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Optimal allocation of interest rate risk 

1.- Introduction 

In a very general analysis, the problem of interest rate risk is one that concems the relation between the maturity 

structure of real assets in the economy and the time pattem of aggregate consumption. If there was perfect 

maturity matching between the two, the individual's exposure to interest rate risk would be reduced to zero. 

Conceming this issue, two remarks were pointed out by Stiglitz [15]: 

a.- An allocation involving perfect maturity matching, rules out the possibility that the individual's consumption 

plan may pro vide for a dependence on observed interest rates, in order to take advantage of changes in 

relative intertemporal prices. For this reason, an allocation of this sort, with no response of consumption to 

changes in technologies is unlikely to be efficient. 

b.- The time pattern of aggregate consumption should be known from the beginning. 

However, individuals may be uncertain about their future time preferences, they may be subject to a preference 

shock which leads to a demand for liquidity and this gives a rationale for the existence of banks. One of the most 

important functions of financial intermediaries is to transform highly illiquid assets into more liquid liability 

payoffs through the demand deposit contract. 

By performing this transformation service, banks are exposed to interest rate rísk as they take in short term funds 

to finance long term investments. The control of this ¡nterest rate risk is a matter of concem in banking 

regulation. 

The objective of this work is to characteríze the optimal allocation of technology-induced interest rate risk in a 

competitive system of financial intermediation, and its interdependence with the provision of liquidity. 

The analysis will be carried out under different information assumptions. In the complete information case, it is 

assumed the realization of the timing of the consumption needs is publicly observable; in the incomplete 

information case it is prívate information of the consumer and therefore an allocation can only be implemented 

if it is incentive compatible, that is, if it gives no consumer an incentive to lie or deviate about what he actually 

wants lO consume. 

This paper of the thesis is based on the work of Hellwig [11], that considers a Diamond Dybvig type economy 

(individuals have comer preferences), and in which there is stochastic (short-term) investment between dates 1 
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and 2. 

This work differs from Hellwig's paper, in that it assumes individuals have smooth preferences, that is, they 

derive utility from consumption in the two periods of their Iife. 

The flrst motivation for this extension is to test the robustness of Hellwig's model (under the simplifying and 

somewhat misleading comer preference assumption). 

In very geneml terms, the basic result holds in this extended framework. It is shown that as interest rate increases 

the optimal rate of retum of deposits withdrawn at date I decreases and that of deposits that remain until date 

2 increases. The intuition is that given the high interest rate, it becomes advantegous to reinvest sorne of the 

unused resources at date 1 in tbis new short term investment. Nevertheless, there are sorne minor differences with 

respect to Hellwig's results. that will be commented throughout the work. 

As Jacklin[12] has noted, and isconfirmed also'in the work ofHellwig, the Diamond Dybvig specification with 

no aggregate uncertainty about preferences, has the feature that the ex-ante optimal allocation is also 

implementable through trading. where shares of the investment portfolio (of short and long term assets) could 

be tmded at date I as with a mutual fundo This rules out any specialness on the side of a financial intermediary. 

In a later paper, Jacklin [13] shows that unless there is both aggregate uncertainty about preferences and banks 

assets are risky, with depositors asymmetrically informed about asset quality, then tmded equity contracts can 

provide the same services as demand deposit contracts, without the possibility of panics. The message of his 

paper is that liquidity transformation can and should be provided using equity contmcts where the underlying 

assets may or not be risky, but where there is Iittle or no potential for asymmetries of information about asset 

quality. 

The aboye papers considered models in which individuals have comer preferences. that are not considered a 

realistic characterisation of individuals' preferences. 

With smooth preferences and no aggregate uncertainty about preferences, Jacklin [12] has shown that non traded 

demand deposit contmcts and traded equity are not welfare equivalent. In fact, demand deposits are shown to 

provide greater risk sharing than equity shares. 

Jacklin and Bhattacharya [2] also considered the relative degree of risk sharing provided by traded and non tmded 

contracts, in a framework in wbich bank assets are risky and individuals (with smooth preferences) are informed 

concerning ban~ asset quality. The basic result is that deposit contracts tend to be better for financíng low risk 

assets. 

A second motivationfor this extension isto compare the traded and non traded solutions in this economy, with 

smooth preferences and in which there exists a reinvestment opportunity from date 1 to date 2. It will be shown, 

that in this fmmework, demand deposits and traded equity are not always welfare equivalent. 

The structure of the paper is as foIlows: The basic framework of the model is presented in section 2. The first­

best and second-best aHocations under complete and incomplete information respectively, are presented in 

subsections 2: 1 (preferences represented by a multiplicative utility function) and 2.2 (in the case of an additive 

utility function). Subsection 2.3 shows' elasticities of consumption with respect to the short-term random 

technology. Section 3 compares the second-best allocation (non-traded solution) with an equity economy (traded 

solution) in which individuals could hold the assets directly. Section 4 concludes the papero 
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2.- Description of the model 

The hypothesis of the model are summarized as follows: 


a.- Three period economy: T = o, 1, 2 


b.- One good per period 


e.- There are three investment opportunities: 


i.- A short-term asset at T=O that yields asure returo bOl at T=l 

ii.- A long-term asset at T=O ~hat yields asure returo b at T=2, premature liquidation of the asset is 02 

feasible but the rate of returo is only b¡<bol 

iii.- A short-term asset at T=l that yields a random return b12 at T=2. The random variable is known at 

T= 1 but not at T=O, at date O, only the distribution function is known l • 

d.- On the household side of the economy, there is a continuum of unit mass of ex ante identical consumers 

that are uncertain at T=O about their consumption needs. They are subject at T=1 to a privately observed 

uninsurable risk of being of type-l with probability t or of type-2 with probability l-t. 

For comparative purposes, preferences will be represented by an additive utility function and by a 

multiplicative one, which are of the form: 

Additive utility function: 

[IJ 

where: O ~ P, ~ 1, i = 1, 2 (type), and p¡>Pz. 

Multiplicative utility function: 

[2J 

where: 0<1l<1, 0<6,<1, i=I, 2 (type), and &1>&2' 

As commented in the introduction, it is assumed a more general preference structure with respect to Hellwig 

[11], as individuals derive utility from consumption in both periods. 

e.- Consumers are endowed with ko units of the good at T=O to be divided between short-term and long-term 

investments. 

I For simplicity, a triangular distribution ¡or the random retum is assumed 
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f.- It is assumed no aggregate uncertainty, so that with probability one a fraction t of consumers are of type-I 
and a fraction 1 -t of type-2. 

The economy must deal with the following allocation problem: 

a.- At T=O the initial endowment must be divided between short and long term investments (k =k ¡+k )o o o2 

b.- At T=l the fraction (O~j.L~l) of the long-term investment that is liquidated must be determined, this may 
depend on the observed value of b12 

e.- At T=I the retums from short-term assets and possibly liquidated Iong-term investments must be divided 

between consumption and new short-term investments, this may also depend on the observed realizatíon of 
b12 

The objective of this work is to characterize efficient allocations and to see how the initial uncertainty about the 

random return affects consumption allocations as well as the initial investment choices. This analysis will be 

carried out under the assumptions of complete and incomplete information respectively. 

2.1.- Multiplicative Utility function 

2.1.1.- First-best allocations under complete information 

In the complete information case, it is assumed the type of the consumer is publicly observable and in this 

situation, the efficient allocation will be the solution to the following problem: 

s.l kOl+ko2=ko 

ten +(1-t)C12SbO¡kol+blliko2 

tC21 +(1-t)c22 =bo2(1-jl)ko2 +b12[bo¡k01 +b¡ fiko2 -ten -(1-t)C¡2] [3] 

b¡bI2<bo2 

ji~l 

c/j'¿O 

ji ,¿O 

The utilíty function is the one described aboye in Point d of Page 93. c represents the prior plan indicating n• e21 

the consumption bundle allocated to type-l consumers and e • C22 the plan allocated to type-2 consumers. The 12

feasibility constraints are the second and third constraints respectively. The second one requires that aggregate 

consumption at T=l should be less or equal to aggregate resources per capita available from short-term 

investments and possibly liquidated long-term ones. Similarly, the third constraint requires that aggregate 

consumption at T=2 should be covered by non liquidated long-term investments plus short-term reinvestments 

of unused resources at T=l. The fourth constraint states that at date 1, it is never desirable to liquidate long-term 

investments in order to make room for new short-term ones. 

