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University Carlos III of Madrid

In partial fulfilment of the requirements for the degree of Doctor in Telematics
Engineering

DEPARTMENT OF TELEMATIC ENGINEERING

Leganés (Madrid), July 2019





Analysis, Characterization and Optimization of the Energy Efficiency on Softwarized Mobile

Platforms

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy

Prepared by

Carlos A. Donato Morales

Under the advice and supervision of

Dr. Pablo Serrano Yáñez-Mingot
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Resumen

La inminente 5a generación de sistemas móviles (5G) está a punto de revolucionar la in-

dustria, trayendo una nueva arquitectura orientada a los nuevos mercados verticales y servicios.

Debido a esto, el 5G Infrastructure Public Private Partnership (5G-PPP) ha especificado una lista

de Indicadores de Rendimiento Clave (KPI) que todo sistema 5G tiene que soportar, por ejemplo

incrementar por 1000 el volumen de datos, de 10 a 100 veces más dispositivos conectados o con-

sumos energéticos 10 veces inferiores. Con el fin de conseguir estos requisitos, se espera expandir

los despligues actuales usando mas Puntos de Acceso (PoA) incrementando ası́ su densidad con

múltiples tecnologı́as inalámbricas. Esta estrategia de despliegue masivo tiene una contrapartida

en la eficiencia energética, generando un conflicto con el KPI de reducir por 10 el consumo en-

ergético. En este contexto, la comunidad investigadora ha propuesto nuevos paradigmas para al-

canzar los requisitos impuestos para los sistemas 5G, siendo materializados en tecnologı́as como

Redes Definidas por Software (SDN) y Virtualización de Funciones de Red (NFV). Estos nuevos

paradigmas son el primer paso hacia la softwarización de los despliegues móviles, incorporando

nuevos grados de flexibilidad y reconfigurabilidad de la Red de Acceso Radio (RAN).

En esta tesis, presentamos primero un análisis detallado y caracterización de las redes móviles

softwarizadas. Consideramos el software como la base de la nueva generación de redes celulares

y, por lo tanto, analizaremos y caracterizaremos el impacto en la eficiencia energética de estos

sistemas. La primera meta de este trabajo es caracterizar las plataformas software disponibles

para Radios Definidas por Software (SDR), centrándonos en las dos soluciones principales de

código abierto: OpenAirInterface (OAI) y srsLTE. Como resultado, proveemos una metodologı́a

para analizar y caracterizar el rendimiento de estas soluciones en función del uso de la CPU,

rendimiento de red, compatibilidad y extensibilidad de dicho software. Una vez hemos entendido

qué rendimiento podemos esperar de este tipo de soluciones, estudiamos un prototipo SDR con-

struido con aceleración hardware, que emplea una plataformas basada en FPGA. Este prototipo

está diseñado para incluir capacidad de ser consciente de la energı́a, permiento al sistema ser

reconfigurado para minimizar la huella energética cuando sea posible. Con el fin de validar el

diseño de nuestro sistema, más tarde presentamos una plataforma para caracterizar la energı́a que

será empleada para medir experimentalmente el consumo energético de dispositivos reales. En

nuestro enfoque, realizamos dos tipos de análisis: a pequeña escala de tiempo y a gran escala de

tiempo. Por lo tanto, para validar nuestro entorno de medidas, caracterizamos a través de análisis
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numérico los algoritmos para la Adaptación de la Tasa (RA) en IEEE 802.11, para entonces com-

parar nuestros resultados teóricos con los experimentales. A continuación extendemos nuestro

análisis a la plataforma SDR acelerada por hardware previamente mencionada. Nuestros resul-

tados experimentales muestran que nuestra sistema puede en efecto reducir la huella energética

reconfigurando el despligue del sistema.

Entonces, la escala de tiempos es elevada y presentamos los esquemas para Recursos bajo

Demanda (RoD) en despliegues de red ultra-densos. Esta estrategia está basada en apagar/encen-

der dinámicamente los elementos que forman la red con el fin de reducir el total del consumo

energético. Por lo tanto, presentamos un modelo analı́tico en dos sabores, un modelo exacto que

predice el comportamiento del sistema con precisión pero con un alto coste computacional y uno

simplificado que es más ligero en complejidad mientras que mantiene la precisión. Nuestros re-

sultados muestran que estos esquemas pueden efectivamente mejorar la eficiencia energética de

los despliegues y mantener la Calidad de Servicio (QoS). Con el fin de probar la plausibilidad

de los esquemas RoD, presentamos un plataforma softwarizada que sigue el paradigma SDN,

OFTEN (OpenFlow framework for Traffic Engineering in mobile Network with energy aware-

ness). Nuestro diseño está basado en OpenFlow con funcionalidades para hacerlo consciente de

la energı́a. Finalmente, un prototipo real con esta plataforma es presentando, probando ası́ la

plausibilidad de los RoD en despligues reales.



Abstract

The upcoming 5th Generation of mobile systems (5G) is about to revolutionize the industry,

bringing a new architecture oriented to new vertical markets and services. Due to this, the 5G-PPP

has specified a list of Key Performance Indicator (KPI) that 5G systems need to support e.g. in-

creasing the 1000 times higher data volume, 10 to 100 times more connected devices or 10 times

lower power consumption. In order to achieve these requirements, it is expected to expand the

current deployments using more Points of Attachment (PoA) by increasing their density and by

using multiple wireless technologies. This massive deployment strategy triggers a side effect in

the energy efficiency though, generating a conflict with the “10 times lower power consumption”

KPI. In this context, the research community has proposed novel paradigms to achieve the im-

posed requirements for 5G systems, being materialized in technologies such as Software Defined

Networking (SDN) and Network Function Virtualization (NFV). These new paradigms are the

first step to softwarize the mobile network deployments, enabling new degrees of flexibility and

reconfigurability of the Radio Access Network (RAN).

In this thesis, we first present a detailed analysis and characterization of softwarized mobile

networking. We consider software as a basis for the next generation of cellular networks and

hence, we analyze and characterize the impact on the energy efficiency of these systems. The

first goal of this work is to characterize the available software platforms for Software Defined

Radio (SDR), focusing on the two main open source solutions: OAI and srsLTE. As result, we

provide a methodology to analyze and characterize the performance of these solutions in terms

of CPU usage, network performance, compatibility and extensibility of the software. Once we

have understood the expected performance for such platformsc, we study an SDR prototype built

with hardware acceleration, that employs a FPGA based platform. This prototype is designed

to include energy-awareness capabilites, allowing the system to be reconfigured to minimize the

energy footprint when possible. In order to validate our system design, we later present an energy

characterization platform that we will employ to experimentally measure the energy consumption

of real devices. In our approach, we perform two kind of analysis: at short time scale and large

time scale. Thus, to validate our approach in short time scale and the energy framework, we have

characterized though numerical analysis the Rate Adaptation (RA) algorithms in IEEE 802.11,

and then compare our theoretical results to the obtained ones through experimentation. Next

we extend our analysis to the hardware accelerated SDR prototype previously mentioned. Our
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experimental results show that our system can indeed reduce the energy footprint reconfiguring

the system deployment.

Then, the time scale of our analysis is elevated and we present Resource-on-Demand (RoD)

schemes for ultradense network deployments. This strategy is based on dynamically switch on/off

the elements that form the network to reduce the overall energy consumption. Hence, we present

a analytic model in two flavors, an exact model that accurately predicts the system behaviour

but high computational cost and a simplified one that is lighter in complexity while keeping the

accuracy. Our results show that these schemes can effectively enhance the energy efficiency of

the deployments and mantaining the Quality of Service (QoS). In order to prove the feasibility of

RoD, we present a softwarized platform that follows the SDN paradigm, the OFTEN (Open Flow

framework for Traffic Engineering in mobile Networks with energy awareness) framework. Our

design is based on OpenFlow with energy-awareness functionalities. Finally, a real prototype of

this framework is presented, proving the feasibility of the RoD in real deployments.
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Chapter 1

Introduction

The new revolution for businesses and industry is about to come with the arrival of the Indus-

try 4.0, mainly empowered by the upcoming 5th Generation of mobile systems (5G) and Internet

of Things (IoT) technologies where any kind of device will be meant to be connected. Due to

the increase of connected and heterogeneous devices, this new generation of networks will need

to face a massive growth of the data traffic (i.e., a seven-fold increase is expected in 2021 [1]),

while accommodating a wide range of new applications, opening new vertical markets and pro-

viding ubiquitous communication services to mobile users across a heterogeneous Radio Access

Network (RAN) infrastructure. To address the future network demands and services, the 5G

Infrastructure Public Private Partnership (5G-PPP) has specified a set of Key Performance Indi-

cator (KPI) [2] that the 5G systems are expected to support, e.g. the need of field trials, experi-

mentation or energy reduction.

In order to achieve the listed KPIs requirements from the 5G-PPP, the research community

has proposed new paradigms such as Network Function Virtualization (NFV), Software Defined

Networking (SDN) [3] and Multi-access Edge Computing (MEC) as the core of the new infras-

tructure. These new technologies rely on software as a first step to open, make more flexible,

scalable and reconfigurable cellular network infrastructure, a need for the upcoming services and

demand. As consequence of this, experimenting with the new platforms is more affordable than

ever, simplifying the hardware requirements to general purpose servers, leaving behind the ex-

pensive dedicated equipment [4].

1.1. Softwarization of Mobile Networks

The 3rd Generation Partnership Project (3GPP) has recently completed the specification of

the 5G architecture [5] and industry stakeholders are now focusing on finalizing the Release

16 documentation. This will lay the foundations for the cornerstone IMT-2020 standard of the

International Telecommunication Union (ITU), which will provide implementation guidelines

that will underpin the next generations of mobile broadband and IoT connectivity [6].

1
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Until recently, practical experimentation with cellular systems has been confined to the mobile

operators community, primarily due to equipment costs and radio frequency licensing require-

ments imposed by regulators. In contrast, academics have gained vast experience by experiment-

ing with technology that operates in unlicensed bands [7], such as IEEE 802.11 Wi-Fi and IEEE

802.15.4 ZigBee. Software Defined Radio (SDR) have further facilitated the implementation of

novel communications paradigms and medium access schemes (e.g., full-duplex Wi-Fi [8], cog-

nitive radio transceivers [9], and white spaces networking [10]), but the complexity of the “higher

layers” of the cellular protocol stack has precluded the development of complete systems by the

academic community. However, multiple affordable “open” comprehensive software platforms

have emerged over the past years [11, 12]. These put academics almost on par with their industry

counterparts, as they are now able to rapidly implement full protocol stacks and evaluate new cel-

lular technologies such as unlicensed LTE [12,13]. By joining forces in practical experimentation

efforts, potential exists to accelerate progress towards 5G standardization and keep up with end-

user demands. This ongoing quest towards flexibility and agile reconfiguration is one of the main

drivers of the current efforts to softwarize 5G networks. The pairing of SDN and NFV techniques

with programmable Hardware (HW) will play a critical role in the implementation of 5G systems

and dynamic hotspots in particular.

In this context, centralized processing and very dense deployments are envisioned as key en-

ablers of future 5G deployments. An example of this statement is SDN that over the last few

years has gained a lot of popularity. SDN decouples the system that makes decisions about where

traffic is sent (i.e., control plane) from the underlying system that forwards traffic to the selected

destination (i.e., data plane). With SDN, network administrators can program the behaviour of

the network in a centralised way, without requiring to access and configure each of the hardware

devices independently, which greatly simplifies overall network management. Additionally, there

is an imperative necessity to design 5G networks to be sustainable by bounding their energy con-

sumption in spite of their increased service provision [2]. Because of all the previous, flexibility

and reconfigurability need to be secured from conception and at different levels, starting from the

underlying HW elements and arriving up to the adaptive management of the network operation.

Therefore, flexibly distributing the communication functions across different network elements

and adopting enhanced cloud computing schemes allows to transversely optimize the use of in-

frastructure resources. Yet, selecting the optimal functional split is a complicated task which re-

quires carefully balancing the performance, delay and energy efficiency requirements [14]. From

an architectural point of view, this reconfigurability needs to be enabled by intelligently combin-

ing a cloudified multi-layer network, embracing both Cloud RAN (C-RAN) and MEC paradigms,

with dynamically operated small cells.

The centralization of resources is also a topic of elevated interest in the recent literature, with

special attention to C-RAN architectures and communication function splits. Coincidentally, in

this context the first prototyping efforts have been also identified, mostly based on pure SW im-

plementations and not accounting for energy-related aspects. Fig. 1.1 shows an example of a
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simplified virtual C-RAN deployment. Notably, the authors in [15] present an LTE-based testbed

to analyze a medium access control (MAC)-PHY split featuring an Ethernet fronthaul (i.e., favor-

ing the reuse of the existing packet based infrastructure). The analysis is conducted from a point

of view of incurred latencies. A closely related contribution is found in [16] where an LTE-based

prototype for flexible C-RAN deployments introduces an implementation of the Next Generation

Fronthaul Interface (NGFI), which aims at redefining the functional split between the Baseband

Unit (BBU) and the Remote Radio Head (RRH). In this respect the authors test two different

PHY-layer splits from a functional point of view, with the second one executing part of the digital

signal processing (DSP) functions on the RRH. A third relevant effort introduces the use of field

programmable gate array (FPGA) devices in a prototype that combines SW and HW accelerated

(HWA) functions to test different synchronization procedures in an Ethernet-based fronthaul [17].

Virtual BBU Pool

Figure 1.1: Simplified virtual C-RAN deployment

Numerous studies in the heterogeneous C-RAN network framework (i.e., combination of C-

RAN and small cells) can also be found in the literature. Frequently, is the authors of these

studies propose an energy-aware management of the network that consists in switching off those

parts which are not required given the current operative requirements. For instance, in [18] a

flexible C-RAN prototype for small cells that is based on commercial WiMAX BBUs is described.

The authors coarsely evaluate the energy savings obtained as a function of the number of BBUs

that are deactivated during low activity periods. In contrast, the work detailed in [19] presents

experimental energy measures from a similar traffic-aware C-RAN prototype based on standard

server (i.e., computing) nodes. Another relevant development is found in [20], where an LTE-

based C-RAN testbed featuring few HWA functions is described. No detailed power consumption

numbers are given, but rather a qualitative energy savings analysis is provided.

Finally, the use of FPGAs to implement HWA DSP functions in a SDR context has been con-

tinuously growing with the increased capacity of modern programmable devices [21, 22]. More-
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over the utilization of advanced digital design techniques to reduce the energy consumption of

FPGA implementations is a well-established topic [23–25]. Recently, the emergence of FPGA-

based system-on-chip (SoC) devices featuring an unprecedented combination of performance and

flexibility, has introduced the means to efficiently implement SDN systems [3,26,27] and opened

the door to the dynamic distribution of SW and HWA functions. Unfortunately, few contributions

are found in the literature in this regard, which are mainly comprised by partial FPGA imple-

mentations, such as the common public radio interface (CPRI)-based C-RAN systems presented

in [28,29]. Furthermore, a fixed function split is commonly adopted, as showcased in [30], where

the authors describe a simple C-RAN system featuring dynamic offloading of MAC functions onto

the Cloud and analyze the energy gains obtained by optimizing the number of active processors.

1.2. Energy Efficiency on Massive Heterogeneous Deployments

The solution to cope with this growing traffic demand and the specified KPIs (e.g. 1000x

higher mobile data volume per geographical area) necessarily entails using more Points of At-

tachment (PoA) such as IEEE 802.11 Access Point (AP) or LTE small cells, by increasing their

density and by using different wireless technologies, as well as offloading the network infras-

tructure (through e.g., device-to-device communication) [31]. Besides the standard static small

cell installations, dynamic hotspots are also required to provide on-demand services in localized

spaces and time periods (e.g., due to a large increase of capacity requirements). In such het-

erogeneous environment, optimizing the energy footprint is key to ensure the sustainability and

economic viability of small cells [32] (e.g., temporary deployments might be battery-powered)

and AP based on IEEE 802.11. Adapting the transmission strategy is also fundamental from a

practical point of view, since small cells need to coexist with other RAN infrastructure elements

(e.g., interferences, limited spectrum resources) and to efficiently serve varying traffic and qual-

ity of service (QoS) requirements. Consequently, beyond providing a rigid macro-cellular traffic

offloading scheme, small cells are principal facilitators of the intelligent distribution of commu-

nication functions with respect to the dynamically varying demands of the mobile users.

Besides the KPIs defined by 5G-PPP, there is a growing interest in the research literature to

investigate small cell deployments which are aimed at addressing the capacity requirements in

dense indoor and outdoor urban environments. In particular, many research efforts are focusing

on proposing methods to efficiently reduce the amount of energy drained by these network in-

stallations. The great majority of such analyzes are based on computer simulations. A relevant

example of the latter is found in [33] where a deployment of nomadic nodes is proposed (i.e.,

vehicle mounted battery-powered relays) in order to provide temporary demand-driven service

provisioning to mobile users. The authors analyze the energy saving gains obtained by dynam-

ically switching off those nomadic cells with no traffic demand. Similarly, the authors in [34]

analyze a database-aided scheme that enables the use of deep sleep modes (i.e., completely switch

off the transceiver HW) in clustered small cell deployments (e.g., train stations, shopping malls).
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Energy-saving gains up to 30% are observed in the simulated scenarios. A low-latency time di-

vision duplex (TDD)-based physical (PHY) air interface is proposed and modelled in [35] to be

used in 5G dense deployments. Focusing on the user equipment (UE), the authors argue that the

battery lifetime can be largely extended by using the proposed scheme instead of LTE.

The side effect of this strategy though, is the increase of the power consumed, which can

result in energy wastage if all the infrastructure is kept powered on when the load is low [36, 37].

Techniques to “green” the operation of the network include the design of more energy efficient

hardware [38], the optimization of the radio transmission chain [39], or the implementation of

Resource-on-Demand (RoD) strategies that dynamically adapt to the network load, activating

resources as it grows and deactivating them when it shrinks [40]. When the number of hotspots

and AP is increased to cope with the growth of the data demand, the total power consumption

of the network linearly rises. RoD schemes are relatively easy to deploy, as they do not require

the introduction of major changes in the network, and have been proposed to decrease the energy

consumption of base stations in “traditional” mobile networks (GSM, UMTS) [41, 42], as these

devices account for up to 60% of the total energy consumed [38]. Following [43], RoD policies

can be divided into static and dynamic, depending on whether the switching on/off of the devices

is scheduled or it follows real-time traffic patterns. In general, dynamic approaches are more

efficient than static solutions, although they require higher switching on/off rates. In [40], a

number of dynamic approaches are classified according to the wireless technology, performance

metric, reaction time of the algorithm and control scheme (centralized or distributed).

Regarding Wireless Local Area Network (WLAN), it has been shown that RoD techniques

can potentially provide substantial gains in energy savings when the number of considered APs

increases (gains of approx. 37%, or 26 kW, can be achieved for a university campus [44] or even

higher [45]). Several publications have shown the feasibility of RoD policies in campus networks

[46, 47]. The first analytical model for these techniques [48] focuses on the case of “clusters” of

APs covering the same area, and studies the impact of the strategy used to (de)activate APs on

parameters such as the energy savings and the switch-off rate of the devices. In [49], the work

is extended to account for the case when APs do not completely overlap their coverage areas.

Following this interest in RoD schemes for WLANs, new publications analyze the performance

when some assumptions are relaxed,1 e.g., in [50] authors analyse the impact of using an accurate

energy consumption model on performance.

When the energy efficiency of PoAs is dissected, it is generally assumed that optimality in

terms of throughput also implies optimality in terms of energy efficiency. However, some recent

work [51, 52] has shown that throughput maximisation does not result in energy efficiency max-

imisation, at least for 802.11n. However, we still lack a proper understanding of the causes behind

this “non-duality”, as it may be caused by the specific design of the algorithms studied, the extra

consumption caused by the complexity of MIMO techniques, or any other reason. In fact, it could

be an inherent trade-off given by the power consumption characteristics of 802.11 interfaces, and,

1In fact, in both [40] and [43] it is noted that current RoD policies are made using over-simplified models.



6 Introduction

if so, RA techniques should not be agnostic to this case.

There is also the added motivation of a limited energy supply (i.e., batteries), which has

triggered a relatively large amount of work on energy efficiency [41]. It turns out, though, that

energy efficiency and performance do not necessarily come hand in hand, as some recent research

has pointed out [53, 54], and that a criterion may be required to set a proper balance between

them.

1.3. Thesis Overview

In this work, we present an analysis and characterization of the energy efficiency on soft-

warized mobile networks, presenting first a set of existing technologies for experimentation with

mobile networking. Then, we introduce a high-accurate energy measurement framework that is

the core of energy anaysis for IEEE 802.11 and LTE systems. Later, we study other ways to

reduce energy consumption in ultradense scenarios considering RoD schemes, providing opti-

mal configurations for a trade-off between energy efficiency and network performance. Lastly,

we present a proof of concept that implements a novel SDN platform designed to support RoD

schemes and traffic engineering

The reminder of this thesis is organized as follows:

In Chapter 2, we provide a detailed analysis and methodology to evaluate different

software platforms for experimenting with real life LTE systems. Moreover, we study a

FPGA based prototype with energy-awareness and support for function split of the LTE

stack.

In Chapter 3, we analyze the energy efficiency of the current rate adaptation algo-

rithms for IEEE 802.11 based devices. We extend our analysis to the full softwarized LTE

prototype

In Chapter 4, we present an analytic model and performance evaluation of RoD

schemes. We also study the trade-offs between energy consumption and network perfor-

mances in ultradense PoA deployments

In Chapter 5, we introduce the OFTEN framework, an SDN architecture with support

for RoD schemes and traffic engineering for mobile networking. Then, a proof of concept is

shown in order to validate first the proposed architecture and second, the strategies based-on

RoD schemes.

In Chapter 6, the final remarks and conclusions from this thesis are presented.



Chapter 2

Analysis of Software Platforms for
Mobile Networking

The last generations of general purpose CPUs in combination with the reduction of the

Software Defined Radio (SDR) cards cost have made possible to experiment and play around

with radio stacks on relative cheap equipment. In the case of Long Term Evolution (LTE), several

open source projects have proved that it is possible to deploy a whole platform that emulates a real

network operator. In order to show this experimentation environment, we interconnect different

platforms (including open software solutions and consumer-grade user equipment) to build end-

to-end LTE systems, and assess their performance and adequacy towards 5G experimentation.

Despite the rise of radio implementations by means of full software stack1 for general purpose

CPUs, we also consider a hardware accelerated platform empowered by Field Programmable Gate

Array (FPGA) boards. In this chapter, we analyze and explore both means of experimentation and

prototyped on LTE platforms.

2.1. Full Software SDR solutions

We first focus on two popular solutions that provide a complete version of the protocol stack,

namely, OpenAirInterface (OAI) [11] and srsLTE [12].2 OAI is licensed under the OAI Public

License3 and implements a subset of the LTE Release 10 specification, including key elements

such as User Equipment (UE), Evolved Node B (eNB), Mobility Management Entity (MME),

Home Subscriber Server (HSS), Serving Gateway (S-GW), and PDN Gateway (P-GW) as shown

in Fig 2.1, thus supporting a complete solution. OAI runs over commodity Linux-based comput-

ing equipment (Intel x86 PC architectures) and can be used with popular radio frequency (RF)
1We denominate “full software implementation” to those radio stacks that fully run on the host PC which, it is the

case for the srsLTE framework and OAI
2We do not include openLTE (http://openlte.sourceforge.net/) in our analysis due to its limited

functionality (e.g., lack of a User Equipment software) and poor robustness, as compared with the other two solutions
considered.

3http://www.openairinterface.org/?page_id=698

7
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Figure 2.1: Simplified architecture of the LTE-EPC network

frontend equipment (e.g., National Instruments PXIe and Ettus USRP). srsLTE is licensed under

the GNU Affero General Public License4 and also runs over a similar set of commodity equip-

ment, providing implementations of the UE and eNB that are compliant with LTE Release 8.

In addition to being compatible with commercial Core Network (CN) software solutions such

as Amarisoft5 or open-source alternatives including the OpenAir-CN, as we demonstrate in this

section, it has also recently released an implementation of the same CN elements.6 Despite not

constituting complete 5G systems, these platforms have been employed successfully for the de-

velopment of several 5G technologies, including LTE unlicensed [12, 13], network slicing [55],

neutral host deployments, or RAN sharing [56].

While there is certain unwritten consensus about the features of each of these platforms,

namely, OAI being more computationally efficient than srsLTE, srsLTE’s code base being more

modular and easier to customize than OAI’s, there have been limited previous efforts to formally

analyze their performance, or their interoperability. Existing work in this space only profiles the

OAI components and measures its emulation execution time [57], or characterizes OAI’s base-

band processing times under a range of conditions [58]. In this work, we set the record straight

and carry out an extensive measurement campaign to characterize the performance of each plat-

form under a variety of settings (including different UEs, channel bandwidths, and propagation

conditions). We also analyze their interoperability, and discuss the degree of customization and

extensibility they allow. We believe our results provide valuable insights and best practices to

researchers and practitioners faced with deciding which platform(s) to consider for their experi-

mental work.

