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Based on the work of Hellwig (1994), this paper characterizes the optimal allocation of
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Optimal allocation of interest rate risk
1.- Introduction

In a very general analysis, the problem of interest rate risk is one that concerns the relation between the maturity
structure of real assets in the economy and the time pattern of aggregate consumption. If there was perfect
maturity matching between the two, the individual’s exposure to interest rate risk would be reduced to zero.
Concerning this issue, two remarks were pointed out by Stiglitz [15]:

a.- An allocation involving perfect maturity matching, rules out the possibility that the individual’s consumption
plan may provide for a dependence on observed interest rates, in order to take advantage of changes in
relative intertemporal prices. For this reason, an allocation of this sort, with no response of consumption to
changes in technologies is unlikely to be efficient.

b.- The time pattern of aggregate consumption should be known from the beginning.

However, individuals may be uncertain about their future time preferences, they may be subject to a preference
shock which leads to a demand for liquidity and this gives a rationale for the existence of banks. One of the most
important functions of financial intermediaries is to transform highly illiquid assets into more liquid liability
payoffs through the demand deposit contract.

By performing this transformation service, banks are exposed to interest rate risk as they take in short term funds
to finance long term investments. The control of this interest rate risk is a matter of concern in banking
regulation.

The objective of this work is to characterize the optimal allocation of technology-induced interest rate risk in a
competitive system of financial intermediation, and its interdependence with the provision of liquidity.

The analysis will be carried out under different information assumptions. In the complete information case, it is
assumed the realization of the timing of the consumption needs is publicly observable; in the incomplete
information case it is private information of the consumer and therefore an allocation can only be implemented
if it is incentive compatible, that is, if it gives no consumer an incentive to lie or deviate about what he actually
wants to consume.

This paper of the thesis is based on the work of Hellwig [11], that considers a Diamond Dybvig type economy
(individuals have corner preferences), and in which there is stochastic (short-term) investment between dates 1

3




4 Optimal allocation of interest rate risk

and 2.

This work differs from Hellwig’s paper, in that it assumes individuals have smooth preferences, that is, they
derive utility from consumption in the two periods of their life.

The first motivation for this extension is to test the robustness of Hellwig’s model (under the simplifying and
somewhat misleading corner preference assumption).

In very general terms, the basic result holds in this extended framework. It is shown that as interest rate increases
the optimal rate of return of deposits withdrawn at date 1 decreases and that of deposits that remain until date
2 increases. The intuition is that given the high interest rate, it becomes advantegous to reinvest some of the
unused resources at date | in this new short term investment. Nevertheless, there are some minor differences with
respect to Hellwig’s results, that will be commented throughout the work.

As Jacklin [12] has noted, and is confirmed also-in the work of Hellwig, the Diamond Dybvig specification with
no aggregate uncertainty about preferences, has the feature that the ex-ante optimal allocation is also
implementable through trading, where shares of the investment portfolio (of short and long term assets) could
be traded at date 1 as with a mutual fund. This rules out any specialness on the side of a financial intermediary.

In a later paper, Jacklin [13] shows that unless there is both aggregate uncertainty about preferences and banks
assets are risky, with depositors asymmetrically informed about asset quality, then traded equity contracts can
provide the same services as demand deposit contracts, without the possibility of panics. The message of his
paper is that liquidity transformation can and should be provided using equity contracts where the underlying
assets may or not be risky, but where there is little or no potential for asymmetries of information about asset
quality.

The above papers considered models in which individuals have corner preferences, that are not considered a
realistic characterisation of individuals’ preferences.

With smooth preferences and no aggregate uncertainty about preferences, Jacklin [12] has shown that non traded
demand deposit contracts and traded equity are not welfare equivalent. In fact, demand deposits are shown to
provide greater risk sharing than equity shares.

Jacklin and Bhattacharya [2] also considered the relative degree of risk sharing provided by traded and non traded
contracts, in a framework in which bank assets are risky and individuals (with smooth preferences) are informed
concerning bank asset quality. The basic result is that deposit contracts tend to be better for financing low risk
assets.

A second motivation-for this extension is.to compare the traded and non traded solutions in this economy, with
smooth preferences and in which there exists a reinvestment opportunity from date 1 to date 2. It will be shown,
that in this framework, demand deposits and traded equity are not always welfare equivalent.

The structure of the paper is as follows: The basic framework of the model is presented in section 2. The first-
best and second-best allocations under complete and incomplete information respectively, are presented in
subsections 2.1 (preferences represented by a multiplicative utility function) and 2.2 (in the case of an additive
utility fuﬁcfibn). Subsection 2.3 shows elasticities of consumption with respect to the short-term random
technology. Section 3 compares the second-best allocation (non-traded solution) with an equity economy (traded
solution) in which individuals could hold the assets directly. Section 4 concludes the paper.
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- Description of the model

The hypothesis of the model are summarized as follows:

a.-

Three period economy: T =0, 1, 2

b.- One good per period

C.-

There are three investment opportunities:
i- A short-term asset at T=0 that yields a sure return b, at T=1

ii.- A long-term asset at T=0 that yields a sure return b , at T=2, premature liquidation of the asset is
feasible but the rate of return is only b <b,,

iii.~ A short-term asset at T=1 that yields a random return 512 at T=2. The random variable is known at
T=1 but not at T=0, at date 0, only the distribution function is known'.

On the household side of the economy, there is a continuum of unit mass of ex ante identical consumers
that are uncertain at T=0 about their consumption needs. They are subject at T=1 to a privately observed
uninsurable risk of being of type-1 with probability ¢ or of type-2 with probability 1-¢.

For comparative purposes, preferences will be represented by an additive utility function and by a
multiplicative one, which are of the form:

Additive utility function:

1-y 1-y

¢ G [1]
+
1y Py

U‘(Clr Cza pj) =

where: 0<p,<1, i=1, 2 (type), and p,>p,.

Multiplicative utility function:

Ulep, ¢y, 8,) =Crl";_bl 2]

where: 0<a <1, 0<8,<1, i=1, 2 (type), and 3 >3,.

As commented in the introduction, it is assumed a more general preference structure with respect to Hellwig
[11], as individuals derive utility from consumption in both periods.

Consumers are endowed with k units of the good at T=0 to be divided between short-term and long-term

investments.

! For simplicity, a triangular distribution for the random return is assumed
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f.- It is assumed no aggregate uncertainty, so that with probability one a fraction ¢ of consumers are of type-1
and a fraction 1-¢ of type-2.

The economy must deal with the following allocation problem:
a.- At T=0 the initial endowment must be divided between short and long term investments (k =k ,+k ;)

b.- At T=1 the fraction (O<pu<1) of the long-term investment that is liquidated must be determined, this may
depend on the observed value of b,

c.- At T=1 the returns from short-term assets and possibly liquidated long-term investments must be divided
between consumption and new short-term investments, this may also depend on the observed realization of

b12

The objective of this work is to characterize efficient allocations and to see how the initial uncertainty about the
random return affects consumption allocations as well as the initial investment choices. This analysis will be
carried out under the assumptions of complete and incomplete information respectively.

2.1.- Multiplicative Utility function
2.1.1.- First-best allocations under complete information

In the complete information case, it is assumed the type of the consumer is publicly observable and in this
situation, the efficient allocation will be the solution to the following problem:

max E[tU(E,,,&,)+(1-DUE ;6]
Z‘ll'k::l'knﬂ"-‘

stk +k =k,

6, +(1-¢é, b,k +bfik ,

ol™ol
18y, +(1-0)Cy, =b,, (1-fi) Ky, +512[bolkol +byfik,, 16, ~(1-0)&y] B3
bb;<b,,
izl
420
f20

The utility function is the one described above in Point d of Page 93. ¢,;, ¢, represents the prior plan indicating
the consumption bundle allocated to type-1 consumers and c,,, c,, the plan allocated to type-2 consumers. The
feasibility constraints are the second and third constraints respectively. The second one requires that aggregate
consumption at T=1 should be less or equal to aggregate resources per capita available from short-term
investments and possibly liquidated long-term ones. Similarly, the third constraint requires that aggregate
consumption at T=2 should be covered by non liquidated long-term investments plus short-term reinvestments
of unused resources at T=1, The fourth constraint states that at date 1, it is never desirable to liquidate long-term
investments in order to make room for new short-term ones.
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This maximization problem is solved as a three-step problem:

a.- In a first step, the initial investment choices, (k,, k,;) are considered as exogenous parameters and the

optimal consumption levels and liquidation policy are determined.

b.- In a second step the indirect utility function derived in the first step is maximized on k,, and k_,, and so
the optimal levels of the initial investments are obtained.

c.- Finally, the optimal levels of k,, and k , are substituted back into the first step problem, and the final
solution is reached. Although this last step is obvious, it has just been added to clarify how the numerical
solutions presented in the figures have been derived.

2.1.1.1.- First step: Obtimal consumption levels and liquidation policy.

