inspired by Seim’s (2006) seminal work, I provide a model that exploits

the information inherent in the observed location decision of the �rms, but set up the

model in such a way that I fully exploit the population distribution within the market

in order to reveal the �rms’ location incentives.

2.3.1 The model

Consider a spatial market m of any polynomial shape with a �nite number of equally-

spaced discrete locations Lm and a corresponding discrete consumer distribution Fm(X ),

as illustrated in Figure 2.3.2.

Figure 2.3.2

Discrete locations in a polynomial market.

There are two �rms with one store each in the market, and each �rm faces a discrete

choice problem to identify the optimal location which maximizes its pro�t, antici-

pating the subsequent price competition with the other �rm. Assume further that
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consumers buy from the store for which the price plus the travel cost is the lowest,

and let them face a maximum exogenous travel distance (radius Dmax ) which de-

termines the potential trade area of a �rm.
21

Assuming that the market within the

range of the stores is covered, i.e. all consumers buy from either of the two �rms,

we can distinguish three scenarios: both �rms located at the same location (Bertrand

competition), di�erentiation with an overlapping range of in�uence of the stores (dif-

ferentiation with captive consumers), and the case of captive consumers only (full

monopolization). Figure 2.3.3 illustrates the most interesting case of di�erentiation

with captive consumers.

Figure 2.3.3

Price competition and market power in space.

The light gray area depicts the overlapping market range, denoted as the ’area of

competition’, and the dark gray area illustrates the ’captive consumers’ of �rm A.

The dashed line depicts the analog to the indi�erent consumer in the linear model,

depending upon the price setting of the �rms. While the total potential demand of

a store is the sum of consumers in the distance ring around the store location, the

realized demand of A is only those consumers below the dashed line.

Hence, in the simplest framework, the optimal location choice for the store is de-

termined through the potential demand, the market power in terms of the share of

captive consumers and the strength (or dominance) of price competition in the com-

petitive region. The intuition for the economic mechanism follows the example from

21
De�ning an exogenous cap on the shopping distance is standard in the empirical literature, e.g.,

Seim (2006), Datta and Sudhir (2013), Holmes (2011).
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the previous subsection. A higher fraction of captive consumers increases the price-

setting power and hence the pro�t per unit sold. However, for a given number of

captive consumers of the rival, an increase in captive consumers increases the price

di�erence with respect to the rival which shifts the position of the indi�erent con-

sumer towards the location of the rival �rm, and thus decreases the demand drawn

from the competitive region. Hence, I expect to �nd a positive market-power e�ect

of captive consumers but a negative-quantity e�ect for those revenues drawn from

the competitive area. However, whether this logic is re�ected in the �rms’ behavior

is an empirical question.

For the econometric speci�cation of a �rm’s pro�t function I follow a reduced-form

approach. In order to di�erentiate between the two e�ects of captive consumers, I

use two di�erent strategic variables, the absolute number of captive consumers and

the di�erence with respect to the rival. In the simplest sense, the pro�t function of a

store of �rm F for each location l = {1, 2, ..., Lm} is de�ned as follows:
22

(I ) πIFl = β1X̄l + β2

CaptiveFl
X̄l

+ β3

∆CaptiveFl
X̄l

+ δZFl + ωFl

where X̄l indicates the potential population that can be reached by a store at location

l and ZFl is a �rm-speci�c cost-shifter indicating the distance from location l to the

closest distribution center (DC) of �rm F . The variable CaptiveFl indicates the num-

ber of captive consumers of �rm F located at l for a given location of the rival. The

division by the population within the trade area turns the variable into the percent-

age of captive consumers within the trade area, and hence provides a measure of the

market power on the interval [0, 1]. The variable ∆CaptiveFl measures the di�erence

in captive consumers with respect to the rival as an indicator for the strength of price

competition in the competitive area. Both variables depend upon the location struc-

ture of the market, which is the outcome of the decision of �rm F locating at l given

that the rival –F is located at k and are therefore endogenous in the model.

22
The model abstracts from the outside option for consumers to buy from other grocery retailers.

However, in a sensitivity analysis I consider possible rivals of a larger format.
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Note that speci�cation (I ) assumes a constant marginal e�ect of the di�erence in cap-

tive consumers. However, it seems more reasonable to assume that the competition

e�ect becomes more severe in the location choice as the percentage of consumers in

the competitive area increases. Hence, a second speci�cation allows for an interaction

e�ect between the di�erence in the share of captive consumers and the percentage of

consumers within the competitive area.

(II ) πIIFl = πIFl + β4

∆CaptiveFl
X̄l

(
1 –

CaptiveFl
X̄l

)

The unobservables at the �rm-location levelωFl are private information of the decision-

making �rm, captured in the vector ωmF of dimension Lm× 1. The realization is nei-

ther known by the rival nor by the researcher, but it is common knowledge that, for

each market, each ωmFl is independently and identically distributed extreme value.

Hence, considering the information structure of all agents, notice that we - as re-

searchers - are as informed as the least informed party of the location game.

The information set of �rm F when making its location decision in market m is

IFm = (Xm,Zm,ωmF ), with (Xm,Zm) being common knowledge among �rms and re-

searchers and ωmF being private knowledge of the �rm.

Conditional upon IFm, the �rm forms its belief about the location choice of its ri-

val and makes its location decision based on expected pro�ts. In the following, I use

for the beliefs of �rm F about its rival’s behavior the notation BP–F
m , a Lm× 1 dimen-

sional vector of Bayesian probabilities for each possible location l. Analogously, BPFm

denotes the beliefs of –F about the location choice of �rm F .

Given the pro�t speci�cation detailed above, the introduced uncertainty about the

rival’s strategy implies forming expectations about CaptiveFl and ∆CaptiveFl . Omit-

ting again the market subscript, the expected pro�t of speci�cation (I ) and (II ), re-

spectively, is
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(1) πIeFl = β1X̄l + β2

EBP–F [CaptiveFl]
X̄l

+ β3

EBP–F [∆CaptiveFl]
X̄l

+ δZFl + ωFl

(2) πIIeFl = πIeFl + β4

EBP–F [∆CaptiveFl]
X̄l

(
1 –

EBP–F [CaptiveFl]
X̄l

)

For the detailed calculation of the variables see Appendix B.

Note that the pro�t speci�cation (1) is linear in its parameters as well as in terms

of beliefs, while speci�cation (2) is nonlinear in terms of the beliefs. Furthermore,

note that while the market structure in terms of captive consumers enters directly

into the pro�t equation of both �rms, �rm-speci�c variables like the distribution dis-

tance have only an indirect e�ect on the rival’s pro�t through its beliefs.

As can be deduced from the pro�t equation above, for a pro�t maximizing �rm its

best response depends upon the �rm’s beliefs about the rival’s choice probabilities.

The solution concept of the location game is the Bayesian Nash equilibrium, such that

the equilibrium conditions are

BPFl = ΨF
l (BP–F

,X ,Z ; β, δ) ∀l

BP–F
l = Ψ–F

l (BPF ,X ,Z ; β, δ) ∀l

where ΨF
l is a function that de�nes the choice probability of location l for a store of

�rm F, which has to be equal to the beliefs of the rival for any possible location. The

analog holds for the rival.

Given the latent pro�t equations (1) and (2), the choice probability for a pro�t-maximizing

�rm F of choosing location l, conditional upon there being two �rms in the market,

can be written as follows:

ΨF
l ≡ P(dFl = 1|BP–F

,X ,Z , β, δ) = P(π̄eFl + ωFl ≥ π̄eFl′ + ωFl′ ∀l′ 6= l)

and under the assumption of ωFl being EV type I distributed:
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ΨF
l =

exp
{
π̄eFl(BP

–F
,X ,Z ; β, δ)

}
∑L

l′=1
exp
{
π̄eFl′(BP

–F
,X ,Z ; β, δ)

} (2)

The analog holds for the rival �rm –F .

2.3.2 Maximum likelihood estimation approach

The estimation of static games with incomplete information implies two main chal-

lenges. Once we have chosen an estimation approach, we have to �nd a way to solve

the game computationally. Second, if there is a chance of multiple equilibria in the

model, this has consequences for the computation as well as for the identi�cation of

the parameters that we aim to estimate based on only one observed equilibrium.

Computational methodologies

As outlined previously, the choice probabilities in an incomplete information game

depends upon the beliefs about the rival’s strategy (ΨF
(BP–F

)). This implies that the

likelihood function to be maximized depends upon the unknown Bayesian probabili-

ties, a �xed point problem that arises from the equilibrium condition of the game and

which makes an iteration on the parameters infeasible without solving at some point

for the equilibrium of the game. I will brie�y outline the di�erent methodologies that

have been developed to address this issue and discuss why I choose the MPEC ap-

proach for this problem.

The �rst computational methodology to address this issue was the nested �xed point

(NFXP) algorithm developed by Rust (1987), with a suggested application to static

games in Rust (1994). The algorithm solves in each iteration on the parameters for

the �xed point of the game providing a full-solution approach. However, the compu-

tational burden of this methodology is not only the CPU time but, more importantly,

the trouble in the presence of multiple equilibria. While, based upon an assumption

about the competitive e�ect, Seim (2006) was able to prove the existence of a unique

equilibrium for her model and successfully implement the NFXP approach; in the

presented model, as in many other application, this is not the case, which implies

two problems of this approach: First, if the number of equilibria is unknown, there

is no way to guarantee that in each iteration all possible equilibria have been found.
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Second, the number of equilibria may change for di�erent parameter sets, which can

cause jumps in the likelihood function.

These complications have motivated the development of alternative maximum like-

lihood methodologies such as the two-step method, going back originally to the dy-

namic single agent model of Hotz and Miller (1993). This method is based on the

idea of estimating in an initial step, non-parametrically, the Bayesian probabilities.

In a second step, the estimates are used as variables for the beliefs so that the coe�-

cients of the pro�t function can be estimated using a standard probit or logit model.

In other words, the parameters are estimated such that the choice probability is as

close as possible to the �rst-stage estimates. Conditioning in the second stage on the

equilibrium probabilities from the �rst stage, which are apparently ’played by the ob-

served data’, addresses the multiplicity problem and, at the same time, implies getting

rid of the �xed-point problem. However, an important requirement of this method

is a consistent estimate at the �rst stage, which is problematic in many applications

dealing with small samples and in the present model in particular, since the number

of possible choices of the stores di�ers across markets.

Picking up the advantages of these two approaches, Agguirregabiria and Mira (2002)

suggest the nested pseudo-likelihood (NPL) estimator which, analogously to the two-

step method, uses an initial estimate (or guess) of choice probabilities, but after es-

timating the structural parameters computes new choice probabilities and goes on

with the iteration on the choice probabilities until convergence is achieved, i.e., swap-

ping the order of the nests of the NFXP algorithm. If the model has more than one

equilibrium, the authors suggest using di�erent starting values and choosing the out-

come with the largest pseudo-likelihood. However, as discussed in Pesendorfer and

Schmidt-Dengler (2010), a required assumption to achieve convergence involves sta-

ble best-response equilibria. Especially, these state that, already, a slight asymmetry

in the �rms’ payo�s makes it di�cult to verify the stability of all the possible equi-

libria, and this is just the case in my model inherent in the �rm-speci�c distribution

distances, implying that this approach cannot guarantee �nding the equilibrium of
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the model.
23

For a more detailed discussion on the general pros and cons of these three methods

for the estimation of discrete games, see, for example, Ellickson and Misra (2011).

In this paper, I make use of the recent advances in this �eld, reformulating the econo-

metric model as a mathematical problem with equilibrium constraints (MPEC), as sug-

gested by Su and Judd (2012).
24

Their idea is clear and simple: constrained optimiza-

tion problems are present in many economic applications (e.g., utility maximization

subject to budget constraints; transportation problems, etc.), but so far, optimization

problems in econometrics (regression models) have used unconstrained optimization

approaches. The authors show that treating the equilibrium choice probabilities to-

gether with the structural parameters as a vector of parameters to be estimated pro-

vides a way of formulating the maximum likelihood approach as a constrained opti-

mization problem that can be solved with any state-of-the-art nonlinear constrained

optimization solver (e.g., KNITRO). Consequently, there is no need to repeatedly com-

pute equilibria, the stability property of an equilibrium is not an issue and it is rela-

tively easy to implement.

