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D. Tapan Kumar Sarkar

El tribunal nombrado para juzgar la tesis doctoral arriba citada, com-

puesto por los doctores

Presidente:

Vocal:

Secretario:

acuerda otorgarle la calificación de

Leganés, a





A mis padres

A mi familia





ABSTRACT

In recent years, computational electromagnetics (CEM) techniques have

become increasingly important with the rapid advancements in tech-

nology in areas such as electromagnetic compatibility, antenna analysis,

radar cross section (RCS), cellular phone-human body interaction, de-

sign of electrical and medical devices, target recognition and lightning

strike simulation.

Among a variety of numerical simulation tools existing in the commer-

cial market, many are based on the method of moments (MoM), the

finite-difference time-domain method (FDTD), and the finite element me-

thod (FEM). Also, they implement hybridization with high-frequency or

asymptotic technique such as, physical optics (PO), the uniform geomet-

rical theory of diffraction (UTD) and Multilevel Fast Multipole Algorithm

(MLFMA) among others.

It is worth to note that many of the commercial simulation tools existing

in the market has been born as numerical in-house codes in the academic

sector. In this context, it is important to note the contribution of the

research group guided by Prof. Tapan K. Sarkar (Syracuse University)

to the CEM field during last decade. The development of a new electro-

magnetic solver based on MoM has been carried out in order to provide

fast and accurate solutions of a wide range of electromagnetic problems,

especially for the solution of electrically large and complex problems.



From other hand, the research group to which the author of the present

Ph. D dissertation belongs has an important research line focused on

the development of codes based on FEM. Then, the implementation of a

FEM code makes possible the development of, not only an electromag-

netic software based on an integral formulation of the electromagnetic

problem, but a complete electromagnetic suite with also a differential

formulation approach. Hence, the development of a new software suite

for electromagnetics becomes the main objective of this Ph. D. disserta-

tion.

The suite will be composed by a professional graphical user interface

(GUI) and two solver modules based on MoM and FEM, respectively. The

GUI will provide tools for an easy and quick simulation process, the

parametrization of geometric models in terms of symbolic variables or

the use of an automatic goal oriented optimizer.

The FEM module of the suite will present important unique features com-

pared with other commercial softwares such as, the use of a novel iter-

ative integral equation method for mesh truncation, the use of its own

higher order set of basis functions and the use of parallel programming

schemes from the beginning on its development. This module will also

be able to perform the analysis of large antenna arrays using an infi-

nite array approach. Although, the infinite array approach make uses of

structures that are not a physically realistic, the analysis of this struc-

tures provides a reasonable good approximation with a less computing

requirement than the analysis of the full problem.

Finally, taking advantage of the existence in the suite of two of the

most important computational electromagnetics numerical techniques

such as, MoM and FEM, the hybridization between them seems an ap-

propriate choice to perform complex simulation where the use of these

techniques alone may not be efficiently appropriate. Thus, a modular

approach to combine MoM and FEM techniques for the analysis of large

structures or finite arrays with complex radiating elements has been

also performed.
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CHAPTER 1

INTRODUCTION

1.1 Antecedents

Computational electromagnetics (CEM) deals with the science of solving

Maxwell’s equations with the numerical simulation of electromagnetic

fields. It has become an indispensable tool for the analysis of electro-

magnetic problems because of the predictive power of Maxwell’s equa-

tions: if these equations are solved correctly, the solution can predict

experimental outcomes and design performances.

In recent years, CEM techniques have become increasingly important with

the rapid advancements in technology in areas such as electromagnetic

compatibility, antenna analysis, radar cross section (RCS), cellular phone-

human body interaction, design of electrical and medical devices, target

recognition and lightning strike simulation.

Among a variety of numerical simulation tools that provide a complete

solution to Maxwell’s equations, many are based on the method of mo-

ments (MoM) [1], the finite-difference time-domain method (FDTD) [2, 3, 4],

and the finite element method (FEM) [5, 6, 7]. Other methods, such as

the transmission-line method and the finite integration technique, can be

identified as either a variation or an equivalent of one of the first three.
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It is worth to note that many of the commercial simulation tools ex-

isting in the market has been born as numerical in-house codes in the

academic sector. A survey of some of the most important commercial

electromagnetic software is given below:

HFSS: HFSS is a commercial software developed by ANSYS and based

on FEM. The software is used for antenna design and design of com-

plex RF electronic circuit elements including filters and transmission

lines [8]. This commercial software was originally developed by Prof.

Zoltan Cendes at Carnegie Mellon University.

CST STUDIO SUITE: CST STUDIO SUITE is the main product of

the German company Computer Simulation Technology [9]. The soft-

ware comprises several solver modules based on different techniques

including FEM, MoM, Multilevel Fast Multipole Algorithm (MLFMA) and

Shooting Boundary Ray (SBR), each offering distinct advantages in

their own domains. The flagship module of CST STUDIO SUITE is its

time domain solver based on the Perfect Boundary Approximation

(PBA) [10] with the Finite Integration Technique (FIT) [11, 12].

FEKO: FEKO is a computational electromagnetics software product

developed by the company group EM Software & Systems [13]. The

software gathers different solvers based on pure techniques, such as

MoM, FEM and FDTD and also contains various hybrid methods with ac-

celeration techniques (MLFMA) and asymptotic methods such as, physi-

cal optics (PO) and the uniform geometrical theory of diffraction (UTD).

FEKO also had an academic beginning and was originated in 1991 from

research activities of Dr. Jakobus at the University of Stuttgart.

COMSOL Multiphysics: COMSOL Multiphysics is a finite element

simulation software package composed for various physic modules [14].

This software is able to perform multiphysics analysis making use of

several of its modules in one simulation. The electromagnetic module

is based on FEM with numerically stable edge elements. The software

uses algorithms for preconditioning and iterative solutions of the re-

sulting sparse equation systems. In 1986, COMSOL Multiphysics was

started by graduate students at the Royal Institute of Technology

(KTH) in Stockholm.
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REMCOM: Remcom is a US company formed in 1994 to develop and

market electromanetic software. Its flagship product is the EM software

named XFdtd [15]. This software is based on FDTD and is used in a

wide variety of markets and applications, including antenna design,

placement and analysis or microwave circuits among others. It is

worth to note that this software includes support for GPU acceleration.

Remcom company also offers a high frequency GTD/UTD based package

for the design and analysis of antenna system on complex objects such

vehicles and aircraft named XGtd [16].

ADS: ADS is the flagship software package of the multinational com-

pany Agilent Technologies [17]. The software gathers a set of commer-

cial solver such as, Momentum [18] (based on MoM) and the Agilent

FEM Simulator Element, formerly EMDS G2. This simulator provides

full wave 3D EM simulation capabilities based on FEM.

Momentum: Momentum is a partial differential equation solver of

Maxwell’s equations based on MoM. It is a 3-D planar electromagnetic

simulator used for passive circuit analysis [18]. It was originally de-

veloped by a Belgian company, Alphabit, a spinoff from the research

center IMEC [19]. The company was acquired by Hewlett-Packard

and later became part of Agilent Technologies, the current owners.

GEMS/EFIELD: GEMS/EFIELD are two different commercial elec-

tromagnetic suites that gather solvers in both time and frequency

domain including full wave solution (MoM, MLFMA, FDTD, FEM) [20, 21].

In the mid nineties, both softwares were started under the framework

of the same large research project at the Royal Institute of Technol-

ogy (KTH) in Stockholm, in close cooperation with end users at Saab

and Ericsson companies.

WIPL-D: WIPL-D is an electromagnetic software that use the MoM

technique with higher order basis functions to perform the electro-

magnetic analysis [22]. This software also has a circuit simulator

in order to provide results for microwave circuits. As happens with

other commercial softwares, WIPL-D has an initial development in the

academic sector.
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GRASP: GRASP is an electromagnetic software used to perform the

accurate analysis of reflector antennas [23]. GRASP is the flagship

software of the Danish company TICRA, founded in 1971 [24]. This

software makes use of pure numerical techniques such as, MoM and

high-frequency methods such as, physical optics (PO) and geometrical

theory of diffraction (GTD) to perform the simulations.

CHAMP: CHAMP is another software tool developed by the company

TICRA. This tool is used to design horns and reflectors antennas with

rotational symmetry [25]. CHAMP combines a Mode-Matching (MM)

solver for the propagation internally in the horn with a highly-efficient

Body-of-Revolution (BoR) MoM solver for the exterior parts, including

reflectors and dielectric support material. The BoR solver was devel-

oped specifically for this application with the aim of optimizing speed

and rendering optimization practical.

IE3D: IE3D is a commercial software developed by the company Men-

tor Graphics (formerly Zeland Software) [26]. The current name of

the software is HyperLynx 3D EM but it is better known by the name

IE3D [27]. The software makes use of an integral formulation to solve

the Maxwell’s equations. The main applications of IE3D are antenna

design, RFID design, package modeling and Monolithic Microwave In-

tegrated Circuits (MMIC) design.

NewFasant: NewFasant is an electromagnetic simulation software

suite with different solvers based on the MONURBS technique and high-

frequency techniques such as, GTD and PO [28]. The software also has

acceleration techniques such as MLFMA. As other tools, NewFasant also

started in the academic sector at University of Alcalá in Spain.

CEMWorks: CEMWorks is a Canadian company that commercial-

ize the electromagnetic software called Wave3D [29]. This software is

based on broadband frequency-domain MoM analysis accelerated with

error-controllable MLFMA. Wave3D is used in a wide range of industrial

and academic applications such as, the analysis of aperture antennas,

antenna positioning, design of antenna arrays or the scattering anal-

ysis of large vehicles.
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MiCIAN: MiCIAN is a German company that develops the electro-

magnetic software µWave [30]. This software is a design tool using

the well-known fast and accurate MM technique. This method is partic-

ularly suitable for simulation and optimization of passive microwave

systems and components, including antennas. The software avoids

the use of time consuming 3D solvers wherever possible and to focus

on applying MM and its derivatives instead. It is worth to note that

a 3D FEM solver on element level is available within the µWave soft-

ware for structures with very complex geometries or with features not

feasible to be implemented in MM.

Tech-X Corporation: Tech-X Corporation is a US company that

offers different software packages for various physic and engineering

applications [31]. The electromagnetic software of this company is

called VSimEM [32]. This software uses the FDTD technique for solv-

ing electromagnetic problems for a variety of material types, yielding

engineering outputs that can be used for design of electromagnetic

devices.

As commented above, many of those commercial softwares have an aca-

demic beginning where research groups from different universities de-

velop its own codes and, when they are competitive enough, are released

to the market. Other interesting electromagnetics codes in the academic

sector are described below:

openEMS: openEMS is a free and open electromagnetic field solver

based on the FDTD method. Matlab or Octave are used as an easy

and flexible scripting interface [33]. OpenEMS is a project started by

Thorsten Liebig at the laboratory for General and Theoretical Elec-

trical Engineering (ATE), University of Duisburg-Essen in Germany.

LC: LC is simulation tool for the analysis of the electromagnetic prop-

erties of electrical interconnects [34]. This tool uses the FDTD approach

to analyze the electromagnetic problem. LC was orignally developed

by Cray Research as an internal design tool. Like many projects, this

one has a long roster of contributors from a variety of organizations:

Northwestern University, University of Colorado and Los Alamos Na-

tional Laboratory.
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ERMES: ERMES is freeware electromagnetic code based on FEM [35].

This software make use of a FEM formulation based on the regularized

Maxwell equations. This code has been developed at Polytechnic

University of Catalonia in Barcelona.

During last decade, the effort in the CEM field has been dedicated to

provide a better user experience in the use of those softwares maintaining

the mathematical approaches basically intact. One of the keys in the

development of CEM tools in this time has been the accessibility to a new

generation of computer processors. Nowadays, processors with several

cores are common even in modern single-user laptop/desktop computers.

Also, access to distributed computing have become quite affordable for

research/development groups. Thus, it is common to have access to

a small- or mid-size cluster consisting of several multi-core computer

nodes. The parallelization of the solver in such computer systems allows

to dramatically reduce the computation time and, at the same time,

gives access to the distributed RAM memory of the whole cluster (in the

order of hundreds of GBs). Under this scenario, many existing tools

has needed to revamp their computational codes to run efficiently on

this new generation of multi-core processors. Conversely, other codes

has been developed from scratch taking into account parallel schemes in

order to provide tools with a high parallel efficiency.

In this context, it is important to note the contribution of the research

group guided by Prof. Tapan K. Sarkar (Syracuse University) to the

CEM field during last decade. The development of a new electromagnetic

solver based on MoM has been carried out in order to provide fast and

accurate solutions of a wide range of electromagnetic problems, especially

for the solution of electrically large and complex problems [36].

The solver was implemented from scratch making use of the latest com-

puter technology and parallel paradigms to take advantage of the ca-

pabilities of the new generation of computer processors. Thus, efficient

parallel algorithms were used to improve the performance and speed of

the solver providing a powerful tool for analysis of electrically large ob-

jects composed of metallic and dielectric structures. However, the lack of

a professional graphical user interface (GUI) made the solver tough to use

for novel users. Thus, the development of a professional GUI that allows
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a friendly and easy use of the MoM solver is needed in order to create a

competitive electromagnetic software. This GUI should support tools for

an easy and quick simulation process, the parametrization of geometric

models in terms of symbolic variables or the use of an automatic goal

oriented optimizer among others.

From other hand, the research group to which the author of the present

Ph. D dissertation belongs has an important research line focused on the

development of codes based on FEM. Then, the implementation of a FEM

code makes possible the development of, not only an electromagnetic

software based on an integral formulation of the EM problem, but a com-

plete electromagnetic suite with also a differential formulation approach.

Hence, the development of a new software suite for electromagnetics be-

comes the main objective of this Ph. D. dissertation.

1.2 Objectives

As commented above, the main objective of the present Ph. D. disser-

tation is the development of a new software suite for electromagnetics.

The suite will be composed by a professional GUI and two solver modules

based on MoM and FEM, respectively. The list of the objectives for this

Ph. D. dissertation may be summarized as follows:

The development of a graphical framework to support tools for an

easy and quick simulation process is required to make a competitive

electromagnetic software. Also, the parametrization of geometric

models in terms of symbolic variables or the use of an automatic

goal oriented optimizer are necessary tools in order to complete this

graphical framework. Thus, an important objective of this Ph. D.

dissertation is the development of this graphical framework where

to integrate the MoM solver implemented under the guidance of Prof.

Tapan K. Sarkar. Section 1.2.1 gives further details about this ob-

jective.

The development of a differential solver module based on FEM is an-

other important objective of the present Ph. D. dissertation. This

module presents important unique features compared with other

commercial softwares such as, the use of a novel iterative integral

7
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equation method for mesh truncation, the use of its own higher order

set of basis functions and the use of parallel programming schemes

from the beginning on its development. More detail about this ob-

jective are given in section 1.2.2.

The development of a solver module for the analysis of large an-

tenna arrays using an infinite array approach is also another ob-

jective of the present Ph. D. dissertation. Although, the infinite

array approach make uses of structures that are not a physically

realistic, the analysis of this structures provides a reasonable good

approximation with a less computing requirement than the analysis

of the full problem. Furthermore, fast techniques approaches such

as Macro Basis Functions (MBFs) use the infinite array solution as

the basis brick for their approaches. To carried out this objective

the implementation of the Periodic Boundary Condition (PBCs) in

the FEM module of the suite is required. Further information about

this objective of the dissertation is given in section 1.2.3

Taking advantage of the existence of two of the most important CEM

numerical techniques in the suite such as, MoM and FEM, another ob-

jective of this Ph. D. dissertation is to perform the hybridization

between both solver modules. However, due to the difference be-

tween the formulation setup and the basis functions employed by

both solvers, several change in the formulation of the FEM module

are needed together with a study of the projection between the basis

functions of both codes. Section 1.2.4 gives further details about

this objective.

1.2.1 Graphical framework and optimizer development

The development of a graphical framework where to integrate the inte-

gral equation solver implemented under the guidance of Prof. Tapan K.

Sarkar is an important objective of this Ph. D. dissertation. Together

with this development, the implementation of a goal oriented optimizer

to achieve an automatic improvement of the results is another important

objective. Thus, the graphical framework should support the capability

to define the geometry model in term of symbolic variables.
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Before gives a detailed description about the contents of the graphical

framework and the optimizer, a brief introduction about the electromag-

netic formulation, the basis functions used by the MoM solver, and the

parallel implementation in code is given next.

Electromagnetic formulation: The solver is based on the solution

of Surface Integral Equations (SIEs) in the frequency domain for

electric and magnetic currents over dielectric boundary surfaces and

electric currents over perfect electric conductors (PECs). Specifically,

the solver makes uses of a general form of the Poggio-Miller-Chang-

Harrington-Wu (PMCHW) formulation [37, 38]. It is worth noting that

if the boundary surface of two different regions is a PEC, the magnetic

currents are equal to zero at the boundary surface and thus, the

equations degenerates into the electric field integral equation (EFIE).

The solver is able to handle inhomogeneous dielectrics categorized

by a combination of various homogeneous dielectrics. Therefore, any

composite metallic and dielectric structure can be represented as an

electromagnetic system consisting of a finite number of finite-size

linear, homogeneous and isotropic regions situated in an unbounded

linear, homogeneous and isotropic environment.

Higher-order basis functions: The electric and magnetic cur-

rents are approximated by higher-order polynomials, which reduce

the number of unknowns compared with the rational piece-wise basis

functions. The code makes use of truncated cones for wires and bilin-

ear patches to characterize other surfaces. Higher-order polynomials

over these type of elements are used as basis functions over larger

subdomain segments and patches. Polynomial expansions for the

basis functions over large subdomains lead to a good approximation

of the current distributions over large surfaces using approximately

20 unknowns per wavelength squared of surface area. This number

is much lower than that for the piecewise Rao-Wilton-Glisson (RWG)

basis functions, and thus, the use of polynomial basis functions over

larger subdomains reduce significantly the number of unknowns.

Parallel processing and out-of-core techniques: The parallel

implementation of an integral equation code involves parallel matrix

filling followed by a parallel solution of the dense matrix equation.

Load-balancing in terms of data and CPU operations is crucial to

achieve speedups with a large number of processors.
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The parallel implementation is achieved by using MPI (Message Pass-

ing Interface) [39]. MPI generates a logical rectangular process grid

which is assumed to map matrix data blocks onto processors. Specif-

ically, a block-cyclic matrix distribution is used among processors as

ScaLAPACK does. ScaLAPACK library [40] is used to solve the ma-

trix system of equations. The matrix solution is based on the LU

factorization algorithm

An out-of-core version of the parallel solver has been implemented

in order to break the limit imposed by the available RAM in the sys-

tem. The out-of-core solver uses hard disk as source of memory. It

partitions the matrix in slabs, the number of slabs being dependent

on the relation between available hard disk storage, the RAM and the

number of processors. At a rough level, it can be said that for each

slab the algorithm is exactly the same as the in-core version. Ob-

viously, the main difference is that, once a slab has been processed

the data is written to disk instead of keeping it in RAM. Although the

data access to disk is much slower than the access to RAM memory,

the degradation in performance of the out-of-core solver with respect

to the in-core may be reduced up to 20%−30%. This is achieved by

overlapping the disk access operations related with the future com-

putations with the current computational process.

Coming back to the development of the graphical framework, the main

idea is to develop a new GUI focused on electromagnetics. Furthermore,

the definition of geometrical models with symbolic (non-numeric) vari-

ables is a fundamental requirement for the suite in order to enable the

use of automatic goal oriented optimizations. Thereby, the graphical

framework shall be developed from scratch to provide new important

features such as, the parametrization of the geometry model in term of

symbolic variables, the use of an automatic goal oriented optimizer, defi-

nition windows for electromagnetic variables, a complete navigation tree

to facilitate the access to the menus or automatic online updates for the

suite among others.

As commented above, the parametrization of the geometry model in

term of symbolic variables enables the use of automatic optimization

processes to reach a given goal. Thus, a new automatic goal oriented

optimizer shall be developed to endow the suite with a powerful tool in

the design of electromagnetic structures.

10
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Finally, some optimization examples will be analyzed in order to demon-

strate the performance and capabilities of the automatic goal oriented

optimizer and, therefore, of the graphical framework of the suite.

It is worth to note that a user guide shall be written in order to provide

to future users a document where to explain the details about how to

perform a simulation through the suite. The user manual will describe

step by step from the creation of the geometry model to the visualization

of the results.

1.2.2 Finite Element Module

The development of a solver module based on FEM is another important

objective of the present Ph. D. dissertation. The main idea of the devel-

opment of this module is to complement the integral equation approach

of the suite with a new differential electromagnetic solver. This new mod-

ule shall be implemented from scratch making use of parallel paradigms

in order to run efficiently from small laptop to high performance clusters

with many CPU cores.

The module will use its own set of curl-conforming higher-order elements

to approximate the solution of the Maxwell’s equations [7, 41, 42]. These

elements implement the first family of Nédélec curl-conforming elements

proposed in 1980, [43]. It is worth noting that these elements are the ap-

propriate choice for the discretization of the electric and magnetic fields

due to provide tangential continuity across element interfaces. Further-

more, amount the mesh truncation techniques appeared in the literature,

the module shall use of a boundary integral equation which provides a

(numerically) exact radiation boundary condition. These unique features

difference the FEM module developed in the present Ph. D. dissertation

from other implementations.

Before the module may be used to provide solutions for real world prob-

lems, the accuracy of its results must be verified. This verification shall

be performed employing the Method of Manufactured Solution (MMS).

The basic idea of this technique is to manufacture an exact solution to

some equation by solving the problem backwards. Thus, the method

can be used to provide evidence that the code is correct and correctly

implemented.
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Finally, the validation of the results for real world application will be

carried out in order to proof that the module is ready for research use.

Numerous simulation for different electromagnetic problems will be per-

formed comparing the result with established code (as commercial soft-

wares) or directly with measurement.

1.2.3 Analysis of infinite periodic structures

Another objective of this Ph. D. dissertation is to develop a solver mod-

ule for the FEM analysis of large antenna arrays using the infinite array

approach. The infinite approach chosen in this dissertation is based on

the use of the so-called Periodic Boundary Conditions (PBCs). Thus,

the implementation of the PBCs in the FEM module of the suite shall

be performed. In addition to the use of the PBCs, a truncation of the

computational domain along the non-periodic direction is needed to per-

form the analysis for open scattering and radiation problems. Then, the

modification of the truncation techniques supported by the FEM module

shall be done enabling, together with the implementation of the PBCs,

the analysis of infinite periodic structure by the suite.

It is worth to note that one of the truncation techniques supported by

the FEM module makes use of a boundary integral equation. In this tech-

nique, the exterior infinite domain is truncated by an integral equation

representation of the exterior field which is calculated using the Green’s

function G(r, rs). In the case of infinite periodic structures the previous

Green’s function must be replaced by the appropriate periodic Green’s

function. The main constrain of this approach is how extremely slow to

converge is the periodic Green’s function making the numerical calcula-

tion very difficult and computationally expensive. Thus, an acceleration

technique is required in order to improve the converge rate of the pe-

riodic Green’s function. Among the acceleration techniques existing in

the literature, the Ewald’s transformation has been chosen to acceler-

ate the series since, this method is considered as the reference method

for the efficient numerical calculation of the periodic Green’s function

[44, 45]. Hence, the derivation of the Ewald representation for the two-

dimensional periodic Green’s function shall be implemented in order to

accelerate its calculation. Finally, analysis of some real structures in or-

der to validate the results of the suite solving infinite periodic structures

will be performed.
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1.2.4 FEM-MoM hybridization

To perform the hybridization between the FEM and MoM modules of the

suite a previous task is required in order to take a decision about the

convenience of the hybridization. This task consists of, from one side,

the study of the projection between the basis function of both codes in

order to perform the connection of the polynomial approximation of the

solution. From other side, the current variational formulation of the FEM

module must be modified. This modification resides in the fact that the

unknowns of a standard MoM formulation are the electric and magnetic

currents over dielectric boundary surfaces and the electric currents over

perfect electric conductors. However, the standard variational formula-

tion of FEM only contains one of the previous unknowns. It is important

to note that the FEM unknowns are field unknowns but they may be

easily transformed to current unknowns performing an easy rotation of

the field on the surface. Thus, the modification of the variational for-

mulation of the FEM module is needed to provide unknowns for the dual

field in a explicit way (H-field/E-field for E-field/H-field formulation,

respectively)

1.3 Dissertation structure

A summary of the structure of the present Ph. D. dissertation is given

in this section. The document has been structured in six chapters and

two appendix as follows:

Chapter 1: Introduction

This initial chapter provides an overview of the antecedents and the

objectives of the this Ph. D. dissertation. Details about the organi-

zation of this document are also given.

Chapter 2: Graphical framework and optimizer development

This chapter describes the development of the graphical framework

of the suite from a technical point of view. Details about important

tools such as, the definition of the models in terms of symbolic vari-

ables, the implementation of an automatic goal oriented optimizer,
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the automatic online update of the suite or the easy access to the

menus through a navigation tree are given. Also, some numerical

examples are described in order to illustrate the performance of the

automatic goal oriented optimizer of the suite.

Chapter 3: Finite Element Module

This chapter provides a depth description of the Finite Element mod-

ule of the suite. Details about the variational formulation employed

and the basis functions used to approximate the solution are given

in this chapter. Verification tests and numerical results are also pro-

vided in order to demonstrate the accuracy and performance of the

FEM module of the suite.

Chapter 4: Study of the hybridization of FEM-MoM techniques

This chapter presents a modular approach to combine MoM and FEM

techniques for the analysis of large structures or finite arrays with

complex radiating elements. Details about the methodology of the

approach are given in this chapter. Also, details about the variational

formulation of this modular approach and a study of the connection

between the basis functions of the MoM and FEM modules of the suite

are described.

Chapter 5: Analysis of infinite periodic structures

This chapter gives a detailed description about the analysis of infinite

periodic structures in the FEM. Also, details about the implementa-

tion of Periodic Boundary Conditions on FEM and the acceleration of

the Periodic Green’s function for the analysis of infinite structures

are given. Finally, some numerical example are provided in order

to demonstrate the capabilities and performance of the suite solving

these type of problems.

Chapter 6: Conclusions and future research lines

This chapter provides the final conclusions of this Ph. D. disserta-

tion, as well as a brief summary of the future research work that

may be done to improve the performance and capabilities of the
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suite. This chapter also gathers a complete list of books, interna-

tional journals and conference contribution that the work developed

in this Ph.D dissertation has led.

Appendix A: Solving Electromagnetic Problems in the suite

This appendix provides a user manual about how to solve electro-

magnetic problems using the suite. The manual is based on the use

of the FEM module of the suite but its use may be extensible to the

MoM module. Detailed about the most important tools for the cre-

ation of the geometry or for the generation of the mesh are given.

The manual is completed providing an example of the analysis from

scratch of a simple waveguide model.

Appendix B: Ewald representation for periodic Green’s function

This appendix gathers all the expression related to the Ewald rep-

resentation for periodic Green’s function as a summary. Due to the

complexity and extension of the calculation of the first and the sec-

ond derivative of the Ewald series the expressions of both derivatives

are collected in this appendix.
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CHAPTER 2

GRAPHICAL FRAMEWORK AND
OPTIMIZER DEVELOPMENT

A detailed description of the development of the graphical user interface

(GUI) is given in this chapter. The GUI is based on a general purpose pre

and postprocessor called GiD that has been developed at CIMNE [46]. GiD

has been designed to provide an easy and fast way to interconnect the

in-house softwares developed in research groups with its powerful GUI. A

brief description about the capabilities of GiD are given in section 2.1.

In the particular case of the suite, the main idea is to develop a new

GUI focused only on electromagnetics, instead of developing a general

purpose pre and postprocessor as GiD is. Furthermore, the definition

of geometrical models with symbolic (non-numeric) variables is a funda-

mental requirement for the suite in order to enable the use of automatic

goal oriented optimizations. Thereby, a complete framework has been de-

veloped from scratch to provide new important features to GiD such as,

the parametrization of the geometry model in term of symbolic variables,

the use of an automatic goal oriented optimizer, definition windows for

electromagnetic variables, a complete navigation tree to facilitate the

access to the menus or automatic online updates for the suite among

others. Further details about this framework are given in section 2.2.



2.1. PRE-POSTPROCESSOR GID

As commented above, the parametrization of the geometry model in term

of symbolic variables enables the use of automatic optimization processes

to reach a given goal. Thus, a new automatic goal oriented optimizer

has been developed to endow the suite with a powerful tool in the design

of electromagnetic structures. Section 2.3 describes the details of the

implementation of this optimizer and how it has been integrated in GiD.

Finally, section 2.4 shows some optimization examples in order to demon-

strate the performance and capabilities of the automatic goal oriented

optimizer and, therefore, of the GUI of the suite.

2.1 Pre-postprocessor GiD

GiD is a universal, adaptive and user-friendly pre and postprocessor for

numerical simulations in science and engineering. It has been designed

to cover all the common needs in the numerical simulations field from

pre to post-processing tasks: geometrical modeling, effective definition

of analysis data, meshing, data transfer to analysis software, as well as

the visualization of numerical results [46]. GiD main characteristics are:

Universal: GiD is able to generate the information required for the

analysis of any problem in science and engineering.

Adaptive: GiD is very easy to adapt to any numerical simulation

code, offering the possibility to customize its input and output data

in order to made them compatible with an existing in-house software.

Figure 2.1 shows a diagram block of a typical interaction between

GiD and an in-house solver.

User-friendly: GiD offers many different tools to facilitate the in-

put data preparation and results visualization to the user.

GiD allows to the users the creation of very complex geometry definitions

featuring the widely used NURBS surfaces. Also, it offers compatibility

with the most important CAD software packages such as, IGES, DXF, STL,

3DS, RHINO and so on.