In this step, b

1 Doz by by, kK, and t are considered as exogenous parameters and so the problem may
be rewritten:

max E [tU(cl 1€ +(1-0) U(cn,czz)]
Ck

stk +k,=k,

teyy +(1-0)cyysb, ik, +byuky,

1€y +(1-8)Cpy =b, (1-p) Ky + by B, Koy + by pkgy ey - (1-0) ¢y (4]

b,by,<b,,

psxl

cy>.0

p20
A, and A, are the Lagrange multipliers associated with the first and second resource balance constraints and A,
the multiplier associated with p.

In this first step, the solutions are given in Table L.

~

Table I

CASE C A,>0

CASEB A,=0

CASE A 1,>0

The consumption levels of cases A, B and C, the aggregate expected utilites (U ‘@ y® y*@y corresponding
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to each of these cases, the value of k_crit and b, are given in Appendix A. Figure 1 gives a graphical plot of
the frontiers for these three cases in a particular example.

It should be observed that for low exogenously fixed values of k,, (below a critical value k_crit) the optimal
solution is characterized by partial liquidation of the long-term technology (this makes sense, if the level ofk,
is very low, liquidation of the long-term asset is needed to provide for first period consumption). In this solution,
consumption is always constant, independently of the random return, (the multiplier associated with the first
resource constraint is positive and therefore, the constraint is binding). For high exogenously fixed values ofk,
(above k_crit), the optimal solution involves no liquidation of the long-term technology (given that the level ofk
is high enough to provide for first period consumption). In this case, for low values of the random return,
consumption is constant (up to a limit value by ) and once this limit is attained, first and second period
consumption become responsive to the random return (this is explained by the fact that in case B the multiplierA, =0
and therefore its corresponding constraint is no longer binding). As will be explained in more detail below, in
case B there is reinvestment of resources at date 1 in the new short-term technology.

2.1.1.2.- Second step: Optimal levels of the initial investments

The above optimization problem has been solved considering k,, and k, as exogenous parameters. The first-best
investment levels at date zero are obtained by dynamic programming, maximizing on k_, and k_, the indirect
utility function of the problem described above, i.e.:

[P= U DR )dby,+ [ U PR Ydby, Ak, 2k crit
bmln bl.hl

max| 5]
konrkoz f = U*Ofb,,)db,, if  k,,<k,crit
bmln
stk +k,=1
Lemma 1. The optimal k;, satisfies: k_crit <k, <1
where:
¢ ori b,[t&l +(1 —t)bﬂ 6]

o 8,7 -08;] b, ft(a-8) +(1-D (@8]

Proof: See Appendix A
2.1.1.3.- Third step: Final solution

The optimal levels of k_,,k,, are substituted back into the first-step problem and so the final solution is reached.

This solution to the first best problem gives the main result of the section, expressed by the proposition below:

Proposition 1. Let (k,;, k5 €y1» €135 €315 Cp5 K) be a solution to the first best problem and define:
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bk ft8, +(1-8))

by = [71
b,k {0 -[t8,+(1-0)8,]}
Then:  if b,<b,,  CASE A
* [ (a_b )
Cu=b.;1koz—t6 +(ll—t)6 02’=b"2k"2t(a-6 )+ :)( 3
1 2 P+(1-)(a-8;) [8]
. . (a-8))
c=b k —2%* =b 2 =0
1250y °1t61+(1-t)62 €22 °2k°2t(a-6,)+(l-t)(a—62) [
if b,2b, ~ CASEB
&=8, balkolélz +bokor &,=(a-8,) byroiBis +bosksz
. by,a o
9]
. . bk, b,+bk . b,k b,+b
612=62 ol 01512 02”02 522=(d-62) olol ;2 ozkaz ﬁa=0
12%

Proof: See Appendix A

Given that ko y is an endogenous variable, this characterization may seem awkward, but it is understood in terms

of dynamic programming considerations. As mentioned before, the maximization problem [3] has been solved
as a three step problem: In the first step, k,, and k, were considered as exogenous parameters and the optimal
consumption levels were obtained, in the second step, the optimal levels of the initial investments were derived,

maximizing on k , and k_, the indirect utility function of the first step problem:
g ol 02 Y

Given that this k,, is always above the critical value, k,crit, the optimal solution involves no liquidation
of the long-term asset. The consumption levels are the ones specified in Proposition 1. It is observed that
for low values of the random return, and up to a limit value, consumption is independent of 512, but once
this limit value is achieved, first period consumption decreases, second period consumption increases with
the random return. The explanation is that given the high value of the random return, it becomes
advantageous to reinvest some of the return from the short-term asset available at T'=1, in the new short-
term technology. As mentioned in Hellwig [11], from an ex-ante point of view, the uncertainty about the
random return is seen as a source of opportunities rather than a threat. While long-term investments are
earmarked for consumption at date 2, short-term investments are not necessarily earmarked for consumption
at date 1. The choice between consumption and investment depends on the rate of return 512 on the new
short-term investments.

2.1.2.- Second best allocations under incomplete information

In this case it is assumed that the realization of the timing of the consumption needs is private information of

the consumer. -

Given this information asymmetry, an allocation can only be implemented if it is incentive compatible, that is,
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if it gives no consumer an incentive to lie or deviate about what he actually wants to consume.

If a type-2 agent claimed to be a type-1 he would get ¢, units at T=1 and c,, units at T=2. If he reinvested
his ¢;, units in the backyard, in the optimal way for him, his optimal consumption levels in periods 1 and 2
would be the solution to the following problem:

8, a-8,
max i¢, ¢,

€16,
[10]
st c<c,
€,=(c; —cpbyy ¥y
The optimal solution to this problem yields:
8 -8
C*-{dz("zl*bnzcn)} zsc ._I(a—dz)(c2,+cubu)}° : [11}
e 1 6=
2% a

Incentive compatibility requires that the consumption bundle he receives if he is honest (c,,, ¢,,), should be at
least as large as what he gets by lying and reinvesting in the backyard; that is:

8, u-8, ‘61 ‘--02 [12]
CaCyp 2C€; €

where ¢,, ¢, were derived above.

The incentive constraints for type-1 agents would be obtained in a similar way. However, in solving for the
second-best allocation, it can be shown that the incentive compatibility constraints are never binding, and so they
need not be taken into account in the maximization problem, but only verify that they are satisfied for the optimal
solution, this yields the following:

In the case of a multiplicative utility function, the first-best solution is incentive compatible; that is, the first and
second-best solutions coincide.

2.1.2.1.- Numerical simulations

Numerical simulations have been derived for the input data of Table II:

Table I1

0.10 0.60 0.30 0.90 130 | 1.60 1.00 1.22 - 0.05

Figure 1 shows the first-step solution, for each exogenously-fixed value of k,, the solution to the second step
problem gives the optimal levels of the initial investments:

Table I1I

0.38 0.62
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The final solution to the second-best problem is shown in Figure 2. (Notice that k;,>kolcrit=0.30 , and so there
is no liquidation of the long-term asset).

As it is observed, for low values of b,,, these consumption levels are independent of the random return, but
once the limit value is attained (b, =1.16), first period consumption decreases with the random return, second
period increases, in this case it becomes advantageous to reinvest some of the return available at T=1 in the new
short term investments.

25
% mol N
£ b
8 e W DSOS
g1
]
s
..:.,1.0 -~ T
2 -
3 b CASE
‘E M
: 0.5 ..........................................................
0.0 T T T T —T T

i
0.2 0.3 04 0.6 0.6 0.7 0.8 0.9
Initial investment (ko1)

Figure 1.- First-step solution
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1.3

1.1

e
©

Consumption levels
o
9

ot
o

0.3 T ] T — T ]

I
0.8 0.9 1.0 1.1 1.2 1.3 1.4 15
Random return (b12)

Figure 2.- Optimal consumption levels in the first-best (second-best) allocation

2.1.2.2.- Sensitivity analysis

a.- Variations in the exogenous parameters

In order to see how the limit value of the random return (that distinguishes cases A and B of the zero-liquidation
solution) is affected by variations in other exogenous parameters of the model, a sensitivity analysis has been
done with respect to the expected value and the standard deviation of the random return (b,,), the proportion

b
of type-1 agents (#) and the relation of long-term versus short-term returns —22| as it is shown in Table IV.
ol

Table IV
E(b,,) 1.06 1.14 1.22 1.30
o, 0.03 0.05 0.07 0.08
12
' 0.00 0.10 0.60 1.00
b,,lb,, 1.10 1.23 1.38 1.5

All these cases are represented in Figure 3 to Figure 18.
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It can be observed that the limit value of the random return depends on the characteristics of the investment
opportunities that are considered:

i.- When the expected value of by, or the standard deviation of b,, increase, b, moves to the left, up
to a limit in which there may only be CASE B (reinvestment solution)

ii.- If the relation of the long-term versus short-term return increases, by, moves to the right, that is, given
the high value of the long-term return, it is not so interesting to take advantage of the reinvestment
opportunities, and so this limit value b, is higher.

iii.- Finally, variations in the proportion of type-1 agents do not have any significant effect on b,_, in
general, variations in parameters that correspond to the household side of the economy (risk-aversion
coefficient or preference shock) do not influence this limit value (See sensitivity analysis of the additive
utility function).