Implementation of the MPEC approach:

Formulating the model as a constrained optimization problem on the joint param-

eter space (β, δ,BP), can be written as follows:

Max(
β,δ,{BPFm,BP–F

m }
M
m=1

) M∑
m=1

∑
l∈Lm

[
dmFl · log(BPFml) + dm–Fl · log(BP–F

ml )
]

s.t.

BPFml = ΨF
ml(BP

–F
,X ,Z ; β, δ) ∀l,m

23
Although in a static framework the stability concept may be considered to be di�erent from the

discussed dynamic framework, note that static games are just a special case setting the discount factor

as zero. Hence, whenever the initial guess does not exactly coincide with the true equilibrium, a small

perturbation is enough to make it impossible for the algorithm to reach that equilibrium if it is an

unstable one.

24
An example for a static discrete-choice game of market entry is provided by Su (2012), and a �rst

application by Vitorino (2012).
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BP–F
ml = Ψ–F

ml(BP
F

,X ,Z ; β, δ) ∀l,m

0 ≤ BPFml ≤ 1 ∀l,m, F

Note that I assume that the parameters (β, δ) are the same for all markets, but the

Bayesian Nash equilibrium (BPFm,BP–F
m ) is solved separately for each market.

Given the smooth and concave likelihood function and the fact that the choice prob-

abilities of potential locations are strictly bounded on [0 + ε, 1], for any parameter

vector (β, δ), the existence of an equilibrium is guaranteed by Brouwer’s �xed point

theorem.

To solve this optimization problem taking into account the high dimensionality of the

problem, I use the KNITRO solver through MATLAB.

Multiple equilibria and identi�cation

While the existence of an equilibrium is guaranteed, let us consider the potential mul-

tiplicity of equilibria. Such multiplicity can come from either the identity of the �rms

or the distribution of location characteristics within a market.

First, contrary to Seim’s (2006) approach, in the present model I do not assume �rms

to be completely symmetric, so that the identity of a �rm that chooses a given loca-

tion matters. Both �rms face an analogous problem, but the distance to the closest

DC is �rm-speci�c and so are the equilibrium choice probabilities. However, using a

maximum likelihood approach for the estimation, through the maximization of the

overall likelihood, these �rm-speci�c characteristics of location serve as a kind of

implicit equilibrium selection rule regarding the identity of the �rms.
25

Hence, the

availability of �rm-speci�c location characteristics becomes a necessary data require-

ment to deal with the multiplicity inherent in a �rm’s identity (Data Requirement 1).

Second, for some distributions of location-characteristics and the true parameters

(β∗, δ∗), there may be more than one local equilibrium, but I observe only one in each

market. In this respect, we follow the standard assumption in the literature that for

markets with the same (exogenous) observable characteristics, �rms coordinate on

the same equilibrium (Assumption 1). That is, I admit the possible existence of multi-

25
Zhu and Singh (2009) discuss the usage of �rm-speci�c variables, like the distance to the closest

DC, in another context. They set up a model with �rm-speci�c parameters and make use of distances

to �rm-speci�c facilities as exclusion restrictions to guarantee parameter identi�cation.
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ple equilibria but assume that there are no multiple equilibria played out in the data,

such that the multiplicity issue does not hinder the identi�cation of the equilibria.

As commented upon earlier for the NFXP approach, the multiplicity of equilibria

also goes along with computational challenges, in particular those inherent in the

repeated solving of the game. Using the MPEC approach, I optimize on the joint pa-

rameter space of structural estimates and beliefs, solving the game only once, which

overcomes the problems associated with repeatedly solving the game (for a detailed

discussion, see Su (2012)). However, and analogous to other numerical optimization

algorithms, this approach can only �nd a local optimum which does not need to coin-

cide with the global one, such that the challenge of �nding all the equilibria remains.

In order to increase the probability of �nding the best equilibrium in terms of the

highest log-likelihood, I use many di�erent initial values.

With respect to the identi�cation of the parameters in the model, I exploit the varia-

tion of general location characteristics, �rm-speci�c location attributes within mar-

kets, and the variation in the distribution of the characteristics across markets, to-

gether with the observed store locations. With respect to the strategic e�ects, we

need the identi�cation requirement that the markets are large enough or Dmax small

enough, such that Akl = 0 for at least one l, ∀k, ∀m (Data Requirement 2). In other

words, there is no location from which a �rm can serve the whole market. This is a

weak requirement that prevents any collinearity problem between the strategic vari-

ables.

Furthermore, I make the strong assumption that any kind of market e�ects are un-

correlated with the market structure as well as the population distribution, such that

non-negative pro�ts for the �rms are guaranteed. Accounting for this unobserved

heterogeneity across markets is, at the moment, considered to be computationally

too expensive.

Coherence with the theory

Considering the coherence of the estimates with the theoretical intuition outlined

initially, the arguments are as follows. First, if there was no interaction between the

�rms, the only pro�t determinants would be the potential consumers within the trade

area and the cost structure. Second, if �rms competed for market shares and prices
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were exogenously given, then additionally the number of ’captive consumers’ should

enter positively in the pro�t function; yet the di�erence in captive consumers, as a

proxy for price di�erences, should be irrelevant in this context. Third, if �rms antic-

ipated price competition in their location choices, a positive di�erence in the share

of captive consumers with respect to the rival is supposed to decrease the demand

drawn from the competitive region, and hence should enter with a negative sign in

the pro�t equation.

2.4 Data description

In my application, I consider the location choice of the two strongest (traditional)

supermarket chains in the US, Kroger and Safeway, whenever they encounter each

other in a local market. This example has been chosen because, statistically, both

�rms seem to target the same type of geographic markets and consumers and they

sell similar grocery products. Hence, abstracting from some preferences over one or

another private label which is not part of this paper, the products of the �rms can be

assumed to be perfect substitutes. To set up the necessary dataset for the analysis, I

use four types of dataset: observed store locations, locations of DCs, spatial adminis-

trative units for the market de�nition, and spatial subunits (smaller than the market

de�nition) with associated population characteristics, all of which I combine using

the geographical information system ArcGIS.

First, taking advantage of the advances in consumer services for GPS users, I use POI

datasets for GPS users to identify the store locations of the two �rms as well as their

primary rivals of a larger format, i.e., Wal-Mart and Target. The advantage of this

type of data source is that locations are already geo-codi�ed to an eight-digit lati-

tude/longitude format and can directly be imported into the geographic information

system that I use for the analysis, thereby avoiding any type of matching problems.

A second dataset identifying the locations of regional DCs is constructed using in-

formation from the �rms’ websites. Making use of the GIS North American Address

Locator, I geo-code the street addresses of the DCs in a latitude and longitude format

analogous to the store dataset.

A third type of dataset, which is provided by the GIS online library, contains border-
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line de�nitions (in polygon format) of di�erent administrative spatial units, which

I use for the market de�nition. Using the insights from my previous paper, where

I �nd that 90% of all stores of the �rms considered are located within urban areas

(UAs), i.e., densely populated regions, I use UAs as the market de�nition (for a more

detailed discussion, see my paper "Hotelling meets Holmes").

Finally, a fourth dataset contains all the census block groups in the US as the smallest

available geographic unit for which associated population characteristics are avail-

able. This dataset is available from the US Census Bureau and is provided in a shape

�le format with associated demographic characteristics by GIS. By construction and

in contrast with larger spatial units, the block groups capture relatively homogeneous

population clusters.

Furthermore, I need to know the maximum radius within which a store draws con-

sumers (range of in�uence); this is taken from the Kroger Fact book, which states

that its supermarkets "typically draw customers from a 2.0-2.5 mile radius." I use the

upper bound, setting Dmax = 2.5 miles, and assume that for Safeway its supermarkets

exhibit a similar range of in�uence.
26

Before combining this available information, I project each of the four datasets onto

an x-y Cartesian coordinate system (Albers Equal Area Conic Projection), which

builds the reference system for the spatial analysis. Furthermore, in this paper, I

restrict the analysis to UAs which are su�ciently far from each other (’isolated’) so

as to guarantee that consumers patronize only those stores in the market where they

have their residence.
27

Given this database, I conduct the discretization of the lo-

cations. First, I discretize the potential store locations inside a market, de�ning over

each market a grid of equally sized cells of 1.0x1.0 square miles, which is small enough

to ful�ll the identi�cation assumption of the model, and has the advantage that the

population in each cell corresponds to the population density of the associated BG,

which is measured in pop/sqmi.
28

Next, I de�ne the centroids of the cells as possible

26
Note that the construction of the variables rest on the de�nition of the exogenous radius of in�u-

ence. Since this is the case in most of the empirical spatial competition models, and since for a small

perturbation of the radius I do not expect any change in the conclusions, I rely upon the information

provided by Kroger and refrain from testing alternative values.

27
By ’su�ciently far’ I refer to markets for which the range of in�uence of each location exclusively

contains locations from the market where the store has its establishment.

28
Choosing the size of the cells yields a trade-o� between the accuracy and speed of the algorithm.

Vicentini (2012) follows a similar approach in his dynamic model, dividing the city of Greensboro into

cells of 2.25 square miles (1.5x1.5).
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Figure 2.4.4

Data visualization for some sample markets.

(a) Discretized locations

(b) Population distribution

(c) Trade areas
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locations. For computational reasons, I exclude markets with more than 500 potential

locations. This dataset deals with a set of 70 isolated markets with both �rms present;

however, I center my analysis on the 31 urban markets with two competing stores,

one of each �rm. On average, these markets consist of 34 potential locations, with

the smallest market counting 12 locations and the largest 112.

Now I augment the discretized market dataset combining each location with the as-

sociated block group characteristics and the observed store locations, and I compute

the Euclidean distance of each location to the closest DC of each �rm and to the

closest big-box store, considering Wal-Mart and Target. Figure 2.4.4(a) visualizes the

discretized structure for three example markets, and Figure 2.4.4(b) the associated

population distribution and observed store locations of Kroger and Safeway as dots

and triangles, respectively. Note that the sales potential is not uniformly distributed

within the neighborhood of the stores, which motivates my approach of constructing

a strategic variable that depends upon the population distribution rather than de�n-

ing a uniform radial-competition e�ect and accounting for the total population within

the trade area only as a covariate in the pro�t equation.

As de�ned by the model, the construction of the strategic variables relies upon de-

limited trade areas of a 2.5 miles radius. Hence, I construct a distance matrix that

measures the Euclidean distance from each location to any other location within the

same market, which is then used to construct the feasibility matrix Am for each mar-

ket. Figure 2.4.4(c) illustrates the feasibility of consumer locations for given store

locations using distance rings with a radius of 2.5 miles to de�ne the trade area.

Next, I export the dataset of discrete locations and its associated variables as well as

the distance matrix to MATLAB. Table 2.4.1 provides the descriptive statistics of the

variables of interest at the observed store locations for the set of markets with one

store per �rm.

Considering the exogenous variables of the model, X̄ de�nes the total population

within a 2.5 miles radius of the store measured in thousands. The variable Z indi-

cates the distribution distances to the closest DC of the respective �rms measured as

the Euclidean distance in hundreds. BB_distance is the distance to the closest big-box

store of either Wal-Mart or Target, measured in hundreds of miles from the store lo-

cation. av_Age and av_HHsize are the average age and the average household size of
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the population within the stores’ trade areas.

Regarding the endogenous variables of the model, Captive/X̄ indicates the fraction

of captive consumers for the store and ∆Captive/X̄ de�nes the di�erence in captive

consumers with respect to the rival, normalized by the population of the trade area

of the �rm.

The data indicate that for the �rms considered, on average 13% and 14% respectively

of the population in the trade area are captive. Note that we observe complete mo-

nopolization as well as markets with �rms located at the same location. Considering

the di�erence in the share of captive consumers with respect to a competitor, there

is no statistical di�erence in the means of the two �rms, implying that statistically

there is no systematic dominance of one or the other player.

Since these statistics are the outcome of the location decision, but the decision-making

is modeled as an incomplete information game, note that the domain of the expected

number of captive consumers (corresponding to the range of f2) is (0, 1), which is due

to the positive choice probabilities for each location alternative and Data Require-

ment 2.

Additionally, I also check the correlation between the number of captive consumers

of the two �rms providing Pearson’s linear correlation coe�cient ρcaptive. This is

necessary for identi�cation. If, for example, one �rm always established itself in the

city center while the other one was situated closer to the border, the pro�t speci�-

cation (2) would su�er from multicollinearity. However, I �nd that there is no such

signi�cant correlation in the data.

Appendix C provides some summary statistics about the population distribution within

markets. Note that for some locations, due to urban restrictions (e.g., parks), the pop-

ulation can be zero, but as can be seen from Table 2.4.1, the population of a trade area

is never zero and so the endogenous variables will always be de�ned.