18



2.1. PRE-POSTPROCESSOR GID

SOLVER

INPUT

FILE

GiD

OUTPUT

FILE
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Figure 2.1: Typical interaction process with GiD

Another important feature of GiD is the possibility to generate large

meshes in a fast and efficient manner, using several algorithms, for

surfaces and volumes. Several element types are also supported such

as triangles, quadrilaterals, circles, hexahedras, prisms, tetrahedras or

spheres. Thereby, GiD offers an excellent and easy way to interconnect

the in-house softwares developed in research group with its powerful GUI.

The integration of these in-house softwares with GiD may be performed

through two different integration levels depending on the needs and capa-

bilities of the user. GiD provides a basic integration level where program-

ming knowledge is not required or, conversely, an advanced integration

level where users has the full control of look and behavior of GiD with

the consequent use of script programming languages.

Basic integration level: The integration can be done for any user

regardless of his/her programming knowledge. Only a couple of text

files, using an easy keyword system, should be written describing the

user’s problem properties (conditions, materials, etc.) and GiD will

automatically create the corresponding windows, allowing the end

user to manage the data of the problem: assign or modify conditions,

draw properties over model and so on. More information about this

integration method may be found in GiD customization manuals [46].
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Advanced integration level: This method offers many more pos-

sibilities, including an appealing view of the managed data and a

display of the problem and group data during pre and postprocess.

The advanced integration, with full control of look and behavior of

GiD, is made possible by the use of TCL/TK scripting language. These

advanced customization features provide a way to create your own

connection with in-house or commercial numerical simulation codes.

In the particular case of this suite, the advanced integration level of GiD

has been chosen as the development model for the GUI. The main idea

is to develop a new GUI focused only on electromagnetics, instead of

be a general purpose pre and postprocessor as GiD is. Thereby, a full

framework has been developed to provide new important features to GiD

such as, new definition windows for electromagnetic variables, a complete

navigation tree to facilitate the access to the menus or automatic online

updates for the suite among others.

To give the reader a first idea about the depth of the changes provided

by the framework, figure 2.2 shows the graphical aspect of the GUI before

and after the application of the framework. A total change in the graph-

ical aspect may be appreciated, where the position of the top menu in

figure 2.2(a) is changed to the right on the new GUI and the navigation

tree appears on the left in figure 2.2(b) among other changes.

It is worth to note that one of the main important features provided by

this new framework is the capability to define the geometry model in

term of symbolic variables. The definition and/or modification of the

geometry in GiD (as it happens in other pre-processors) must be per-

formed by using real or integer numbers. For instance, the coordinates of

a point, or the vector used to define a translation operation, must be real

numbers. That is, the use of symbolic variables is not supported directly

by GiD, but in contrast, it is supported by the suite thanks to this new

framework. Under this scenario, the symbolic variables tool becomes a

very important contribution of the present dissertation to GiD.

The framework has been implemented using the TCL-TK language (the

same language used to program/customize GiD) and it acts as an upper

layer between GiD itself and the users. Figure 2.3 shows a block diagram

of the interaction between users and the suite.
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(a) Before framework application

(b) After framework application

Figure 2.2: Graphical aspect before and after framework application
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ELECTROMAGNETIC SUITE
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FRAMEWORK
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AUTOMATIC GOAL ORIENTED OPTIMIZER

SUPPORT OF SYMBOLIC VARIABLES
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Figure 2.3: Block diagram of the interaction between users,the

developed framework, GiD and the solver modules

The framework appears in red with some of the most important tools

provided by it. The framework is the part of the GUI that interacts with

the users receiving their requests. GiD appears in green and interacts

with the framework. Finally, the MoM module and the FEM module of the

suite are included in blue.
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Figure 2.4: Window that controls the symbolic variables

2.2 Suite framework

As commented in the previous section, the framework has been imple-

mented using TCL-TK language and it acts as an upper layer between

GiD itself and the users. The framework provides important features

such as, a new graphical aspect, the capability to define the geometry

model in term of symbolic variables, new windows to define the electro-

magnetic properties, a complete navigation tree to facilitate the access

to the menus or automatic online updates for the suite. Details about

the implementation of these tools are given in this section.

2.2.1 Implementation of symbolic variables tool

The symbolic variables tool acts between the user, the symbolic variables

and GiD. The definition and/or modification of the geometry in GiD

must be performed by using real or integer numbers. For instance, the

coordinates of a vector used to define a translation operation or the

control points of a NURBS line must be real numbers.

In this context, it is very important to create a controlled environment

where the users may define and use their symbolic variables. Then, the

developer may know when the users are defining or using a symbolic

variable and what features of GiD are going to employ. To create this

controlled environment, a window that allows the users to create, delete

and/or modify the symbolic variables has been developed first. Thus, the

developer has access to a list with the relationship between the symbolic

variables and its real values. Figure 2.4 shows an screenshot of the

symbolic variables window of the suite.
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The next step is to provide the users the necessary facilities to use these

symbolic variables in GiD. For this reason, a full set of commands have

been written in order to act between the users and GiD. The frame-

work detects the GiD command that is being called by the user and it

exchanges the symbolic variables for their real value before calling the

corresponding GiD command. For instance, lets imagine that a user

wants to move a point from its original position to another. GiD offers

a command called MovePoint that receives the identifier of the point to

be moved and the real coordinates of the new location. The user invokes

the MovePoint command by clicking on the corresponding entry of the

menu. Then, the user selects the desired point to be moved and types

the new location using some of the symbolic variable defined through

the symbols window commented above. At this moment, the framework

is able to exchange the symbolic variables by their real value checking

the symbol list and calls the MovePoint command but using the corre-

sponding real numbers required by GiD. Pseudocode 2.1 shows how to

exchange the symbolic value of a variable by its real value in TCL-TK.

� �
1 #Define two symbols as example

2 set a 2; set b 5

3 #Define one expression as example

4 set expression "c=a+b"

5

6 #Replace the symbol (a) by its real value (2)

7 regsub -all -nocase -- "\\m a \\M" $expression \

8 $real_value_for_a $exchange

9 #Assign real expression to the variable

10 set expression $exchange #(c=2+b)

11 #Replace the symbol (b) by its real value (5)

12 regsub -all -nocase -- "\\m b \\M" $expression \

13 $real_value_for_b $exchange

14 #Assign real expression to the variable

15 set expression $exchange #(c=2 +5)

16

17 #Return the real value of the symbol c

18 return [expr $expression] 	� �
Pseudocode 2.1: TCL-TK code that exchanges the symbolic value of a

variable by its real value
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Some other operations such as, changing the radius of an sphere or the

length of a cylinder requires a more complex implementation of the tool.

In this case, when the user creates an object (sphere, cylinder, cone

and so on) the framework marks the entities that conforms that object.

Then, the framework knows the entities that it should change if the user

modifies any parameter of the object. If, for instance, the radius of an

sphere is controlled by the symbolic variable a and the user changes

the value of that variable, the framework checks the objects that use

the symbolic variable a and regenerates the geometry of those objects.

This process is performed in two steps; firstly, the framework deletes the

entities corresponding to the objects that use the symbolic variable a,

and following, the framework creates new objects with the corresponding

new values. This process is performed internally and completely hidden

for the users that only notice a change in the geometry of the objects in

the screen.

It is worth to note that this task requires a list with the entities of the

geometry that have been parametrized and that list must be updated

any time the user performs a change in the geometry. For this reason, the

commented controlled environment is very important in order to avoid

errors when the framework interacts with GiD.

A list with the most important commands of GiD that support the sym-

bolic variables thanks to the framework is shown below:

MovePoint: By using this command, an existing point is selected

and moved to another position. The framework receives the iden-

tifier of the point and the three coordinates of the new location.

CreateLine: This command creates a new NURBS line. The frame-

work receives the coordinates of the two end points for straight

lines, or a list with the control points for NURBS lines.

ParamEquations: Parametric equations defining lines and surfaces

may contain symbolic variables enabling automatic changes in the

shape of the lines or surfaces. The framework regenerates the

lines/surfaces as it was describe previously when the symbolic vari-

ables changes their values.
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CreateObjects: This command is used to create new predefined

objects. The objects are already parametrized and symbolic vari-

ables may be used to control their geometry. Several objects are

supported, such as, spheres, cylinders, cones, prisms and rectan-

gles.

Spheres: In the case of the spheres, the radius is the only variable

utilized to control the geometry.

Cylinders: The length and the radius of the cylinder are the

variables used to control the geometry in this case.

Cones: In the case of the cones, the radius and the length are the

variables utilized to control the geometry.

Prisms: The width of the base and the length of prism are the

variable employed to control the geometry.

Move: This command is used to move the desired entities of the

geometry. Several operations are supported, such as, translation,

rotation and scale.

Translation: This operation performs the movement of entities

from one point to another.

Rotation: This operation performs the rotation of entities in any

direction (defined through a rotation axis) with a desired angle.

Scale: This operation is used to scale the selected entities in a

factor.

Copy: This command is used to copy the desired entities of the

geometry. The operations supported by this command are trans-

lation, rotation and scale.

Translation: This operation performs a copy of the selected en-

tities from one point to another.

Rotation: This operation performs a copy of the selected entities

rotating them in any direction (defined through a rotation axis)

with a desired angle.

Scale: This operation performs a copy of the selected entities

scaling them in a factor.
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2.2.2 Implementation of new windows

The new windows provided by the framework, as for example, the one

used by the symbolic variables tool have been implemented using appro-

priate TCL-TK commands.

The first step to create a window in TCL-TK is to call the command

toplevel. This command creates and manipulates an instance of a

toplevel entity where to add the rest of the TCL-TK widgets that will

conform the window. Lines 1−5 of pseudocode (2.2) shows how to define

an instance of the toplevel widget.

The next step is to provide functionality to the window creating some

TCL-TK widgets as frames, labels or text entry boxes. The commands

ttk::frame, ttk::label and ttk::entry create and manipulate those

widgets. In this case, lines 7−16 of pseudocode shows how to define a

frame with a label and an entry inside.

Finally, some buttons are created to accept or cancel the changes per-

formed in the entry box. Lines 18−29 give details about how to create

these buttons. Figure 2.5 illustrates the window that may be created

following the pseudocode (2.2).

2.2.3 Implementation of the navigation tree

The navigation tree of the suite has been created using the TCL-TK pack-

age treectrl 2.4.1. This package provides the tools to create and ma-

nipulate hierarchical multicolumn widgets. An example of a navigation

tree is shown in figure 2.6 where the elements of the tree may be appre-

ciated. The treectrl command is used to define the root widget where

to add the items of the tree. Pseudocode (2.3) shows how to define a

navigation tree with a vertical scrollbar.

Once the tree has been created, the definition of the style of the items

of the tree is required. The first step to create a new style is to define

the elements that will conform it. For instance, lets define a style with

a border, an image and a text box (see lines 1−6 of pseudocode 2.4).
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Figure 2.5: Example of a TCL-TK window

� �
1 #Definition of the toplevel window

2 toplevel .gid.window_name -class OverlayWindow

3 #Definition of the window title

4 wm title .gid.window_name "window title"

5 wm iconname .gid.window_name "window title"

6 ...

7 #Create a frame where to add new widgets

8 set f [frame .gid.window_name.frame]

9 #Create a label

10 label $f.label -text "label"

11 #Create an entry box where to insert data

12 entry $f.entry -textvariable variable_data

13 #Print the frame into the window

14 grid $f -sticky nsew

15 #Print the label and the entry

16 grid $f.label $f.entry -sticky nsew

17 ...

18 #Create a frame where to place the buttons

19 set f [frame .gid.window_name.fbuttons]

20 #Create the accept button

21 button $f.accept -text "Accept" \

22 -command [accept_procedure]

23 #Create the cancel button

24 button $f.cancel -text "Cancel" \

25 -command [cancel_procedure]

26 #Print the button frame into the window

27 grid $f -sticky nsew

28 #Print the buttons

29 grid $f.accept $f.cancel -sticky nsew 	� �
Pseudocode 2.2: Definition of a top window in TCL-TK
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Figure 2.6: Elements of the navigation tree

The next step is to create the style with the command style create

and add the elements that conform the style (see lines 8−12). Finally,

the layout of the style is created with the command style layout (see

lines 14−21).

The last step is to create the items that will conform the tree using the

command item create. For example, lets add to the navigation tree

a root item called Materials and one child item called Vacuum. Lines

1−11 of pseudocode (2.5) create the root item Materials. The item is

created in line 2 calling the command item create. Then, the desired

style is assigned to this item (see line 4) and the label Materials is set

(see lines 6−8). Finally, line 11 shows how the item is added as root to

the tree. Lines 13−26 create the child item Vacuum. As it occurs with

the root item, lines 13−20 create the item, select the desired style and

configure the label. In this case, an image is also configured as may be

appreciated in lines 21−23. Finally, the item is added as child to the

root item (see line 26).

� �
1 #Navigation tree definition

2 treectrl .tree -yscrollcommand {.treevs set}

3 #Vertical scrool bar definition

4 scrollbar .treevs -command {.tree yview}

5 #Print the tree and the scroolbar in the screen

6 grid .tree -row 0 -column 0 -sticky nsew

7 grid .treevs -row 0 -column 1 -sticky ns 	� �
Pseudocode 2.3: Definition of a navigation tree
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� �
1 #Create the border element of the style

2 .tree element create border_name border

3 #Create the image element of the style

4 .tree element create image_name image

5 #Create the text element of the style

6 .tree element create text_name text

7

8 #Definition of the name of the style

9 .tree style create style_name

10 #Definition of the element of the style

11 .tree style elements style_name \

12 {border_name image_name text_name}

13

14 #Create the layout of the style

15 .tree style layout style_name border \

16 -union {image text} -iexpand nsew

17

18 #Create the layout of the image

19 .tree style layout style_name image

20 #Create the layout of the text

21 .tree style layout style_name text 	� �
Pseudocode 2.4: Definition of the style of a tree item

2.2.4 Implementation of the online update tool

The online update tool of the suite has been implemented using the

TCL-TK packages http and tls. The http package provides tools to

create and manipulate connections through the HTTP protocol. The tls

package supports the mechanism to make the previous connections safe.

The tool starts by connecting to the server and detecting if a new version

of the suite is available. Pseudocode (2.6) shows how the tool establishes

a secure connection to the server (lines 1−6). Then, the tool waits for

the server response (lines 8−9) and gets the http code of the connection.

If the code is different from 200, the connection is not correct and an

error is returned (lines 10−17). If the connection is correct, the string

with the version available in the server is translated to an ASCII format

and compared with the current version of the software.
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� �
1 #Definition of a root item

2 set root_item [.tree item create -button auto]

3 #Definition of the style of the item

4 .tree item style set $root_item 0 root_style

5

6 #Configuration of the text element of the style

7 .tree item element configure $root_item 0 \

8 text_name -text "Materials"

9

10 #Add the item to the tree as root item

11 .tree item lastchild root $root_item

12

13 #Definition of a child item

14 set child_item [.tree item create -button auto]

15 #Definition of the style of the item

16 .tree item style set $child_item 0 child_style

17

18 #Configuration of the text element of the style

19 .tree item element configure $child_item 0 \

20 text_name -text "Vacuum"

21 #Configuration of the image element of the style

22 .tree item element configure $child_item 0 \

23 img_name -image [image create photo img.png]

24

25 #Add the item to the root as child item

26 .tree item lastchild $root_item $child_item 	� �
Pseudocode 2.5: Creation of the items of the tree

If they are different, the tool asks if the user wants to update the soft-

ware (see lines 19−34). The new version is compressed in a ZIP file

located in the server. If the user wants to update the software, the tool

downloads the ZIP file, decompresses its content and, finally, deletes the

ZIP file. Pseudocode (2.7) illustrates this step, where lines 1− 23 show

how the tool downloads the ZIP file from the server. Line 25 checks if the

response of the server is correct. Once the response is correct, the down-

loaded file is closed and the http token is cleaned (lines 30−33). Finally,

the tool decompresses the file (lines 34−36) and deletes the update file

(lines 37−38).
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� �
1 #Register the port for secure connection

2 ::http::register https 443 ::tls::socket

3

4 #Get the version of the suite from the server

5 set token [http::geturl "$ip_server/version" \

6 -binary 1 -timeout 20000]

7

8 #Wait for the server response

9 ::http::wait $token

10 #Get the http code

11 set ncode [::http::ncode $token]

12

13 #Diferent from 200, the result is not correct

14 if {$ncode != 200} {

15 set error "Error connecting to server..."

16 return

17 }

18

19 #Translate the version to ASCII

20 binary scan [::http::data $token] \

21 SSS val1 val2 val3

22

23 #Obtain the version available in the server

24 set httpversion "${val1}.${val2}.${val3}"

25

26 #Clean the http token

27 ::http::cleanup $token

28

29 #Compare the versions

30 if {$httpversion != $current_version} {

31

32 #Update the software ??

33 ...

34 } 	� �
Pseudocode 2.6: TCL-TK code that detects if there is a new version of

the suite available to be downloaded

32



2.2. SUITE FRAMEWORK

� �
1 #Open the file where to save the results

2 if {[catch {set out [open "file.zip" w]} ops]} {

3 #Problems retrieving the file from server

4 return

5 }

6

7 #Gets the file

8 if {[catch {set token [http::geturl "file.zip" \

9 -channel $out -binary 1]} oops]} {

10 #Problems retrieving the file from server

11 ...

12 #Close the file

13 close $output

14 #Delete the file

15 file delete [file join "file.zip"]

16 #End task

17 return

18 }

19

20 #Wait for the token

21 ::http::wait $token

22 #Get the http code

23 set ncode [::http::ncode $token]

24 #Diferent from 200, the result is not correct

25 if {$ncode != 200} {

26 set error "Error connecting to server..."

27 return

28 }

29

30 #Close the file

31 close $output

32 #Clean the token

33 ::http::cleanup $token

34 #Decompress the update

35 runExe run "unzip.exe -x -o -U file.zip" \

36 -blocking false -timeout 3600

37 #Delete the update file

38 file delete [file join "file.zip"] 	� �
Pseudocode 2.7: TCL-TK code that updates the version of the suite
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Figure 2.7: Optimizer flowchart

2.3 Automatic Goal Oriented Optimizer

An automatic goal oriented optimizer has been developed to equip the

suite with a powerful tool in the design of electromagnetic structures. It

is worth to note that the development of the optimizer is the main reason

of the implementation of the commented symbolic variables tool. Users

can use the optimizer to automatically adjust the designated model pa-

rameters such as model-element coordinates, object length, and similar

quantities to achieve an improvement of the results like maximum gain

and low side lobes.

2.3.1 Flowchart of the optimizer

Before using the optimizer, the user needs to define the model in term of

symbolic variables with the appropriate tools provides by the framework.

Further details about these tools were given in Section 2.2. Once the

model is defined in terms of symbols, the optimizer can drive, without the

user intervention, the modification of the model (geometry dimensions,

material constants, etc) by changing the actual values of the symbols

used to define the model. The flowchart of the optimizer is depicted in

figure 2.7.
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The optimizer calls the solver with the initial values of the symbols. If

the goal is satisfied, the optimization process stops; otherwise, another

iteration is started with new values of the optimization variables given

by the optimizer. For that purpose, the symbolic variables tool of the

framework exchanges the symbols for their real values and executes the

needed operations (within GiD) to modify the geometry of the model

(and also other parameters, as material constants, and so on). Once

the geometry is modified, a new mesh is generated using the GiD mesh

generator. The next step is to call the solver to in order to perform the

simulation. These results are given again to the optimizer module and

the process continues until either the goal is satisfied or the maximum

number of iterations predetermined by the user is reached.

Several optimization methods are available in the suite, such as, Powell’s

Method [47], Simplex Method [48] and Particle Swarm Optimization

(PSO) [49].

2.3.2 Fitness function

The fitness function of the optimization (i.e., difference between the sim-

ulated results and the given criteria) is calculated using the formula:

FF (x) =
wi
αi
fi(x), i = 1, 2, ...n with fi(x) =

√√√√num∑
k=1

(Gk(x)−G0)

(2.1)

where FF is the total fitness value and fi is the fitness value for i-th

criterion. The total fitness value is the addition of fitness value for each

criterion that needs to be normalized and weighted. x are the variables

to be optimized. There are n criteria in total, and each criterion is as-

sociated with a normalization factor αi and a weight wi. The weight is

used to differentiate the priority of the criteria, and the normalization

factor is used to balance the values for different levels of criteria (e.g. the

gain and/or the impedance). The fitness value for each criterion is cal-

culated using the fitness value fi(x). For the i-th criterion, the optimizer

stores the results that satisfy the i-th criterion and computes the error

between the collected value and the objective value. For example, if the

criterion is the optimization of the radiation pattern within a certain

angular range, then there may be some intermediate results that meet
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the given criterion within the angle of interest and they will be stored

by the optimizer. Within the stored results, some of which satisfy the

given criterion will not be computed for the error between the stored

value and the objective value. In this way, the optimization efforts will

be focused on the results that do not satisfy the criterion. Gk(x) stands

for the stored results that does not satisfy the criterion. num is the

number of results being stored and computed for the value of the cost

function, and G0 is the target value of the i-th criterion.

When the fitness function is optimized, the computed pattern becomes

closer to the objective pattern. Thus, the goal of the optimizer is to use

optimization algorithms to decrease the total fitness function value.

2.4 Numerical results

To illustrate the capabilities and performance of the suite some examples

are included in this section. It is worth to note that, in the current

version of the suite, the optimizer is only linked to the MoM module of

the suite. In future developments, the optimizer will be linked also with

the FEM module. The main capabilities and features of the MoM module

of the suite were already introduced in Chapter 1. An example of its

performance is shown below.

The bistatic analysis of an apache helicopter as the shown in figure 2.8

has been carried out. The helicopter has been illuminated by an incident

plane wave at 800 MHz with θθ−polarization along the y−axis. The

helicopter model at that frequency has an electrical size of 47.2λ, 38.93λ

and 10.13λ, which makes the electromagnetic analysis a challenge. The

wheels and the blades of the helicopter have been considered as dielectric

to make a realistic model. A dielectric constant εr = 4.5 has been chosen

since the values of εr for different materials, mainly carbon and glass

fibers, are around 4.5.

The simulation has been performed on high performance computing clus-

ter formed by 35 nodes with a total of 560 AMD CPUs: 16 CPU cores on

each node and 4 GB RAM per core, and a total of RAM approximately

equal to 2.24 TB. No hard disk storage is available for computations.
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Figure 2.8: Model of apache helicopter

The total number of degrees of freedom for the accurate modeling of this

problem was around 255000 (half in the case of no dielectric parts in the

model). The total RAM memory needed to solve this problem was 968.94

GB and the simulation took 9.67 hours. Note that the degrees of freedom

considered in this case are regarding to the MoM module of the suite. The

computed results for azimuth angle are shown in figure 2.9. The main

lobe of the RCS appears in the tail of the helicopter (φ = 270◦), while

the incident plane wave is coming from (φ = 90◦)
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Figure 2.9: Bistatic RCS of real helicopter at 800 MHz in azimuth
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A1
B
1

L1
b

a

L2

SYMBOL VALUE

a 15 mm

b 30 mm

A1 100 mm

B1 75 mm

L1 25 mm

L2 75 mm

Figure 2.10: Horn antenna before optimization

The following examples illustrate the optimization process of two anten-

nas. The first one shows the optimization process of the dimensions of

a horn antenna to obtain a certain gain along the broadside direction.

The second example consists of the optimization of the radiation pattern

of a slotted waveguide array. In particular, the goal is to maximize the

main love and minimize the sidelobe levels (SLLs).

2.4.1 Optimization of a horn antenna

The aim of this optimization process is to obtain a horn antenna with a

17 dB gain along the broadside direction. The working frequency in this

case is 2.5 GHz. Figure 2.10 shows the dimensions of the horn antenna

before starting the optimization process. The 3D representation of the

computed gain pattern is shown in figure 2.11. It is observed that the

initial gain of the antenna is 11.74 dB. In this case, the computed gain

must be enhanced more than 5 dB by changing the dimensions of the

horn antenna. The Powell’s Method is chosen as optimization method.

The maximum number of iterations is set to 500.

Figure 2.12 shows the dimensions of the horn antenna after 298 iterations

at which the desired goal has been reached. It is observed how the

optimizer has changed the dimensions of the horn antenna. The 3D

computed gain pattern of the antenna after 298 iterations is shown in

figure 2.13. A maximum gain of 17.53 dB, which satisfies the desired

goal, is observed. The number of unknowns for this example is 900

and the total time used in the optimization process is 16.5 minutes (3.2

seconds per iteration) using a single desktop computer with 4 cores at

2.4 GHz and 3.2 GB of memory in the simulation.
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Figure 2.11: Horn antenna before optimization

A1

B
1

b

a

L2

SYMBOL VALUE

a 20.5 mm

b 22.0 mm

A1 200.1 mm

B1 129.5 mm

L1 46.8 mm

L2 370.4 mm

L1

Figure 2.12: Horn antenna before optimization
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Figure 2.13: Horn antenna after optimization

2.4.2 Optimization of slotted waveguide array

The slotted waveguide antenna array is formed by the combination of

10 single slotted waveguides. Each single waveguide has 10 narrow-wall

slots, with dimensions of 22.86 mm by 10.16 mm, and wall thickness of

1.00 mm. The whole length of the waveguide is 266.58 mm. Figure 2.14

gives the geometry of the inclined slot. The inclined angle of the slots is

set to be θ, with cutting depth h (measured from the inner wall), and the

width of the slots is w. A small dipole inside the waveguide is used as

the excitation, as shown in figure 2.15. The ends of the waveguides are

shorted, with the feeding dipole placed at 0.25 λg from one end (λg is the

guided wavelength). The operating frequency of interest is 9.375 GHz.

w

h Z
X

Y
q

Figure 2.14: Geometry of the inclined slot
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Figure 2.15: Model of the excitation of the waveguide

From array theory, a 20 dB Taylor distribution is used to determine

the feeding of the waveguide array to achieve the desired radiation pat-

tern. There is a 0.9π phase difference between the feeds of the adjacent

radiating waveguides.

The symbol list to be optimized contains 20 symbols in total. There

are 10 slots on the wall of each waveguide, where 10 symbols are used

to compute the inclined angle θ for each of the ten slots, and another

10 symbols represent the cutting depth h for each slot. Each waveguide

in the array has the same dimensions except for alternating slot incline

angles as shown in figure. Hence, a total of 20 variables need to be

optimized. The goal is to optimize the radiation pattern of the slotted

waveguide array. Due to the phase differences between the feeds, the

direction of the main lobe is 5◦ toward the y-axis measured from the z-

direction, with corresponds to φ = 90◦, θ = 5◦. The goal is to maximize

the main love and minimize the sidelobe levels (SLLs).

After 100 iterations, the optimization finishes as the iteration number

reaches the predefined limitations. In figure 2.16 which shows the xz-

plane, it is seen that the main lobe remains roughly the same after opti-

mization; however, the largest sidelobes at angles θ = 5◦ and θ = −15◦

are suppressed by about 3 dB. The solid and dashed indicators mark the

highest sidelobe for the initial and optimized results, respectively. It is

easy to see that the SLL performance is improved by about 3 dB. Figure

2.17 shows the yz-plane, and similarly, the solid and dashed indicators

show the highest sidelobe and the mainlobe values for the radiation pat-

tern before and after optimization, respectively. It can be seen that

both the mainlobe and the largest sidelobe decrease by roughly 1 dB.

The pattern has been improved in the xz-plane, whereas in the yz-plane,

it remains relatively the same in terms of the mainlobe to peak sidelobe

performance.
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θ

Figure 2.16: Radiation pattern of the slotted waveguide array after

optimization (xz-plane)

θ

Figure 2.17: Radiation pattern of the slotted waveguide array after

optimization (yz-plane)

42



2.5. CONCLUSIONS

2.5 Conclusions

A detailed description of the development of the graphical user inter-

face (GUI) has been given in this chapter. The GUI has been based

on a general purpose pre and postprocessor called GiD. The main idea

has been to develop a new GUI focused only on electromagnetics, in-

stead of developing a general purpose pre and postprocessor as GiD is.

Thereby, a full framework has been developed to provide new impor-

tant features to the software GiD, such as, a symbolic variables tool

that enables the parametrization of models using symbols, new defini-

tion windows for electromagnetic variables, a complete navigation tree

to facilitate the access to the menus or automatic online updates for the

suite among others.

Also, an automatic goal oriented optimizer has been developed to en-

dow the suite with a very powerful tool in the design of electromagnetic

structures. Users can use the optimizer to automatically adjust the des-

ignated model parameters and improve the results like maximum gain

and low side lobes.
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CHAPTER 3

FINITE ELEMENT MODULE

A detailed description of the Finite Element module of the suite is given

in this chapter. The module is based on the Finite Element Method

(FEM) and makes use of edge-based elements to solve the Maxwell equa-

tions, not only for the electric field, but also for the magnetic field. The

variational formulation used by the module is introduced in Section 3.1.

The use of FEM for the analysis of radiation/scattering problems requires

the truncation of infinite space into a finite computational domain. This

truncation can be accomplished by introducing an artificial surface to

enclose the antenna. However, to emulate the original free-space en-

vironment, the artificial truncation surface should absorb as much of

the radiated field as possible in order to reduce any artificially reflected

fields back to the computational domain. Amount the mesh trunca-

tion techniques appeared in the literature, the module makes use of a

boundary integral equation which provides a (numerically) exact radi-

ation boundary condition. Details about this truncation technique are

given in Section 3.2.

In order to approximate the solutions for the vector wave equations aris-

ing from Maxwell’s equations, the module uses edge-based elements.

Particularly, the finite domain is discretized into tetrahedral curl-con-

forming elements of second-order belonging to the Nédélec family.



