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Abstract

We derive alternative sufficient conditions for the value of public information to be either positive
or negative in a Cournot duopoly where firms technology exhibits constant returns to scale.
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1. Introduction

The purpose of this paper is to study the value of public information in a Cournot
duopoly where there is uncertainty about the market demand and/or the cost function. We
provide conditions that allow one to determine whether the value of public information
is positive or negative. With every Cournot duopoly in a certain class, we associate a
real-valued function (defined on a convex subset of the positive orthant of the real plane)
whose curvature determines whether the value of public information is either positive or
negative: if this function is convex (concave) then the value of public information is positive
(negative). Using this fact we identified interesting subclasses of industries where the value
of public information is positive (negative). We also show the usefulness of our results to
determine the value of public information in specific applications.

There is a considerable literature studying the value of public information in general
equilibrium. Hirshleifer (1971) shows that improving public information may make agents
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worse off ex-ante in an exchange economy where agents share risks. Several paper
generalize aspects of Hirshleifer examples—see, e.g., Marshall (1979), Wilson (1975),
Green (1981), Sulganik and Zilcha (1996). In a recent paper, Schlee (2001) shows that
in this context the value of public information is negative in any economy where there is
a representative agent. Contrary to Schlee’s result, in our context we can easily generatt
examples of classes of industries for which the value of public information is positive.

There are also a number of papers that study the value of information in a linear
oligopoly! Ponssard (1979) investigates this issue in an industry where there is uncertainty
about the market demand, and where some firms are informed about the state of nature an
other are uninformed. Vives (1984) studies the value of information under both Cournot
and Bertrand competition in a duopoly where demand is uncertain. Also in a linear
duopoly where firms are uncertain about their costs, Sakai (1985) investigates the value
of information under a variety of information structures.

In studying the value of information in a Cournot oligopoly some difficulties emerge.
Specifically, the associated non-cooperative game with incomplete information may not
have a unique and/or interior equilibrium. When the game has several equilibrium points, it
is not clear which equilibria to compare. And when equilibrium is not interior, comparative
static exercises are difficult as corner equilibria are characterized by a set of inequalities
rather than a system of equations. Moreover, it is easy to produce examples of industries
whose associated game has a unique and interior equilibrium, for which altering the firms’
information structure by adding public information leads to a new game whose unique
equilibrium is a corner equilibrium (see Example 4.1 below).

All the papers mentioned above circumvent this problem by directly assuming that the
games associated with the industries under study have a unique and interior equilibrium,
even though it is not difficult to find examples where this assumption is violated.
Instead, we identify a class of Cournot duopolies (not necessarily linear) with symmetric
information for which the game associated to each industry has a unique interior
equilibrium. This allows us to define the value of public information for any industry in
this class, and study conditions under which it is either positive or negative. In addition,
our model of incomplete information does not impose any restriction of the space of states
of nature or on the character of firms’ information. In particular, our framework allows for
continuous as well as discrete information structures.

There are other topics on information in oligopolistic environments that have received
attention in the literature. Gal-Or (1985, 1986), for example, studies the incentives for
information sharing, and Einy et al. (2002) examine whether information advantages are
rewarded in equilibrium. Studying these issues involves exercises different from those
performed in the present paper. Determining whether a firm may have an incentive to reveal
(part or all of) its information to a rival, for example, requires to compare the payoffs of
the firm in two games that differ in the information of the rival. Or determining whether a
firm with superior information enjoys greater profits requires to compare the profits of the
firms in a (given) game. Our results offer no conclusion regarding these issues.

1 In arecent paper, Ottaviani and Pratt (2001) study the value of public information in a monopoly
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2. Themodel

Consider a duopolistic industry where two firms compete in the production of a
homogeneous good. There is uncertainty about the industry’s demand and the firms’
costs. This uncertainty is described by a probability spa@eer, u), where 2 is the
set of states of natures is ao-field of subsets of2, and u is ao-additive probability
measure on($2, F). (We interpretu as the common prior of the firms.) Once the state
of naturew € £2 is realized, the market demand, and the firms’ costs are determined.
Write p: 2 x Ry — R, for the inverse market demand function, andfar {1, 2} write
¢i i 2 x Ry — R for Firm i’s cost function. The information of Firme {1, 2} about the
state of nature is described byasubfieldF; of F; that is, given an evemt € F;, Firmi
knows whether the realized state of nature is a membdr. &fe refer toF; as Firmi’s
information field. Aduopolistic industry with incomplete informati@thus described by
a collectionl = ((£2, F, u), p, c1, ¢2, F1, F2).