Figure 19 to Figure 22 show the optimal levels of the initial investment for each variation in the exogenous
parameters. The optimal level of k , is increasing in the expected value and the standard deviation of the random
return and in the proportion of type-1 agents, it is decreasing in the relation of long-term versus short-term

returns. It should be noticed that whenever Eby,>—22 the optimal level of k,,=1.
ol

Eb12 = 1.08 Eb12 = 1,14
L ] y

e T — 0.80383
08 09 1.0 1.1 12 13 14 18

Random retum (b12}

Eb12 = 1.22

Utiiity

T T T T
08 0.0 1.0 14 12 13 14 18
Random retum (®12)

Figure 3 to Figure 6.- Variation in the expected value of b,
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Figure 11 to Figure 14.- Variation in the proportion of type-1 agents (¢)
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2.2.- Additive Utility function
2.2.1.- First-best allocations under complete information

Similarly to the multiplicative case, the efficient allocation will be the solution to the following problem:

max E[tU(E,,, &) +(1-DUE &)l
'::0'kol-k02"‘-l
st k,+k, =k,

1), +(1-0 €13, ik, +by ik,
1y, + (1-085=b (1= )k, by, [Borkor + by Bk =tE) ~(1-0)E},]
b,b;;<b,,.

[13]

and where the utility function is the one described above in Point d of Page 5.
As before, this maximization problem is solved as a three-step problem:

2.2.1.1.- First step: Optimal consumption levels and liquidation policy.

In this step, b,;, b,,, b, by,, k,;, k,, are considered as exogenous parameters and so the problem may be
rewritten:

max E [tU(c1 pCa)+(1-0) U(clz,czz)]
CyP
st k,+k,=k,

0.

tc,, +(1-t)c,,<b, k,,+b, 1k,

ol ol
tey +(1-0)cyy =, (1-p)k , + blz[bol ko +bypk,-te, -(1 't)clz] [14]
b1b12<b02
pxl
cUZO
u20

A, and A, are the Lagrange multipliers associated with the first and second resource balance constraints and A,
the multiplier associated with p.

In this first step, the solutions are given in Table V.
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Table V

CASE C A,>0

CASE A 1,>0 CASE B ,=0

The consumption levels of cases A, B and C, the aggregate expected utilities (U*@, U*®, U*@) corresponding
to each of these cases, the value of k_,crit and b, are given in Appendix B. As in the multiplicative case, if
the exogenously fixed value of k, is below the critical one, the optimal solution involves partial liquidation of
the long-term asset, and consuption is independent of the short term random return. For values of k,, above the
critical one, there is never liquidation of long-term tecnology. In this case, for values of by, <by, consumption
is constant and once this limit is attained it becomes dependent on the random return.

2.2.1.2.- Second step: Optimal levels of the initial investments

The first-best investment levels at date zero are obtained by dynamic programming, maximizing on k,, andk,,
the indirect utility function of the problem described above, i.e.:

[”nm U*Rb,,)db,, + f bume U'Bfb ydb, if k,2k,crit
B by,

max| (15]

korrkoz fb - U*©fib,,)db,, if  k,<k,crit
stk +k,=1
Lemma 2. The optimal k,, satisfies: k_crit <k, <1
where:

11
b -ly
kalcrit= o2 P1 [ 1 6]
oY =
. b, b |t+(1 —t)[p—‘] b,y i
2

Proof: See Appendix B.

2.2.1.3.- Third step: Final solution

The optimal levels of k_,,k,, are substituted back into the first-step problem and so the final solution is reached.
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This solution to the first best problem gives the main result of the section, expressed by the proposition below:

Proposition 2. Let (k,, k,,, ¢y, €13 €51, €5, ) be a solution to the first best problem and define:

-1y

by kyt+(1 —t)[ﬁ [17]

b = P2 1

tm ™ b,k )

02702 Py

Then:  if b,<b,~ CASE A (4,>0)
. . b,k
ch:boIkoI Cy =°—02_1/7
P1
t+(1-8) —
[Pz] [18]
p -y
Cl‘l =bolkol 02.2=[_1] 02-1 ll. =0
P2
if b,2b,  CASEB (1,=0)
A
=ty 5;1=[P1b12] Yy

- 1

* b 1Ky 1012+ B3k, o P Yo o (191
1= BRI €= p_2 (231 [ =0
-0\ 2t e, p, T
P2

Proof: See Appendix A.

Proposition 2 characterizes the first best allocation under complete information. As in the multiplicative case, for
low values of the short term return (5‘2), consumption is independent of it (this is explained by the fact that in
Case A the multiplier associated with the first constraint is positive and therefore the constraint is binding), once
the limit value is attained, consumption becomes responsive to the random return, first period consumption
decreases with the random return and second period consumption increases with it (in Case B 4,=0 and
therefore its associated constraint is not binding). As already mentioned, the intuition is that given the high value
of the random return, it becomes advantegous to reinvest some of the return available at date 1 in this new short
term asset.

It should be observed that the first-best allocation involves no liquidation of the long-tenh technology, (u°=0),
as the optimal level of the initial investment, (k,,) is always above the critical level k crit.

2.2.1.4.- Numerical simulations

In order to provide a graphical plot of the optimal solution, some numerical simulations have been developed for
the input data given in Table VI
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Table VI

0.10 | 0.30 [ 0.60 1.50 1.30 1.60 1.00 1.22 - 0.05

Figure 23 illustrates the solution to the first step problem; there are three possible cases depending on the fixed
exogenous value of k , that is considered. The second step problem gives the optimal levels of the initial
investments by integration of the indirect utility function (See Figure 24); the solution to the second step problem
is given in Table VII:

Table VII

0.62 0.38

The optimal levels of the initial investments, for each value of the relative-risk aversion coefficient are shown
in Figure 25.

These optimal levels of k,, and k,, are substituted back into the first step solution to reach the final solution
shown in Figure 26. It should be observed that in this example the value of k_,crit=0.5677 <k, and so there is
no liquidation of the long-term asset.

Some remarks, concerning the solution to the first-best problem should be pointed out:

a.- For values of 512 smaller than the limit value b, _, the optimal consumption levels are the ones given by
CASE A, and are independent of the random return, otherwise the consumption levels would be given by
CASE B and depend on the value of 1312.

This result shows that first period optimal levels of consumption decrease (second period consumption
increase) as the random return 512 increases. (This is explained by the fact that in CASE A the Lagrange
multiplier A, is > 0 and therefore the corresponding resource balance constraint is satisfied with equality.
On the contrary, in CASE B A,=0 and the constraint is satisfied with strict inequality). More exactly, when
the random return from new short-term investments exceeds the critical value by it is desirable to reinvest
some of the return kb , available at T=1 in the new short-term investments, in order to take advantage of
this favourable opportunity.

b.- Premature liquidations of the long-term asset are always zero under the first-best solution.

c.- In general, the results that are obtained do not differ from the ones in Hellwig [11].
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2.2.1.5.- Sensitivity analysis

a.- Sensitivity with respect to y in the case of a large and a small preference shock.

Table VIII

0.4 0.5 0.5 1.5 2.0 2.5

Small shock

Large shock 03 0.6 0.5 L5 2.0 2.5

All these cases are represented in Figure 27 to Figure 34
There are some remarks to be pointéd out:

i.-  Comparison between a large and a small shock. It can be seen that in all figures (independently of risk
aversion), in the case of a small preference shock, first period consumption is always higher and the
difference between second period consumption, ¢,,-c,, is lower.

ii.- Comparison with respect to y. As the relative risk-aversion coefficient increases, first period
consumption diminishes, and second period consumption increases. This occurs both in the case of a
small and a large shock®. Also as y increases, the difference between €5,~C,, diminishes.

iii.- It should be noticed that the limit value of the random return b,, that distinguishes CASE A (4,>0)
from CASE B (A,=0) varies very slightly from one figure to the other.

2 This result confirms that of Breeden (1984), he demonstrates that for the class of utility functions with constant relative risk-aversion,
if ugents are sufficiently risk-averse, they may choose to reverse hedge, that is they choose to consume less now in order to invest more in

the future.



Large preference shack gamma w 0.5

ol T
09 1.0 1.1 1.2 13 14 15

T T T
09 1.0 11 1.2 13 14 15
Rendom retum (b12)

1.4 Lege p shock gamma = 2.0

T -2.188
'
1
‘
L] S PN
: 2100
i | 2
1
0l <. Cy
1
g : ~-2.182
08 ceon S [ S Ca
'
1}
! “{-2.164
08| vecmmeeneeneeniaeeanns o Ul
1
:
0.1 T T A— Y T -2.168
0.9 1.0 1.1 1.2 13 14 15
Random retum (®12)
reference shook
1.1 Large p T mm-u-h&
-1.605
-1.608
-1.007
-1.808
1,609
-1.700
(A T T T T T «1.701
09 1.0 14 1.2 13 14 15

Random retum (©12)

Figure 27 to Figure 34.- Variations in p and ¥y

Description of the model

Small preference shock gamma = 0.5

T T T 2
10 11 1.2 13 14 1.5

8478

-3.480

-3.482

Small preference shock gamma = 2.0

T T T T T -3.484
1.0 11 1.2 13 1.4 15

Random return (b12)

14

-2.040

-2.041

2.042

-2.043

2,044

01
09

T T T T
1.0 1.1 1.2 13 14 18
Random retum (b12)



http:l!:fIII=III.=!Nl::._-..:.1.II
http:ir==""T=~~---.----.----i.I.70

24 Optimal allocation of interest rate risk

2.2.2.- Second best allocations under incomplete information

In this case it is assumed that the realization of the timing of the consumption needs is private information of

the consumer.