3.1. VARIATIONAL FORMULATION

These elements are the appropriate choice for the discretization of the

electric and magnetic fields due to provide tangential continuity across

element interfaces. Section 3.3 provides a brief escription about these el-

ements and the set of interpolation polynomials used by the FEM module

of the suite.

The system of equations given by FEM provides very sparse matrix that

have to be solve using advanced sparse solvers. The implementation

of the module lets the choice of four different sparse solvers, such as,

MUMPS [50], HSL [51], UHM and PARDISO [52]. Furthermore, the module

is completely parallelized and able to run from small laptop to high

performance clusters with many CPU cores. Further details about the

how the module was implemented may be found in Section 3.4.

Before a computer code can be used to provide solutions for real world

problems, the accuracy of its results must be verified. A very powerful

way to perform this verification is to employ the Method of Manufac-

tured Solution (MMS). The basic idea of this technique is to manufacture

an exact solution to some equation by solving the problem backwards.

Thus, the method can be used to provide evidence that the code is cor-

rect and correctly implemented. Some of the verification tests carried

out are documented in Section 3.5

Finally, the validation of the results for real world application is re-

quired in order to proof that the module is ready for research use. Thus,

numerous simulation for different electromagnetic problems have been

performed comparing the result with established code (as commercial

softwares) or directly with measurement. Section 3.6 gathers some re-

sults of real applications where a great agreement may be found in all

the cases.

3.1 Variational Formulation

The module is based on the so-called Finite Element - Iterative Integral

Equation Evaluation (FE-IIEE) method. This technique uses the well-

known Finite Element Method (FEM) to model the interior finite domain

ΩFEM of the problem using a Cauchy (Robin) type of boundary condition

for the mesh truncation boundary.
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Table 3.1: Formulation magnitudes and parameters

V ¯̄fr ¯̄gr h O L ΓD ΓN

Form. E E ¯̄µr ¯̄εr η J M ΓPEC ΓPMC

Form. H H ¯̄εr ¯̄µr
1
η M −J ΓPMC ΓPEC

The exterior infinite domain is truncated by an integral equation repre-

sentation of the exterior field. Then, the solution is obtained through an

iterative process in which the residual of the radiation boundary condi-

tion on the mesh truncation boundary is updated.

It is worth noting that the exterior infinite domain can be truncated

with the mentioned Iterative Integral Equation Evaluation Method (see

Section 3.2 for further details), or, conversely, it can be truncated by us-

ing the typical Cauchy (Robin) type of boundary condition (see equation

3.6). Thus, the electromagnetic problem may be reduced to a common

FEM analysis.

The algebraic system of equations that characterize the interior finite

domain ΩFEM can be obtained in terms of the electric (E) or magnetic

(H) field through

∇×
(

¯̄fr
−1
∇×V

)
− k2

0
¯̄gr V = −j k0 η0 O−∇×

(
¯̄fr
−1

L
)

(3.1)

where V denotes the magnitude to be solve depending on the formulation

employed, k0 is the wavenumber in vacuum and the right hand side of

the equation is the source term due to the presence of impressed electric

and/or magnetic currents within ΩFEM. Table 3.1 shows the different

magnitudes involved in the E and H formulations. For simplicity, the

source term is renamed to q

q = −j k0 η0 O−∇×
(

¯̄fr
−1

L
)

(3.2)

modifying the equation (3.1) to

∇×
(

¯̄fr
−1
∇×V

)
− k2

0
¯̄gr V = q (3.3)
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Equation (3.3) provides the behavior of electromagnetic fields in all do-

mains, but in particular, in the interior domain ΩFEM. In addition to the

above differential equation, boundary conditions on the contour of the

domain ΩFEM are required to make the electromagnetic solution unique.

The boundary conditions considered are the homogeneous Dirichlet con-

dition over Perfect Electric Conductor (E formulation) and Perfect Mag-

netic Conductor (H formulation), the homogeneous Neumann condition

over Perfect Magnetic Conductor (E formulation) and Perfect Electric

Conductor (H formulation) and the Cauchy condition over the external

boundary of the domain ΩFEM. The equations of these boundary condi-

tions are given by

n̂×V = 0 over ΓD Dirichlet (3.4)

n̂×
(

¯̄fr
−1
∇×V

)
= 0 over ΓN Neumann (3.5)

n̂×
(

¯̄fr
−1
∇×V

)
+ γ n̂× n̂×V = Ψ over ΓC Cauchy (3.6)

where ΓD, ΓN and ΓC are the boundaries where the Dirichlet, Neumann

and Cauchy conditions must be applied, respectively, and n̂ is the out-

ward unit vector to the boundary surface.

Following the traditional methodology of FEM, the vectorial equation

(3.3) must be converted to a variational equation. The variational ex-

pression consists of the application of a weighted-integral form instead of

using the original formulation of the problem. In this case, the Galerkin

Weighted Residual Method is used to obtain the mentioned weighted-

integral form. Lets define the residual associated to equation (3.3) as

R =∇×
(

¯̄fr
−1
∇×V

)
− k2

0
¯̄gr V − q (3.7)

and then, applying the Galerkin Method, the weighted-integral form is

RW =

∫∫∫
Ω

W ·R dV =

∫∫∫
Ω

W ·∇×
(

¯̄fr
−1
∇×V

)
dV

− k2
0

∫∫∫
Ω

W · ¯̄gr V dV −
∫∫∫

Ω

W · q dV (3.8)

where the testing functions W belong to the vectorial space H(curl)0,

the basis functions V belong to the vectorial space H(curl) and dV =

dx dy dz is the differential volume.
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H(curl) = {V ∈ L2, ∇×V ∈ L2} (3.9)

H(curl)0 = {W ∈ H(curl), n̂×W = 0 on ΓD} (3.10)

Applying the following vectorial identities

∇ · (A×B) = B ·∇×A−A ·∇×B (3.11)

(A×B) · n̂ = −A · (n̂×B) (3.12)

and the Gauss theorem∫∫∫
Ω

∇ ·A dΩ =

∫∫
©
Γ

A · n̂ dΓ (3.13)

the double rotational term of equation (3.8) is given by∫∫∫
Ω

W ·∇×
(

¯̄fr
−1
∇×V

)
dV =

∫∫∫
Ω

∇×W ·
(

¯̄fr
−1
∇×V

)
dV

+

∫∫
©
Γ

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS (3.14)

where Γ is the boundary of the volume ΩFEM and n̂ is the outward unit

vector for each point of Γ.

Substituting equation (3.14) in (3.8), the residual has the given below

terms

RW =

∫∫∫
Ω

(∇×W) ·
(

¯̄fr
−1
∇×V

)
dV − k2

0

∫∫∫
Ω

W · ¯̄grVdV

−
∫∫∫

Ω

W · q dV +

∫∫
©
Γ

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS (3.15)

The boundary integral of equation (3.15) may be simplified applying the

boundary conditions introduced in (3.4), (3.5) and (3.6). For simplicity,

lets consider the boundary integral alone∫∫
©
Γ

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS (3.16)
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The boundary of the problem is divided in three disjoint surfaces Γ ≡
ΓD ∪ ΓN ∪ ΓC based on the boundary condition assigned to each one:

homogeneous Dirichlet (3.4) in ΓD, homogeneous Neumann (3.5) in ΓN

and Cauchy (3.6) in ΓC. Thus, equation (3.16) may be rewritten as∫∫
©
Γ

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dΓ = −

∫∫
ΓD

(n̂×W) ·
(

¯̄fr
−1
∇×V

)
dS

+

∫∫
ΓN

W·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS +

∫∫
ΓC

W·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS

(3.17)

The imposition of the Dirichlet boundary condition over the integral

(3.17) depends on the vectorial spaces used for testing function W and

the basis functions V. In this case, the term n̂×W over the boundary

surface ΓD is directly zero due to the application of the condition given

by (3.10) over ΓD. Then, the integral corresponding to the Dirichlet

boundary is ∫∫
ΓD

(n̂×W) ·
(

¯̄fr
−1
∇×V

)
dS = 0 (3.18)

The homogeneous Neumann condition may be imposed directly over the

boundary integral resulting also zero.

n̂×
(

¯̄fr
−1
∇×V

)
= 0⇒

∫∫
ΓN

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS = 0 (3.19)

As it occurs with the case of the homogeneous Neumann boundary con-

dition, the Cauchy condition may be imposed directly over the boundary

of ΩFEM obtaining∫∫
ΓC

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS =

∫∫
ΓC

W ·Ψ dS

+ γ

∫∫
ΓC

(n̂×W) · (n̂×V) dS (3.20)

Substituting in equation (3.15), the equations (3.17, 3.18, 3.19, 3.20), the

residual is defined in the whole FEM domain as function of the boundary

conditions, the source of the problem and the energy terms
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RW =

∫∫∫
Ω

∇×W ·
(

¯̄fr
−1
∇×V

)
dV − k2

0

∫∫∫
Ω

W · ¯̄gr V dV

−
∫∫∫

Ω

W · q dV +

∫∫
ΓC

W ·Ψ dS + γ

∫∫
ΓC

(n̂×W) · (n̂×V) dS

(3.21)

The variational equation (3.21) is very common in FEM and also is used

in multiple methods for the resolution of electromagnetic problems. The

module makes use of this equation on each of the sub-domains in which

the interior finite domain ΩFEM is divided.

The current version of the FEM module supports two different interior ex-

citations, such as the rectangular waveguide port and the coaxial waveg-

uide port and one exterior excitation, such as plane waves. The source

term due to the presence of impressed electric and/or magnetic currents

is supported in the formulation but, in the current version of the mod-

ule, is not provided as interior excitation. Future developments of the

module will provide impressed electric and/or magnetic currents as inte-

rior excitations. The following subsections describe how the rectangular

waveguide port, the coaxial waveguide port and the exterior plane wave

excitation have been implemented in the module.

3.1.1 Rectangular waveguide port

This waveguide port is a mono-mode boundary condition where the de-

sired analytic field is placed (TE/TM modes). The residual of equation

(3.6) applied on the rectangular waveguide for the mode TE10 is

ΨTE10 = −2 γ (n̂× n̂×VTE10) (3.22)

where γ is the propagation constant of the mode TE10, n̂ is the outward

unit vector to the boundary surfaces and VTE10 is the imposed TE10

mode depending on the formulation used. Then, particularizing the

expressions of the TE10 mode for the electric field formulation, the value

of the field ETE10 referred to the local coordinate system of the waveguide

(see figure 3.1) is given by

ETE10 = − 1√
2

ωµ0π

k2
c a

sin

(
πξ

a

)
η̂ (3.23)
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h

c
x

a

b

Figure 3.1: Local coordinate system of rectangular waveguide port

where µ0 is the vacuum permeability, a is the width of the rectangular

waveguide, kc is the cut-off wavenumber of the waveguide and ξ is the

coordinate of the local ξ-axis of the waveguide where the field is calcu-

lated. It is worth noting that the factor that multiplies the field ETE10 is

used to normalize the input power of the port to one Watt.

3.1.2 Coaxial waveguide port

The waveguide port of the coaxial transmission line is a mono-mode

boundary condition where the fundamental TEM mode is excited. The

residual of equation (3.6) applied on this waveguide port is

ΨTEM = −2 γ (n̂× n̂×VTEM) (3.24)

where γ is the propagation constant of the TEM mode, n̂ is the outward

unit vector to the boundary surfaces and VTEM is the imposed TEM field

depending on the formulation used. For instance, for the electric field

formulation, the imposed TEM field referred to the local coordinate system

of the coaxial transmission line (see figure 3.2) is given by

ETEM =

√
η

2π ln (b/a)

(
1

r

)
r̂ (3.25)

where η is the characteristic impedance of the coaxial port medium,

a is the coaxial inner radius, b is the coaxial exterior radius, r is the

radial coordinate and r̂ is the unitary vector of r. As it occurs with

the rectangular waveguide port, this waveport is also normalized to one

Watt of input power.
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a

b
ŝr

Figure 3.2: Local coordinate system of the coaxial waveguide port

3.1.3 Exterior plane wave excitation

Other way to excite the electromagnetic problem is using exterior inci-

dent sources as plane waves, cylindrical waves or spherical waves. The

current version of the module only supports plane waves as exterior exci-

tations, but other types of wave excitations may be easily incorporated.

The residual of equation (3.6) applied on this excitation is

ΨPLW = −2 γ (n̂× n̂×VPLW) (3.26)

where γ is the propagation constant of the exterior medium of the prob-

lem, n̂ is the outward unit vector to the boundary surfaces and VPLW is

the incident field depending on the formulation used. For instance, the

incident field for the electric field formulation is the electric field of the

desired plane wave

EPLW = E0 e
−jk·r (3.27)

where E0 is the polarization vector, k is the propagation vector of the

wave and r is the position vector where the incident field is calculated.

3.2 Iterative Integral Equation Evaluation Method

The Iterative Integral Equation Evaluation Method (FE-IIEE) is a mesh

truncation technique where the original infinite domain is divided in two

overlapping domains: a finite FEM domain (ΩFEM) bounded by the surface

S and the infinite domain exterior to the auxiliary boundary S
′

[?].
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EXTERIOR DOMAIN (WEXT)

PMC

PEC

PEC

FEM DOMAIN (WFEM)

MEDIUM 1

e1 m1

MEDIUM 2

e2 m2

Jeq

Meq

M

J

Einc, Hinc

S

S’

Ŝ n

Ŝ n

Figure 3.3: Typical setup of a open single-region problem

Thus, the overlapping region is limited by S
′

and S. The method makes

use of a integral equation representation of the field exterior to S
′

ob-

taining the solution through an iterative process in which the residual

of the radiation boundary condition on the mesh truncation boundary

is updated.

This truncation method is a very powerful technique since the distance

from the auxiliary boundary S
′

to the boundary surface S is usually

small, typically in the range of 0.05 λ to 0.2 λ. Thus, the FEM domain

can be truncated very close to the source of the problem reducing the

number of unknowns of the analysis while the sparsity of the FEM matrices

is retained.

As it was commented above, the solution is obtaining through an itera-

tive process in which the residual of the radiation boundary condition on

the mesh truncation boundary is updated. Thus, the convergence of the

method needs to be considered in order to obtain an accurate solution.

Convergence studies have been done during the last years, for details

see [53], concluding that conformal shapes, as convex boundaries, have

a good convergence rates even, when the distance between S
′

and S is

very small (≤ 0.01 λ). However, a clear pattern about how the method

diverges or converges depending on the size of the overlapping region

cannot be obtained for the case of non-convex truncation boundaries.
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It is worth to note that electromagnetic problems involving multiple

structures, such as, scatterer objects or antennas, can be solved by this

method using a single domain truncation, but often it is more efficient to

separate the single domain into several subdomains, separated by free-

space, and to solve the set of subdomains iteratively. Thus, a single-

region or a multi-region FE-IIEE method must be considered.

3.2.1 Single-region FE-IIEE

Figure 3.3 depicts a typical setup problem of a single-region truncation.

The method starts computing the sparse system of equations that vari-

ational equation (3.21) gives on each of the sub-domains in which the

interior finite domain ΩFEM is divided. The boundary condition used over

the surface S is the following Cauchy (Robin) boundary condition

n̂×
(

¯̄fr
−1
∇×V

)
+ j k n̂× n̂×V = Ψ over ΓS (3.28)

where ΓS stands for the part of the boundary domain on S, n̂ is the

outward unit vector to S and k is the wavenumber of the medium exterior

to S
′
, assumed to be homogeneous. This system of equations may be

expressed in partitioned form as follows:[
KII KIS

KSI KSS

] [
gI

gS

]
=

[
bI

bΨ

]
(3.29)

where the sub-indexes S and I refer to the degrees of freedom g associ-

ated to S and those associated to nodes in the interior of S, respectively.

Thus, the right hand side term {bI} corresponds to the interior current

sources J and M and the inward waves impressed at the ports. The

term {bΨ} is related to the residual Ψ of the boundary condition at the

truncating boundary S. Once the system of equation is obtained the

algorithm to solve the problem is as follows:

Step 1: An initial value of Ψ, denoted as Ψ0, is assumed. Specifi-

cally, Ψ0 is zero for radiation problems and Ψ0 = Ψinc for scattering

problems where Ψinc is the value of equation (3.28) when the mag-

nitude V is replaced by the corresponding incident field. Then, the

right had side term b0Ψ is computed.
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Step 2: The FEM system of equations (3.29) is solved. After that,

fields on S
′

are calculated in order to compute the electric and mag-

netic current densities Jeq and Meq of the equivalent exterior prob-

lem.

Step 3: The field, and its curl, over S radiated by the equivalent

currents Jeq and Meq are calculated. The fields radiated by the FEM

region, VFE-IIEE and its curl (∇×V)FE-IIEE, are computed using the

integral expressions

VFE-IIEE =

∫∫
©
S′

(
Leq ×∇G

)
dS

′

− jkh
∫∫
©
S′

[
Oeq

(
G+

1

k2
∇∇G

)]
dS

′
(3.30)

(∇×V)FE-IIEE = jkh

∫∫
©
S′

(
Oeq ×∇G

)
dS

′

−
∫∫
©
S′

[
Leq

(
k2 G+∇∇G

)]
dS

′
(3.31)

where h is the inmitance of the homogeneous medium (see table 3.1),

and G denotes the Green’s function for a homogeneous medium

which typically is the free space

G ≡ G (r, r′) =
ejk(r−r′)

4π|r − r′|
(3.32)

It is worth noting that the methodology is also valid for non homoge-

neous exterior regions (as those with infinite metallic planes, layered

media, and so on) by using the corresponding integral expression

representation of the field and the Green’s functions of the exterior

region.

Step 4: A new value of Ψ, (Ψi+1 in general) is computed by intro-

ducing the values of the fields VFE-IIEE and (∇×V)FE-IIEE in equation

3.28 where i means the iteration number.
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Figure 3.4: Typical setup of a open multi-region problem.

Step 5: The error between Ψi+1 and Ψi is calculated. If the error is

greater than an error threshold, the method will start again for step

2 (using Ψi+1 as the new residual function); otherwise the iteration

process finishes. The error in Ψ is measured in a weighted L2-norm

errori =

∥∥Ψi −Ψi−1
∥∥

2

‖Ψi‖2
(3.33)

Thus, as it was mentioned above a (numerically) exact radiation bound-

ary condition is imposed (allowing the external boundary to be placed

close to the sources) while the sparsity of the FEM matrices is retained.

It is worth noting that the numerical cost of the second and subsequent

iterations is very small since the factorization of the FEM matrix must be

performed only once at the first iteration (if direct solvers are used).

3.2.2 Multi-region FE-IIEE

Figure 3.4 depicts a typical setup problem of a multi-region truncation.

In this case, each region is bounded by its own auxiliary surface S
′

i

and the exterior boundary Si. As the single-region case, the method

starts computing the sparse system of equations given by the variational

equation (3.21) on each of the sub-domains in which the interior finite

domain ΩFEM is divided.
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The main difference between both methods occurs in the third step of

the algorithm where the field, and its curl, radiated by the equivalent

currents over the exterior boundary Si are calculated. The equivalent

currents of each auxiliary surface S
′

i are used to calculate the fields ra-

diated by the FEM region using the integral expressions

VFE-IIEE =
N∑
i=0

∫∫
©
S

′
i

(
Lieq ×∇G

)
dS

′

i

− jkh
∫∫
©
S

′
i

[
Oi

eq

(
G+

1

k2
∇∇G

)]
dS

′

i (3.34)

(∇×V)FE-IIEE =
N∑
i=0

jkh

∫∫
©
S

′
i

(
Oi

eq ×∇G
)
dS

′

i

−
∫∫
©
S

′
i

[
Lieq

(
k2G+∇∇G

)]
dS

′

i (3.35)

where N is the total number of regions, h is the inmitance of the ho-

mogeneous medium as the single region case and G denotes the Green’s

function for a homogeneous medium (see equation 3.32).

Once the fields radiated by the FEM region are calculated, a new value

of Ψ is computed and the error between the previous and the current

iteration is obtained. If the error is greater than an error threshold,

the method will start again for step 2 (as single region); otherwise the

iteration process finishes.

3.3 Basis Functions

In order to approximate the field in the elements of the mesh, a set

of interpolation polynomials are chosen. Specifically, vector finite ele-

ments have shown to be the appropriate choice for the approximation

of electromagnetic field quantities. Two families of vector elements may

be distinguished: div-conforming and curl-conforming elements, provid-

ing continuity across element interfaces in the sense of the divergence
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Figure 3.5: Second-order Nédélec tetrahedron

operator (i.e., normal continuity) and curl operator (i.e., tangential con-

tinuity), respectively. Thus, div-conforming elements are suitable for the

discretization of the electric and magnetic inductions, D and B, whereas

curl-conforming elements are appropriate to approximate the electric and

magnetic fields, E and H.

The curl-conforming elements were proposed by Nédélec in 1980, [43],

extending the divergence-conforming elements of Raviart and Thomas

defined to solve second-order elliptic problems in 2D [54]. It is worth to

note that different types of curl-conforming elements have appeared since

Nédélec’s 1980 paper. It may distinguished between mixed order element

and polynomial complete elements. Polynomial complete elements have

the same order of approximation along any direction, however, mixed

order elements provide a constrained representation of the vector field

leading to a different order of polynomial approximation along one di-

rection than along the others.

Among the curl-conforming elements appeared in the literature, the FEM

module of this suite makes use of the Nédélec curl-conforming elements

proposed in [7, 41]. Specifically, the finite domain is discretized into

tetrahedral curl-conforming elements of second-order. Figure 3.5 shows

the representation of the space of the function for the second-order

Nédélec tetrahedron.

59



3.3. BASIS FUNCTIONS

The space of functions for the second-order element is denoted as R2,
which is the space of vector polynomials of order 2 that satisfy cer-
tain constraints (i.e., the so-called Nédélec constraints). Equation (3.36)
shows this space of functions with 20 independent coefficients that have
to be determined. Thus, the number of degrees of freedom of the tetra-
hedral element of second-order is 20, and 20 is also the number of vector
basis function belonging to R2 that should be chosen Nj , (j = 1...20).

R2 ≡


a1 + a2x+ a3y + a4z +Dy2 − Fxy −Gxz +Hz2 + Jyz

b1 + b2x+ b3y + b4z −Dxy − Eyz + Fx2 + Iz2 − Jxz +Kxz

c1 + c2x+ c3y + c4z + y2 +Gx2 −Hxz − Iyz −Kxy


(3.36)

The vector basis functions Nj are obtained from the definition of the

degrees of freedom (dof) of a finite element. The dof definition is a fun-

damental issue in order to understand how boundary conditions should

be imposed. Specifically, the vector basis functions are obtained by im-

posing the interpolatory character of the basis functions with respect to

the definition of the degrees of freedom

gi (Nj) = δij , i = 1...20 (3.37)

where gi stands for the i-th functional defining the i-th dof of the el-

ement. Note that equation (3.37) represents a system of equations for

each Nj basis function where the unknowns are the coefficients men-

tioned above. Once the coefficients are obtained for j = 1...20 the basis

functions are completely determined. The definition of the dof function-

als of the Nédélec tetrahedral curl-confor-ming element of second-order

is as follows: 12 dofs associated to the six edges of the tetrahedron given

by ∫
edge

(u · τ̂) q dl ∀q ∈ P2 (3.38)

and 8 dof associated to the four faces of the tetrahedron given by∫
face

(n̂× u) · q ds ∀q ∈ (P1)2 (3.39)

where u stands for the vector unknown, (Pk)n for the space of polynomi-

als of order k in n-dimensions, τ̂ for the unit vector along the direction

of the edge and n̂ for the unit vector normal to the face.
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It is worth noting that the previous definitions of degrees of freedom are

not ready to be used in a finite element code. They must be discretized.

The discretization is performed by means of the choice of a basis for each

one of the polynomial spaces, P2, (P1)2 appearing in equations (3.38) and

(3.39). In this particular case, the module makes use of Lagrange basis

for the polynomial spaces P2 and (P1)2. Thus, the practical FEM dof

definition is made in terms of momentums (or different order) over the

adequate components of the unknown u.

Specifically, the components involved in the definition of the degrees of

freedom associated to the boundary of the element are the components

tangential to that boundary. Thus, the tangential continuity between

elements may be easily imposed in the FEM assembly procedure. However,

care must be taken with the local definitions of the vector quantities

involved in the dof definition, specially when the basis functions are

obtained in the parent element. In the case of the present FEM module,

the basis functions are obtained in the parent element and they are

transformed to the real element using the inverse of the jacobian matrix.

3.4 Implementation Details

The system of equations given by FEM provides very sparse matrices that

have to be solve using advanced sparse solvers. There are many types of

these solvers in both academic and commercial sectors with very similar

capabilities and performance. The implementation of the module allows

the use of four of these sparse solver, such as MUMPS [50], HSL [51], UHM

and PARDISO [52].

The module also provides a parallel implementation where one can utilize

all the CPU cores available on single computers or on several compute

nodes of a high performance computing (HPC) cluster. The module has

been developed to run efficiently on any type of computer ranging from

small laptops to HPC clusters. The parallel implementation is achieved by

using MPI (Message Passing Interface) [39] and multi-thread execution

within each MPI process by calling appropriate math kernel libraries.

Figure 3.6 shows the block diagram of the implementation of the module.
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Figure 3.6: Block diagrams of the implementation of the module
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DOMAIN #2DOMAIN #1 DOMAIN #3

Figure 3.7: Arbitrary distribution of the finite elements for a parallel

execution with 3 MPI processes

A logical MPI process grid is generated which is used to distribute the

finite elements of the problem into domains. Thus, every MPI process

computes its portion of the FEM matrix concurrently using a distributed

memory system (see the filling matrix step in figure 3.6). An arbitrary

distribution of the finite elements supposing a MPI grid of 3 processes is

shown in figure 3.7. The elements of each domain (distributed by colors)

are processed by the corresponding MPI process.

Once the computation of the FEM matrix is finished, the sparse solver

factorizes the matrix using multi-frontal methods (note that the sparse

solver also computes concurrently on different cores as it is shown in

figure 3.6). At the end of this task, the solver is ready to solve the system

of equations using back substitution methods. Finally, the solution is

sent to the main process using MPI communication and given to the user.

It is worth noting that while the sparse solver is factorizing the FEM ma-

trix, MPI communication is required between the processes involved (see

the black/red arrows in figure 3.6). Also, MPI communication is needed

to solve the system of equations, once the matrix has been factorized.
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Figure 3.8: Memory used during the factorization and solving phases

with MUMPS as sparse solver for different problem sizes

A multi-thread execution within each MPI process may be achieved by us-

ing appropriate math kernel libraries as BLACS and level 3 BLAS routines

[?]. Sparse solvers make use of these types of math kernel libraries to im-

prove the efficiency of multi-frontal methods. The number of OMP threads

per MPI process is selected by a system variable called OMP NUM THREADS

that can be easily modified by the users.

Figures 3.8 − 3.9 show the memory and the computational time used

for the sparse solver during the factorization and solving phases when

the number of unknowns of the problem is increased. Different values of

the variable OMP NUM THREADS have been employed in order to study the

efficiency and versatility of the multi-thread execution in the module.

The sparse solver used in both cases is MUMPS and the number of cores

employed in each simulation is 56. Figure 3.8 shows great differences in

terms of memory used for the same number of unknowns. In the case of

1-OMP thread per MPI process the memory used is almost double than the

case of 4/8-OMP threads. Similar behavior may be appreciated in figure

3.9 regarding the computational elapsed time during the factorization

and solving phases. In this case, the differences between a simulation

using 4-OMP threads and the others are even more pronounced than for

the memory case.
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Figure 3.9: Computational time expended during the factorization and

solving phases with MUMPS as sparse solver for different problem sizes

This study demonstrates that a multi-thread execution with a configura-

tion of 4-OMP threads per MPI process is much more efficient in terms of

memory and computational elapsed time than a single-thread execution.

Hence, an important future work line in the development of the suite

will be the support of this type of multi-thread execution in the whole

module and not only in the sparse solver part. Figure 3.10 shows the

block diagram of a future implementation of the module.

Figures 3.11 − 3.12 show the speedup of the module for the factorization

and solving phases and for an iteration of the FE-IIEE method, respec-

tively. The speedup on the ordinate axis represents the ratio between

the execution time of a benchmark using one process (sequential execu-

tion) and the execution time of the same benchmark using n processes.

A linear speedup is representative of a good scalability of the code. The

ideal situation is when the slope of the linear speedup is one, meaning

that the execution time of the parallel version is n times lower than the

sequential execution time. In figure 3.11, it is observed that the slopes

of the speedup curves is not one, but is around 0.50 for both in-core

and out-of-core versions. Typically, the parallel performance of a sparse

solver is between 55-60%, so an admissible speedup is obtained.
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Figure 3.10: Block diagrams of a future implementation of the module
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Figure 3.11: Speedup vs number of processes during the factorization

and solving phases using MUMPS as sparse solver
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Figure 3.12: Speedup vs number of processes for the FE-IIEE method

Figure 3.12 shows how the parallel performance of the FE-IIEE method

code for both versions is around 90%, which is near to the ideal parallel

performance in practice. The parallelization of the FE-IIEE method is

very straightforward, since just the splitting of two loops between the

MPI processes of the grid is required. Furthermore, no communication

between those MPI processes is needed during the computation of the

method with the consequent advantages in the parallel performance.
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3.5 Module Verification

The accuracy of the results given by a computer code must be verified

before it can be used to provide solutions for real world problems. Nowa-

days there are many techniques that engineers use to verify their codes

such as comparison methods in which one code is compared to an estab-

lished code or set of codes that solve similar problems (typically used for

validation tests), the Method of Exact Solutions (MES) or the Method of

Manufactured Solutions (MMS).