Throughout the paper we assume that the inverse demand funpti@md the cost
functions,c1 andcz, of any duopolistic industry with incomplete information are such that
for every integrable functiog, the functionsgp(-, ¢(-)), c1(-, ¢ (), andca(-,¢q(-)) are
also integrable.

Let I be a duopolistic industry with differential information. TBayesian gamasso-
ciated with/ is the collectionG (1) = ((£2, F, u), RZ, (F1, F2), (1, 72)), where for each
firmi € {1, 2} the set of possible actionss;, and its profit functionr; : 2 x Ri —Ris
given for allw € 2 andr = (r1,,r2) € R2 by

wi(w,r) =rip(w,r1+r2) —ci(w,r;).

We refer toG (1) as theCournot game with incomplete informati@ssociated with the
industry!. In this game, a (pure) strategy for a fiinz {1, 2} is anF;-measurable function
qi : 2 — R4 whose first and second moments exist. We denot$ bye set of all strategies
for Firm i, and byS = S1 x S» the set of profiles of strategies.

Let X be an integrable random variable 2, F, 1), and letG be ao-subfield of F.
We write E(X | G) for the conditional expectation aX with respect toG. Let G(I)
be a Cournot game with incomplete information Bayesian equilibriums a profile of
strategies* = (¢7, g5) € S such that for every € {1, 2} and every; € S;,

E(mi(-.q*0) | Fi)(@) = E(mi(-. (i (). ¢%,())) | Fi) (@), (2.1)
for almost everyw € 2. (Our assumptions op, c1, c2 and on the set of strategies of

every firm guarantee that for alle {1,2} andq € S, and for everyo-subfieldg of F,
E(mi(-,q()) | G) exists.)

Remark 2.1. Equilibrium condition (2.1) requires that at a Bayesian equilibrium every
firm maximizes its (interim) conditional expected profits at every state of nature. This
condition is equivalent to requiring that each firm maximizes its ex-ante expected profits;
i.e., condition (2.1) is equivalent to

E(mi(-.q*")) 2 E(mi(-, (2:(). 4%:()))). (2.2)
for everyi € {1, 2} and every; € S;.



Proof. Clearly (2.1) implies (2.2). To prove the converse, assume that (2.1) does not hold;
then there is € {1, 2} andg; € S; such that

E(mi(-,qi(),q*;)) | Fi) > E(mi(-, 4% () | F)
on some evend € F; with (A) > 0. Defineg; : 2 — R4 by

o _[gi(w) fweA,
G@ =) @) fweR\A

Theng; € S; and
E(mi(-.4i(). 4% ()
=/m@@oﬁ:mmu
2
[mtaoato)dus [t ao.ao)de
A

2\A

A 2\A
> E(7i(-, 4" ().
Thus, (2.2) does not hold.O

3. Thevalueof public information

In this section we study the value of public information in a symmetric duopoly; i.e., in
an industryl where both firms have identical information (i.&3 = 7> = G) and cost (i.e.,
¢1 = c2 =c). Thus, a symmetric duopolistic industfycan be described by a collection
(82, F, ), p,c,G). (For economy of notation we do not repeaand G.) We refer to
the gameG (1) associated to a symmetric duopolistic industry a@Saarnot game with
symmetric information.

Theorem 3.1 provides conditions on the demand and cost functions that guarantee
existence, uniqueness, symmetry and interiority of Bayesian equilibria in a Cournot game
with symmetric information. Note the “multiplicative” nature of the uncertainty in demand
and cost assumed in Theorem 3.1. The proof of Theorem 3.1 relies on Amir (1996)
for existence and uniqueness, although in order to guarantee the measurability of the
equilibrium strategies we have to appeal to Aumann’s Measurable Selection Theorem—set
Aumann (1969). For interiority and symmetry we provide an argument based on first-order
conditions for profit maximization.