2.5 Estimation results

Estimating the model as outlined in Section 2.3, Table 2.5.2 reports the estimated

parameters in the pro�t function of the �rms for model speci�cations (1) and (2).

In order to evaluate the signi�cance of the parameters and test their coherence with
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the theory, I use the bootstrap percentile method. I generate for each speci�cation

300 re-samples with replacements from the original set of markets, solve the problem

for each sample and calculate the percentile con�dence intervals for the parameters.

Appendix E provides the details of the bootstrap distributions. Models (3) and (4)

Table 2.5.2

Estimation Results.

without rivals with Big Box rivals

Variables model (1) model (2) model (3) model (4)

X̄ 00.2794
∗∗

00.3473
∗

00.2909
∗∗

00.2649
∗∗

Captive
X̄ 01.5977

∗
01.3320

∗∗
01.0367

∗
01.3548

∗∗
∆Captive

X̄ –0.2282
∗∗

00.3624
∗∗

–0.1824
∗∗

00.3469

∆Captive
X̄ × (1 –

Captive
X̄ ) –0.9113

∗∗
–0.8702

∗∗

Z –1.5302
∗

–1.6297
∗

–1.6594
∗

–2.0040
∗∗

BB_distance 01.1928 00.5026
∗∗

# Iterations 25 135 90 54

Log-likelihood -149.6538 -142.6685 -147.6514 -138.9203

∗
Signi�cance at the 10% level.

∗∗
Signi�cance at the 5% level.

provide a robustness check of the results with respect to other rivals.

Further robustness checks, with respect to the speci�cation of the distribution costs

and some demographic characteristics of the potential consumers, turned out to be

worse in terms of the log-likelihood and the convergence properties (see appendix,

Table 2.F.4).

The baseline model (other rivals disregarded):

Population distribution. The population within the trade area of the stores (measured

in thousands) has a signi�cant positive e�ect on the location choice of the �rm, which

captures the attractiveness of densely populated areas.

Market power and price-competition e�ect. The positive e�ect of a high fraction of

captive consumers in model (1) as well as in model (2) captures the market-power ef-

fect. The bootstrap analysis for model (1) suggests that we can be at least 95% certain

that the structural estimates are consistent with the outlined economic intuition, i.e.,

a positive e�ect of the percentage of captive consumers and a negative pro�t-e�ect of

the di�erence with respect to the rival. Given a certain population in the �rm’s trade
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area, the higher the percentage of captive consumers, the larger the pro�t of the �rm,

which can be justi�ed by the increased price-setting power of the �rm. However,

the negative e�ect of the di�erence in captive consumers with respect to the com-

petitor, which captures the price di�erence of the �rms, suggests that an advantage

in terms of captive consumers with respect to the rival has a negative e�ect on the

�rm’s pro�ts. Exactly how this e�ect arises becomes more clear when we consider

model speci�cation (2), which allows for an interaction e�ect with the percentage of

consumers living in the competitive area, namely those who care about price di�er-

ences when choosing which store to buy from. While the e�ect of the di�erence in

captive consumers becomes positive, the interaction e�ect indicates that this e�ect

decreases along with the fraction of consumers in the competitive area. Considering

the total e�ect of the di�erence in captive consumers, I �nd that if the fraction of

consumers in the competitive region is above a threshold of 40 %, then an increase

in the di�erence in captive consumers has a negative-pro�t e�ect. That is, contrary

to my expectations, I �nd that an increase in the strategic variable which captures

the price di�erence between �rms does not always have a negative-pro�t e�ect but

depends upon the market structure. I will discuss this later in more detail.

Distribution costs. Considering the cost e�ect, as expected, I �nd a signi�cant negative-

pro�t e�ect of the distribution distance, which is consistent with other retail studies

(e.g., Vitorino (2012), Zhu and Singh (2009)) and which con�rms the �ndings in Erd-

mann (2013).

Presence of other rivals:

Another important issue in the present competition analysis for the two main tradi-

tional supermarkets concerns other grocery retailers. We may think of other super-

markets and hypermarkets as well as alternatives like fresh stores and organic food

stores. Last, but not least, the recently emerging small-format value-priced stores

are also potential competitors for conventional supermarkets. In this paper, I assume

that consumers regularly buy all their food products all at once at a single store, i.e.,

that consumers are assumed to buy a ’standard shopping basket’, and I abstract from
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the possibility of buying some items from other grocery retailers.
29

This assumption

allows us to focus on those rivals who are not on a par with the �rm in question but

who are able to ’steal’ a signi�cant number of potential consumers from it. In order

to identify these rivals, we rely upon the information provided by each �rm. Safeway

classi�es its competitors in terms of primary conventional supermarkets and other

rivals like big-box stores and warehouses or discounters (Safeway Fact Book 2011).

Given the availability of the data, I focus exemplarily on the market presence of the

big-box stores Wal-Mart and Target as rivals of a larger format which have repeatedly

been demonstrated to have an e�ect on the conventional supermarket competition

(e.g., Jia (2008), Matsa (2011)). Models (3) and (4) account for the distance between a

supermarket location and the closest big-box retailer.

Considering model (3), the presence of these rivals is not signi�cant. However, note

that, compared to model (1), the market-power e�ect as well as the competition ef-

fect decrease somewhat in absolute terms, which may suggest that the isolated anal-

ysis without the consideration of other rivals slightly overestimates the strength of

competition between the two �rms. In contrast, the distribution-cost e�ect becomes

slightly stronger in absolute terms. Model (4), in turn, which yields the largest log-

likelihood, identi�es a signi�cant positive-pro�t e�ect of the distance to the closest

superstore. This implies that the competitive pressure of this format diminishes with

the distance to the store. Note also that, accounting for the presence of other rivals,

the di�erence in captive consumers is no longer signi�cant, while the interaction

term with the fraction of consumers in the competitive area remains negatively sig-

ni�cant. These results suggest that the threshold argument from model (2) no longer

holds when I control for other rivals. In other words, taking into account the presence

of other rivals, I �nd a clear negative-price competition e�ect that becomes stronger

as the competitive area becomes relatively more important for the �rm.

Finally, considering all the identi�ed pro�t determinants, note that the ’hunt for cap-

tive consumer’ can outweigh the attraction of densely populated locations; however,

given a strong position of the rival in terms of captive consumers, locating close but

in a less attractive area, the �rm can gain a large fraction of the consumers in the

29
Allowing consumers to buy from multiple stores could be captured using the empirical approach

of Hu� (1964). However, it requires data on the frequency of purchase at each type of store, and it is

a rather unusual approach in empirical industrial organization.
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competitive area, which may be an attractive strategy if the competitive area is suf-

�ciently densely populated. Taking both arguments together, the model can explain

observed spatial segmentation as well as observed spatial closeness, for example, with

one �rm in a high populated area and another one close by.

2.6 Discussion

2.6.1 On the role of captive consumers

I have proposed a model that uses the measure of ’captive consumers’ to draw infer-

ences from the various incentives that lead retailers to a certain location decision

when anticipating price competition. The application to the supermarket data of

Kroger and Safeway suggests that the behavior of the two �rms is consistent with

location-price competition as suggested by the toy model, in particular the interplay

between the competition-based pricing strategies and the population distribution (the

latter of which is anticipated by the �rms when choosing their locations in the mar-

ket).

To be precise, I �nd that the percentage of captive consumers in a retailer’s trade area

has a signi�cant positive pro�t-e�ect. This implies that �rms bene�t from market

power through spatial di�erentiation. Additionally, I �nd that the di�erences between

captive consumers can have a negative pro�t-e�ect depending upon the market struc-

ture (i.e., with an increasing percentage of captive consumers, the consumers in the

competitive area become less important for the �rm up to a point of ignorance, and

hence the price-competition e�ect becomes less important in the pro�t maximization

of the �rm).

However, the presence of other rivals provides an outside option for consumers, and

hence debilitates the �rm’s monopoly power so much that alternatively acting as a

monopolist in the captive region is not an option for the �rm, which is re�ected in the

clearly negative e�ect of the di�erence between captive consumers, which increases

with the size of the overlapping market area.

While the identi�ed ’market-power e�ect’ could also be justi�ed under Cournot com-

petition, the ’di�erence between captive consumers’, which lets us infer the �rm

which sets a higher price and hence draws fewer consumers from the overlapping
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market area, is characteristic of Bertrand competition.

2.6.2 Comparison to other studies

Comparing the results to other game-theoretic location studies, note that the notion

of ’returns to spatial di�erentiation’ is similar to the concept of ’percentage of captive

consumers’. Hunting for captive consumers goes necessarily along with spatial dif-

ferentiation, but it additionally accounts for the population distribution over space.

In order to contemplate the di�erence between the present approach and studies us-

ing uniform radial competition e�ects, let us consider the model of Datta and Sudhir

(2013) which models the endogenous location choices along with the choices of the

types of stores. Although in my model the type (�rm) is given exogenously and is re-

stricted to markets with one store per �rm, I use this example to illustrate the missing

feature when �rms compete in prices. Simplifying the model to a market with two

�rms only and adapting the notation to that used above allows a direct comparison

of their pro�t speci�cation,

πeFl = γ1X̄l + γ2E[N
–F ,b=1

|Fl] + γ3E[N
–F ,b=2

|Fl] + δZFl + ζ + ωFl

where E[N
–F ,b=1

|Fl] is the conditional probability that the rival locates within a dis-

tance of up to D2 miles, E[N
–F ,b=2

|Fl] is the conditional probability that the rival

locates within a distance of D2 to D3 miles from �rm F , and ζ is a market-�xed e�ect.

Note that this setting assumes that any rival location in a certain distance band of the

store has the same competitive impact. If the neighborhood of a store location were

to be characterized by local homogeneity in terms of the population distribution, this

concentric ring approach would be unproblematic. However, as illustrated in Figure

2.4.4(b), in many geographic markets this is not the case. That is, competitors located

at di�erent potential locations within a certain distance of the store count a di�erent

number of captive consumers as well as consumers in the overlapping market area

with the store, and hence I expect them to exercise a di�erent competitive pressure

on the store. In other words, this speci�cation ignores the e�ect of the population

distribution on the price-setting power of the �rm. If you nevertheless prefer the

’donut-approach’ over the model proposed in this paper, as an alternative to account
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for location-speci�c competition e�ects, I suggest de�ning any measure of competi-

tive pressure for each location in the respective donuts and weighting the expected

number of stores within a donut by this competitive strength.

Note that the limitation of the radial approach comes from a direct transfer of con-

sumer behavior to the �rm behavior, which is not necessarily correct. Specifying a

di�erentiated product-demand model (e.g., Davis (2006) and de Palma et al. (1994)), it

is reasonable to assume that, whenever products are only di�erentiated in their geo-

graphic location, consumers’ indi�erence curves are concentric circles around their

locations. However, when the �rms are choosing locations, which implies reaching

some consumer locations and others not, their ’indi�erence curves’, which are iso-

pro�t curves, are not necessarily concentric rings. This comes from the fact that, for

the �rm, the population distribution matters in its choice, while when analyzing con-

sumer behavior the individual decision is independent of the population distribution

(unless in the case of network products).

The importance of accounting for the population distribution when empirically mea-

suring strategic e�ects has also be emphasized for the estimation of structural-demand

models in space. Using �rm locations and price data, Davis (2006) estimates a retail-

demand model under spatial di�erentiation using a BLP-approach. Beyond the typical

BLP-instruments, employing the product characteristics of the rival, he exploits the

spatial structure of the demand using population counts in the close locality of the

rival as a valid instrument for prices. Note that, implicitly, this idea is in line with the

concept of captive consumers.

Likewise, the literature on gravity models allows a comparison with our results. For

an overview, see Anderson et al. (2009). These models go back to Reilly’s Law of

retail gravitation, and later, Converse’s revision, in order to de�ne a breaking point

between retailers, which de�nes the ’indi�erent consumer’. This approach de�nes

the ability of a �rm’s location to attract consumers from a third (competitive) area

as a decreasing function of the distance and an increasing function of the population

at the store location. Note that the latter contradicts our argument. Their argument,

which predicts greater ’competitive demand’ for locations with a higher population,

is based on the ’agglomeration’ principle. However, given the di�erence in retail pat-

terns in metropolitan areas, Mason and Mayer (1990) argue that Reilly’s model works
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well in rural areas but not in UAs, and propose inverting the breaking-point formula

such that the demand drawn from the competitive area increases as the population

density decreases. Note that this is in line with my �ndings, the di�erence being that

I base my arguments on a game-theoretic framework.