2.1.1. Testbed deployment, configuration, and validation

We first describe the hardware and software used in our testbed. Then, we detail the method-

ology we designed to set up the experiments. Lastly, we experimentally confirm that the per-
4https://github.com/srsLTE/srsLTE/blob/master/LICENSE
5https://www.amarisoft.com/
6We were not able to assess the performance with these elements though, as they were not available by the time we

ran our experiments.

https://github.com/srsLTE/srsLTE/blob/master/LICENSE
https://www.amarisoft.com/
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formance observed in wireless scenarios is practically the same as then when coaxial cables are

employed, which enables us to discard with confidence the impact of the transmission medium

on the results.7

2.1.1.1. Testbed and tools

We conduct all the experiments reported using an eNB built with the Ettus USRP-B210 radio

frontend boards connected using USB 3.0 to a Linux-based host computer that runs the different

software suites considered. The frontend’s up- and down-link interfaces are multiplexed on a

single 2dB dipole antenna through a RF Diplexer compatible with LTE band 7. The host PC

runs Ubunutu 16.04 and is equipped with an Intel Core i7-7700K CPU with four cores clocked

at 4.2GHz, which is powered by an ASUS Z270-A motherboard and 16GB of DDR4 memory.

We remark that a configuration with such high computing power is required to be able to run

effortlessly the different software solutions that we use, since baseband processing is particularly

CPU expensive.

Using the configuration described above, we conduct experiments with two types of eNB

software, namely:

OAI – version 0.6.1;

SRS – version 2.0-17.09 of the srsENB application.8

We use an additional computer to host the CN functionality. It runs the OpenAir-CN stack,

which implements an open-source Evolved Packet Core (EPC): MME, HSS, and P/S-GW mod-

ules. The computer providing eNB functionality through the different solutions considered is

connect to the CN using a Gigabit Ethernet link. Although we could virtually run both the Radio

Access Network (RAN) and CN stacks on the same physical equipment in order to reduce deploy-

ment costs, the configuration we adopt ensures the performance of the eNB will not be affected

by the computing load placed by the processes specific to the CN.

In terms of UEs, we experiment with three different solutions: two of these are commercial

of-the-shelf (COTS) equipment, and the third one is an SDR platform with open-source software

commonly used for cellular testing purposes. Precisely, we work with an LG Nexus 5 smart-

phone (denoted ‘Nexus’ throughout our experiments), a Huawei e3272-153 USB dongle (de-

noted ‘Huawei’), and respectively the Ettus USRP B210 board running the srsUE stack version

2.0-17.09 (denoted ‘srsUE’).9 To control the Nexus 5, we connect it through its USB interface to

7We note that we faced a number of performance issues (e.g., configuration-dependent incompatibilities, out-of-
memory crashes) during our experiments, which was was somehow expected as both open projects are actively evolv-
ing. We report the most relevant ones, for the software versions available at the time of testing, in Section 2.1.3.

8The srsLTE software suite comprises an eNB stack (srsENB) and the UE stack (srsUE). Hereafter, whenever there
is no scope for confusion, we use SRS and srsENB interchangeably to refer to the eNB software.

9Although an OAI UE implementation exits, we found that this was incompatible with the SRS eNB software.
Therefore, for a fair comparison of the eNB stacks, we do not report the performance of an OAI (eNB, UE) pair.
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a PC-Engines APU embedded computer,10 which runs the Android Debug Bridge software11 to

access the internal command console of the smartphone. We use the same APU device with the

Huawei dongle, which we supply with external power through an USB hub, to prevent power-

related instability issues. To be able to test with the commercial equipment considered, we fit the

smartphone and USB dongle with Sysmocom programmable SIM cards.12

During each experiment, only one UE is connected to the eNB. Furthermore, to avoid external

interference on our experiments, as well as our experiments interfering with external networks, we

placed our network setup within an RF shielding tent that is easy to set up and provides attenuation

in the -50 to -60dB range.13 Finally, to generate and receive traffic, we install iperf-compatible

software on the Nexus 5, the APU device hosting the Huawei dongle, and the computer running as

SDR UE. During our experiments, we transmit UDP traffic in the uplink or downlink directions,

and collect statistics at the receiver by sampling iperf’s output every second. We also measure

the total CPU usage of the SDR process at the eNB by executing the ps command and querying

the corresponding process ID.

2.1.1.2. Experiments set up and repeatability

For each combination of equipment and software we first devise a procedure for determining

the optimal configuration of the TX and RX gains at the eNB. This turned out to be required

to ensure the resolution of the ADC/DAC is not compromised or the receiver does not saturate.

This is because both implementations do not adjust the output power level of the boards, but

rather adjust signal sample amplitudes by scaling. The procedure consists of running very short

experiments (e.g., UDP traffic sessions up to 5 seconds) and measuring the throughput obtained

for each combination of gain. With these measurements we fill throughput matrices for the uplink

(UL) and downlink (DL) directions, as shown in Fig. 2.2, which illustrates the case when the eNB

runs srsENB over 10 MHz channels and the UE is the Huawei USB dongle connected with coaxial

cables to the eNB. Subsequently, we employ the gain pair that yields the highest throughput.

Depending on the direction of each experiment run, we may set different gain pairs. We note that

the implementation of the OAI stack is more accurate, since in most cases setting these hardware

gains to the maximum value led to highest throughput performance.

Before each repetition of a conducted test, we completely restart the network and measure the

time required to establish a working client connection, i.e., until the UE has Layer 3 connectivity

with the CN, as verified with ICMP echo request/reply. On the one hand this enables us to build

statistical significance for the performance metrics of interest. On the other hand, we also collect

data about the bootstrap instances that did not conclude successfully, in order to report on the

reliability of specific configurations (this will be done in Section 2.1.2.4). As such, we bootstrap

10http://www.pcengines.ch/apu.htm
11https://developer.android.com/studio/command-line/adb.html
12http://shop.sysmocom.de/products/sysmousim-sjs1
13http://www.globalemc.co.uk/shielded-tents.php

http://www.pcengines.ch/apu.htm
https://developer.android.com/studio/command-line/adb.html
http://shop.sysmocom.de/products/sysmousim-sjs1
http://www.globalemc.co.uk/shielded-tents.php
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Figure 2.2: Impact of eNB RX/TX gain on the throughput achievable in the uplink (left) and
downlink (right) directions. The eNB employs the srsENB stack over a 10MHz channel, the UE
is a Huawei USB dongle, and the propagation medium is coaxial cable.

experiments through a set of Bash scripts that involve the following steps:

1. Starting the CN and verifying that all processes are working and remain alive;

2. Starting the eNB and waiting for connection to the HSS;

3. Starting the UE, waiting until this finds the cell, and initiating the attachment process;

4. Waiting until the UE obtains an IP address and receives an ICMP echo reply from the traffic

generator running at the CN;

5. Measuring the achievable throughput by running five consecutive transmissions, each of 5 s

duration.

After the network has been setup successfully, we run 30 s long transmission experiments,

setting the offered close to the the maximum throughput measured at the last step of the bootstrap

procedure.

2.1.1.3. Validation

To confirm that the proposed evaluation methodology is reliable and not susceptible to inac-

curacies induced by practical signal attenuation and multipath propagation, we first compare the

throughput attainable in both directions (UL and DL) over 5 and 10 MHz channels with all the

possible SW/HW configurations, when the eNB and UE communicate over a wireless channel

(air) and over coaxial cables using SMC connectors (cable), respectively. Note that our validation

does not include experiments with the Nexus smartphone, as instrumenting wired connections

would have voided the device’s warranty. We illustrate the results of these preliminary experi-

ments in Fig. 2.3.
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Figure 2.3: Methodology validation: throughput performance over wireless vs. wired medium
for different eNB/UE combinations, channel bandwidths, and transmission directions.

In this figure, we plot the throughput performance over the air vs. that obtained over the wired

link. We investigate this for each direction, bandwidth, and eNB/UE configuration considered.

Observe that for each combination the results are highly correlated, with a Pearson correlation

coefficient of r = 0.993, which proves that the communication medium has practically no impact

on the achievable performance. Therefore, we are confident that the performance differences,

which we report in the next section for all the possible configurations, have other root.

2.1.2. Performance evaluation

In this section, we compare the performance in terms of throughput, CPU consumption, and

bootstrap time achievable with different eNB stacks (OAI vs srsENB), UEs (Nexus smartphone,

Huawei USB dongle, and srsUE with USRP SDR), transmission directions (UL/DL), and band-

width (5 and 10 MHz) configurations.

2.1.2.1. Throughput performance

We start our analysis by assessing the throughput performance when sending unidirectional

UDP traffic at the maximum rate achievable in the uplink (from the UE) and downlink (from the

eNB) directions. To this end, we use iperf to generate 1500 B frames from the corresponding

side (the UE in the former case, and the computer hosting the CN stack in the latter), and measure

the average throughput obtained every second, during 30 s trials. We plot in Fig. 2.4 the average

and 95-percent confidence intervals obtained following 20 repetitions of each test. In this figure

each direction is represented with a different color, and each subplot corresponds to a different
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configuration of the eNB (OAI or SRS) and BW used (5 MHz or 10 MHz). To add perspective,

we show with dashed lines the theoretical maximum throughput achievable in each case.

Figure 2.4: Throughput performance obtained with different eNB/UE configurations, UL/DL
directions, and 5/10 MHz bandwidths. Experiments repeated at a second location (2) with SRS, to
illustrate the sensitivity of this stack to PHY conditions. Shown with dashed line is the theoretical
maximum throughput in each case.

There are two key results worthwhile remarking in the figure, apart from the obvious perfor-

mance asymmetry in terms of the UL/DL rates, which is due to the fact that the DL operates with

64QAM and by default the UE transmits using 16QAM. Firstly, the type of UE used has practi-

cally no impact on the performance attainable with a given eNB, since in all cases the obtained

throughput is almost “flat.” We only note minor differences between the commercial equipment’s

performance (i.e., Nexus and Huawei) and that of the experimental platform (srsUE). In particu-

lar, for the case of {DL, 10 MHz} (top left subplot) we note a slight drop in performance when

srsUE is employed with OAI. We also note that initially the throughput attained with the (SRS,

Nexus) combination was lower. Our intuition is that the signal processing performed by the SRS

stack (both in the eNodeB and UE implementations which are built on the same library) is dif-

ferent from that of OAI. Specifically, in some scenarios an SRS receiver may underestimate the

channel quality, or produce a stream of samples that cannot be correctly decoded by a commercial

receiver. To confirm this we repeated these tests with the UE placed at a second location, where

the performance of SRS was at the same leveled with that of OAI – note the lighter bars labeled

with ”(2)” in the figure. As the eNB and UE use the same PHY stack with SRS, any mismatch is

less likely to occur.

Secondly, we note the UL rates are slightly smaller when the eNB runs the SRS stack instead

of OAI, something that is particularly noticeable for the 10 MHz configuration. As we analyze

next, this can be related to the CPU demanded by the srsENB solution when decoding traffic,
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particularly in the uplink direction. Despite these small variations, it is also worth remarking than

SRS and OAI provide a similar throughput performance, with the difference over all cases being

on average smaller than 7%.

2.1.2.2. CPU Usage

Next, we analyze the CPU usage of the cellular SW stack running at the eNB, aiming to

quantify the differences in terms of resources consumed by the OAI and SRS solutions. For

this purpose, we repeat the same experiments performed above, identifying the process ID cor-

responding to the stack of interest running at the eNB, then invoking the ps command every

second, to estimate the CPU load. We illustrate the average and 95% confidence intervals of the

CPU consumption for all combinations considered in Fig. 2.5a, where the subplots are arranged

as in the case of the previous experiments.

(a) CPU usage at the eNB
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(b) Distribution of the network bootstrap times

Figure 2.5: Experimental results for CPU consumption and network bootstrap times for different
combinations of the eNB/UE stacks, traffic direction and UEs

The figure confirms that the choice of UE has little impact on resource consumption, as all

results are very similar for a given configuration of eNB and bandwidth. It also confirms that

there is a notable difference in terms of CPU usage between the SRS and OAI stacks, the former

consuming more than four times more CPU cycles than the latter. These results suggest that

OAI is more suitable for future 5G scenarios, where computationally efficiency is of paramount

importance, such as Cloud RAN. For all configurations, the UL direction is slightly more CPU

demanding than the the DL (9.7% on average), which we conjecture is caused by the decoding

operations [59].

Finally, it is also worth observing the relative impact of the bandwidth configured on the CPU

consumption. Using a simple linear regression model, admittedly built with limited data, we can

roughly estimate that OAI may consume on average 2.5% CPU time for every additional MHz of

bandwidth, whilst exhibiting an “idling” cost of 9.1% CPU usage. Interestingly, SRS only appears

to add some 1.4% CPU consumption for every additional MHz of bandwidth, but the stack may
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demand 116.8% CPU time even when the channel bandwidth would be virtually zero.

2.1.2.3. Multiple UEs

We also investigate whether the number of UEs attached to the eNB stacks considered might

have an impact on the total throughput performance and CPU usage, due to additional processing

that may be required. At the same time, we wish to understand if the schedulers implemented

ensure the available resources are shared fairly among the UEs. Therefore, we deploy two UEs

that implement the srsUE stack and measure the metrics of interest with both eNBs. The obtained

results confirm that adding more clients does not impact on the total network throughput or the

CPU usage of neither of the eNB stacks. In addition, both UEs obtain equal throughput, which

confirms the accuracy of the schedulers. As a final note, following code inspection we find that

OAI implements a proportional fair scheduler, whilst srsENB employs round robin scheduling.

2.1.2.4. Network bootstrap and reliability

Next, we take a closer look at the time required to successfully bootstrap the network setup

and how often this process may fail on average. We argue this is particularly important to under-

stand the degree of experiment automation and repeatability achievable with these platforms. To

this end, based on the data collected prior to executing the previous experiments, we summarize

in Fig. 2.5b the distributions of the time elapsed until the UE has obtained an IP address and

thus has a Layer 3 connection (steps 2–4 described in Section 2.1.1.2) for the different eNB/UE

combinations, over a wireless channel. We resort to box and whisker plots for this purpose, the

central lines marking the medians, the boxes’ lower and upper margins the 25th and respectively

75th percentiles, and the whiskers the minimum and maximum values, excluding outliers, which

we plot separately (crosses).

Observe that the SRS stack displays the most deterministic behavior, especially with the

Huawei dongle and the SDR running srsUE. Indeed, if we exclude outliers, the bootstrap time

is constant and less than 22 s. With the same UE types, the OAI stack performs substantially

different. In particular, while the bootstrap time is fairly constant and close in magnitude to that

observed when the eNB runs the SRS stack (approximately 25 s median value) and the srsUE is

used, the range of bootstrap times is very large when the UE used is the USB dongle (Huawei).

In this case, the median is also higher than that measured in all the other setups and the 75th

percentile is more than 70 s. This is particularly inconvenient, since when experimenting for per-

formance assessment purposes, setting up the network takes more time than running the actual

traffic. In case the Nexus smartphone is used as UE, both eNB types exhibit similar statistics,

i.e., the median of the bootstrap time is approximately 28 s and the variations are relatively small

(less than 2 s between the 1st and 3rd quartiles). We leave an analysis of the reasons behind these

differences for future work.

We also count the number of times we detected a failure of the bootstrap procedure or during
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experiment runtime for each of the eNB/UE combinations considered, in the process of conduct-

ing a total of 80 successful experiments in each case, which we reported earlier (20 repetitions for

each direction and bandwidth setting). Interestingly, we find that the most reliable UE type is the

srsUE, as we never encountered any failures when connecting this to either of the eNB types used

and the network never failed during the experiments. We observed a similar behavior with the

USB dongle only when connecting to the OAI eNB stack, while with SRS we measured a 5.9%

failure rate. Here, failures occurred always after the network was formed successfully, during the

initial short tests that we run to assess the sustainable throughput (step 5 of the set up procedure

described earlier). In contrast, in the case of using the Nexus as UE, we observed a 7% failure

rate with OAI, as the network did not bootstrap altogether, and a 2.5% failure rate with SRS,, due

to network breakdown during experiments.

2.1.3. Extensibility and pitfalls

2.1.3.1. Customization and extensibility

We next comment on ability to customize and extend the functionality of the platforms con-

sidered. To this end, we focus on particular issues related to scheduling and Modulation and

Coding Scheme (MCS) assignment. To ensure that the two solutions studied are evaluated

under the same conditions and all comparisons are fair, we decided to focus on the follow-

ing customization: introduce the ability to fix during experiments the MCS assignments which

the eNB MAC scheduler enforces on UEs.14 Achieving this turned out to be fairly intuitive

with srsLTE, as we found the function responsible with scheduling and MCS assignment in

srsLTE/srsenb/src/mac/scheduler ue.cc, conveniently named sched ue and the

code easy to modify.

On the other hand, this task turned out to be less straightforward with OAI. The

source code that implements the MCS assignment operation is located within the folder

openairinterface5g/openair2/LAYER2/MAC/, where files related to MAC schedul-

ing and MCS index assignation are located. After thorough code inspection, we found

that all the files therein contain code that changes the MCS settings and unfortunately the

MCS index is also often hard coded in places. Following debugging, we inferred that

the files eNB scheduler ulsch.c and eNB scheduler dlsch.c contain the functions

schedule ulsch rnti and schedule dlsch rnti that assign the MCS in the UL and

DL directions. We developed a patch to enable dynamic MCS index assignment, though after

applying our patch we discovered that the MCS will be later computed and altered by other func-

tions. Therefore we were unable to achieve the desired behavior.

We believe the major differences between the OAI and srsLTE solutions in terms of exten-

sibility are because they follow different software designs. In particular, OAI was developed for

14In the case of srsENB, the software includes code to fix the MCS index at start-up through a configuration file, but
our aim is to dynamically change the MCS externally during execution time.
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mock LTE network deployment with a built-in emulator, while srsLTE was designed from scratch

as a framework to support building LTE applications on top, providing a set of common libraries,

tools, and examples for PHY layer implementation and experimentation. As a result, UE and eNB

apps were implemented on top of these libraries. From a software design perspective, srsLTE of-

fers a modular framework that re-factors the code of common LTE functions for any application,

whilst OAI is designed to offer an standalone eNB solution.

2.1.3.2. Software stack pitfalls

Working with open-source cellular stacks has important benefits, including speed of deploy-

ment, availability of documentation, affordable cost, and ability to extend functionality. Unfor-

tunately, such solutions come with their own set of issues, some of which are more difficult to

spot and which can hinder the reproducibility of results. Here we highlight the main pitfalls we

identified while experimenting with the OAI and SRS tools:

Bandwidth incompatibilities: While SRS supports operation with all the bandwidth

settings specified by 3GPP, i.e., 1.4, 3, 5, 10, 15, and 20 MHz, OAI does not work with the

1.4, 3 and 15 MHz configurations. In addition, we find that the srsENB implementation (at

least the Sept. 2017 version that we tested) does not work reliably with 20MHz channels.

Therefore interoperability between eNBs and UEs running different stacks is limited to

only two bandwidth settings, i.e., 5 and 10MHz.

Interconnection with CN: the srsENB implementation employs the same subnet-

work for both user plane (S1-U interface) and control plane (S1-C interface). On the other

hand, the OpenAir-CN can be configured to use two different subnetworks in order to dis-

tinguish between the two planes; if such configuration is enabled, the srsENB stack will not

work.

Problematic queue management: We note that sending traffic in the downlink direc-

tion, at a rate that exceeds the maximum throughput supported on the channel, makes OAI

crash. Following code inspection, we find that the different threads composing the software

do not implement any packing dropping strategy at the queues/lists used for communica-

tion, which leads to out-of-memory issues. We have fixed this bug and are proposing a

patch to the OAI developers community.

2.2. Hardware Accelerated SDR solutions

We have analyzed two full software implementations of the LTE stack that include the func-

tionality of the eNB and UE. These software frameworks are designed and developed to be exe-

cuted on general purpose CPUs allowing the virtualization of the whole stack. As we have seen

in the previous section, OAI and srsLTE run in the host PC. We next present a SDR prototype
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with hardware acceleration, empowered using a FPGA board. This prototype is an engineering

challenge since the implementation of the functionalities in Hardware (HW) is not always an easy

task. Often it requires an additional effort at the moment of debugging the code but with benefits

in terms on the computational tasks: these are much faster when comparing to full software solu-

tions. In this section, we introduce an alternative platform for LTE experimentation employing a

FPGA-based solution with energy-awareness design. The results obtained with this platform are

shown in Chapter 3. Additionally, we validate the energy-awareness design characterizing this

prototype and studying the energy efficiency for the Wireless Communication Parameters (WCP)

and configurations.

2.2.1. System description

As described in [60,61], there are many different function partitioning possibilities. However,

our work considers three specially relevant Network Configurations (NETCFG), as shown in

Figure 2.6, each one presenting a different degree of communication function offloading:

1. The first considered partition has all L1 functions executed locally at the HeNB, whereas

all higher layer related processing is offloaded onto the Cloud. From this point onwards,

this particular function split will be referred to as NETCFG1.

2. As in the previous case, the PHY-layer is executed locally at the HeNB. Nevertheless, in

this second configuration, or NETCFG2, a MEC-like approach is adopted. That is, the

remaining protocol stack functions will be virtualized as a specialized type of application

in a server located in the vicinity of the small cell (i.e., MEC-like node).

3. NETCFG3 considers the typical C-RAN setup, where the HeNB will act as a Remote Radio

Head (RRH), while all protocol stack functions are placed onto the Cloud.

It is important to underline that, while the main focus of the proposed HeNB reconfigurations

is set on the energy efficiency, this flexibility could also be exploited to satisfy a wide range of

KPIs in different operative 5G scenarios (e.g., latency, availability or performance among oth-

ers). The prototype combines a fully SW-based LTE emulator, implementing L2 and above stack

functions, with a HWA DL PHY-layer based on a custom HW description language (HDL) real-

ization15. This enables both the real-time operation and run-time reconfiguration of the hotspot.

2.2.2. System architecture

A real-time reconfigurable hotspot prototype has been developed with the objective to facili-

tate a realistic yet simple validation of the proposed concept described in the previous section. To

make this possible, the prototype flexibly combines HWA and SW communication functions, by

using standard computers and HW components. Regarding the implementation of HWA blocks,

15The uplink implementation is kept in the SW domain, making use of the native LENA functionalities.
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(a) NETCFG1 (b) NETCFG2 (c) NETCFG3

Figure 2.6: Considered NETCFGs and their related traffic loads.

the target platform is an FPGA-based SoC device: The latter embeds an integrated processing

system (PS) and programmable logic (PL) on a single die, providing likewise high flexibility (i.e.,

run-time reconfigurability) and computational capacity (i.e., massive parallelism).

Focusing on the goal of obtaining an empirical assessment of the energy savings attainable

by reconfiguring the system, the prototype has been kept as simple as possible. Hence, in the

presented work the demonstrator includes a single LTE-based HeNB, which uses different HW

elements to execute its functions, depending on the selected NETCFG, and a single UE16. More-

over the required evolved packet core (EPC) functionalities are also included, jointly with an

emulated Internet, to complete the system implementation.

The presented scenario assumes that high-speed communication links are available where

required, in order to communicate the small cell with the Cloud and/or MEC-like nodes. As it

can be observed in Figure 2.6, depending on the adopted NETCFG, the communication links

between the different 5G nodes present quite diverse latency and data-rate requirements [62]. In

more detail, the interconnection of the HeNB to the Cloud or to the MEC-like node has stringent

traffic requirements, which can be fulfilled using an ideal transport channel (i.e., 250 µs of one-

way latency and 2.5 Gbps for supporting a standardized LTE 2x2 20 MHz scheme) and the CPRI

specification. The interconnection of the MAC with the PHY-layer (i.e., L2-L1 interface) poses

more relaxed needs, that can be satisfied with sub-ideal transport channels (i.e., 6 ms of one-way

16Given that the current HeNB implementation supports multi-user transmissions, adding more UEs to the prototype
only requires replicating its related HW setup.
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Figure 2.7: Overview of the HW setup implementing the hotspot prototype, including the different
supported communication function splits.

latency and a capacity of 150 Mbps). Finally, the interconnection to the EPC (i.e., S1 traffic) is

the less demanding and can be satisfied with a non-ideal transport channel (i.e., up to 30 ms of

one-way latency and variable BW).