Theorem 3.1. Let I = ((£2, F, u), p, ¢, G) be a symmetric duopolistic industry. Assume
that for all (w,x) € 2 x Ry, p(w,x) = a(w)f(x) and c(w,x) = B(w)x, where
a, B2 — Ry, are integrable functions and : R — R satisfies



(3.1.1) there isx € R such thatf (x) > 0 for x € [0, X), and f (x) =0 for x > x;
(3.1.2) 1 is differentiable and strictly decreasing ¢, x);

(3.1.3) f is log concave offi0, x); and

(3.1.4) a(w) f(0) > B(w) > Oforall w € £2.

Then G(I) has a unique Bayesian equilibriutg}, g5). Moreover, ¢ (w) = g5(w) €
(0,x/2) forall w € £2.

Proof. For everyw € §2 define the two-player game of complete informatiGiiw, I)
where each playeri € {1,2} set of pure strategies i®,, and its payoff function
oi(», ) :R2 — R is given by

oi(w, (x.y) =E(mi(-. (x, ) | §) (@),
where

71, () =xp(. (x +y)) —c-.x)
and

(-, . ) =yp(-, x4+ y)) —cCLy).

It is easy to check that under assumptions (3.1.1)—(3.1.4) the gamel) satisfies the
assumptions of Theorem 2.3 of Amir (1996) and therefore has a unique Nash equilibrium,
(g5 (@), g5 (w)). We show tha;*(-) = (¢5 (), ¢5(-)) is a Bayesian equilibrium af (7). We
first show thay*(-) is aG-measurable function. Define the correspondec® — 28+
by

E(w) = {(x,y) € RZ | (x, y) is a Nash equilibrium o0& (w, 1)}.

We show that the graph of the correspondefide measurable with respect to the product
o-field G ® B(R?), whereB(R?2) is theo -field of Borel subsets dk? . For all (a, b) € R
let D(a, b) be the set

{(a), (x, y)) €2 x ]Ri | ol(a), (x, y)) > ol(a), (a, y)) and
o2(w, (x,y)) = 02(w, (x, b)) }.

Since for all(x, y) € Ri the functionso1(-, (x, y)) ando2(-, (x, y)) areG-measurable,
and for allow € £2 the functionso1(w, -) andoz(w, -) are continuous iﬂRi, then for all

(a,b) € R? the setD(a, b) is G ® B(R2)-measurable. Now, the graph Bfis given by
graphE)= (] DG,b)= () Dla,b),

(a,b)eR% (a,b)eQ?

whereQ? denotes the set of duples of non-negative rational numbers. Since t& set

is countable, graplE) is Q®B(R§_)-measurable. Thus, by the Measurable Selection
Theorem (see Aumann (1969) and Hildenbrand (1974, Theorem 1 on p. 54)), there exists
a G-measurable functiop : 2 — R? such thaip (w) € E(w) for almost allw € 2. Since

for all w € 2 the setE(w) is a singleton (becaus€é(w, I) has a unique equilibrium),
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¢(w) = q*(w) for almost allw € £2, and therefore;* is a G-measurable function. Now,
for eachi € {1, 2} andg; € S; we have

E(7i(-,q" (@) | G)(@) = E(mi (-, (9 (@), ¢*;(@))) | G) (@),
for everyw € 2, and therefore
E(ni(-,4*0)) 2 E(mi (-, (¢:(), ¢%,0)))),
which by Remark 2.1 establishes tlgdtis an Bayesian equilibrium af (7).

Uniqueness of * follows from the fact that for alb € £2 the gameS (w, 1) has a unique
equilibrium.