2.6.3 Limitations and further research

My model has the following limitations. First, by the nature of the model and the

computational methodology, I have identi�ed a local maximum. Although I have run

the model with many di�erent starting points, I cannot guarantee that the equilib-

rium found is also global. Second, the study is limited to the competition between

two �rms operating one store each. My conjecture is that the main result is similar

for markets with more than one store per �rm, but this generalization would require

some additional information on the �rm’s pricing practice across stores within a lo-

cal geographic market. Firms can either follow a uniform pricing strategy, setting

the same price for all stores within a geographic market, or practice price �exing,

setting di�erent prices across stores of the same chain. Depending upon the strategy

played by the �rms, Krčál (2012) shows that the outcome in terms of �rm locations

and shopping costs incurred by consumers can di�er substantially. Unfortunately for

the application to US supermarkets, there is no evidence about the local pricing strat-

egy of a supermarket operating more than one store within a market. Furthermore,

I have focused on a covered trade area, which allows for a straightforward compari-

son with the modi�ed Hotelling version to interpret the results. Relaxing this model

assumption, specifying consumer attraction as a decreasing function of the distance

to the store, for instance, using a retail gravity model, is not expected to change the

results, but it may provide additional insights.

2.7 Conclusion

I have provided an econometric location model under price competition that can be

estimated with publicly available location data and the population distribution at the

smallest possible unit. In the application to supermarkets, I �nd evidence of price

competition, in particular that �rms anticipate the degree of price competition in



2.7 Conclusion 73

their location choice. I also �nd that �rms consider distribution costs when choosing

a location, and con�rm that geographic di�erentiation from the competitor can in-

crease pro�ts.

As a policy implication, the local antitrust authorities may use the outlined mech-

anism to set up appropriate zoning restrictions in order to avoid excessive market

power and promote a high degree of price competition.

Last, but not least, I hope that my analysis also motivates location analysis in business

practice to take the outlined strategic location determinants into account.
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2.A Appendix: Toy model

Here, I provide some exercises and the main insights derived from using the Hotelling

framework as a simpli�ed market setting as illustrated in Figure 2.2.1. This exercise

is especially relevant for the theoretical understanding of the �rms’ strategy, and will

be useful for the interpretation of the empirical results.

Normalizing the competitive area to one, i.e., ĀB – 2a ≡ 1, so that Comp = 1, X̂A =

XA
Comp , â =

a
Comp , X̂B =

XB
Comp , the demand of �rm A is de�ned as D̂A = X̂A + â + (x̃ –

â). The last term de�nes the demand drawn from the competitive region, which is

speci�ed by the indi�erent consumer as usual. However, contrary to the standard

Hotelling framework, we may have situations where only one �rm draws demand

from the competitive area. That is, x̃ – â =
1

2
–

pa–pb
2t if |

∆p
2t | ≤ 1

2
, x̃ – â = 0 if

pa–pb
2t >

1

2
, and x̃ – â = 1 if

pa–pb
2t < –

1

2
. Suppose for a moment that both �rms draw

demand from the competitive area. Then, solving the �rm’s optimization problem

Max
{
pa(X̂A + â +

1

2
–

pa–pb
2t )

}
, maximizing over pa the best response of the �rm is

pa = t(X̂A + â +
1

2
) +

1

2
pb and analog for �rm B. Solving the simultaneous equation

system, the optimal pricing strategy for �rm A becomes p∗a =
4

3
t(X̂A+â)+

2

3
t(X̂B+â)+t,

and the analog p∗b =
4

3
t(X̂B + â) +

2

3
t(X̂A + â) + t, such that the prices are a function

of the travel-cost parameter t and the number of captive consumers. Hence, the de-

mand that A draws from the competitive region becomes x̃ – â =
1

2
+

1

3
∆X̂A. This

implies that both �rms target the competitive area i� |∆X̂A| ≤ 3

2
and they generate

pro�ts from the captive area (πA1
) as well as from the competitive area (πA2

), i.e.,

πA = πA1
+ πA2

= p∗a(X̂A + â) + p∗a(
1

2
–

1

3
∆X̂A). However, if ∆X̂A < –

3

2
, �rm A will

receive all the demand from the competitive area while B’s optimal strategy generates

revenues only from its captive consumers, setting the monopoly price. Considering

only the revenues generated from the competitive area, I calculate the demand elas-

ticity of competitive consumers as ε
(x̃–a)

= –
1

3

X̂A+â
(x̃–â)

. Whenever X̂A + â >
1.5+X̂B+â

2
, the

demand is elastic so that an increase in captive consumers reduces the revenues from

the competitive area. Figure 2.A.1 illustrates this situation.

Alternatively, normalizing the trade area of the �rm to one (i.e., XA+a+Comp ≡ X̄A =

1) allows us to interpret the �rm’s strategic behavior as a function of the percentage

of captive consumers in its trade area (XA + a)/X̄A and the normalized di�erence in

captive consumers ∆XA/X̄A, respectively. Under this normalization, I ask whether
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there exists a critical number of captive consumers for which the �rm is better o�

setting the monopoly price instead of engaging in price competition in the competi-

tive area. This is equivalent to asking whether there is a solution to πMA ≥ πA1
+πA2

.

Hence, denoting R as the consumers’ reservation price and solving the game, the in-

equality becomes R(XA +a) ≥ p∗a(
XA+a
X̄A

+
x̃∗
X̄A

) with p∗a =
4

3
tXA+a

X̄A
+

2

3
tXB+a

X̄A
+ t(1 –

XA+a
X̄A

)

and x̃∗ =

(1–
XA+a
X̄A

)

2
–

1

3
(
XA+a
X̄A

–
XB+a
X̄A

). For any given number of captive consumers

of the rival (XB + a), there exists an upper bound on the percentage of captive con-

sumers (XA+a)/X̄A, such that for a su�ciently high reservation price of the consumers

(=monopoly price), the �rm is better o� focusing on the captive consumers to extract

their surplus instead of competing over the competitive area. For instance, suppose

that XB + a = 0, then the inequality above can be written as a quadratic equation that

has a solution if the discriminant D = (
1

3
– R)

2
– 4 · 1

18
t · 1

2
≥ 0. Setting t = 1, a

solution exists if R ≥ 2

3
. For example, setting R = 1 implies that a fraction of captive

consumers higher than 80 % induces �rm A to set the monopoly price, although for a

fraction of captive consumers less than 120 %, both �rms could draw positive demand

from the competitive area.

Figure 2.A.1

The effect of an increase in captive consumers.
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2.B Appendix: Detailed calculations of variables

2.B.1 Two �rms with one store each

The number of consumers within a maximal travel distance Dmax who may patronize

the store at l is calculated as follows:

X̄l =

∑
l′:d(l,l′)≤Dmax

Xl′

where Xl′ is the population mass living at location l′ and d(l, l′) is the Euclidean dis-

tance from location l to location l′. Note that this variable is the same for all stores

and is independent of the rivals’ choices.

Given asymmetric information about a rival’s location determinants, �rm F calcu-

lates expectations over the number of captive consumers for itself and for the rival

�rm in question based upon the beliefs (BP–F
k ) about the location choice of the rival,

EBP–F [CaptiveFl] =

∑
l′

A(l, l′) · (1 – φ–F
l′ ) · Xl′ (B.1)

EBP–F [∆CaptiveFl] =

∑
l′

(A(l, l′) – φ–F
l′ ) · Xl′ (B.2)

where φ–F
l′ is the conditional probability that location l′ is covered by the rival. The

probability that a certain location l′ is covered by the rival is the sum over the beliefs

of F for the subset of locations that can be reached by a consumer who lives at l′, i.e.,

φ–F
l′ ≡ P(covered

–Fl′ = 1|IFm) =

∑
k

Akl′ · BP–F
k , where A is a symmetric feasibility

matrix of dimension L× L with elements Akl′ , taking the value ’1’ if a store at k can

reach consumers at l′, and zero otherwise. Considering the �rm’s location choice l,

if the store reaches location l′, then this location is ’covered by F’ and the probability

that the location is ’not covered’ by the rival corresponds to the probability of the lo-

cation in question being captive. Summing over the probabilities for all the locations

that are within the trade area of F at l, and multiplied by the corresponding consumer

mass Xl , yields the total number of expected captive consumers as de�ned by equa-
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tion (B.1).

The expected di�erence in captive consumers requires to calculate the captive con-

sumers of the rival �rm which, analogously to the calculation for the captive con-

sumers of F, can be written as EBP–F [Captive
–Fl] =

∑
l′

(1 – A(l, l′)) · φ–F
l′ · Xl′ . Hence,

the expected di�erence between captive consumers is given by CaptiveeFl –Captive
e
–Fl ,

which yields equation (B.2).

2.B.2 Generalization tomultistore �rms using uniform pricing

Since the model with one store for each �rm is just a special case of the extension

to markets with N stores, I provide here the calculation for the general case, with

s(F ) denoting a store with a �rm a�liation F and assuming that prices are set at the

market-�rm level (uniform pricing) while the location choice takes place at the store

level.

For the ease of the calculation, let us �rst consider the variables under full infor-

mation. The total number of captive consumers for chain F (i.e., who cannot reach

any store of the rival chain) can be written as follows,

CaptiveF =

∑
l

captiveFl · Xl ≡ f (dF , d
–F ,A,X )

with captiveFl = I

∑
s(F )

L∑
k=1

ds(F )kAkl > 0

︸ ︷︷ ︸
coveredFl=1

·

1 – I

∑
s(–F )

L∑
k=1

ds(–F )kAkl > 0




︸ ︷︷ ︸
covered

–Fl=0

where captiveFl is a dummy variable taking the value one if location l is captive for

�rm F , and zero otherwise. The rival’s location is indicated as a vector d
–F of dimen-

sion Lm× 1 with elements d
–Fk being dummy variables that take the value ’1’ if �rm

–F chooses location k, and 0 otherwise. If any of its stores reaches location l, then I

label this location ’covered by F’. If, additionally, the location is ’not covered’ by the

rival, then I label it a ’captive location’.

Under asymmetric information, the generalized probability of a location being cov-

ered can be written as follows:
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Proposition 2.B.1. If a store s(–F ) locates at l, the probability that location l′ is covered

by any F-store is given as follows, φF ,NF
l′ ≡ Pr(coveredFl′ = 1) = 1 – (1 –

∑
k Akl′ ·

BPs(F )

k )
NF , with BPF being the beliefs about the location choice of a store with a chain

a�liation F.

Analog the one-store case, based on φ
F ,NF
l′ , it is straightforward to determine the num-

ber of consumers in competitive areas and captive regions, at the store level as well as

at the �rm level. The expected number of ’competitive consumers’ at the store level

is just the expected number of consumers within the feasible market range that are

’covered’ by the rival:

E[Comps|s(F )l] =

∑
l′:d(l,l′)≤Dmax

φ
–F ,N

–F
l′ · Xl′

However, what matters is the total number of consumers in the competitive areas,

such that the expectations considering all stores are calculated as follows:

E[CaptiveF |s(F )l] = f es(F )l(ds(F )
,BPs(F )

,BPs(–F )
,A,X )

=

∑
l′

[
[φ

F ,NF–1

l′ (1 – A(l, l′)) + A(l, l′)] · (1 – φ
–F ,N

–F
l′ )

]
· Xl′

E[Captive
–F |s(F )l] = f es(–F )l(ds(F )

,BPs(F )
,BPs(–F )

,A,X )

=

∑
l′

[
[(1 – φ

F ,NF–1

l′ )(1 – A(l, l′))] · φ–F ,N
–F

l′

]
· Xl′

E[∆CaptiveF |s(F )l] = ges(F )l(ds(F )
,BPs(F )

,BPs(–F )
,A,X ) = f (·) – g(·)

=

∑
l′

[
[φ

F ,NF–1

l′ (1 – A(l, l′)) + A(l, l′)] – φ
–F ,N

–F
l′

]
· Xl′

Note that for the particular case with two stores, with one of each chain (NF = N
–F =

1), the structural variables are linear in terms of beliefs.
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Proof of Preposition 1.