Given this information asymmetry, an allocation can only be implemented if it is incentive compatible, that is,
if it gives no consumer an incentive to lie or deviate about what he actually wants to consume.

If a type-2 agent claimed to be a type-1 he would get c;; units at T=1 and c,, units at T=2.

If he reinvested his ¢,; units in the backyard, in the optimal way for him, his optimal consumption levels in
periods 1 and 2 would be the solution to the following problem:

v [20]
st ¢sc,
€p=(cy by +cy
The optimal solution to this problem yields:
* -y Catbiey o Cyeyby
cr=(Pobyg) D1y e O i Iy [21]
1+b;; "p, 1+by; " p,

Incentive compatibility requires that the consumption bundle he receives if he is honest (cy,, ¢,,), should be at
least as large as what he gets by lying and reinvesting in the backyard; that is:

1-y 1-y 177 1
2 N N W [22]

~

where c;, ¢, were derived above.
The incentive constraints for type-1 agents would be obtained in a similar way.

In the absence of any other backyard technology (for converting date 2 consumption into date 1) there is no other
incentive constraint to be considered.

Taking the incentive constraints into account, the second-best problem is a solution to the following one:
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max E[tU(c,1,6,) +(1-)U(C15)|

Epkorkoni
stk ok =k,
1€, +(1-0¢,<b,k, +b)jik,,
18y +(1-98y=b,,(1-B)k,, +512[b01 ko +by ik, 28, (1-0)¢)) [23]
bb,<b,,
pszl
€420
120

[24]
IC constraints

2.2.2.1.- Numerical simulations

The analytical treatment of the second-best solution is quite a tedious one, therefore numerical solutions have
been computed®. The working procedure is the same as for the first-best case, i.e., the problem is solved in three
steps.

There are some remarks to be pointed out:

a.- In the second-best allocation the incentive constraint for type-1 agents is binding, whereas that of type-2
agents is never binding.

b.- The second-best allocation does not involve liquidation of the long-term asset (see sensitivity analysis with
respect to b,). This result differs from Hellwig as in his case the second best allocation may involve
liquidation of the long-term technology. Although this result is based on numerical analysis, it seems that
similarly to the first best allocation, the utility function is always a continous and increasing function ink,
in Case C, and therefore, the optimal level of the initial investment will be at least k,crit. On the contrary,
in Hellwig’s case, the utility function (in the liquidation solution) is increasing in k_, but it is not continous
in the limit case k,crit, that distinguishes the liquidation and non-liquidation solutions, and therefore, the
optimal k,, may occur in the liquidation case, for values of k,, sufficiently close but below k_crit.

c.- The optimal solution has been derived for the input data of Table VI.

A graphical plot of the optimal solution is given by Figure 36. The optimal initial investment levels are shown

~

¥ The system of non-linear equations was solved by the Newton Raphson technique, with the use of a computer program, that is
explained in Appendix A.
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in Table IX.

Table IX

The optimal levels of the initial investments for each value of gamma are shown in Figure 35.
2.2.2.2.- Sensitivity analysis

a.- Sensitivity with respect to y in the case of a large and a small preference shock as was shown in
Table VIII, in the first-best case.

All these cases are represented in Figure 37 to Figure 44,
Some remarks should be pointed out:

i.- Comparison between a large and a small shock. It can be seen that in all figures (independently of risk
aversion), in the case of a small preference shock, the difference between first period consumption
¢,;~¢,;, and second period consumption, c,,-c,, is always lower with respect to the case of a large
shock.

ii.- Comparison with respect to y. As the relative risk-aversion coefficient increases, first period
consumption diminishes, and second period consumption increases. This occurs both in the case of a

small and a large shock. Also, as y increases the difference ¢;,~c,, and c¢y,~c,, also diminishes.

iii.- It should be noticed that the limit value of the random return b,, that distinguishes CASE A (1,>0)
from CASE B (A,=0) varies very slightly from one figure to the other.

b.- Sensitivity with respect to b,

A sensitivity analysis with respect to the liquidation value of the long-term asset, has been done. The following
values, given in Table X, for b, (b,<b,;) have been considered.

Table X

There is a unique solution shown in Figure 45 due to the fact that these variations do not affect the optimal

solution.
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Figure 45.- Variation in the liquidation value of the long-term asset.

It should be noticed that there is never liquidation of the long-term asset, as the optimal solutions are always in
cases A and B.

2.2.3.- Comparison between the first-best and the second-best allocations.

The above sections have characterized the first and second-best consumption allocations with respect to the
random return from the new short-term investment b,,.

A main feature of both solutions is that for low values of b,, up to a limit value (that coincides for the first and
second best) the first constraint is binding and so, there is no reinvestment, and once this limit is attained, the
Jirst constraint 'is no longer binding and there is reinvestment in the new short-term asset.

However, the difference between them is, that in the second-best allocation the optimal consumption levels are
always dependent on b,,, individuals are always bearing the risk of the random return, whereas in the first-best,
consumption is constant for low values of by,.

This difference is due to incentive compatibility reasons.

The optimal levels of the initial investments, are the same in the first and in the second-best.
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2.3.- Elasticities with respect to the short-term interim random
return

As already mentioned in the introduction, this work is concerned with the efficient allocation of technology-
induced interest rate risk in a competitive system of financial intermediation.

This section will study the dependence of the optimal consumption levels on the short-term interim random
return, in terms of elasticities, and for the additive and multiplicative utilities. The analytical expression for these

elasticities is given in Appendix B.

2.3.1.- Multiplicative utility function

Figure 46 gives the elasticity of first and second period consumption in the first best (=second best) allocation,

c.
where e‘.=—"'—12 i, j=1, 2.

12 €y
|
0.40
0.20
2 0.00 —*—— \
S
7]
ﬁ Q20| e
Case A «f— CaseB
_0'40 ................................................................
First period consumption
_o'eo .................... r— SRAESAREEEEEEE S e e o s sEEECICEREE N
1 : 1 1 1
1.0 11 1.2 13 14 1.6
e1=| 0.00 0.00 0.00 063 | -0.62 | -0.61 -0.69 | -0.58
e02X| 0.00 0.00 0.00 0.37 0.38 0.39 0.41 0.42

Random retumn (b12)
Figure 46.- First-best (Second-best) allocation

It can be seen, that in Case A, consumption is inelastic to the random return whereas in Case B there is a
negative elasticity of first period consumption and a positive elasticity of the second period one with respect to

the random return. .
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2.3.2.- Additive utility function

Figure 47 and Figure 48 show the elasticities of first and second period consumption in the first and second best

. . c 1
allocations respectively, and where e‘,j=ab—"—12 i, j=1,2.
2 S

=3
S

Elasticities
=]
8
b 3
i
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|
-0.40 . : . — .
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e2X| 0.00 0.00 0.00 0.40 0.42 0.43 0.44 0.45
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Figure 47.- First-best allocation

It can be observed in both figures that there is a negative elasticity of first period consumption and a positive
elasticity of the second period one, with respect to b,,.

In the first best case, and up to a limit value of the random return, consumption is inelastic to the random return
(Case A), but qnce the limit is attained, there is reinvestment in the new short-term asset and so first period

consumption (second period) diminishes (increases).

In the second best allocation, consumption is always responsive to the random return, although in Case A,
elasticities are very small. The elasticities of the consumption of type-2 do not differ from the first best case,
however those of type-1 agents do differ, in the first period there is negative elasticity with respect to b,, which
is higher with respect to the first-best and on the contrary, the elasticity of second peﬁod consumption is smaller.
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Figure 48.- Second-best allocation

2.3.3.- Comparison among them

A first remark to be made is that in the multiplicative case, the elasticities of consumption are always the same
Jor type-1 and type-2 agents, compared to the additive function (second best allocation).

It is also observed that there is a higher negative elasticity of first period consumption in the multiplicative case
with respect to the additive case and on the contrary, a smaller positive elasticity with respect to second period
consumption.