It remains to show that for ally € 2, ¢f(w) = g5(w) € (0,x/2). Let w € 2.
We first show thatgj(w), g5 (w) € (0,%). If ¢f(w) > x for somei € {1,2}, then
(-, g5 (@) + g3 (w)) =0, and thereforey; (v, (g1(w), g2(w)) < 0, which contradicts that
(g7 (@), g5 (w)) is an equilibrium ofG (w, I') (because a Firmi can guarantee itself zero
profits by producing; (w) = 0). Thusg; (w) < x foralli € {1, 2}. We show that;*(w) > 0
for all i € {1,2}. Assume by way of contradiction tha}*(w) = 0 for somei < {1, 2}.
Without loss of generality sét= 1. The Kuhn—Tucker condition for profit maximization
implies

E((p(- g3@) = BO)) | G) (@) <O. (3.1)
If g5(w) =0, then by (3.1) we have
E(p(-,0)|G)(@) < E(B() | G) (@),

which contradicts condition (3.1.4). if > ¢5(w) > O, then Firm 2’s first-order condition
for profit maximization implies

E(g3@)p (. a5@) + p(-.45(@)) | ) (@) = E(B() | G) ().
And sincep’(-, g5 (w)) < 0 andg; (w) > 0, we have
E(p(-.45(@) | G) (@) > E(B() | G)(w),

which contradicts (3.1).
Finally we show thay (w) = g5 (w) < X/2. Since O< ¢/ (w) < x forall i € {1, 2}, the
first-order conditions for profits maximization imply

E(g] @)p' (-, q1(@) + g3 (@) + p(-, 41 (@) + g3()) | §) (@) = E(B() | G) (@)
foralli € {1, 2}. Therefore

E(gi(@)p'(-, 41 (@) + ¢3(@) | G) (@) = E(g3(@)p' (-, 41 (@) + g5 (@)) | G) (@),
and since(g; (w), g5 (w)) is a Nash equilibrium ofi (w, I), we haveg] (w) + ¢5(w) < X.
Hencep'(-, ¢ (») + ¢;5(w)) < 0, and thereforg} (v) = g5(w) <x/2. O

Throughout the rest of the section let us be given a probability sp&cer, u).
A symmetric duopolistic industry is thus described by a demand and a cost function,
and ao -subfieldG of F. Given a market demangand a cost function, define the binary
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relation> on the family of allo-subfields ofF as follows: IfG andH are twoo -subfields
of F, then

(3.2)

HrG o {E(p(~,x)IH)=E(p(-,x)\gvH) and }

E(c(-.x)|H)=E(c(-.x)|GVH) VxeR

(Hereg v H is the smallest -subfield of F that contains boty and?.)

The interpretation of the binary relation is simple: H = G if (and only if) the
predictions of demand and cost functions (the uncertain parameters of the industry) are
the same whether the firms information is givenMy or by the aggregate information
in G andH (i.e., byG v H). The binary relation- contains that introduced in Blackwell
(1951); i.e., ifH is more valuable tha in the sense of Blackwell (1951), théh > G, but
the converse may not hold:’H andgG are generated by finite partitions &f, for example,
then™ is more valuable in the sense of Blackwell tiaii and only if H © G—see Laffont
(1989, Theorem 1 in Chapter 4). Itis clear thaD G impliesH > G, and therefore that
contains Blackwell’s relation. However, it is easy to construct an example for vithielg
even thougt{ 2 G—for an example of this kind, see Example 1 in Einy et al. (2002).

Now, consider an industry where the market demand is giveufor) € 2 x R by
p(w, x) = a(w) f (x), and where firms’ cost i8(w, x) = B(w)x, wherea, 8: 2 — R are
F-measurable integrable functions. Then

H>=G & (E@|H)=E@|GvH)andEB|H)=EB|IGVH)]. (3.3)

Let p:2 xRy - R andc:2 x Ry — R be given for (w,x) € 2 x Ry by
p(w,x) = a(w) f(x), andc(w, x) = B(w)x, Wherea, 8 and f satisfy the assumptions
of Theorem 3.1. For every-subfieldG of F consider the symmetric duopolistic industry
I =((£,F,n),p,c,G).By Theorem 3.1, the Cournot gand&/) has a unigue Bayesian
equilibrium, which is symmetric. Denote this equilibrium OAE qé), and the equilibrium
profit by ;. We say thathe value of public information in the industdyis positive
(negativé if for every o -subfieldH of F

HeG = E(t7) > E(wg) (E(rh) < E(x)). (3.4)
That is, the value of public information is positive (negative) if having better information
does not decrease (increase) firms’ expected profits.