1'1'- ""'~~'-~----------------"""""T-----------¡---------------------
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This maximization problem is sol ved as a three-step problem: 

a.- In a first step, the initial investment choices, ("01' "02) are considered as exogenous parameters and the 

optimal consumption levels and liquidation policy are detennined. 

b.- In a second step the indirect utility function derived in the first step is maximized on "01 and "02' and so 

the optimal levels of the initial investments are obtained. 

C.- Finally, the optimal levels of "01 and "02 are substituted back into the first step problem, and the final 

solution is reached. Although this last step is obvious, it has just been added to clarify how the numerical 

solutions presented in the figures have been derived. 

2.1.1.1.- First step: Optimal consumption levels and liquidation policy. 

In this step, bOl' b02' b l • b12• "01' "02 and t are considered as exogenous parameters and so the problem may 
be rewritten: 

max E [tU(cll'c )+(l-t)U(c12,c )]u zz
C~.I' 

S.t ko1 +ko2=ko 

tCH + (1-t)c12~boiol +b11l"oz 

tcu + (l-t)c22 =b02 (1-1l)"02 +b1Z [bo1 "01 + b11l "02 -tca - (l-t)C12J [4] 

blblZ<b02 

Il:d 

c(l~O 


Il~O 


Al and A2 are the Lagrange multipliers associated with the first and second resource balance constraints andA3 

the multiplier associated with Il. 

In this first step, the solutions are given in Table 1. 

Table 1 

The consumption levels of cases A. B and C. the aggregate expected utilites (U·(a), U·(b), U·(c» corresponding 

III 
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to each of these cases, the value of k01crit and bUm are given in Appendix A. Figure 1 gives a graphical plot of 

the frontiers for these three cases in a particular example. 

It should be observed thal for low exogenously fixed values of k (below a critical value ko1crit) the optimal 01 

solution is characterized by partialliquidation of the long-terrn technology (this makes sense, if the level ofko1 

is very low, liquidation of the long-terrn asset is needed to provide for first period consumption). In this solution, 

consumption is always constant, independently of the random return, (the multiplier associated with the first 

resource constraint is positive and therefore, the constraint is binding). For high exogenously fixed values ofko1 

(above ko1crit), the optimal solution involves no liquidation ofthe long-terrn technology (given that the level ofko1 

is high enough lo provide for first period consumption). In this case, for low values of the random retum, 

consumption is constant (up to a limit value bUm ) and once tbis limit is attained, first and second period 

consumption become responsive to the random return (this is explained by the fact that in case B the multiplier Al =0 

and therefore its corresponding constraint is no longer binding). As will be explained in more detail below, in 

case B there is reinvestment of resol,lrces at date 1 in the new short-terrn technology. 

2.1.1.2.· Second step: Optimal levels of the initial investments 

The aboye optimization problem has been solved considering ko1 and k02 as exogenous parameters. The first-best 

investrnent levels at date zero are obtained by dynamic programming, maximizing on k and k the indirect 01 02 

utility function of the problem described aboye, Le.: 

[5] 

where: 

[6] 

Proof: See Appendix A 

2.1.1.3.- Thirdstep: Final solution, 

The optimal levels of ko1 ,k are substituted back into the first-step problem and so the final solution is reached. 
02 

This solution to the first best problem gives the main result of the section. expressed by the proposition below: 

Proposition 1. Let (ko1' ko'Z' cll• C12' C21• C22' 11) be a solution to the first best problem and define: 
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Then: CASE A 

[8] 

1l·=O 

CASEB 

[9] 

Prool: See Appendix A 

Given that ko1 is an endogenous variable, this characterization may seem awkward, but it is understood in terms 

of dynamic prograrnming considerations. As mentioned before, the maximization problem [3] has been sol ved 

as a tbree step problem: In the first step, k and k were considered as exogenous parameters and the optimal o1 o2 

consumption levels were obtained, in the second step, the optimallevels of the initial investments were derived, 

maximizing on koJ and k the indirect utility function of the fírst step problem: 02 

- Given that this k;l is always above the critical value, ko1crit. the optimal solunon involves no liquidatíon 

01 the long-term asset. The consumption levels are the ones specified in Proposition 1. It is observed that 

for low values 01 the random return, and up to a limit value. consumption is independent 01 b12 , but once 

this limit value is achieved, first period consumption decreases, second period consumption increases with 

the random return. The explanation is that given the high value of the random return, it becomes 

advantageous to reinvest sorne of the retum from the short-term asset available at T=l. in the new short­

term technology. As mentioned in Hellwig [11], from an ex-ante point of view, the uncertainty about the 

random return is seen as a source of opportunities rather than a tbreat. While long-term investments are 

earmarked for consumption at date 2, short-term investments are not necessarily earmarked for consumption 

at date 1. 'fhe choice between consumption and investment depends on the rate of retum b12 on the new 

short-term investments. 

2.1.2.- Second best allocations under ¡ncomplete information 

In this case it is assumed that the realization of the timing of the consumption needs is private information of 

the consumero 

Given this information asymmetry, an allocation can only be implemented if it is incentive compatible, that is, 
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if it gives no consumer an incentive to lie or deviate about what he actually wants to consume. 


If a type-2 agent claimed to be a type-l he would get cH units at T=l and c units at T=2. If he reinvested 

21 

his cH units in the backyard, in the optimal way for him, his optimal consumption levels in periods 1 and 2 

would be the solution to the following problem: 

[lO] 
S.t cI :s:cll 

cZ=(Cll -cl)b12 +CZI 

The optimal solution to this problem yields: 

* ¡~Z(CZI+b12cll)IG2 [111cI = :s:cll
biza. 

Incentive compatibility requires that the consumption bundle he receives if he is honest (c ' c ), should be at 1Z zz 
least as large as what he gets by lying and reinvesting in the backyard; that is: 

[12] 

where c;, c; were derived above. 

The incentive constraints for type-l agents would be obtained in a similar way. However, in solving for the 

second-best allocation, it can be shown that the incentive compatibility constraints are never binding, and so they 

need not be taken into account in the maximization problem, but only venfy that they are satisfied for the optimal 

solution, this yields the following: 

In the case o/a multiplicative utility function, the first-best solution is incentive compatible,' that is, the first and 

second-best solutions coincide. 

2.1.2.1.- Numerical simulations 

Numerical simulations have been denved for the input data of Table JI: 

Table 11 

Figure 1 shows the first-step solution, for each exogenously-fixed value of ko1 ' the solution to the second step 

problem gives the optimallevels of the initial investments: 

Table 111 

0.38 0.62 
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The final solution to the second-best problem is shown in Figure 2. (Notiee that k;¡>ko1crit=O.30, and so there 
is no liquidation of the long-term asset). 

As it is observed, for low values of b12 , these consumption levels are independent of the random retum, but 
once the limit value is attained (bUm=1.16), first period eonsumption decreases with the random retum, second 
period inereases, in this ease it becomes advantageous to reinvest some ofthe retum available at T=l in the new 
short term investments. 

2.6.---~----------------------------------------~ 

.•• t .••.•••••••••.••.•••••••••...•.••••••••••.•••.••••••••••.••• 

I 

bmax 

0.. WI 
1 

·OO··l .......................................................... .
S 1.0 
CD 
:::» ~: CASE lB ~ 0_1 4,,", 
~ 

:§ 0.5 .... :eIIIt ••••••••••••••••••••••• '" 
o: CASE A 

.... 1 .°1
~I

0.01----.-----¡r----,---,---,----,----,---'=-­
0.2 0.3 0.4 0.6 0.8 0.7 0.8 0.9 

InHlal Investment (k01) 

Figure 1.- First-step solution 
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I
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(8 

~ « al 
él) 

-;; 0.9 ................. El ...........Q) ................... . 
. 2 ti) =' C111S. as .a I as 
E O I "20.7 ................................ ! .......... ~ ................... . 