3.- Comparison with an Equity Economy

This section will compare the second best allocation (non-traded solution) to the competitive equilibrium in an
equity economy (traded solution). Suppose that at T'=1, there was a walrasian market for date 1 and date 2
consumption goods, in which consumers participate with endowments consisting of &,k , units of the date 1
good and b,k , units of the date 2 good. Let R,=1+r be some equilibrium interest rate at which individuals
are willing to trade good 1 in exchange for good 2, and so that for any agent j:

¢yj=b,1k,1 +B;

€y=byk,,~ Ry B, Jj=12

(11

where B, is the quantity demanded (or supplied) of good 1 in exchange for good 2 and with E B;=0 across

J
agents determining R,, subject to the caveat R,2b,,, the short term realized (storage) rate from T'=1 to T=2.
If storage (with R,=b,,) is done then Ozz sz-bolkol is the constraint overall.
i




Comparison with an Equity Economy

The individuals’ maximization problems are shown below:
3.1.- Multiplicative utility function

Type-1 problem at T=1
5, a-8
max {c“'c;l ’}
Bl
st ¢y, =b,k, +B,

€31 =bysk,y - Ry B,

with solution:

_8yb,yk,,+b, kR (D, - )
uR,

B,

Type-2 problem at T=1
max {cfzzc;_oz}
B,
st ¢ =b,k, +B,

€3 =b,5k,, R, B,

with solution:

8,b,0k,3+ b,k Ry (8, - @)
B,= o

A)-If R,2b,,

From the equilibrium condition E B, =0 the equilibrium interest rate is obtained, that is:

J
8,6,k +b, K, R(3, - @) 86,5k, + by Ky Ry (3, - @)
t +(1-1) =
R, R,

0

and the value of R; is:

- [t8, +(1-08,]b .k,
byrky [t @ -8 +(1-0)(a - 3))]

33

[26]

[27]

[28]

[29]

[30]

[31]

which coincides with the limit value of the random return that distinguishes Cases A and B in the non traded
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solution.

Substituting Rz' in the expressions for B, and B, yields:

B‘=bolkol(l_t)(61—62) B = bk, t(8,-3))

- 32
! 18, +(1-1)8, 218, +(1-13, [32]

It should be observed that By >0 and B, <0 as 3,>3,. Type-1 agents demand in the aggregate ¢B; units of
good 1, which are supplied by the type 2 agents in exchange for (1-f)R; B; units of good-2.

The optimal consumption levels for type-1 and type-2 agents would be:

. 3 . (x-8)
€117b,1k,; —— ¢ 21705k, l
18, +(1-98, Ha-8)+(1-H(a-3,)
: [33]
* - (a -62)
cio=b k ——2 — cr=b
127%01™01 tbl"'(l -t)bz 22 ozkoz t(a"bl)"'(l -t)(a—b,)
These allocations coincide with the ones obtained in the non traded solution (Case A).
B).- If b;,>R,
In this case the equilibrium interest rate must be Rz' =b,,, that is, the realized short term return.
The optimal levels of B; and B, would be:
B’ = 8,B,5kK,3+ b, ko1 b2 (8, ) B = 82b,0ker + by Koy b3 (8,-a) [34]
' ab, ab,
and therefore, the optimal consumption pattern for type-1 and type-2 agents is:
51-1=6l balkalblz +b02k02 52'1 =(a "61) balkalb12+bo 02
512“ a
(35]
&,=8, boikotP12 bk a &=(a-3,) byikorbra bk,
b, «

As before, the allocations obtained in the equity economy coincide with those achieved in the non traded solution.

Finally, it can be shown that in this case, the constraint Ozz Biz -b,k,, is always satisfied. The result of this
i

section is summarized by the following proposition.

Proposition 3. In the case in which preferences are represented by a multiplicative utility function, the allocations
obtained in the traded solution coincide with the ones achieved in the non traded one, for the investment cum

storage pattern described.

The following table shows numerical computations of the traded solution for the input data given by Table IL




Table XI

Comparison with an Equity Economy

1.00 1.17 0.404 -0.045 0.0
1.10 1.17 0.404 -0.045 0.0
1.17 1.17 0.404 -0.045 0.0
1.20 1.20 0.386 -0.054 -0.0098
1.30 1.30 0.344 -0.075 -0.0331
1.40 1.40 0.307 -0.093 -0.0531

3.2.- Additive utility function

35

Similarly to the multiplicative case, the individuals’ maximization problems are defined in the following ones:

Type-1 problem at T=1

with solution:

Type-2 problem at T=1

with solution:

1-y 1-y
n €31
max +p

1-y -y
st ¢y=b,k, +B,
€21=b,2k,; R B,

- (leZ)-l" b 2K,z = Byr K,

B, -1y
1+(p,R)™'R,

cn' e
max |—— + p,——
1-y 1-y
st ¢,=b,k, +B,

€2=b,2k,; R, B,

[36]

[37]

[38]
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- (PR) "3k 5 - By, , [39]
1+(p,R)™"'R,

B.

A)-If R,>b,,

From the equilibrium condition Z B/=0 , the following non-linear equation in R, is obtained, that is:
J

t (pIRZ)-”Y bozkoz _bolkol . (l -t) (szZ)-llvbDZkoz _boIkOI =o [40]
Ry R, L+02R)E,

The value of R'; is obtained as a solution to the above equation, and from it the values of Bl' and B; are
derived. These values are substituted in the expressions for €ypp €3 and ¢y, €,,, to calculate ex-ante expected
utility in this economy.

B).- If b,>R,
In this case the equilibrium interest rate is R; =b,,, the realized short term return.

The optimal levels of B; and B, are:

- (P61 " B3k s = by B’ = (P51 ™" byykyy ~byiky

0202 ol Vol
2 -
1+(p,by))"by,

B 1+(p,b,) "b
(P, by 12

and from them, the optimal consumption levels and the value of the expected utility are obtained.

The following table shows the numerical computations of the traded solution for the input data of Table VL.

Table XII
1.00 1.17 0.125 -0.014 0.0
1.10 1.17 0.125 -0.014 0.0
1.17 ] 1.17 0.125 -0.014 0.0
1.22 1.22 0.113 -0.023 -0.0092
1.23 1.23 0.102 -0.032 -0.0179
1.44 1.44 0.073 -0.052 -0.0397

In order to compare the expected utility obtained in the non traded solution with respect to the traded one, some
numerical examples have been computed. The input data are those corresponding to Table VI, with the variations
in the exogenous parameters shown from Figure 49 to Figure 51.'

It is observed that in all the examples the non-traded solution is always welfare superior, also, as the value of
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the random return increases, the difference in utility diminishes (an exception is the case of ¥ =0.5). This result
differs from Hellwig [11], as in his case, the traded and non-traded solutions coincide.

It may be concluded that if preferences are represented by an additive utility function, the allocations obtained
in the non-traded solution are welfare superior with respect to the ones achieved in the traded one.

,0.0012 0.0012

0.0011 | --
0.0011

BExpected utility non-traded minus traded sol
Expected utiity non-traded minus traded sol

0.0010
o'w'o ................................................................
0.0009 bo2 = 20
0.0008 T T T T T T T T 0.0008 T T T T T T T T T
088 1.03 108 113 118 123 128 133 138 143 088 103 108 {113 118 123 128 1933 138 143
Random retum (b12) Random retum (b12)

L ]
teos
[/ X011 F R R A EET:
t=01

Expected utiiity non-traded minua traded sol.
-]
8
]

g

T T T T T L T L}
0988 103 108 113 148 123 128 133 138 148
Random retum (b12)

Figure 49 to Figure 51.- Expected Utility of non-traded minus traded solution.

4.- Conclusions

This paper has studied the optimal allocation of technology-induced interest rate risk in a competitive system of
financial intermediation.

~

The study has been carried out under different information assumptions and in the case in which preferences are
represented by a multiplicative utility function and by an additive one, respectively.

The objective was to analyze how the initial uncertainty about the short-term interim random return affected
consumption as well as initial investment choices; it was shown that there is always a limit value of this random
return above which, it becomes advantageous to reinvest some of the return available at =1 (and therefore
not consume all of it) in the new short-term investment.

The optimal consumption levels in the first-best and second-best allocations depend on the random return, b12 .
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In the case in which preferences are represented by a multiplicative utility function the first and second-best
allocations coincide. It is observed that for low values of b,, consumption levels are independent of the random
return, (CASE A), but once a limit value is attained, consumption levels depend on it (CASE B), and there is
a negative elasticity of first period consumption with respect to b, and a positive elasticity of second period
consumption with respect to it. These elasticities are the same for each type of agent.

The first-best (=second-best) allocation involves no liquidation of the long-term asset.

In the case in which preferences are represented by an additive utility function the first-best allocation is never
incentive compatible, it has the characteristic that both types consume the same in the first period but type-2
receive a strictly higher amount in the second period. In the complete information case, as in the multiplicative
case, for low values of the random return, consumption is constant and once the limit value is attained first period
consumption decreases, second period consumption increases. In the second-best allocation, individuals are always
bearing the risk of the short-term asset. For low values of b,, elasticities are very small, and once the limit value
is attained, there is a negative elasticity of first period consumption with respect to b, ,, (which is higher for type-
1 than for type-2 agents) and a positive elasticity of the second period consumption (which is higher for type-2
than for type-1 agents).