2.2.3. Dynamic hotspot prototype

A schematic of the basic HW setup of the energy-aware dynamic hotspot prototype is pro-

vided in Figure 2.7. Its flexible real-time operation supports the typical performance requirements

described by the LTE standard, as well as the reconfiguration of the system to adopt different

NETCFGs and/or wireless communication parameters (e.g., DL BW). The following section de-

tails the different HW components that are hosting the presented HWA and SW functions. Even

though the focus of the described work resides in the adaptive HeNB prototype, its UE coun-

terpart functions were also developed and included in the HW demonstrator in order to enable

the end-to-end operation of the system under test. In this regard, the design and implementation

details of the receiver subsystems are out of the scope of this work.
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2.2.3.1. Hardware components

EXTREME® testbed

The EXTREME® Testbed is used to host the different SW processes of LENA (i.e. HeNB,

UE and EPC). The EXTREME® Testbed [63] is an experimental framework for testing wireless

access and backhaul/fronthaul architectures featuring generic purpose server pools (e.g., SDN

control, NFVs such as vEPC), cellular and other wireless equipment, ns-3 emulation/simulation,

and tools for fast prototyping and evaluation. Here, we only describe the components directly

related to the hotspot prototype. The core of the EXTREME® Testbed lies on two central man-

agement servers, which act as interface between the final users and the SDN/NFV experimentation

services. A series of reconfigurable multi-purpose servers and high-performance laptops can be

customized and used as network elements for experimentation purposes. In this section, Super-

micro servers have been the preferred option to execute the distributed LENA processes. These

servers are equipped with two Intel Xeon E5-2640v4 processors (20 cores/40 threads running at

2.4 GHz), 64 GB of RAM, a hard disk of 2 TB and 6 Gigabit Ethernet (GigE) ports. Finally, the

Cisco C6513 switch router is used to manage the GiGE connections and is dynamically reconfig-

ured according to the adopted scenario to build the required fronthaul and backhaul networks.

FPGA-based SoC and RF boards

The Xilinx ZC706 board is used to host all HWA functions, as well as the related L2-L1 SW

interfaces (for both HeNB and UE sides). In more detail, the board features the Zynq XC7Z045

all-programmable SoC, which integrates a dual-core ARM Cortex-A9 central processing unit

(CPU; up to 1 GHz) on the PS side. These are paired with internal memory resources, a dedi-

cated high-speed AXI-based bus and DMA interfaces to the PL, as well as with a set of standard

input/output interfaces and peripherals (including Ethernet). Regarding the FPGA resources, the

SoC also provides 350K logic cells, 545 embedded RAM blocks (RAMB) of 36Kb and 900 DSP

slices (up to 18x25 multiply-and-accumulates each). The resource utilization metrics of the im-

plemented HWA L1 functions can be observed in Table 2.1. It should be noted, that these metrics

do not account for the HDL firmware utilized by the ZC706 board (i.e., they only account for the

designed DSP functionality).

The Analog Devices (AD) AD-FMCOMMS3 board was used as the radio frequency (RF)

front-end. It is connected to the ZC706 board through a FPGA Mezzanine Card (FMC) interface

and includes the AD9361 RF integrated chip (RFIC). The latter features a 2x2 transceiver with

integrated 12-bit DACs and analog-to-digital converters (ADCs), supporting a wide range of fre-

quencies (up to 6 GHz), a tunable channel BW (up to 56 MHz) and programmable gain-control

chains. Toward that end, a Linux kernel space application residing in the PS of the Zynq SoC,

allows to fully tune and program the AD9361 RFIC. Optionally, power amplifiers, RF band filters

and antennas are enabling over-the-air communications. The remaining implementation details

can be found in Appendix A. In the next chapter, we will characterize the energy consumption of
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Utilization HWA eNB functions HWA UE functions
LUT 22.30% 34.52%
LUTRAM 2.38% 13.38%
FF 9.57% 26.88%
BRAM 8.53% 61.65%
DSP 2.67% 60.78%
IO 28.73% 19.61%
BUFG 9.38% 21.88%
MMCM 0% 37.50%

Table 2.1: FPGA-resource utilization of the implemented HWA L1 entities.

this platform, considering the functional splits presented and hence, measuring and quantifying

the energy footprint in each deployment.

Figure 2.8: Picture of the FPGA based testbed

2.2.3.2. Testbed Description

A different number of ZC706 (and AD-FMCOMMS3) boards is used depending on the spe-

cific NETCFG that is adopted, as it can be observed in Figure 2.7. When a C-RAN architecture is

adopted, two FPGA-based platforms are required on the Home eNB (HeNB) side (i.e., one for the

RRH and another one for the HWA L1), interfaced through a CPRI link (i.e., using coaxial cables

as our ideal transport channel), and a third one is used to implement the HWA L1 of the UE. On
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the contrary, when the L1 functions are executed locally at the HeNB (NETCFG1/2), then only

two ZC706 boards are used (i..e, one for the HWA HeNB and another for its UE counterpart). In

all cases, GigE links are utilized to provide the required interconnections between the DL signal

and the EXTREME® testbed (i.e., sub-ideal and non-ideal transport channels) as shown in Fig.

2.8

2.3. Conclusions

This first contribution reports a performance assessment of the two most prevalent open source

software solutions for mobile network prototyping, namely, srsLTE and OAI. We designed a

methodology to characterize the performance of these stacks, quantifying their differences in

throughput and resource consumption over a range of practical settings. Our findings formalize

“word of mouth” knowledge among practitioners, and provide useful guidelines for deploying 5G

testbeds with these tools.

Additionally, we have introduced a FPGA platform and prototype for future 5G connectivity

with flexibility and reconfigurability as the two principal requirements. This platform supports

centralized processing in a multi-layered Cloud architecture (i.e., C-RAN, MEC) and the massive

deployment of small cells will play a central role toward providing a dynamic network manage-

ment with energy-awareness capabilites.
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Chapter 3

Analysis and Characterisation of the
Energy Consumption

In the previous chapter, we have studied several softwarized platforms for mobile networking,

presenting a methodology to characterize the performance of such platforms. Furthermore, we

have presented a prototype with energy-awareness design. In this chapter, our objective is to

analyze the energy efficiency in short time scale1, introducing an energy measurement platform.

This framework for energy characterization is validated considering the case of IEEE 802.11,

using as a basis a analytic model and comparing it to experimental measurements. We next study

the case of FPGA based prototype, analyzing the different subsystem components that form the

platform and characterizing the energy impact for a set of configuration.

3.1. Platform and Intrumentation for Energy Measurements

The core of this chapter is based on the instrumentation platform for ad-hoc energy mea-

surements. For such instrumentation, it is worth mentioning some features must be met to better

understand how far we can go in our findings: i) the range of the measurements must go from mW

up to tens of W, providing the flexibility of different levels of granularity according to the device

to be dissected and, ii) a high sampling rate of measurements in time domain in order to analyze

small energy changes between events as explained in [64]. This set of features will allow us to

develop a methodology in order to analyze and characterize two different technologies with mul-

tiple levels of accuracy, whether we are charactering the Modulation and Coding Scheme (MCS)

adaptation for IEEE 802.11 Network Interface Card (NIC)s or the different subsystems of the

LTE prototype presented in chapter 2: CPU, Ethernet NIC and the Radio Frequency Integrated

Circuit (RFIC).

For these purposes, we chose the high-accuracy multifunction data acquisition (DAQ) device

from National Instruments, more specifically the PCI-6289 model that includes up to 32 analogue

1Let us define short temporal scale as measurements in a range of µs.

25
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inputs and 7 input ranges with an accuracy of 18-bits. Each measurement is reported with a

resolution of 50 ns, delivering an accuracy of 50 ppm of sampling rate.

PCI-E

DAQ
NI PCI-6289

SCB
NI SCB 68-A

Customized
Ad-hoc Circuit

Device 
Under 
Testing

Power Supply

Figure 3.1: Simplified energy measurement platform

In addition to this equipment, the university’s Technical Office in Electronics designed a cus-

tom three-port circuit that samples the input signal and converts it to voltage, adapting the signal

to the DAQ’s input minimizing the precision loss during the process. Considering two different

voltage range specifications, the design was split in two different circuits. The full schematics

can be consulted in Appendix B. For the sake of clarity, Fig 3.1 shows a simplified version of the

energy measurement platform.

The software that empowers and brings of our platform to life is DAQ-Acquire2 built on top

of comedilib and Comedi drivers. As operating system, we have chosen Fedora GNU/Linux

distribution.

3.2. Energy Impact on the Rate Adaptation for IEEE 802.11

This section tackles the problem of Rate Adaptation (RA) in 802.11 WLANs from the energy

consumption’s perspective. RA algorithms are responsible for selecting the most appropriate

modulation and coding scheme (MCS) and transmission power (TXP) to use, given an estimation

of the link conditions, and have received a vast amount of attention from the research community

(see e.g. [65] and references therein). In general, the challenge lies in distinguishing between

those loses due to collisions and those due to poor radio conditions, because they should trigger

different reactions. In addition, the performance figure to optimise is commonly the throughput

or a related one such as, e.g., the time required to deliver a frame.

Building on this model, we provide the following contributions: i) we demonstrate through

an extensive numerical evaluation that energy consumption and throughput performance are dif-

ferent optimization objectives in 802.11, and not only an effect of MIMO or certain algorithms’
2https://github.com/Enchufa2/daq-acquire

https://github.com/Enchufa2/daq-acquire
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suboptimalities; ii) we analyze the relative impact of each energy consumption component on the

resulting performance of RA, which serves to identify the critical factors to consider for the design

of RA algorithms, and illustrate that different hardware should employ different configurations;

and iii) we experimentally validate our numerical results.

3.2.1. Joint Goodput-Energy Model

We develop a joint goodput-energy model for a single 802.11 spatial stream and the absence

of interfering traffic. It is based on previous studies about goodput and energy consumption

of wireless devices. As stated in the introduction, the aim of this model is the isolation of the

relevant variables (MCS and TXP) to let us delve in the relationship between goodput and energy

consumption optimality in the absence of other effects such as collisions or MIMO.

Beyond this primary intent, it is worth noting that these assumptions conform with real-world

scenarios in the scope of recent trends in the IEEE 802.11 standard development, namely, the

amendments 11ac and 11ad, where device-to-device communications (mainly through beamform-

ing and MU-MIMO) are of paramount importance.

3.2.1.1. Goodput Model

We base our study on the work by Qiao et al. [66], which develops a robust goodput model

that meets the established requirements. This model analyzes the IEEE 802.11a Distributed Co-

ordination Function (DCF) over the assumption of an AWGN (Additive White Gaussian Noise)

channel without interfering traffic.

Let us briefly introduce the reader to the main concepts, essential to our analysis, of the

goodput model by Qiao et al.. Given a packet of length l ready to be sent, a frame retry limit nmax

and a set of channel conditions ŝ = {s1, . . . , snmax} and modulations m̂ = {m1, . . . ,mnmax}
used during the potential transmission attempts, the expected effective goodput G is modelled

as the ratio between the expected delivered data payload and the expected transmission time as

follows:

G(l, ŝ, m̂) =
E[data]

E[Ddata]
=

Pr[succ | l, ŝ, m̂] · l
E[Ddata]

(3.1)

where Pr[succ | l, ŝ, m̂] is the probability of successful transmission conditioned to l, ŝ, m̂, given

by Equation (5) in [66]. The expected transmission time is defined as follows:

E[Ddata] = (1− Pr[succ | l, ŝ, m̂]) · Dfail|l,ŝ,m̂ + Pr[succ | l, ŝ, m̂] · Dsucc|l,ŝ,m̂
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where

Dsucc|l,ŝ,m̂ =

nmax∑
n=1

Pr[n succ | l, ŝ, m̂] ·
{nmax∑
i=2

[
T bkoff(i)

+ Tdata(l,mi) +Dwait(i)
]

+ T bkoff(1) + Tdata(l,m1) + TSIFS

+ TACK(m′n) + TDIFS

}
(3.2)

is the average duration of a successful transmission and

Dfail|l,ŝ,m̂ =

nmax∑
i=1

[
T bkoff(i) (3.3)

+ Tdata(l,mi) +Dwait(i+ 1)
]

is the average time wasted during the nmax attempts when the transmission fails.

Pr[n succ | l, ŝ, m̂] is the probability of successful transmission at the n-th attempt condi-

tioned to l, ŝ, m̂, and Dwait(i) is the average waiting time before the i-th attempt. Their expres-

sions are given by Equations (7) and (8) in [66]. The transmission time (Tdata), ACK time (TACK)

and average backoff time (T bkoff ) are given by Equations (1), (2) and (3) in [66]. Finally, TSIFS

and TDIFS are 802.11a parameters, and they can be found also in Table 2 in [66].

3.2.1.2. Energy Consumption Model

The selected energy model is our previous work of [67], which has been further validated via

ad-hoc circuitry and specialised hardware [68] and, to the best of our knowledge, stands as the

most accurate energy model for 802.11 devices published so far, because it accounts not only the

energy consumed by the wireless card, but the consumption of the whole device. While classical

models focused on the wireless interface solely, this one demonstrates empirically that the energy

consumed by the device itself cannot be neglected as a device-dependent constant contribution.

Conversely, devices incur an energy cost derived from the frame processing, which may impact

the relationship that we want to evaluate in this Chapter.

This model can be summarised as follows:

P = ρid +
∑

i∈{tx,rx}

ρiτi +
∑

i∈{g,r}

γxiλi (3.4)

where ρid, ρtx, ρrx are the power consumed by the device in idle, transmission and reception states

respectively; τtx, τrx are the airtime percentages in transmission and reception; γxg, γxr are the so

called cross-factors, a per-frame energy toll for generation and reception respectively; and λg, λr

are the frame generation and reception rates.
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Therefore, the average power consumed P is a function of five device-dependent parameters

(ρi, γxi) and four traffic-dependent ones (τi, λi).

3.2.1.3. Energy Efficiency Analysis

Putting together both models, we are now in a position to build a joint goodput-energy model

for 802.11a DCF. Let us consider the average durations (3.2) and (3.3). Based on their expres-

sions, we multiply the idle time (Dwait, T bkoff , TSIFS, TDIFS) by ρid, the transmission time (Tdata)

by ρtx, and the reception time (TACK) by ρrx. The resulting expressions are the average energy

consumed in a successful transmission Esucc|l,ŝ,m̂ and the average energy wasted when a trans-

mission fails Efail|l,ŝ,m̂:

Esucc|l,ŝ,m̂ =

nmax∑
n=1

Pr[n succ | l, ŝ, m̂] ·
{nmax∑
i=2

[
ρidT bkoff(i)

+ ρtxTdata(l,mi) + ρidDwait(i)
]

+ ρidT bkoff(1) + ρtxTdata(l,m1) + ρidTSIFS

+ ρrxTACK(m′n) + ρidTDIFS

}
(3.5)

Efail|l,ŝ,m̂ =

nmax∑
i=1

[
ρidT bkoff(i) (3.6)

+ ρtxTdata(l,mi) + ρidDwait(i+ 1)
]

Then, by analogy with (3.2), the expected energy consumed per frame transmitted, E[Edata],

can be written as follows:

E[Edata] = γxg + (1− Pr[succ | l, ŝ, m̂]) · Efail|l,ŝ,m̂ (3.7)

+ Pr[succ | l, ŝ, m̂] · Esucc|l,ŝ,m̂

It is noteworthy that the receiving cross-factor does not appear in this expression because

ACKs (acknowledgements) are processed in the network card exclusively, and thus its processing

toll is negligible.

Finally, we define the expected effective energy efficiency µ as the ratio between the expected

delivered data payload and the expected energy consumed per frame, which can be expressed in

bits per Joule (bpJ):

µ(l, ŝ, m̂) =
E[data]

E[Edata]
(3.8)
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3.2.2. Numerical Results

Building on the joint model presented in the previous section, here we explore the relationship

between optimal goodput and energy efficiency in 802.11a. More specifically, our objective is to

understand the behaviour of the energy efficiency in a range of devices in order to compare our

experimental measurements with the analytic model and hence, validating our platform.

3.2.2.1. Optimal Goodput

We note that the main goal of RA, generally, is to maximise the effective goodput that a

station can achieve by varying the parameters of the interface. In terms of the model discussed in

the previous section, a rate adaptation algorithm would aspire to fit the following curve:

maxG(l, ŝ, m̂) (3.9)

We provide the numerical results for this goodput maximisation problem in Fig. 3.2, which are

in good agreement with those obtained in [66]. For the sake of simplicity but without loss of gen-

erality we fix l = 1500 octets and nmax = 7 retries, and assume that the channel conditions and

the transmission strategy are constant across retries (ŝ = {s1, . . . , s1} and m̂ = {m1, . . . ,m1}).
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Figure 3.2: Optimal goodput (bold envelope) as a function of SNR.

Fig. 3.2 illustrates which mode (see Table 3.1) is optimal in terms of goodput, given an SNR

level. We next address the question of whether this optimization is aligned with energy efficiency

maximisation.
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Table 3.1: Modes of the IEEE 802.11a PHY

Mode Index 1 2 3 4 5 6 7 8

MCS (Mbps) 6 9 12 18 24 36 48 54

3.2.2.2. Extension of the Energy Parametrisation

The next step is to delve into the energy consumption of wireless devices. [67] provides real

measurements for five devices: three AP-like platforms (Linksys WRT54G, Raspberry Pi and

Soekris net4826-48) and two hand-held devices (HTC Legend and Samsung Galaxy Note 10.1).

Two of the four parameters needed are constant (ρid, γxg), and the other two (ρtx, ρrx) depend on

the MCS and the TXP used. However, the characterisation done in [67] is performed for a subset

of the MCS and TXP available, so we next detail how we extend the model to account for a larger

set of operation parameters.

A detailed analysis of the numerical figures presented in [67] suggests that ρrx depends lin-

early on the MCS, and that ρtx depends linearly on the MCS and the TXP (in mW). Based on

these observations, we define the following linear models:

ρtx = α0 + α1 ·MCS + α2 · TXP (3.10)

ρrx = β0 + β1 ·MCS (3.11)

The models are fed with the data reported in [67], the results are shown in Appendix C.

3.2.3. Energy Consumption

To compute the energy consumption using the above parametrisation, first we have to de-

fine the assumptions for the considered scenario. We assume for simplicity a device-to-device

communication, with fixed and reciprocal channel conditions during a sufficient period of time

(i.e., low or no mobility). As we have discussed before, our primary goal is to isolate MCS and

TXP as variables of interest, but we must not forget that these are also reasonable assumptions in

scenarios targeted by recent 802.11 standard developments (11ac, 11ad).

For instance, given channel state information from a receiver, the transmitter may decide to

increase the TXP in order to increase the receiver’s SNR (and thus the expected goodput), or to

decrease it if the channel quality is high enough. Although the actual relationship between TXP

and SNR depends on the specific channel model (e.g., distance, obstacles, noise), without loss of

generality, we choose a noise floor of N = −85 dBm in an office scenario with a link distance of

d = 18 m in order to explore numerically the whole range of SNR while using reasonable values

of TXP. The ITU model for indoor attenuation [69] gives a path loss of L ≈ 85 dBm. Then, we

can use (3.7) to obtain the expected energy consumed per frame and MCS mode, with TXP being

directly related to the SNR level.

The results are reported in Fig. C.2. As the figure illustrates, consumption first falls abruptly
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as the TXP increases for all modes, which is caused when the SNR reaches a sharp threshold

level such that the number of retransmissions changes from 6 to 0 (i.e., no frame is discarded).

From this threshold on, the consumption increases with TXP because, although the number of

retransmissions is 0, the wireless interface consumes more power. We note that the actual value

of the TXP when the consumption drops depends on the specifics of the scenario considered, but

the qualitative conclusions hold for a variety of scenarios.

3.2.3.1. Energy Efficiency vs. Optimal Goodput
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Figure 3.3: Energy Efficiency vs. Optimal Goodput under fixed channel conditions.

We can finally merge previous numerical analyses and confront energy efficiency, given by

(3.8), and optimal goodput, given by (3.9), for all devices and under the aforementioned assump-

tions. To this aim, we plot in the same figure the energy efficiency for the configuration that

maximises goodput given an SNR value vs. the obtained goodput, with the results being depicted

in Fig. 3.3. We next discuss the main findings from the figure.

First of all, we can see that the energy efficiency grows sub-linearly with the optimal goodput

(the optimal goodput for each SNR value) in all cases. We may distinguish three different cases in

terms of energy efficiency: high (Samsung Galaxy Note and HTC Legend), medium (Raspberry

Pi) and low energy efficiency (Linksys and Soekris). Furthermore, for the case of the Soekris, we

note that the “central modes” (namely, 4 and 5) are more efficient in their optimal region than the

subsequent ones.

Another finding (more relevant perhaps) is that it becomes evident that increasing the goodput

does not always improve the energy efficiency: there are more or less drastic leaps, depending

on the device, between mode transitions. From the transmitter point of view, in the described

scenario, this can be read as follows: we may increase the TXP to increase the SNR, but if the
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optimal goodput entails a mode transition, the energy efficiency may be affected.

As a conclusion, we have demonstrated that optimal goodput and energy efficiency do not go

hand in hand, even in a single spatial stream, in 802.11. There is a trade-off in some circumstances

that current rate adaptation algorithms cannot take into account, as they are oblivious to the energy

consumption characteristic of the device.

3.3. Experimental Validation

This section is devoted to experimentally validate the results from the numerical analysis and,

therefore, the resulting conclusions. To this aim, we describe our experimental setup and the

validation procedure, first specifying the methodology and then the results achieved.

3.3.1. Experimental Setup

We deployed the testbed illustrated in Fig. 3.4, which consists of a station (STA) transmitting

evenly-spaced maximum-sized UDP packets to an access point (AP). The AP is an x86-based

Alix6f2 board with a Mini PCI Qualcomm Atheros AR9220 wireless network adapter, running

Voyage Linux with kernel version 3.16.7 and the ath9k driver. The STA is a desktop PC with a

Mini PCI Express Qualcomm Atheros QCA9880 wireless network adapter, running Fedora Linux

23 with kernel version 4.2.5 and the ath10k driver. We also installed at the STA a Mini PCI

Qualcomm Atheros AR9220 wireless network adapter to monitor the wireless channel.

+_

DAQAdapter
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ath
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ath
monitor

frame retryframe frame

ACK ACKACK

wall

~ 15 m

Figure 3.4: Experimental setup.

The QCA9880 card is connected to the PC through a x1 PCI Express to Mini PCI Express

adapter from Amfeltec. This adapter connects the PCI bus’ data channels to the host and provides

an ATX port so that the wireless card can be supplied by an external power source. The power

supply is a Keithley 2304A DC Power Supply, and it powers the wireless card through an ad-

hoc measurement circuit that extracts the voltage and converts the current with a high-precision

sensing resistor and amplifier. These signals are measured using a National Instruments PCI-

6289 multifunction data acquisition (DAQ) device previously explained, which is also connected
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to the STA. Thanks to this configuration, the STA can simultaneously measure the instant power

consumed by the QCA9880 card3 and the goodput achieved.

As the figure illustrates, the STA is located in an office space and the AP is placed in a lab-

oratory 15 m away, and transmitted frames have to transverse two thin brick walls. The wireless

card uses only one antenna and a practically-empty channel in the 5-GHz band. Throughout the

experiments, the STA is constantly backlogged with data to send to the AP, and measures the

throughput obtained by counting the number of received acknowledgements (ACKs).

3.3.2. Methodology and Results

In order to validate our results, our aim is to replicate the qualitative behaviour of Fig. 3.3, in

which there are energy efficiency “drops” as the optimal goodput increases. However, in our ex-

perimental setting, channel conditions are far from steady, which introduces a notable variability

in the results as it affects both the x-axis (goodput) and the y-axis (energy efficiency). To reduce

the impact of this variability, we decided to change the variable in the x-axis from the optimal

goodput to the transmission power –a variable that is directly configured in the wireless card. In

this way, the qualitative behaviour to replicate is the one illustrated in Fig. 3.5, where we can still

identify the performance “drops” causing the loss in energy efficiency.
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Figure 3.5: Energy Efficiency vs. Transmission Power under fixed channel conditions for the
Raspberry Pi case.

On the other hand, experimental conditions are far from being ideal, and it is hard to achieve

the channel steadiness required to get an adequate sweep along the optimal goodput values of

3Following the discussion on Section C, the device’s cross-factor is not involved in the trade-off, thus we will
expect to reproduce it by measuring the wireless interface alone.
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Fig. 3.3. The SNR’s random variability causes that an ordered set of TXPs result in an unordered

set of experimental goodputs, which derive in a figure impossible to interpret.

To solve this, we perform a change of the x axis to reflect the TXP instead of the optimal

goodput, the result being illustrated in Fig. 3.5 for the case of the Raspberry Pi, which is easier

to explore experimentally. A close look reveals that the downward slopes as the TXP grows for

each mode (and their length until the next mode takes over) are responsible for the efficiency

drops shown in Fig. 3.3. Therefore, our experimental validation is based on the presence of such

indicators.