()
o I 

C21 

................................ ) ................................. .
0.6 ________~I_-------- C 
12 

O.S~----.-----.-----.-----.-----~----,-----~~ 

0.8 0.9 1.0 1.1 1.2 1.S 1.4 1.5 

Random retum (b12) 

Figure 2.- Optimal consumption levels in the first-best (second-best) allocation 

2.1.2.2.- Sensitivity analysis 

a.- Variations in tbe exogenous parameters 

In order to see how the limit value of the random retum (that distinguishes cases A and B of the zero-liquidation 
solution) is affected by variations in other exogenous parameters of the model, a sensitivity analysis has been 
done with respect to the expected value and the standard deviation of the random retum (b12) , the proportion 

of type-l agents (t) and the relation of long-term versus short-term returns [b02], as it is shown in Table IV. 
boJ 

Table IV 

E{b12) 1.06 1.14 1.22 1.30 

a 0.03 0.05 0.07 0.08 

t 0.00 0.10 0.60 1.00 

1.10 1.23 1.38 1.5bo2 /boJ 

AH these cases are represented in Figure 3 to Figure 18. 
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It can be observed that the limit value of the random retum depends on the characteristics of the investment 

opportunities that are considered: 

L- When the expected value of bu or the standard deviation of b12 increase, bUm moves to the left, up 

to a limit in which there may onIy be CASE B (reinvestment solution) 

ii.- Ifthe relation ofthe long-term versus short-term return increases, bUm moves to the right, that is, given 

the high value of the long-term retum, it is not so interesting 10 take advantage of the reinvestment 

opportunities, and so this limit value bUm is higher. 

iii.-	 Pinally, variations in the proportion of type-l agents do not have any significant effect on bUm , in 

general, variations in parameters that correspond to the household side of the economy (risk-aversion 

coefficient or preference shock) do not influence this limit value (See sensitivity analysis ofthe additive 

utility function). 

Pigure 19 to Pigure 22 show the optimal levels of the initial investment for each variation in the exogenous 

parameters. The optimallevel of 101 is increasing in the expected value and the standard deviation ofthe random 

retum and in the proportion of type-í agents, it is decreasing in the relation of long-term versus short-term 
b 

returns. It should be noticed that whenever Eb12>-!!! the optimal level of 1;1 =1. 
bol 

Ebl2 • l.oe 

1.3 	................................................ ········0.- 1.3 .•.... ...... ··············0.­

U U 
1.1 ...•................•....•...•.. 	 1.1 ..... . ............. , 0.8Ot1 
ca············· o. ­

fu .. ···il;C;;'!! - f 

JO.7 ····o···· .. ···~i .......~ ...... o... 


~ ~, 
0.6 ..;;;;;=====;;;1,::: 	 0.5 ........................ 'C" ..... ,,, ...................... 0_1


-------i--!- C12 
1 

0.3 	 0._ 0.11---,----,--r-..,.....:-.-----,----,--l0. ­
0.8 0.8 1.0 1.1 U! 1.3 l.. 1.11 	 0.8 O.. 1.0 1.1 1.2 1.3 __(1112) 
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Ebl2 - 1.22 	 EbtZ-UO 

1.S ...................... . 	 I.S ............... . 


1.1 ,. ........... . 


0.5 ..... 	 0.& • 

0.3 	 0.1OSO O.3~~-~-~--,--r-.--~ 
O.. 	 0.8 1.0 1.1 1.11 UI U UI 0.8 0.8 1.0 1.1 U 1.lI lA UI 

Random _ (1112) Rlndom ....... (111~ 


Figure 3 to Figure 6.- Variation in the expected value of bu 
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2.2.- Additive Utility function 

2.2.1.- First-best allocations under complete information 

Similarly to the multiplicatiye case, the efficient alIocation wilI be the solution to the folIowing problem: 

max E[tU(en,c21)+(1-t)U(CI2A2)] 
é~Ol.io2.1Í 

S.t 	 k01+k02=ko 


tén +(l-t) c1z s.b01k01 +bl jJ.k02 


tC21 + (l-t)é22=bo;¡(1-P.)koz+612 [bolkol +bl p. koz -tell - (1-t)é¡2] [13] 

b¡612<b02' 

¡id 

C,:O:O 

P. :l:O 

and where the utility function is the one described aboye in Point d of Page 5. 
As before. this maximization problem is solyed as a three-step problem: 

2.2.1.1.· First step: Optimal consumption levels and liquidation policy. 

In this step, bol' b02' b1, b12• k01' are considered as exogenous parameters and so the problem may be k02 
rewritten: 

max E[tU(Cll'C21)+(1-t)U(C¡2,C22)] 
c~." 

S.t 	 kol+k02=ko 

tCn + (1-t)CI2S.bolkol+b¡llk02 

tC21 +(1-t)c22 =b02(l-Il)koz +b12[b01kol +b¡1l k02 -tcu -(l-t)C¡2] [141 

blbl2<b02 

Ild 

c,:o:O 

1l:l:0 

Al and A are the Lagrange multípliers assocÍated wíth the fírst and second resource balance constraínts andA 32 

the muItiplier assocÍated with ¡J.. 

In this fírst step, the solutions are giyen in Table V. 

http:�~Ol.io2.1�
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Table V 

CASE A A¡>O 

The consumption IeveIs of cases A, B and C, the aggregate expected utilities (U·(G), U·(b), U·(c» corresponding 

to each of these cases, the value of ko1crit and bUm are given in Appendix B. As in the multiplicative case, if 

the exogenously fixed value of ko1 is below the critical one, the optimaI soIulÍon involves partialliquidation of 

the long-term asset, and consuption is independent of the short term random return. For values of ko1 aboye the 

critical one, there is never liquidatio~ of Iong-term tecnology. In this case, for values of blZ<bllm , consumption 

is constant and once this limit is attained it becomes dependent on the random return. 

2.2.1.2.- Second step: Optimallevels of the initial investments 

The first-best investment levels at date zero are obtained by dynamic prograrnming, maximizing on ko1 andk02 

the indirect utility function of the problem described aboye, Le.: 

[15] 

where: 

[16] 

Proa!: See Appendix B. 

2.2.1.3.- Third step: Final solution 

The optímallevels of k
o1

,k
02 

are substituted back into the first-step problem and so the final solution is reached. 
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This solution to the first best problem gives the main result of the section, expressed by the proposition below: 

Proposition 2. Let (ko1' k02' CI!' C12' C21' C22' 11) be a solution to the first best problem and define: 

[17] 

CASE A (A.>O) 

-11Y 

t+(I-t) :~[ ] [18] 

11·=0 

CASE B (A.=O) 

21 jl*=O 
C 

-* 

= []-.'Y y-1 . 
[19] 

t+(1-t) :: +612
Y P~Y 

Proof: See Appendix A. 

Proposition 2 characterizes the first best allocation under complete information. As in the multiplicative case, for 

low values of the short term retum (6 ), consumption is independent of it (this is explained by the fact that in 12 

Case A the multiplier associated with the first constraint is positive and therefore the constraint is binding), once 

the limit value is attained, consumption becomes responsive to the random retum, first period consumption 

decreases with the random retum and second period consumption increases with it (in Case B Al =0 and 

therefore its associated constraint is not binding). As already mentioned, the intuition is that given the high value 

of the random retum, it becomes advantegous to reinvest sorne of the retum available at date 1 in tbis new short 

term asset. 

It should be observed that thefirst-best allocation involves no liquidation ofthe long-term technology, (11·=0), 

as the optimallevel of the initial investment, (ko1 ) is always aboye the critical level kolcrit. 

2.2.1.4.- Numerical simulations 

In order to provide a graphical plot of the optimal solution, sorne numerical simulations have been developed for 

the input data given in Table VI; 
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Table VI 

Figure 23 illustrates the soludon to the first step problem; there are three possible cases depending on the fixed 

exogenous value of ko! that is considered. The second step problem gives the optimal levels of the inidal 

investments by integration of the indirect utility functÍon (See Figure 24); the solution to the seeond step problem 

is given in Table VII: 

Table VII 

0.62 0.38 

The optimal levels of the initial investments, for each value of the relative-risk aversion eoeffieient are shown 

in Figure 25. 

These optimal levels of koJ and k o: are substituted baek into the first step solution to reach the final solution 

shown in Figure 26.1t should be observed that in this example the value of k ¡:rit=0.5677 ~k;l and so there is o
no liquidation of the long-term asset. 

Some remarks, eonceming the solution to the first-best problem should be pointed out: 

a.- For values of b smaller than the limit value bUm , the optimal eonsumption levels are the ones given by 12 
CASE A, and are independent of the random retum, otherwise the eonsumption levels would be given by 

CASE B and depend on the value of bl1,. 