In this particular case, the FEM module was tested using the Method of

Manufactured Solutions. The basic idea of this technique is to manu-

facture an exact solution to some equation by solving the problem back-

wards. Suppose one is solving a differential equation of the form

Du = f (3.40)

where D is the differential operator, u is the solution and f is a source

term. The idea is to manufacture a solution u and then applies the

equation to find the source term f . The manufactured solution should

be a solution to the fully set of interior equations in order to test as

much code as possible.

In order to measure the error given by the module, different relative and

maximum errors have been defined, such as, the relative field error ξREL,

the maximum field error ξMAX and its curl components, (∇ × ξ)REL and

(∇× ξ)MAX. The following expressions show how these magnitudes have

been defined

ξREL =

∥∥VFEM −Vanalytic

∥∥
2

‖Vanalytic‖2
(3.41)

ξMAX =

∥∥VFEM −Vanalytic

∥∥
∞∥∥Vanalytic

∥∥
∞

(3.42)

(∇× ξ)REL =

∥∥(∇×VFEM)− (∇×Vanalytic)
∥∥

2∥∥(∇×Vanalytic)
∥∥

2

(3.43)

(∇× ξ)MAX =

∥∥(∇×VFEM)− (∇×Vanalytic)
∥∥
∞∥∥(∇×Vanalytic)

∥∥
∞

(3.44)
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Then, lets apply the manufactured solution technique to solve equation

(3.1) and measure the error given by the module. Two types of functions

are used as manufactured solution, such as polynomial functions belong-

ing to the vectorial space of the basis functions and non-polynomial

functions as complex exponentials. The main reason to use polynomials

function belonging to the vectorial space of the basis functions is because

the relative/maximum errors previously defined should be numerically

zero for meshes formed only by straight tetrahedral elements. In other

words, the module should be able to represent the polynomial proposed

as manufactured solution with an error near to the machine precision.

That condition can be used to provide evidence that the code is correct

and correctly implemented. For other types of functions or meshed with

the presence of curved elements, the module should be able to represent

the manufactured solution with an error that decays as the discretization

of the FEM domain contains a lower geometrical error.

The following subsections show the results of applying the MMS for a poly-

nomial function belonging to the vectorial space of the basis functions

and a complex exponential in a cube, a cylinder and a sphere.

3.5.1 Polynomial solution

These verification tests make use of polynomials belonging to the vecto-

rial space of the basis function as manufactured solution. The full set of

polynomials valid for this verification tests is 20 and any of the present

in the vectorial space shown in equation (3.36) can be used.

Although the code was tested using the full set of polynomials, only the

results of one of them are shown in order to reduce the extension of this

document. The behavior of the code in all the tests was very similar

obtaining the same results in term of the relative (ξREL) and maximum

error (ξMAX) and, its curl components, (∇ × ξ)REL and (∇ × ξ)MAX. The

choice to illustrate the verification process using the Manufactured So-

lution Method is

Vanalytic =


y2

−xy
0

 (3.45)
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As commented above, the error given by the code for these type of man-

ufactured solutions should be numerically zero for meshes formed only

by straight tetrahedrons. Thus, the expected result for a cube, where all

the elements are straight tetrahedrons, is an error numerically zero.

Results for several mesh discretization of a cube

Table 3.2 gathers the relative/maximum errors for different mesh dis-

cretization of a cube. Both relative and maximum errors follow the pat-

tern described above and the error is numerically zero in all the cases.

It is worth nothing that the error increases when the structure presents

a finer mesh discretization (it means a higher number of tetrahedrons

in the table). This behavior is completely expected and it is produced

due to the numerical noise accumulated when the computer performs the

numerical operations. If the mesh contains a higher number of tetrahe-

drons, the computer needs to perform a higher number of operations and

the numerical noise accumulated is higher. In this case, as the errors is

numerically zero, this behavior is more appreciable.

Figure 3.13(a) shows the magnitude of the analytic solution
∥∥Vanalytic

∥∥
for the finest mesh discretization of the cube. Figure 3.13(b) shows the

solution given by the FEM module for the same component ‖VFEM‖. The

error between both solutions is shown in Fig. 3.13(c) where an uniform

and very low error may be appreciated.

Results for several mesh discretization of a cylinder

In this case, as the cylinder has curved elements around its boundary, the

errors are not numerically zero, since the FEM basis functions for curved

elements are no longer polynomials. Thus, the errors given by the FEM

module for this case should decay as a better geometrical approximation

is achieved, i.e., when the size of the mesh discretization is smaller.

Table 3.3 gathers the relative/maximum errors for different mesh dis-

cretization of a cylinder. Both relative and maximum errors describe the

behavior commented above giving a first evidence that the FEM module

is correctly implemented also for curved elements. Figure 3.14(a) shows

a 3D representation of the magnitude of the analytic solution
∥∥Vanalytic

∥∥
for the smallest mesh discretization of the cylinder. Figure 3.14(b) shows

the solution given by the FEM code for the same component ‖VFEM‖.
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Table 3.2: Relative/maximum errors for several mesh sizes of a cube

using a polynomial as manufactured solution

Tetrahedrons Unknowns ξREL ξMAX (∇× ξ)REL (∇× ξ)MAX

28 280 8.787e-15 8.328e-15 3.708e-15 8.988e-15

2283 15706 1.086e-13 2.623e-13 6.866e-15 4.011e-14

7237 48450 2.492e-13 2.853e-12 9.577e-15 5.257e-14

16150 107084 4.322e-13 3.461e-12 1.241e-14 9.483e-14

79747 518772 1.330e-12 1.015e-11 2.105e-14 2.575e-13

109733 712062 1.655e-12 1.075e-11 2.340e-14 3.029e-13

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.13: 3D representation of the polynomial solution over a cube
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Table 3.3: Relative/maximum errors for several mesh sizes of a cylinder

using a polynomial as manufactured solution

Tetrahedrons Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

162 1316 1.556e-2 3.473e-2 2.220e-2 7.028e-2

4321 29370 1.897e-4 1.549e-3 9.689e-4 2.174e-2

11820 78718 5.327e-5 1.007e-3 3.673e-4 2.385e-2

36191 238554 7.509e-5 3.169e-3 1.271e-4 4.986e-3

73014 477110 3.427e-5 1.207e-3 5.890e-5 2.467e-3

112707 733462 2.369e-5 7.750e-4 3.911e-5 2.247e-3

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.14: 3D representation of the polynomial solution over a

cylinder
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ξ

ξ

∇ ξ

∇ ξ

Figure 3.15: Convergence rate of the error over a sphere using a

polynomial function as manufactured solution

The error between both solutions is shown in Figure 3.13(c), but unlike

the error over the cube, the error in the cylinder is not uniform and it is

localized over the curved boundary of the structure. It is worth nothing

that the error is not evenly distributed along the curved boundary, but

it is focused on some parts. The main reason of this behavior is due

to the existence of a non-homogeneous mesh along the curved boundary

and the error is located where the size of the discretization is larger.

Results for several mesh discretization of a sphere

As it occurs with the cylinder, the errors over the sphere are localized

along the curved boundary of the structure. In this case, the basis

functions are not able to approximate a polynomial solution without er-

rors either, so, as explained above, a mesh discretization with a lower

geometrical error will provide a lower error. Table 3.4 gathers the rela-

tive/maximum errors for six different mesh discretization of a sphere.

Both relative and maximum errors describe the behavior commented

above confirming that the FEM module gives correct results for curved

elements. Furthermore, the convergence rate of the error when the num-

ber of unknowns of the problem increase, is shown in figure 3.15. The

relative error for both components decays linearly with an approximate

slope of -1.03, while the maximum error decays approximately with a

slope of -0.38.
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The convergence rate of the error is typically given by the expression

α Nslope, where α is a constant and N is the total number of unknowns.

Thus, the errors provided by the code in this case can be calculated using

the following expressions

ξREL ≤ αREL N
−1.03 ξMAX ≤ αMAX N

−0.38

(∇× ξ)REL ≤ βREL N
−1.03 (∇× ξ)MAX ≤ βMAX N

−0.38
(3.46)

Figure 3.16(a) shows a 3D plot of the magnitude of the analytic solution

|Vanalytic| for the finer mesh discretization of the sphere. Figure 3.16(b)

shows the solution given by the code for the same component |VFEM|.
The error between both solutions is shown in figure 3.16(c) where a

concentration of error in a small part of the sphere can be appreciated.

This type of error is due to the bad shape of the finite element located in

that part of the sphere. Considering the rest of the sphere, the behavior

of the error is correct and a mesh discretization with a lower geometrical

error provided a lower relative error.

3.5.2 Non-polynomial solution

The use of polynomials as manufactured solution is a valid test to provide

evidence that the code is correct and correctly implemented but, other

tests are needed to assume that the solutions given by the code are

correct and accurate for real world problems. Thus, new manufactures

solutions should be found to finish the verification of the code. Maybe the

most useful non-polynomial solution for testing an electromagnetic code

is the complex exponential function. In this case, a complex exponential

function with the following properties has been used

Vanalytic = Epol e
−jk0(kp·r) (3.47)

where Epol is the polarization vector, kp is the propagation vector and

r is the vector with the real coordinates where the function is evaluated.

The exponential function has been polarized in both θ and φ components

and incident angles are φ = 30◦ and θ = 20◦. In this case, the module

should be able to represent the manufactured solution with an error

that decays as the discretization of the FEM domain contains a lower

geometrical error.
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Table 3.4: Relative/maximum errors for several mesh sizes of a sphere

using a polynomial as manufactured solution

Tetrahedras Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

88 710 1.090e-2 6.705e-2 5.373e-2 2.342e-1

1986 13958 8.282e-4 2.486e-2 3.078e-3 5.805e-2

9069 61096 1.937e-4 2.279e-2 9.719e-4 4.358e-2

26929 177838 7.201e-5 1.146e-2 2.435e-4 3.745e-2

77892 507630 2.376e-5 9.128e-3 8.532e-5 2.111e-2

113390 736650 1.631e-5 6.619e-3 5.858e-5 2.413e-2

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.16: 3D representation of the polynomial solution over a sphere
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ξ

ξ

∇ ξ
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Figure 3.17: Convergence rate of the error over a cube using a complex

exponential as manufactured solution

Results for several mesh discretization of a cube

Table 3.5 gathers the relative/maximum errors for different mesh dis-

cretization of the cube. As the manufactured solution is a complex

exponential, an error close to the machine precision should not be ex-

pected in this case. Both relative and maximum errors decay as the

number of element is increased, confirming the expected behavior. Fig-

ure 3.17 shows how the errors decay when the number of unknowns of the

problem increases. For this test, the relative errors decay approximately

with a slope of -0.67 and the maximum errors with a slope of -0.46. It

is worth to note that the theoretical expression of the convergence rate

of the relative error for this test is given by

ξREL ≤ α N−2/3 (3.48)

which matches exactly with the results given by the module. Details

about this theoretical expression are provided in [7].

Figure 3.18(a) shows a 3D representation of the analytic solution (real

part of x-component) for the smallest mesh discretization of the cube.

Figure 3.18(b) shows the solution given by the FEM code for the same

component. The error between both solutions is shown in figure 3.13(c)

where a distributed error around the cube may be appreciated.
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Table 3.5: Relative/maximum errors for several mesh sizes of a cube

using an exponential function as manufactured solution

Tetrahedras Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

28 280 1.453e-1 3.336e-1 3.267e-1 9.548e-1

2283 15706 9.597e-3 6.620e-2 2.400e-2 1.855e-1

7237 48450 4.340e-3 6.223e-2 1.076e-2 7.335e-2

16150 107084 2.531e-3 1.876e-2 6.332e-3 4.322e-2

79747 518772 8.773e-4 1.150e-2 2.203e-3 2.259e-2

109733 712062 7.021e-4 7.970e-3 1.759e-3 1.598e-2

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.18: 3D representation of the exponential solution over a cube
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ξ
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Figure 3.19: Convergence rate of the error over a cylinder using a

complex exponential as manufactured solution

Results for several mesh discretization of a cylinder

Table 3.6 gathers the relative/maximum errors for different mesh dis-

cretization of the cylinder. As it happens in the previous case, the errors

decay as the number of elements is increased. The convergence rate of

the errors when the size of the problem is larger (a higher number of un-

knowns) is shown in figure 3.19. In this case, the slope of the maximum

errors is very similar to the cube test (around -0.45), while the slope cor-

responding to the relative errors is slightly lower (-0.55). The slope of

the relative errors differs slightly from the theoretical value (− 2
3 ), which

is expected, since the presence of curved elements in the geometry may

introduce some deviation in the error.

Figure 3.20(a) shows a 3D representation of the analytic solution (real

part of x-component) for the finer discretization of the cylinder. Fig-

ure 3.20(b) shows the solution given by the code for the same real com-

ponent. The error between both solutions is presented in figure 3.13(c),

where a smooth distribution of the error may be appreciated. Tt is

worth noting that the elements located near the edges of the cylinder

have lower errors since those elements present a smaller mesh discretiza-

tion with consequent lower geometric error.
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Table 3.6: Relative/maximum errors for several mesh sizes of a cylinder

using an exponential function as manufactured solution

Tetrahedras Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

162 1316 7.256e-2 2.668e-1 1.558e-1 7.223e-1

4321 29370 8.008e-3 9.036e-2 1.875e-2 1.716e-1

11820 78718 3.957e-3 4.953e-2 9.447e-3 9.443e-2

36191 238554 1.699e-3 1.485e-2 4.176e-3 3.552e-2

73014 477110 1.061e-3 1.198e-2 2.632e-3 2.301e-2

112707 733462 7.883e-4 6.339e-3 1.954e-3 2.255e-2

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.20: 3D representation of the exponential solution over a

cylinder
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ξ

ξ

∇ ξ

∇ ξ

Figure 3.21: Convergence rate of the error over a sphere using a

complex exponential as manufactured solution

Results for several mesh discretization of a sphere

Table 3.7 gathers the relative/maximum errors for six different discretiza-

tion of a sphere. As it happens in the previous tests, the errors decay

according to a better mesh discretization of the structure. Figure 3.21

shows how the errors have a linear downgrade when the number of un-

known of the problem is larger. The slopes of the graphs are similar

to the other verification tests, around -0.71 for the relative errors and

approximately -0.39 for the maximum errors. In this case, the slope of

the relative error is again very close to the theoretical value providing

evidences that the code is correctly implemented.

Figure 3.22(a) shows the analytic solution for the smallest discretiza-

tion of the sphere Figure 3.22(b) shows the solution given by the code

for the same component. The error between both solutions is shown in

figure 3.22(c) where the same concentration of errors than the one pre-

sented on the polynomial test can be appreciated. As it was commented

before, this type of error is due to the bad shape of the finite element

located in that part of the sphere. Considering the rest of the sphere, the

behavior of the error is correct and a mesh discretization with a lower

geometrical error provided a lower relative error.
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Table 3.7: Relative/maximum errors for several mesh sizes of a sphere

using an exponential function as manufactured solution

Tetrahedras Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

88 710 7.570e-2 2.269e-1 1.841e-1 6.175e-1

1986 13958 8.299e-3 4.844e-2 2.086e-2 1.735e-1

9069 61096 2.823e-3 3.826e-2 7.133e-3 1.069e-1

26929 177838 1.300e-3 1.953e-2 3.282e-3 7.543e-2

77892 507630 6.185e-4 1.676e-2 1.565e-3 5.006e-2

113390 736650 4.772e-4 1.118e-2 1.205e-3 5.310e-2

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 3.22: 3D representation of the exponential solution over a sphere
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3.6 Numerical Results

Once the implementation of the code have been verified using the Method

of Manufactured Solutions, the simulation of real world application is

required in order to proof that the code is ready for research use. The

numerical results of these real world problems has been compared with

established codes (as commercial softwares) and measurement to provide

evidences that the code can be used for many type of simulations.

The platform used to run all the simulation documented here has been

a desktop computer with 2-way quad-core processors Intel Xeon E5620

(2.4 GHz, 12 Mb cache, 5.86 GT/s), 32 GB RAM and 1 TB of hard disk.

Typically, users can find three main types of problems in electromag-

netism, namely, waveguide, scattering and radiation problems. Thus,

the examples presented in this section have covered all these areas.

3.6.1 Waveguide problems

The simulations performed to validate the results of the FEM module

for waveguide problems has covered different structures starting from

simple X-band waveguides to complex waveguide filters with dielectric

resonators or iris waveguide bandpass filters. In order to avoid the exten-

sion of this document only three examples has been attached: a power

combiner working at 20 GHz, a filter with one dielectric resonator and a

filter with four dielectric resonators working on the range of 11-12 GHz.

Power combiner

This example consists of the analysis of a standard WR42 waveguide com-

biner with a four-port combining junction. Figure 3.23 shows the details

of the combiner. Each waveguide is 420 mils wide and 170 mils high.

This type of waveguide combiner is used to combine the output power

of two 20 GHz solid state power amplifiers (SSPA) with a very compact

size and low insertion loss. The outputs of the SSPAs are fed into ports

2 and 4 of the waveguide with a 90◦ out-of-phase separation to steer the

output power of the amplifiers to port 1. Port 3 of the waveguide is the

isolated port where the impedance mismatch at the output (port 1) is

absorbed.
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(a) Geometry model (b) Mesh model

Figure 3.23: Model of the power combiner

Figure 3.24 shows a 3D representation of the electric field (in particular,

real part of z-component) when port 1 is excited. The behavior com-

mented above, where port 2 and 4 of the waveguide are 90◦ out-of-phase

is clearly appreciated in the figure.

The working frequency of this example is 20 GHz providing a model with

an electrical size of 3.8λ by 0.6λ by 4.2λ. The number of elements in the

mesh is 17,338 tetrahedrons and the number of unknowns corresponding

to that number of elements is 120,006. The memory used to solve this

problem was 1.3 GB and the simulation took 10 seconds.

The scattering parameters of the combiner have been calculated using

the established commercial software HFSS based also on FEM. Table 3.8

gathers the comparison between the scattering parameters given by both

softwares obtaining a good agreement between them.

Table 3.8: Scattering parameters of the waveguide combiner at 20 GHz

HFSS SUITE-FEM HFSS SUITE-FEM

S11 0.024 ∠ -117.08◦ 0.023 ∠ -118.65◦ S21 0.696 ∠ 85.11◦ 0.699 ∠ 86.31◦

S12 0.696 ∠ 85.11◦ 0.699 ∠ 86.31◦ S22 0.097 ∠ 174.71◦ 0.097 ∠ 175.32◦

S13 0.097 ∠ 85.65◦ 0.097 ∠ 87.67◦ S23 0.704 ∠ -4.13◦ 0.707 ∠ -3.45◦

S14 0.704 ∠ -4.15◦ 0.707 ∠ -3.45◦ S24 0.023 ∠ 24.91◦ 0.024 ∠ 23.40◦

S31 0.097 ∠ 85.65◦ 0.097 ∠ 87.67◦ S41 0.704 ∠ -4.15◦ 0.707 ∠ -3.45◦

S32 0.704 ∠ -4.13◦ 0.707 ∠ -3.44◦ S42 0.023 ∠ 24.91◦ 0.024 ∠ 23.40◦

S33 0.024 ∠ -117.08◦ 0.023 ∠ -118.21◦ S43 0.696 ∠ 85.15◦ 0.699 ∠ 86.31◦

S34 0.696 ∠ 85.15◦ 0.699 ∠ 86.31◦ S44 0.097 ∠ 174.77◦ 0.097 ∠ 175.31◦
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Figure 3.24: 3D plot of real part of z-component for electric field

Filter with one dielectric resonator

The following example has consisted of the simulation of a dielectric

resonator coupled trough slots to two rectangular waveguide sections

(see figure 3.25). The dielectric resonator consists of a high permittivity

and low losses dielectric material. The high contrast between the value

of the permittivity of the dielectric and the surrounding medium (air)

makes it behave as a cavity concentrating the electromagnetic field. The

dielectric resonator has a selective frequency response by itself. Note

that it is placed on top of a pedestal which consists of another circular

dielectric (this time of much lower permittivity). Details of this structure

are given in [55].

The analysis of the filter has been focused between 11.1 GHz and 11.4 GHz

where the first resonance appears. This resonance has a field singularity,

so it is a challenge for numerical methods to calculate its exact frequency

location. Figure 3.26 shows the frequency response of the filter calculated

using a semi-analytic method [56], the commercial software HFSS, the

FEM module of the suite and an in-house FEM code with hp-adaptivity

[?]. The figure shows the difficult to obtain the exact location of the

resonance since the only code that match with the semi-analytic method

is the in-house hp-adaptivity code. HFSS gives a 20 MHz shift from the

location of the resonance and the FEM module a shift of 30 MHz.

It is worth noting that an adaptive mesh is required to calculate the

location of the resonance. The in-house hp-adaptivity code makes use
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Figure 3.25: Slot coupled dielectric loaded resonator
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Figure 3.26: Frequency response of the filter for the first resonance
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Figure 3.27: Slot coupled dielectric loaded resonator

of an adaptive method that changes, at the same time, the order of the

approximation (p refinement) and the size of the elements of the mesh

(h refinement with hanging nodes). HFSS also makes use of an adaptive

method but only regular h refinements without hanging nodes were made

modifying the size of the elements of the mesh.

In the case of the FEM module, the refinement of the mesh was made

manually, since an adaptive mesh process is not available in this version

of the suite. The number of elements of the mesh to achieve the results

shown above was 102,057 tetrahedrons providing 653,510 unknowns. At

the maximum frequency the electrical size of the model was 0.36λ by

0.72λ by 1.14λ. The problem was solved in an out-of-core way requiring

almost 13 GB of memory and 11 minutes per frequency.

Filter with four dielectric resonators

A filter composed of four aligned resonators coupled by rectangular slots

has been considered for this validation test. Figure 3.27 shows the model

of this filter. The inputs are realized in a rectangular waveguide WR75

where a = 19.05 mm and b = 9.52 mm. Details about the dimensions

of the resonant cavities and the permittivity of the dielectric resonators

may be found in [57].
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Figure 3.28: Comparison of S11 parameter for the filter with four

dielectric resonators
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Figure 3.29: Comparison of S12 parameter for the filter with four

dielectric resonators

The response of the filter without the tuning screws is compared with

the analysis done by the FEM module and by the EFIE method provided

in [57]. Figures 3.28 and 3.29 shows the comparison between the results

presenting a very good agreement between the simulated EFIE and sim-

ulated FEM. Also a good agreement of both the theoretical simulations

with the experimental results may be found.
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Figure 3.30: NASA almond with conformal truncation boundary

The number of finite elements used to achieve the results shown above

was 85,158 tetrahedrons providing 548,896 unknowns. The electric size

of the model was 0.38λ by 0.76λ by 3.54λ at 12 GHz. This problem was

also solved using the out-of-core version of the module requiring around

10 GB of memory and 8.5 minutes per frequency.

3.6.2 Scattering results

The simulations carried out to validate the results of the FEM module for

scattering problems have consisted of the analysis of RCS targets made

of different materials. This document contains the analysis of some of

them, such as, the monostatic analysis of the well-known metallic NASA

almond and the monostatic analysis of the NASA almond with a lossy

dielectric coating.

Metallic NASA almond

The monostatic analysis of a metallic NASA almond at 1190 MHz has

been considered in this example. The parametric equations that define

the geometry of the NASA almond are well-known and available in the

literature (for instance, [58]). The model of the NASA almond used in the

simulation is shown in figure 3.30 where a conformal truncation boundary

may be appreciated.
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Figure 3.31: Comparison of RCS of NASA almond at 1.19 GHz

The results given by the FEM module have been compared with the mea-

surements provided by [58] and also with the results given by the MoM

module of the suite. Two polarization has been considered in the anal-

ysis: horizontal or φφ-polarization and vertical or θθ-polarization. Fig-

ure 3.31 shows the comparison between the simulated results for the hori-

zontal and the vertical polarization, respectively. An excellent agreement

in both polarizations is observed despite the fact the differences between

both numerical techniques.

The number of finite elements used in the discretization of the NASA

almond was 13,590 tetrahedrons, which provide 96,862 unknowns. The

electrical size of the model at 1190 MHz was 0.44λ by 0.70λ by 1.31λ. In

this case, the in-core version of the FEM module was used to perform the

simulation requiring around 2.8 GB of memory. The total time needed

to complete the monostatic simulation was 28 minutes, but it is worth

noting that 182 excitations were analyzed in total.

Coated NASA almond

The monostatic analysis of a coated NASA almond has been carried out.

Here, only the θθ-polarization has been considered. The incident fre-

quency is 3 GHz and the thickness of the coating is 10 mm. The model of

the coated NASA almond used for the simulation is shown in figure 3.32.
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Figure 3.32: Two views of the coated NASA almond model

For this analysis, as there is no measurement to compare the results,

the FEM simulations have been compared with the results provided by

the MoM module of the suite. The simulations have consisted of the

analysis of the coated NASA almond using a lossy dielectric shell (εr =

3 − 2i, µr = 2 − i). Figure 3.33 shows the comparison between the

results given by the FEM module and the MoM module of the suite.

An excellent agreement is observed despite the fact of the use of such

different numerical techniques.

The total finite elements used in the discretization of the model was

73,299 tetrahedrons, which provide 491,002 unknowns. The electrical

size of the model at 3000 MHz was 1.12λ by 1.77λ by 3.32λ. The sim-

ulation was carried out using the out-of-core version of the FEM module

requiring around 9.8 GB of memory. The total time needed to complete

the simulation was 1 hour and 48 minutes analyzing 91 excitations in

total.
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θ

Figure 3.33: RCS results for the coated NASA almond at 3 GHz

3.6.3 Radiation results

The simulations performed to validate the results of the FEM module

for radiation problems has consisted of the analysis of different kind of

antennas ranging form simple metallic horn antennas to complex helical

antennas or planar antennas with different substrates. The antennas

documented in this document are a metallic helical antenna working in

the range of 200 MHz to 800 MHz and a circular patch antenna with a

resonance at 2.4 GHz.

Helical antenna

This example has consisted of the analysis of a helical antenna in the

range of 200 MHz to 800 MHz. The parametric equations that define the

geometry of the helix are give

x = r cos(t) y = r sin(t) z =
rt

2π
(3.49)

where t is the parametric variable ranging from 0 ≤ t ≤ 38 cm and r

is the radius of the helix (5 cm in this case). The antenna is mounted

over a circular ground plane 12.5 cm of radius. Different views of the

antenna are shown in figure 3.34.
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Figure 3.34: Different views of the model of the helical antenna

The analysis of the antenna has been performed using the commercial

software CST and the FEM module of the suite. The comparison of the

S11 parameter from 200 MHz to 800 MHz is shown in figure 3.35. The

results of both softwares closely match each other. Two different cuts

(θ = 90◦ and φ = 90◦) of the directivity at 600 MHz are shown in figures

3.36 and 3.37. Again a good agreement is observed in the results of

both softwares.

The electrical size of the model at the maximum frequency of the analysis

was λ by λ by 1.33λ. The total finite elements used in the discretization

of the model was 43,547 tetrahedrons, which provide 288,102 unknowns.

The simulation was carried out using the out-of-core version of the FEM

module requiring around 5.4 GB of memory. The total time needed to

complete the simulation was 4.3 minutes per frequency.

Circular patch antenna

This example has consisted of the analysis of a circular patch antenna

operating at 2.4 GHz. The dimensions of the substrate are 60 mm by 60

mm by 0.7 mm with a relative permittivity of εr = 2.3. The radius of

the circular patch is 23.2 mm and the antenna is fed by a coaxial cable.

Some screenshots of the antenna are shown in figure 3.38.
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Figure 3.35: Comparison of the S11 parameter of the helical antenna

from 200 MHz to 800 MHz

φ

θ
θ

Figure 3.36: Comparison of the directivity for θ = 90◦ cut at 600 MHz
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θ

φ
φ

Figure 3.37: Comparison of the directivity for φ = 90◦ cut at 600 MHz

Figure 3.38: Different views of the model of the circular patch antenna
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Figure 3.39: Comparison of the S11 parameter of the patch antenna

The results given by the FEM module has been compared with the results

provided by the commercial software CST. The comparison of the S11

parameter from 2 GHz to 3 GHz is shown in figure 3.39. In this case,

a good agreement is observed, although a slight frequency shift may

be appreciated between both results. Two different cuts (θ = 90◦ and

φ = 90◦) of the directivity are shown in figure 3.40. The results of both

softwares closely match each other.

The electrical size of the model at the maximum frequency of the analysis

was 0.9λ by 0.9λ by 0.35λ. The total finite elements used in the dis-

cretization of the model was 26,894 tetrahedrons, which provide 174,494

unknowns. The simulation was carried out using the out-of-core version

of the FEM module requiring around 3.7 GB of memory. The total time

needed to complete the simulation was 3.6 minutes per frequency.

3.7 Conclusions and future research lines

The Finite Element module of the suite has been presented in this chap-

ter. The module is based on the so-called Finite Element - Iterative

Integral Equation Evaluation (FE-IIEE) method which makes use of a

boundary integral equation providing a (numerically) exact radiation

boundary condition.
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φ
θ

φ
θ

Figure 3.40: Comparison of the directivity for different 2D cuts at a

operating frequency of 2.4 GHz

The module allows the use of four different sparse solver and provides a

parallel implementation where one can utilize all the CPU cores available

on single computers or on several compute nodes of a high performance

computing (HPC) cluster.

The accuracy of the results given by the module has been verified ap-

plying the Method of Manufactured Solutions to different verification

tests obtaining excellent results. Also, the numerical results of real world

problems has been compared with established codes (as commercial soft-

wares) and measurement providing evidences that the code can be used

for many type of simulations with very good performance and scalability

in mid-size HPC clusters.
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CHAPTER 4

STUDY OF THE HYBRIDIZATION OF
FEM-MOM TECHNIQUES

Taking advantage of the existence in the suite of two of the most im-

portant computational electromagnetics numerical techniques such as,

the Method of Moments (MoM) and the Finite Element Method (FEM),

the hybridization between them seems an appropriate choice to perform

complex simulation where the use of these techniques alone may not be

efficiently appropriate.