E[CaptiveF ] = E[f (dF , d
–F ,A,X )]

= E[

∑
l

captiveFl · Xl] =

∑
l

E[captiveFl] · Xl

=

∑
l

E[I {

L∑
k=1

dFkAkl > 0} · (1 – I {

L∑
s=1

d
–FsAsl > 0})|s(–F )] · Xl

=

∑
l

P(captiveFl = 1) · Xl

=

∑
l

P(NcoveredFl ≥ 1 ∩ Ncovered
–Fl = 0) · Xl

by Conditional Independence Assumption:

=

∑
l

P(NcoveredFl ≥ 1) · [1 – P(Ncovered
–Fl ≥ 1)] · Xl

(1.) for NF = 1:

P(covereds(F )l = 1) = E[I {

L∑
k=1

ds(F )kAkl > 0}]

= P(ds(F )1
A

1l = 1 ∪ ds(F )2
A

2l = 1 ∪ ... ∪ ds(F )lALl = 1)

by Mutually Exclusive Choices:

=

∑
k

P(ds(F )kAkl = 1)

=

∑
k

Akl · P(ds(F )k = 1)

=

∑
k

Akl · EP
s(F )

k ≡ φsl (BP
s(F )

) result how �rms form their expectations

(2.) for NF ≥ 1:

P(NcoveredFl ≥ 1) = E[I {

∑
s(F )

L∑
k=1

ds(F )kAkl > 0}]

= E[1 – I {

∑
s(F )

L∑
k=1

ds(F )kAkl = 0}]

since covereds(F )l ∼ Bernoulli(φsl )

⇒ NcoveredFl ∼ Binomial(NF ,φsl )

= 1 – P(NcoveredFl = 0)

= 1 – (1 – φsl )
NF

= 1 – (1 –

∑
k

Akl · BP
s(F )

k )
NF ≡ φF ,NF

l (BPs(F )
)
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2.C Appendix: Considered Markets

Table 2.C.1

Discrete population distribution within the sample markets

UA/UC (ID) Name (State) L Av. pop/loc
∗

Std.dev. Min Max

847 Alamosa (CO) 12 0.3997 (0.2297) 0.0235 0.7275

955 Albany (OR) 41 1.2223 (1.5334) 0.0451 7.3970

3547 Astoria (OR) 28 0.2072 (0.2512) 0.0000 0.9583

5302 Barstow (CA) 37 0.6823 (1.1847) 0.0062 5.2514

11431 Bullhead City (AZ) 55 0.8104 (1.1928) 0.0245 6.5929

13267 Canon City (CO) 37 0.7244 (1.1034) 0.0038 5.000

14158 Carson City (NV) 60 0.9702 (1.7270) 0.0179 9.7462

14401 Casa Grande (AZ) 41 1.1651 (15624) 0.0211 6.7474

17020 The Dalles (OR) 30 0.7394 (1.4726) 0.0060 6.2118

20368 Cortez (CO) 19 0.3867 (0.5963) 0.0301 2.500

20557 Cottonwood (AZ) 35 0.6224 (0.8030) 0.0049 2.5872

20827 Craig (CO) 15 0.7369 (1.2891) 0.0112 4.7438

23230 Delta (CO) 15 0.4674 (0.6490) 0.0054 1.9948

26983 Ellensburg (WA) 16 1.3426 (2.3313) 0.0042 7.9152

30034 Florence (OR) 15 0.8056 (0.8199) 0.0162 2.1213

32491 Galveston (TX) 32 1.4669 (2.9546) 0.000 10.660

33652 Glenwood Springs (CO) 30 0.1801 (0.3235) 0.0020 1.2994

36001 Ginnison (CO) 16 0.2738 (0.4421) 0.0013 1.2394

46747 Lake Havasu City (AZ) 51 0.8841 (0.9946) 0.0012 2.9632

59437 Morro Bay (CA) 35 0.7277 (1.2567) 0.0000 49571

62839 Newport (OR) 18 0.4912 (0.8911) 0.0000 3.1125

63514 North Bend (WA) 31 0.5433 (0.7387) 0.0066 3.7391

75367 Riverton (WY) 18 0.7144 (0.8853) 0.0050 3.0414

76339 Roseburg (OR) 53 0.7172 (1.0468) 0.0181 4.2613

77527 St. Helens (OR) 43 0.4857 (0.6949) 0.0307 3.4343

80686 Sequim (WA) 24 0.6345 (0.6736) 0.0000 2.7324

81415 Shelton (WA) 36 0.3390 (0.5840) 0.0000 2.7229

81901 Sierra Vista (AZ) 121 0.4313 (1.0137) 0.0000 5.2250

84682 Steamboat Springs (CO) 25 0.2402 (0.3711) 0.0209 1.5894

89920 Vail (CO) 11 0.0827 (0.0513) 0.0451 0.1624

97966 Yucca Valley (CA) 45 0.4428 (0.4960) 0.0047 1.7297

∗
population density in 1000

Table 2.C.2

Market selection

both chains with one store each both chains active & L ≤ 500 both chains active(3)

(estimation sample)

size (in mi
2
) 14.11 43.50 153.12

(13.89) (53.37) (346.50)

population density (pop/mi
2
) 1654.77 2029.84 2354.61

(673.72) (846.10) (1124.96)

households 8430.35 40333.69 198349.41

(5936.29) (70777.15) (542684.26)

locations (1×1 mile cells) 33.71 79.07 222.35

(20.79) (72.90) (438.48)

number of Kroger-stores 1 2.27 8.97

(0) (4.76) (25.50)

number of Safeway-stores 1 2.66 9

(0) (2.99) (19.23)

number of markets 31 71 103

∗
Standard errors in brackets.

The selection of isolated markets is a known potential selection problem in all the ap-

plied market entry papers based on Bresnahan and Reiss (1990,1991). For the applica-

tion in this paper, I have chosen duopoly markets with one store each since I donâĂŹt

have information on the pricing policy of the �rms in a multistore-markets which has
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a crucial impact on the optimal location decision of a �rm Krčál (2012). Moreover, the

chosen selection criteria allows me to study the strategic location choice under price

competition in a simple framework, avoiding too much âĂŸnoiseâĂŹ that is expected

to increase with the market size (e.g. many other grocery retail formats for which we

cannot control, unobservable spatial clustering, high heterogeneity across consumers,

etc.).
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2.D Appendix: Knitro problemspeci�cation andout-

come

As speci�ed in Section 2.3, I formalize the equilibrium conditions of the game as non-

linear equality constraints. I leave the structural parameters unrestricted and de�ne

the choice probabilities as bounded on the interval [0.00001, 1]. The lower bound as-

sumes that the selection probabilities are positive for all alternatives, which implies

little loss of generality since, empirically, a probability of zero cannot be distinguished

from such a small probability (McFadden, 1974). The upper bound is a hypothetical

constraint that is active only if there is only one possible location in the market which

is ruled out by Identi�cation Requirement 2. Note that this setting provides a closed

and bounded set for the choice probabilities. As initial values for the beliefs, I use a

uniform distribution over all the locations within a market. For the structural param-

eters I use many di�erent initial values, with the guess for the population coe�cient

and distribution distance based on the results from Datta and Sudhir (2013). For the

implementation, I use numerical derivatives (�rst-di�erence approximation). I am

aware of the e�ciency improvement providing analytical derivatives, but given the

complexity of the constraints which makes the hand-coded Jacobian error-prone, I

was unable to code it correctly for the entire model, and hence I use numerical deriva-

tives at the cost of higher CPU-time to avoid unnecessary bugs.

The output below provides the Knitro results for the baseline model speci�cation,

including the individual iteration steps and the �nal statistics.
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Figure 2.D.2

Knitro outcome (baseline model).

Notation: iteration number (Iter), cumulative number of function evaluations (fCount), value of the negative log-likelihood function (Objective), feasibility violation and

the violation of the Karush-Kuhn-Tucker �rst-order condition of the respective iteratations (FeasError,OptError), distance between a new iteration and the previous

iteration (Step), number of projected conjugate gradient iterations required to compute the step (CGits).
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2.E Appendix: Bootstrap distribution

To determine the signi�cance of the estimates, I use the bootstrap percentile method.

Since the justi�cation of this method rests on an approximately normal distribution

of the parameters, let us as an exemplar have a detailed look at the bootstrap dis-

tribution of the parameters of model speci�cation (1), providing the non-parametric

density functions for the structural parameters. Note that the distribution could be

approximated by a normal distribution.

Figure 2.E.3

Bootstrap distribution (baseline model).

Hence, based on those bootstrap estimates that reported convergence (approx. 80%), I

calculate for each model speci�cation and each parameter a 90% and a 95% con�dence

interval. Table 2.E.3 indicates the quantiles of interest and the probability of a negative

coe�cient for the model speci�cations (1)-(4).
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Table 2.E.3

Bootstrap distribution

Bootstrap distribution model (1).

β
(1)

1
β

(1)

2
β

(1)

3
δ(1)

2.5% percentile 0.1280 -0.4312 -1.5947 -9.7423

5% percentile 0.1549 0.2677 -1.4286 -4.6864

95% percentile 1.0299 3.2601 -0.1650 -0.0258

97.5% percentile 1.2311 3.2779 -0.0758 0.0145

prob. β ≤ 0 0.00 0.04 0.99 0.96

Bootstrap distribution model (2).

β
(2)

1
β

(2)

2
β

(2)

3
β

(2)

4
δ(2)

2.5% percentile -0.2392 0.7939 0.0883 -2.2971 -2.1172

5% percentile 0.1245 0.8266 0.1141 -2.2231 -2.1141

95% percentile 0.7417 2.9457 2.1987 -0.5243 -0.1710

97.5% percentile 0.8301 3.0037 2.3412 -0.4211 0.0599

prob. β ≤ 0 0.03 0.00 0.00 1.00 0.95

Bootstrap distribution model (3).

β
(3)

1
β

(3)

2
β

(3)

3
δ(3) γ(3)

2.5% percentile 0.0791 -0.662 -1.4754 -2.5058 -0.4613

5% percentile 0.1921 0.0625 -1.3074 -2.1274 -0.3814

95% percentile 0.9927 3.0351 -0.1576 -0.2073 1.9518

97.5% percentile 1.0465 3.2201 -0.1225 0.3161 1.9956

prob. β ≤ 0 0.00 0.04 0.99 0.95 0.18

Bootstrap distribution model (4).

β
(4)

1
β

(4)

2
β

(4)

3
β

(4)

4
δ(4) γ(4)

2.5% percentile 0.3313 0.9437 -0.0824 -1.0440 -1.5000 0.5681

5% percentile 0.2943 1.5397 -0.0495 -0.6354 -0.9063 1.1688

95% percentile 0.2426 0.5568 1.8205 -1.8995 -1.7471 0.2442

97.5% percentile 0.3616 2.2118 1.9206 -1.7789 -1.8498 0.2548

prob. β ≤ 0 0.00 0.00 0.07 1.00 1.00 0.00



2.F Appendix: Further robustness checks 86

2.F Appendix: Further robustness checks

Model (5) allows for a linear-quadratic shape of the distribution costs, and model (6)

controls for average consumer characteristics, such as household size and age, within

the trade area of the �rm. Given the large number of iterations necessary to achieve

convergence, I abstain from the computationally-intensive bootstrap analysis and re-

port only the equilibrium results, which have to be interpreted with caution. Allowing

Table 2.F.4

Further robustness checks.

Variables (1) (5) (6)

X̄ 0.2794 0.2833 0.2556

Captive
X̄ 1.5977 1.5282 1.6168

∆Captive
X̄ -0.2282 -0.3842 -0.5297

∆Captive
X̄ · (1 –

∆Captive
X̄ )

Z -1.5302 -1.5635 -0.8151

Z2
0.3888

BB_distance

Av_Age 0.2039

Av_HHsize 0.6612

# Iterations 25 328 2465

Log-likelihood -149.6538 -158.4787 -181.2045

for a more �exible form of the cost structure, including the squared distance, suggests

a U-shaped pattern which con�rms the results from my previous work. Note that the

market-power e�ect is robust to this functional variation of the cost structure, while

the price-competition e�ect becomes slightly stronger. This sensibility regarding the

costs structure may be carefully interpreted as the distribution costs also partially ef-

fecting the marginal costs, and hence the price setting. The positive coe�cients of

age and household size suggest that traditional supermarkets are more likely to target

’older’ people, which is to be understood in relative terms in the sense of families.