This result shows that first period optimal levels of eonsumption decrease (seeond period consumption 

increase) as the random retum b increases. (This is explained by the faet that in CASE A the Lagrange 12 

multiplier Al is > Oand therefore the eorresponding resource balance eonstraint is satisfied with equality. 

On the eontrary, in CASE B Al =O and the constraint is satisfied with strict inequality). More exactly, when 

the random retum from new short-term investments exeeeds the critical value bUm it is desirable to reinvest 

some ofthe retum k
o
!b

o1 
available at T=l in the new short-term investments, in order to take advantage of 

this favourable opportunity. 

b.- Premature 'liquidations of the long-term asset are always zero under the first-best solution. 

C.- In general, the results that are obtained do not differ from the ones in Hellwig [11]. 
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Figure 25.- Second step solution: Optimallevels of the initial investments. 
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2.2.1.5.- Sensitivity analysis 

a.- Sensitivity with respect to 'Y in the case of a large and a small preference shock. 

Table VIII 


Small shock 0.4 0.5 0.5 1.5 2.0 2.5 


Large shock 0.3 0.6 0.5 1.5 2.0 2.5 


AH these cases are represented in Figure 27 to figure 34 

There are sorne remarks to be pointed out: 

1.- Comparison between a large and a small shock. It can be seen that in all figures (independently of risk 

aversion), in the case of a small preference shock. first perlod consumption is always higher and the 

difference between second perlod consumption. c2,2 -e21 is lower. 

ii.- Comparison with respect lo 'Y. As the relative risk-aversion coefficient increases, first period 

consumption diminishes, and second perlod consumption increases. This occurs both in the case of a 

small and a large shock2
• AIso as 'Y increases, the difference between C2,2-C21 diminishes. 

iii.- It should be noticed that the limit value of the random return b12 that distinguishes CASE A 0'1>0) 

from CASE B (Al =0) varíes very slightly from one figure to the other. 

2 This result conlirms thal 01 Breeden (1984), he demonstrales Ihatlor ,he class 01 utility funclions wilh cO(JSlant relative risk-aversion, 
(f agents are sufficiently risk-averse, they may choose lO reverse hedge. lhat is Ihey chaose lo consume less now in order to ¡nvest more in 
Ihe .fu(ure. 
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2.2.2.- Second best allocati.ons under incomplete information 

In this case it is assumed that the realization of the timing of the consumption needs is prívate information of 
the consumero 


Given this information asymmetry, an allocation can only be implemented if it is incentive compatible, that is, 


if it gives no consumer an incentive to líe or deviate about what he actually wants to consume. 


If a type-2 agent claimed to be a type-l he would get Cl! units at T=l and C21 units at T=2. 

If he reinvested his units in the backyard, in the optimal way for him, his optimal consumption levels in cH 

periods 1 and 2 would be the solution to the folIowing problem: 

l-y C2l-
Y)cl 

max --+P2-­
"1_"2 1-y 1-y
¡ 	

[20J 
S.t 	 c1SCU 

C2=(CU-Cl)bI2 +C21 

The optimaI soIution to this problem yields: 

[21J 

Incentive compatibílity requires that the consumption bundle he receives if he is honest (C
I2

• C
22

), should be at 

least as Iarge as what he gets by lying and reinvesting in the backyard; that is: 

l-y l-y .1-, .1-, 
C¡2 C22 C¡ C2 	 [22)
-- +P2--~ +P2-­
1-y 1-y 1-y 1-y 

where c;, c; were derived above. 


The incentive constraints for type-l agents would be obtained in a similar way. 


In the absence of any other backyard technology (for converting date 2 consumption into date 1) there is no Other 


incentive constraint to be considered. 


Taking the incentive constraints into account, the second-best problem is a solution to the following one: 


, I 
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S.t 	 k"J+k"z=k" 


teu + (l-t)e12 :s: b"lk"l +b1jlk"z 


té"1 + (1-t)é22=boz(l-jl)k02 +blZ[bolkol +b1jl koz -téH O-t)c12] 	 [23] 

b1b12<b"2 

jlsl 

cq,¿o 

¡j~O 

[24] 

IC constraints 

2.2.2.1.- Numerical simulations 

The analytical treatment of the second-best solution is quite a tedious one, therefore numerical solutions have 

been computed3
• The working procedure is the same as for the first-best case, Le., the problem is solved in three 

steps. 

There are sorne remarks to be pointed out: 

a.- In the second-best allocation the incentive constraint for type-l agents is binding, whereas that of type-2 

agents is never binding. 

b.- The second-best allocation does not involve liquidation of the long-term asset (see sensitivity analysis with 

respect to b1). This result differs from Hellwig as in his case the second best allocation may involve 

liquidation of the long-term technology. Although this result is based on numerical analysis, it seems that 

similarly to the first best allocation, the utility function is always a continous and increasing function inkol 
in Case C, ,and therefore, the optimallevel of the initial investment will be at least kolcrit. On the contrary, 

in Hellwig's case, the utility function (in the liquidation solution) is increasing in k"J but it is not continous 

in the limit case k"lcrit, that distinguishes the liquidation and non-liquidation solutions, and therefore, the 

optimal k;l may occur in the liquidation case, for values of k"J sufficiently close but below k"lerit. 

C.-	 The optimal soludon has been derived for the input data of Table VI. 

A graphical plot of the optimal solution is given by Figure 36. The optimal initial investrnent levels are shown 

3 The system o/ non-linear equations was so/ved by the Newton Raphson technique, with the use o/ a computer programo that is 
exp/ained in Appenáix A. 
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in Table IX. 

Table IX 

0.62 0.38 

The optimallevels of the initial investments for each value of gamma are sbown in Figure 35. 

2.2.2.2.- Sensitivity analysis 

a.- Sensitivity with respec:t to y in the case of a large and a small preference shock as was shown in 
Table VIll, in the first-best case. 

AH these cases are represented in Figure 37 to Figure 44. 

Sorne remarks should be pointed out: 

i.- Comparison between a [arge and a small shock. It can be seen that in aH figures (independently of risk 

aversion), in the case of a small preference shock, the difference between first perlod consumption 

c -c and second perlod consumption, cal -c is always lower with respect to the case of a large H 12 21 

shock. 

iL- Comparison with respect to y. As the relative risk-aversion coefficient increases, first perlod 

consumption diminishes, and seeond perlod eonsumption inereases. This oecurs both in tbe case of a 

small and a large shock. AIso, as y increases the difference c -c and C -C also diminishes. U 12 21 21 

iiL- It should be noticed that the limit value of the random return b12 that distinguishes CASE A (A1>0) 

from CASE B (Al =O) varies very slightly from one figure to the otber. 

b.- Sensitivity with respec:t to b1 

A sensitivity anaiysls with respect to the Iiquidation value of the long-term asset, has been done. The foHowing 

values, given in Table X. for b1 (b1<bo1 ) have been considered. 

Table X 

There is a unique solution shown in Figure 45 due to the fact that these variations do not affect the optimal 

soIution. 
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Figure 35.- Optimallevels of the inidal investments. 
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Figure 36.- Optimal consumption levels in the second-best allocation 
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Figures 37 to 44.- Variations in p and y. 
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Figure 45.- Variation in the liquidation value of the long-term asset. 

It should be noticed that there is never liquidation of the long-term asset, as the optimal solutions are always in 

cases A and B. 

2.2.3.- Comparison between the first-best and the second-best allocations. 

The above sections have characterized the first and second-best consumption allocations with respect to the 

random retum from the new short-term investment b12 • 

A main feature of both solutions is that for low values of b12 up to a limit value (that coincides for the first and 
second best) th~ first constraint is binding and so, there is no reinvestment, and once this limit is attained, the 
first constraint is no longer binding and there is reinvestment in the new short-term asset. 

However, the difference between them is, that in the second-best allocation the optimal consumption levels are 
always dependent on b12 , individuals are always bearing the risk ofthe random retum, whereas in the first-best, 
consumption is constant for low values of b12 • 

This difference is due to incentive compatibility reasons. 

The optimal levels of the initial investments, are the same in the first and in the second-best. 
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2.3.- Elasticities with respect to the short-term interim random 
return 

As already mentioned in the introduction, this work is concemed with the efficient allocation of technology­

induced ¡nterest rate risk in a competitive system of fmancial intermediation. 