It is well-known that MoM is a powerful technique for the simulation of

radiation/scattering problems of both metallic and dielectric structures.

However, the method presents some small inaccuracies for geometric

models containing complex non-homogeneous dielectric materials. Con-

versely, FEM offers a great flexibility in the treatment of complex struc-

tures, even in the case of those non-homogeneous dielectric materials.

Thereby, it seems an appropriate decision to hybridize both techniques

joining their advantages.

This chapter presents a modular approach to combine MoM and FEM tech-

niques for the analysis of large structures or finite arrays with complex

radiating elements. The approach consists of performing the FEM analy-

sis of each structure and to define the equivalent electric and magnetic

currents on the boundaries of the structure.



4.1. METHODOLOGY OF THE APPROACH

Then, the interaction between the structures is computed by using MoM

and the global FEM-MoM system of equation is assembled. Finally, the sys-

tem is solved and the analysis is completed. Details about the method-

ology of this approach are given in section 4.1.

The numerical implementation of this modular approach requires the

modification of the current variational formulation of the FEM module

of the suite. This modification resides in the fact that the unknowns of

a standard MoM formulation are the electric and magnetic currents over

dielectric boundary surfaces and electric currents over perfect electric

conductors. However, the standard variational formulation of FEM prob-

lems only has unknowns for one of the corresponding electromagnetic

fields (E-Field or H-Field). Thus, the modification of the FEM formula-

tion is required to provide unknowns also for the corresponding dual field

(H-Field or E-Field) in an explicit way. Details about the modification

of the FEM formulation are given in section 4.2.

Furthermore, due to the difference between the basis functions used by

both solvers, the definition of the equivalent electric and magnetic cur-

rent on the boundaries of the antenna is not straightforward. Note that

the boundaries of the antenna is where both methods share the un-

knowns and those need to be expressed in terms of the same basis func-

tions. Thereby, a study of the projection between the basis functions

of both modules is required in order to connect the unknowns between

both codes. In the particular case of this Ph. D. dissertation, a study

between the well-known Rao-Wilton-Glisson (RWG) div-conforming basis

functions [59], typically used in MoM, and the the Nédélec triangular curl-

conforming basis functions of second-order is performed. Details about

this study are given in section 4.3.

4.1 Methodology of the approach

The methodology of the modular approach proposed in this Ph. D. dis-

sertation to combine the FEM and MoM techniques is described below.

Figure 4.1 depicts a setup problem where the analysis of complex ob-

jects is performed through FEM, the full metallic objects are analyzed

through MoM and the interaction between them is modeled by using MoM.

The methodology of the approach is as follows:
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MoM

FEM

Jeq Meq

FEM

Jeq

Meq

MoM

PEC

Figure 4.1: Setup problems of the modular approach between the FEM

code and the MoM code

Step 1: The FEM analysis of each object is performed and the un-

knowns (field V and its dual field Vd) corresponding to the bound-

aries (S) of the object are extracted through the application of the

Schur complement to the FEM matrix with respect to those bound-

ary unknowns. Thus, a reduce system of equations is obtained where

only the unknowns of the boundaries of the objects are contained.

This system of equations may be expressed as follows:
¯̄A(1) 0 0
...

. . .
...

0 0 ¯̄A(n)




g(1)

...

g(n)

 =


b(1)

...

b(n)

 (4.1)

where the matrix ¯̄A refers to the Schur complement of the the FEM

matrix of the n-th object, g corresponds to the degrees of freedom

associated to the n-th object and the term b is related to the field

on the boundaries of the n-th object.

Note that if the FEM discretization of the objects is the same, as

for instance happens in the case of the radiating elements of arrays,

the FEM analysis is only performed in one object since the system of

equations is equivalent for the others ,i.e., ¯̄A(1) = · · · = ¯̄A(n).

Step 2: The interaction between the fields radiated by the objects

is computed using the MoM technique. A new system of equations is

obtained where the impedance matrices of the objects involved in the

analysis are computed. This system of equations may be expressed

as follows:
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
¯̄Z(11) · · · ¯̄Z(1n)

...
. . .

...
¯̄Z(n1) · · · ¯̄Z(nn)




g(1)

...

g(n)

 =


c(1)

...

c(n)

 (4.2)

where the matrix ¯̄Z refers to the impedance matrix of the interaction

between the i-th and j-th object, g corresponds to the degrees of

freedom associated to the n-th object and the term c is related to

the field on the boundaries of the n-th object.

Step 3: Then, the continuity of the fields on the boundary of the

objects is applied obtaining the global FEM-MoM system of equations.

It is worth to note that, at this point, the FEM matrix ¯̄A must be

treated to be connected with the MoM formulation. This connection

is performed through the projection of the FEM basis functions into

the MoM basis functions (further details about these projections are

given in section 4.3).


¯̄Z(11) − ¯̄A(1) · · · ¯̄Z(1n)

...
. . .

...
¯̄Z(n1) · · · ¯̄Z(nn) − ¯̄A(n)




g(1)

...

g(n)

 =


b(1)

...

b(n)

 (4.3)

Step 4: The system of equations is ready to be solved by using the

appropriated dense solver (for instance, SCALAPACK).

Step 5: The unknowns residing on the boundaries of the objects

are solved through the solution of the previous system of equations.

The last task is to get the solution for the unknowns of the interior

FEM region. To do this, the coefficients associated to the MoM basis

functions has to be transformed to the corresponding FEM basis func-

tions. This transformation is performed through a representation of

the MoM basis functions into the FEM basis functions. (further details

about these representations are given in section 4.3.3).

Step 6: Once the transformation is performed, the solution for the

interior FEM region is obtained and the analysis is completed.
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This approach, where the FEM technique is used to analyze each object

and the MoM technique is used to calculate the interaction between them,

entails the modification of the current variational formulation of the FEM

module. This is due to the fact that, the degrees of freedom (dofs)

of a standard MoM formulation are associated to both electric and mag-

netic currents over dielectric boundary surfaces and electric currents over

perfect electric conductors. However, the dofs of the current variational

formulation of the FEM module are only associated to one electromagnetic

field (E-field or H-field). Thus, the modification of the FEM formulation

is needed to provide dofs associated also to the dual field (H-field or E-

field, respectively) in an explicit way. The following section describe the

modification performed in the variation formulation of the FEM module

to be able to provide the matrix ¯̄A.

It is worth to note that the equivalent electric and magnetic currents on

the boundaries of the object may be defined with the help of Macro Basis

Functions (MBFs). It is generally accepted that, as long as the elements

are small with respect to the wavelength, high accuracy can be achieved

with relatively very few MBFs, which leads to a dramatic reduction of the

number of unknowns when the elements of the array are complex.

4.2 Variational Formulation

As commented above, the current variational formulation of the FEM

module has to be modified in order to provide the unknowns correspond-

ing to the dual field Vd in an explicit way. Thus, the final system of

equations will contains unknowns for both electric and magnetic fields

enabling the connection with the MoM formulation.

Lets start from the current variational formulation of the FEM module of

the suite. The weighted-integral form is given by∫∫∫
Ω

∇×W ·
(

¯̄fr
−1
∇×V

)
dV − k2

0

∫∫∫
Ω

W · ¯̄gr V dV

+ γ

∫∫
ΓC

(n̂×W) · (n̂×V) dS =

∫∫∫
Ω

W · q dV −
∫∫

ΓC

W ·Ψ dS

(4.4)
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where V denotes the magnitude to be solve depending on the formulation

employed, k0 is the wavenumber in vacuum, q is the source term due

to the presence of impressed electric and/or magnetic currents in the

interior FEM domain and Ψ = Ψinc + Ψscat. It is worth to note that the

calculation of the value corresponding to Ψinc is straightforward. Ψinc

is the result of substituting the value of the corresponding incident field

Vinc in equation (4.5). However, the value of the term Ψscat depends

on the scattered field Vscat on the boundary of the object (see equation

4.6). This field is not known a priori and its calculation is required in

order to compute Ψscat.

Ψinc = n̂×
(

¯̄fr
−1
∇×Vinc

)
+ γ n̂× n̂×Vinc (4.5)

Ψscat = n̂×
(

¯̄fr
−1
∇×Vscat

)
+ γ n̂× n̂×Vscat (4.6)

A first way to calculate Ψscat is to introduce it as an unknown in the

variational formulation of the problem. As equation (4.6) shows, the

value of Ψscat is calculated using the tangential component of the scat-

tered field Vscat. Hence, the FEM formulation, adding this new unknown,

is given by∫∫∫
Ω

∇×W ·
(

¯̄fr
−1
∇×V

)
dV − k2

0

∫∫∫
Ω

W · ¯̄gr V dV

+ γ

∫∫
ΓC

(n̂×W) · (n̂×V) dS −
∫∫

ΓC

(n̂×W) (n̂×Ψscat) dS =∫∫∫
Ω

W · q dV −
∫∫

ΓC

W ·Ψinc dS (4.7)

It is worth to note that Ψscat = 0 if the FEM domain is truncated using

the first-order absorbing boundary condition (ABC). In the case of the

FE-IIEE method, the scattered fields are calculated through the corre-

sponding boundary integral equation and the equation (4.6) is evaluated

to compute Ψscat. Hence, to complete the system of equation a new

equation has to be added:

−
∫∫

ΓC

(n̂×W) (n̂×Ψscat) = 0 for ABC (4.8)
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n̂×
(

¯̄fr
−1
∇×VFE-IIEE

)
+ γ n̂× n̂×VFE-IIEE−∫∫

ΓC

(n̂×W) (n̂×Ψscat) = 0 for FE-IIEE (4.9)

where VFE-IIEE and its curl (∇×V)FE-IIEE, are computed using the cor-

responding integral expressions.

This system of equations retains the sparsity of the FEM matrices if the

first-order ABC is used as truncation method. However, if the FE-IIEE

method is used a large dense block is added to the sparse matrix with the

consequence difficulties for the sparse solver during the solving process.

This first approach have the advantage that the Schur complement may

be applied to the resulting matrix and it can be used directly to perform

the hybridization with MoM. However, the disadvantage of the approach

is that a big amount of RAM memory is needed even for small problem

making the simulation of large problems prohibitive in terms of memory

capabilities. Thus, this approach was discarded due to this problem.

A second approach to calculate Ψscat is to perform the FEM analysis of

the object using the current variational formulation. In this way, the

value of Ψscat is obtained directly after applying the FE-IIEE method.

The advantage of this approach is that the sparsity of the FEM matrices

is retained and previous memory problem is avoided. However, the FEM

analysis of the object is required before the hybridization with the con-

sequence extra computing time needed per simulation. In the particular

case of this Ph. D. dissertation, this second approach is chosen.

At this point, the degrees of freedom corresponding to the dual function

Vd, are still not included in the FEM system of equations. The defini-

tion of the function Ψ (over S boundary) given by equation (4.10) is

taken and the Galerkin Weighted Residual Method is used to obtain a

weighted-integral form (note that the value of Ψ is known at this point

since, following the second approach described above, Ψinc and Ψscat

has been calculated previously).

Ψ = n̂×
(

¯̄fr
−1
∇×V

)
+ γ n̂× n̂×V (4.10)
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Applying the Galerkin method to the equation (4.10), the weighted-

integral form is given by∫∫
©
ΓS

(n̂×W) ·Ψ =

∫∫
©
ΓS

(n̂×W) ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
+ γ

∫∫
©
ΓS

(n̂×W) · (n̂× n̂×V) (4.11)

Note that the testing function used in the Galerkin method is rotated

(n̂×W) with respect to the testing functions used in the current vari-

ational formulation of the module. Now, the rotational of the unknown

field∇×V is expressed in terms of the dual field Vd using the Maxwell’s

equations:
¯̄fr
−1
∇×V = −jk0hVd (4.12)

Substituting equation (4.12) into equation (4.11), the weighted-integral

form is given by∫∫
©
ΓS

(n̂×W) ·Ψ = −jk0h

∫∫
©
ΓS

(n̂×W) · (n̂×Vd)

− γ
∫∫
©
ΓS

(n̂×W) ·V (4.13)

Finally, the FEM system of equations is assembled conforming the global

FEM matrices. These matrices contain the field unknowns V for the

interior FEM region and the field unknowns V and the dual field unknowns

Vd for the boundary S of the objects. Then, Shur complement is applied

to these FEM matrices and the corresponding ¯̄A(n) matrix is obtained.

4.3 Projections between basis functions

As commented in the introduction of this chapter, a study of the pro-

jection between the basis functions used to approximate the solution in

the FEM and MoM modules is needed in order to connect the unknowns

shared by both codes. It is worth to note that due to the differences
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Figure 4.2: Abstract representation of the RWG basis function

between the basis functions employed by both modules (Nédélec tetrahe-

dral curl-conforming basis functions of second-order for FEM and higher-

order quadrilateral basis functions for MoM) a simpler study has been

considered first. This study has been consisted of the projections be-

tween the well-known Rao-Wilton-Glisson (RWG) div-conforming basis

functions [59], typically used in MoM, and the the Nédélec triangular

curl-conforming basis functions of second-order.

Before to proceed with the study of the projection between these basis

functions, a brief description of the Nédélec triangular curl-conforming

basis functions of second-order and the RWG div-conforming basis func-

tions is given.

4.3.1 Nédélec triangular curl-conforming basis functions

Equation (4.14) shows the space of functions of the second-order Nédélec

triangle with 8 independent coefficients that have to be determined (see

section 3.3 for further details). Thus, the number of degrees of freedom

of the triangular element of second-order is 8, and 8 is also the number

of vector basis function belonging to R2 that should be chosen Wj , (j =

1...8). Figure 4.2 shows the representation of the space of the function

for the second-order Nédélec triangle.

R2 ≡

{
a1 + a2x+ a3y + Cy2 −Dxy
b1 + b2x+ b3y − Cxy +Dx2

}
(4.14)
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Figure 4.3: A pair of triangular basis functions

The definition of the degrees of freedom (dof) of the Nédélec triangular

curl-conforming element of second-order is as follows: 6 dofs associated

to the three edges of the triangle given by

αi =

∫
edge

(u · τ̂) q dl ∀q ∈ P2 (4.15)

and 2 dofs associated to the triangle given by

αi =

∫
face

(n̂× u) · q ds ∀q ∈ (P1)2 (4.16)

4.3.2 RWG basis functions

This section gives a brief description of the well-known Rao-Wilton-

Glisson (RWG) triangular basis functions. These basis functions are asso-

ciated to the edges of the triangle and have a normal component to the

corresponding edge. As figure 4.3 shows, for any triangle pair, T+
n and

T−n , with area A+
n and A−n , respectively, sharing a common edge ln, the

basis function can be written as

wn(r) =



ln

2A+
n
ρ+
n r ∈ T+

n

ln

2A−n
ρ−n r ∈ T−n

0 otherwise

(4.17)
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Figure 4.4: Abstract representation of the RWG basis function

where ρ+
n = r − r+

n is the vector directed from the free vertex of the

triangle T+
n to the observation point, and ρ−n = r−n − r is the vector

directed from the observation point to the free vertex of the triangle T−n .

The basis function is zero outside the two adjacent triangles T+
n and T−n .

The current has no component normal to the boundary (which excludes

the common edge) of the surface formed by the triangular pair T+
n and

T−n , and hence there are no line charge along this boundary.

The representation of the RWG space of the functions is illustrated in figure

4.4. The relationship between the RWG div-conforming triangular basis

functions and the Nédélec curl-conforming triangular basis functions is

a simple rotation of the basis function counterclockwise. This rotation

may be obtain by computing the vectorial product between the functions

and the normal vector of the triangle. In other words, the relationship

is given by the following expression

n̂×wj ≈Wj or Wj × n̂ ≈ wj (4.18)

It is worth to note that the Nédélec space is richer than RWG space and

the RWG basis space is contained into the Nédélec space:

n̂×H(div)1 ⊂ H(curl)2 (4.19)

The definition of the degrees of freedom (dof) of the RWG div-conforming

element is as follows: 3 dofs associated to the three edges of the triangle

given by

αi =

∫
edge

(u× n̂) τ̂ q dl =

∫
edge

(u · n̂τ ) q dl (4.20)
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Table 4.1: α coefficients for the reference triangle

edge 1 (wRWG
1 ) edge 2 (wRWG

2 ) edge 3 (wRWG
3 )

edge 1 (WNED
1 ) 0.5000 0.0000 0.0000

edge 1 (WNED
2 ) 0.5000 0.0000 0.0000

edge 2 (WNED
3 ) 0.0000 0.5000 0.0000

edge 2 (WNED
4 ) 0.0000 0.5000 0.0000

edge 3 (WNED
5 ) 0.0000 0.0000 0.5000

edge 3 (WNED
6 ) 0.0000 0.0000 0.5000

face (WNED
7 ) -0.3333 0.1666 0.1666

face (WNED
8 ) -0.1666 -0.1666 0.3333

4.3.3 Representation of RWG space into Nedelec space

The objective here is to calculate the coefficients that represent the

RWG div-conforming basis functions into the Nédélec triangular curl-

conforming basis functions. For that, the following equation must be

solved finding the value of the unknowns αi

wj =

8∑
i=1

αi (Wi × n̂) for each wj=1...3 (4.21)

where wj are the RWG functions and Wi are the Nédélec function.

There are different approaches that can be used to solve the previous

equation, as for example, applying the Galerkin Method or using the

definition of degrees of freedom of Nédélec. Both approaches have been

used to calculate the αi coefficients that represent the RWG into the

Nédélec functions for the reference triangle. It is worth to note that

all approaches provide identical coefficients. Thus, the representation of

the RWG basis functions into the Nedelec basis functions is unequivocal.

Table 4.1 gathers the αi coefficients for the reference triangle case.

These results provide a correct local projection. For each edge, the wj

function associated to that edge gives trace only on the edge function

Wi of the same edge. Also, it gives trace on the face function W7,8. For
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Figure 4.5: Triangular mesh used for the numerical example

example, the representation of the first RWG basis function in the Nedelec

basis function only uses the coefficients of the first column, so the Nedelec

basis functions involved in the representation are W1,W2,W7 and W8.

Numerical example

The aim of this example is to approximate a given vectorial function

by using the RWG basis functions and the representation of those basis

function into the Nédélec space. The approximation of a given vecto-

rial function through the previous set of basis functions is given by the

following expression

f ≈
3∑
i=1

αiwi ⇐⇒ n̂× f ≈
8∑
i=1

giWi (4.22)

where f is the given vectorial function, wi are the RWG basis functions,

Wi are the Nédélec basis functions, αi are the coefficients that represent

the function in term of RWG and gi are the coefficients that represent the

function in terms of Nédélec basis functions.

Figure 4.5 shows the mesh used in this numerical example. It contains

three random triangles with 2 shared edges. This document only con-

tains the approximation of one of the functions that belongs to the RWG

vectorial space, but this test was performed with several functions of

that space getting similar results.
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Table 4.2: Global coefficients for the approximation with RWG

Coefficients Value

edge 1 (α1) -3.000

edge 2 (α2) 12.000

edge 3 (α3) 12.000

edge 4 (α4) 5.9477

edge 5 (α5) 4.0619

edge 6 (α6) 9.7983

edge 7 (α7) 9.9420

The coefficients of the RWG basis function to approximate the function

{x, y} are calculated using the definition of degrees of freedom of RWG:

αi =

∫
edge

(u× n̂) τ̂ q dl =

∫
edge

(u · n̂τ ) q dl (4.23)

This integral is evaluated in every edge of the mesh obtaining the α

coefficients shown in table 4.2. The error of the approximation using

the previous coefficients for the function {x, y} is 4.440e-16. This error

may be considered as a numerical zero error approximation.

The coefficients that represent the RWG div-conforming basis functions

into the Nédélec triangular curl-conforming basis functions are calcu-

lated for each triangle. Later those coefficients are globally assembled

obtaining the global [α] matrix used to calculate the coefficients that

will approximate the vectorial function by using the Nédélec triangular

curl-conforming basis functions. In the case of this numerical example,

the [α] matrix of each triangle has been calculate by using the definition

of degrees of freedom of Nédélec. Tables 4.3−4.5 gathers the coefficients

of those matrices.

Once the matrix has been assembled, the RWG coefficients shown in table

4.2 are multiplied by the global assembled matrix obtaining the repre-

sented coefficients in terms of the Nédélec basis functions. The error of

the approximation for the function {−y, x} is 3.1405e-016. This error

indicates that the approach employed to represent the RWG basis function

into Nédélec triangular curl-conforming basis functions is correct.
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Table 4.3: α coefficients for the first element of the mesh

edge 1 (wRWG
1 ) edge 2 (wRWG

2 ) edge 3 (wRWG
3 )

edge 1 (WNED
1 ) 0.5000 0.0000 0.0000

edge 1 (WNED
2 ) 0.5000 0.0000 0.0000

edge 2 (WNED
3 ) 0.0000 0.5000 0.0000

edge 2 (WNED
4 ) 0.0000 0.5000 0.0000

edge 3 (WNED
5 ) 0.0000 0.0000 0.5000

edge 3 (WNED
6 ) 0.0000 0.0000 0.5000

face 1 (WNED
7 ) -1.1666 1.3333 -0.1666

face 1 (WNED
8 ) -0.5833 -0.8333 1.4166

Table 4.4: α coefficients for the second element of the mesh

edge 4 (wRWG
4 ) edge 5 (wRWG

5 ) edge 1 (wRWG
1 )

edge 4 (WNED
9 ) 0.5000 0.0000 0.0000

edge 4 (WNED
10 ) 0.5000 0.0000 0.0000

edge 5 (WNED
11 ) 0.0000 0.5000 0.0000

edge 5 (WNED
12 ) 0.0000 0.5000 0.0000

edge 1 (WNED
2 ) 0.0000 0.0000 0.5000

edge 1 (WNED
1 ) 0.0000 0.0000 0.5000

face 2 (WNED
13 ) -1.2685 0.2315 1.0371

face 2 (WNED
14 ) -1.1801 -1.0700 -0.1101
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Table 4.5: α coefficients for the third element of the mesh

edge 6 (wRWG
6 ) edge 7 (wRWG

7 ) edge 5 (wRWG
5 )

edge 6 (WNED
15 ) 0.5000 0.0000 0.0000

edge 6 (WNED
16 ) 0.5000 0.0000 0.0000

edge 7 (WNED
17 ) 0.0000 0.5000 0.0000

edge 7 (WNED
18 ) 0.0000 0.5000 0.0000

edge 5 (WNED
12 ) 0.0000 0.0000 0.5000

edge 5 (WNED
11 ) 0.0000 0.0000 0.5000

face 3 (WNED
19 ) -1.3630 0.9426 0.4204

face 3 (WNED
20 ) 0.1960 -1.0941 0.8981

4.3.4 Projection of Nedelec space into RWG space

The objective in this case is to calculate the coefficients that projects

the Nédélec triangular curl-conforming basis functions into the RWG basis

functions. For that, the following equation must be solved finding the

value of the unknowns βi

Wj × n̂ =
3∑
i=1

βi (wi) for each Wj=1...8 (4.24)

where Wi are the Nédélec function and wj are the RWG functions.

As the previous case, there are different approaches that can be used

to solve this problem such as, solving a Galerkin system of equations of

using the definition of degrees of freedom of Nedelec. The main problem,

in this case, is that all the approaches provide different matrix β. The

Nedelec space is not contained in the RWG space, so there are different

ways to perform the projection. The different matrices for the reference

triangle are shown in tables 4.6−4.8.

The first two β matrices provide a non-local projection because the in-

terior functions WNED
7,8 give non-null trace on the RWG space elements.

The last matrix provides a correct local projection as the matrix α.

Although, the first two matrices β provide a non-local projection they

cannot be discarded a priori before calculating the error given by all the

projections.
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Table 4.6: β coefficients obtained by using Galerkin Method

WNED
1 WNED

2 WNED
3 WNED

4 WNED
5 WNED

6 WNED
7 WNED

8

wRWG
1 1/6 7/6 -1/3 -1/3 -7/6 -1/6 0.0 2.0

wRWG
2 -4/15 -28/15 8/15 8/15 28/15 4/15 12/5 22/5

wRWG
3 -2/15 28/30 4/15 4/15 28/30 2/15 6/5 4/5

Table 4.7: β coefficients obtained by using transpose α matrix

WNED
1 WNED

2 WNED
3 WNED

4 WNED
5 WNED

6 WNED
7 WNED

8

wRWG
1 1/2 1/2 0.0 0.0 0.0 0.0 -1/3 -1/6

wRWG
2 0.0 0.0 1/2 1/2 0.0 0.0 1/6 -1/6

wRWG
3 0.0 0.0 0.0 0.0 1/2 1/2 1/3 1/6

Table 4.8: β coefficients obtained by using the definition of dofs

WNED
1 WNED

2 WNED
3 WNED

4 WNED
5 WNED

6 WNED
7 WNED

8

wRWG
1 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

wRWG
2 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

wRWG
3 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0

4.4 Conclusions

This chapter has presented a modular approach to combine MoM and

FEM techniques for the analysis of large structures or finite arrays with

complex radiating elements. The approach have consisted of performing

the FEM analysis of each structure and to define the equivalent electric

and magnetic currents on the boundaries of the structure. Then, the

interaction between the structures is computed by using MoM and the

global FEM-MoM system of equation is assembled. Finally, the system

is solved and the analysis is completed. It is worth to note that the

approach has not been totally implemented but some previous works

have been done.
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One of these works has been the modification of the current variational

formulation of the FEM module of the suite. This modification has been to

provide unknowns for the corresponding dual field (H-Field or E-Field)

in an explicit way. The standard variational formulation of FEM problems

only has unknowns for one of the corresponding electromagnetic fields

(E-Field or H-Field) and the previous modification is required in order

to connect both FEM and MoM formulation.

Furthermore, a study of the projection between the basis functions of

both modules has been done in order to connect the unknowns between

both codes. The boundaries of the antenna is where both methods share

the unknowns and those need to be expressed in terms of the same basis

functions. In the particular case of this Ph. D. dissertation, a study

between the well-known Rao-Wilton-Glisson (RWG) div-conforming basis

functions and the the Nédélec triangular curl-conforming basis functions

of second-order has been performed.
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CHAPTER 5

ANALYSIS OF INFINITE PERIODIC
STRUCTURES

The electromagnetic analysis of periodic structures is of great impor-

tance in modern radar and communication systems. Accurate predic-

tion of structure performance using numerical methods not only reduces

the development cost and design timeline but also provides invaluable

physical insight to design engineers [6].

The main problem of using numerical methods for computations involv-

ing large finite structures is that the use of higher working frequencies

of modern radars and communication systems makes the computation,

despite the constant enhancements in computer power, a challenge, due

to the large electrical sizes of these structures.

One way to approach the electromagnetic analysis of large arrays is to

solve the full problem using a pure numerical technique, such as, the

Method of Moment (MoM) [60] or the Finite Element Method (FEM) [?]. It

is worth to note that acceleration techniques, such as, the Fast Multipole

Method (FMM) [?] or the Adaptive Integral Method (AIM) [?] are also

widely used in the analysis for large structure. However, since these

methods try to solve the full problem, their memory requirements are

prohibitive and make the simulation a great challenge.



5.1. PERIODIC BOUNDARY CONDITION ON FEM

Another family of approaches is to make use of the infinite structure

analysis, and apply post-processing techniques to correct the border ef-

fects of the structure. This analysis helps to understand the behavior of

elements in the central region of an electrically large array, since they

have similar active impedance characteristics as that of an element in

an infinite array. Also, the infinite array results are applied to predict

the mutual coupling between the elements in an array environment or

the embedded element pattern that includes mutual coupling effects can

be determined directly from the infinite array results. Thus, although

they are not a physically realistic problem, the infinite array analysis

provides a reasonable good approximation with a less computing require-

ment than the analysis of the full problem. Furthermore, fast techniques

approaches such as Macro Basis Functions (MBFs) use the infinite array

solution as the basis brick for their approaches.

In this chapter, the analysis of structures that are infinitely periodic in

the two-dimensional xy-plane is carried out. These structures can be

analyzed using a single unit cell where the field at one periodic surface

is related to the field at the opposite parallel surface through a simple

phase shift. This approach is based on the use of the so-called Periodic

Boundary Conditions (PBCs). Details about these boundary conditions

and its implementation on FEM are given in Section 5.1.

In addition to the use of the PBCs, a truncation of the computational

domain along the non-periodic direction (the z-direction in this case) is

needed to perform the analysis for open scattering and radiation prob-

lems. Thus, the modification of the truncation techniques implemented

in the FEM module is required in order to support the analysis of infinite

structures. Details about this modification are discussed in Section 5.2.

Finally, the analysis of some real structures is performed in Section 5.3.

There, examples of the performance and the capabilities of the suite

solving infinite periodic structures are provided.

5.1 Periodic Boundary Condition on FEM

As commented in the previous introduction, the analysis of infinite pe-

riodic structures can be reduced to a single unit cell by applying ap-

propriate periodic boundary conditions (PBCs). For simplicity, the finite
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UNIT CELL

x y

z

-fs

qs

ks

SLAVE

MASTER

Figure 5.1: Infinite periodic array in the xy-plane that extends to

infinity in four directions.

element analysis consider in this section is performed on infinite peri-

odic structures located in two-dimensional xy-plane as the one shown in

figure 5.1. The unit cell is also shown in the figure.