Let f:R; — Ry be a function satisfying the assumptions (3.1.1)—(3.1.3) of Theo-
rem 3.1. Define

K(f)={(.p)|a B:2 — R, areintegrable and (0)a(w) > f(w) Yo € 2}.

Note thatK (f) is a convex subset at1(£2, F, u) x L1(82, F, u). We denote byZ(f)

the class of duopolistic industries of the folre= ((2, F, u), p, ¢, G) whereg is ac-sub-

field of 7 and p and ¢ are such that there existe, 8) € K(f) for which p(w, x) =

a(w) f(x) and ¢(w, x) = B(w)x for all (w,x) € 2 x R4. Each industryl € Z(f) is
determined by a paiw, 8) € K (f) and ao-subfieldG of F, and can be described as=
(22, F, ), af, B,G). For every(a, B) € K(f) we denote b¥ g, g). 9(«,p)) the unique
equilibrium of the Cournot game with symmetric information associated with the industry
1=((8,F, ;L),Olf, B,F), and byn(a,ﬂ) = Olq(a”g)f(Zq(mﬂ)) — ,Bq(a,ﬂ) the equilibrium
profit. Also we define the functiod/: K (f) — R by U(a, B) = E(7(,p)). Clearly
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U(a, B) is well defined onK (f). Define the setM (f) = {(x, y) eRiJr | f(O)x >y},
a convex subset (Ri, and let the functiorV : M (f) — R be given by

V(x,y)=Ule, yla). (3.5)
Note thatV is convex onM (1) if and only if U is convex onkK ( f).

Remark 3.2. Let («, 8) € K(f). For everyo-subfield G of 7 we have(E(x | G),
E(B19)) € K(f)and

U(E@19),E(B19) = E(ng),

whererg is the firms’ profit at the unique Bayesian equilibrium of the Cournot game with
symmetric information associated with the indusi2, 7, 1), E(w | G) f, E(B | G), F).

Proof. Simply note that(w, 8) € K(f) implies f(O)E(x | G)(w) > E(B | G)(w) for all
we 2. Therefora E(a | G), E(B1G)) € K(f), andU(E(x | G), E(B|G)) = E(ng). O

Proposition 3.3 below is an analog of a well-known result in Blackwell's model.
However, since the binary relation defined in (3.2) contains Blackwell’s ordering, the
conclusion of Proposition 3.3 is stronger than that obtained in Blackwell's framework.

Proposition 3.3. Let f: R, — R4 be a function satisfying conditior{8.1.1)—(3.1.3pf
Theorem3.1. If the functionV defined in(3.5) is convex(concave on M(f), then the
value of public information is positivgnegative in every symmetric duopolistic industry
Iel(f).

Proof. Let f:R, — R4+ be a function satisfying conditions (3.1.1)—(3.1.3) of Theo-
rem 3.1, and assume th&t is convex onM (f). (If V is concave the proof is analo-
gous.) Letl € Z(f). ThusI = ((£2, F, n), af, B, G) for some(x, B) € K(f) and some
o-subfieldG of F. Let’H be ac-subfield of 7 such thatH > G. By Remark 3.2, in order
to prove that

E(my) 2 E(ng),
we must show that
U(E(a|H), E(BIH)) > U(E(«|9), E(B|9)).
By Theorem 34.4 in Billingsley (1995) we have

E@|G) =E(E@|GVH)|G) (3.6)
and

EBIGH=E(EBIGVH)|G). (3.7
Itis also easy to see that

U(E@|F),E(B|F))=EV(E@|F),EBI|F)), (3.8)

for everyo -subfield 7’ of F. Hence (3.6)—(3.8) imply



U(E(|G),EB|G) = EV(E@|G),EB|9))

EV(E(E(|GVH) |G),E(EBIGVH)|G)). (3.9)

And sinceV is convex onM (f), Jensen’s Inequality implies

EV(E(E(@|GVH)|G).E(EBIGVH)|G))
<EV(E@|GVH),EBIGVH)). (3.10)

SinceH > G, thenE(w |GV H)=E(a | H) andE(B |GV H) = E(8 | H). Therefore
(3.9) and(3.10) imply

U(E@|9),E(B19)<EV(E@|H),EBIH)=U(E@|H),EBIH). O

In order to show the usefulness of Proposition 3.3 to determine the value of information
in a symmetric duopolistic industry we present several applications.