Further possible control variables might be the geographic income distribution and

the social class of households. However, given the data limitations at the disaggre-

gated level of block groups, I do not control for these and I assume implicitly that the

reservation price of all households for a standard food basket at a supermarket store

is high enough.



chapter 3

A new supermarket

in the neighborhood:

The price reaction of

incumbent retailers

3.1 Introduction

Models of oligopolistic price competition in general suggest that an increase in the

number of �rms in the market decreases prices. However, little is known about the

dynamics of price reactions when a new supermarket opens its doors. In this paper, I

aim to analyze empirically whether market entry induces incumbent �rms to adjust

prices instantaneously, step-wise or with a delay. I analyze this question using the

price indexes of a standard shopping basket and expect new insights into the gen-

eral repositioning of stores. Currently, we observe in the British market that Tesco

has decreased prices for several products of a standard shopping basket as a reac-

tion to the competitive pressure of the new German retailers Aldi and Lidl. But can

we generalize this observation for other markets and any type of new supermarket?

Considering data for urban supermarkets in the City of Madrid, descriptive statistics

show for stores that face entry into their neighborhood a signi�cant price decrease

with respect to supermarkets without entry in their trade area. But how quickly

do incumbents react to new players? This paper analyses the competition e�ect on

supermarket prices, di�erentiating the e�ect of incumbent stores and new entrants.

This distinction allows us to distinguish between long-run competition e�ects and
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immediate competition e�ects when a new supermarket opens its doors.

To analyze this question, I use a new dataset of quarterly normalized price indexes

for supermarket stores in the city of Madrid (Spain). To be precise, I use di�erent

types of data to build a panel dataset of relative price indexes at the store level and

associated store location-speci�c characteristics. In particular, I use a quarterly price

survey for a sample of supermarkets in Madrid containing the street address of each

store and normalized price indexes of a standard shopping basket. Additionally, I use

census data to identify all the supermarkets in the urban area and the distribution

of economic and demographic characteristics within the city. Using the geographic

information system ArcGIS, I construct a unique panel dataset with quarterly data

from 2009-2011. While in a parallel work Asensio (2013) uses only one time period of

this supermarket data to emphasize the price-�exing practice of Spanish supermar-

ket chains, the present paper focuses on the dynamics of the price of a standard food

basket, in particular the price reaction over time to a new store opening and the e�ect

on the relative position of a store with respect to competitors.

The literature explaining the variation in supermarket prices can be classi�ed in terms

of price variations due to changes in the wholesale price or cost changes, on the one

hand, and changes in the retail margins on the other hand. The latter can be dif-

ferentiated into two approaches: behavior-based inter-temporal price discrimination

(’sales approach’) and competition-referenced pricing (’competitive outcome’).

Considering the price evolution of a particular product, abstracting from competi-

tion, several papers have identi�ed sales cycles in supermarket pricing. Examples are

Hosken and Rei�en (2004), who analyze the price variation of di�erent supermar-

ket products using monthly prices at the store level for di�erent cities and �nd that

there is typically a ’regular price’, with most of the deviations identi�ed as temporal

sales. Explanations for this kind of observed temporal sale are proposed by Ariga et

al. (2010) as an incentive of the supermarket to discriminate between consumers who

buy for immediate consumption and those who buy for inventory, and by Dubé at al.

(2008) as a result of the �rm’s incentive to achieve consumer loyalty. However, since

promotions are in general product-speci�c and last from a few days to one month,

these arguments cannot be used to explain the observed variation in the price index

of a standard shopping basket. On the one hand, Kopalle et al. (2009) argue that in a
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�xed-weight price index the demand e�ect of the sales is not captured. On the other

hand, it seems reasonable to assume that product-speci�c sales do not last more than

one month and so they may not be considered when using quarterly evaluation.

Studying price changes as an outcome of imperfect competition, many of the existing

empirical papers are cross-sectional, and focus implicitly on the long-run competi-

tion e�ect in a particular industry and market (Singh and Zhu (2008), Gullstrand and

Jörgensen (2012), Asensio (2013)).

This paper in turn considers dynamics in the competition e�ects, di�erentiating be-

tween the immediate competition e�ect of a new entrant and the long-run competi-

tion e�ect of changes in the market structure.
30

Throughout the paper, I will use the

terms ’incumbents’ for �rms that are established in the market at a certain point in

time and ’new entrants’ for �rms entering the market in the respective period. It is

important to notice that according to this de�nition, in the period after market entry

has taken place, the old entrants are now established �rms in the market and hence

become incumbent �rms. One of the closest analyses to my own is that of Basker

(2005, 2009), who analyzes empirically the e�ect of Wal-Mart’s entry on the pricing

of incumbent retailers. Using quarterly city-level prices for di�erent products, he

�nds signi�cant price decreases that are stronger in the long run than in the short

run, larger in cities with less incumbent �rms per capita, and smaller for the big three

players than for other retailers. For the analysis, I set up a reduced-pricing equation

that di�erentiates competition e�ects in the competition e�ect of incumbent stores

and the entry e�ect of a new grocery retailer. Given that entry into the Spanish su-

permarket industry is strongly regulated, in the sense that �rms have to apply for

licences a long time in advance to entry, which produces a time lag between the en-

try decision and the realized entry, we argue that a potential simultaneity problem

of entry and pricing is not an issue but that the required approval by the regional

regulation authority induces a potential selection bias in the estimation. Under the

assumption of selection on time-constant market characteristics, we make use of the

panel data and propose a �rst-di�erence approach.

The results suggest the immediate price adaptation of Spanish supermarkets upon

the entry of a new supermarket store, which is lower than the competition e�ect of

30
For a general discussion of the literature and further challenges analyzing the interaction between

pricing and competition e�ects see, for example, Kopalle et al. (2009).



3.2 The grocery retail industry in Spain 90

incumbent �rms. To be precise, I �nd that, on average, the entry of a new super-

market in the neighborhood leads to an instantaneous price decrease by established

stores of 1.26%, and the full (long-run) competition e�ect implies an average total

price decrease of 2.11%. This implies a di�erentiation in short-run and long-run com-

petition e�ects which may be explained by the constrained price �exibility of Spanish

supermarkets in the short run, or that new stores need time to establish their busi-

ness as a fully-�edged rival in the local market. Moreover, we �nd that the di�erence

between the entry e�ect and the competition e�ect of incumbent �rms is especially

pronounced for supermarkets positioned in the middle price-segment, and that, high-

price stores react the strongest to changes in the market structure.

The article proceeds as follows. First, I introduce the industry and the dataset with

a special focus on how to deal with normalized price indexes. After providing some

descriptive statistics that motivate the analysis, I provide an econometric approach

and the results. Finally, I comment on pending work and future research.

3.2 The grocery retail industry in Spain

With a contribution of 7-8% to overall GDP, the food sector is one of the most im-

portant industry sectors in Spain. However, it is also a very dynamic sector, where

changes in technological innovations and consumer behavior bring along challenges

for traditional retailers such that administrative measures have been taken to protect

small-scale �rms.

A key feature of the supermarket industry in Spain is that the sector is highly reg-

ulated and that the regulation is decentralized. While there exist general guidelines

at the national level, the autonomous regions have a large degree of leeway to de-

cide the terms of opening hours and the dates of sales periods and entry conditions

for certain formats of commercial establishments, while some decisions, for example

Sunday or Holiday shopping days, are delegated to the municipalities. A good sum-

mary of the evolution of the legislative regulations at the national level and that of the

autonomous regions can be found in Matea and Mora (2012). For my analysis, focus-
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ing on the city of Madrid and regulation at the national level, the autonomous region

level and the municipality level are the same for all considered supermarket stores,

so that there is no variation in the legal framework which may alter regional prices.

Concentrating on the implementation of regulations in the Community of Madrid, the

Competition Court of the Community of Madrid has the main task of guaranteeing

e�ective competition in line with the legislation of the Community of Madrid. This

legal framework includes information about the opening of large-scale retail formats

and discounters, although medium-sized retailers are also subject to approvals. While

the Competition Court has a solely informative role, the authorization or modi�ca-

tion of certain retail businesses is undertaken by the Regional Ministry of Economy

and Finance of the Community of Madrid. In the following, I comment brie�y on the

types of businesses that are especially strongly regulated and which comprise a large

proportion of all the establishments.
31

A large retailer needs a second special licence

from the autonomous community in addition to the licence of the corresponding town

hall to enter the market at a particular location. For the City of Madrid, this includes

all retail establishments of at least 2.500 m
2
. Discount retailers are likewise required

to apply for a speci�c licence and this applies to all retailers with a minimum number

of white-label products compared to branded products (> 70%), an a�liation with a

multi-store company or chain, a minimum sales area (> 500 m
2
) and a minimum sales

volume (> 3 billion Euros). Last, but not least, since 2001 medium-sized retailers with

a �oor space of at least 750 m
2

are also subject to the approval of a speci�c licence

from the Regional Ministry of Economy and Finance. In 2012, the law ’Dynamization

of the Commercial Activity in Madrid’ relaxed the strong administrative and urban

requirements for retail establishments although, given our data from 2009-2011, this

period is out of sample.
32

Considering the market structure, the supermarket industry in the City of Madrid is

dominated by several large supermarket chains which are associated with a certain

format, service and product quality. Table 3.2.1 provides an overview of the active

stores in 2010.

31
Ley 16/1999, de 29 de abril, de comercio interior de la Comunidad de Madrid, Capítulo II, §17.,

Capítulo III, §24.; Ley 14/2001, de 26 de diciembre, de Medidas Fiscales y Administrativas, §17.

32
Ley 2/2012, de 12 de junio, de DinamizaciÃşn de la Actividad Comercial en la Comunidad de

Madrid.
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Table 3.2.1

The grocery retail industry in the City of Madrid

Main Retail Groups
1

Banners (number of stores, Alimarket census 2010)

Ahorramás (Spain)
2

AhorraMas (82)

Auchan (France) Alcampo (4), Aro Rojo (3),

Simply City (10), Simply Market (5)

Carrefour (France) Carrefour (5), Carrefour City (9),

Carrefour Express (9), Carrefour Market (2)

Condis (Spain)
2

Condis (25)

Dia (Spain) Dia (110), Maxi Dia (11), Dia Market (88)

Dinosol (Spain) Supersol (21), Cash Diplo (1)

El Corte Inglés (Spain) Supermercado El Corte Inglés (7), Supercor (6),

Opencor (28), Hipercor (4), Convenience Store (1)

Eroski (Spain) Eroski (2), Eroski City (18), Eroski Center (14),

Caprabo con Eroski (40)

Híper Usera (Spain)
2

Híper Usera (16), Híper Aluche (1)

Híper Villaverde (2), Cash IFA - Híper Usera (3)

Lidl (Germany) Lidl (29)

Roig (Spain) Mercadona (31)

Unide (Spain)
2

Gama (18), Udaco (35), Maxcoop (17)

1
Retail groups operating at least 20 stores in the City of Madrid. The non-listed stores belong

to retail groups with a signi�cantly smaller presence in this urban market (Aldi, C.C. Darbe,

Covirán, Eco Mora, Ferjama, Franco-Mor, Miquel, Supermercado Sánchez Romero, Villa de

Madrid) or else belong to small �rms.
2

Integrated in the IFA Retail group.

As a pioneer project in Europe, the government decided to provide consumers with

more transparency and information about prices across supermarkets and initiated

the ’Observatorio de precios’, a quarterly study of price indexes at the store level that

was published on the Web. However, in 2011 the �rms complained that the prices

did not re�ect the product quality and services provided, which could be misleading

for consumers, and the government �nally stopped this initiative and removed the

comparison from the Web. However, some �rms continued sharing partially their

own monitoring of their rivals’ prices with consumers, as an advertisement strategy.
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3.3 The data

(1) Price indexes at the store level

The main data for my analysis come from the aforementioned survey of the Spanish

Ministry of Industry, Tourism and Commerce, which collected from 2008-2011 quar-

terly food price data for the main national and regional grocery chains in Spain. The

data are provided as price indexes at the store level. In each period, the sample cov-

ers more than 4,000 stores in the 56 mayoral cities in Spain, whereby the stores are

identi�ed by their exact street address, format and chain a�liation. For each store,

187 products were tracked to construct individual price indexes for the stores which

were then normalized within a city with respect to the cheapest basket. That is, con-

sidering a particular city, for a store i at period t, the normalized food price indexes

can be expressed as follows,

FPIit ≡ Pit
minj{Pjt}

· 100

with Pit being a �xed-weight price index of a standard shopping basket.