It is worth to note that is convenient that opposing surfaces in the unit

cell have identical surface meshes since, if these meshes are not identical,

non-conformal variational formulations or projections over a common

surface grid are required in order to analyze the infinite problem. The

use of these techniques imply the modification of the FEM module with

the consequence extra developments. In this particular case, unit cells

with hexahedrical shapes and identical surface meshes for the opposing

surfaces are considered. With such a volumetric mesh, the infinite pe-

riodic structure can be generated repeating the unit cell mesh in the x-

and y- directions. The opposite surfaces are related by pairs where one

surface is called ”master” and the opposite is called ”slave”. Figure 5.1

shows an example of the master and the slave surfaces of a unit cell.

Thus, a identical distribution of the dofs is obtained between a master

and its corresponding slave surface, and also, between the surfaces of

adjacent unit cells. Figure 5.2 shows a two dimensional cut of a unit cell

where identical meshes for the master surface X1 and slave surface X2

may be appreciated.

117



5.1. PERIODIC BOUNDARY CONDITION ON FEM

UNIT CELL

gi

gj

gi

gj

gi

gj

1
1

2

(MASTER)
(MASTER)

(SLAVE)(SLAVE)
2

XY

Z

Figure 5.2: Two-dimensional finite element mesh for a unit cell

According to the Floquet theorem [61], if gi is a dof associated to the

master boundary X1, the corresponding dof gj on the slave boundary

X2 (red relationship between dofs on figure 5.2) is given by

gj = gi e
−jΨx with Ψx = kx Dx (5.1)

where Dx is the unit cell spacing in the x- and kx is the corresponding

propagation vector with (θs, φs) being the scan angle of the structure.

kx = k0 sin θscosφs (5.2)

Conversely, if gi is a dof associated to the master boundary Y1, the cor-

responding dof gj associated to the slave surface Y2 (orange relationship

between dofs on figure 5.2) is given by

gj = gi e
−jΨy with Ψy = ky Dy (5.3)

where Dy is the unit cell spacing in the y- and ky is the corresponding

propagation vector with (θs, φs) being the same scan angle as before.

ky = k0 sin θssinφs (5.4)

Finally, the expression of a dof gj associated to the corner intersected

by the slave boundaries X2 and Y2 may be considered an application of

both previous conditions (5.1) and (5.3) at the same time over a dof gi
associated to the corner intersected by the master boundaries X1 and Y1

(green relationship between dofs on figure 5.2).

gj = gi e
−j(Ψx+Ψy) (5.5)
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Hence, the expression of the dofs associated to the slave surface (gj ’s) is

related with the dofs associated to the master surface (gi’s) through a

phase-shit term Ψ. In summary, the relationship between gi and gj for

the different boundaries conforming a unit cell is given by

gj = gi e
−jΨij (5.6)

where the phase-shift term Ψij is given by

Ψij =


kx Dx ∀ gi ∈ X1, gj ∈ X2

ky Dy ∀ gi ∈ Y1, gj ∈ Y2

kx Dx + ky Dy ∀ gi ∈ X1 ∩ Y1, gj ∈ X2 ∩ Y2

(5.7)

In accordance to the formulation presented in Chapter 3, the weak-form

representation of the vector wave equation is given by∫∫∫
Ω

(∇×W) ·
(

¯̄fr
−1
∇×V

)
dV − k2

0

∫∫∫
Ω

W · ¯̄gr VdV

=

∫∫∫
Ω

W · q dV −
∫∫
©
Γ

W ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS (5.8)

where Γ denotes surfaces that encloses Ω. The corresponding finite ele-

ment matrix equation can be written as

[K] {g} = {b}+ {h} (5.9)

where the ij-th coefficient of the [K] matrix is given by

Kij =

∫∫∫
Ω

(∇×Wi) ·
(

¯̄fr
−1
∇×Vj

)
dV − k2

0

∫∫∫
Ω

Wi · ¯̄grVj dV

(5.10)

and the i-th coefficient of the right hand side is given by

bi =

∫∫∫
Ω

Wi ·q dV, hi = −
∫∫
©
Γ

Wi ·
[
n̂×

(
¯̄fr
−1
∇×V

)]
dS (5.11)

It is worth noting that the surfaces belonging to the periodic directions

do not have a known boundary condition and the surface integral of the

previous equation (hi) must be treated. The approach used in this thesis

consists of the following.
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Lets consider a periodic structure with a unit cell as the one shown

in figure 5.2. If gi resides inside the unit cell, its basis function has

no tangential component on any side surfaces. Thus, the value of the

integral hi for all the dofs inside the unit cell is zero. Now considering a

gi with a basis function that has a tangential component on the surface

X1, the matrix equation can be written as

N∑
l=1

Kil gl = bi + hi ∀ gi ∈ X1 (5.12)

where

hi =

∫∫
©
X1

Wi ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS (5.13)

since n̂ = −x̂ on X1. As the opposing surfaces have identical surface

meshes, the matrix equation corresponding to a gj with basis function

that has a tangential component only on X2 can be written as

N∑
l=1

Kjl gl = bj + hj ∀ gj ∈ X2 (5.14)

where

hj = −
∫∫
©
X2

Wj ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS (5.15)

Both hi and hj are unknown terms. However, because of the periodic

condition for the dofs given in equation (5.1), the relationship between

the integrals hi and hj can be defined as

hj = −hi e−jΨx (5.16)

Hence, the surface integral hi in equation (5.12) can be canceled by

multiplying the equation (5.14) by the factor ejΨx and adding the re-

sulting equation to (5.12). This yields a new matrix equation for the gi
belonging to X1 as

N∑
l=1

[
Kil +Kjl e

jΨx
]
gl = bi + bj e

jΨx ∀ gi ∈ X1 (5.17)
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The treatment for a gi where its basis function has a tangential compo-

nent only on Y1 is the same than the previous case, yielding the matrix

equation

N∑
l=1

[
Kil +Kjl e

jΨy
]
gl = bi + bj e

jΨy ∀ gi ∈ Y1 (5.18)

It is interesting to look at a gi associated to the corner edge intersected

by the boundaries X1 and Y1, whose basis function has a tangential

component on both X1 and Y1. In this case the equation is given by

N∑
l=1

Kil gl = bi + hi ∀ gi ∈ X1 ∩ Y1 (5.19)

where

hi = h
(x)
i + h

(y)
i =

∫∫
©
X1

Wi ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS

+

∫∫
©
Y1

Wi ·
[
ŷ ×

(
¯̄fr
−1
∇×V

)]
dS (5.20)

This unknown term hi can be eliminated by the equations for the corre-

sponding h’s terms of the three other corner edges of the unit cell. For

the corresponding gm associated to the corner edge intersected by the

boundaries Y1 and X2, its equation is given by

N∑
l=1

Kml gl = bm + hm ∀ gm ∈ Y1 ∩ X2 (5.21)

with

hm = h(x)
m + h(y)

m = −
∫∫
©
X2

Wm ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS

+

∫∫
©
Y1

Wm ·
[
ŷ ×

(
¯̄fr
−1
∇×V

)]
dS (5.22)
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For the corresponding gn associated to the corner edge intersected by

the boundaries X1 and Y2, its equation is given by

N∑
l=1

Knl gl = bn + hn ∀ gn ∈ X1 ∩ Y2 (5.23)

with

hn = h(x)
n + h(y)

n =

∫∫
©
X1

Wn ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS

−
∫∫
©
Y2

Wn ·
[
ŷ ×

(
¯̄fr
−1
∇×V

)]
dS (5.24)

Finally, for the corresponding gj associated to the corner edge intersected

by the boundaries X2 and Y2, its equation is given by

N∑
l=1

Kjl gl = bj + hj ∀ gj ∈ X2 ∩ Y2 (5.25)

with

hj = h
(x)
j + h

(y)
j = −

∫∫
©
X2

Wj ·
[
x̂×

(
¯̄fr
−1
∇×V

)]
dS

−
∫∫
©
Y2

Wj ·
[
ŷ ×

(
¯̄fr
−1
∇×V

)]
dS (5.26)

Using the periodic boundary condition for the dofs given in equation

(5.6), the relation between the surface integrals is given by

h(x)
m = −h(x)

i e−jΨx , h(y)
n = −h(y)

i e−jΨy (5.27)

h
(y)
j = −h(y)

m e−jΨy , h
(x)
j = −h(x)

n e−jΨx (5.28)

Thus, the equation of a gi associated to the corner edge intersected by

the boundaries X1 and Y1 can be found multiplying the equation (5.21)

by the factor ejΨx , the equation (5.23) by the factor ejΨy , the equation

(5.25) by ej(Ψx+Ψy) and adding the resulting equations to (5.19), yielding
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N∑
l=1

[
Kil +Kml e

jΨx +Knl e
jΨy +Kjl e

j(Ψx+Ψy)
]
gl

= bi + bme
jΨx + bne

jΨy + bje
j(Ψx+Ψy) ∀ gi ∈ X1 ∩ Y1 (5.29)

The previous equations (5.17), (5.18) and (5.29) show how the system of

equations is modified in order to eliminate the unknown terms hi. This

can be interpreted as the connection of the dof associated to the master

surfaces with the corresponding dof associated to the slave surfaces.

The periodic boundary conditions (PBCs), given by equation (5.6), have

not been imposed at this point yet. The imposition is performed by

substituting the original equations of the dof associated to the slave

surfaces by equation (5.6).

Although the previous modifications seem quite complicated, the numer-

ical implementation is straightforward. The following section describes

how the PBCs may be incorporated in numerical codes as, for instance,

the FEM module of the suite.

5.1.1 Numerical implementation

As mentioned above, the numerical implementation of PBCs on FEM is

limited to a slight modification on the system of equations of the prob-

lem. The algorithm to impose the PBCs on FEM is as follows:

Step 1: The sparse system of equations given by the variational

formulation described in Section 3.1 is computed. At this step, no

considerations about PBCs are taken and the standard FEM formula-

tion is used. Figure 5.3 shows a system of equations where the coef-

ficients regarding to the i-th dof (associated to the master boundary

X1) are marked in red. The coefficients corresponding to the j-th

dof (associated to the slave boundary X2) are marked in blue.

Step 2: Once the system of equations is obtained, the modification

over the equations of the dofs associated to the master boundaries

X1 and Y1 is applied. For helping the reader to follow this step, lets

focus on the modification of the dofs associated to the boundary X1

first. For simplicity, the matrix equation corresponding to those dofs

is written here again
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Kil

Kjl

Kli Klj

bi

bj

(MASTER)

(SLAVE)

i-th MATRIX COEFFICIENTS 

j-th MATRIX COEFFICIENTS j-th RHS COEFFICIENTS 

i-th RHS COEFFICIENTS 

ZEROS

Figure 5.3: Equations of two opposite dofs before applying the PBCs

N∑
l=1

[
Kil +Kjl e

jΨx
]
gl = bi + bj e

jΨx ∀ gi ∈ X1 (5.30)

where the i-index corresponds to the coefficients of the i-th dof as-

sociated to the master surface X1 and the j-index corresponds to the

coefficients of the opposite dof associated to the slave surface X2.

It is worth noting that those coefficients are already computed in

the previous step of the algorithm (marked in red/blue in figure 5.3,

respectively). Thus, the modification of the system of equation con-

sists of a displacement of the coefficients of the j-th equation into

the i-th equation but multiplied by the corresponding phase-shift

term. In the particular case considered first, the phase-shift between

the dofs of X1 and X2 is ejΨx . Figure 5.4 shows the displacement of

the coefficients of the j-th equation (marked in blue/brown in the

figure) into the i-th equation. The coefficients marked in green/pur-

ple in the i-th equation are already multiplied by the corresponding

phase-shit term.

After the displacement is performed, the j-th equation is completely

removed from the system. Figure 5.5 shows the state of the system

of equations at this point of the algorithm. See how all the coeffi-

cients corresponding to the j-th equation have been removed from

the system.
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Figure 5.4: Modification of the i-th equation of the system
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Figure 5.5: j-th equation is removed from the system

The methodology employed to modify the equations of the dofs asso-

ciated to the master boundary Y1 is exactly the same as previously.

In this case, the modification of the system of equations is performed

using the matrix equation (5.18), instead of equation (5.17). Further-

more, the corresponding phase-shift between the dofs of Y1 and Y2

is ejΨy . Figure 5.4 may also be used to show the displacement of

the coefficients of the j-th equation (marked in blue/brown in the

figure) into the i-th equation for this case.

125



5.1. PERIODIC BOUNDARY CONDITION ON FEM

1

gm
gn

gj

1

2

gi

XY

Z
(MASTER)

(MASTER)

(SLAVE)(SLAVE)

2

Figure 5.6: Relationships of dofs associated to the corner intersected by

the master boundaries

Step 3: The modification of the equations associated to dofs residing

on the corner intersected by the master boundaries X1 and Y1 is a

slightly different than the previous cases, since three displacements

are needed instead of one. Note that the dofs associated to the corner

intersected by these master boundaries have relationships with the

two slave boundaries (X2 and Y2) and with the corner intersected by

those slave boundaries (see figure 5.6).

The corresponding matrix equation governing the modification of

the system is given by equation (5.29). Figure 5.7 shows the dis-

placements of the coefficients of the j-th, m-th and n-th equations

into the i-th equation for this particular case. Each displacement is

multiplied by the corresponding phase-shift term.

Step 4: As commented before, once all the displacements have been

performed, the equations associated to all the slave dofs, regardless

of the boundary where they reside, are completely removed from the

system of equations. Figure 5.8 illustrates an example of the state

of the system of equations at this point of the algorithm.

To complete the numerical implementation of the PBCs on FEM, the

periodic relationship between the slave and the master dofs described

according the Floquet theorem (see page 118) is added to the sys-

tem of equations. For simplicity, the equation corresponding to the

relationship of the dofs associated to the boundaries X1 and X2 is

written here again

gj = gi e
−jΨx with Ψx = kx Dx (5.31)
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Figure 5.7: Modification of the system of equations for dofs residing on

the corner intersected by the master boundaries
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Figure 5.9: Adding periodic relationship between the slave and the

master dofs to the system of equations

where gi is the i-th dof located on the master surface X1 and gj
is the opposing dof located on the slave surface X2. The periodic

relationship between the dofs residing on the boundaries Y1 and Y2

is governing by equation (5.3), while the relationship between the

dofs residing on the corner intersected by the master boundaries X1

and Y1 and the corner intersected by the slave boundaries X2 and

Y2 is given by equation (5.5). Figure 5.9 shows an example about

how equation (5.31) is added to the system of equations.

Step 5: Once the addition of the new set of equations is complete,

the application of the PBCs over the structure is finished and the

system of equation is ready to be solved by the sparse solver.

The algorithm presented above can be used for the implementation of

the PBCs on any numerical code based on FEM. Particularizing to the

FEM module of the suite, the algorithm has been easily implemented

using an efficient management of the memory. Typically, sparse solvers

store the system of equations by using four large vectors that contain

the coefficients of the matrix (vector A), the corresponding rows of these

coefficients (vector I), the corresponding columns (vector J) and the

coefficients of the right hand side (vector RHS). Furthermore, sparse

solvers automatically assemble the coefficients of the system of equations

by adding the corresponding values of the vector A which have the same
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Figure 5.10: Internal storage of sparse solver for a system of equations

rows and columns in vectors I and J. Figure 5.10 illustrates the internal

storage of a simple system of equations in the four vectors previously

commented. Note how the coefficient A11 of the matrix is stored in two

different locations of the vector A (first and fifth), while the vectors I

and J contains the same values for those locations. Subsequently, the

sparse solver assembles them internally.

Thereby, the displacement of the matrix coefficients of a j-th equation

into a i-th equation of the system (steps 2−3) is performed with a slight

change in the vector I that contains the rows of the matrix. In other

words, the row contained in the vector I for all the matrix coefficients

associated to the j-th equation (see vector in purple in figure 5.11) is

changed by the row of the i-th equation (see vector in orange in figure

5.11). In addition, the corresponding matrix coefficients of the j-th

equation, stored in the vector A, are multiplied by the phase-shift. Then,

the displacement is complete. Regarding to the right hand side of the

system, the coefficients of the j-th equation, stored in the vector RHS,

are multiplied by the phase-shift and added manually to the coefficient

of the i-th equation. Finally, the new set of equations corresponding to

the step 4 of the algorithm is added to the vectors A, I and J. Thus, the

application of the PBCs in the FEM module is completed.

5.1.2 Verification tests

The accuracy of the results given by a computer code, specially when

new features and capabilities are implemented, must be verified before

the code is ready for research use. In this case, the Method of Manufac-

tured Solutions (MMS) has been employed to provide evidence that the

numerical implementation of the PBCs inside the FEM module has been

correctly performed. Further details about MMS are given in Section 3.5.

129



5.1. PERIODIC BOUNDARY CONDITION ON FEM

i i i

Kil

h i l

VECTOR(A)

VECTOR(I)

VECTOR(J)

KiiKhi

Kil

Kjl

ZEROS

j-th MATRIX COEFFICIENTS MULTIPLED BY PHASE SHIFT

j-th MATRIX COEFFICIENTS 

i-th MATRIX COEFFICIENTS 

(MASTER)

(SLAVE) j j j

Koj

m n o

VECTOR(A)

VECTOR(I)

VECTOR(J)

KnjKmj

i i i

Koi

m n o

VECTOR(A)

VECTOR(I)

VECTOR(J)

KniKmi

Figure 5.11: Modification of the i-th equation of the system using the

internal data of sparse solvers

A complex exponential function is used as manufactured solution to

compute the relative/maximum errors given by the code when PBCs are

applied. It is worth to note that, in the case of PBCs, the manufac-

tured solution must satisfy also the periodic condition for the dofs given

in equation (5.6). Thus, complex exponential functions become a nice

choice of smooth solution to perform this validation test. The expression

of the function used as manufactured solution is given by

Eanalytic = Epol e
−jk0(kp·r) (5.32)

where Epol is the polarization vector, kp is the propagation vector and

r is the vector with the real coordinates where to evaluate the function.

The exponential function has been polarized in both θ and φ components

and the incident angles are φ = 30◦ and θ = 20◦. Thereby, the scan

angles that determinate the phase shift between the corresponding pairs

of dofs are φs = 210◦ and θs = 20◦.

The structure used for these validation tests consists of a cube where the

surfaces perpendicular to the x- and y-directions are marked with PBCs

(see the boundaries on figure 5.12). Then, the cube may be considered

as the unit cell of a infinite periodic structure where the periodicity

directions are x- and y-, respectively.
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Figure 5.12: Structure used for the verification test

Table 5.1 gathers the relative/maximum errors for different mesh dis-

cretization of the cube. Both relative and maximum errors decay as the

number of element is increased. This behavior is exactly the expected

providing evidences that the implementation of the PBCs in the FEM mod-

ule is correct. Figure 5.13 shows the convergence rate of the error when

the number of unknowns of the problem increases. The relative errors

decay approximately with a slope of -0.68 and the maximum errors with

a slope of -0.54. It is worth to note that the theoretical slope of the con-

vergence rate of the relative error for this test (−2/3) matches exactly

with the results given by the FEM module (see Chapter 3). Details about

this theoretical slope are provided in [7].

Figure 5.14(a) shows the imaginary part of the x-component of the ana-

lytic solution imag-x
(
Vanalytic

)
for the finest mesh discretization of the

cube. Figure 5.14(b) shows the solution given by the FEM module for

the same component imag-x (VFEM). The error between both solutions

is shown in figure 5.14(c) where an uniform and low error may be seen.

5.2 Infinite domain truncation methods on the suite

Typically, infinite periodic structures have a two-dimensional periodicity

and are unbounded in the third non-periodic direction. Thus, a mesh

truncation technique is needed in order to perform the simulation. In

other words, if the original problem domain is infinite in the z-direction,

a mesh truncation technique is needed above the unit cell and another

below the unit cell (if necessary) to make the computational domain

finite in the z-direction.
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Figure 5.13: Convergence rate of the error over a cube using a complex

exponential as manufactured solution

As described in Chapter 3, the FEM module supports a first-order absorb-

ing boundary condition (ABC) or a boundary integral equation (FE-IIEE)

as mesh truncation techniques. The standard first-order ABC for the up-

per truncation surface is given by

ẑ× (∇×V) + jk0 (ẑ× ẑ×V)−Ψinc = 0 (5.33)

where Ψinc is the result of evaluating the first two terms of the previous

equation with V = Vinc.

The implementation of this boundary condition in the finite element

formulation is straightforward. However, this condition is only satis-

fied for waves propagating along the z-direction (i.e., only absorbs waves

propagating along θs = 0), and it has a significant reflection for waves

propagating in other directions. This reflection may produce distur-

bances when analyzing infinite periodic structures in which the solu-

tion contains significant wave components travelling in other directions

different from the z-direction. Figure 5.15 shows the residual of equa-

tion (5.33) for waves propagating along different directions ranging from

0◦ ≤ φs ≤ 360◦ and from 0◦ ≤ θs ≤ 90◦. The incident frequency is

100 MHz and (0, 0, 1) is the observation point where equation (5.33) is

evaluated. The figure shows clearly how the condition absorbs the waves
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Table 5.1: Relative/maximum errors for several mesh sizes of a cube

using an exponential function as manufactured solution

Tetrahedrons Unknowns ξrel ξmax (∇× ξ)rel (∇× ξ)max

75 608 6.568e-2 2.293e-1 6.946e-2 2.931e-1

2948 20194 5.501e-3 4.262e-2 6.620e-3 5.777e-2

9825 65454 2.439e-3 2.687e-2 2.983e-3 2.812e-2

14802 98138 1.867e-3 2.221e-2 2.290e-3 1.989e-2

79378 516466 5.965e-4 6.710e-3 7.351e-4 6.995e-3

108421 713252 5.547e-4 5.232e-3 5.919e-4 6.015e-3

(a) Analytic solution (b) Code solution

(c) Error between analytic and code solution

Figure 5.14: 3D representation of the exponential solution
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Figure 5.15: Standard first-order absorbing boundary condition values

for waves propagating in different (θs, φs) directions

propagating along the z-direction (values in blue in the figure) and how,

as the angle θs is increased, the condition does not absorb the incident

waves (values changing from blue to red in the figure). Thus, a more

appropriate boundary condition is needed to analyze infinite periodic

structures using the first-order absorbing boundary conditions.

Following the procedure described in [6, Section 9.1.2], a modified ab-

sorbing boundary condition is obtained which will absorb perfectly a

plane wave propagating in the (θs, φs) direction. This modified first-

order absorbing boundary condition is given by

ẑ× (∇×V) + jk0 cos θs (ẑ× ẑ×V)− jk0

cos θs
kst (kst ·V)−Ψinc

θs,φs
= 0

(5.34)

where kst = sin θs cosφs x̂+ sin θs sinφs ŷ with (θs, φs) being the scan

angles of the array and Ψinc
θs,φs

is the result of evaluating the first three

terms of equation (5.34) with V = Vinc.

Figure 5.16 shows the residual of equation (5.34) for the waves propagat-

ing in the same directions than the previous figure. The frequency of the

plane waves and the observation point where the equation is evaluated

are also the same than the case of the first-order absorbing boundary

condition. The figure shows how the modified condition absorbs per-

fectly any plane wave propagating in the (θs, φs) direction (except waves

propagating along θs = 90◦ where a indetermination in one term of the

equation is found).
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Figure 5.16: Modified first-order absorbing boundary condition values

for waves propagating in different (θs, φs) directions

5.2.1 FE-IIEE method for infinite periodic structures

Another way supported by the FEM module to truncate the mesh is by

using the Iterative Integral Equation Evaluation method. As it was

described in Section 3.2, the exterior infinite domain is truncated by an

integral equation representation of the exterior field which is calculated

using the Green’s function G(r, rs) in free-space1

G (r, rs) =
e−jk0R

4πR
(5.35)

where R = |r− rs| is the distance between the source point and the

observation point.

In the case of infinite periodic structures the previous Green’s function

must be replaced by the appropriate periodic Green’s function Gp(r, rs)

in free space. Assuming a periodic structure in the xy-plane (as the

one shown in figure 5.1), the (m,n) cell of the structure is obtained by

shifting the (0, 0) cell through the relation

ρmn = m Dx x̂+ n Dy ŷ (5.36)

where Dx and Dy are the periodic distances in the x- and y-directions.

1The FE-IIEE method supports not only the Green’s function in free space but

also others such as, the half space Green’s function or the periodic Green’s function.
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Thus, the periodic Green’s function Gp(r, rs) in the spatial domain has

the form

Gp (r, rs) =
∞∑

m=−∞

∞∑
n=−∞

e−j(kxmDx+kynDy)
e−jk0Rmn

4πRmn
(5.37)

where

kx = k0 sin θs cosφs ky = k0 sin θs sinφs (5.38)

with θs and φs as the scan angles that determinate the phase-shift be-

tween the different adjacent cells and Rmn is the distance between the

source in the corresponding cell and the observation point. This distance

is given by

Rmn =

√
(x− x′ +m Dx)

2
+
(
y − y′ + n Dy

)2
+ (z − z′)2

(5.39)

where x′, y′ and z′ are the coordinates of the source in the unit cell.

An accurate and efficient evaluation of the series given in (5.37) is of

fundamental importance for the analysis of structures using boundary

integral equations. The main constrain of those series is its slow conver-

gence rate for the free space case. Equation (5.37) is extremely slow to

converge (for arbitrary d, the number of terms having magnitude 10−d

is of order 10+2d) making the numerical evaluation of the series difficult

and computationally expensive. Figure 5.17 shows an example about

how extremely slow to converge is equation (5.37).

A unit cell of 1 m by 1 m placed in the xy-plane has been considered.

Equation (5.37) has been calculated by increasing the number of adjacent

unit cells in both x- and y-directions. The red line shows the converged

magnitude of the equation for an arbitrary observation point along the z-

axis. After consider more than 2000 units cells along each direction, the

magnitude of the periodic Green’s functions is still not accurate enough,

which gives an idea about how slow to converge is the series.

Many techniques exist for accelerating slowly-convergent series, such as

the Euler Transformation [62, Equation 3.6.27], the Shank Transforma-

tion [63], the Poisson Transformation, the Ewald Transformation [64, 65]

or the Kummer Transformation [62, Equation 13.1.27]. A survey of them
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Figure 5.17: Comparison between the value of the series given in (5.37)

with the converged magnitude

and their use in evaluating periodic sums of three-dimensional points

sources is given in [66]. Among these techniques the one chosen to accel-

erate the series in the FEM module has been the Ewald’s transformation

since, this method has been considered in the literature as the reference

method for the efficient numerical calculation of the periodic Green’s

function [44, 45].

Ewald Transformation

Ewald transformation was originally derived in [64] for the computation

of three-dimensional lattice potentials. It splits the series representation

of the lattice potential, and likewise that of the periodic Green’s function,

into a sum of two series of different types from that of the original series,

which are both exponentially convergent.

This section provides a detailed derivation of the Ewald representation

for the two-dimensional periodic Green’s function. The Ewald trans-

formation starts from the spatial domain representation of the periodic

Green’s function given in equation (5.37) and makes use of the identity

e−jk0Rmn

Rmn
=

2√
π

∫ ∞
0

e

(
−R2

mns
2+

k20
4s2

)
ds (5.40)
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where s is a complex variable. The periodic Green’s function can be

written in two parts by using the previous identity and splitting the

path integration at the parameter E as

Gp (r, rs) = Gp1 (r, rs) +Gp2 (r, rs) (5.41)

where Gp1 (r, rs) is given by

Gp1 (r, rs) =
1

4π

∞∑
m=−∞

∞∑
n=−∞

e−j(kxmDx+kynDy)

× 2√
π

∫ E

0

e

(
−R2

mns
2+

k20
4s2

)
ds (5.42)

and Gp2 (r, rs) is given by

Gp2 (r, rs) =
1

4π

∞∑
m=−∞

∞∑
n=−∞

e−j(kxmDx+kynDy)

× 2√
π

∫ ∞
E

e

(
−R2

mns
2+

k20
4s2

)
ds (5.43)

with kx, ky and Rmn as the ones used in equation (5.37). For the in-

tegral in equation (5.43), Ewald transformation applies directly. More

precisely, using the identity [62, Equation 7.4.34],

2√
π

∫ ∞
E

e

(
−R2

mns
2+

k20
4s2

)
ds =

1

2Rmn

[
e−jk0Rmnerfc

(
RmnE−

jk

2E

)
+ejk0Rmnerfc

(
RmnE +

jk

2E

)]
(5.44)

where erfc is the complementary error function, the integral can be

written as

Gp2 (r, rs) =
1

8π

∞∑
m=−∞

∞∑
n=−∞

e−j(kxmDx+kynDy)

Rmn

×
∑
±

[
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]
(5.45)

which is essentially a ”modified” spatial-domain portion of the periodic

Green’s function. The summation over ± is a shorthand notation for the

right hand side of equation (5.44) and it will be used along this chapter.
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Making use of the Poisson transformation, or alternatively the procedure

in [65, 44], the integral in equation (5.42) is finally transformed to

Gp1 (r, rs) =
ej(kxξ+kyη)

8DxDy

∞∑
m=−∞

∞∑
n=−∞

1

αmn

×
∑
±

[
erfc

(αmn
E
± ζE

)
e±2αmn ζ

]
e

2πj
(
mξ
Dx

+nη
Dy

)
(5.46)

where

ξ =x− x′ η = y − y′ ζ = z − z′ (5.47)

and

α2
mn =

(
πm

Dx

)2

+

(
πn

Dy

)2

+

(
πm

Dx

)
kx+

(
πn

Dy

)
ky +

1

4

(
k2x + k2y − k20

)
(5.48)

Thus, equations (5.45) and (5.46) are combined to give the numerical

value of the Green’s function. The complementary error function which

appears in both series makes them converge rapidly. The parameter E

controls the convergence rate. As E becomes larger, the spatial series

(5.45) converges faster, while the spectral series (5.46) converges slower.