This section will study the dependence of the optimal consumption levels on the short-term interlm random 

retum, in terms of elasticities, and for the additive and multiplicative utilities. The analytical expression for these 

elasticities is given in Appendix B. 

2.3.1.- Multiplicative utility function 

Figure 46 gives the elasticity of first and second period consumption in the first best (=second best) allocation, 
~b11 ••

where e¡= - " J=l, 2. 
eab11 U 
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Figure 46.- First-best (Second-best) allocation 

It can be seen, that in Case A, consumption is inelastic to the random retum whereas in Case B there is a 

negative elasticity of first period consumption and a positive elasticity of the second perlod one with respect to 

the random retum. 
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w2.3.2. Additive utility function 

Figure 47 and Figure 48 show the elasticities of first and second period consumption in the first and second best 

allocations respectively, and where elj;: 	aclj b12 i, j =1, 2. 

ab12 cij 
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Figure 47. - First-best allocation 

It can be observed in both figures that there is a negative elasticity of first period consumption and a positive 

elasticity of the second period one, with respect to b12 • 

In the first best case, and up to a limit value of the random retom, consumption is inelastic to the random retum 

(Case A), but Qnce the limit is attained, there is reinvestment in the new short-term asset and so first period 

consumption (second period) diminishes (increases). 

In the second best allocation, consumption is always responsive to the random retom, although in Case A, 

elasticities are very small. The elasticities of the consumption of type-2 do not differ from the first best case, 

however those of type-l agents do differ, in the first period there is negative elasticity with respect to bu which 

is higher with respect to the first-best and on the contrary, the elasticity of second period consumption is smaller. 
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Figure 48.- Second-best allocation 

2.3.3.- Comparison among them 

A frrst remark to be made is that in the multiplicative case, the elasticities 01 consumption are always the same 
lor type-l and type-2 agents, compared 10 ¡he additive ¡Une/ion (seeond best allocation). 

It is also observed that there is a higher negative elasticity of fírst period consumption in the multiplicative case 

with respect to the additive case and on the contrary, a smaller positive elasticity with respect to second period 

consumption. 

3.- Comparison with an Equity Economy 

This section wili compare the second best allocation (non-traded solution) to the competitive equilibrium in an 

equity economy (traded solution). Suppose that at T=I, there was a walrasian market for date 1 and date 2 

consumption goods, in which consumers participate with endowments consisting of bellel units of the date 1 

good and be.Jce2 units of the date 2 good. Let ~=1 +r be sorne equilibrium interest rate at which individuals 

are willing to trade good 1 in exchange for good 2, and so that for any agent j: 

Clj=bellel +Bj 
[1] 

c'1J=be2ko2 -~BJ }=1.2 

where Bj is the quantity demanded (or supplied) of good 1 in exchange for good 2 and with E Bj =0 across 
J 

agents determining ~, subject to the caveat ~ ~bl'1., the short term realized (storage) rate from T=1 to T=2. 

If storage (with ~ =b,'1.) is done then o~E BJ~-bolkol is the constraint overall. 
j 

1: 
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The individuals' maximization problems are shown below: 

3.1.- Multiplicative utility function 

Type-l problem at T= 1 

{ 61 a-61}max CllCZ1 
BI 

[26]
S.t Cn =bol ko1 +B1 

CZ1 =bo2 ko2 - R,.B¡ 

with solution: 

31bo2 ko2 +bol kolR,.(3¡ - a)
BI= [27] 

aR,. 

Type-2 problem at T=l 

{ 112 a-62}max C1ZC22 

Bz 
[28]

S.t CI2 =bol ko1 +B2 

czz =bo2ko2 - R,.Bz 

with solution: 

3zbo2ko2 +bolkolR,.(3z -a)
B= [29] 

2 aR,. 

[30] 

and the value of R; is: 

[31] 

which coincides with the limit value of the random retum that distinguishes Cases A and B in the non traded 
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solution. 


Substituting R; in the expressions for BI and B yields:

2 

• bol ko1 (1-t)(lS¡ -1S )2B.=~~----~--~ [32]
tlS l +(1-t)1S2 

It should be observed that B;>O and B; <O as 1S.>1S2 • Type-l agents demand in the aggregate tB; units of 

good 1, which are supplied by the type 2 agents in exchange for (l-t)R;S; unitsof good, 2. 

The optimal consumption levels for type-l and type-2 agents would be: 

c' =b k ISI 
11 01 01 lIS +(1-t)1S

• • :2 
[33] 

c'''''b k 1S 2 

12 01 01 lIS, +(1-t)1S
2 

These allocations coincide with the ones obtained in the non traded solution (Case A). 

In this case the equilibrium interest rate must be R; =b12 • that is, the realized short term return. 

The optimal levels of B; and S; would be: 

• lS.bozkoz+bolkolb12(1S.-a)
Bl=~~~~~~~~--- [34]

ab12 

and therefore, the optimal consumption pattern for type-1 and type-2 agents is: 

[35] 

As before, the allocations obtained in the equity economy coincide with those achieved in the non traded solution. 

Finally, it can be shown that in this case, the constraint O:ot L B/~ -bo1 ko1 is always satisfied. The result of this 
J 

section is summarized by the following proposition. 

Proposition 3. In the case in which preferences are represented by a multiplicative utility function, the allocations 

obtained in the traded solution coincide with the ones achieved in the non traded one, for the investment cum 

storage pattern described. 

The following table shows numerical computations of the traded solution for the input data given by Table n. 

,- -----_._--_..._-----------------,.-------------,-------------------- ­
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Table XI 

1.10 1.17 0.404 -0.045 0.0 

1.17 1.17 0.404 -0.045 0.0 

1.20 1.20 0.386 -0.054 -0.0098 

1.30 1.30 0.344 -0.075 -0.0331 

1.40 1.40 0.307 -0.093 -0.0531 

3.2.- Additive utility function 

Similarly to the multiplicative case, the individuals' maximization problems are defined in the following ones: 

Type-l problem at T= 1 

¡1-1 1-1)Cu CZI 
max -+Pl-

BI 1-y l-y 
[36] 

S.t 	 cl! =bo1ko1 +BI 

ko2 -RzBJcZ1 =boz

with solution: 

[37] 

Type-2 problem at T=l 

{1-1 1-')Cl~ Czz max -"-+P2­
Bz l-y l-y 

[38] 

S.t 	 c12 =bO¡kO¡ +B2 

C22 =bozkoz -RzB2 

with solution: 
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1/TB = (P'1R,.r bt1'lkt1'l-bOlkOI [39] 
2 1 +(p'1R,.rI/T R,. 

The value of R; is obtained as a solution to the aboye equation, and from it the values of B; and B; are 

derived. These values are substituted in the expressions for cll' C'11 and Cl'1' to calculate ex-ante expected C'1'1 ' 

utility in this economy. 

B ).- If bu>R,. 

In this case the equilibrium interest rate is R; = the realized short term retum. bl'1 , 

The optimal levels of B; and S; are: 

• (PI bl'1rllYbo2 ko2 - bo1kolB = --"--""----...;;.;;....;;.;;'--"'"""-:..:. 
I 1 +(PI b12rl/T bu 

and from them, the optimal consumption levels and the value of the expected utility are obtained. 

The following table shows the numerical computations of the traded solution for the input data of Table VI. 

Table XII 

1.00 1.17 0.125 -0.014 0.0 

1.10 1.17 0.125 -0.014 0.0 

1.17 1.17 0.125 -0.014 0.0 

1.22 1.22 0.113 -0.023 -0.0092 

1.23 1.23 0.102 -0.032 -0.0179 

1.44 1.44 0.073 -0.052 -0.0397 

In order to compare the expected utility obtained in the non traded solution with respect to the traded one, sorne 

numerical examples have been computed. The input data are those corresponding to Table VI, with the variations 

in the exogenous parameters shown from Figure 49 to Figure 51. 

It is observed that in all the examples the non-traded solution is always welfare superior, also. as the value of 
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the random retum increases, the difference in utility diminishes (an exception is the case of y =0.5). This result 
differs from Hellwig [11], as in his case, the traded and non-traded solutions coincide. 