Let f:R;+ — R4 be a function satisfying conditions (3.1.1)—(3.1.3) of Theorem 3.1.
Denote byZo(f) the class of industries of the forih= ((£2, F, w), a0 f, B,.G) € Z(f),
whereag is a positive constant number. Thus, in every industry in the dgég) the
demand is known with certainty and only the cost is uncertain. Also denof& @f)
the class of industries of the forth= ((£2, F, w), af, 1,G) € Z(f), whereps is a
positive constant number. In every industry in the cl@sef) the cost is known with
certainty and only the demand is uncertain. Let the funclipn(0, f(0)) — R be given
fory € (0, £(0)) by Vo(y) = V (1, y). Also let the functionVy : (1/f(0), oo) — R be given
for x € (1/£(0), 00) by Vi(x) = V(x, 1).

Proposition 3.4 provides a criterion for determining whether the value of public
information is positive or negative for industries in the clasgesf) and Zi(f),
respectively. The proof of Proposition 3.4 is analogous to that of Proposition 3.3 and is
omitted.

Proposition 3.4. Let f:Ry — Ry be a function satisfying conditior{8.1.1)—(3.1.3)pf
TheorenB.1, and letG be ao-subfield ofF.

(3.4.1) If Vp is convex(concavé on (0, £(0)), then the value of public information is
positive(negativeg in every symmetric duopolistic industfye Zo(f).

(3.4.2) If V1 is convexconcavgon (1/f(0), co), then the value of public information is
positive(negative in every symmetric duopolistic industiye Z1(f).

Our next proposition establishes that we can determine whether the fulicisaonvex
(concave), by checking whether eithiéy or V1 is convex (concave).

Proposition 3.5. Let f:R; — Ry be a function satisfying condition8.1.1)—(3.1.3)
of Theorem3.1, and assume thaf is twice continuously differentiable di®, x). The
following conditions are equivalent
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(3.5.1) V is convexconcavéon M (f);
(3.5.2) Vpis convexconcavgon (0, f(0));
(3.5.3) V1 is conveXconcavgon (1/f(0), 00).

Proof. Proposition 3.5 follows from Lemma 3.6 below and the fact thad homogeneous
of degree one. O

Lemma 3.6. Let f:R. — Ry be a function satisfying condition@.1.1)—(3.1.3)of
Theorem3.1, and assume thay is twice continuously differentiable of®, x). Then
sign(Vyx) = sign(Vy,). Moreover, if Vi, (x, y) 2> 0 (Vi (x, y) <0) for all (x, y) € M(f),
thenV is convexconcavgon M (f).

Proof. We show that for all(x,y) € M(f) the functionV:M(f) — R defined by
(3.5) satisfiesVy,(x,y) > 0 if and only if V,,(x,y) > 0. Let (x,y) € M(f) and let
(9(x,y)» 4(x,y)) be the unique equilibrium of the industiy= ((£2, 7, u), xf, yle, F), and
write Q(x, y) = 2q(x,). Then, for alli € {1, 2} andg; € S; we have

qeeon (X Q. 1) = ¥) = i (xf (i + qix.y) — ).
Therefore, uniqueness of equilibrium implies

Q(x,y>=Q<1, X>.
X

Also the first-order conditions for profits maximization imply

1
S¥0(, (0, y) +xf (0@, ) =y.

Hence
(e ) r(ee ) ZX(‘%(Q(L f))2f/<Q<1’ §>)>

= xV(l, X).
X

Thus, ford > 0 we have

Vix,y)

A
V(ix, Ay) = ka(l, —y> — AV (x, ):
Ax
i.e.,V is homogeneous of degree one. By Euler's Theorem
V(X, y)zxvx(xv)’)‘i‘yvy(xy)’),
and therefore
xVix(x, ) +yVyx(x, ) =0 and yVy,(x,y) +xVy(x,y)=0.