Building on this figure, we perform a sweep through all available combinations of MCS (see

Table 3.1) and TXP4. Furthermore, we also tested two different configurations of the AP’s TXP at

different times of the day, to confirm that this qualitative behaviour is still present under different

channel conditions. For each configuration, we performed 2-second experiments in which we

measure the total bytes successfully sent and the energy consumed by the QCA9880 card with

sub-microsecond precision. From this data, the energy efficiency is computed, with the results

depicted in Fig. 3.6 (each figure corresponds to a different TXP value configured at the AP).
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Figure 3.6: Experimental study of Fig. 3.5 for two AP configurations.

4The model explores a range between 0 and 30 dBm to get the big picture, but this particular wireless card only
allows us to sweep from 0 to 20 dBm.
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Our model assume reciprocal channel conditions, which means, among other things, that

receiver’s TXP (for the ACKs) should be the same as the transmitter’s. In our setup, with different

network cards on both sides, we cannot ensure this condition. So in order to overcome this

limitation and remove this variable, we tested two different AP configurations: low and high

TXP, 10 and 17 dBm respectively.

In the figure, each line type represents the STA’s mode that achieved the highest goodput

for each TXP interval, therefore in some cases low modes do not appear because a higher mode

achieved a higher goodput. Despite the inherent experimental difficulties, namely, the low granu-

larity of 1-dBm steps and the random variability of the channel, the experimental results validate

the analytical ones, as the qualitative behaviour of both figures follows the one illustrated in

Fig. 3.5. In particular, the performance “drops” of each dominant mode can be clearly observed

(especially for the 36, 48 and 54 Mbps MCSs) despite the variability in the results.

3.4. Energy Consumption in a Energy-aware LTE Platform

The first part of this chapter presents a measurement platform for the energy characteriza-

tion, framework that we have employed for an experimental validation of the proposed analytical

model for the RA algorithms in IEEE 802.11. In this section, we reuse such framework to ex-

tend our analysis to the LTE prototype previously introduced in Chapter 2, dissecting the energy

consumption across the different subsystems that form the prototype. For a better understand-

ing of this section and the architecture design with energy-awareness, we refer the reader to the

Appendix A.

The main objective of the development presented in the previous chapter is to allow the real-

istic evaluation of the gains that could be provided by applying energy-aware reconfigurations at

the dynamic hotspot. For this purpose, a real-time prototype has been designed and implemented,

where the communication functions can be moved among different 5G nodes in order to improve

the energy efficiency of the system, accounting for the actual network conditions as well.

3.4.1. Testbed setup and measurement devices

In order to accurately assess the energy-saving benefits of the proposed dynamic reconfig-

uration of both Wireless Communication Parameters (WCP)s and function splits in Chapter 2,

specialized HW has also been utilized in order to obtain experimental measurements at different

key subsystem elements of the hotspot prototype. Namely the energy consumption of the HeNB

has been analyzed at the System on a Chip (SoC) baseband processor (i.e., HWA L1), at the RF

stage and at the GigE interfaces. Additionally, the central processor unit (CPU) load resulting

from the different LENA configurations has also been monitored in order to (indirectly) assess its

effect on the energy consumption of the Supermicro servers, In more detail, the servers provide

an intelligent platform management interface (IPMI), which among others enables monitoring the

usage of CPU and memory resources, as well as the overall server consumption. Nevertheless,
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given the very low granularity of this embedded energy measurement HW5, the CPU loads result-

ing from different system configurations have been captured with the objective to complete the

presented analysis.

Figure 3.7: HW setup utilized to measure the energy consumption of the RF IC.

As for the HWA L1, the Xilinx ZC706 board hosts a power system based on the Texas Instru-

ments (TI) UCD90120A power supply sequencer. The latter integrates a 12-bit ADC enabling

to monitor up to 12 power-supply voltage lines. Moreover, a power management bus (PMBus)

compliant controller is also included. By using a proprietary universal serial bus (USB)-based

cable and the TI Fusion Digital Power Designer graphical user interface (GUI), the voltage and

current utilized by the baseband SoC can be measured at run-time. In our case, the VCCINT rail

has been used for the energy measurements, taking into account that it is the one powering both

the internal logic of the PL and the PS.

Regarding the RFIC, a custom measurement setup was implemented as it can be observed in

Figure 3.7 whilst the Figure 3.8 shows the real testbed deployment. As it was explained at begin-

ning of this chapter, two ad-hoc measurement circuits were specially designed to work with the

3.3 V power rail of the AD9361 chip. A Shielded Connector Block (SCB), based on the National

Instrument (NI) SCB-68A device, allows to interconnect the ad-hoc measurement circuits to a

data acquisition (DAQ) card. Specifically, the NI PCI-6289 multifunction DAQ device is used

to quantify the measurements. Toward that end, the DAQ is hosted in a general purpose com-

puter through the peripheral component interconnect express (PCIe) bus. The DAQ-acquire

SW application tool is then in charge of demultiplexing the measurements of the DAQ card and

dumpling the measured values onto a file, enabling its posterior post-processing. A similar setup

was employed to obtain energy measurements at the GigE NIC of the server hosting the HeNB

LENA processes.

3.5. Experimental results and discussion

This section presents the experimental evaluation of the energy-aware hotspot prototype under

different function splits and WCP configurations. It must be noted that the aim of the presented

results is to prove that important energetic benefits can be obtained by applying the proposed

HeNB reconfigurations. In that sense, we are aware that the energy measurements detailed herein
5The IPMI measurement solution provided the compound power consumption of the Supermicro server (i.e., in-

cluding not only the CPU, but the hard disk, fans and remaining HW components).
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are strongly dependent on the specific HW elements comprising the prototype. Consequently, the

focus of our evaluation is laid on the trade-offs and energy savings observed when comparing

the power consumption of the prototype under different system configurations. From our past

implementation experiences, we believe that similar results in terms of the presented figures (i.e.,

same order of magnitude) should be obtained when using different HW setups.

(a) Raiser attached to the measurement circuit (b) FPGA attached to our energy framework

Figure 3.8: Picture of the testbed composed by the FPGA system and the energy framework

3.5.1. Methodology

An exhaustive measurement campaign has been carried out with the objective to characterize

the energy savings reported by reconfiguring the dynamic hotspot. In that regard, a set of operat-

ing scenarios have been defined by modifying the applied NETCFG and the values of the WCPs.

Namely, different DL BW configurations, RBG allocation loads, MCS indexes and RF transmit

power settings are considered. For each given scenario a series of power measurements were

then performed. In order to procure statistically significant data the time resolution of the DAQ

card responsible for gathering the energy measurements was fixed at 1 µs (i.e., 1 MHz sampling

frequency). Moreover, the data has been captured in uninterrupted sequences of 30 seconds, with

several repetitions per experiment. Similar values have been also considered for the measurement

solution of the baseband, in spite of its inferior specifications with respect to the time resolution

of the samples when compared to the DAQ card.

In all experiments the HeNB has been configured and operating according to the defined sce-

nario, and with the primary objective of setting the focus on a given reconfiguration parameter

on each experiment. That is, only a single parameter has been modified at a time, whereas the

remaining ones are kept fixed. This allows to observe the result of adapting that isolated pa-

rameter (e.g., DL BW) with respect to the power consumption of the HeNB. Considering the

utilized measurement setup, 30 million samples have been obtained for each experimental iter-

ation. Nevertheless, only selected sets of data have been used in order to bound the cost of the
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post-processing, without compromising the validity of the analysis. Finally, the evaluation of the

results is performed offline using custom scripts based on R, an open-source SW environment

for statistical computing [70]. The obtained curves represent the cumulative distribution function

(CDF) of the energy consumed by the HeNB under each implemented scenario.

3.5.2. Observed energy consumption results

The energy consumption of the hotspot prototype is analyzed for the different measured sub-

systems, according to the results obtained after post-processing the captured data for the different

experiments.
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Figure 3.9: Power consumption observed at the GigE NIC for different HeNB configurations.

3.5.2.1. Ethernet

Several tests have been conducted in order to characterize the energy consumption of the GigE

NICs of the servers6 hosting LENA. Each experiment utilized a different hotspot configuration.

For instance, Figure 3.9 depicts the consumption observed at the server hosting L2 and above

functionalities (HeNB side) for different DL BW and MCS index settings. The figure illustrates

no variations in the consumed energy due to changes in the traffic load (i.e.,MCS index, RBG

allocation).

While this behaviour was expected for legacy Ethernet devices [71]], it is also observed when

NICs are equipped with modern power saving features, such as those defined by the energy ef-

ficient Ethernet (EEE; which is the case of the Supermicro servers). The reason is that energy

savings are linked to low and bursty data activity, which supports the use of aggregation tech-

niques (i.e., coalescing) [72]. However, this is not the case for the dynamic hotspot traffic. First,
6A similar behaviour is expected on the local HeNB HW (e.g., Xilinx board), but it was less cumbersome measuring

the NIC of a standard server.
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the traffic load of the CPRI link is not low in those NETCFGs where L2 and above functions

are offloaded onto the Cloud. Moreover, coalescing can introduce jitter, which might result in a

disrupted system performance. Therefore, the contribution of the network interfacing HW ele-

ments to the energy budget of the dynamic hotspot can be hardly reduced and its energy-aware

reconfigurations should target other subsystems.

Figure 3.10: CPU load resulting from the LENA HeNB process when using a 10 MHz DL BW
configuration (MCS index 25).

3.5.2.2. SW L2 (CPU)

Independently of the particular WCP settings being adopted (i.e., DL BW, MCS index and

RBG allocation), the CPU utilization observed for the HeNB process (i.e., L2 and upper-layers)

of LENA is always in the range between 25% and 30%, as shown in Figure 13. This is due to

the massive computation capacity of the Supermicro servers (i.e., a single UE is attached to the

HeNB; e.g., resulting in the simplest scheduling), as well as to the low measurement granularity

provided by its monitoring interface. Accordingly, from the point of view of the PS, it seems

that the only strategy to save energy in the HeNB would be to offload the processing of L2 and

above functions, which is actually the case in all considered NETCFGs. In this respect, the energy

consumption of a PS can be analyzed based on its activity. In more detail, an important fraction

of its consumption is related to the usage of its CPU(s) and memories, including their related

cooling systems. Regarding the processors, they present an elevated baseline energy consumption

when in idle state (i.e., the idle energy consumption represents an important fraction of its peak

consumption when at full load). This consumption increases with every added workload (i.e.,

process). On top of that, the drained energy depends on its operating frequency [73]. Moreover,

the more accesses that these processes require to the memory system, the more energy it will

be utilized. Based on that, it can be argued that minimizing the workload of a processor at any

given time, will help reducing the overall consumed system energy. Even more, if the workload
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is sufficiently low (i.e., low number of attached UEs), a reduced clock frequency could be used

in the CPU, helping likewise to reduce its energy footprint [74]. This latter fact is empirically

verified in the evaluation of the energy consumed by the HWA L1.

3.5.2.3. HWA L1 (FPGA-based SoC)

In the analysis of the power consumption observed at the Zynq XC7Z045 SoC it must be first

noted that NETCFG1 and NETCFG2 are indistinguishable (i.e., both feature a locally executed

HWA L1). Consequently only the power measurements for NETCFG2 and NETCFG3 are pre-

sented. In detail, the first three experiments assume a locally executed HWA L1, whereas the

fourth examines the benefits of moving the DSP computation to the Cloud.
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Figure 3.11: Impact of the DL BW configuration on the consumption of the baseband SoC.

The first experiment analyzes the variation of the power consumption at the baseband pro-

cessor as a function of the utilized DL BW configuration. In that respect, a fixed MCS index of

24 (i.e., highest modulation order) and a fully allocated DLSCH (i.e., user-data in all available

RBGs) is combined with the four considered DL BW values (i.e., 1.4, 5, 10 and 20 MHz). As

it can be seen in Figure 3.11 downscaling the signal BW can provide important power savings,

which scale up to 44% in the extreme situation of changing from 20 MHz to 1.4 MHz (e.g., end

of the venue, when most attendees leave the hotspot coverage area). The experiments have shown

that these gains remain stable over time (Figure 3.11b).

The impact that different RBG allocations have on the energy consumption of the SoC is

evaluated on the second experiment for two different DL BW settings and MCS indexes. Three

different RBG loads are considered, ranging from a very low utilization of the available DLSCH

resources to a fully allocated case. Figure 3.12a shows a fixed baseline MCS configuration with

index 7 (i.e., lowest modulation order) for the 10 and 20 MHz DL BW cases. Similarly, Figure

3.12b adopts a fixed MCS index of 24. In both cases minimal variations in the energy consumption

of the HWA L1 are reported (i.e., around 2% in the best case).
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Figure 3.12: Impact of the RBG allocation on the energy consumption of the baseband SoC.
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Figure 3.13: Impact of the MCS index on the power drained by the baseband SoC.
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A third experiment investigates the relation between the MCS index and the power consump-

tion observed at the HWA L1. This is done for the 5 MHz and 10 MHz DL BW configurations

and with only 2 RBGs allocated. Then, three different MCS index values are used, namely 7, 13

and 24 (i.e., ranging from the lowest to the highest modulation order). As it can be observed in

Figure 3.13, nearly identical results to the previous experiment are reported in this case, with the

MCS index having little impact on the energy being drained by the baseband processor.
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Figure 3.14: Energy savings reported by adopting NETCFG3.

After analysing the influence of reconfiguring the WCPs on the energy budget of the HWA L1,

the fourth experiment is focusing on the dynamic split of communication functions. Specifically,

the energy saving gains obtained by moving from NETCFG1/2 to NETCFG3 are evaluated (i.e.,

adoption of a C-RAN scheme, where the HeNB acts as a Remote Radio Head (RRH)). As reported

in Figure 3.14, the consumed energy is considerably reduced (i.e., up to 46.38%) independently

of the utilized DL BW configuration. In this case, the clock-gated design can be fully exploited,

as the energy-hungry DSP logic can be put to an idle state, minimizing likewise the switching

activity of the digital circuit.

From the point of view of the baseband processor, as it was expected, most energy saving

benefits come from reducing the activity of the circuit. Toward that end, dynamically adapting

the WCPs is not always the most efficient way to reduce the energy. More specifically, we have

found that the reconfigurations affecting the MCS index or RBG allocation settings should focus

on satisfying the frequently changing QoS requirements. In that case, although the energy-aware

RTL design is capable of preventing the unnecessary operation of some parts of the system, this

can only be done a fraction of the time and results in a minimal reduction of the energy drained by

the PL. On the other end, reducing the operating frequency of the circuit results in a notable re-

duction of the consumed energy, exactly as it is expected for the CPU case. Thus, downscaling the

DL BW has been proved as an effective means to minimize the energy consumption of the HeNB
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during those periods where a reduced performance can serve the needs of the attached users.

Similarly, distributing the underlying DSP functions across the network can be also exploited to

effectively minimize the energy consumption of the HeNB.

3.5.2.4. Radio Frequency Integrated Circuit

The energy measurements presented for the AD9361 RFIC apply to all three considered

NETCFGs (i.e., the RF stage is always active and operates locally, independently of the underly-

ing distribution of functions). As in the HWA L1 case, different settings for the MCS index, DL

BW and RBG allocation load are considered. Additionally, variations in the output power of the

RFIC are also evaluated.
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Figure 3.15: Variation of the power consumption at the RFIC as a result of changing the DL BW.

The weight of the DL BW configuration in the power drained by the RF stage is investigated

in the first experiment presented here. Figure 3.15a shows the results for all four signal BW

settings, when using a fixed MCS index of 7 (i.e., QPSK modulation), a complete allocation of

the available RBG resources and an RF output power of -19 dBm. Similarly, the output power of

the RFIC is attenuated to -39 dBm in Figure 3.15b. Analogous and elevated savings are observed

in both cases, which grow above 34% in the limit situation of downscaling the DL BW from 20

MHz to 1.4 MHz.

In the second experiment conducted at the RF stage, the effect of attenuating the RF output

power on the power consumption is investigated. As in the previous case, a fixed MCS index of

7 and a fully allocated DSLCH is considered. Moreover, three different RF output power settings

are utilized (i.e., -19, -29 and -39 dBm). In Figure 3.16a, the resulting energy consumption for

the 1.4 MHz DL BW case is shown, where modest energy savings can be observed (around 6%).

Correspondingly, the 5 MHz setting is depicted in Figure 3.16b, where higher gains are reported

(i.e., up to 20%).

A third experiment analyzes the impact of allocating a different number of RBGs on the power
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Figure 3.16: Variation of the power drained by the RFIC as a result of attenuating the RF output
power.
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Figure 3.17: Energy consumed by the RFIC under different RBG allocation cases.
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consumption of the RFIC. A fixed MCS index of 7 and output power of -19 dBm is used, for two

different DL BW settings (i.e., 10 MHz and 20 MHz). As it can be observed in Figure 3.17 the

variation of the energy consumption resulting from varying the RBG allocation is negligible. The

exact same behaviour has been found when adapting the MCS index WCP.

As a summary, adapting the MCS index or the RBG allocation does not help in reducing the

energy footprint of the RFIC. On the contrary, energy saving gains can be obtained by attenuating

the RF output power in those use cases where the link quality allows it. Furthermore, adopting

the most efficient DL BW configuration given the actual hostpot requirements is the optimum

reconfiguration in power saving terms.

3.6. Conclusions

In this section, we have first introduced a high accuracy energy measurement platform that

we have employed to characterize two different technologies. As a basis for our analysis, we have

revisited 802.11 rate adaptation by taking energy consumption into account. While some previ-

ous studies pointed out that MIMO rate adaptation is not energy efficient, we have demonstrated

through numerical analysis that, even for single spatial streams without interfering traffic, energy

consumption and throughput performance are different optimization objectives. Furthermore, we

have validated our results via experimentation. Our findings show that this trade-off emerges at

certain “mode transitions” when maximising the goodput, suggesting that small goodput degrada-

tions may lead to energy efficiency gains. For instance, a station at the edge of a mode transition

may decide to reduce the transmission power a little in order to downgrade the modulation coding

scheme. Or an opportunity to achieve a better goodput by increasing the transmission power and

modulation coding scheme could be delayed if the expected gain is small. Moreover, our analysis

have showed that these trade-offs arise as a consequence of the power consumption behaviour

of wireless cards and does not depend on the energy consumed in the rest of the device. In this

way, energy-aware rate adaptation may be achieved building on information local to the wireless

interface. Still, to develop energy-aware rate adaptation algorithms, further research is needed

to understand how the findings of this work can be leveraged in suboptimal conditions, and how

other effects, such as collisions and MIMO, affect the established trade-off.

As second objective of this chapter but not least important, we have extended our analysis

to the energy saving benefits that yield from the dynamic reconfiguration of the hotspot for LTE

deployments. This work has a strong applied component and revolves around the development

of a real-time hotspot prototype. Furthermore, actual power consumption measurements of the

different subsystems comprising the HeNB have been presented. The analysis of the energy con-

sumption of the prototype has also allowed to select the most interesting reconfiguration strategies

in the considered scenario. In more detail, both distributing the communication functions and/or

downscaling the utilized signal BW can help to greatly reduce the energy consumption of the

HeNB (i.e., savings up to 50% at a subsystem level). Hence, the energy-aware reconfiguration
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of the hotspot might help optimizing its energy footprint during those periods where the system

presents low performance requirements or is in need to save energy (e.g., battery powered HeNB).

It has also been observed that adapting the MCS index or RBG load WCPs results in minimal en-

ergy savings and, thus, should not be used as a main trigger to reconfigure the system (from an

energy saving perspective).
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Chapter 4

Analysis and Optimization of Resource
on Demand Schemes

In the previous chapter, we have first analyzed the energy impact in the Rate Adaptation (RA)

algorithms in IEEE 802.11. Next, we have addressed the characterization of a reconfigurable and

flexible LTE prototype, dissecting the energy consumption for i) multiple wireless communica-

tion parameters (MCS, RGB, BW) and, ii) different functional split configurations considering a

Cloud RAN (C-RAN) scenario. Both analyses are quantified in a short temporal scale1, dissecting

the energy consumption at almost packet level scale.

In this chapter, we present an analysis, performance evaluation and optimization in a larger

temporal scale of an entire wireless network deployment2, considering that the system is capable

to dynamically switch on/off the elements that form the network. We will denominate these

schemes as Resource-on-Demand (RoD). To analyze this kind of deployment, we will consider

real world constrains such as the start-up time of the devices, dissecting its impact on the overall

performance. By “start-up time” we mean the time it takes between the AP is activated until the

WLAN is announced. According to the seminal work of [75], typical start-up times of an AP

range between 12 and 35 seconds.

More specifically, we analyze a general case of a RoD scenario consisting of N overlapping

APs with non-zero start-up times. To achieve that, we present two flavors of the analytic model: i)

an exact model that accurately predicts performance in terms of energy consumption and service

time, but with a high computational complexity; and ii) a simplified model that sacrifices some

numerical accuracy in exchange for more affordable computational times. Finally, we present one

possible use of this simplified model, namely, the design of a simple configuration algorithm for

RoD, based on the minimization of the average service time. As the results show, the simplified

model supports the design of optimization policies that trade-off performance for significant gains

in energy efficiency.

1We define short temporal scale as measurements in a range of µs.
2By large temporal scale we define measurements in a range of seconds or even minutes.
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4.1. System Model

4.1.1. Scenario

We consider a cluster model like the one analyzed in [48], consisting of N identical APs

serving the same area but using non-overlapping channels. Although in typical high-density de-

ployments the APs may not be located exactly at the same position, the high level of overlapping

allows making this assumption, which simplifies the theoretical analysis. Indeed, as will be seen

in Section 4.4, this assumption does not impact the validity of the RoD strategy.

The need for a dense deployment such as the one addressed in this section is motivated by the

current trends in the increase of traffic demand. This trend has been forecasted by a number of

sources. According to [76], the number of devices and connections per user is steadily growing,

which increases user densities; in addition, the throughput required per user is also increasing, as

new services such as HD video streaming are becoming ubiquitous. Along the same lines, the

forecasts for future 5G networks,3 predict data rates 100 times higher than today’s. Even now, a

recent research estimates that typical densities in the deployment of APs may exceed 4000 APs

per square kilometre [45].

The scenario considered could be mapped to a very-dense 802.11a setup, where there are

many available channels in the 5 GHz band (the specific number depending on the country).

One of the APs is always on, in order to maintain the WLAN coverage, while the other APs

are opportunistically powered on (off) as users arrive (leave) the system. Powering an AP takes

a deterministic time Ton and, during this time, the AP is not available, so arriving requests are

served by any of the other APs. We neglect the time required to power off an AP.

Each AP consumes PAP units of power when active (i.e., during start-up and when powered

on) and zero otherwise. Although commodity hardware can support an intermediate state (i.e.,

switching on/off the wireless card), this does not bring as much savings as powering on/off the

complete device [67]. A “user” is a new connection generated by a wireless client. Following [77]

and [47], these are generated according to a Poisson process at rate λ and are always served by

the less loaded AP. Also following [47], we further assume that users’ demands are exponentially

distributed (i.e., each user downloads an amount of data that is exponentially distributed) and that

the AP bandwidth is evenly shared among all the users.4

Based on the above assumptions, service times (i.e., the time elapsed since a user arrives to

the WLAN until it has fully downloaded its demanded data) would be exponentially distributed

(with mean 1/µ) if every user got all the bandwidth of an AP, and the service rate (i.e., the inverse

of the average service time) is µ when there is only one serving AP, 2µ when there are two APs

3http://5g-ppp.eu/.
4The assumption on the Poissonian nature of user arrivals is aligned with the characterisation driven by mea-

surements provided by [78] and [79]. Furthermore, [47] shows that, while the distribution of the duration of user
connections is not a memory-less process, it can still be approximated by an exponential distribution with reasonable
accuracy. In the numerical evaluation, we will rely on a more accurate traffic model in order to assess the impact of
the simplifying assumptions upon which our analysis relies.

http://5g-ppp.eu/
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serving, etc. (i.e., we neglect the impact of channel sharing via contention). The total load is

given by ρ = λ/Nµ.

We also assume a load-balancing algorithm such that users (re)associate while they are be-

ing served, and that this (re)association time is negligible –note that this can be achieved with

the recent 802.11v and 802.11r amendments [80], which support triggering re-associations and

performing fast transitions, respectively, with minor disruption of the service.

4.1.2. Resource on Demand policy

In order to power on/off the APs we assume there is a “target” number M > 1 of users per

AP, i.e., the system will opportunistically power on/off APs in order to keep that “target” number

across resources (except for one AP that will be always on, to guarantee coverage). Based on this,

we assume a threshold-based policy with hysteresis, namely:

An AP will be powered on when the number of user per AP is ρh higher than this

target value.