In both the complete and incomplete information cases, there is never liquidation of the long-term technology.
This result differs from the one in Hellwig [11], as in his case the second best allocation may involve liquidation
of the long-term asset.

The limit value of the random return is not very sensitive to those parameters that characterize the household side
of the economy (risk-aversion, preference shock or the proportion of each type of agents), although it depends
on the investment opportunities (the distribution function of the random return (Eblz,o,,u) , the certain return on
the long versus short-term investments (b,,, b,,) or the liquidation value of the long-term asset (b))).

Given this sensitivity analysis that was done with respect to the exogenous parameters of the model
(multiplicative utility function), some conclusions may be drawn concerning the optimal contracts as well as
investment policies chosen by a financial intermediary*:

a.- If the expected value of the random return exceeds the relation of the long-term versus short-term riskless

return (Eb12>ﬁ) this would result in implementing only the reinvestment solution (CASE B) as the
optimal contract®ln this situation the optimal initial investment choices would be k,;=1 and k,,=0, (notice
that b, =0 in equation [7]) that is, the intermediary would invest only in liquid assets and take advantage
of the favourable reinvestment opportunities at T=1, in order to provide for second period consumption.
Banks holding only liquid securities would correspond to the proposal of 100% Reserve Banking or narrow
banking that has been discussed currently in the literature. This proposal has been suggested in the US as
a way to avoid the moral hazard problem inherent in deposit insurance and lender-of-last resort interventions
although it would alter the character of financial markets by forbidding the financing of illiquid loans by
short-term deposits (Diamond and Dybvig [9]).

b.- In the situation in which the expected value of the random return is less than the relation of the long versus

b . o
short-term return (Eb,,< 92, then k,,>0, however there is never liquidation of the long-term asset as the
ol

4 As shown in Jacklin [12] and is commented also in the work of Hellwig [11], the demand deposit contract can be used to achieve
the constrained social optimum.
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level of the short-term investment is always high enough to provide for first period consumption
(k,jcrit <k,;<1). If the rate of return on long-term investments is very high, then the optimal contract would
result in giving individuals constant consumption in both periods,independently of b,,. In this case, given
the high rate of return on the long-term asset, b ,, it is not interesting to take advantage of the reinvestment
opportunities at T=1.

The second-best allocation (demand deposit contract or non-traded solution) has been compared to the one
achieved through an equity economy in which individuals could trade the assets directly (traded solution). It has
been shown that if preferences are represented by a multiplicative utility function, the allocations in the traded
and non-trade solutions coincide. However, if preferences are represented by an additive utility function, demand
deposit contracts are shown to provide greater risk sharing that equity contracts.

This result (and contrary to Hellwig’s model) shows that financial intermediaries do provide a positive role in
the economy.
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Appendix A: Utility Functions

A.- Multiplicative Utilit

(=Second Best) allocation

The first best allocation is obtained as a solution to the following problem:

s.t.

Where:

and:

r::a:& { E['Ul("u’ €y Py)+(1-0) UZ(CIZ' €125 Pz)] }

tc, +(1-9cy,sb, k, +pk,b

ol Vol
tey +(1-0)cy =(1-w) bk, +[wk by +b, Ky ~tcy -(1 - ey, )by,
20
p20

3 «-y
Uleys €35 py)=c1 6,

O<a<l O<d<a i=1,2 §,<9,

Function: First Best

(1]

[2]

[3]

(4]

Given that any monotonic transformation of the utility function, represents the same preferences, the work will

be done with:

U(cl, 55 p,)=6ilncl+(a-6‘)lnc2

For simplicity the following notation is used: a,=8,, B,=a-9,

The Kuhn-Tucker conditions are:

41

(51
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o

:c—'-xlmbnxfo if ¢,,>0 [al

1

B, ,

t—+t1,=0 if c,>0 [5]

€
[

1-9=2-2,(1-9+(1-0b,1,=0 i

( )clz 1(1-0+(1-9b,2, if ¢;>0 [c] 161
B, , '

(-2 +(1-01,=0 if >0 [d]
22

kyyby Ay —kop(bybyy =B, 2, =0 if p>0 [e]

byrkop + kb -tey - (L -t)cy, =0 if 2,>0 IN

163y + (1 =0y~ (1 - W Bk ~[ 1 Ropby + by Ky ~t6y, ~(1 =Dy )by, =0 Vi, g

A.1.- First-step solution

The following cases may be considered:

A,>0 p*=0
A =0 p*=0
A,>0 p*>0

In Case A the first constraint is binding (no reinvestment of resources), whereas in Case B it is no longer binding.
Conditions on the random return for each case to hold will be derived. Case C involves liquidation of the long-
term asset (in the final solution this case never holds).

A.1.1.- CASE A: (3,50, 4*=0)

The equations to be solved are:

%1 +byh, =0 7] Piia- (8]
10124, 2
¢ n
%23 +byh, =0 [9] Psa,- [10]
- €12 Cn
te, +(1-fcy,-b, k=0 (11 tey +(1-0¢y-b,k ;=0 [12]
From [7] and [9]: From [8] and [10]:
a, B,
Cp=Cpy— [13] Cpp = Cpy —= [14]
12=n7y n=ug
From [11] and [13]: From [12] and [14]:
ey b, ka1 @y [15] byzks By [16]

“ta,+(1-Da, ETRTEOT
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or substituting back in terms of 8, a-4;:

The aggregate expected utility is given by:

«8 wa-8 «8, «a-5
U'(a)=tcu lcz1 el -t)clz 2022 2 [18]

In Case A it is assumed A,>0, from [7] and [8]:

a2 Pig [19]

‘i Cn

Substituting ¢;; and c,; in the expression for A, the following condition on by, for this case to hold is obtained:

b, b,gk,[t8,+(1-9)8,] -5, [20]
b,k {-[t3,+(1-13,]}
Similarly it is assumed p* =0, that means oL <0
op
L
3; <k,b, A~k (B by ~B,) Ay <O [21]

B,

o
Substituting A,=—>-b,,— and A,=- L} in the above expression, the condition on k,, for this case to hold
is obtained: 1 21 “n
b [t8,+(1-98,]

=k cri 22
k°lzbl[t6‘+(l—t)62]+ L[1(@=8)+(1-0(a-8))] borert 22l

If the optimal level of the initial investment is above this limit value (k_crit) there is no liquidation in the

optimal solution.

A.1.2.- CASE B: (1,=0, p*=0)

The F.O.C. in this case are:
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a
___l.+blzlz=0 [23] El_+12=0
c c

1 21

a
__2+bu,\2=0 [25] £2_+,\2=o
C12 Cx

tey+(1-0cy-byk, '[bazkaz -te;, -(1 ")clz]blz =0
From [23] and [25]: From [24] and [26]:

[28] € =€y _gz_
1

From [23] and [24]: & ¢, =B, b, c
1€217P 191261

Substituting [28] and [29] in [27]:

b ok - P, %2
26,2 bl ko =[2+(1 -t)E- €y +byy|t+(1 -t)-‘-!— ¢y
1

1

Equations [30] and [31] yield:

C..= b02k02+b12bolkal
i bn bnz
[tBy+(1-0)B,]—+—[ta;+(1-Da,]
&, o
bk ,+b.b .k
021=[51b12 0202 12%01" 0l

[£B1+ (1 -9 B,)by, + byt +(1-D a,]

which can again be expressed in terms of 3,, a -8,:

[24]

[26]

[27]

[29]

[30]

[31]

[32]

The aggregate expected utility is given by:.

() «8; wa-8 e8y «a-d,
U'()=tcll ey '+(1-Bcyp Py

2
22 G ke (18, (L -D8,]} =

In this case, the condition for the random retubm ,?b[zti'gleg (Erng 6n;Ju+(l ~0¢,, bk, yields:
02"0. 1 2 -

[34]

[35]
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A.1.3.- CASE C: (1,50, p*>0)

The equations to be solved are the [6).

From [6][a] and [6][c]: From [6][b] and [6][d]:
&, p
Cip=Cyy — [36] Cpp=Cpr —2 (371
12=n7 2= €21 B,
From [6][a] and [6][b] considering [6][e]:
B1boyc1 =2, b6y [38]
Eliminating p in [6]{f] and [6][g]:
by (kyy by + by k) =Bty + (1 =0)cyy ] +by[tcy +(1-1) ¢y [39]
Equations [36], [37] and [39]:
Y ) ) [40]
b, kb, +b, k) ={1+(1 t)_p" bycy +byft+(1-0)— ¢y,
1 «,
[38] and [40] yield:
ko2by + B,k B by (kp2hy +b,1%,1) [41]

‘n=o — ~ =7 ~ ~
[tpl+(1 t)pz]+[m,+(1 na,] b, [tpl+(1 t)pz]+[m,+(1 na,|

which can again be expressed in terms of «,=8, and B,=e -93,:

The aggregate expected utility is given by:

«8 -8 «8, +a-8
Ut(c)=tcu lC;lu l+(1 _t)clz 1022¢ 2 [43]

In this case, it is assumed p*>0, that is substituting ¢;, and c;, in the expression for p*, the condition onk,,
for this case to be satisfied is obtained:

bo< byb,[t3,+(1-1)3,]
* byby[t8, +(1-08,]+b,,b,[t(e -8)) +(1-1)(a -3)]

=k, crit [44]
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A.2.- Second-step solution:
The second step is the solution to the expression:

[P= U Bfib,ydby, + [ U"Ofbdby, ik, 2k crit
b b

max [45]
Bax 1ye
orksz fb...... U'©fb,)db,, if  k,<k,crit
Then, if O<k,, <k crit:
Bowe 146 . au© 46]
n::x fbm U™ fb)db,, fbm a*,, —,—fb;)db, =0 [

+(c)
That is, if 2V

>0 in the interval [b_, b, . 1, the maximum is reached in k_crit. The proof is given by:
ol .