It may be concluded (hat ifpreferenees are represented by an addi(ive utility funetion, (he alloeations obtained 
in the non-traded solution are welfare superior with respeet lO lhe ones aehievetl in Ihe traded one. 
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Figure 49 to Figure 51.- Expected Utility of non-traded minus traded solution. 

4.- Conclusions 

This paper has studied the optimal allocation of technology-induced interest rate risk in a competitive system of 
financial intermediation. 

The study has been carried out under different information assumptions and in the case in which preferences are 
represented by a multiplicative utility function and by an additive one, respectively. 

The objective was to analyze how the initial uncertainty about the short-term interim random returo affected 
consumption as well as initial investment choices; it was shown that there is always a limit value of this random 
returo above which, it becomes advantageous to reinvest some of the retum available at T=1 (and therefore 
not consume all of it) in the new short-term investment. 

The optimal consumption levels in the first-best and second-best allocations depend on the random retum, b12 • 
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In the case in which preferences are represented by a multiplieative utility funetion the first and second-best 

allocations coincide. It is observed that for low values of bu consumption levels are independent of the random 

retum, (CASE A), but once a limit value is attained, consumption levels depend on it (CASE B), and there is 

a negative elasticity of first period consumption with respect lo bu and a positive elasticity of second period 

consumption with respect to it. These elasticities are the same for each type of agent. 

The first-best (=second-best) allocation involves no liquidation of the long-term asset. 

In the case in which preferences are represented by an additive utility funetion the first-best allocation is never 

incentive compatible, it has the characteristic that both types consume the same in the first period but type-2 

receive a strictIy higher amount in the second periodo In the complete information case, as in the multiplicative 

case, for low values of the mndom retum, consumption is constant and once the limit value is attained first period 

consumption decreases, second period consumption increases. In the second-best allocation, individuals are always 

bearing the risk of the short-term asset. Por low values of bl2 elasticities are very small. and once the limit value 

is attained, there is a negative elasticity of first period consumption with respect to bl2 , (which is higher for type­

1 than for type-2 agents) and a positive elasticity of the second period consumption (which is higher for type-2 

than for type-l agents). 

In both the complete and incomplete information cases, there is never liquidation of the long-term technology. 

This result differs from the one in Hellwig [11], as in his case the second best allocation may involve liquidation 

of the long-term asset. 

The limit value of the random retum is not very sensitive to those parameters that characterize the household side 

of the economy (risk-aversion, preference shock or the proportion of each type of agents), although it depends 

on the investment opportunities (the distribution function of the random retum (Ebu'o" ), the certain retum on 
IZ 

the long versus short-term investments (boJ' boz) or the liquidation value of the long-term asset (bl». 

Given this sensitivity analysis that was done with respect to the exogenous parameters of the model 

(multiplicative utility function), sorne conclusions may be drawn conceming the optimal contracts as well as 

investment policies chosen by a financial intermediary4: 

a." If the expected value of the random retum exceeds the relation of the long-term versus short-term riskless 
b 

retum (Eh]2 >~) this would result in implementing only the reinvestrnent solution (CASE B) as the 

optimal contraJl~4n this situadon the optimal initial investment choices would be k;J = 1 and k;;z = O, (notice 

that b =0 in equation [7]) that is, the intermediary would invest only in liquid assets and take advantage 
üm 

of the favourable reinvestment opportunities at T= 1, in order to provide for second period consumption. 

Banks holding only liquid securities would correspond to the proposal of 100% Reserve Banking or narrow 

banking that has been discussed currently in the literature. This proposal has been suggested in the US as 

a way to avoid the moral hazard problem inherent in deposit insurance and lender-of-Iast resort interventions 

although it would alter the chamcter of financial markets by forbidding the financing of illiquid loans by 

short-term deposits (Diamond and Dybvig [9]). 

b.- In the situation in which the expected value of the random retum is less than the re1ation of the long versus 
b 

short-term retum (Eb!2 < ~), then k;2 >0, however there is never liquidation of the long-term asset as the 
boJ 

4 As IIhown in Jacklin [12/ and is commented abo in the work 01 Hellwig [JJ /. the demand depollit contraer can be ased ro achieve 
the constrained social optimum. 
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level of the short-tenn investment is always high enough to provide for first period consumption 

(ko¡crit :!:k;l< 1). Ifthe rate ofretum on long-tenn investments is very high, then the optimal contract would 

result in giving individuals constant consumption in both periods,independently of bu. In this case, given 

the high rate of retum on the long-tenn asset, boz' it is not interesting to take advantage of the reinvestment 

opportunities at T= 1. 

The second-best allocation (demand deposit contract or non-traded solution) has been compared to the one 

achieved through an equity economy in which individuals could trade the assets directly (traded solution). It has 

been shown that if preferences are represented by a multiplicative utility function, the allocations in the traded 

and non-trade solutions coincide. However, if preferences are represented by an additive utility function, demand 

deposit contracts are shown to provide greater risk sharing that equity contracts. 

This result (and contrary to Hellwig's model) shows that financial intennediaries do provide a positive role in 

the economy. 
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Appendix A: Utility Functions 

A.- Multiplicative Utilitv Function: First Best 
(=SeconCl Best) ~lIocafion 

The first best allocation is obtained as a solution to the following problem: 

[1] 

tCn +(1-t)C12~bOlkOl+lJko2bl 


tc2¡ + (l-t)C22 =(1- IJ)bo2k02 +[ IJko2b¡ +bo1 k01 -tcn -(1-t)C12 ]b12 [2] 

Cu.:l:O 

InO 


Where: 

[3] 

and: 

[4] 

Given that any monotonic transformation of the utility function, represents the same preferences, the work will 
be done with: 

[5] 

For simplicity the following notation is used: el, = &i' Pi =el -&. 

The Kuhn~Tucker conditions are: 

41 
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11 1t­ - A¡t+tb¡lA% =0 
el! 

if Cu >0 [a] 

PI
t-+tAa=O 

Cll 
if Cll>O [b] 

11 
(1 -t)....!. - Al (1 - t) +(1 -t)bIZAZ =0 

C¡Z 

Pz(1-t)- +(I-t)Az=0 
cza 

kozblAI -koz(bl bl1-boJAl =0 

bo1kol + JlkoZb¡ -tcn -(I-t)cll =0 

tCll +(l-t)clZ -(1- v.)bozkQZ -[ JlkoZb¡ +bOlkol-tcu -(1-t)clz ]bu "O 

if cIZ>O 

if c22 >O 

if 11>0 

if Al >0 

VA'}, 

[c] 

[dj 

[e] 

[f] 

[g] 

[6] 

A.1.- First-step solution 

The following cases may be considered: 
============~F===========~ 

\1*=0 

In Case A the first constrainf is binding (no reinvestment of resources), whereas in Case B it is no longer binding. 

Condítions on the random retum for each case to hold will be derived. Case C involves liquidation of the long­

term asset (in the final solution this case never holds). 

A.1.1.- CASE A: (Al>O, \1*=0) 

The equations to be solved are: 

PI .al 
- - Al +b12 A2=0 [7] - +A2 =0 [8] 
Cn C21 

a2 [9] P2 [10]- - Al +b12 A2=0 -+A2 =0 
C12 Cn 

tCH + (1-t)C1Z -bo1koI =0 [11] tCZl +(l-t)c -bo2 ko2 =0 [12]
n 

Prom [7] and [9]: Prom [8] and {lO]: 

C1Z =Cll -
a2 [13] CZZ =C21 -

Jlz [14] 
al Jl1 

Prom [11] and [13]: Prom [12] and [14]: 

bolkolal bo2 ko2 Jl1
C = [15] C = [16] 

11 tal +(1-t)az Zl tJll+(l-t)Jlz 
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or substituting back in terms of 6 j' «- 6 j: 

The aggregate expected utility is given by: 

[18] 

In Case A it is assumed Al >0, from [7] and [8]: 

[19] 

Substituting C;l and C;l in the expression for Al' the following condition on bu for this case to hold is obtained: 

[20] 

[21] 

Substituting Al =~ -bu!!' and A2 = -!!. in the aboye expression, the condition on k 1' for this case to hold o
Cu C21 c21is obtained: 

[22] 

If the optimal level of the initial investment is aboye this limit value (k01crit) there is no liquidation in the 

optimal solution. 