An AP will be powered off when the number of user per AP is ρl lower than this

target value.

In this way, with K APs powered on, the K + 1-th AP will be powered on when the number

of users reaches

Threshold to power on another AP (NK): d(1 + ρh)KMe

while with K APs powered on, one AP will be powered off when the number of user reaches

Threshold to power off an AP (nK): b(1− ρl)KMc

We next impose some conditions on these thresholds to support an efficient operation. On the

one hand, with K APs powered on we impose that there are at least K associated users, so all

APs are serving traffic. This results in that the threshold to power off an AP with K users has to

be at least K, i.e.,

nK = b(1− ρl)KMc ≥ K , (4.1)

which results on the following condition for ρl

ρl < 1− 1

M
. (4.2)

On the other hand, to prevent (or, at least, reduce) “flip-flop” effects in the WLAN (i.e.,

to power on an AP and, once active, immediately power it off), we assume that the ρh and ρl
thresholds are set such that the number of users to power on an AP when K of them are already
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serving traffic is larger than the number of users required to power off an AP when K + 1 are

serving traffic, i.e.,

d(1 + ρh)KMe > b(1− ρl)(K + 1)Mc . (4.3)

Based on the above condition, and neglecting the rounding operations, to prevent the flip-flop

effects the following condition between ρh and ρl should hold

ρh >
1− ρl
K

− ρl , (4.4)

where the rhs of (4.4) is maximum for K = 1, i.e., the case of one AP, and therefore the ρh
threshold should be set to at least5

ρh > 1− 2ρl . (4.5)

In addition to the above, for analytical tractability we introduce the following restriction on

the RoD policy: at any point in time there will be at most one AP being powered on. More

specifically, while one AP is powering on there will be no decisions taken w.r.t. powering on or

off other resources, and only once the AP is available the system will decide on the amount of

resources needed. Fig. 4.1 exemplifies this policy for K = 2.

4 

4 users

1 AP

departure

3 users

1 AP

departure

5 users

2 AP

arrival

5 users

1 AP
6 users

2 AP
arrival departure

4 users

2 AP

Figure 4.1: Example of the policy with K = 2 APs

4.2. Exact Analysis

4.2.1. Model overview

We model the system with the semi-Markov process illustrated in Fig. 4.2. The label in

each arrow corresponds to the number of users (or range of users) in the system that triggers the

transition between the corresponding stages. There are four types of stages, depending on the

transitions that could happen between them:

Stage 1, which is the initial situation with only one AP active. The only possible

transition is to stage 1∗ (another AP is powered on), that is triggered when the number of

users reaches N1.
5Note that for simplicity our policy is set on fixed values of ρh and ρl, i.e., they do not change with the number of

active APs.
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Figure 4.2: Semi-Markov process for an IoD scheme with N = 4 APs.

Stage N , when all APs are active and serving traffic. The only possible transition is

to stage N − 1 (one AP is powered off), what happens when the number of users is nN .

Stages K (with 1 < K < N ), where there are K active APs. In this case there are

two possible transitions: one to stage K∗, triggered when the number of users reaches NK

and another AP is powered on (label NK in Fig. 4.2); and other to stage K − 1, triggered

when the number of users in the system is nK and one AP is powered off (label nK in

Fig. 4.2).

StagesK∗ (with 1 ≤ K < N ), where in addition to theK active APs there is another

AP booting up. For this type of stage there is a larger number of possible transitions, which

are determined by the number of users in the system after Ton:

• If there are NK+1 or more users, the system will move to stage K + 1∗, as the
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Figure 4.3: CTMC for stage 1: one active AP and no AP powering on

number of users is already above the threshold to switch on an additional AP. These

transitions are marked with the label ≥ NK+1 in Fig. 4.2.

• If there are between nK+1 + 1 and NK+1 − 1 users, the system will move to

stage K + 1. These transitions are marked with the label (nK+1, NK+1) in Fig. 4.2.

• If there are nK+1 users or less, the next stage will depend on whether the number

of users is also less than or equal to n2 (and therefore the next stage will be ‘1’),

between n2 + 1 and n3 (the next stage will be ‘2’), and so on. These transitions are

marked with the labels ≤ n2, (n2, n3], . . . in Fig. 4.2.

With the above, we have introduced the different stages of the semi-Markov process. We next

analyze each type of stage, their holding times, and the transition probabilities between them.

4.2.2. Modelling the stages of the semi-Markov model

4.2.2.1. Stage 1 (S1)

For the initial situation with only one AP active, following our assumptions the system can

be modelled with the continuous-time Markov chain (CTMC) illustrated in Fig. 4.3, where each

state represents the number of users being served and therefore reaching the absorbing state N1

corresponds to the case when another AP will be powered on (and stage 1 will be left).

The average time in this stage H1 corresponds to the time until absorption of the Markov

chain, i.e., the time since the system arrived to the chain until it reaches the absorbing state N1. If

we define Li(t) as the expected total time that a CTMC spends in state i during the interval [0, t),

H1 can be expressed as the sum of the terms Li(t) for all the non-absorbing states of the CTMC

when t→∞ [81]

H1 =

N1−1∑
i=0

L
(1)
i (∞) . (4.6)

The values of L(1)
i (∞) (the superscript (1) indicates that we are referring to the CTMC mod-

elling stage 1) can be obtained solving the following system of equations:

L(1)(∞)Q(1) = −π(1) (0) , (4.7)
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Figure 4.4: CTMC for Stage K: K active APs and no AP powering on

where

L(1)(∞) =
[
L

(1)
0 (∞), L

(1)
1 (∞), . . . L

(1)
N1−1(∞)

]
, (4.8)

π(1)(0) =
[
π

(1)
0 (0), π

(1)
1 (0), . . . π

(1)
N1−1(0)

]
, (4.9)

with π
(1)
i (0) the initial probability of state i, and Q(1) a N1 × N1 matrix with the following

non-zero elements:

qij =



−λ i = 1, j = 1

−λ− µ i = 2, . . . , N1, j = i

λ i = 1, . . . , N1 − 1, j = i+ 1

µ i = 2, . . . , N1, j = i− 1

(4.10)

The computation of π(1)(0) is not straightforward, as it depends on the stage the system was

before arriving to stage 1, which could be stage 2 or any other stage K∗, with K ≥ 1. We

detail how to compute π(1)(0) for this and the other cases in the next section, after we present the

modelling of the other stages of the semi-Markov process.

Finally, let P (ST | ST ′) denote the transition probability from stage T ′ to stage T , with T

and T ′ referring indistinctly to any stage K, including stages 0 and N , or K∗. For the case of

stage 1, we have that

P (S1∗ | S1) = 1 . (4.11)

4.2.2.2. Stages K (SK), 1 < K < N

For these stages, the resulting CTMC is illustrated in Fig. 4.4. In this case, while the arrival

rate is also λ, the service rate accounts for the total number of powered-on APs, which is constant

and equal to K · µ for all states.6 As described above, there are two absorbing states: one cor-

responding to the powering on of another AP (when the system reaches NK users), and another

corresponding to the de-activation of one AP (when the number of users is nK).

6Note that we have imposed nK > K with (4.1).
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Similarly to the previous case, the average time in a stage K can be computed as

HK =

NK−1∑
i=nK+1

L
(K)
i (∞) . (4.12)

In order to compute L(K)
i (∞) we use the same expression as in the previous case

L(K)(∞)Q(K) = −π(K) (0) , (4.13)

where

L(K)(∞) =
[
L

(K)
nK+1(∞), L

(K)
nK+2(∞), . . . L

(K)
NK−1(∞)

]
, (4.14)

π(K)(0) =
[
π

(K)
nK+1(0), π

(K)
nK+2(0), . . . π

(K)
NK−1(0)

]
, (4.15)

and Q(K) is a (NK − nK − 1)× (NK − nK − 1) matrix, whose non-zero elements are

qij =


−λ−Kµ i = 1, . . . , NK − nK − 1, j = i

λ i = 1, . . . , NK − nK − 2, j = i+ 1

Kµ i = 2, . . . , NK − nK − 1, j = i− 1

(4.16)

Again, the computation of π(K)(0) requires the knowledge of the stage of the system before

entering stage K, which we will address in the next section.

To finalise the analysis of this stage, we have to compute the two transition probabilities from

this stage to stage K∗ (when the chain ends in the absorbing state NK) and to stage K − 1 (when

the chain falls into the absorbing state nK), denoted as P (NK) and P (nK) respectively,

P (SK∗ | SK) = P (NK) , (4.17)

P (SK−1 | SK) = P (nK) . (4.18)

These can be computed as [82]

[P (nK) P (NK)] = π(K)(0)B(K) , (4.19)

with B(K) a (NK − nK − 1) × 2 matrix whose element bij is the probability of ending in the

absorbing state j, given that the chain starts in the transient state i. This matrix can be computed

as

B(K) =
[
I− T(K)

]−1
R(K) , (4.20)

where I is the identity matrix, T(K) is a (NK−nK−1)×(NK−nK−1) matrix with the transition

probabilities between non-absorbing states, and R(K) is a (NK−nK−1)×2 matrix denoting the
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Figure 4.5: Markov chain when all APs are active

transition probabilities from non-absorbing to absorbing states. Both matrices are obtained from

the associated discrete-time Markov chain (DTMC) of the CTMC, and their non-zero elements

are

tij =


λ

λ+Kµ i = 1, . . . , NK − nK − 2, j = i+ 1

Kµ
λ+Kµ i = 2, . . . , NK − nK − 1, j = i− 1

(4.21)

rij =


Kµ

λ+Kµ i = 1, j = 1

λ
λ+Kµ i = NK − nK − 1, j = 2

(4.22)

4.2.2.3. Stage N (SN )

When all APs are active and serving traffic the resulting CTMC is the one depicted in Fig. 4.5,

where the arrival rate is λ and the service rate is N ·µ. As in the case of stage 1, there is only one

absorbing state, the one corresponding to the switching off of one AP when there are nN users in

the system and all the APs are on, but now the chain has an infinite number of states.

To compute the holding time in this stage, we assume that the system is stable (i.e., λ < Nµ),

so there is a state nD with nD > nN such that

∞∑
i=nD+1

L
(N)
i (∞) ≈ 0 , (4.23)

and therefore the holding time is

HN ≈
nD∑

i=nN+1

L
(N)
i (∞) , (4.24)

where L(N)(∞) is obtained from

L(N)(∞)Q(N) = −π(N) (0) , (4.25)

with

L(N)(∞) =
[
L

(N)
nN+1(∞), L

(N)
nN+2(∞), . . . L

(N)
ND

(∞)
]
, (4.26)

π(N)(0) =
[
π

(N)
nN+1(0), π

(N)
nN+2(0), . . . π(N)

nD
(0)
]
, (4.27)
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Figure 4.6: Markov chain for the case of K active APs and one AP powering on

and Q(N) is a (nD − nN )× (nD − nN ) matrix with the following non-zero elements

qij =


−λ−Nµ i = 1, . . . , nD − nN , j = i

λ i = 1, . . . , nD − nN − 1, j = i+ 1

Nµ i = 2, . . . , nD − nN , j = i− 1

(4.28)

The computation of π(N)(0) is described in the next section. From this stage, the only possi-

ble transition is to stage N − 1, i.e.,

P (SN−1 | SN ) = 1 . (4.29)

4.2.2.4. Stages K∗ (SK∗)

For the stages with K active APs and one AP being powered on, the resulting Markov chain

is illustrated in Fig. 4.6. In these stages there are no absorbing states that trigger the transition

to other stages, since this happens when the amount of time spent in the stage is Ton. Because

of this, the number of users that can be in the system during this stage varies between zero an

infinity. Additionally, the service rate depends on the number of users as there should be at least

one user per active AP for the total rate to be Kµ.7 For completeness, the time spent in a stage

K∗ is given by

HK∗ = Ton . (4.30)

In this case, we need to obtain the expected time that the system spends in each state i during

the Ton seconds that a stage K∗ lasts, L(K∗)
i (Ton), and the probability of each state after Ton,

π
(K∗)
i (Ton). These terms are required to compute the transition probabilities from stage K∗ to

the other stages and to obtain the performance figures of the system. The values for L(K∗)
i (Ton)

and π(K∗)
i (Ton) can be obtained with the expressions of the transient analysis of an M/M/K queue,

which are

L
(K∗)
i (t) =

∫ t

0
π

(K∗)
i (u)du , (4.31)

where π(K∗)
i (t) is the probability of being in state i at time t, which is determined by the funda-

7In fact, the CTMC corresponds to the classic M/M/K queue
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mental equations of the CTMC

dπ(K∗) (t)

dt
= π(K∗) (t) Q(K∗) , (4.32)

with π(K∗) (t) = [π
(K∗)
i (t)]i the transient state probability vector and Q(K∗) the infinitesimal

generator matrix of the CTMC. The non-zero elements of Q(K∗) are

qij =



−λ− (i− 1)µ i = 1, . . . ,K, j = i

−λ−Kµ i = K + 1, . . . , j = i+ 1

λ i = 1, ..., j = i+ 1

(i− 1)µ i = 2, . . . ,K, j = i− 1

Kµ i = K + 1, . . . , j = i− 1

(4.33)

Note that to solve (4.31) and (4.32), we need again the vector of initial state probabilities

π(K∗)(0). On the other hand, as there are no closed expressions for the transient behaviour of

an M/M/K queue, we need to use approximate methods (such as uniformization [81]) to solve it

and compute Li(Ton) and πi(Ton). Like in the previous cases, the computation of π(SK∗)(0) is

described in the next section.

Finally, as noted before, from stage K∗ the system can go to any other stage K ′, with K ′ ≤
K + 1, and to stage K + 1∗. In this way, after Ton the system can have K or less APs powered

on, with the following probabilities

P (SK′ | SK∗) =


∑n2

i=0 π
(K∗)
i (Ton), K ′ = 1∑nK′+1

i=nK′+1 π
(K∗)
i (Ton), 1 < K ′ ≤ K

(4.34)

while the probability of having more APs on (or being powered on) after Ton depends on whether

there are more APs to be powered on, i.e., if K < N − 1, or not (K = N − 1). For the former

case, we have that

P (SK+1 | SK∗) =

Nk+1−1∑
i=nK+1+1

π
(K∗)
i (Ton) , (4.35)

P (SK+1∗ | SK∗) =

∞∑
i=Nk+1

π
(K∗)
i (Ton) , (4.36)

while for the case of K = N − 1 there are no more APs to activate, and therefore

P (SN | SN−1∗) =

∞∑
i=nN+1

π
(N−1∗)
i (Ton) . (4.37)
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4.2.3. Computing the steady-state distribution

To complete the analysis of the steady-state distribution of the semi-Markov process, we have

to express the set of initial conditions for every stage in terms of the final state probabilities of

the other stages. To this end, we denote π(T )
i (0) as the probability that the initial state is i for the

stage T (again we use T for generalization purposes, with stage T we refer indistinctly to any

stage K, including stages 0 and N , or K∗). This probability can be computed with the law of

total probability as

π
(T )
i (0) =

∑
ST ′∈TT

π
(T |T ′)
i (0)PT (T ′) , (4.38)

where

TT is the set of stages that can reach stage T in one transition between stages,

π
(T |T ′)
i (0) is the probability that the initial state of the CTMC modelling stage T is i,

given that the system was in stage T ′ and transitioned to state T ,

PT (T ′) is the probability that the system was in stage T ′ before the stage transition,

given that it is now in stage T .

The set T can be easily derived for each stage from the Semi-Markov model described in

Section 4.2.1. Specifically we have,

T1 = {S2, S1∗, . . . SN−1∗} , (4.39)

TK = {SK+1, SK−1∗, . . . SN−1∗} for 1 < K < N, (4.40)

TN = {SN−1∗} , (4.41)

T1∗ = {S1} , (4.42)

TK∗ = {SK , SK−1∗} for 1 < K < N − 1 . (4.43)

As an example, for the case of Fig. 4.2 with 4 APs, we have T1 = {S2, S1∗, S2∗, S3∗}, T2 =

{S3, S1∗, S2∗, S3∗}, T3 = {S4, S2∗, S3∗}, T4 = {S3∗}, T1∗ = {S1}, T2∗ = {S2, S1∗}, T3∗ =

{S3, S2∗}.
The computation of π(T |T ′)

i (0) depends on whether stage T ′ corresponds to a stage with an

AP being powered on or not. For the latter case, the transition is triggered because the number of
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stations reached a (de)activation threshold (i.e., an absorbing state), and therefore we have

π
(K∗|K)
i (0) =

1, i = NK

0, otherwise
(4.44)

for 1 ≤ K < N (note that we have included here the transition from stage 1 to stage 1∗ as well),

and

π
(K−1|K)
i (0) =

1, i = nK

0, otherwise
(4.45)

for 1 < K ≤ N (we have included the transition from stage N to stage N − 1 as well). On the

other hand, when stage T ′ is a K∗ stage, there are multiple states that can result in a transition to

a stage, which results in the following cases:

(i) If the transition is to stage 1 (ST = S1), then

π
(1|K∗)
i (0) =


π
(K∗)
i (Ton)∑n2

j=0 π
(K∗)
j (Ton)

, 0 ≤ i ≤ n2

0, n2 < i < N1

(4.46)

(ii) If the transition is to a stage 1 < K ′ ≤ K, then

π
(K′|K∗)
i (0) =


π
(K∗)
i (Ton)∑nK′+1

j=nK′+1 π
(K∗)
j (Ton)

, nK′ < i ≤ nK′+1

0, nK′+1 < i < NK′

(4.47)

(iii) If K < N − 1 (i.e. ST ′ 6= SN−1) and the transition is to stage K + 1, then

π
(K+1|K∗)
i (0) =

π
(K∗)
i (Ton)∑NK+1−1

j=nK+1+1 π
(K∗)
j (Ton)

. (4.48)

(iv) If K < N − 1 (again ST ′ 6= SN−1) and the transition is to stage K + 1∗, then

π
(K+1|K∗)
i (0) =


0, 0 ≤ i ≤ NK+1

π
(K∗)
i (Ton)∑∞

j=NK+1
π
(K∗)
j (Ton)

, i > NK+1

(4.49)

(v) If K = N − 1 and the transition is to stage N , then

π
(N |N−1∗)
i (0) =

π
(N−1∗)
i (Ton)∑∞

j=nN+1 π
(K∗)
j (Ton)

. (4.50)
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Finally, the computation of PT (T ′) can be done with the law of total probability again

PT (T ′) =
P (ST | ST ′)φT ′∑

SQ∈TT P (ST | SQ)φQ
, (4.51)

where P (ST | ST ′) denotes the stage transition probability computed in (4.11), (4.17), (4.18),

(4.29), (4.34)-(4.37), and φT is the stationary probability of stage T in the embedded Markov

chain of the semi-Markov process. The computation of φT is done via the system

φ = φP , (4.52)

where φ is a row vector whose components are the values of φT , and P is a matrix composed of

the stage transition probabilities of the embedded Markov chain.

With the above, we have completed the analysis that enables in the next section the compu-

tation of the steady state probabilities of the semi-Markov model. We also address there how to

compute performance figures based on these probabilities.

4.2.4. Performance figures

We characterize the performance of the system with two figures:

The average power consumed by the infrastructure P .

The average service time of a user Ts.

The average power consumed by the infrastructure can be expressed in terms of the average

number of APs that are powered on, NAP , as follows

P = NAPPAP . (4.53)

NAP is computed as the weighted sum of the number of APs powered on in each stage times

the probability of being in that stage

NAP =
N∑
K=1

KPK +
N−1∑
K=1

(K + 1)PK∗ , (4.54)

where PK and PK∗ are the stationary probabilities of the stages of the semi-Markov process, i.

e., the probability of being in stage K (including stages 0 and N ) or K∗ at a specific moment.

These probabilities are related to the stage probabilities of the embedded Markov chain as follows

PT =
HTφT∑N

K=1 φKHK +
∑N−1

K=1 φK∗HK∗
. (4.55)

The average service time Ts, which corresponds to the time between the instant when a user

generates a service request and when this request is completely served, can be obtained via Little’s
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formula

Ts =
Nu

λ
, (4.56)

with Nu the average number of users in the system. This can be computed with the law of total

probability as follows

Nu =

∞∑
i=1

i

(
N∑
K=1

π
(K)
i PK +

N−1∑
K=1

π
(K∗)
i PK∗

)
, (4.57)

where π(K)
i and π(K∗)

i are the average probabilities of having i users, given that the system is in

stage K or K∗, respectively. This can be computed, for each type of stage, as

π
(K)
i =

L
(K)
i (∞)

HK
, (4.58)

π
(K∗)
i =

L
(K∗)
i (Ton)

Ton
. (4.59)

As can be seen, all the performance metrics depend on the variables φT , HT , L(K)
i (∞) and

L
(K∗)
i (Ton), whose relationships have been described through Sections 4.2.2 to 4.2.3. In order

to obtain an exact solution for them, we should solve a system of non-linear equations with the

additional problem that there are no closed expressions for the transient analysis of the CTMC

modelling stages K∗. To solve this, we propose the iterative algorithm described in Algorithm

1. In this algorithm, the initial values of π(K)(0) can be set assuming that all the states with

non-zero probabilities according to (4.46)-(4.50) have the same initial probability. Regarding

π(K∗)(0), a good starting guess is to assume that π(K∗)
i (0) = 1 for i = NK and 0 otherwise (this

is what would happen if Ton = 0). Finally, a common stopping criterion is that the norm of the

vector difference between the old and updated version of vectors π(K)(0) and π(K∗)(0) is below

a threshold ε.

4.3. Simplified Analysis

4.3.1. Motivation and simplification

The main weaknesses of the model derived in the previous section is that the initial probabil-

ities of a stage depends on the “final” probabilities of the rest of stages, which depend in turn of

their initial probabilities. This causes a loop that requires the use of an iterative algorithm with

non-negligible computational complexity as the one described above. We next describe how to

simplify the analytical model of Section 4.2 to enable an efficient computation of the performance

figures, at the cost of some numerical inaccuracy.

The proposed simplification affects exclusively the transitions from stages K∗. As can be

seen in Fig. 4.2, from these stages the system could go to stage K + 1∗ or any other stage K ′,
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Algorithm 1 Solution to the exact model

1: Set initial estimations of π(K)(0) and π(K∗)(0)
2: repeat
3: Compute L(K)(∞) with (4.7), (4.13) and (4.25)
4: Obtain HK with (4.6), (4.12) and (4.24)
5: Solve (4.31)-(4.32) to obtain L(K∗)(Ton) and π(K∗)(Ton)
6: Compute P (T | T ′) with (4.17)-(4.20) and (4.34) - (4.37)
7: Solve (4.52) to obtain φ
8: Obtain PT (T ′) with (4.51)
9: Compute π(T |T ′)

i (0) with (4.44)-(4.50)
10: Update π(K)(0) and π(K∗)(0) with (4.38)
11: until Stopping criterion is met
12: Obtain π(K)

i and π(K∗)
i with (4.58) and (4.59)

13: Compute PT with (4.55)
14: Obtain Nu with (4.57) and NAP with (4.54)
15: Compute Ts with (4.56) and P with (4.53)

withK ′ ≤ K+1. The direct transitions between stagesK∗make that the initial state probabilities

for these stages π(K∗)
i (0) could be non-zero for i ≥ NK .

To break the coupling between stages K∗, we assume that the initial state probabilities of

stages K∗ are fixed and equal to

π
(SK∗)
i (0) =

1, i = NK

0, otherwise
(4.60)

This implies that the system enters into stages K∗ always with NK users. This assumption

holds as long as the transition probability between a stage K∗ and the stage K + 1∗ is small,

which is true for typical Ton values.

Once this assumption is made, the transition probabilities from stages K∗ to other stages are

fixed and independent of the initial state probabilities of the rest of stages. Now, we also have

to tackle the same apparent coupling for the initial state probabilities of stages K. To solve this,

we build a new semi-Markov model derived from the one depicted in Fig. 4.2 substituting stages

K by the embedded DTMC of their corresponding CTMC. The description of this new model is

performed in the next Section.

4.3.2. Model description

Fig. 4.7 shows the embedded DTMC of the semi-Markov process described above. The left-

most states, which model stages K (including 0 and N ), are defined by the pair (i,K), with i the

number of users in the system and K the number of powered-on APs. The holding time of these

states is an exponential random variable with mean (λ+Kµ)−1. The rightmost states model the

stages K∗ and their holding time is constant and equal to Ton. To keep a uniform notation, we
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…
…
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…
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Stage 2
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…

Stage 3

Figure 4.7: Simplified model.

note these states as (∗,K). The non-null transitions probabilities are described in (4.61).