The analysis in this paper is restricted to the panel data for the City of Madrid,

whereby in each quarter between 209 and 212 hypermarkets, supermarkets and dis-

count retailers are observed, of which 181 stores were continuously tracked through

all the periods.
33

Preparing the data for the analysis, I construct a panel dataset of

price indexes at the store level. I assign an identi�cation number to each store that

has been tracked by the survey at some moment between the �rst quarter of 2009 and

the second quarter of 2011. Each store is identi�ed by the exact street address and

the banner. Subsequently, the quarterly data are merged to a panel dataset. Finally,

in order to analyze the data in its geographic context, I convert the street addresses

of the observed stores to longitude and latitude coordinates using the geocoder of

Google Maps.
34

Next, the geographic information system ArcGIS is used to map the

geographic data and project them in an x-y coordinate system to be analyzed.
35

33
Since the prices in each city have been normalized with respect to the cheapest store within

the urban area we cannot exploit cross-city variations, but we may consider other urban areas for a

sensitivity analysis of the results.

34
With the aim of achieving a highly accurate match, when the house number was missing but the

store belonged to a mall, I geocoded the mall site. Otherwise, I veri�ed the exact position on the street

using Google’s street view.

35
For the projection I use the cylindrical Universe Transverse Mercator (UTM) projection for the

area of Spain, which corresponds to the UTM Zone 30.
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(2) Census data

In order to identify changes in the market structure, I use the census data from the

publisher Alimarket, which provides the exact street addresses of all grocery estab-

lishments within the City of Madrid (supermarkets, hypermarkets and discounters)

and the associated opening dates.
36

The census data contain the exact opening date

of each store which is used to identify the entry decisions. The data do not directly

provide the closing dates, but I infer the timing of the market-exit decision of a store

from a comparison of the census data of di�erent years. In order to merge the census

data from 2008-2011 and to guarantee the consistency of the data, I match the data by

the street address and the banner. The apparent independence of the data collection

of di�erent years requires a correction of di�erent spellings of the street addresses. A

few observations appear in the census only after the year of entry, so that I correct for

this inconsistency taking the opening date as the true reference. Additionally, I ac-

count for ’banner changes’ within a chain and transformations within a retail group

which may be falsely considered as market entry but which do not constitute true

entry decisions (which can in general be veri�ed given the opening date). Since I am

interested in the analysis of the urban grocery market, I exclude one store location

from the data which is situated inside the ’Pardo’ distrit, a forested area with only a

tiny urban area next to the royal palace. Based on the merged census data, I identify

all the stores for which prices have been tracked and assign the corresponding iden-

ti�cation number.

(3) Demographic and economic data

Additional to the store datasets, I use information on the distribution of demographic

and economic data within the considered market using data from the Statistic Institute

of Madrid for the smallest available administrative unit. In particular, I use quarterly

population data for each neighborhood district (128 ’barrios’) and housing prices at

the superordinate district level (21 ’distritos’). The Community of Madrid also pro-

vides shape�les of territorial borders for districts and neighborhood units which I use

for the spatial association of these variables.

36
Since the freely available information is limited, I am grateful to Javier Asensio who provided,

in collaboration with the University of Valencia, the complete census data of Alimarket for the years

2008-2011.
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3.4 Descriptive statistics

Table 3.4.2 indicates the changes in the market structure for the considered time pe-

riods.

Table 3.4.2

Market entry within the considered time period.

2009 2010 2011

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Entry 7 11 9 9 4 7 11 10 3 5

Total number of stores 730 741 750 759 738 745 756 766 742 747

The observed entry events are accomodated, approved entry. The second row indi-

cates the total number of stores within the market. Since we can only infer a market

exit from the comparison of annual census data, we correct at the beginning of each

year for the stores which exit the market in that year. That is, we make the strong

assumption that �rms that exit the market are not pro�table and that this is antici-

pated by all �rms at the beginning of each year. Complementary to this, Figure 3.4.1

illustrates the geographic distribution of all the grocery stores in the City of Madrid

Figure 3.4.1

Changes in the market structure.

(a) Market entry and exit 2009. (b) Market entry and exit in 2010.
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and the market entry events for the years 2009 and 2011. Since the price survey has

been realized for a random sample of all the stores, Figure 3.4.2 illustrates (with blue

stars) those stores that have been tracked by the survey. Additionally, the �gures

present (with black stars) all the incumbent retail stores as well as the population

distribution at the neighborhood level and the distribution of housing prices at the

district level for the �rst quarter in 2009, with a darker shaded area being associated

with a higher population density and higher house prices, respectively.

A preliminary check of the spatial distribution of the observed store locations and

Figure 3.4.2

Tracked grocery stores.

(a) Population distribution (b) House prices.

the corresponding prices suggests that most of the tracked stores are located in very

densely populated urban neighborhoods of Madrid. Complementary to the graphical

illustration, Table 3.4.3 provides some summary statistics of store-location variables

for the whole period of analysis, from the �rst quarter of 2009 to the second quarter

of 2011.
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Table3.4.3
Summarystatistics.

Mean Sd.dev. Min Max

salesareaofthestore(inm2) 1262.95(2307.73) 50 13000

incumbentstores 19.19 (9.62) 1 41

populationwithinthetradearea(in100) 671.02 (270.07) 36.73 1222.62

housepriceatthestorelocation(in /m2) 3659.86(907.62) 2041 5406

Consideringthenormalizedpricesacrossstoresrevealsthepricefexingpolicyof

Spanishsupermarkets,i.e.thesupermarketchainssetdiferentpricesfortheirstores

withinthesamegeographicmarket.However,thepaperfocusesonthepricevaria-

tionwhichrequires,frstofall,theredefningofthepricedata.Recallthattheprice

indexesarenormalizedineachperiodwithrespecttothecheapeststoreintheirre-

spectiveperiodsthatcandiferovertime.Hence,tomakethedatacomparableover

time,Idefneareferencestorer,thatwillbethesamethroughouttheanalysis,and

considertheevolutionofthepricesofeachstorewithrespecttothereferencestore.

Thatis,wechangethenormalizationsuchthatthepriceratio,whichweuseforthe

analysis,iscalculatedasfollows:

pit=
FPIit
FPIrt
=
Pit/minj{Pjt})
Prt/minj{Pjt})

=PitPrt

Asaninterestingfact,comparingtheaveragevolatilityoftheprices(withinvariation)

andtheaveragepricefexingamongthestores(betweenvariation)foreachchain,

thedatashowasignifcantcorrelationbetweenthevolatilityandthepricefexing

practice.Thissuggeststhatthosefrmspractisingahighdegreeofpricefexingare

alsolikelytoemployconsiderablepricechangesovertime.

Table3.4.4reportstheaveragepricechangesofstoresthatfaceanewentrantin

periodtwithinaradiusof1kmandthosestoresthatarefurtherawayfromthenew

establishment.
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Table 3.4.4

Price changes associated with market entry in period t

price lags average price change H0 : µ1 6= µ2

(entry ≤ 1km) (entry > 1km) p-value

pt – pt–1 -1.37 % (3.70) -0.41 % (3.54) 0.0001

pt+1 – pt -1.11 % (3.31) -0.45 % (3.67) 0.0090

pt+2 – pt–1 -0.29% (3.45) 0.16 % (3.23) 0.5934

The �rst row compares the average price changes with respect to the pre-entry pe-

riod. The data suggest a signi�cant di�erence between the price adjustment of the

two groups. The supermarkets that face a new entrant in their trade area seem to

instantaneously decrease their prices. The second row compares the price changes

in the period after entry, and likewise shows a signi�cant decrease for the stores that

face new rivals. This may suggest a delayed price adjustment after entry has taken

place. However, the last row shows no signi�cant di�erence between the price adap-

tation in subsequent periods. We will investigate whether this pattern can indeed be

interpreted as a gradual two-period price adjustment due to the market entry of a

new supermarket in the neighborhood.
37

In our data, 73% of all the tracked stores experience entry at some point of time within

the considered time horizon. The reference store is chosen at random from the sub-

sample of 11 stores for which we observe prices for the standard shopping basket and

which experience neither entry nor exit within at least 1 km distance from the store

location during the whole observation period. Since four of the stores belong to the

retail chain Ahorramas, I choose one of the Ahorramas stores as my reference for the

analysis and use the others for a robustness check of the results.

3.5 Estimation approach

Since we are interested in estimating the causal e�ect of entry on market prices, let

us brie�y consider the process behind the observed market entry. Given the market

structure and the distribution of local characteristics within the urban market, �rms

37
Since we are interested in an econometric analysis of the price dynamics, we run a panel data

unit-root test on the price ratios. The HarrisâĂŞTzavalis unit-root test rejects the unit-root hypothesis

so that we can rely on the usual econometric procedures.
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decide whether it is pro�table to enter the market and, if so, which location to choose

in order to maximize their pro�ts. Assuming rational �rms, the optimal location is the

best response to the behaviour of incumbent �rms in terms of prices and locations,

as well as the distribution of relevant market characteristics. In turn, the prices of

incumbent �rms are the optimal response to the market entry decision, which implies

that, in equilibrium, market entry and prices depend upon each other. Hence, setting

up an econometric model that explains prices as a function of market entry, we face

a simultaneity problem. However, dealing with a regulated market, let us assume a

time lag between the entry decision and the entry realization, which comes from the

necessary application and approval by the regulation authority. Next, following the

assumptions of Basker (2005) that �rms cannot accurately forecast prices, entry will

a�ect the price setting in the entry period but not the other way around. In other

words, in a regulated market that causes delays between the entry decision and the

realization, any endogeneity bias of the entry coe�cient due to simultaneity is not

an issue. However, the necessary approval of entry by an external party introduces a

potential problem of selection bias when evaluating the entry e�ect. The Ministry of

Economy and Finance is assumed to pursue certain objectives when deciding on the

approval or rejection of an entry application, such that entry approval is not a random

assignment. However, note that if the decision of the ministry depends upon some

unobservable market characteristics which are also price determinants, this produces

a kind of omitted variable bias in the entry coe�cient that we aim to estimate. Under

the strong assumption that entry approval is merely based on time-invariant store-

location characteristics, we can write observed market entry as follows,

Eit = f [g(pi,t–k ,Xall
i,t–k ,Zall

i ),Zall
i ]

where g(·) de�nes the optimal decision of a �rm at time t – k with k ≥ 1 to enter

the market in the neighborhood of store i, and f (·) de�nes the decision made by the

regulation authority based on the received application. Zall
accounts for observable

and unobservable time-invariant characteristics and Xall
accounts for observable and

unobservable location-speci�c and store-speci�c di�erences that vary over time.

Keeping this in mind, let us consider the following reduced-form price equation which

has been used in several papers to analyze competition e�ects,
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ln(pit) = α0 + αZi + βXit + γrivalsit + εit

where Zi are the observable time-invariant characteristics (like the size of the stores

and the chain a�liation) and Xit = (Wit , rivalsit) are observable store- and location-

speci�c variables, where Wit captures location-speci�c and store-speci�c di�erences

like the population mass living within a 1 km radius of the stores or the di�erence in

housing prices at the store location, and rivalsit indicates the number of rival stores

at a certain point in time.
38

In this model, γ is usually the parameter of interest

to be estimated that captures the competition e�ect. Note that this speci�cation im-

plicitly assumes that all stores exercise the same competition e�ect, independently

of whether they are incumbent stores or whether they have just entered the market,

and this could be estimated using cross-sectional data.

In this paper, we are interested as to whether there is an entry e�ect on supermarket

prices and, if so, whether the price adaptation takes place instantaneously or gradu-

ally, as well as how to identify the long-run competition e�ect. In order to address

these issues in a reduced price regression, I disclose the number of supermarkets in

the trade area of a store in incumbents and entrants in the following way,

ln(pit) = α0+αZi+βXit+γIncumbentsit+φ(L)Entryit+εit with εit = wi+uit (3.5.1)

where Incumbentsit controls for the existing number of established stores within the

trade area and Entryit captures the number of entrants in the respective periods. In

order to allow for delayed price adaptations, I will also include the lagged values of

entry, but for the moment let us focus on this speci�cation.