A.1.2.- CA~E B: (A1=0, 11"=0) 

The F.O.C. in this case are: 
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[23] [24] 

[25] [26] 

[27] 

From [23] and [25]: From [24] and [26]: 

[28] [29] 

From [23] and [24]: 
[30] 

Substituting [28) and [29] in [27]: 

[31]b"k,,'bUb.,k", +.(1 - f) :: le" ·b,,[t· (1 - f) ~ lell 

Equations [30] and [31] yield: 

[32] 

which can again be expressed in terms of ~i' ex -~j: 

The aggregate expected utility is given by:. 

[34] 

[35] 
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A.1.3... CASE C: (.\1>0, 1l*>0) 

The equations to be solved are the [6]. 

From [6J[a] and [6][c]: From [6][b] and [6][d]: 

[36] [37] 

From [6J[a] and [6J[b] considering [6J[e]: 

[38] 

Eliminating Il in [6][0 and [6][g]: 

[39] 

Equations [36], [37] and [39]: 

b.,(k"b, +b., k.,) =['+(1 -') :: lb,e" +b.,[,. (1- fJ :; lell 
[40] 

[38] and [40] yield: 

[41] 

which can again be expressed in terms of a.i =6¡ and Pi=a. -6t : 

The aggregate eXpected utility is given by: 

[43] 

In this case, it is assumed Ilo >0, that is substituting C;1 and c;2 in the expression for Ilo , the condition onko1 

for this case to be satisfied is obtained: 

[44] 
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A.2.- Second-step solution: 

The second step is the solution to the expression: 

[45] 

[46] 

That is, if éJU·(c) >0 in the interval [bmlnAnax], the maximum is reached in ko1crit. The proof is given by:
éJkoJ 

[47] 

where: 

[48] 

éJC;2 boJ-b1 ac; boz bol-bl 
-=~ -- --=(eI-~ )--­
éJkol 2 el éJko1 2 b¡ el 

By assumption b1<bol and therefore, éJU·(c) >0 which implies k;J :r:.koJcrit, this means the optimal solution lalls 
éJko1 

always in Cases A and B, with no liquidation 01 the long-term asset. 

In the case of a multiplicative utility function, the first best and second best allocations coincide. 

The Incentive constraints are not binding, and therefore they are just checked for the optimal solution. 

The Incentive constraints should impose that the consumption bundle an agent obtains by saying the truth should 

be at least as large as what he obtains by lying and reinvesting in the backyard technology in the optimal way 

for him. 

The type-l agent that claims to be a type-2 would receive C¡2 and cn units, if he decides to reinvest his Cu in 

the backyard he sol ves the following problem: 

[49] 

s.t. 
el ~Cll [50] 

=Cn +(C12 -C¡)b1lcl 

with solution: 
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[51] 

Therefore, lC. should ímpose: 

[52] 

and similarly for type-2 agents. 

B.- Additive Utility Function: First Best allocation 

The fírst best allocation is obtained as a solution to the following problem: 

¡-y ¡-y 1 [ l-y ¡-y 1 } C¡l c2¡ C¡2 C22 [53]
max t--+p¡-- +(1-t)--+P2-­
~~ 11 1-y l-y l-y l-y 

s.t. 
tCll + (l-t)c¡2 sbo1 k01 + flko,b¡ 


tc,¡ +(1-t)C22 =(1- fl)bo2ko2 +[ flkOZb¡ +bolkoJ-tCll -(1-t)C12 ]b¡2 [54] 

cu:a O 

fl:aO 

The Kuhn-Tucker conditions are: 

tc¡'{ -'\lt+tbI2'\2"'0 if cu>O [a] 

tp¡ c;'{ +t'\2-0 if c2t >0 lb] 

(1 -t) c~I-'\l (1- t) +(1- t)bI2 '\2 =0 if e12 >O [e] 

[55]
(l-t)P2cJ +(I-t)'\2"'0 if cn>O [d] 


ko2bl '\l -ko2(b¡bI2 -b(2)i.2 =0 if 11>0 [e] 


tCH +(1-t)C12 -boIkol-l1k02bl"'O if '\1>0 (fJ 


tC21 +(1-t)en -(1 fl)b02 k02 - [j.lk02bl +bo1ko1 - tCH -(1-t)C12 ]b12 =0 V'\2 [g] 


8.1.- First-step solution: 

The following cases may be considered: 
============~============~ 

>0 

fl4=0 

In Case A the fírst constraint is binding whereas, in Case B, it is no longer binding, that means there ís 

reinvestment in the new short term asset (the return available at date 1 is not consumed completely in this 
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period). Conditions on the random return for each case to hold wilI be derived. Case C implies liquidation of the 

Iong-term asset (however, in the optimal solution this case never holds). 

8.1.1.- CASE A: 0'1>0) 

The equations to be solved are: 

[56] [57] 

[58] [59] 

[60] [61] 

Prom [56] and [58]: 
[62] 

Prom [57] and [59]: Prom [60] and [62]: 

[63] [64] 

Prom [61] and [63]: 

[65] 

That is: 

In Case A it is assumed Al >0, from [56] and [57]: 

[67] 

Substituting C¡l and C;l in the expression for Al' the following condition on b12 for this case to hold is obtained: 

b01k t+(l-t) [68]~ ~1 }-T 
b <~.¡__ 

OI 
""'-__-'-P_2-<--..... =b 

12 lim
PI bo2ko2 

Similarly it is assumed Il * =0, that means oL ~O 
OIL 
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Substituting Al =c;i - b12 PI c;i and AZ = - PI c;i in the above expression, the condition on k01 ' for this case to 
hold is obtained: 

[70] 

If the optimal level of the initial investment is above this limit value (k01crit) there is no liquidation in the 

optimal solution. 


B.1.2.- CASE B: (Al =0) 


'Ibe F.O.C. in this case are: 


[71] [72] 

[73] [74] 

[75] 

From [71] and [73]: From [72] and [74]: 

[76] [77] 

From [71] and [72]: From [77] and [78] in [75]: 

-1 
[78] 

c11 =[blzp¡) y CZI 
[79] 

'Ibat is: 

In Case B it is assumed Al =0, or equivalently: 
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[81] 

Substituting the optimal consumption levels, the following expression for the random return is obtained: 

[82] 

8.1.3.- CASE C: (Al >0, IL ">0) 

The equations to be solved are the [55]. 

Prom [55][a] and [55][c]: Prom [55][b] and [55][d]: 

[83] [84] 

Prom [55][a] and [55][b], considering [55][e]: 

[8S] 

Eliminating IL in [55][f] and [55][g]: 

[86] 

Substituting [83], [84] in [86]: 

[87] 

[85] and [87] yield: 

In this case, it is assumed IL 4 >0, that is substituting C;l and C;2 in the expression for IL 4. the condition onkoJ 

for this case to be satisfied is obtained: 
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[89] 

8.2.- Second-step solution: 

The second step is the solution to the expression: 

[90] 

[91] 

' 'f au·(C) O' th· 1 [b b ] th . . h d' k . Th f . . bThat IS. 1 --> m e mterva mIn' max. e maxtmum IS reac e In olcnt. e proo IS glven y:
éJkol 

!:I- • • -y ut:Z1 • -y ut:12 !:I_ -]au'()e [ • _y ut:u !:I_ '] [ !:I_ • • -y (1(;22 [92]--=t -+PIC21 - +(I-t) C1Z -+PZCZZ -Cn
éJkru akw a~l a~l akw 

where: -1 

&;1 b1y bo2(bol-b1)
- =---~---::;=--=--..:.---

l 

ak. t+(l-~[ :;F}';' +b:fp,~' [93] 

By assumption PI <bol and therefore. au·(c) >0 which implies k;l ~kolcrit. this means the optimal solutionfalls 
akol 

always in Cases A and B, with no liquidation of the long-term asset. 

c.- Additive Utility Function: Second Best 
allocation 

The Newton-Raphson technique is an iterative method, that at every step, it takes the Taylor's series as the 

solution of the equation root. This is mathematically described as follows: 
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!(X(fI) +h) =!(X(fI» +h d!(X(fI» =o [94] 
dx 

Therefore, the new value of the iterative solution is given by: 

[95] 

A criterio n to stop the iteration wíth a suitable solution would be: 

IX(II+1) - X(II) I< f: [96] 

In a more general way, the same method can be applied to a system of non-linear equations using the expression: 

[97] 

This method has been applied to the system of non-linear equations (the F.O.C corresponding to the second-best 

allocation), that are given by Equation [99]. 

where: 

-1 [98]g= 
Y 

In order to derive the numerical solutions, sorne computer programs have been written in Ms-Dos Qbasic. In the 

next pages sorne flow-charts ofthe programs are presented. The first two charts correspond to the additive utility 

function and the next three to the multiplicative one, the last flow-chart shows the distribution function that has 

been used. 