The optimum parameter is the one that makes the two series converge

at the same rate, so that equal numbers of terms are required in the

calculation of both series. By analysis of the behavior of the series terms,

the optimum parameter Eopt is found to be [44]

Eopt =

√
π

DxDy
(5.49)

Choosing this value for E and adjusting the summation limits so that the

most dominant terms are kept, in almost all practical cases it is sufficient

to include only three adjacent cells.

Numerical implementation

The numerical implementation of the FE-IIEE algorithm for infinite pe-

riodic structures is conceptually straightforward, since just a slight mod-

ification of the Green’s function used to calculate the radiated field by

the FEM region is required.
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Figure 5.18: Typical setup of a open single-region problem

In this sense, the third step of the FE-IIEE algorithm requires the calcu-

lation of the field, and its curl, over S radiated by the equivalent currents

Jeq and Meq. Figure 5.18 shows a sketch where all the component in-

volved in the FE-IIEE algorithm may be appreciated. The fields radiated

by the FEM region, VFE-IIEE and its curl (∇ × V)FE-IIEE, are computed

using the integral expressions

VFE-IIEE =

∫∫
©
S′

(
Leq ×∇G

)
dS

′

− jkh
∫∫
©
S′

[
Oeq

(
G+

1

k2
∇∇G

)]
dS

′
(5.50)

(∇×V)FE-IIEE = jkh

∫∫
©
S′

(
Oeq ×∇G

)
dS

′

−
∫∫
©
S′

[
Leq

(
k2 G+∇∇G

)]
dS

′
(5.51)

where one can see that G denotes the Green’s function. In the particular

case of the infinite periodic structures, G is the corresponding Ewald

representation of the two-dimensional periodic Green’s function Gp.
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It is worth noting that the first derivative (∇G term) and the second

derivative (∇∇G term) of the Ewald series are required to compute the

fields radiated by the FEM region. Due to the complexity and extension

of the calculation of those derivatives, the expressions of both terms∇G

and ∇∇G are attached in the appendix B.

Thereby, the FE-IIEE algorithm used to solve the infinite periodic prob-

lems is exactly the same as the non-periodic case except for the calcula-

tion of the fields radiated by the FEM region.

Something to consider about the use of the FE-IIEE method is that

it is able to absorb reflection for waves propagating simultaneously in

various directions and not only for waves propagating in a given (θs, φs)

direction. This feature is very useful for the analysis of finite arrays when

several floquets modes are excited at the same time. Therefore, the initial

value of Ψ (see step 1 of the FE-IIEE algorithm in section 3.2.1) may

be calculated regardless of the absorbing boundary condition (ABC) used,

either applying the first-order or the modified ABC commented previously.

The only difference between the use of those conditions in the method

resides in the number of iterations needed to reach the (numerically)

exact radiation boundary condition. A study of this behavior is detailed

in the first example of section 5.3.

Ewald verification tests

Before starting with the simulation of real problems, the verification

of the values given by the Ewald representation described in previous

sections has been performed. One way to verify whether the value given

by the Ewald representation in equations (5.45) and (5.46) is correct, is

to compare that value with the one given directly evaluating the periodic

Green’s function in (5.37) when the number of cell tends to infinity.

The unit cell considered has been a square cell ranging from 0 ≤ x ≤ 1 m

and from 0 ≤ y ≤ 1 m with a source point located at (0.98, 0.30, 0.0) m.

The observation point has been placed at (0.68,0.71,0.6) m and the work-

ing frequency has been 100 MHz. The periodic Green’s function in (5.37)

has been evaluated by increasing the number of adjacent unit cells un-

til 2000 in both x- and y-directions. Figure 5.19 shows the comparison

between the magnitude of the periodic Green’s function and the Ewald

representation.
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Figure 5.19: Comparison between the module of the Ewald

representation and the periodic Green’s function
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Figure 5.20: Comparison between the module of the first derivative of

the Ewald representation and the periodic Green’s function

The Ewald representation converges using 3 adjacent units cells; many

more than 2000 cells are needed to reach an acceptable value of the pe-

riodic Green’s function. Figure 5.20 shows the comparison between the

magnitude of the first derivative of the periodic Green’s function and

the magnitude of the first derivative of the Ewald representation. The
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Figure 5.21: Comparison between the module of the second derivative

of the Ewald representation and the periodic Green’s function

equations involved in the calculation of the first derivative of the Ewald

representation are documented in the appendix B, in particular, equa-

tions (B.8)-(B.13). In this case, the Ewald representation also converges

using 3 adjacent units cells providing an accurate value. The comparison

between the magnitude of the second derivative of the periodic Green’s

function and the magnitude of the second derivative of the Ewald repre-

sentation is shown in figure 5.21. Appendix B contains the equations of

the second derivative of the Ewald representation, in particular, equa-

tions (B.15)-(B.32). The Ewald representation also provides an accurate

value in this case.

5.3 Numerical Results

To illustrate the capabilities of the suite solving infinite periodic struc-

tures some examples has been analyzed. The first example has consisted

of the analysis of an infinite ground plane. It is worth to note that this

example has been used as validation test since the result of this analysis

may be compare with an analytic solution. The second example has

consisted of the analysis of a microstrip patch phased array using the

infinite analysis approach. The results of this analysis have been com-

pared with the ones given by the MoM module of the suite for an 11 x 11

finite array.
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Figure 5.22: Unit cell model used for the first test

5.3.1 Analysis of infinite ground plane

The following example performs several analysis of an infinite ground

plane under a plane wave excitation. Furthermore, the different mesh

truncation techniques supported by the FEM module have also been used

in order to check their accuracy and performance in the analysis of infi-

nite structures.

Normal incidence

In this first test, the infinite ground plane has been illuminated by a

plane wave with φ = 0◦ and θ = 0◦ as incident angles. The plane

wave has been polarized in both φ- and θ-components and the working

frequency has been set to 300 MHz.

The unit cell consider for this test has been an hexahedron with 0.25 m

long by 0.25 m wide by 0.5 m high. The ground plane has been placed

in the xy-plane. It is worth noting that the solution to this problem is a

standing wave (SW) with a wavelength of 0.5 m. Thus, it is easy to see if

the results given by the FEM module are correct, since a complete period

of the SW should be appreciated along the z-axis of the unit cell. Figure

5.22 shows the unit cell model used in this test.

The non-periodic direction (z-axis) has been truncated using a first-order

absorbing boundary condition (ABC). The expression of the modified ABC
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Figure 5.23: |E-Field| for the first test

for the scan angle θs = 0◦ matches with the first-order ABC. Thereby,

this test has been analyzed only using the first-order ABC alone and in

combination with FE-IIEE method as truncation techniques. Note that

the initial value of Ψ for the FE-IIEE method has been calculated using

the first-order ABC.

Figure 5.23 shows the magnitude of the E-field when the non-periodic

direction of the unit cell is truncated by using the first-order ABC alone.

A complete period of the standing wave may be appreciated as it was

expected. The analysis of the unit cell when the non-periodic direction

is truncated by using the FE-IIEE method has been also performed. In

this case, the initial value of Ψ is already numerically exact, since that

value is calculated by using the first-order ABC. Under this scenario, the

FE-IIEE method should reach the solution in one iteration with an error

numerically zero. The error given by the method in this test has been

5.23772E-08 which confirms the expected behavior. It is worth to note

that the results given by both truncation techniques are indistinguish-

able. Hence, this first validation test is concluded to be satisfactory.

Oblique incidence

In this case, the infinite ground plane has been illuminated by a plane

wave coming from φ = 20◦ and θ = 60◦. The plane wave has been

polarized in the φ-component and the working frequency has been set
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(a) Modified ABC truncation technique (b) Modified ABC using FE-IIEE method

Figure 5.24: Comparison of the |E-Field| for the second test

to 300 MHz. The unit cell consider for this test has been the same as the

used in the previous example. The solution to this problem is a SW but

with a wavelength of 1.0 m, instead of 0.5 m. Thus, a half period of the

SW should be appreciated along the z-axis of the unit cell.

The non-periodic direction (z-axis) of this example has been truncated

using the modified ABC first. Figure 5.24(a) shows the magnitude of

the E-field when the non-periodic direction of the unit cell is truncated

with this technique alone. The half standing wave commented above

may be appreciated. The analysis of the unit cell when the non-periodic

direction is truncated by using the modified ABC in combination with the

FE-IIEE method has been also carried out. As it occurs in the previous

case, the initial value of Ψ is numerically exact, since the modified ABC

is used to calculate that value. Then, the FE-IIEE method should reach

the solution in one iteration with an error numerically zero. The error

given by the method in this second test has been 8.45770E-09 which

confirms the commented behavior. Hence, this second validation test

also may be considered satisfactory.

The first-order ABC has been used to truncate the non-periodic direction

of the unit cell for the next test. It is worth to note, that the plane wave
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(a) 1st-ABC truncation technique (b) 1st-ABC using FE-IIEE method

Figure 5.25: Comparison of the |E-Field| for the second test

used in this example does not satisfy the first-order ABC and significant

reflections appear in this case. Figure 5.25(a) shows the magnitude of the

E-field where the maximum value of the SW has a substantial reduction

due to the reflection produces by the first-order ABC. However, applying

the FE-IIEE method the reflection is canceled as it may be seen in figure

5.25(b). The initial value of Ψ is not accurate in this case, but the

FE-IIEE method is able to cancel the reflections up to a relative error of

4.58628E-05 in 7 iterations.

5.3.2 Microstrip patch phased array

An 11 x 11 microstrip patch phased array has been analyzed in this

example using the infinite array approach. The array is printed on a

substrate εr = 2.67 and is housed in a 520 mm x 580 mm x 7 mm cavity

in a ground plane [67] as illustrated in figure 5.26. The dimensions of

each patch element are 30 mm x 35.6 mm and the gaps between any two

neighbor elements are 14 mm along both length and width directions.

The first analysis has consisted of the simulation of the isolated radiating

element of the array with both MoM and FEM modules of the suite com-

paring their results. Figure 5.27 shows the comparison of the radiation

pattern between both modules. A good agreement is appreciated.
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SUBSTRATE
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Figure 5.26: Perspective view of the 11 x 11 microstrip patch array

The next analysis has consisted of the simulation of different unit cells

of the array using the FEM module and the PBCs. The distance between

the elements of the array has been increased from 0.31λ to 0.37λ by

increasing the distance of the PBCs to the patch. Figure 5.28 shows a

comparison of the S11 parameter of the unit cells where the influence of

the mutual coupling between the elements is clearly observed. The S11

parameter of the isolated radiating element of the array computed using

the FEM module of the suite has been also included in the figure.

The final analysis has consisted of the simulation of the real 11 x 11

array using the infinite array approach. The distance between elements

in this analysis has been 0.37λ. The radiation pattern computed by the

FEM module using the infinite array approach has been multiplied by the

array factor and the results has been compared with the ones given by

the MoM module of the suite for the whole array. Figure 5.29 shows the

comparison of the results where a good agreement is appreciated.
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Figure 5.27: Comparison of radiation pattern for isolated element
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Figure 5.28: Comparison of S11 parameter
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φ

Figure 5.29: Comparison of the radiation pattern of the whole array

5.4 Conclusions

The FEM analysis of structures that are infinitely periodic in the two

dimensional xy-plane has been carried out in this chapter. The approach

employed to perform this analysis has been based on the use of the so-

called Periodic Boundary Conditions (PBCs). The formulation to include

the PBCs on numerical codes such as the FEMmodule of the suite, has been

described in detail in Section 5.1. An algorithm to perform the numerical

implementation of the PBCs on these numerical codes has been presented

in this chapter. Technical details about the practical implementation of

this algorithm in sparse solvers have also been given.

The modification of the truncation techniques implemented in the FEM

module have been performed in order to support the analysis for open

scattering and radiation problems. The standard first-order absorbing

boundary condition (ABC) has been modified in order to provide a more

appropriate boundary condition that absorbs waves propagating in any

direction and not only propagating along θs = 0. A validation test of this

modified ABC has been performed in order to demonstrate the validity of

this boundary condition.
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In the case of the FE-IIEE method, the Green’s function G(r, rs) in

free-space has been modified by an accelerated representation of the

two-dimensional periodic Green’s function. The acceleration technique

used in this Ph. D. dissertation has been the Ewald Transformation that

converges using 3 adjacent units cells; many more than 2000 cells are

needed to reach an acceptable value of the periodic Green’s function. It

is important to note that the FE-IIEE method is able to absorb reflection

for waves propagating simultaneously in various directions and not only

for waves propagating in a given (θs, φs) direction. This feature is very

useful for the analysis of finite arrays when several floquets modes are

excited at the same time. Finally, the analysis of some real structures

has been carried out in order to validate the capabilities of the suite

solving infinite periodic structures.
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CHAPTER 6

CONCLUSIONS AND FUTURE
RESEARCH LINES

6.1 Final conclusions

The work developed in this Ph. D dissertation has consisted of the devel-

opment of a new software suite for electromagnetics. This suite contains

important features, such as, a professional graphical framework that pro-

vides a friendly graphical user interface, two powerful solver based on

integral (MoM) and differential (FEM) approaches or the possibility to ana-

lyze large array structures by using infinite array approaches. It is worth

to note that an hybridization of the two solver existing in the suite has

been considered. A previous study has been performed in the present

Ph. D dissertation deriving the hybrid variational formulation and the

connection between the basis functions of both solvers.

Chapter 2 has presented a detailed description of the development of the

graphical framework developed in this Ph. D dissertation. The graph-

ical framework provides a GUI based on the general purpose pre and

postprocessor called GiD. The main idea has been to develop a new

GUI focused only on electromagnetics, instead of developing a general

purpose pre and postprocessor as GiD is. Thereby, the framework pro-

vides an easy and quick way to perform the simulation process in five
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steps: geometry creation, electromagnetic setup, mesh generation, sim-

ulation and results visualization. Also, new important features has been

provided to the software GiD, such as, a symbolic variables tool that

enables the parametrization of models using symbols, new definition

windows for electromagnetic variables, a complete navigation tree to

facilitate the access to the menus or automatic online updates for the

suite among others. The development of an automatic goal oriented op-

timizer has been other of the objectives of this Ph. D dissertation. In

this way, a powerful tool in the design of electromagnetic structures has

been implemented to complement the suite. Users can use the optimizer

to automatically adjust the designated model parameters and improve

the results like maximum gain and low side lobes by using three different

optimization algorithms such as, Powell’s Method, Simplex Method and

Particle Swarm Optimization (PSO).

Chapter 3 has presented the FEM module of the suite. The module im-

plements the so-called Finite Element - Iterative Integral Equation Eval-

uation (FE-IIEE) method which employs a boundary integral equation

that provides a (numerically) exact radiation boundary condition. The

module has been developed to support the use of four different sparse

solver and a parallel implementation where the CPU cores available on

single computers or on several compute nodes of a high performance

computing (HPC) cluster may be utilized. Furthermore, the accuracy of

the results given by the module has been verified applying the Method

of Manufactured Solutions (MMS) to different verification tests obtaining

excellent results. Finally, in this chapter, the simulations of real world

problems has been compared with the results of commercial softwares

and measurement providing evidences that the code can be used for

many type of simulations with very good performance and scalability in

mid-size HPC clusters.

Chapter 5 provides a description of the FEM analysis of structures that

are infinitely periodic in the two dimensional xy-plane. The approach

employed to perform this analysis has been based on the use of the so-

called Periodic Boundary Conditions (PBCs). The formulation to include

the PBCs on numerical codes, such as, the FEM module of the suite, has

been described in detail. An algorithm to perform the numerical im-

plementation of the PBCs on these numerical codes has been presented

in this chapter. Technical details about the practical implementation of
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this algorithm in sparse solvers have also been given. The modification

of the truncation techniques implemented in the FEM module have been

performed in order to support the analysis for open scattering and radi-

ation problems. The standard first-order absorbing boundary condition

(ABC) has been modified in order to provide a more appropriate bound-

ary condition that absorbs waves propagating in any direction and not

only propagating along θs = 0. In the case of the FE-IIEE method, the

Green’s function G(r, rs) in free-space has been modified by an accel-

erated representation of the two-dimensional periodic Green’s function.

The acceleration technique used in this Ph. D. dissertation has been the

Ewald Transformation. Finally, the analysis of some real structures has

been carried out in order to validate the capabilities of the suite solving

infinite periodic structures.

Chapter 4 has presented a modular approach to combine MoM and FEM

techniques for the analysis of large structures or finite arrays with com-

plex radiating elements. The approach have consisted of performing the

FEM analysis of each structure and to define the equivalent electric and

magnetic currents on the boundaries of the structure. Then, the inter-

action between the structures is computed by using MoM and the global

FEM-MoM system of equation is assembled. Finally, the system is solved

and the analysis is completed. It is worth to note that the approach has

not been totally implemented but some previous works have been done.

One of these works has been the modification of the current variational

formulation of the FEM module of the suite. This modification has been to

provide unknowns for the corresponding dual field (H-Field or E-Field)

in an explicit way. The standard variational formulation of FEM problems

only has unknowns for one of the corresponding electromagnetic fields

(E-Field or H-Field) and the previous modification is required in order

to connect both FEM and MoM formulation. Furthermore, a study of the

projection between the basis functions of both modules has been done

in order to connect the unknowns between both codes. The boundaries

of the antenna is where both methods share the unknowns and those

need to be expressed in terms of the same basis functions. In the par-

ticular case of this Ph. D. dissertation, a study between the well-known

Rao-Wilton-Glisson (RWG) div-conforming basis functions and the the

Nédélec triangular curl-conforming basis functions of second-order has

been performed.
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6.2 Future research lines

As commented previously, the work developed in the present Ph. D dis-

sertation has been focused on the development of a new software suite

for electromagnetics. The current version of the suite presents important

features that have been already described along this document, but fu-

ture improvement may be implemented as the one shown in this section.

Regarding to the graphical framework, the link of the automatic goal

oriented optimizer with the FEM module is a future work of great impor-

tance in order to complement the suite with a powerful tool in the design

of electromagnetic structure. Other future improvements may be the

implementation of postprocessing RCS tecniques as Synthetic-aperture

radar (SAR) or the support of new time domain modules (TDIE or FDTD)

It is worth to note that the performance of the Finite Element module

are very competitive in a single frequency simulation. However, due to

the absence of an adaptive frequency sweep (as for instance, a numerical

interpolation using the Cauchy Method [68]), the simulation for a range

of frequencies may be slower than other codes that supports an adap-

tive frequency sweep. Thus, the implementation of the Cauchy Method

inside the module is considered as a future research work. Also, the im-

plementation of an adaptive method for mesh refinement is considered

as a future research work in order to provide more accurate meshes with

a less number of elements reducing the current simulation time.

Regarding the analysis of infinite periodic structures, some future work

may be performed as for instance, an improvement in the performance

of the calculation of the Ewald representation or the calculation of S-

parameters of any source of an infinite array.

Finally, an intensive future work should be done regarding the FEM-MoM

hybridization. A study between the higher-order quadrilateral basis

function and the Nédélec triangular curl-conforming basis functions of

second order is required in order to perform the hybridization. Also, the

connection between both codes should be checked by using the appro-

priate verification tools, as for instance, the Method os Manufactures

Solutions (MMS). Once, this process has been done, the simulation of

real world problems should be carried out in order to demonstrate the

performance and capabilities of the codes for those kinds of simulations.
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Daniel Garcia Doñoro, Luis Emilio Garcia-Castillo and Ignacio

Gomez-Revuelto, ”An Interface for an hp-Adaptive Finite Element

Package Using GiD”, Finite Elements in Analysis and Design, Vol.

46, Pages 328-338, Jan-2010

International Conference Proceedings (22):
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APPENDIX A

SOLVING ELECTROMAGNETIC
PROBLEMS IN THE SUITE

This appendix describes how to use and set up the suite for the sim-

ulation of electromagnetic problems. It is worth to note that the FEM

module of the suite has been used to elaborate this appendix but its

use is extensible also to the MoM module. The simulation of a problem is

performed in five easy steps which are described in the following sections.

A.1 Step 1: Geometry modeling

The first step is to generate the geometry model of the structure. The

suite makes use of the tools provided by GiD in order to facilitate the

creation of the geometry model. Figure A.1 shows the graphical aspect of

the suite for this first step. A summary of the most important geometry

tools is given in the following section.

A.1.1 Basic tools

It is worth to note that GiD constructs the geometry model in a hierar-

chical mode. This means that entities of a higher level such as surfaces

are constructed over entities of a lower level such as lines. This section

gathers how to create entities from the lower to the higher level.



A.1. STEP 1: GEOMETRY MODELING

Figure A.1: Graphical aspect of the geometry step of the suite

Points: Individual points are created by entering each point in any

of the following ways:

1. Picking the coordinates in the screen with the mouse.

2. Typing the coordinates of the points in the command line.

Straight lines: A straight line is created by entering the coordinates

of the two end points or the identifiers of the two end points. The

steps to create a straight line are:

1. Click on Geometry⇒ Create⇒ straight line menu, or click

on the icon in the toolbar.

2. Enter the coordinates of the end points of the line. The key se-

quence CTRL+a enables the selection mode where existing points

may be selected to create the line. The points may be selected

by the mouse or the identifier of those points may be typed on

the command line.

3. Press ESC key to finish the line creation process.

NURBS lines: The NURBS line is created by entering the interpolated

points of the curve, either by adding new points or by selecting

existing ones. The steps to create a NURBS line are:
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Figure A.2: Examples of NURBS line

1. Click on Geometry⇒ Create⇒ NURBS line menu, or click on

the icon in the toolbar.

2. Enter two o more points to create a NURBS line that is a cubic

polynomial passing through all the points.

3. Press ESC key to finish the line creation process (an example of

a NURBS line is illustrated in figure A.2).

Arcs: An arc is created by entering the coordinates of three points

(By 3 points) or by entering a radius and the two tangent lines at

the arc’s ends (Fillet curves). The steps to create an arc by using

three points are as follows:

1. Select the option Geometry ⇒ Create ⇒ Arc ⇒ By 3 points

or click on the icon in the toolbar.

2. Enter three points to create an arc line. One can also select

existing points to create arcs by using the key sequence CTRL+a.

3. Press ESC key to finish the line creation process.

The basic steps to create an arc by using a radius and the two tangent

lines at the arc’s ends are as follows:

1. Select the menu Geometry⇒ Create⇒ Arc⇒ Fillet curves.

2. Enter the radius in the command line, and then select two lines

that share one common point to create two tangent lines.

3. Press ESC key to finish the line creation process. An arc is

created and the two lines are modified to be tangent and con-

tinuous with this new arc (see figure A.3 for further details).
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(a) Two lines (b) Arc created by the two lines

Figure A.3: Examples of a fillet curve

NURBS Surfaces: The NURBS surfaces are created by selecting its

contour lines. The steps to create a NURBS surface are as follows:

1. Select the menu Geometry ⇒ Create ⇒ NURBS surface ⇒ By

contour or click on the icon in the toolbar.

2. Select the lines that will conform the contour of the surface.

3. Press ESC key to finish the surface creation process. Figure A.4

shows an example of a NURBS surface.

(a) Contour lines (b) NURBS surface

Figure A.4: Creation of a NURBS surface

Volumes: The volumes are created by selecting its boundary sur-

faces. The steps to create a volume are as follows:

1. Click on Geometry⇒ Create⇒ Volume⇒ By contour or click

on the icon in the toolbar.

2. Select the surfaces that will conform the volume.

3. Press ESC key to finish the volume creation process.
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(a) Sphere (b) Cylinder

Figure A.5: Example of objects

Objects: Several predefined objects such as rectangles, polygons,

circles, sphere, cylinders, cones, prism and torus are available. When

an object is created, the suite requires information about the center

and the normal vector first. The coordinates of the center may be

selected by clicking on the screen, by typing the coordinates in the

command line or by selecting an existing point. To enter the normal

vector, the suite displays a window where the vector may be selected

through one of the three main axes or by typing the coordinates of

a point. The steps to create a volume are as follows:

1. Click on Geometry ⇒ Create ⇒ Objects or click on the icon

in the toolbar.

2. Select the object that will be created.

3. Enter the center and the normal vector of the object.

4. Enter the required information such as the radius or the length

of the object. This information depends on the selected object.

5. Press ESC key to finish the object creation process. Figure A.5

shows an example of several objects.

Copy/Move: These tools allow to select a group of entities and

perform a copy/movement using an operation, either translation,

rotation or scale. The entity types include points, lines, surfaces

and volumes. The copy/move window is shown in figure A.6(a),

while the drop-down menu showing the entities is given in figure

A.6(b) and the drop-down menu for the transformation operation is

illustrated in figure A.6(c).
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(a) window (b) entities (c) operations

Figure A.6: Screenshot of the copy/move window

The copy/move tools are found by clicking on the menu Utilities

⇒ Copy/Move. The transformation operation are described below:

1. Translation: This operation performs a translation from one

point to another. Relative movements can be obtained by defin-

ing the first point as (0, 0, 0) and considering the second point

as the translation vector.

2. Rotation: This operation performs a rotation of the geometry.

Two points defines the axis of rotation and its orientation. The

rotation angle in degrees is also required; it can be positive and

negative. The direction of rotation is defined by the right hand

rule. Figure A.7 shows an example of the rotation operation.

3. Scale: This operation performs a scale of the geometry. This

operation is defined by a manipulation center point and a vector

scale factor for x, y and z-axis. A scale factor greater than one

increases the size, while a scale factor less than one decreases

the size. If the scale factor is negative, a change of sign in the

coordinates will be performed. Figure A.8 shows an example of

the scale operation.
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Figure A.7: Example of the rotation operation

A.1.2 Example

A tutorial about the creation of the geometry model of a x-band waveg-

uide tee junction (see figure A.11) is given in this section. The units of

the model are expressed in mm. The steps to create the complete model

of the tee junction are detailed below.

1. Select mm as geometry units in the top-right combobox.

2. Click on Geometry⇒ Create⇒ straight line menu, or click on

the icon in the toolbar.

3. Enter the coordinates of the points that will conform the base of

the tee junction. The coordinates of the points are (-11.43, 50.81,

0.0), (-11.43, -50.81, 0.0), (11.43, -50.81, 0.0) (11.43, -11.43, 0.0),

(50.81, -11.43, 0.0), (50.81, 11.43, 0.0), (11.43, 11.43, 0.0), (11.43,

50.81, 0.0) and, finally enter the initial point (-11.43, 50.81, 0.0).

4. Click on Join to use the existing point.

5. Press ESC key to finish the line creation process. Figure A.9 shows

the lines that conforms the base of the tee junction.

Figure A.8: Example of the scale operation
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Figure A.9: Lines that conforms the base of the tee junction

6. The next step is to create the NURBS surface by selecting the contour

of the base. Click on Geometry ⇒ Create ⇒ NURBS surface ⇒
By contour menu or click on the icon in the toolbar.

7. Select all the line created in previous steps with the mouse. The

identifier of all these lines may also be typed on the command line

to proceed with the selection.

8. Press ESC key to finish the surface creation process. Figure A.10

shows the base of the tee junction.

Figure A.10: Base of the tee junction
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9. To complete the geometry model of the tee junction, an extrude

operation is performed. Click on Utilities ⇒ Copy menu. The

copy window will be opened.

10. Select Surfaces in the Entities type option and Translation

in the Transformation entry. The translation vector goes from (0,

0, 0) to (0, 0, 10.16). Select Volumes in the Do extrude option.

11. Press the Select button and select the base of the tee junction.

12. Press ESC key to finish the copy creation process or click on the

Finish button of the copy window.

13. The creation of the tee junction is completed. Figure A.11 shows

the geometry model of the structure.

Figure A.11: Geometry of the tee junction complete

A.2 Step 2: Setting up electromagnetic parameters

Once the geometry is completed, the user can start to set up the electro-

magnetic parameters needed to perform the simulation. Those electro-

magnetic parameters include specifying not only the parameters shared

by all the modules of the suite, such as, materials or excitations, but

also particular parameters such as, boundary conditions in the case of

the FEM module or loadings in the case of the MoM module.
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Figure A.12: Parameter step of the suite for the FEM module

Figure A.12 shows the graphical aspect of the suite for this second step.

The following sections describe how to manipulate the materials, the

boundary conditions and the excitations in the suite.

A.2.1 Materials

The suite provides several tools to manipulate the materials of an elec-

tromagnetic problem. It is worth to note that there are two materials

created by default in the FEM module of the suite: IIEE material (the

material between the object and the radiation condition) and Vacuum.

The tools to manipulate the material in the suite are described below.

Creating a new material: To create a new material, click with the

right button on the navigation tree item called Materials. Figure

A.13 shows the result of clicking with the right button on that item.

Figure A.13: New material option
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(a) Creating panel (b) Editing panel

Figure A.14: Creating/editing material panel

Click on the New material option. The creating material panel will

appear in the screen (see figure A.14(a)) The first parameter is the

name of the material. The second parameter defines the type of the

material: isotropic or anisotropic. The electromagnetic properties

are defined at the bottom of the panel. To finish the creation process,

click on the Create button.

Editing an existing material: To edit an existing material, click

with the left button of the mouse on the name of any existing mate-

rial. The editing material panel will appear in the screen (see figure

A.14(b)). To confirm the modification of any property of an existing

material, click on the Edit button. Otherwise, click on Cancel.

Deleting an existing material: To delete an existing material,

click with the left button on the name of the desired material. Then,

click with the right button to deploy the drop-down menu. Select

the Delete option to finish the deletion process.

Figure A.15: Delete material option
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Assigning an existing material: The materials are assigned to

the volume entities of the geometry model. If there are volumes with

no material assigned, they will appear under the navigation tree item

called Undefined. Figure A.16 illustrates an example where there

are two volumes with no material assigned.