The first two equations model the transitions between states of Stage 1, the first one corre-

sponds to the departure of a user and the second one its arrival. The third and fourth equations

model the transitions between states of stages 2 ≤ N ≤ N − 1 and the fifth and sixth the tran-

sitions between states of stage N . The seventh equation corresponds to the switch off of an AP

when a user departures and stage K remains with nK users, which triggers the transition to stage

K − 1. The eighth equation models the switching on of a new AP (i.e. the transition to stage

K∗) when the NK-th user arrives and K APs are on. Note that in all the cases the transition
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

P (i− 1, 0 | i, 0) = µ
λ+µ i = {1, . . . , N1 − 1}

P (i+ 1, 0 | i, 0) = λ
λ+µ i = {0, . . . , N1 − 2}

P (i− 1,K | i,K) = Kµ
λ+Kµ i = {nK + 2, . . . , NK − 1} ,

K = {2, . . . , N − 1}

P (i+ 1,K | i,K) = λ
λ+Kµ i = {nK + 1, . . . , NK − 2} ,

K = {2, . . . , N − 1}

P (i− 1, N | i,N) = Nµ
λ+Nµ i = {nN + 2, . . .}

P (i+ 1, N | i,N) = λ
λ+Nµ i = {nN + 1, . . .}

P (nK ,K − 1 | nK + 1,K) = Kµ
λ+Kµ K = {2, . . . , N}

P (∗,K | NK − 1,K) = λ
λ+Kµ K = {1, . . . , N − 1}

P (∗,K + 1 | ∗,K) =
∑∞

i=NK+1
π

(K∗)
i (Ton) K = {1 . . . , N − 2}

P (i,K + 1 | ∗,K) = π
(K∗)
i (Ton) i = {nK+1 + 1, . . . , NK+1 − 1} ,

K = {1 . . . , N − 2}

P (i,N | ∗, N − 1) = π
(N−1∗)
i (Ton) i = {nN + 1, . . . , }

P (i,K ′ | ∗,K) = π
(K∗)
i (Ton) i = {nK′ + 1, . . . , nK′+1} ,

K = {2 . . . , N − 1} ,K ′ = {2 . . . ,K}

P (i, 1 | ∗,K) = π
(K∗)
i (Ton) i = {0, . . . , n2} ,K = {1 . . . , N − 1}

(4.61)

probabilities only depend on the parameters λ, µ and the number of APs that are serving traffic at

the moment of the transition.

The next equations model the transitions from states (∗,K), (i.e., from stages K∗). Now the

transition probabilities are of the form π
(K∗)
i (Ton) and can be computed solving (4.31) and (4.32)

assuming the initial state probabilities given in (4.60). Specifically, the ninth equation corresponds

to the transition from stage K∗ to stage K + 1∗ because the system reaches NK+1 users during

the booting-up of the K + 1-th AP. The tenth equation models the transition from stage K∗ to a

state where there are K + 1 APs powered on and a number of users ranging between nK+1 + 1

and NK+1 − 1. The eleventh equation is similar to the previous one but for stage N − 1∗. In this

case, there is no upper limit in the number of users since there is not any remaining AP to boot

up. The twelfth equation models the transition from stage K∗ to states where the number of APs

on is below K + 1. This implies that during the booting up of the K + 1-th AP several users have

left forcing the system to switch off some APs. The last equation is similar to the previous one

and corresponds to transitions to states where only one AP is on.

With the previous equations, the DTMC can be easily solved to obtain the stationary distri-

bution of the state probabilities, that we name P (i,K) (or P (∗,K)) hereafter. With these, the
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stationary probability of each state of the semi-Markov process, Φ(i,K) (or Φ(∗,K)) are

Φ(i, 1) =
P (i, 1)

Ω · (λ+ µ)
, 0 ≤ i < N1 (4.62)

Φ(i,K) =
P (i,K)

Ω · (λ+Kµ)
, nK < i < NK , 1 < K < N (4.63)

Φ(i,N) =
P (i,N)

Ω · (λ+Nµ)
, i > nN (4.64)

Φ(∗,K) =
P (∗,K)Ton

Ω
, 1 ≤ K < N (4.65)

with

Ω =

N1−1∑
j=0

P (j, 1)

λ+ µ
+

N−1∑
K′=2

NK′−1∑
j=nK′+1

P (j,K ′)

λ+K ′µ

+

∞∑
j=nN+1

P (j,N)

λ+Nµ
+

N−1∑
K′=1

P (∗,K ′)Ton . (4.66)

The stationary probabilities of stages K∗ are directly PK∗ = Φ(∗,K), while for stages K we

have

P1 =

N1−1∑
i=0

Φ(i, 1) , (4.67)

PK =

NK−1∑
i=nK+1

Φ(i,K) , (4.68)

and

PN =

∞∑
i=nN+1

Φ(i,N) . (4.69)

Once these terms are known, we can compute the average power P with (4.55) and (4.54). The

average service time Ts is obtained with (4.56) as well, but in this case Nu is

Nu =

∞∑
i=1

i

(
N∑
K=1

Φ(i,K) +

N−1∑
K=1

π
(K∗)
i PK∗

)
, (4.70)

with π(K∗)
i the same as in (4.59).

To end this Section, we present in Algorithm 2 the different steps required to obtain the per-

formance figures of the system. As can be seen, in this case we avoid the presence of loops.
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Algorithm 2 Solution to the approximate model

1: Set π(K∗)(0) with (4.60)
2: Solve (4.31) and (4.32) to obtain L(K∗)(Ton) and π(K∗)(Ton)
3: Solve the DTMC with transitions given by (4.61) to obtain P (i,K) and P (∗,K)
4: Compute (4.62)-(4.66) to obtain Φ(i,K) and Φ(∗,K)
5: Obtain P1, PK and PN with (4.67)-(4.69)
6: Obtain Nu with (4.70) and NAP with (4.54)
7: Compute Ts with (4.56) and P with (4.53)

4.4. Numerical Results

We next present a numerical evaluation of a RoD system in terms of the performance figures

considered, namely, the average service time Ts and the power consumed by the infrastructure

P . To this end, we compute these two variables for a variety of scenarios, these being defined in

terms of the network load or the configuration of the RoD scheme (given by the parameters M ,

ρh, ρl). In the simulation results presented, we compare the results of our approximate model

against the ones obtained via simulation,8 while in Section 4.4.3 we assess the computational

complexity of this model against the accurate one.

Throughout all simulations, we consider the following scenario:9 (i) various APs can be si-

multaneously activated (instead of only one, as assumed in the analysis); (ii) there is no complete

overlap of the coverage areas: we assume a deployment centred around one AP with a 10 m

coverage radio that is always on, and N − 1 APs with the same coverage radios that are ran-

domly deployed within a 4 m circle centred around the first AP and that will be opportunistically

(de)activated; and (iii) users are not static but follow the classical random waypoint model [83],

selecting a novel destination at random after reaching the previous one, and moving at a speed

that is randomly chosen between 0.3 and 0.7 m/s. We further assume that there are up to N = 10

APs available,10 that a single AP consumes 3.5 W when active (which corresponds to the average

power consumed by a Linksys device [67]) and zero otherwise, and that µ = 0.1 s−1.

4.4.1. Impact of network load

We first analyze the power consumption as the network load ρ = λ/(Nµ) varies. To this

end, we fix a target distribution of M = 5 users per AP and the following two configurations of

the (de)activation thresholds {ρh, ρl}: {100%, 30%} and {50%, 25%}, the former being more

“reluctant” to increase the number of APs when the network load increases. To understand the

8Our approximate model is solved numerically using Octave (https://www.gnu.org/software/
octave/), while simulation results are obtained from a discrete event simulator written in C++.

9Note that this scenario relaxes some of the simplifying assumptions behind our model, and thus allows to assess
the impact of such assumptions on the results.

10This is a reasonable number for dense scenarios: for instance, an auditorium with 360 users, each of them de-
manding 3 Mbps for HD video, would require 31 802.11n APs with a throughput of 35 Mbps (data taken from [76]).
Results of the same order of magnitude are obtained in [84, 85].

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
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Figure 4.8: Average power consumption vs. network load.

impact of Ton on performance, we consider the cases of zero and 30 s start-up times. We plot the

computed figures of P in Fig. 4.8, where we use squares for the simulation values (average of 10

simulation runs, each consisting of more than 100k users) and lines for the analysis.

According to the results, the power consumption is monotonously increasing with the network

load, with the analysis practically coinciding with the simulation values, with some minor devia-

tions (approx. 1.8%) for high loads (we depict a zoomed version of the figure for these values).

Considering the relative performance of each configuration, for the case of Ton = 0 the results

overlap, while for the case of Ton = 30 s, the policy that is “more eager” to power APs leads to

higher power consumption.

We next analyze the performance in terms of service time and the trade-off with power con-

sumption. To this end, we plot Ts vs. P in Fig. 4.9, with each simulation point corresponding

to a different value of ρ, which varies from 0.05 to 0.9 in steps of 0.05. Here we also provide

for comparison the “ordinary” case of no RoD scheme (all APs always on), which leads to the

smallest service times and the largest power consumptions. As in the previous case, the analysis

accurately predicts simulation results, with differences below 2.5%. The figure also illustrates

that the service time is a monotonous increasing function of the load: steep for ρ ≤ 0.3, which

is caused by the “drastic” impact of powering on an AP when the number of active resources is

relatively low, and then more gradual until ρ ≈ 0.9. Concerning the impact of the considered

configurations, for the same value of the {ρl, ρh} parameters, the non-zero start time has an im-

pact of approx. 5 s for the more dynamic configuration, and approx. 2 s for the more “reluctant”

configuration, while the impact of the activation policy results in differences of approx. 12 s.
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Figure 4.9: Average service time vs. average power consumption.

4.4.2. Impact of RoD configuration

Next, we consider the case of a fixed value of ρ = 0.5, and compute the service time and

power consumed for the two considered {ρh, ρl} configurations and different values of the target

number of users per AP M . We plot the service time and the power consumption as a function of

M , with the results being depicted in Fig. 4.10.

For the case of the service time (Fig. 4.10, top), again simulation results practically coincide

with the analysis. The larger M is, the longer the service times are, as users are more likely to

share the capacity of a single AP before activating new resources. In fact, the relation is practically

linear, e.g., when M changes from 5 to 10, the service time doubles for all considered scenarios:

as there are, on average, more users per AP, the service times will be longer.

For the case of the power consumption, the resulting values are depicted in Fig. 4.10 (bottom).

Here, we note that the results for both RoD configurations for Ton = 0 overlap, and result in a

constant power consumption regardless of the value of M . The reason for this behaviour is that,

as M increases, more users per AP are required to power on additional resources, but also longer

service times will result, leading to more users in the system. In fact, the power consumption of

17.5 W implies that, on average, 5 out of the 10 available APs are on, which matches the ρ = 0.5

load. When the start-up times are non-zero, there is a small reduction of P as M increases. The

reason for this is that, on average, the system is less likely to power on additional APs, which

incurs in the overhead of the start-up process. Finally, we also note that simulation values are

very close to those from the analysis, with relative differences of approx. 4% (the smaller M

is, the larger the differences are, as the impact of non-perfect overlap of coverage areas is more

noticeable for a small number of users).
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Figure 4.10: Average service time (top) and power consumption (bottom) vs. target number of
users per AP.

4.4.3. Computational complexity

We next estimate the computational complexity of obtaining the numerical solution for the

exact and the simplified analysis. To this end, we assume a scenario with N = 10 APs, fix

M = 4, and consider different configurations of Ton, ρ, and {ρh, ρl} parameters. For each set of

parameters, we compute the average service time Ts and power consumption P using the exact

and the simplified analysis, as well as the time required to compute these values for each case.

We note that we use Octave to compute the numerical solution for these analysis, running over

an Intelr Xeonr X5550 @2.67GHz with 48 GB RAM, and therefore our comparison serves to

illustrate the relative differences in complexity, and not absolute values.

We provide in Table 4.1 the results of the above computation. More specifically, we provide

in the Table, for each considered configuration, the relative difference between the two analyses

in terms of service time (denoted as ∆Ts) and power consumption (denoted as ∆P ), and the

corresponding computation times. There are two main observations from the results: (i) on the

one hand, for both power and service time figures, the resulting differences between the numerical

analyses are at most 3%, and in many cases well below 1%; and (ii) on the other hand, for the

computational times, there are two orders of magnitude of difference between them in all but for

two cases. Finally, it is also worth noting that, for the case of the exact analysis, computational

times grow with Ton, which confirms to some extent that the K∗ stages are responsible for the

computational burden.
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Table 4.1: Relative differences and computational times of the exact and simplified analyses.

Ton (s) ρh, ρl ρ
Error Comp. time (s)

∆Ts ∆P Exact Simpl.

0
{0.5, 0.75} 0.25 ≈ 0% ≈ 0% 104.28 2.35

0.75 ≈ 0% ≈ 0% 102.34 2.35

{1, 0.7} 0.25 ≈ 0% ≈ 0% 102.78 2.40
0.75 0.06% 0.04% 104.58 2.30

15
{0.5, 0.75} 0.25 0.22% 0.14% 167.69 3.62

0.75 0.91% 0.58% 269.43 5.77

{1, 0.7} 0.25 0.02% 0.01% 166.94 3.9
0.75 0.17% 0.14% 276.20 5.65

30
{0.5, 0.75} 0.25 1.97% 1.05% 320.52 6.75

0.75 3.09% 1.80% 519.96 11.36

{1, 0.7} 0.25 0.41% 0.23% 316.62 7.03
0.75 1.17% 0.66% 541.04 11.72

4.4.4. Realistic traffic model

To analyze the impact of the simplifying assumptions on the traffic model of our analysis,

in the following we compare the results obtained with our analysis against those obtained from

simulations with a “realistic” traffic model. In particular, we follow [?] and assume that when

a station joins the WLAN, it performs a random number of download requests that follows a

BiPareto distribution. The length of each download also follows a BiPareto distribution, and

the interarrival time of requests follows a lognormal distribution. We fix the average number of

requests to 10, with the following parameters of the BiPareto distribution: α = 0.06, β = 1.73,

c = 6.61 and k = 1; the lognormal distribution is simulated with parameters µ = 0.34 and σ =

0.63; and the request lengths are initially modelled with parameters α = 0.0, β = 2.13, c = 20.0

and k = 1.5 (which leads to an average download size of 30 MB), while the user arrival rate is

Poissonian at a rate ranging from 0.05 to 0.9 s−1.

We show in Fig. 4.11 the resulting average service time vs. power consumption for different

configurations of the RoD scheme and values of Ton, where (like in Fig. 4.9) we vary the load

from 0.05 to 0.9 in steps of 0.05. We observe that the accuracy of the model worsens as the service

rate increases: the deviations are smaller than 5% for ρ < 0.8 but notably higher as the system

gets closer to saturation. We conclude from these results that overall the accuracy of the model is

reasonable for the range of loads of interest (i.e., sufficiently far from congestion).

4.4.5. Optimal Configuration of a RoD scheme

While the exact analysis incurs in a notable complexity, we have seen that the simplified anal-

ysis is able to compute the performance figures of a RoD scheme in an affordable manner while

keeping a notable accuracy. In this way, it can be used, for instance, to compute the optimal con-

figuration of a RoD algorithm, given a set of estimated network conditions, these being expressed
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Figure 4.11: Average delay vs. power consumed with non-exponential service demands.

in terms of λ and µ. In the following, we present one example of such configuration algorithms,

although we restrict ourselves for simplicity to the considered RoD policy (although there could

be many others) and a simple optimization criterion. Our optimization scheme works as follows.

Given an estimation of the network conditions, we set a bound on the maximum service time

Tmax, and perform a sweep on the configuration space {M,ρh, ρl} to look for the configuration

that minimises power while guaranteeing an average service time Ts below Tmax. In our search,

M goes from 2 to 10 in steps of one, while ρh and ρl go from 0.05 to 1.25 in steps of 0.05.

The configuration resulting from this search and the corresponding performance figures are

given in Table 4.2 for three different service rates µ = {0.05, 0.1, 0.2} s−1 and the corresponding

three service time bounds Tmax = {80, 40, 20} s, respectively. If we compare the consumed

power with a reference scenario of the 10 APs always on (i.e., consuming 35 W), the reduction

is quite considerable, ranging between 25% and 75% depending on the network load. Finally,

it is also worth remarking that Ton has a non-negligible effect on the resulting configuration

parameters.

4.5. Conclusions

As shown in the previous chapter, reconfiguring the hotspots of network deployment will lead

in energy efficient gains under certain condition. In this chapter, we have gone a step further

analyzing the Resource-on-Demand schemes. We have proved that these schemes are required in

dense networks to adapt to the varying load while maintaining an energy efficient performance.

Moreover, we have developed an analytical model of these schemes that, in contrast to previous

publications, accounts for the non-zero start-up times of real hardware. We have also presented a
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Table 4.2: Performance an optimal configurations of a RoD scheme.

µ(s−1) ρ Ton(s) M ρh ρl Ts(s) P (W )

0.05

0.25
0 3 1.20 0.55 75.93 8.76

15 4 0.75 0.30 79.17 8.96
30 3 1.20 0.30 74.77 9.16

0.5
0 3 1.20 0.30 76.89 17.33

15 3 1.15 0.30 76.60 17.55
30 3 1.15 0.30 78.41 17.81

0.75
0 3 1.20 0.30 77.44 25.35

15 3 1.20 0.30 79.75 26.00
30 2 0.95 0.45 53.00 25.34

0.10

0.25
0 3 1.20 0.55 37.96 8.76

15 3 1.20 0.30 37.38 9.16
30 3 1.20 0.30 39.98 9.50

0.5
0 3 1.20 0.30 38.44 17.33

15 3 1.15 0.30 39.21 17.81
30 2 0.95 0.45 28.41 17.88

0.75
0 3 1.20 0.30 38.72 25.35

15 2 0.95 0.45 26.50 26.34
30 2 0.95 0.45 28.20 25.98

0.20

0.25
0 3 1.20 0.55 18.98 8.76

15 3 1.20 0.30 19.99 9.50
30 3 0.80 0.30 19.87 10.12

0.5
0 3 1.20 0.30 19.22 17.33

15 2 0.95 0.45 14.21 17.88
30 2 1.00 0.45 16.36 17.61

0.75
0 3 1.20 0.30 19.36 25.35

15 2 0.95 0.45 14.10 25.98
30 2 0.95 0.45 15.90 25.42

simplified model, whose computational times are approx. 50x shorter while maintaining relative

errors below 3%. We have illustrated the practicality of this simplified model with a simple

algorithm to derive the optimal configuration of a RoD scheme. In the next chapter, we define

an Software Defined Networking (SDN) architecture that validates the feasibility of the RoD

operation.



Chapter 5

Proof of Concept

In the previous chapter, we have presented an analytic model and performance evaluation in

large temporal scale for dense mobile network deployments, presenting additionally the optimal

configurations of the model in order to find a trade-off between energy consumption and network

performance. In this chapter, we introduce the OFTEN framework (Open Flow framework for

Traffic Engineering in mobile Networks with energy awareness), a novel platform based Software

Defined Networking (SDN) paradigm with some additional facilities that allows us to implement

Resource-on-Demand (RoD) schemes and Traffic Engineering (TE).

Such framework is design to i) support heterogeneous technologies (such as cellular or

WLAN) in a transparent way, hiding the specificities of the technologies to the TE tool, ii) in-

tegrate in a single decision point different types of communication that have traditionally been

handled separately, such as device-to-device and infrastructure communications and, iii) address

new functions that are not needed in wired networks, such as switching off those points of access

that are not needed at a given point in time, and thus reduce energy consumption.

The key point of this framework is the centralised controller that (a)periodically performs TE

optimizations based on a given set of policies. By using a common API for all technologies, this

controller issues commands that are oblivious to the technologies underneath. Furthermore, the

controller does not only serve to manage the mobile network infrastructure but can also reach

mobile terminals and even trigger device-to-device communications between them in order to

offload the network infrastructure.

To conclude, we have implement this framework in real world prototype to validate our ap-

proach.

5.1. Architecture

We propose the architecture illustrated in Fig. 5.1, which consists of a number of technology-

agnostic elements plus some technology-specific modules. We start with the former:

The first element is the database containing the current network vision, i.e., the nodes

75
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of the network, the active links connecting them, the potential links that can be used and

their capacity as well as the traffic demand.

Based on this network vision, the optimiser module runs (a)periodically (e.g., every

5 minutes or after a major change in network conditions) to obtain the configuration that

maximises performance, according to a set of given policies that trade-off energy consump-

tion and performance.

The configuration resulting from the optimiser module is passed to the controller via

the northbound interface; this interface is not shown in Fig. 5.1 and depends on the specific

OpenFlow controller chosen (we leave it outside the scope of our architecture).

Finally, the controller implements this configuration through OpenFlow++, a

technology-agnostic interface that extends the OpenFlow protocol (OFPT) to support the

required functionality for mobile networks (described in the following sections).

OpenFlow ++

802.11

Network 
vision

LTE D2D

Controller

  Optimiser

Technology
agnostic

802.11 LTE D2D

Technology
specific

Policies

OFPT

Technology dispatcher
Mapping modules

Figure 5.1: Open Flow-based SDN architecture for heterogeneous networks.

One key feature of the proposed architecture is the ability of the upper layer modules de-

scribed above to operate on a technology-agnostic manner, which allows to (i) manage the entire

heterogenous network in an integrated way, allowing for a joint optimization of all the technolo-

gies; and (ii) easily adapt network operation to new requirements/objectives, by simply modify-

ing the technology-agnostic modules. This functionality is enabled by the following lower layer

modules, which are technology-specific:

A technology dispatcher, which is responsible to re-direct the OpenFlow++ primi-

tives to appropriate technology-specific module.

Technology-specific mapping modules, which convert the OpenFlow primitives into

the primitives of the corresponding technology and viceversa; among others, this includes

the setting of new configurations and update the network vision.
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Another key feature is that the architecture can be extended to support new technologies in a

non-disruptive way: to enable the use of a new technology, we only need to design the specific

mapping module and a minor extension to the Dispatcher to identify when a command is from/to

that specific technology. We note that, because of this centralised management of all technologies

in the network, the controller might suffer from scalability issues, a general concern in SDN

scenarios. To ease this burden, one possible solution would be the definition of hierarchical

areas [86, 87].

We next describe the technology-agnostic operation of the upper modules and how the Open-

Flow++ interface is used and extended to support this vision (we summarise in Table 5.1 the

required extensions to OpenFlow), while the technology-specific operation is described in the

next section.

Primitive/parameter Use by OFTEN
OFPT HELLO Announce new nodes and links. Link

unavailability is signalled with TCP FIN.
OFPT FEATURES REPLY Announcement of non-OF features (e.g.

de-activation) via the reserved field
OFPT FLOW MOD Issue mobility commands, i.e., change

point of attachment
OFPT EXPERIMENTER Switching on and off of resources
OFPT METER MOD Add/remove meter configuration
curr speed, max speed Capacity announcement
counters, meter bands Measure throughput and trigger

optimization module

Table 5.1: Extensions to OpenFlow introduced by OFTEN.

5.1.1. Technology-agnostic operation

One of the key challenges of our architecture is to achieve a technology-agnostic vision of

the network. This allows the optimiser and controller to operate on abstract “nodes” and “links”

instead of, e.g., 802.3az links or eNBs. More specifically, the challenge is to map the actual

physical network, like e.g. the one illustrated in Fig. 5.2 (top), into an abstract vision (bottom).

While the physical network is composed of wired links in the backhaul, relatively stable links

from mobile terminals to cell towers, higher capacity but more dynamic connections to 802.11

Access Points, potential device-to-device links, etc., in the abstract vision there are nodes and

links, each with a different capacity, that can be reconfigured and switched on and off as required

by the optimiser.

The proposed architecture is flexible to accommodate different TE mechanisms for the op-

timiser, depending on the computational resources availability, complexity of the network, and

periodicity/timeliness of the operation of the optimization (see Section IV.C for a description of

the mechanism used in our implementation). Furthermore, the optimization of the network does
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not have to be changed whenever a new technology is introduced, and only requires mapping the

features of the new technology to our abstractions.1

LTE

Physical Network

Controller vision

Figure 5.2: Physical network (top) and abstract vision (bottom). Grey circles denote nodes in
power-saving mode, dotted lines represent available links, and solid lines represent used links.

The mapping between the actual network and the abstract one is made in the technology

dispatcher module, which performs the association between the mapping modules and the Open-

Flow++ interface. This interface is the central element of the architecture that supports the fol-

lowing functionality with technology-independent primitives: (i) the maintenance of the infor-

mation in the database, including changes to link capacities, reachability, etc., (ii) the control of

the forwarding tables, and (iii) the (de)activation of resources. We next describe the OpenFlow

commands upon which we rely, as well as the extensions required, to support these features.