+(@-8)cy 'y

*
u®© +8,-1 +a-8,0C]
=t[8,c;y ' €3

*8, xa-b, lacﬂl*_

Ok, o Ok [47]
«8,-1 tGGaCIZ «8, xa-8 |6€22
+(1-9)8,¢p, * 4+ (a-d ey *
( )[ @ kol (a 2) @ akol ]
where: . .
ﬂ=6 by, ~b 6c21=( )ﬁbol b,
1 8,
ok, o ok, b, [48]
dcy, -3 b, b, ) =(a-8.) _12 b,;-b,
ok, ° a ok, ¥ b,

. au*®
By assumption b, <b , and therefore,

>0 which implies k,; 2k crit, this means the optimal solution falls
ol
always in Cases A and B, with no liquidation of the long-term asset.

In the case of a multiplicative utility function, the first best and second best allocations coincide.
The Incentive constraints are not binding, and therefore they are just checked for the optimal solution.

The Incentive constraints should impose that the consumption bundle an agent obtains by saying the truth should
be at least as large as what he obtains by lying and reinvesting in the backyard technology in the optimal way
for him.

The type-1 agent that claims to be a type-2 would receive ¢, and c,, units, if he decides to reinvest his ¢, in
the backyard he solves the following problem:

max { cf‘c: % } [49]
1
s.t. ‘
- €sCp [50]

€y =Cp*(cy—c )by,

with solution:
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C,,+b.,C C..+h..C
. 22
1=8, 12 12“12 cz'=a-6l 227%2%12 [51]
b, o
12
Therefore, I.C. should impose:
8, a-8, LB sH 52
CuCn 26 G 1521

and similarly for type-2 agents.

B.- Additive Utility Function: First Best allocation

The first best allocation is obtained as a solution to the following problem:

1-y 1-y 1-y 1-y
max lt[ ‘1 +p, €21 ]+(1 -t)[ iz +p, ‘n ] } [53]
gk L[1-y T1-¥ I-y "“1-y
s.t.
tey +(1-0¢cy bk, +pkyb,
10y +(1-0)Cy =(1 =) byyk p +{wkyyby + b,k - ey, = (1 =0¢plby, [54]
cuzo
p20

The Kuhn-Tucker conditions are:

teg! Ay t+th,A,=0 if ¢,>0 [a]
1p,Cyf +th,=0 if ¢,,>0 [b]
(A-9¢y -4, A-0+(1-0)b, 4,=0 if ¢,>0 [c]
(1-9pyez +(1-1)1,=0 if €,>0 [d] [55]
k b, A, -k 3 (b,byy-b,) Ay =0 if p>0 [e]
te, +(1-0c,-b,k,,—nk,b =0 if 1,>0 A

10y +(1 =03 ~(1 =) byykyy = [ kyyby + Bk - tey ~(1-0)c, b, =0 VA, [g]

B.1.- First-step solution:

The following cases may be considered:

A.>0 =0
A, =0 pe=0
A,>0 p*>0

In Case A the first constraint is binding whereas, in Case B, it is no longer binding, that means there is
reinvestment in the new short term asset (the return available at date 1 is not consumed completely in this
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period). Conditions on the random return for each case to hold will be derived. Case C implies liquidation of the
long-term asset (however, in the optimal solution this case never holds).

B.1.1.- CASE A: (3,>0)

The equations to be solved are:

¢yt ~A; +bypA,=0 [S6] P12 *1,=0 (571
e Ay +bpd, =0 [58] P2Cn +1,=0 159
te,+(1-c,, "bo1k¢31 =0 [60] te, +(1-0)cyy-b,k ,=0 [61]
From [56] and [58]: . =c (62]
1%
From [57] and [59]: From [60] and [62]:
o -1
02?.:[__1] ' u [63] Cl‘l =C;2=bolkol 641
P2
From [61] and [63]: bk
C' - 0202
2 E! [65]
t+(1-n| 2|7
P2

That is:

In Case A it is assumed A,>0, from [56] and [57]:
Ay=ci) ~bp,p 6y >0 (671

Substituting ¢;; and ¢,, in the exprcséion for A, the following condition on by, for this case to hold is obtained:

il §
bolkollt+(1 ‘t)I&J ' ] [68]
b <i P2 =
12

b
f1 b2k, -

Similarly it is assumed p* =0, that means gll <0
13
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Ok b -k, (bb,-b)A [69]
a‘ 02D1A1 =Koy (b, by, -b,5) 4, <0

Substituting A, =c; -by,p,¢c,{ and A,=-p, c, in the above expression, the condition on k,,, for this case to
hold is obtained:

y-1
b.T p-llv
k,2 oz 71 =k_crit
0l ] g1 ol [70]
b,by "2+ (1 t)(&] +by' o
P2

If the optimal level of the initial investment is above this limit value (kcrit) there is no liquidation in the
optimal solution,

B.1.2.- CASE B: (3,-0)

The F.O.C. in this case are:

[71] [72]
[73] [74]
1y +(1 =0)€yy =byok,y - [b, K,y - 2ey, —(1 't)clz]blz =0 [75]
From [71] and [73]: From [72] and [74]:
o -1
cu=cy [76] . p—" e [77]
2
From [71] and [72]: From [77] and [78] in [75]:
1 (78] )= by 1k, by + bk,
= K R L e | 79
u=[Pup]" cu t+(1 —t)[fl T +by' o) e
P2

In Case B it is assumed A, =0, or equivalently:
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tes +(1-Dcy bk | [81]
Substituting the optimal consumption levels, the following expression for the random return is obtained:
4 -
Byky|t+(1-D) f—‘J v [82]
P2
b,>— b
2 pl bozkoz o
B.1.3.- CASE C. (A,>0, p*>0)
The equations to be solved are the [55].
From [55][a] and [55][c]: ) From [55][b] and [55][d]:
it}
€, =Cps (83] 022=[P—1] e, [84]
P2
From [55][a] and [55][b], considering [55][€]:
b -1
85
Cn = ——" ‘n %3]
P15,
Eliminating p in [55][f] and [55][g]:
boz[""u +(1-1) Clz] +bl[t621 +(1 _t)c22]=b02[bolkol +b, koZ] [86]
Substituting [83], [84] in [86]:
fl ¥
[87]

P
b,cyy +by |2+ (1 't)[‘p_lJ ! ‘Cn =bya[Borkos + by kyg
2

[85] and [87] yield:

In this case, it is assumed p*>0, that is substituting ¢;; and c;, in the expression for p*, the condition onk,,
for this case to be satisfied is obtained:
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X1
bozy p;lh .
k01< " ” =koICl1t [89]
b‘"bl-l/Y t+(]_ —t)[%—l-] ]+b02 p;I/Y
2

B.2.- Second-step solution:

The second step is the solution to the expression:

f " U Ofib ) db, "f = UPRb b, ik ak,rit
b b

max [901
kopky; fbmn U'(Qf(blZ)dblZ if ’Col<kolcrit
b
Then, if 0<k,, <k crit:
bm ‘(c) bm aUa(C)
max [ " U*©fb )db, - b,,)db,, =0 [91]
o fb...n.. Rb,)db,, fb,,,,,, ok, by db,,

«(c)
That is, if U

>0 in the interval [b_, ,b_, 1, the maximum is reached in k crit. The proof is given by:

ol
«© | . acl + s, v -y Oc;. « -y Oy
U= en ey = [+ (-0 L epyep 22] (921
ok, ok, ok, ok, ok,
where: a1
acy - b b,y(b,;-b))
ka1 o A 12 w2
t«l--ﬂ[—‘]' b' +b, py [93]
)
= *® -1 * " -1 *®
i _%en | baey [y 3 ok | o1[v %
ok, Sk, b, ok, ok, | Pz| Ok,

. au¢(¢)
By assumption b, <b,, and therefore,

>0 which implies k,; 2k, crit, this means the optimal solution falls
ol
always in Cases A and B, with no liquidation of the long-term asset.