Thus x2Vy, (x, y) = y2Vyy(x, y), and therefore sigive(x, ¥)) = sign(Vy,(x, y)), and
Vi (x, ) Vyy(x, y) = Viy (x, y) Vyx (x, y) = 0. Since the eigenvalues of the Hessian matrix
of V at(x,y) are 0 andV,, (x, y) + Vyy(x, ), thenVic (x, y) = 0 (Vix(x, y) < 0) for all
(x,y) € M(f) implies thatV is convex (concave) oM (f). O
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The following remark is a direct implication of Proposition 3.5.

Remark 3.7. If the value of public information in every industéye Zo(f) (or I € Z1(f))
is positive (negative), then the value of public information of every indubteyZ (f) is
positive (negative).

Theorem 3.8 establishes useful conditions under which the value of information is
positive in an industry. These conditions are essentially the same that Novshek (1985)
imposes to guarantee existence of a Cournot equilibrium. (Condition (3.8.1) is the main
condition of Novshek’s Theorem 3.)

Theorem 3.8. Let f:Ry — Ry be a function satisfying condition8.1.1)—(3.1.3)of
TheorenB.1. If f is thrice differentiable ori0, x) and for all x € [0, x) satisfies

(3.8.1) xf"(x) + f'(x) <Oand
(3.8.2) f"(x) <0,

then the value of public information in any industing Z( f) is positive.

Proof. Let f be a function satisfying the assumptions of Theorem 3.8 antldeT ( f).
By Proposition 3.5 we may assume, without loss of generality, tk@afo( f). Thus the
industry! is described by a collectioh= ((£2, F, n), f, yle,G), forsome O< y < f(0).
We show that/j'(y) = V,, (1, y) > 0 for 0< y < f(0), and therefore thalty is convex on
(0. £(0)).

Let0< y < f(0), and let(qy, g,) be the unique Bayesian equilibrium of the Cournot
game associated with Write Q(y) = 2g,. We have

V(L y) = @(f(Q(y)) - ).

First-order conditions for profit maximization imply
o)

Tf/(Q(y))+f(Q(y))=y. (3.11)
Therefore
_ N2
v, y) = 4(y)f’(Q(y))-

By (3.8.1) Q(y) is the unique solution to the equation

z
Ef/(z) + @)=y
By the Implicit Function Theoremy is differentiable on(0, f(0)). Thus, differentiating
(3.11) we get
2

cw= 0 QN +3f (2
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Direct calculation yields

—f/(QUNQ%() f(Q() +6Q() f/(Q(y) + 6 (Q(»)))
200N f"(Q() +3f(Q()3 '
Sincef’ <0on [0, %), (3.8.1) and(3.8.2) imply Vg (y) > 0. ThereforeVy is convex on

(0, £(0)), and by Propositions 3.4 and 3.5 the value of public information in every industry
I € Z(f) is positive. O

(3.12)

Vo) =

The following result is a direct corollary of Theorem 3.8.

Corollary 3.9. Let f:Ry — R4 be a function satisfying condition8.1.1)—(3.1.3)of
Theorem3.1. If f is concave, thrice differentiable g, x) and satisfiesf” (x) < 0 for
0< x < x, then the value of public information in any industirg Z( f) is positive.

We now apply our results to some examples.

Example 3.10. Let f be given forx € R, by

f) = max{ao - Za,-x“, Ol,

i=1

whereag > 0, a; >0, andx; > 1 fori e{l,..., n}. The functionf satisfies conditions
(3.1.1)—(3.1.3) of Theorem 3.1. LEtbe ac-subfield of 7, and for O< y < ag = f(0) let
(g(»), g(y)) be the unique Bayesian equilibrium of the Cournot game associated with the
industryl = ((2, F, ), f, yle, G). Write Q(y) = 2¢(y). Now, we have

X2 () + Bxf () + 6/ () =Y (A2 43 +2aix* Tt <0
i=1

and

xf" () +3f'(x) ==Y xi(hi + Haix*i Tt <0.
i=1

Since f'(x) < 0 for all x > 0, (3.12) yields V{(y) > 0 forall 0 < y < ap = f(0). Thus,
Vo is convex on(0, agp), and therefore by Propositions 3.4 and 3.5 the value of information
in any industryl € Z(f) is positive.