5.1.2. Maintaining the network vision

The first challenge is to maintain the list of nodes that compose the network, which in our

case appear and disappear more frequently than in “traditional” (wired) networks, due to users’

mobility and wireless propagation. For the case of nodes connected to the network, i.e., APs or

eNBs, they just have to establish a connection to the default OpenFlow transport protocol 6653

via TLS or TCP, and then perform the usual OFPT HELLO exchange. For those nodes that can

be (de)activated, we need to extend the database to announce this feature, which we do via the

reserved field in the OFPT FEATURES REPLY message.

For the case of nodes that are one or more hops away from the wired infrastructure, we do

not require them to implement any (major) modification and, in particular, to support OpenFlow.

However, as they have to appear as nodes in our vision, we require that the PoAs act on the

behalf of the terminals, and register them with the controller (following the standard procedure)
1Of course, to achieve this it is critical that our abstraction is general enough to cover the functionality provided by

the new technology, as otherwise the optimiser would need to be adapted to the novel functionality provided.
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whenever they detect there is a new node or a new candidate link. When no link towards a terminal

is available, the connection is terminated via e.g. a TCP FIN message. Thus, in order to keep the

list of nodes available in the network, our architecture does not need to introduce changes to the

OpenFlow specification, but only to ensure that the database of (de)registered nodes is updated

when required.

Similarly, in order to announce the capacity of the links that connect two or more nodes, we

can rely on the structures already defined by the OpenFlow specification, i.e., the curr speed

and max speed parameters, which define the current and maximum bitrates, respectively, of a

port. Whenever the capacity of a given wireless link changes (because of e.g. WLAN interference,

a node moves away from the eNB), the node responsible for a link needs to modify the value of

the corresponding parameters.

Finally, the usage of the links carrying data can be easily tracked with per-flow counters.

By periodically polling these counters with read operations, the database can identify which links

are becoming congested and which ones are being under-occupied and could support more traffic.

This can then trigger the corresponding optimization. We note that an alternative implementation

could be based on the use of per-flow meters; indeed, by specifying meter bands, we can

trigger an action when certain thresholds are passed.

5.1.3. Installing a new configuration

For wired links, the setting of forwarding paths does not require to modify the default Open-

Flow operation. With our abstraction, a wireless terminal can be considered as a node with a

number of ports but only one active forwarding entry at a time, which corresponds to the selected

point of attachment. In this way, changing the point of attachment only requires modifying a flow

entry via the OFPT FLOW MODmessage, e.g. to change of the Access Point the node is associated

with, or the use of the cellular link. As we describe next, the Technology Dispatcher decides the

technology specific module that handles the commands and triggers the protocol-specific opera-

tions to implement the change. As in the previous case, there is not need to specify new OpenFlow

primitives.

5.1.4. Switching on/off resources

Energy-efficient operation of a network requires the ability to power on and off resources as

required [88]. Accordingly, our architecture has been designed to provide such support. For the

corresponding set of operations, we cannot rely on or extend the default OpenFlow primitives, and

therefore we need to specify new primitives. To do this, we rely on the “experimenter” symmet-

ric messages (OFPT EXPERIMENTER), which are used for those nodes that upon registration

announced that they supported deactivation, in addition to the time it takes to switch between

states (so the the controller can preemptively activate resources) and the corresponding power

consumption (to duly optimase energy consumption).
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Following the above, we extend the OpenFlow set of primitives with a pair of commands,

switch on and switch off, to power on and off (respectively) a given node. As we will

describe in our testbed, these primitives can be used even when nodes do not support a sleep state,

but are connected to e.g. a switched rack power distribution units (PDU), which can be remotely

controlled via a network connection.

5.2. Mapping to technologies

The architecture enables an integrated traffic management of a heterogeneous mobile network,

through the use of the OpenFlow++ primitives. We next describe how these primitives are mapped

back-and-forth into technology-specific functionality thanks to the technology dispatcher, which

acts as a relay of the messages between the OpenFlow++ API and the modules doing the mapping.

In nuce, we require the ability to:

Detect when new nodes and links are available, including the potential points of at-

tachment to the network.

Estimate the available capacity of the wireless links.

Change the point of attachment of a terminal without disrupting the traffic served.

In what follows, we describe how the above is supported by the dispatcher and the current

wireless technologies, by just introducing minor extensions to their operation.

5.2.1. Technology dispatcher

New nodes or available links are announced in a technology-specific manner to this module

(as detailed next), which then performs the translation to the OpenFlow++ API. With this module,

a mobile terminal detected by a set of access points and an eNB (i.e., multiple announcements)

is registered only once as a node, but with a set of candidate links towards existing nodes. Given

that wired nodes may support different deactivation techniques (e.g., wake-on-LAN, switched

power distribution units), this module needs to be aware of the specific technique supported in

order to issue the corresponding commands when needed. The capacity of the wireless links is

computed by each technology as described next, and then passed via the OpenFlow++ API using

the parameters described above.

Changing the default forwarding table of a terminal corresponds to performing a handover,

which can be intra- or inter-technology. The former is handled within each technology using

its own mechanisms, while for the latter we rely on the 3GPP support for multiple radio access

networks (RANs), including those that are non-cellular. The mobile 3GPP architecture centralises

the support of inter-RAN handovers on the cellular network (more specifically, on a set of network

entities that may act as control and data plane anchors for the different handover scenarios). This

is based on the assumption of full cellular coverage.
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5.2.2. 802.11 mapping

In Wi-Fi networks there are at least three mechanisms to detect when a link towards a mobile

terminal is available: (i) the probe requestmessages the mobile periodically sends on differ-

ent channels to detect known or new Access Points (APs), which can also trigger the presence of

a new node that is duly reported to the technology dispatcher; (ii) passive scanning mechanisms;

and (iii) the Neighbour Report message exchange from the recent 802.11k amendment,

already supported by new devices such as e.g. iPhones, which is used by mobile terminals to

learn about APs in the surroundings, and by APs to gather measurements about the quality of the

channel towards other APs, which are then reported to the network.

The estimation of the capacity of a link is supported by these measurements, building on e.g.

the usual mappings of signal quality to maximum throughput, which are reported to the network

vision database. In case a group of nodes contend in a WLAN, the AP can derive the achievable

capacity thanks to the use of the linearised capacity model proposed in [89], which abstracts the

specifics (i.e., contention) of the channel access into a simple linear-based model.2
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Figure 5.3: Simplified handover operation.

Changing the point of attachment of a Wi-Fi node while providing a seamless experience re-

sults is very challenging, given that in 802.11 (i) the mobile terminal typically selects its “best”

point of attachment, and (ii) the signalling for carrier-grade operation is relatively complex. Still,

thanks to the recent 802.11v and 802.11r amendments, this can be achieved with minor disruption

of the service (this is validated by our prototype of Section 5.3). Fig. 5.3 illustrates a simplified

2Note that the proposed linearised capacity model can also be used to abstract the capacity of any technology,
including OFDM, CDMA, etc.
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version of the signalling occurring on the access network. Next, we describe how these interac-

tions support the changing of the point of attachment when triggered by the OpenFlow command.

Following Fig. 5.3, when a terminal powers on, it authenticates and associates with the best

AP (i.e., AP1), and performs the Neighbour Report exchange to learn about the APs in

the vicinity belonging to the same network. During these operations, the APs that overhear

the node activity report on the different links available to the mobile terminal, and update the

database accordingly (among these, AP2 in the Figure). Assuming at some point that the opti-

miser decides that it is better if the mobile node (MN) associates with AP2, the controller issues a

OFPT FLOW MOD primitive to change the (only) default forwarding entry of MN, from node AP1

to node AP2. This primitive is processed by the 802.11 module with the controller, which issues

a command to AP1 to trigger the 802.11v BSS Transition Request message, so the MN

re-associates with AP2. Thanks to the use of 802.11r, this re-association is noticeably shorter than

the original one. As we will see in the next section, the controller can duly issue other OpenFlow

primitives to minimise the impact on performance.

5.2.3. Cellular mapping

We next describe the guidelines to implement a technology-specific module similar to the

one described above for the case of cellular networks. While 3GPP-based networks involve more

complex procedures, they also tend to favor a centralised control and estimation of resources, and

therefore we expect that the design of this module is simpler than in the Wi-Fi case. However,

given that cellular networks are designed for large deployments, one key difference with Wi-Fi is

on maintaining user location.

If we focus on packet switched communications in a cellular network the list of active users

within a cell is available at the Mobility Management Entity (MME), while the inactive users are

less accurately located.

The above challenges the implementation of infrastructure-on-demand schemes, as a group of

inactive users could suddenly change to be active in a certain geographical area, and an aggressive

energy-saving policy might have powered off too many Base Stations to promptly react to the

demand. Except for this, cellular networks readily provide the means to support the requirements

of the extended OpenFlow interface: active UEs periodically report the quality of the channel

towards other Base Stations, and network-initiated handovers are supported.

5.2.4. Device to device mapping

Our architecture also supports device-to-device communications, where mobile nodes oppor-

tunistically share wireless links for a better performance. However, in contrast to the previous

cases, this paradigm requires introducing modifications to the mobile terminals. To that aim, we

have adapted the SOLOR framework [90], which builds on Wi-Fi Direct to opportunistically cre-

ate D2D groups, to communicate with the technology dispatcher to announce link availability and
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support the set-up and release of this links. Given that SOLOR is a decentralised mechanism, the

adaptation consists basically on centralising the control of the modules.

5.3. Proof of concept

To validate the feasibility of our approach, we have prototyped our architecture in a small

testbed that includes the technology specific modules for Wi-Fi. The testbed, deployed in an

office setting, is depicted in Fig. 5.4 and consists of one controller, an OpenFlow switch, two

APs, two MNs, a correspondent node (CN) to support traffic generation, and a switched PDU to

support the (de)activation of APs via HTTP requests.

OpenFlow switch

Switched
PDU

Controller Correspondent
Node

Access Point

Mobile Node

1

2

a

b

RYU
OpenFlow Controller

Control Application
RYU extensions for OpenFlow++

Technology Dispatcher

IEEE 802.11 Technology Mapper

OpenFlow++ Primitives
(e.g., OFPT_EXPERIMENTAL)

Redirect message to 
specific technology

IEEE 802.11 Access Point
Modified hostapd

Communication Interface

IEEE 802.11v
module

IEEE 802.11k
module

Trigger technology 
specific functionality

IEEE 802.11 specific messages
(e.g., IEEE 802.11k Neighbor Report, 

IEEE 802.11v BSS Transition)

Figure 5.4: Deployed testbed and implemented modules and interfaces.

5.3.1. Implementing seamless NIHO

One of the benefits of an OpenFlow-based architecture is that it supports the implementa-

tion of a variety of mobility protocols. For simplicity, we decided to implement the following

sequence of commands whenever the controller decides to change the point of attachment of a
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MN: (1) activate at the switch bicasting of traffic between the CN port and the ports the APs are

connected to; (2) issue the 802.11v BSS Transition Request; (3) wait until the handover is com-

pleted, and inform the controller accordingly; and (4) stop the bicasting of traffic at the switch

and re-configure the forwarding tables accordingly.

5.3.2. Software setup

The controller is a desktop machine running Linux and the Ryu SDN framework,3 which

we extend to support the proposed OpenFlow++ API, and two Python libraries: one to map

the switch on/off commands to the switched PDU, and another one for the 802.11-specific

mechanisms. The controller also runs a MySQL database4 to keep the network status. Our con-

troller uses a variation of the TE algorithm that we designed in [89], which is based on an integer

programming formulation and minimises the number of nodes required to support a set of flows

at a reduced computational cost. Other TE schemes could be supported, based on, e.g., flow

management policies or traffic measurement requirements (see [91] for a recent survey).

The APs are small PCs running Linux and extended to support the required functionality

as follows. We have modified the widely used hostapd demon5 to set up a connection with

the 802.11 module at the controller, so that the AP can report changes in the network conditions

(which are updated to the database) and can set up new configurations. When the controller issues

a change on the default forwarding path of a node, the 802.11 module translates this primitive to an

802.11k request to perform channel measurements (so that the mobile updates the list of available

APs) and an 802.11v command to change the point of attachment. An overview of the developed

software modules and interfaces is depicted in Fig. 5.4.

The CN is a regular desktop machine, while the MNs are small PCs, like the switch, which

runs OpenVSwitch. Finally, we set up an additional desktop machine, not shown in the picture,

running the FreeRADIUS server6 to enable the use of WPA2-enterprise as required by Wi-Fi

Passpoint.

5.3.3. Validation and support of infrastructure on demand

To validate that the controller activates resources as traffic requirements vary, we perform

the following experiment. We first generate a TCP flow between the CN and node a, which is

associated with AP 1, while AP 2 is inactive. At t = 20 s, we generate another TCP flow between

the CN and node b, which saturates the capacity of the link. Thanks to periodic measurements,

the controller decides 3 s later that more resources are required, and switches on AP 2.7 Once

3http://osrg.github.io/ryu/
4http://www.mysql.com
5http://w1.fi/hostapd/
6http://freeradius.org
7We note that the focus of our validation is on the framework and not on the specific mechanism to provide infras-

tructure on demand, which we acknowledge could be improved.

http://osrg.github.io/ryu/
http://www.mysql.com
http://w1.fi/hostapd/
http://freeradius.org
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this AP is available, it notifies the controller, which then immediately issues a handover trigger to

node b that associates with the new AP at t = 45 s.

The results of this experiment are depicted in Fig. 5.5, where we plot the per-flow throughput

(bottom) and the total throughput (top) as measured by the Wireshark tool. According to the

figure, the first TCP flow achieves at first about 20 Mbps, but when the second flow appears, its

throughput its reduced to 5 Mbps, while the former gets about 15 Mbps (with some variations

due to contention). Once this has been moved to AP 2, the flow from node a gets again about

20 Mbps, while the flow from node b gets about 20 Mbps as well.
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Figure 5.5: Validation of the proof of concept.

We also represent in Fig. 5.5 the estimated energy consumption of the infrastructure, following

the model of [67]. As compared with the case of both APs on, our solution reduces energy con-

sumption by 18%, an improvement that comes at the cost of an increased delay, mainly because

the time it takes to detect a new flow and power-up the AP. Following the results reported in [88],

we estimate that our framework could reduce energy consumption by 30–40% in a campus-wide

deployment (note that our experiment corresponds to an “upper bound” in terms of performance

reduction, as there is always wireless activity).

5.4. Conclusions

In this chapter, we have proposed a novel SDN architecture to support traffic engineering

in mobile networks and RoD schemes previously presented in Chapter 4. Our OpenFlow-based

architecture facilitates the support for heterogeneous technologies by making use of abstractions,

and enables the use of infrastructure-on-demand schemes via novel primitives to switch on/off
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devices as required. The validity of our approach has been demonstrated for the case of 802.11

through a simple prototype.

As extension of this work, we are working on the following challenges: (i) we are currently

integrating within the prototype, LTE-like environments by adapting open source solutions such

as srsLTE or OpenAirInterface (both described and analyzed in Chapter 2), and (ii) we are also

deploying our framework in a campus-size testbed, to evaluate the performance improvements

that can be achieved,8 analysing the trade-off between energy consumption and performance when

following the optimal configurations obtained in Chapter 4.

8We have made our source code available so other researchers and practitioners can perform similar measurements:
https://oruga.it.uc3m.es/redmine/projects/often

https://oruga.it.uc3m.es/redmine/projects/often


Chapter 6

Summary and Conclusions

Throughout this thesis, we have carried out a detailed experimental analysis and characteriza-

tion of the existing softwarized mobile networking platforms, understanding i) the capabilities and

performance, ii) energy footprint in short time scale and, iii) the power consumption in large time

scale. We have first presented a methodology to evaluate Software Defined Radio (SDR) solutions

and second, a characterization of the performance for OpenAirInterface (OAI) and srsLTE, both

open source projects. Next, we have presented an energy measurement platform for short tem-

poral scale. To validate our platform, we have analyzed the Rate Adaptation (RA) algorithms in

IEEE 802.11 through analytic model and we have compared it with experimental measurements.

Furthermore we have extended our analysis to a prototype for C-RAN scenarios with multiple

configurations for function splits. Our findings prove the energy management of the device is im-

portant and there is still room for enhancements of energy efficiency when considering multiple

parameters (MCS, transmission power, bandwidth, etc.). Then, we have elevated the temporal

scale of our analysis, introducing the Resource-on-Demand (RoD) schemes. Through numerical

analysis, we have discovered that ultra-dense deployments can considerably reduce the energy

consumption while maintaining the network performance. Additionally, we have provided the

optimal configurations for these trade-offs. Considering these schemes and the lack of real world

solutions for RoD, we have designed and implemented an Software Defined Networking (SDN)

framework with energy-awareness and traffic engineering, validating through experimentation the

concept of RoD with an experimental prototype.

As overview of the contributions of this thesis, we can summarize them as follows:

In Chapter 2, we have first analyzed existing LTE platforms for experimentation with

SDR i) a full software implementation of the stack for general purpose CPUs and a Field

Programmable Gate Array (FPGA) based prototype with hardware acceleration. We have

chosen the two most known solutions, srsLTE and OAI frameworks, and we have charac-

terized them in terms of software extensibility, CPU usage and network performance. Our

findings have proved the “word of mouth” knowledge among practitioners, showing the

software design of srsLTE makes easier to add functionalities on top of the framework;
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in the other hand, OAI has shown a better and more robust performance in stability, CPU

resource consumption, networking and, standard compliance. Additionally, we have also

provided some tips to configure both platforms, especially for TX/RX gain settings. We

have concluded the chapter, presenting an alternative solution based-on a FPGA prototype

with energy-awareness design for Cloud RAN (C-RAN) deployments. We have described

the flexibility and reconfigurability of the prototype, being capable of splitting the function-

ality of the Evolved Node B (eNB) stack to run across multiple locations (Cloud, MEC-like

server and the Remote Radio Head (RRH)) and reconfigure such splits dynamically in run-

time.

In Chapter 3, we have presented a framework for energy characterization of devices

in short time scale, providing a granularity of µs in our measurements. This platform

has allowed us to validate an analytic model for energy consumption of RA algorithms in

IEEE 802.11 given a certain value of the transmission power. Our results prove the current

algorithms are not efficient when considering the energy consumption. Therefore, these

algorithms can be extended to consider the energy efficiency in order to keep the network

performance while reducing the spent energy in the wireless card, lengthen in that way

the battery life in mobile devices. In the second part of this chapter, we have carried out

an exhaustive characterization of the energy consumption for the different subsystems that

compose the FPGA prototype introduced in Chapter 2. This analysis lies on the characteri-

zation of the CPU, Ethernet card and Radio Frequency Integrated Circuit (RFIC), providing

a complete picture of how the energy is spent across the entire prototype. Our results show

that depending on the selected configuration of the deployment has indeed an impact on the

energy efficiency of the system.

In Chapter 4, we have raised the time scale of our energy analysis, introducing the

concept of the RoD schemes for mobile networks. We have proposed an analytic model for

realistic environments that considers the start-up time of the Access Point (AP). This model

has been presented in two flavors: an exact model with high computational complexity and

simplified model that shorten the computational time approximately 50 times while provid-

ing accurate results. We have studied the performance evaluation of the proposed model

when applied to a campus-like deployment. Our results show these schemes are needed

for dense networks to adapt to varying load of the system while improving the energy effi-

ciency. To conclude the chapter, we have also presented the optimal configurations for our

system considering different service rates and bounding the service time.

Finally, in Chapter 5, we have presented the OFTEN framework (Open Flow frame-

work for Traffic Engineering in mobile Networks with energy awareness) an SDN platform

that enables traffic engineering and RoD schemes in real deployments. The goal of this

framework is to offer an API (Application Programming Interface) to facilitate the imple-

mentation of a SDN application to support centralized decision policies and the ability to
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control switch on/off the elements that form the network. We have proposed a set of exten-

sions for OpenFlow protocol that allows the controller to perform energy management of

the switches. As part of this work, we have implement the OFTEN framework employing

Ryu controller in a real world testbed. Our experimental validation of the system prove i)

the feasibility of the RoD schemes for real deployment and ii) the reduction of the energy

consumption while providing QoS in this kind of scenarios.

As summary, this thesis has addressed several aspects of experimentation applied to research,

providing analysis and methodologies to follow. We have first presented and characterized dif-

ferent solutions for experimentation with LTE systems employing SDR boards. Next, we have

analyzed the energy efficiency at multiple time scales, first at µs scale, characterizing and dissect-

ing the energy impact when considering different wireless communication parameters for IEEE

802.11 and LTE; and second, raising the time scale up to seconds, analyzing the RoD schemes ap-

plied to mobile networking deployments. To conclude this work, we have presented the OFTEN

framework, an SDN solution that enables RoD schemes in real world scenarios. The presented

work proves that the softwarized platforms can effectively enhance the energy efficiency at dif-

ferent scales whether we consider the device deployment or the entire network.
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Appendix A

FPGA energy aware design and system
implementation

This appendix contains more details of the FPGA platform implementation presented in the

Chapter 2. This is a fully distributed architecture designed to facilitate the flexible partition of

the communication functions. On top of that, the implementation relies on standard networking

technologies (e.g., it complies with the most relevant features described in the LTE standard and

targets commercial off-the-shelf HW elements). In the following the design and implementation

fundamentals of the dynamic hotspot prototype are discussed, setting the focus on the HeNB.

Figure A.1: LTE-EPC data plane protocol stack.

A.1. L2 and upper-layers

All L2 and above layer functionalities have been implemented in the SW domain by extend-

ing the existing features of the LTE-EPC network simulator (LENA) [92]. LENA is an open-
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source implementation of the LTE and EPC standards, originally born to enable the simulation

of realistic scenarios relying on the widespread network simulator ns-3 [93]. It possesses two

main characteristics that result crucial to the development of the dynamic reconfigurable hotspot.

First, given that ns-3 is a full stack simulator, all upper-layer functionalities are accurately im-

plemented (which is not the case for link and system level simulators). Second, the core design

of LENA is based on the Small Cell Forum MAC scheduler application programming interface

(API). This enables its fast integration to realistic developments (i.e., by considering commercial

product requirements), as well as modelling their constraints in the scheduler design. On top of

that, the LENA module also implements the Evolved Packet Core (EPC) network elements and

its protocol stacks, including the Serving Gateway (S-GW), the PDN Gateway (P-GW) and the

Mobility Management Entity (MME). A full internet protocol stack is also incorporated. It pro-

vides cornerstone networking functions, including the Transmission Control Protocol (TCP), the

User Datagram Protocol (UDP) and the Internet Protocol (IP). With all those combined features,

LENA allows to accurately simulate the performance of end-to-end services in LTE-based net-

work configurations, considering both the fronthaul and backhaul, as well as all communication

stack protocols (Figure A.1).

The original purpose of LENA was to be used as an advanced SW simulator. Consequently, a

single process included all network elements of a given simulation scenario. Similarly, all inter-

actions between those network elements were constrained to the ns-3 simulation-space (i.e., no

interaction to third party SW or external network elements was enabled; e.g., video applications).

Moreover, neither real-time computing nor HW interaction support was meant to be originally

provided. All these limitations have been addressed in the current work by adequately extending

the original LENA code. To start with, the advanced capabilities offered by ns-3 with the objective

to ease its integration into testbeds have been exploited to facilitate its time-constrained interac-

tion with external SW and HW elements (e.g., FPGA-based PHY-layer). Moreover, the LTE and

EPC processes have been splitted to enable the distributed execution of the underlying communi-

cation functions of the hotspot prototype. A new L2-L1 interface has also been implemented to

facilitate the dynamic reconfiguration of the HWA L1. Finally, specific HW requirements have

been integrated onto the scheduler.

Those features aimed at enabling the real-time interaction of LENA with external HW ele-

ments have been implemented based on the emulation functions provided by ns-3. Specifically,

it has been used the RealTime scheduler to synchronize the events generated by the different net-

work models (i.e., ns-3 is a discrete-event network simulator, where events are scheduled to be

executed at specified simulation instants) with the wall clock of the local host (i.e., instead of the

virtual simulated clock that would be normally used). As a result, all packet traffic is generated

and processed in real-time (i.e., according to the timing requirements of the HWA L1 implemen-

tation, as well as those related to the currently adopted NETCFG). Moreover, the original LTE

interfaces have been updated to work with real IP packets, that can be sent through the network

and reinjected to the simulator. In more detail, the File Descriptor NetDevice functionality offered
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by ns-3 has been used to read/write traffic from/to a physical device in the host machine, permit-

ting likewise the implemented LTE protocol stack to send/receive packets/frames to/from external

HW components, third party SW and/or other ns-3 processes by means of standard UDP-IP pack-

ets. This extension considers the L2-L1, S1-U and S1-MME interfaces. All these modifications

allow to realistically emulate 5G scenarios considering different SDN/NFV configurations [94],

and facilitate MEC-based deployments (e.g., in the line of NETCFG2).