Given our reasoning about the process behind the observed market entry, note that if

Cov(pit ,Zall
it \ {Zi}) 6= 0 and Cov(Entryit ,Zall

it \ {Zi}) 6= 0, then our parameter of interest φ

will su�er omitted variable bias. Hence, for the estimation I propose the use of �rst-

di�erencing, which results in the following �rst-di�erence distributed-lag (FDDL)

model:

∆pit = β∆Xit + π0Entryit + π1Entryi,t–1 + ∆uit (3.5.2)

38
Similar speci�cations have been used by Singh and Zhu (2008), Basker (2009) and Asensio (2013).

An alternative approach to model price variations, is to base the estimation on the price reaction

function of the �rm using a spatial autoregressive model. For applications of the latter see for example

Pennerstorfer et al. (2012) and Gullstrand and Jörgensen (2012). It depends on the purpose of the

analysis which model-type is preferred.
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Controlling for the number of incumbent stores and entry, note that the number of

incumbent stores of the next period is the number of the current stores plus entry

(Nit = Ni,t–1 + Entryi,t–1). This implies that, when taking the �rst-di�erence of equa-

tion (1), the number of incumbent �rms vanishes from the regression speci�cation.

The competition e�ects that we estimate under this speci�cation are π1 = (γ – φ0)

and (π0 = φ0), such that we estimate the competition e�ect of a new entrant (φ0)

directly and recover the e�ect of incumbent stores (γ). Note that both the number

of incumbent stores and any observed and unobserved time-invariant determinants

(e.g., product quality, services, location inside a shopping mall, etc.) may also be de-

terminants of the entry approval by the ministry and they vanish, which prevents

potential omitted variable bias from time-constant variables.
39

In this speci�cation, we expect to �nd a temporary entry e�ect on the price reaction

of the stores, such that the coe�cients of the entry variables are expected to decline

over time. If this is the case, then we can interpret the coe�cients of the FDDL model

as π̂0, being the "short run e�ect" of market entry, while the sum over all the lagged

coe�cients of entry

∑q
s=0

π̂s is the "long-run e�ect", which corresponds to the e�ect

of incumbent stores. Table 3.5.5, panel A, columns (1) and (2), present the estimated

coe�cients of interest of the FDDL model without and with covariates for the full

sample, and Table 3.5.6 provides the corresponding competition e�ects of interest.

The estimates of the entry e�ect in columns (1) and (2) suggest an instantaneous, sig-

ni�cant price decrease in the entry period, which is robust controlling for population

and cost e�ects. In order to verify whether the entry e�ect is di�erent from the com-

petitive pressure that is exercised by an incumbent store, note that this is equivalent

to test the hypothesis H0 : π1 = 0. Panel A suggests that the coe�cient of the lagged

entry variable in the FDDL model is signi�cantly di�erent from zero, which implies

that the competition e�ect of a new entrant is di�erent to the e�ect of an incumbent

store. To be precise, the result suggest that entry leads to an instantaneous price de-

crease of 1.2%, but implies a total price decrease of 2.2%. This can be either interpreted

as constrained price �exibility in the short run, or we can argue that supermarkets

entering an urban market need one period to position their store as a fully-�edged ri-

39
Recall that we analyze the e�ect of accomodated, approved market entry. Note that we do not

observe when entry is blocked, deterred or denied by the regulation authority. In this paper I discuss

potential endogeneity of entry but do not explain entry behavior but the reaction of incumbent stores

to a new store opening.
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Table 3.5.5

FDDL regression on the price of a standard food basket.

Panel A Full sample

(1), None (2), ∆X (3), None (4), ∆X
π0 entryt -.011942*** -.0121336*** -.0073437*** -.0088779***

(.0023682) (.0024289) (.0022614) (.0022774)

π1 entryt–1 -.0084087*** -.0093975***

(.0020829) (.0020653)

π̃1 -.0066492*** -.0067946***

(.0022304) (.0022176)

π2 entryt–2 -.0009511 -.0025532

(.0022762) (.0022661)

Panel B Di�erentiation by price segment.

low price segment middle price segment high price segment

(5),∆X (6),∆X (7),∆X
π0 entryt -.0162649* -.0091188*** -.0311733**

(.0085604) (.0020936) (.0129666)

π1 entryt–1 -.0051867 -.0100581*** -.0108938

(.0070136) (.0020736) (.0089116)

The price index for a standard shopping basket has been normalized with respect to a refer-

ence store r . Hence, for ease of interpretation we de�ne all the covariates as the di�erence

with respect to the reference store. That is, we use ∆X̃it = ∆(Xit – Xrt ), and the competition

e�ect of incumbent �rms refers to a change in
˜Incumbentsit = (Incumbentsit – Incumbentsr ),

which corresponds to a change in Incumbentsit since the reference store does not experience

any change in the number of stores during the period of analysis.

Signi�cance level: * 0.1, ** 0.05, *** 0.01. Robust standard errors in brackets.

Table 3.5.6

Summary of estimated competition effects.

Full sample low price segment middle price segment high price segment

(a) (b) (c) (d)

incumbent stores (γ̂) -.02153112*** -.02145158** -.01917686*** -.04206712***

(.00289845) (.00982516) (.00273631) (.01381646)

new entrants (φ̂0) -.0121336*** -.0162649* -.0091188*** -.0311733**

(.0024289 ) (.0085604) (.0020936) (.0129666)

val in the market, which may be an alternative explanation for the partial competition

e�ect in the entry period. Considering the price indexes of a standard food basket, it

may be the case that �rms adjust prices instantaneously for some products but, de-

pending upon the contract with the providers, it may take time to adjust the prices of

other goods. In order to get an idea about the magnitude of the competition e�ects,

we �nd that an increase of one standard deviation in the probability of entry implies

a decrease of 4.7% of the standard deviation of the normalized price index. This is a

moderate e�ect, and we interpret this as the supermarket industry in Madrid being

quite competitive.

Given the di�erence in the competition e�ect of new and incumbent �rms, we con-

sider potential delayed-entry e�ects accounting for lagged entry in the price equation.
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This introduces a sequence of potentially relevant lags in the FDDL model. Table 3.5.5,

columns (3) and (4) present the results for two lags. Estimating the e�ect of lagged en-

try in the di�erentiated equation, we estimate π1 = φ0, π̃1 = (γ+φ1–φ0) and π2 = –φ1.

Considering the entry coe�cients, this con�rms my expectations of a declining lag

e�ect on the price change. However, testing the hypothesis of delayed-entry reac-

tion implies testing the null hypothesis H0 : π2 = 0, which we cannot reject. Hence,

the data suggest that there is an instantaneous price reaction to entry which is not as

strong as the full competition e�ect by the incumbent store. Nonetheless, and already

in the next period (three months later), the competition e�ect of the new entrant has

been fully realized and there is no persistent e�ect on the price adaptation.

Panel B di�erentiates the analysis by price segments and Table 3.5.6, columns (b)-(d)

provide the associated competition e�ects.

Considering the low price-segment, the competition e�ects are similar to those esti-

mated for the full sample. The entry e�ect increases slightly so that short-term and

long-term competition e�ects are no longer statistically signi�cantly di�erent. A pos-

sible explanation is that low-cost retailers may be more e�cient in the sense of being

�exible and fast in reacting to changes in the market structure, thereby minimizing

the time gaps of price adaptations.

For the middle price segment, the competition e�ect of an incumbent store is only a

little smaller than for the low-price segment. However, it is interesting that the com-

petition e�ect of a new entrant is only half as large. This implies that these stores

are either less �exible in their pricing policy or else new retailers have some work to

do in order to settle down in the market on a par with long-established grocery busi-

nesses. It has to be mentioned that the standard food price index for each store has

been constructed with comparable products such that we do not measure di�erences

in the composition of private labels and branded products, which may explain these

time lags in the price adaptation. Hence, this delayed price adaptation may reveal dif-

ference in the �exibility of these �rms in some senses, starting from the management

to binding contracts with upstream �rms. In this paper, I will not be able to explore

the reason for this pattern further.

Last, but not least, considering supermarket stores that belong to chains in the high

price segment, we �nd a signi�cant negative competition e�ect for entrants as well
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as for incumbent stores that is much stronger than that identi�ed for the full sam-

ple. The entry of a new supermarket (of the low or high price segment) leads to a

price decrease of 3.1%, and the full e�ect is even 4.2%. In other words, we �nd that

stores in the high price segment react with a relatively strong price decrease to any

rival in their trade area, no matter if they have just entered the market. This stronger

price reaction is surprising, since I expected them to be su�ciently di�erentiated

from the rest of the stores, and hence to be less sensitive to market entry by other

stores. However, the results may be interpreted as evidence of the high price-cost

margin of these �rms (opposed to low-price stores which don’t have much room to

adjust prices downwards) and the competitive threat of other supermarkets. Since

almost all the entrant events in the analyzed time period are from the low and middle

price segments, it remains open as to whether this holds for entrants of the high price

segment.

3.6 Limitations, robustness and further research

So far, we have assumed that the approval for entry by the Ministry is based on time-

invariant market characteristics. If we relax this assumption, allowing approval for

entry to depend upon observed time-variant variables or any type of observed and

unobserved variables, our estimates will still be biased. We are currently working on

this issue to verify the consistency of the results.

Second, we are implicitly assuming that all the entry observations have been subject

to the same approval process. However, for small grocery retailers in terms of the

sales area of the store, entry barriers are relaxed. We will investigate how to account

for this di�erentiation in our model.

In this version of the paper, we restrict the robustness analysis of the results to the

analysis with respect to the de�nition of the variables, that is the chosen reference

store. Table 3.6.7 reports the competition estimates for the full sample for di�erent

reference stores.
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Table 3.6.7

Competition estimates for different reference stores.

φ0 γ Reference store

-.0121336*** -.02153112*** Ahorramas,

(.0024289 ) (.00289845) Avda. Daroca 300 (Vicalvaro), 28032 Madrid

-.0135573*** -.02230238*** Ahorramas

(.002395) (.00286516) C/So�a 117, C/V PÂž de Ginebra, 28022 Madrid

-.0125363*** -.018398*** Ahorramas

(.0023915) (.00295826) C/Maqueda 117 (Galeria Copasa), 28040 Madrid

-.0123088*** -.02175579*** Ahorramas

(.0024199) (.00284723) C/Villajoyosa 96, 28041 Madrid

Note that the competition estimates are very stable with respect to the reference store

r that we have chosen in order to make the data comparable over time. On average,

the entry of a new supermarket in the neighborhood leads to an instantaneous price

decrease by established stores of 1.26%, and the full competition e�ect implies an av-

erage total price decrease of 2.11%. In other words, approximately 60% of the total

impact on prices takes place instantaneously in the entry period.

Once I have addressed the concerns above, I plan to consider several extensions of

this analysis.

First, we may ask whether the entry of a small store is negligible. Hence, it would be

interesting to di�erentiate the competition e�ects by the size of the entrant in terms

of the sales area, which allows to draw comparisons with the literature on Wal-Mart

entry.

Second, since the time horizon of our analysis is from 2009-2011, just after the �nan-

cial crisis, the �nancial structure of a �rm may e�ect its entry behavior. Firms that

have a good access to credits, may enter the market with a low price and recover pos-

sible losses later. However, �nancially distressed �rms don’t have this option. Since

in the considered time period, stores of Spanish chains as well as stores of Interna-

tional chains enter the market, where the latter are expected to have easier access to

credit, it may be interesting to di�erentiate the entry e�ect by the �nancial distress

of the �rm which is comparable to Chevalier (1995), who provides evidence of price

changes due to changes in the �nancial structure of a �rm in terms of leveraged buy-

outs.
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Last, but not least, I plan to analyze whether we can identify additionally the pricing

pattern at the chain level. Descriptive statistics cause us to suspect that some retail

chains of the same price segment monitor their own position and the positions of

their rivals. Since �rms have access to the published price indexes in the same way as

consumers do, keeping track of their own market position may lead to tacit collusion,

and it would be interesting to analyze this hypothesis.

Moreover, we may ask whether the entry of a small store is negligible. Hence, it

would be interesting to di�erentiate the competition e�ects by the size of the entrant

in terms of the sales area.

3.7 Conclusion

The motivation of this paper has been to analyze whether we can explain part of

the observed volatility of supermarket price indexes as a result of changes in the

market structure. The key idea for the econometric analysis has been to decompose

the e�ect of rival stores into the number of incumbent �rms and entrants and to

use the panel data to estimate a �rst di�erence model with distributed lags. The

results suggest that grocery retailers in the City of Madrid react to market entry with

a gradual price decrease, which begins with an instantaneous reaction in the period

of entry and reaches the long-term competition e�ect in the next quarter. For retailers

of the middle price segment, the results suggest that they delay more than half of the

price adaptation to the next quarter.

As noted in the last section, when considering the price volatility at the store level for

grocery establishments with an a�liation with a retail chain, we have focused on the

neighborhood of a store, although the whole store network within and across markets

may explain part of the price variations, which would be interesting to analyze with

the data used in this paper.
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