C.- Additive Utility Function: Second Best
allocation

The Newton-Raphson technique is an iterative method, that at every step, it takes the Taylor’s series as the
solution of the equation root. This is mathematically described as follows:
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(ny
Fa® e By =f(x®) + b af™) g‘ ) -0 94}
X

Therefore, the new value of the iterative solution is given by:

207D <y 4 =g - _SED)

dfx®) 951
dx

A criterion to stop the iteration with a suitable solution would be:

|x®*D - x| < [96]

In a more general way, the same method can be applied to a system of non-linear equations using the expression:

I EAS B £ 20 Bl A€l il e} 1971

This method has been applied to the system of non-linear equations (the F.O.C corresponding to the second-best
allocation), that are given by Equation [99].

where:

-1 -1
-1 - -
g=Y"= a=l+bhp,'  b=1+b%p, [98]
Y
In order to derive the numerical solutions, some computer programs have been written in Ms-Dos Qbasic. In the
next pages some flow-charts of the programs are presented. The first two charts correspond to the additive utility
function and the next three to the multiplicative one, the last flow-chart shows the distribution function that has

been used.
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_— pZ —_—+

a
a1 B -1
-1 -1,y
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7 bz ¢ +bipeyy v b .
12 izn ) —
a a

-1

a -t)c,'} -A(1-9+( ‘t)blzl'z"'cl_zy As-

(A-8)p,cn +(1-DAy+p,c00 Ag-

Ko2by Ay ~kyy(bybyy ~b,) Ay -2, =0
te, +(1-0¢p,-b, k, - uk,b =0

tey +(1 =8¢y - (A - 1) byykyy ~ [k by +b, Ky —2c) - (1-2) €12]by, =0

1-p=0

1-y 1-y
n *Pfun TP

1-y 1-y
€12 *P6n2 ~|P

-1

Ty g
v b e +bpey,

1

-1

b
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7 b2 ¢ +bypey,
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a

1

I
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-1
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Second best allocation

Input Data
t, p1, p2 bol, bo2, bl, Ebyz b12uin, b12ma
|
Definition of the density function
L = min ( Eby; - byymin, bjymax - Eb;3); Yymea = 1/L

|
———JFOrY=71 10T Step Ay Kol =0, OFmediay;,, =0

— For kol = 0.01 to 0.99 step 0.01 OFmedia = 0

] For by; = bj;-L to b12+L in 40 steps

OFmax =0

Determine: Aarea

Case Calculate Solut,

OF>0Fmax ? [yes
Consumptions > OK ?

+no OFmax=0F
< ¢ :
|OFmedia=OFmedia + OFmax*Aarea |
—.___4—
| OFmedia > OFmediayx ?  Jyes OFmediap,,= OFmedia
*0 > Kol e = Kol
< < '
| Print optimal Kot (Kolmsx) |
Kol =Kol
— For b, = by,-L to b12+L >\ OFmax =0
<
[Case > Calculate N Solut.
Consumptions OK ?
+no OFmax=OF
< <
| Printby; & optimal consumptions |

<

<

End




Appendix B: Additive Utiiity Function. 2 Best

| Calculate consumptions (Case) - |

1
Input initial data for the case
Cij (v[11to vi4]), pvis), A (vf6] 10 v[10])

1
—| do ciclo until a solution is reached >

————— ForRest =1 to Num. of restrictions >

Row=Row+1

o[ ReSITST? |—<:]

Newton- Rapshon tecnique

Mat4 = Mat3 -[ J ' + Mat2

Matl = Jacobian ={J ]
Mat2 =g (x) ]

Mat3 =[ x; ] iteration n
Matd = [ x; ] iteration n + 1

i

——  for Rest2 = 1 to Num. of re

strictions >
| nof  ViRest2] >0 7 J_J

1

[Mat2 (Row) =First(Row) | —— @—— —
T

First ciclo iteration ? |yes Mat3 (Row) = First (Row) |
A Z ——-

Col=Col+1]

| Matl (Row, Col) = DerivateFirst (Row, Col) |
_<

Inverse: Matl in Mat5

Multiply: Mat5 . Mat2 in Mat6é

Substract: Mat3 - Mat6 in Mat4

Check: Mat4 - Mat3 = Matrix of [0]

Substract: Mat3 - Mat6 in Mat3

Update: Cij, u, Ai < 0 with values in Mat4

|
L —«—————{ until Check = Matrix of {0] or Iterations > 300 |

|  Iterations>300  Jyes

Solution does not
converge

W —>

Check Restrictions no I

(Kunh - Tucker conditions) [satisfies
satisfies

Print Results
Cij (V{110 v{4]), pvis), A (v6] 1o v{10])

A

End —-
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56 Optimal allocation of interest rate risk

MAIN PROGRAM

START

OPT-CONS.BAS:

Optimal consumption levels and liquidation pblicy,
for fixed values of the intial investment.
(ko1, ko2 considered exogenous)

OPT-INVE.BAS

Optimal initial investments levels.
Maximization of the indirect utility function
derived above.

OPT-CONS.BAS

Optimal consumption levels and liquidation policy, ‘
for the optimal values of the intial investment.

END




Appendix B: Additive Utility Function. 2 Best

| OPT-CONS.BAS |

t, 8, 8,, a-8,, a—5,, bol, bo2, bl, kol, ko2, bi2a, b12b

Input Data

“——‘—-———I}:or b|2 = bIZa to bl2b

for Case=AtoB

Select Case

[Case A: 4, >0 | |Case B: A, =0 | |Case C: A =0;u>0 |
Calculation of: Calculation of: Calculation of:
C11> €215 €42, C22, B €115 €215 C12; C22, B C11s Ca1s €125 €22, 1
Ay, Ay A Ay Aps A
OF OF OF
Check Restrictions
C;; >= 0 u>=0
Ai> 0 and associated constraint =0
Ai = 0 and associated constraint >=0

OFmax = OF
CaseMax = Case

!
Print Results
b, , ¢ ,OF
——

End
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OPT-INVE.BAS

Input Data

t, 8, 8, 0By, 6-5,, bol, bo2, b1, Eby; b12uin, b12max

Definition of the density function
L =min ( Eby, - bjymin, b;;max - Eb,,); Ypmed = I/L

1 Forkol=0.01t0 0.9 step 0.01 ?

yes

<

| kol <kolcrit I-LHCalculation of by, |

| Area A: Area of the distribution function up to by, |

Calculation of:

Ci1> €215 €125 C22, B
OF for Case C

|

[ OFtowi=0FC) |

Calculation of:

Ci1s €215 €12, C22 B
OF for Case A

[OFtotal = OF(A) - Area A ]

——-‘—I For blZ = blim to EblZ +L step dblz a

:

-«

# | AareaB: [f(by;) + f(byy+dbyp)]/2* dby, |

OF for Case B with
b]z = b]z + dbu /2

Calculation of : cij, p

| OFtotal = OFiotal + OF(B)*Aarea B |

l

\/

|if OFtotal > OFmax| yes

no

»_

OFmax = OFtotal:
Kmax = kol

Print Results
Kmax

End

<




Appendix B: Additive Utility Function. 2 Bast

CaseA €] CaseB

diferential of Area B

[

— > 1
bmin Ebmed l"lim I 2 bmnx
1
L r L /
] T
0,900 I
0,360 | !
0,820 1 OF /J
1
0,780 1 I OF associated
. with the
0,740 4 I differential of b,
0,700 e g e e
~ — vy — v o e s} 723 < v wy v -} 72 ™~ v o
S =2 = 2N e _I R S S S S
B N
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Appendix B: Elasticities
A.- Multiplicative Utility function

A.1.- First-Best (=Sebond-Best) solution (CASE B)

Type-1=Type-2 elasticities at T=1

e, =~ b,;k.; [1]
2 by ky by + bk,
Type-1=Type-2 elasticities at T=2
b,k
g, =1-— 22 __ [2]
. by1kp1b12* bz ko
B.- Additive Utility function
B.1.- Elasticities in the First-Best solution (CASE B)
Type-1=Type-2 elasticities at T=1:
=1y
) t+(1 —z)[ﬂ
e, PP SR B P Pz 3]
" Y bolkolb12+b02k02 Py iy
t+(1-t|—| +b,fp, W
P2
Type-1=Type-2 elasticities at T=2:
-1ty
bk t+(l—l.'){ﬂ
e, =l-— 2 _gly_ Pz [41
* bk b1y +borkyy o
t+(1-9| 22|  +b,fp, M
P2
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62 Optimal allocation of interest rate risk

B.2.- Elasticities in the Second-Best solution (CASE B)

Type-1 elasticity at T=1:

£ =1_1__b°2k°2__g 1-— 1 [5]
b Y bol kol b12 + boZkoZ 1+ blzl pl-lly
Type-2 elasticity at T=1:
e, -1 bata _fy 1 [6]
by Yy b,k,b,+b,k, 1+b,2p,

Type-1 elasticity at T=2:

. bk
e, =l-— o2 gy 1 7
. bol kol b12 + boZ koZ 1+ b]z‘ (Y 1 iy
Type-2 elasticity at T=2:
e =1__bﬂ#_g P S [8]
% by1ko1 b1y +Bok,y 1+b,%p, ™

and the value of g=1_—1
¥
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