Example 3.11. Let f be given forx € R, by

_ x—a)? fo<x<a,
f® {O otherwise,

wherea > 0. The function f satisfies conditions (3.1.1)—(3.1.3) of Theorem 3.1. Get
be ac-subfield of F, and for O< y < £(0) = a2 let (4(v), ¢(»)) be the unique Bayesian
equilibrium of the Cournot game associated with the indubtey((£2, F, w), f, yle, G).

12



Write Q(y) = 2¢g(y). It is easy to check that the first-order conditions for profit
maximization yield 0< Q(y) < a/2 for all 0< y < a?. Now, for all 0< y < a® we have

oM f"(QW) + f(Q() =40(y) —2a<0 and 0= f"(Q()).

Therefore by(3.12) we haveVy(y) > 0 for all 0 < y < f(0). Thus, Vg is convex on
(0, £(0)), and therefore by Propositions 3.4 and 3.5 the value of public information in any
industry! € Z(f) is positive.

Example 3.12. Let f be given forx € Ry by

fﬁ)z{u—xﬁ ifO<x<1,

0 otherwise

The function f satisfies conditions (3.1.1)—(3.1.3) of Theorem 3.1[0/). Let G be

a o-subfield of 7, and for O< y < 1= f(0) let (¢(y),q(y)) be the unique Bayesian
equilibrium of the Cournot game associated with the industey(($2, F, u), f, y1le, G).
Write Q(y) = 2q(y). It is easy to check that the first-order conditions for profit
maximization imply 0< Q(y) < 2/5 for all 0 < y < 1. Direct computation yields

oM (M) +3f () =(1-0(»)(152(y)—9) <0
and

0’ M " (Q) +60) () + 61 (Q(») = —600Q%(y) + 720(y) — 18,

for all 0 < y < 1. Now, wheny approaches,0Q(y) approaches /5, and thus the above
expression is negative. Therefore (8/12) we haveV{'(y) <O forall 0 < y < ¥, where
y > 0 is sufficiently small that the above expression is negative. TViyg concave on
(0, y), and therefore there exists a subclagsf) of Z(f) such that for any industry
I € J(f) the value of public information is negative.

4. Extensions: asymmetric information

We conclude the paper with an example that illustrates the difficulties that emerge when
firms are asymmetrically informed. In this example the Cournot game associated with the
given industry has a unique interior Bayesian equilibrium, but the game obtained by adding
some public information has a unique corner equilibrium.

Example4.1. Let (2, F, 1) be a probability space, whef® = {w1, wp, w3}, F =2, and
w(wr) =1/2, p(w2) =3/8, u(wz) =1/8. Definep: 2 x Ry — R for (w, Q) € 2 x R4
by

_ (80— 0 if 0 <80,
p(@, Q)= {O otherwise.
Also letc: £2 x Ry — R be given for(w, Q) € 2 x Ry by c(w, Q) = B(w) Q, where
20 ifo=w1,
ﬂ(a)):{l if w=wa,
77 ifw=uws.
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Let 71 = {0, 22, {w1}, {w2, w3}}, Fo = {0, 2}, and letG = {0, 2, {w1, w3}, {w2}}. Then
Fi1v G=2% and F» v G = G. The unique Bayesian equilibrium of the Cournot
game associated with the industf§2, F, u), p, ¢, F1, F2) is (q1, g2) wheregi(w) =
g2(w) = 20 for all € 2. Also the Cournot game associated with the industry
(2, F,w), p,c, 1V G, F2 Vv G), has a unique a Bayesian equilibriutdy, g2). In this
equilibrium we haveyi(ws3) = 0, and therefore it is a “corner” equilibrium.
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