I1 



¡.::! T-1 K ]-Y -1 K 

tc;i. - 11t+tb1Z 1Z+C;i. 14 - p/ b1Z Cl1 +b12cn PTblz +[ CZ1 +b12cll ]-Y bU _ 
a Z Pz 15-0 ~ a a a 

~.::!-1 -y ­ ¡, - b y C + , .::! -1 
y -y 

tPt c'2! +t 1z +PI c'2i. 14 - P2y 12 21a b12Cn p/ b: +[ C21 +!IZCll ] ~2 15 =0 

-1 ]-Y }
(l-t)c;i-1 (I-t)+{1-t)b 1 +c-Y1 _ P~ bJczz +bfzcl2 ~I b~ [C:22+ bI2 CI2]-Y b121 12 2 12 S 1 b PI - + P - 1 =0b b 1 b 4 ~ 

-1 T-1 K ]-Y .::! T-1 + -y } 
(l-t)p2cJ +{1-t)11+p2cJ1s - b12 C:22 +bt2 C12 y b11 +[ C:22 b1ZC12 ] !!. 1 =0 

b PI b b b 4 

k02b111 -k02(b1bu -bo2)1z - 13 =0 

tCll +(1-t)CI2 -bolkol-l1ko2bl =0 

tCZ1 + (1 t)c:22 - (1 -11)bo2ko2 -[ I1 ko2b1 +bo1ko1 - tCll - (1 - t) C ]bI2 "0I2 

1-", =0 

]I-Y
-1 T-1 , l-y 

l-y l-y - b1Z C:22 +bI2CIZ [C:22 +b11CIZ ]
cH +PI C21 -PI b =0 

-1 ]1-Y
Cl-Y + P el-Y _ P ~l bJC21 +b~Cll [C1I +blZCll ]I-Y

12 2 22 [ 2 - Pl =0 a a 

if cll>O 

if CZt >0 

if C12 >0 

if c:22>O [99] 

if 11>0 

if 11>0 

V11 

if 13>0 

if 14>0 

if 15>0 
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Second best allocation 

Input Data 
t, pi, p2 bol, 002. bl. Eb11,b12mi.. bl2"", 

Definition of!he density funclion 
L = min (Eb11 - bllmin. b11max - Ebd; y_ = IIL 

Kol..,.. = O, OFmediaMax = O 

For kol = 0.01 to 0.99 step 0.01 OFmedia-O 

OFmax=O 

Detennine: .:l.area 
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CalculateconSlllilptlons (Case)' Newton- Rapshon tecniqueI 
I 

Input initial data for Ihe case Mat4 =Mat3 -[ J rl 
• Mat2 

Clj (v[l] 10 .(41), J.l v[~], A.I (.(6110 v(IO]) I 

.. 
I Matl =Jacobian =[1 J 

do ciclo until a salution is reached Mat2 = [ !li (x) J 
Mat3 [ Xi Jiteration n 

..__1Row=O Mat4 = [ Xi ) jteration n + II ..... 
I 

For Rest I to Num. oí restrieMns >---: 
.... 1 

nol v[Restl] <> O?... .... 
"" y 

Row-Row+ I I 
I 

I 

I First ciclo iteration? lyes .. IMat3 (Row) - First (Row) I 
A~ .... ,~ 

IMatZ (Row) =First (Row) .... ..... 
I .. ~ I Col-O I 
I 


,-----1 for Rest2 =1 to Num. of restricl10ns 
 >~ 

.... nol v[Rest2] <> O? ... I 

"" t 
I Col-Col + 1 I 

I 
Matl (Row, Col) - DerivateFirst lKow, Ull' I .... 1 .... ..... T 

Inverse: Matl inMat5 
Multiply: MatS • Matl in Mat6 
Substrae!: Mat3 - Mat6 in Mat4 
Check: Mat4 • Mat3 =Matrix of [O) 
Substrae!: Mat3 - Mat6 in Mat3 
Update: Cij, ,.., A.i <> Owilh values in Mat4 

I 
~ .... until Check =Matrix of [O] or Iterations > 300 I 


J 

I Iterations > 300 ... Solution does notIr" I .... converge I-; I 

Check Restrictions In. .. 
(Kunh - Tucker conditions) lsodsfics ... 

sodmes¡ 

I ~rPrint Results 
Cij (v(11 10 v[4]), 11 vl'l, A.I (vlól 10 v[IO)) 

t 
I ...I End 
I "" 
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MAIN PROGRAM 

STARTI I 


...OPT-CONS~BAS 
Optimal consumption levels and liquidation policy, 


for fixed values of the intial investment. 


(ko 1, ko2 considered exogenous) 


OPT-INVE.BAS 
Optimal initial investments levels. 

Maximization of the indirect utility function 

derived abo ve. 

OPT';CONS.BAS . 
Optimal consumption levels and liquidation policy, 

for the optimal values of the intial investment. 

ENDI I 
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Input Data 
t, Oh 02, a-Oh a-~, bol, bo2, bl, kol, k02, b12a, bl2b 

Calculation of: 
Clh ~¡, ell' en, f.l 
A.¡, A.2 
OF 

Calcularíon of: 
Cll' C2b ·e12, e22, f.l 
1..h 1..2 
OF 

Calculatíon of: 
ell, e2h e12, en. f.l 
1..1, 1..2 
OF 

C¡j>=O f.l>=0 
1..i > Oand associated constraint = O 
1..i = Oand associated constraint >= O 
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OPT·INVE.BAS 

Input Data 

t, li¡, li2, a.-lit> a.-li2, bol, b02, bl, Eb12.b12mí.. bl2max 
 I 

Definition ofthe density function 
L min ( Eb l2 - bl2min, bl2max - EbI2); Ybmed = IIL I 

I Forkol 0.01 to 0.99 step 0.01 1~ 

no ...
I kol < kolcrit I ... Calculation ofbUm I 

I 
AreaA: Areaofthe distribution function up to blim 1/'. 

~ 

-, 
Caleulation of: 	 Caleulation of: 

el ¡, e2.. e12' e22.1l CI .. C2 .. C12, C22.1l 
.4~ OF forCase C OF for Case A 

I 
OFtotal OF(C) 	 OFtotal =OF(A) . Area A I 

I 
,---J For bl2 = b'ím to Eb12 + L step db12 

I 
~ I ... 

." I l\area B: [f(b12) + f(b l2 + dbI2)] /2'" dbl2 I 
- I 

Calculation of: cij, Il
j .. 

OF for Case B with 
bl2 =bl2 +dbl2 /2 

I 
OFtotal =OFtotal + OF(B)*l\area B I 	 I 

.~ ------~ Iif OFtotal > OFmax yes .. 	 I OFmax =OFtotal: I 
I Kmax=koln~1r 	

~ 

.... 
..... 	 ~ 

Print Resultsl 
Kmax 

End I 
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CaseA .... 	 I .. CaseB 
• 
I 

AreaA 

diferential ofArea B 

L --______~--__--~__/­

0,900 


0,860 


0,820 
 OF 

0,780 
with the 

0,740 differentialofb'2 

0,700 , ..... 	 r-. ..... _ r-.-
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Appendix B: Elasticities 

A.- Multiplicative Utility function 

A.1.- First-Best (=Second-Best) solution (CASE B) 

Type-l=Type-2 elasticities at T=l 

[1] 

Type-l=Type-2 elasticities at T=2 

[2] 

B.- Additive Utility function 

B.1.- Elasticities in the First-Best solution (CASE B) 

Type-l=Type-2 elasticities at T=l: 

[3] 

Type-l=Type-2 elasticities at T=2: 

[4] 

61 
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B.2.- Elasticities in the Second-Best solution (CASE B) 

Type-l elasticity at T= 1 : 

[5] 

Type-2 elasticity at T=l: 

[6] 

Type-l elasticity at T=2: 

[7] 

Type-2 elasticity al T=2: 

[8] 

and the value of g = -1 
Y 
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