Several modifications have also been introduced in LENA to enable distributing its underlying

functions among different 5G nodes. To start with, the EPC protocols have been extended to

facilitate the emulation of its functions on different network elements. Furthermore, all processes

implementing the RAN have also been separated. Specifically, the functionalities corresponding

to the (H)eNB and UE are now completely splitted from one another, as showed in Figure 2.1.

As a result, all underlying SW communication functions can be executed in a completely flexible

and distributed manner, covering a wide range of function-split cases (i.e., from being hosted in a

single server, up to a fully cloud offload as in the case of NETCFG3).

The specifications defined by the Small Cell Forum for the scheduler API have been exploited

in order to facilitate a virtualized small cell architecture [60]. Toward that end, the RAN functions

of LENA are now fully virtualizable, enhancing accordingly the splitting capabilities of the whole

LTE protocol stack. On top of that, a custom header has been added encapsulating the standard

UDP-IP packets to facilitate the interchange of protocol-related information among distributed

nodes. On this matter, following the principles of the MAC-split defined in the virtual small

cells paradigm, the API has been conveniently extended to generate time-stamped header frames.

These frames contain the relevant primitives that need to be exchanged with the HWA L1 (i.e.,

as a serialized bit sequence). As for the EPC they also enabling a number of primitives defined

by the LTE standard, including the procedure to attach new users, create new connections and

transmit data and control packets over them. This design relaxes the requirements in terms of

both latency and BW in C-RAN and PHY splits as defined in [60], such as the one used by

NETCFG1. Similarly, the MAC-split helps attaining an increased flexibility when moving the L2

and EPC network elements.

Concerning the scheduler functionalities, the baseline round robin implementation has been

updated to include specific constraints originated at the HWA implementation of the downlink

(DL) L1. In more detail, natively LENA does not consider any limitation regarding the number of

UEs that can be simultaneously allocated in the DL at any given moment, whereas in reality the

physical resources that can be dedicated to convey the DL control information (DCI) is limited

and depends on the adopted WCPs (i.e., each DL BW configuration uses a different number of

REs). In the same way, the size of the allocated TBs takes into account the specifications of the

channel encoder implementation provided by the FPGA-based PHY-layer.
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Figure A.2: Simplified view of the L2-L1 interfacing frame (with an example DL-DCI message).

A.2. L2-L1 interface

The L2-L1 interface constitutes a key element to facilitate the dynamic function split by en-

abling the agile communication of the HWA and SW blocks. In that regard, the main objective

of this SW piece is to provide a reliable communication means with strict latency requirements.

Moreover, its inner procedures are transparent to the HWA and SW blocks, simplifying likewise

their design. This means that the communication of the partitioned functions is abstracted from

the DSP design and only presents a minimal impact to the internal structure of each block (i.e.,

by conforming with essential interfacing specifications). This allows optimizing each stage in-

dependently and promotes the modularity of the overall system design, which is essential to the

distributed nature of the dynamically reconfigurable hotspot that we are presenting.

The real-time L2-L1 interfacing SW is executed in the PS of the target SoC, which also

hosts the PHY-layer implementation. On top of that, a customized distribution of the Linux

operating system has been utilized, which emphasizes real-time tasks. More particularly, a fully

preemptive kernel is used to satisfy the stringent latency requirements of real-time applications

(i.e., real-time priority can be assigned to specific tasks, ensuring a predictable and minimized

scheduling delay). By this way, application-level and kernel-level jitters are reduced enabling

likewise a reliable communication between the partitioned L2 process and the HWA L1 with

a deterministic behaviour, A series of SW techniques were employed toward that end, which

among others include real-time scheduling policies, assignation of real-time priority to critical

tasks, memory locking mechanisms and pre-faulting stacks [95].

From an architectural point of view, the L2-L1 interface is connected to the 5G node hosting

the L2 process of LENA on the one end, and to the HWA implementation of the L1 residing in

the same chip on the other end.

The interaction with L2 and above layers is based on the exchange of messages on a sub-

frame basis. Given the strict latency requirements of the real-time L2-L1 communication, the

transfer of information between the SW processes relies on a UDP connection. In more detail,

the messages are assembled onto L2-L1 interfacing frames, which use a custom and flexible for-

mat that efficiently adapts its contents according to the current system configuration (e.g., the use

of different WCPs greatly affects the amount of information to be exchanged between L2 and

L1). As it can be observed in Figure A.2, the interfacing frames are comprising a number of

control and data messages that need to be passed from LENA to the HWA L1. The DCI is of
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Figure A.3: General overview of the implemented L2-L1 interface.

key importance, since it defines the contents each radio frame (i.e., a DCI is generated for each

subframe, according to the Small Cell Forum API). For each transport block (TB) directed to a

given UE, the following will be specified: its size (i.e., amount of user-data bits), MCS index and

the bitmap of the allocated RBs (i.e., bit-mask indicating which set of physical DL resource ele-

ments (REs) are dedicated to transmit the TB). Other control plane messages that are supported

include the system information block (SIB) or the master information block (MIB). Evidently, the

implemented interface is also enabling the time-constrained exchange of the data plane. Given

that the hybrid automatic repeat request (HARQ) mechanism has not been implemented, cyclic

redundancy check (CRC) codes are used as a basic error detection mechanism in order to avoid

passing corrupted packets to the upper layers. The first task of the L2-L1 interfacing SW is thus

to parse the received L2-L1 interfacing frames in order to recover the control information (i.e.,

MCS index, TB size and RB allocation bitmap) and user data (i.e., TB) required by L1. As a

result of the parsing a number of 32-bit words are generated and are forwarded to the PL.

As for the interaction with the HWA L1, the PS and PL communicate through an embed-

ded dedicated high-speed interface which is based on a proprietary bus specification known as

advanced extensible interface (AXI). In more detail, the communication of the L2-L1 interface

and the HWA L1 is controlled by an AXI-based direct memory access (DMA) core. The DMA

block is connected to a high-performance and high-bandwidth port, AXI4-HP, on the PS side. On

the PL end, the DMA is connected to an AXI4-Stream interfacing block, which provides a sim-

plified low-latency master-slave communication mechanism. By using this specific interfacing

architecture, the PS-PL communication supports an exchange of data up to 6400 Mbits/s1.

Figure A.3 presents an overview of the custom SW architecture implementing (in C and C++)

the L2-L1 interface. As it can be observed, the application is divided in two main components:

one is executed in the user-space, while the other runs in kernel-space.

1This data-rate calculation accounts for the 32-bit AXI-4 bus and the specific operating frequencies of the embedded
PS (i.e., 666.7 MHz) and AXI logic within the PL (i.e., 200 MHz).
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Figure A.4: PS to PL communication and data processing flow.

The user-space process comprises two threads that share a concurrent queue. The first thread

is responsible for establishing the network connection to the L2 host and receiving the UDP

packets generated in the communication. The second thread implements the parsing functions, in

order to interpret the received information and produce the 32-bit words that will be forwarded to

the HWA L1. Consequently, this second thread also manages the required intermediate buffering.

An effective implementation of the concurrent queue, combined with the use of modern C++

programming features (e.g,, move semantics), enables to minimize the time required by the PS

to complete this task and guarantees that no incoming data will be queued for prolonged periods,

even if the current system configuration results in an elevated data-rate.

A custom driver executed in the kernel-space efficiently manages the interaction with the

different HW elements. Namely, it is in charge of parsing the device-tree information and ini-

tializing those HWA blocks that play a relevant role in the dynamic reconfiguration of the system

by programming a set of memory-mapped registers (i.e., DMA core and custom L1 implementa-

tion). Moreover, the driver is also responsible for setting up the related interrupt service routines

and allocating the necessary DMA-able memory resources. Regarding the interrupts, each 1 ms

(i.e., every new subframe) the HWA L1 will generate a request to receive a new L2-L1 inter-

facing frame. Toward that end, a fraction of the L2-L1 interface functionalities is implemented

in the PL side. More concretely, a random access memory (RAM)-based buffer that acts as a

jitter-absorbing first input first output (FIFO) memory has been implemented (i.e., a small num-

ber of L2-L1 interfacing frames will be initially stored internally at the FPGA, accounting for

the network delays originated from the distribution of functions among different 5G nodes). The

memory controller associated to this embedded buffer implements a simple control mechanism

which is in charge of generating interrupts to the PS when necessary (i.e., a counter and a regis-

ter controlling the number of stored frames) and forwarding the stored L2-L1 interfacing frames

to the HWA PHY-layer (i.e., basic control of the underlying memory read and write operations).

Similarly, the kernel driver uses a ring-buffer memory element mapped onto the user-space, where

the associated thread pushes the 32-bit words generated by the parser. Upon the reception of a
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Figure A.5: RTL architecture of the HWA L1.

new interrupt from the PL, the kernel driver recovers a L2-L1 interfacing frame from the buffer

and pass it to the FPGA. A zero-copy design has been implemented to avoid degrading the perfor-

mance of the PS during the interactions between the user-space and kernel-space code. Like this,

unnecessary data copying and context switching operations are avoided. Additionally the inter-

rupt service routine is also used to configure the DMA and start a new transaction when required,

by transferring the data that was last fetched from the ring-buffer descriptor to the PL buffer. Fi-

nally, when the transaction is completed the driver updates the ring-buffer pointers accordingly.

A detailed diagram of the communication and data processing flow taking place inside the L2-L1

interface is provided in Figure A.4.

A.2.1. Energy-aware HWA L1

All required DL L1 features have been implemented as real-time FPGA-based HWA functions

by using advanced digital design techniques. A low-level optimized register transfer level (RTL)

architecture was designed, focusing on two major goals: i) to minimize the utilized logic resources

and its related energy-consumption, and ii) to enable a flexible reconfiguration of its operation at

run-time. This was achieved by combining a highly resource-efficient RTL design, which reused

Xilinx intellectual property cores (IP-cores; i.e., predefined synthesizable blocks) to implement

the most complex DSP functions (e..g., inverse FFT, channel coding), and dedicated control units

to ensure the energy-efficient yet very flexible operation of the logic. In this respect, the operation

of the HWA L1 can be adapted according to the requirements provided by the SW L2 or due

to the adoption of a new NETCFG (including DL BW adaptations), in a subframe basis. A
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general overview of the energy-aware RTL architecture implementing the HWA L1 of the HeNB

is depicted in Figure A.5.

From a functional point of view, the L2 dictates the configuration to be utilized by the PHY-

layer according to the instantaneous operative requirements of the HeNB. Among others, this

includes the specific allocation of frequency resources to each UE attached to the HeNB (i.e.,

RBGs) and its related QoS constraints (i.e., channel coding parameters). All the necessary con-

trol information to reconfigure the HWA L1 is provided from the SW domain (PS) through L2-L1

interfacing-frames (recall Figure A.2). The main control unit of the PHY-layer parses this infor-

mation in order to determine whether there is data allocated onto the available RBGs or not, and

generates the corresponding user-data (i.e., DL shared channel, DLSCH; management of the turbo

encoding stage) and control channels contents (i.e., physical DL control channel, PDCCH/phys-

ical broadcast channel, PBCH; management of the convolutional encoding stage). Additionally,

this complex state machine also manages the errors in the L2-L1 communication: in case of miss-

ing or wrongly decoded control information, the HeNB will interrupt its transmission until valid

data is received from L2 to generate the following frame (i.e., starting from subframe 0). This

situation will be signalled to the embedded memory buffer within the HWA part of the L2-L1

interface which, in turn, will generate an interrupt to alert the PS. This ensures that the exception

will be correctly handled at all communication levels. A second control unit is in charge of allocat-

ing the required contents to each RE in the DL signal (i.e., generation of the frequency-subframe),

driving the operation of the inverse FFT and CP insertion stages, and, finally, providing further

management of L2-L1 communication errors. In more detail, in case the required DLSCH control

is not available when needed, a request will be made to the principal state machine to interrupt

the HeNB transmission.

In order to deal with the bit-intensive computation resulting from the adaptive real-time oper-

ation of the HWA L1, the RTL architecture is articulated around two differentiated clock domains

(see Figure 8). Apparently, the first one is directly related to the sampling frequency of the digital-

to-analog conversion (DAC) circuitry (i.e., derived from the principal LTE sampling frequency,
1

N
·30.72 MHz, with N = [1..16]). Regarding the second clock domain, it needs to be aligned

with the PS from which data is received through the dedicated high-speed AXI-4 streaming inter-

face. Considering the specifications of the channel coding stage, the most convenient is to use a

clock with a frequency, M , at least six times the one derived from the DAC (i.e., M ≥ 6· 1
N
·30.72

MHz). That is accounting for the worst possible case, when the MCS index ≥ 17, which requires

to work with groups of six bits (i.e., 64-QAM) for each allocated RE. In that case, since we do

consider a 20 MHz DL BW, six bits will then need to be sequentially entered to the channel en-

coder IP-core during each 30.72 MHz clock cyle (i.e., N = 1 and M ≥ 184.32 MHz). Using a

fixed 200 MHz2 clock, thus, allows processing one RE per slow-clock cycle independently of the

current system configuration (i.e., DL BW and MCS). Furthermore, it accelerates the computation

2This specific frequency value has been selected by considering the specifications of the PS clock subsystem of the
target SoC device.
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(a) Block in a reset state (i.e., no activity)

(b) Inactive block (i.e., reset-like state)

(c) Block active on specific periods (i.e., clock-enabled)

Figure A.6: Control the activity of the DSP stages through clock-gating techniques in order to
save energy.

of the channel encoding operations resolving likewise all the associated latency issues.

Besides reconfiguring and driving the operation of the different stages comprising the PHY-

layer, the two control units are also in charge of controlling all synchronous communications

among them. This demands to efficiently exploit the limited time budget while accounting for the

characteristics of cross-clock domain data sharing, for which complex memory structures have

been built. More importantly, the flexible control of the logic provided by the control units forms

the basis of the energy-aware design, when intelligently combined with traditional clock-gating

techniques. That is, each (synchronous) component/process of the digital circuit will be active

on the rising edge of the clock directing its operation, only when the related clock-enable signal

is high. On top of that, the clock-enable signal is combined with other control signals which

account for the current configuration of the HeNB (e.g., selected DL BW, allocated RBGs or

MCS values), in order to minimize the amount of logic which is actively utilized at each moment.

This design-time decision contributes to the overall reduction of the energy budget of the HeNB:

minimizing the switching activity of the implemented gates (e.g., flip-flops), actively reduces the

energy consumed by the digital circuit (experimental studies show dynamic power savings up to

30% for the complete design, and up to 90% at a block/IP-core level [96, 97]). This is especially

relevant for those logic elements residing in the faster clock domain, considering that the dynamic

power consumption of any FPGA design has a linear dependency on the clock frequency [98].

Our energy-aware RTL design exploits this trait by minimizing the amount of active logic at

any instant, keeping the rest in a reset-like state, as shown in Figure A.6. At a system level,
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all those DSP components related to the turbo encoding stage will remain completely inactive

during the generation of those subframes where no user data is being transmitted. That is, only

those stages related to the parsing and encoding of the PDCCH or PBCH, as well as the ones

generating the synchronization or reference signals, will present activity during the generation of

each subframe comprising the transmitted signal (i.e., there are certain REs that will be always

occupied even when no DL user data is allocated at all). Similarly, the energy-saving efforts are

propagated across the entire RTL hierarchy, through low-level optimizations within each designed

DSP block. As an illustrative example, whereas the internal storage is dimensioned to support the

highest user data capacity requirements defined by the LTE standard (i.e., all RBGs allocated

to a single user, maximum MCS value, 20 MHz DL BW), only the minimum required number

of registers/memory elements are actively used; the others will remain in an idle/reset state. A

similar approach has been used for the FIFOs, and related control-logic, that are utilized to pass

the encoded user data, generated in the AXI-4 clock domain, to the symbol mapping stage residing

in the DAC clock domain. In that case, the logic with the faster operating frequency is only active

each clock cycles, where M depends on the MCS value (being M = 6 the worst case, for MCS ≥
17).

An added yet substantial benefit of using clock-gating techniques, in energetic terms, is that

the use of the frequency synthesizer primitives found in the clock management (CM) tiles of the

FPGA devices is avoided. CM conveniently allows deriving the required clock signals from those

received by the FPGA (i.e., from an external source), providing highly precise phase and jitter

specifications, but also incurring in a nonnegligible increase in the consumed energy. According

to estimations that we obtained by using the Xilinx power analyzer (XPA) SW tool, the increase

in the consumed energy derived from the use of CMs can be as high as 33.44%. Specifically,

we compared a simplified version of the clock-enabled HeNB design presented above (i.e., not

interfaced to L2, but using a fixed DL allocation) with a second implementation that was modi-

fied to exploit the features provided by the CM tiles (i.e., different clock signals were generated

internally instead of using clock-enable signals). Precise energy consumption estimates for each

implementation were finally obtained by loading the placed and routed (PAR) designs to the XPA,

jointly with its related post-PAR signal-toggle activity files (i.e., realistic modelling of the timing

delays of the implemented circuit).



Appendix B

Measurement Circuitry Schematics

The university’s Technical Office in Electronics designed and implemented two different pro-

totypes with the requirements of DAQ card in mind, to be attached as i) input for measurements,

ii) as output to power the device as explained in Chapter 3.

Fig B.1 shows the schematics for 0-5V and 0-2A

Fig B.2 shows the schematics for 12.5-20V and 0-5A

Following the schematics, CLEMA6 is attached as input to the DAQ to acquire the measure-

ments in terms of current (MEDIDA I +/-) and voltage (MEDIDA V +/-), CLEMA4 is designated

to be attached to the device to be characterized and finally, CLEMA8 is attached to a power

source to feed the circuitry itself and the device.
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Figure B.1: Circuitry schematics for inputs 0-5 V and 0-2 A up to 10 W



105

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

D
V

M
+

S
O

U
R

C
E

-
S

O
U

R
C

E
-

S
E

N
S

E
-

S
E

N
S

E
+

S
O

U
R

C
E

+
S

O
U

R
C

E
+

D
V

M
-

C
A

R
G

A
+

S
E

N
S

E
+

S
E

N
S

E
-

C
A

R
G

A
-

M
E

D
ID

A
 I
+

M
E

D
ID

A
 I
-

M
E

D
ID

A
 V

+
M

E
D

ID
A

 V
-

G
N

D

G
N

D

M
E

D
ID

A
 V

: 
0

,5
V

/V
 ±

0
,0

2
%

M
E

D
ID

A
 I
: 
2

V
/A

 (
xx

V
/A

 m
e

d
id

o
)

2.
0

O
fic

in
a 

T
éc

ni
ca

, U
C

3M

O
T

-2
01

4-
15

05

T
ue

sd
ay

, A
pr

il 
29

, 2
01

4
1

1

A
4

P
la

ca
 p

ar
a 

M
ed

id
a 

de
 T

en
si

ón
 y

 c
or

rie
nt

e;
 P

ro
to

tip
o 

pa
ra

 1
2,

5 
a 

20
V

 y
 0

 a
 5

A

E
rn

es
to

 G
ar

cí
a 

A
re

s

S
iz

e

D
ra

w
n 

by

C
O

D
IG

O
 O

T
R

ev

S
he

et
of

M
od

ifi
ed

V
-

V
-

V
+

V
+

V
+

+
V

cc

+
V

cc

V
+ V

+
+

V
cc

+
V

cc

+
V

cc

J1 C
LE

M
A

 8

1 2 3 4 5 6 7 8

R
6

N
M

±0
.0

1%
R

7
0R

±0
.0

1%

R
s1

10
m

R
 ±

1%
R

s3
10

m
R

 ±
1%

R
s4

10
m

R
 ±

1%

R
1

50
0R

 ±
0,

01
%

-
+

U
1

LT
C

61
02

8
1

47
5 23

6

+
IN

-I
N

S

O
U

T

+
V

-V -I
N

F

-V

V
R

E
G

C
5

10
uF

R
s2

10
m

R
 ±

1%

R
3

25
k 

±0
,0

1%

R
2

50
0R

 ±
0,

01
%

J2 C
LE

M
A

 4

1234

C
6

10
0n

F

C
3

10
0p

F

C
2

10
0n

F

R
8

N
M

±0
.0

1%
R

9
0R

±0
.0

1%

C
1

10
0n

F

J3 C
LE

M
A

 6

1 2 3 4 5 6

U
3

L4
93

1A
B

D
12

0

1

3
2

58

4

6
7V

O
U

T

GND
GND

IN
H

V
IN

N
C

GND
GND

R
5

10
0k

 ±
0,

01
%

R
4

10
0k

 ±
0,

01
%

U
2B

A
D

86
67

5 6

7

8 4

+ -

O
ut

+
V

s

-V
s

U
2A

A
D

86
67

3 2

1

8 4

+ -

O
ut

+
V

s

-V
s

C
4

4u
7

Figure B.2: Circuitry schematics for inputs 12.5-20 V and 0-5 A up to 100 W
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Appendix C

Extension of Energy Model for Rate
Adaptation

Fitting the model

The models presented in Section 3.2.2.2 are fed with the data reported in [67], and the re-

sulting fitting is illustrated in Figs. C.1a and C.1b, while Table C.1 collects the model estimates

for each device (with errors between parentheses), as well as the adjusted r-squared. Since these

linear models show a very good fit, they support the generation of synthetic data for the different

MCS and TXP required.
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(b) ρrx fit as a function of MCS.

Figure C.1: Linear regressions.
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Table C.1: Linear Regressions

Device
ρtx model estimates (αi) ρrx model estimates (βi)

(Intercept) [W] MCS [Mbps] TXP [mW] adj. r2 (Intercept) [W] MCS [Mbps] adj. r2

HTC Legend 0.354(14) 0.0052(3) 0.021(3) 0.97 0.013(3) 0.00643(11) >0.99

Linksys WRT54G 0.540(12) 0.0028(2) 0.075(3) 0.98 0.14(2) 0.0130(7) 0.96

Raspberry Pi 0.478(19) 0.0008(4) 0.044(5) 0.88 -0.0062(14) 0.00146(5) 0.98

Galaxy Note 10.1 0.572(4) 0.0017(1) 0.0105(9) 0.98 0.0409(10) 0.00173(4) 0.99

Soekris net4826-48 0.17(3) 0.0170(6) 0.101(7) 0.99 0.010(8) 0.0237(3) >0.99
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Figure C.2: Expected energy consumption per frame in millijoules per frame (mJpf) under fixed
channel conditions.

Sensitivity to Energy Parameter Scaling

We explore how the different energy parameters affect the energy efficiency vs. optimal good-

put relationship. For this purpose, we selected the Raspberry Pi curve from Fig. 3.3 (results are

analogous with the other devices) and we scale up and down, and one at a time, the four energy

parameters ρid, ρtx, ρrx, and γxg. The scaling up and down is done by multiplying and dividing

by 3, respectively, the numerical value of the considered parameter. One of the first results is that

the impact of ρrx is negligible, a result somehow expected as the cost of receiving the ACK is

practically zero. From this point on, we do not consider further this parameter.

We show in Fig. C.3a the overall effect of this parameter scaling. The solid line represents

the base case with no scaling (same curve as in Fig. 3.3), and in dashed and dotted lines the

corresponding parameter was multiplied or divided by a factor of 3, respectively. As expected,

larger parameters contribute to lower the overall energy efficiency. However, the impact on the

energy efficiency drops between mode transitions is far from being obvious, as in some cases

transitions are more subtle while in others they become more abrupt.

To delve into these transitions, we illustrate in Fig. C.3b the “drop” in energy efficiency when

changing between modes. As it can be seen, the cross-factor is the less sensitive parameter of the

three, because its overall effect is limited and, more importantly, it scales all the leaps between

mode transitions homogeneously. This means that a higher or lower cross-factor, which resides

almost entirely in the device and not in the wireless card, does not alter the energy efficiency vs.

optimal goodput relationship (note that this parameter results in a constant term in (3.7)). Thus,
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Figure C.3: Impact of energy parameter scaling on the energy efficiency.

the cross-factor is not relevant from the RA point of view, and energy-aware RA algorithms can

be implemented by leveraging energy parameters local to the wireless card.

On the other hand, ρid and ρtx have a larger overall effect, plus an inhomogeneous and, in

general, opposite impact on mode transitions. While a larger ρid contributes to larger leaps, for

the case of ρtx, the larger energy efficiency drops occur with smaller values of that parameter.

Still, the reason behind this behavior is the same for both cases: the wireless card spends more

time in idle (and less time transmitting) when a transition to the next mode occurs, which has a

higher data rate.

This effect is also evident if we compare the Samsung Galaxy Note and the HTC Legend

curves in Fig. 3.3. Both devices have ρid and ρtx in the same order of magnitude, but the HTC

Legend has a larger ρid and a smaller ρtx. The combined outcome is a more dramatic sub-linear

behaviour and an increased energy efficiency drop between mode transitions.
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