Figure A.16: Volumes with no material assigned

Click with the left button on the desired volumes to perform a se-

lection. Then, click with right button to deploy the drop-down list

with the existing material (see figure A.17). Select the material with

the left button of the mouse to finish the assignation. It is worth to

note that several volumes may be selected at the same time by using

the appropriate key modifiers CRTL or SHIFT.

Figure A.17: Assigning materials

Unassigning an existing material: To unassign the material from

any volume, select the volume by clicking it with the left button.

Now, click with the right button to open the drop-down list (see

figure A.18). Select the Undefined option with the left button of

the mouse to finish the process.

Visualizing an existing material: The suite draws the volumes

belonging to an existing material by colors for a better user experi-

ence in the manipulation of materials. Click with the left button on

any existing material. The volumes belonging to that material will

appear colored in the screen. Figure A.19 illustrates an example of

the visualization of an existing material.
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Figure A.18: Unassign materials

A.2.2 Boundary conditions

Four boundary conditions are available to set up the electromagnetic

problem. These boundary conditions are Perfect Electric Conductor

(PEC), Perfect Magnetic Conductor (PMC), Radiation condition and Peri-

odic Boundary Condition (PBC). The tools to manipulate the boundary

conditions in the suite are described below.

Assigning boundary conditions: The boundary conditions are

assigned to the surface entities of the geometry model. If there are

surfaces with no boundary condition assigned, they will appear under

the item called Undefined. Figure A.20 illustrates an example where

there are two surfaces with no boundary condition assigned.

Figure A.19: Visualizing an existing material

175



A.2. STEP 2: SETTING UP ELECTROMAGNETIC PARAMETERS

Figure A.20: Surfaces with no boundary condition assigned

To assign any boundary condition, click with the left button on

the desired surface to perform the selection. Note that several sur-

faces may be selected by using the appropriate key modifiers CRTL

or SHIFT. Then, click with the right button to deploy the drop-down

list with the boundary conditions available (see figure A.21). Select

the boundary condition with the left button to finish the assignation.

Note that the particular case of periodic boundary condition requires

the selection of two surfaces to assign the boundary condition.

Figure A.21: Assign boundary conditions

Unassigning boundary conditions: To unassign the boundary

condition from any surface, click with the left button on the desired

surface (CRTL or SHIFT may be used to select multiple surfaces).

Now, click with the right button to open the drop-down list (see

figure A.22). Select the Undefined option with the left button of

the mouse to finish the process.

Figure A.22: Unassign boundary conditions
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Figure A.23: Visualizing PEC boundary condition

Visualizing boundary conditions: The suite draws the surfaces

with a certain boundary condition assigned by colors for a better

user experience in the manipulation of boundary conditions. Click

with the left button of the mouse on any boundary conditions. The

surfaces which have assigned that boundary condition will be colored

in the screen. Figure A.23 illustrates an example of the visualization

of boundary conditions.

A.2.3 Excitations

The current version of the suite offers three different sources that users

can use to excite their electromagnetic problems: rectangular waveport,

coaxial waveport and plane waves. The tools to manipulate these exci-

tations are described below.

Creating a rectagular waveport: This waveport is assigned to

rectangular surface entities of the geometry model. If the surfaces

are not rectangular, when creating the waveport an error is given.

To create the waveport, click with the left button on the desired

surface to perform the selection. Then, click with the right button

to deploy the drop-down menu with the excitations list (see figure

A.24). Select Excitation ⇒ Assign waveport option with the left

button to finish the assignation.
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Figure A.24: Assign rectangular waveport

Creating a coaxial waveport: The coaxial waveport is assigned

to circular surfaces entities (with an internal hole) of the geometry

model. If the surfaces do not have that shape, when creating the

waveport an error is given. An example of a surface entity that

supports the coaxial waveport assignation is given in figure A.25.

Figure A.25: Example of coaxial waveport

To create a coaxial waveport, select the desired surface by clicking

with the left button on it. Then, click with the right button to

open the drop-down menu with the excitations list (see figure A.26).

Select Excitation ⇒ Assign coaxial option with the left button

to finish the assignation.

Figure A.26: Assign coaxial waveport
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(a) Creating panel (b) Editing panel

Figure A.27: Creating/editing bistatic wave panel

(a) Creating panel (b) Editing panel

Figure A.28: Creating/editing monostatic wave panel

Creating a plane wave: Two different types of plane wave may be

created: bistatic and monostatic waves. To create a new plane wave,

click with the left button on the bistatic/monostatic plane wave nav-

igation tree item. The creating panel for bistatic/monostatic waves

will be shown in the screen. Figures A.27(a) and A.28(a) show the

creating panel for the bistatic/monostatic waves, respectively. The
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first parameters define the polarization of the wave and the bottom

entries of the panel define the incident angle. In the case of monos-

tatic waves, a set of incident angles is required. To finish the creation

of the new plane wave, click on the Create button.

Editing an existing excitation: To edit an existing excitation,

click with the left button on the navigation tree item of that excita-

tion. The editing panel of the corresponding excitation will appear.

For example, the editing panels for bistatic/monostatic waves are

shown in figure A.27(b) and A.28(b), respectively. To finish the

modification click on the Edit button.

Deleting an existing excitation: To delete an existing excitation,

click with the left button of the mouse on the desired excitation.

Then, click with the right button to deploy the drop-down menu.

Select the Delete option to finish the process.

Visualizing an excitation: To visualize an existing excitation,

click with the left button on the navigation tree item of that exci-

tation and it will be shown in the screen. In the case of waveports,

the surfaces which have assigned that excitation will be colored. In

the case of plane wave, arrows indicating the incident direction and

the polarization will be shown. Figure A.29 shows an example of

visualizing a bistatic plane wave.

Figure A.29: Visualizing a bistatic plane wave
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A.2.4 Example

Following with the tutorial about the simulation of the x-band waveguide

tee junction, lets set up the electromagnetic parameters of the problem.

The steps to set up the materials, the boundary conditions and the

excitations are as follows:

1. Select the Parameter step from the top menu of the suite.

Figure A.30: Parameter step selection

2. The tee junction is filled by air. To assign the material, expand

the undefined material list by clicking on the corresponding cross

of the Undefined material item.

3. Click with the left button on the volume 1 to select the volume.

Click with the right button to deploy the drop-down menu with the

material list. Select Vacuum to assign the material. Figure A.31

shows the material assignation of the tee junction.

Figure A.31: Tee junction material

4. Now, lets assign the boundary conditions to the structure. Ex-

pand the undefined boundary condition list by clicking on the cor-

responding cross of the Undefined boundary condition item.
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5. Surfaces 1,2,4,5,7,8 and 10 have a boundary condition of PEC. Click

with the left button on these surfaces to select them. To perform

a continuous selection maintain the modifier key CRTL pressed.

6. Click with the right button to deploy the drop-down menu. A list

with the boundary condition will appear. Select the Boundary ⇒
PEC option with the left button of the mouse. Figure A.32 shows

the visualization of the PEC boundary condition for tee junction.

Figure A.32: PEC boundary condition for tee junction

7. Surfaces 3, 6 and 9 are the ports of the structure. To assign the

first rectangular waveport, click with the left button on the item

of surface 3. Click with the right button to deploy the drop-down

menu with the excitation list. Select the Excitation ⇒ Assign

waveport option to assign the waveport (see figure A.33).

Figure A.33: Rectangular waveport assignation

8. Repeat the previous process with the surfaces 6 and 9.

9. The set up of the electromagnetic parameters of the tee junction is

completed. Figure A.34 shows the state of the project at this point.
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Figure A.34: Electromagnetic parameter set up complete

A.3 Step 3: Meshing models

Generating a mesh is the process by which a mesh is generated from the

geometry definition. The meshing process is an indispensable operation

before running a simulation. In the suite, all the properties assigned to

geometry entities, such as materials, boundary conditions, excitations

and so on, will be transferred to the nodes and elements of the mesh.

Figure A.35 shows the graphical aspect of the suite in this step.

Figure A.35: Graphical aspect of the mesh step of the suite
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The suite makes use of the tools provided by GiD for meshing mod-

els. These tools gather automatic methods for structures such as Non-

Uniform Rational B-Splines (NURBS) curves or surfaces. Some of the

most important tools are summarized in this section.

A.3.1 Unstructured mesh

The following set of tools generates unstructured meshes where the user

can assign different sizes to different entities of the mesh and control the

maximum distance between the generated element and the real geometry.

These tools are found in the menu Mesh ⇒ Unstructured. More details

about these tools are given below.

Assign size on points, lines, surfaces and volumes: It is

possible to assign different sizes to different entities of the mesh.

This means that in the vicinity of these entities, the generated ele-

ments will be approximately of that size. The default value of this

tool is 0.0 which means that the suite automatically will choose

the best size for the entities of the mesh. This option is accessi-

ble from the menu: Mesh ⇒ Unstructured ⇒ Assign sizes on

points/lines/surfaces/volumes. An example of an unstructured

mesh is illustrated in figure A.36 where elements with different sizes

are appreciated.

Figure A.36: Example of an unstructured mesh

Sizes by chordal error: This option contains fields for chordal

error (the maximum distance between the generated element and

the real geometry) and minimum and maximum size limits. The

window that controls this option is shown in figure A.37.
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Figure A.37: Assign sizes by chordal error window

The suite assigns the corresponding sizes to all the entities to sat-

isfy this condition. It will change the current sizes if the new one

is smaller than the one defined previously. This option can be

found from the menu: Mesh⇒ Unstructured⇒ Sizes by chordal

error. Figure A.38 shows an example of this type of mesh.

Figure A.38: Unstructured meshes with different chordal error

A.3.2 Structured mesh

This set of tools generates structured meshes dividing the geometry by

number of cells or by using a given size. These tools are found in the Mesh

⇒ Structured menu. More details about these tools are given below.

Structured mesh by number of cells: Choose this option to

create a structured mesh dividing the lines/edge of the four-sized

surface in the number of cell desired
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After choosing this option, the window where one sets the number

of cells is shown. Once the number of cell is selected, the lines/edges

must be selected. Note that for surfaces/volumes, the user needs to

select the surface/volume and press ESC before setting the number

of the cells for its edges. This process can be repeat as many times

as necessary until all lines have a new value.

Structured mesh by size: This option creates a structured mesh

using the same size for all the elements. After choosing this option,

the window where one sets the size of the elements is shown. Once

the mesh size is selected, the lines/edges must be selected. Note

that the user needs to select the geometry entities and press ESC key

before setting the size of the elements for its edges. This process can

be repeated as many times as necessary until all lines have a new

value. Four-sided structured and unstructured mesh for a NURBS

surface are compared in figure A.39.

(a) Structured mesh (b) Unstructured mesh

Figure A.39: Meshes of a four-sided NURBS surface

A.3.3 Example

Continuing with the tutorial about the simulation of the x-band waveg-

uide tee junction, lets generate the mesh of the model. The steps to

generate the mesh are as follows:

1. Select the Mesh item from the top menu of the suite to enter in the

meshing step.

2. To generate the default mesh provided by the suite just click on

the Generate option of the right menu.
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3. After choosing this option, the window where one sets the size of

the elements is shown (see figure A.40).

Figure A.40: Mesh generation window

4. Type a number or leave the size by the default. Elements with a

size of 8 mm produce a mesh with 362 tetrahedrons. This mesh

may be generated by the evaluation version of the suite. Click the

OK button to generate the mesh.

5. Wait until the Mesh Info Window is shown indicating that the

meshing process has been finished (see figure A.41). Click on the

Close button to close the window.

Figure A.41: Mesh generation window

6. The mesh has been generated. Figure A.42 shows the state of the

project at this point of the simulation.
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Figure A.42: Mesh of the waveguide tee junction

A.4 Step 4: Running a simulation

After the mesh is generated, the problem is ready to be simulated by

one of the solver modules of the suite. In this step of the simulation,

some parameters are required to be set such as the working frequency

and the solver options. These parameters are described in the following

subsections.

A.4.1 Working frequency

The suite offers two different modes to set up the working frequency of a

simulation. If the user only wants to perform the analysis at one single

frequency, the suite provides the Single frequency mode. Conversely,

if the user wants to perform the analysis in a range of frequencies, the

suite provides the Frequency sweep mode. The description of both

modes is given below.

Single frequency: To set up the desired working frequency using

this mode, click with the left button on the navigation tree item

called Analysis frequency. The definition panel will be shown in

the screen (see figure A.43) Enter the desired frequency in the entry

box and click on the Set values button to confirm the set up.
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Figure A.43: Single frequency definition panel

Frequency sweep: To set up the range of frequencies where the

analysis will be carried out, click with the left button on any of

the items of the navigation tree under the Frequency sweep option

(start/stop/step frequency). A panel where to set the frequencies

will be shown (see figure A.44). The first two entry boxes are used

to set up the start and stop frequencies of the analysis. The last entry

box is used to set up the step frequency of the analysis. Finally, click

on the Set values button to confirm the set up. It is worth to note

that a constant step frequency between two consecutive analysis is

used in this mode.

Figure A.44: Frequency sweep definition panel

For instance, if a user wants to perform a simulation from 100 MHz

to 500 MHz with an step of 10 MHz between the working frequency

of two consecutive analysis just need to type 100, 500 and 10 in the

entry boxes, respectively.

It is worth to note that the Single frequency mode is selected by

default when a user creates a new project. To change the frequency

mode, click with the right button on the navigation tree item called

Single frequency. A drop-down menu will be shown (see figure A.45).
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Figure A.45: Drop-down menu to change the frequency mode

Click on the Frequency sweep option to change the frequency mode.

To stay on the single frequency mode click on the Single frequency

option. If the frequency sweep mode is the active one, to change the

frequency mode click with the right button on the navigation tree item

called Frequency sweep.

The frequency units may be changed by selecting the desired units in

the drop-down menu placed in the top-right corner of the main window.

Figure A.46 shows the exact location of this drop-down menu.

Figure A.46: Frequency units location

A.4.2 Solver options

The suite provides several options to configure the different electromag-

netic solvers. There are some common options to all the solvers such as,

the solver type (in-core/out-of-core), the number of processes per simu-

lation or the parallel environment initialization. To set up these options,

click with the left button in any of the navigation tree options under the

Solver options item. A common definition panel will be shown (see

figure A.47). Details about the configuration options are given below.

In this case, the options of the FEM solver of the suite are also described.

Solver type: This option controls the type of the solver employed

in the simulation. The solvers available are:

In-core: The in-core solver only uses the RAM memory available in the

computer to solve the problem.

Out-of-core: The out-of-core solver uses the RAM memory available in

the computer in addition to the harddisk to solve the problem.
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Figure A.47: Common definition panel to all the solver options

Processes: This option sets up the number of processes used in a

single computer parallel simulation. To set up this option, select the

number of desired processes using the mouse and the spin box of the

corresponding entry of the panel. Finally, click on the Set values

button to confirm the selection of the number of processes of the

simulation.

Parallel environment: Parallel simulations require the use of spe-

cific libraries in order to distribute the problem in several processes.

Thus, the parallel environment needs to be booted before running

a parallel simulation. To do that, click with the left button to the

parallel environment item of the navigation tree. A new panel will

be opened as the shown in figure A.48

Figure A.48: Parallel environment setup panel

If the status of the environment is Unbooted, the user should register

the service. Input a user account with administrative rights and the

corresponding password. If the account does not have a password,
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the user has to create one. Click on Boot service and the envi-

ronment setup is completed when the status changes to Booted. If

the user wants to reboot the environment, click Reset service and

register it again.

Formulation: This option is a particular option of the FEM solver.

The user may select two different formulation: E-field/H-field.

The E-field formulation is selected by default. To set up this option,

select the desired formulation in the corresponding drop-down menu.

Total memory: This option is also a particular option of the FEM

solver. This is the total memory that the solver will use for the

solving process. To set up this option, type a positive real number

in MB in the corresponding entry of the panel.

A.4.3 Serial/Parallel simulation

The suite has two different simulations common to all the modules: serial

and parallel simulations. The serial simulation runs only one process at

one time on a single computer. The parallel simulation can run multiple

processes on multiple cores of a single computer. It is worth to note that

the suite supports simulations in HPC cluster where multiple processes on

several compute nodes are used at the same time. Details about these

simulations are given below.

Serial: The user may run the serial simulation by selecting the

Serial option from the right menu of the suite (see figure A.49).

If the amount of available physical memory on the computer is not

enough for the simulation, the solver will return an error.

Figure A.49: Serial option from the right menu of the suite

Parallel: Running the parallel simulation is similar to running the

serial. To run the parallel simulation, select the Parallel option on

the right menu of the suite.

192



A.4. STEP 4: RUNNING A SIMULATION

Figure A.50: Parallel option from the right menu of the suite

The parallel solver uses the paradigm MPI to distribute the simulation

into several processes. For that reason, the parallel environment

must be booted before run the simulation. The number of processes

used in the simulation is given by the solver option called Processes.

Figure A.51: Process window

Once the simulation starts, the process window appears as shown in fig-

ure A.51. The window includes the project name, start time, UID and

priority of the simulation. To stop the simulation, click the Terminate

button. The Close button closes the process window but does not termi-

nate the simulation. The Output view button allows the user to check

the detailed process of the simulation. Click the Output view button

and an information window appears (see figure A.52).

A.4.4 Example

Lets analyze the x-band waveguide tee junction created in the previous

steps. The analysis will be performed at 10 GHz. The steps to simulate

the project are as follows:

1. Select the Calculate item from the top menu of the suite to enter

in the calculation step.

2. Change the default frequency units from MHz to GHz.
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Figure A.52: Process window

3. Set up the working frequency by clicking with the left button on the

navigation tree item called Analysis frequency. The definition

panel will be shown. Type 10 GHz in the entry box and click on

the Set values button.

4. Select the number of processes to run the parallel simulation. If a

serial simulation is selected, this step can be skipped. Click with

the left button on the navigation tree item called Processes. Use

the mouse and select, for instance, 4 processes in the corresponding

entry of the definition panel.

5. Select the maximum memory that will be used by the solver. For

example, lets type 3500 MB. That value is enough for a simulation

with no more than approximately 17000 mesh elements.

6. Save the project before running the simulation.

7. Click on the parallel/serial option from the right menu of the suite.

8. Wait until the Process window is shown indicating that the sim-

ulation has been finished (see figure A.53). Click on the Close

button to close the window.
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Figure A.53: Process window

9. The simulation is finished. Figure A.54 shows the state of the suite

at this point of the simulation.

Figure A.54: State of the suite after the simulation is complete

A.5 Step 5: Visualizing the results

When the simulation of the problem is finished, the suite offers a powerful

and user-friendly interface for post-processing. The users may visualize

results in 2D/3D, such as near-field, far-field and network parameters.

Details about how to create/manipulate/visualize the results of a simu-

lation are described below.

Creating a new result: To create a new result, click with the

left button on the corresponding navigation tree item of the desired

result. Further information about the results provided by the suite

is given below:
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(a) 3D near-field panel (b) 3D far-field panel

Figure A.55: Creating panels for 3D near-field and 3D far-field results

3D near-field result: Click the option Near-field results ⇒ 3D

result. A panel where to set all the result properties will be shown

(see figure A.55(a)). The first entries are used to select the frequency

and the component. The bottom entries of the panel are used to

define the excitation properties. One can select the excitation port,

the amplitude and the phase. Also, other excitations can be included

and added to the existing one. Finally, click on the Create result

button to confirm the creation process.

3D far-field result: Click the option Far-field results ⇒ 3D re-

sults. A panel where to set the result properties will be shown (see

figure A.55(b)). The first entries are used to select the frequency and

the component. The middle entries of the panel are used to define

the excitation properties. As it occurs with the near-field case, one

can select the excitation port, the amplitude and the phase, or can

add other excitations to the existing one. The bottom entries of the

panel are used to define the 3D sampling points where to calculate

the far-field. Finally, click on the Create result button to confirm

the creation process.
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Figure A.56: Creating panel for 2D near-field

2D far-field result: Click the option Far-field results ⇒ 2D re-

sults. The definition panel for this result will be shown (see figure

A.56). In this case, the first entries are also used to select the fre-

quency and the component. The middle entries of the panel are used

to define the excitation properties. Here, one can also select the ex-

citation port, the amplitude and the phase or can can add other

excitations to the existing one. The bottom entries of the panel are

used to define 2D cut where to calculate the far-field. Finally, click

on the Create result button.

S-parameters results: Click the option Network parameters ⇒ S-

parameters. The definition panel for this case is shown in figure

A.57. Select the component and the S-parameter. Also, a cubic

interpolation may be selected. Finally, click on the Create result

button to confirm the process.

Editing a new result: To edit an existing result, click with the

left button of the mouse on the corresponding result name in the

navigation tree. The editing panel with all the result properties will

be opened. Click on the Edit result button to confirm the changes.

The suite will modify the existing result.
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Figure A.57: Creating panel for S-parameters

Deleting an existing result: To delete an existing result, click

with the left button of the mouse on its name to make the selection.

Then, click with the right button to open the drop-down menu. Se-

lect the Delete option to proceed with the deletion process.

Visualizing an existing result: All the results created by the user

appear in the navigation tree under the corresponding root result

items. To visualize a result, just click with the left button on any

item of the desired result. It will be plotted in the screen.

Animating a 3D near-field result: The suite offers the possibility

to animate the 3D near-field results changing its phase from 0◦ to

360◦. The right/left arrow keys increases/decreases the phase of

the results, respectively. If the user wants to animate the result

continuously, click with the right button of the mouse in the main

canvas of the suite. A drop-down menu as the shown in figure A.58(a)

appears. Select the option Start animation. The animation will

start. To stop the animation, click again with the right button on

the screen and select the Stop animation option from the drop-

down menu.

A.5.1 Example

Finally, lets visualize some results for the analysis of the x-band waveg-

uide tee junction. For example, lets create a 3D near-field result and

animate it. The steps to perform this visualization are as follows:

1. Select the Results item from the top menu of the suite to enter in

the result step.
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(a) Play animation (b) Stop animation

Figure A.58: Drop-down to animate a 3D near-field result

2. Click with the left button of the mouse on Near-field results

⇒ 3D result. The creating panel will be shown in the screen.

3. Select 10 GHz as analysis frequency. Select the Ez-real component.

4. The next step is to select the appropriate excitation port. In this

case, select the waveport 3 in the source properties.

5. Click the Create result button to finish the process.

6. Wait until the creation of the result is finished. The progress bar

will indicate the status of the process (see figure A.59).

Figure A.59: Progress bar

7. The 3D near-field result will appear in the screen (see figure A.60).
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Figure A.60: 3D near-field result for the tee junction

8. Use the left/right arrows to animate the results. Also, a continuous

animation may be performed by clicking with the right button on

the screen. A drop-down menu will be opened showing the Start

animation option. Click on it.

9. To stop the animation click with the right button on the screen

again. A drop-down menu will be opened showing the Stop ani-

mation option. Click on it to stop the animation.

10. Repeat the previous process to create new results.
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APPENDIX B

EWALD REPRESENTATION FOR
PERIODIC GREEN’S FUNCTION

This appendix gathers all the expression related to the Ewald represen-

tation for periodic Green’s function as a summary. Further details about

the derivation of the Ewald transformation were given in Section 5.2.1.1.

The periodic Green’s functions is represented in two different terms that

are combined to compute the numerical value of the function

Gp (r, rs) = Gp1 (r, rs) +Gp2 (r, rs) (B.1)

where Gp1 (r, rs) is a spectral-domain expression and Gp2 (r, rs) is es-

sentially a ”modified” spatial-domain portion of the periodic Green’s

function.

Lets define some variables used in the expressions first. Dx and Dy are

the unit cell spacing in the x- and y-directions, kx and ky are the cor-

responding propagation vectors with (θs, φs) being the scan angle of the

structure,

kx = k0 sin θs cosφs (B.2)

ky = k0 sin θs sinφs (B.3)



The coordinate differences between the source point and the observation

point are defined as ξ = x− x′, η = y− y′ and ζ = z− z′. Finally, the

αmn variable is defined as

α2
mn =

(
πm

Dx

)2

+

(
πn

Dy

)2

+

(
πm

Dx

)
kx +

(
πn

Dy

)
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1

4

(
k2x + k2y − k20

)
(B.4)

Gp1 term of the Ewald representation

Gp1 (r, rs) =
ej(kxξ+kyη)
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Gp2 term of the Ewald representation

Gp2 (r, rs) =
1

8π

∞∑
m=−∞
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n=−∞

e−j(kxmDx+kynDy)

Rmn
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The first derivative of the above expression is required in order to compute the

field radiated by the FEM region. Thereby, the calculation of ∇Gp1 and ∇Gp2

has been performed obtaining the following expressions:

∇Gp1 =



∂ Gp1

∂ x

∂ Gp1

∂ y

∂ Gp1

∂ z

 ∇Gp2 =



∂ Gp2

∂ x

∂ Gp2

∂ y

∂ Gp2

∂ z

 (B.7)
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Derivative of Gp1 with respect to ∂x

∂ Gp1
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Derivative of Gp1 with respect to ∂y
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Derivative of Gp1 with respect to ∂z
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Derivative of Gp2 with respect to ∂x
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Derivative of Gp2 with respect to ∂y
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Derivative of Gp2 with respect to ∂z
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The second derivative of the terms of the Ewald representation for periodic

Green’s function is also required in order to compute the field radiated by the

FEM region. The expressions of ∇∇Gp1 and ∇∇Gp2 are given by
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Derivative of Gp1 with respect to ∂x∂x

∂ Gp1

∂x∂x
= −

(
kx +

2πm

Dx

)2
ej(kxξ+kyη)

8DxDy

∞∑
m=−∞

∞∑
n=−∞

1

αmn

×
∑
±

[
erfc

(αmn
E
± ζE

)
e±2αmn ζ

]
e
2πj

(
mξ
Dx

+nη
Dy

)
(B.15)

204



Derivative of Gp1 with respect to ∂x∂y
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Derivative of Gp1 with respect to ∂x∂z
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Derivative of Gp1 with respect to ∂y∂x
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Derivative of Gp1 with respect to ∂y∂y
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Derivative of Gp1 with respect to ∂y∂z
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Derivative of Gp1 with respect to ∂z∂x
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Derivative of Gp1 with respect to ∂z∂y
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Derivative of Gp1 with respect to ∂z∂z
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Derivative of Gp2 with respect to ∂x∂x
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Derivative of Gp2 with respect to ∂x∂y

∂ Gp2

∂x∂y
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 (ξ +m Dx) (η + n Dy)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ (ξ +m Dx)
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]

(η + n Dy)√
π

e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

(η + n Dy) e
± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.25)

207



Derivative of Gp2 with respect to ∂x∂z

∂ Gp2

∂x∂z
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 ζ (ξ +m Dx)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ (ξ +m Dx)
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]
ζ√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

ζ e± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.26)

Derivative of Gp2 with respect to ∂y∂x

∂ Gp2

∂y∂x
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 (ξ +m Dx) (η + n Dy)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ (η + n Dy)
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]

(ξ +m Dx)√
π

e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

(ξ +m Dx) e
± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.27)

208



Derivative of Gp2 with respect to ∂y∂y

∂ Gp2

∂y∂y
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

[
R2
mn − 2 (η + n Dy)

2 ] e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ (η + n Dy)
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]

(η + n Dy)√
π

e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

(η + n Dy) e
± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.28)

Derivative of Gp2 with respect to ∂y∂z

∂ Gp2

∂y∂z
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 ζ (η + n Dy)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ (η + n Dy)
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]
ζ√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

ζ e± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.29)

209



Derivative of Gp2 with respect to ∂z∂x

∂ Gp2

∂z∂x
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 ζ (ξ +m Dx)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ ζ
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]

(ξ +m Dx)√
π

e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

(ξ +m Dx) e
± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.30)

Derivative of Gp2 with respect to ∂z∂y

∂ Gp2

∂z∂y
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

−2 ζ (η + n Dy)
e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ ζ
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]

(η + n Dy)√
π

e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

(η + n Dy) e
± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.31)

210



Derivative of Gp2 with respect to ∂z∂z

∂ Gp2

∂z∂z
=

1

8π

∞∑
m=−∞

∞∑
n=−∞

[
R2
mn − 2 ζ2

] e−j(kxmDx+kynDy)

R4
mn

×{
−4E√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−1± jk0Rmn

Rmn
e±jk0Rmnerfc

(
RmnE±

jk

2E

)]}

+ ζ
e−j(kxmDx+kynDy)

R2
mn

×
{[

4E

R2
mn

+ 8 E3
]
ζ√
π
e
−R2

mnE
2+

k20
4E2 +

∑
±

[
−k20R2

mn + 1∓ jk0Rmn
R3
mn

ζ e± jk0Rmnerfc

(
Rmn E±

jk

2E

)]}
(B.32)

211





BIBLIOGRAPHY

[1] R. F. Harrington, Field Computation by Moment Methods. IEEE Press,

1993.

[2] K. S. Yee, “Numerical solution of initial boundary value problems in-

volving maxwell’s equations in isotropic media,” IEEE Transaction on

Antennas and Propagation, vol. 14, pp. 302–307, May 1966.

[3] K. L. Shlager and J. B. Schneider, “A selective survey of the finite-

difference time-domain literature,” IEEE Antennas and Propagation Mag-

azine, vol. 37, pp. 39–56, Aug 1995.

[4] A. Taflove and S. C. Hagness, Computational Electrodynamics: The

Finite-Difference Time-Domain Method. Norwood, MA: Artech House

Publishers, Inc., 2005.

[5] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers.

Cambridge University Press, 1983, 1991, 1996.

[6] J. M. Jin, The Finite Element Method in Electromagnetics. John Wiley

& Sons, Inc., 1993.

[7] M. Salazar-Palma, T. K. Sarkar, L. E. Garćıa-Castillo, T. Roy, and A. R.
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