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The initial development of negatively buoyant jets has been investigated experimentally and
numerically, focusing on the role played by gravity in the evolution of the leading vortex ring. Under
the experimental conditions considered in this work, the densimetric Froude number, Fr
=� jUj

2 / ���0−� j�gD�, which represents the ratio between the jet momentum and the buoyancy forces,
emerges as the most relevant parameter characterizing the dynamics of the flow. Two different flow
regimes have been observed depending on the Froude number: for sufficiently small Fr, the vortex
ring generated initially is pushed radially away by gravity forces before it has time to detach from
the shear layer originating at the orifice. On the other hand, when the Froude number is larger than
a critical value, Fr�Frc�1, the vortex ring detaches from the injection orifice and propagates
downstream into the stagnant ambient followed by a trailing jet until it eventually reaches a
maximum penetration depth. In order to clarify the mechanisms leading to the transition between the
two regimes, and to gain physical understanding of the formation dynamics of negatively buoyant
starting jets, the total and the vortex circulation, as well as the trajectory of the vortex center, have
been measured and compared to the case of neutrally buoyant jets. Finally, based on the
experimental measurements and on the results of the numerical computations, a kinematic model
that successfully describes the evolution of both total circulation and vortex trajectory is
proposed. © 2009 American Institute of Physics. �doi:10.1063/1.3253690�

I. INTRODUCTION

The transient discharge of a jet of the same density and
temperature as the ambient has been the subject of many
investigations.1,2 The interest on transient jets arises from the
fact that these flows are found in many industrial applica-
tions such as the injection of reactants in combustion cham-
bers or in nature, for instance, as the propulsion mechanism
of marine species. Moreover, the study of starting jets is
deeply related with the formation of vortex rings.3 In fact, a
typical experimental configuration to generate vortex rings is
that of a piston moving inside a cylinder that pushes a certain
volume of fluid into a stagnant pool containing the same
fluid.4 Near the injection orifice, the boundary layer rolls up
into a vortex ring and, if the piston stroke is long enough,
this vortex is followed by a trailing jet that keeps injecting
vorticity into the leading vortex. At some point, the leading
vortex ring has engulfed enough vorticity to develop a self-
induced velocity faster than the injection velocity, which
eventually will lead to its detachment from the trailing jet
�pinch-off�.1 The value of the dimensionless time at which
the vortex ring stops entraining vorticity is commonly known
as formation number,1 F, and it is an important characteristic
of starting jets, as it determines the maximum size of vortex
ring that can be achieved under a given set of conditions. The
value of F is typically 4, however, the time evolution of the
piston velocity or the velocity profile at the injection orifice
can alter this value.1,5 Moreover, Zhao et al.5 and Pawlak

et al.6 indicated that secondary instabilities caused by pertur-
bations in the flow could also lead to variations in the for-
mation number of approximately 20%.

When the jet density differs from that of the ambient,
buoyancy forces must be taken into account. Positively
buoyant jets are generated when the fluid injected upward
�downward� is lighter �heavier� than the ambient fluid7 and,
therefore, the inertia and buoyancy forces act in the same
direction. However, if the buoyancy forces oppose to the
inertia forces, one finds negatively buoyant jets or fountains.
Plumes and other environmental flows such as volcanic erup-
tions or certain behavior of clouds are examples where buoy-
ancy affects, by opposing or contributing, to the motion of
the fluids.8

Most of the studies of negatively buoyant jets have been
focused on the parameters controlling the penetration height.
To measure the maximum penetration distance of turbulent
fountains, Turner8 performed a series of experiments inject-
ing upward a salt water jet into a tank containing fresh water.
He found that turbulent fountains were independent of the
Reynolds number, Re=� jUjD /� j, where � j and Uj are the
density and velocity of the jet at the injection, respectively,
� j is the jet viscosity, and D is the diameter of the discharg-
ing orifice, and that their general behavior only depended on
the densimetric Froude number, Fr=� jUj

2 / ���0−� j�gD�,
where ��0−� j� is the density difference between the ambient
and the jet and g is the gravitational acceleration. In particu-
lar, he determined that the penetration height depended on
the Froude number as xst /D�Fr1/2 for large Froude numbers.
Note that in the present work we have defined the Froude
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number as Fr=� jUj
2 / ���0−� j�gD�, while other authors com-

monly presented their results in terms of the Richardson
number Ri= ��0 /� j −1�gD /Uj

2, which relates to our Froude
number as Ri=Fr−1, or in terms of a Froude number given by
Fr=Uj / �g�D�1/2 with g�= ��0 /� j −1�g. Thus, to compare with
our results, we will express their Richardson or Froude num-
bers in terms of the Froude number used here. Pantzlaff and
Lueptow7 studied the transient regime of positively and
negatively buoyant turbulent jets, with Reynolds numbers
varying from 2500 to 21 000. At their lower range of Rey-
nolds numbers, and for negatively buoyant jets correspond-
ing to 125�Fr�3040, they characterized the time evolution
of the penetration distance of the jet before reaching the
stationary height, around which the jet began to oscillate.
Philippe et al.9 studied negatively buoyant jets at low
Reynolds numbers �Re�350�, for which the jet remains
slender everywhere except at its head. They proposed a
model for the initial phase of penetration, the final height,
and the final jet profile and reported a dependence of the final
jet penetration with Re at very low Reynolds numbers. In the
numerical simulations by Lin and Armfield,10 where the
Reynolds number varied in the range 200�Re�800, they
also acknowledged the existence of a maximum penetration
height before reaching the stationary value. However, in their
work the dependence of the final height of the fountain with
the Reynolds number was found to be very weak.

Cresswell and Szczepura11 measured the mean and fluc-
tuating velocity, and temperature profiles using laser Doppler
anemometry and thermocouples at the steady state of a nega-
tively buoyant turbulent jet of Re=5000 and Fr�4.9, and
showed that there was no similarity profile in any of the
regions of the flow and that axial gradients were important
and could not be neglected.

Iglesias et al.12 studied numerically starting gas jets
whose temperature was different from that of the ambient,
and proposed a model for the total circulation of the jet in
absence of gravity. Satti and Agrawal13 were also concerned
with the variations of vorticity fields due to buoyancy effects
in laminar starting jets, although their computational study
was focused only on positively buoyant jets.

To our knowledge, most of the studies reported in litera-
ture aiming at the understanding of the buoyancy effects
have been focused on fully turbulent jets and less interest has
been paid to negatively buoyant jets at moderate Reynolds
numbers. However, in the cases studied here, the Reynolds
numbers were not sufficiently large, 800�Re�2500, to
have a fully developed turbulent starting jet and, conse-
quently, the flow could be considered laminar.

In order to identify the dimensionless parameters affect-
ing the dynamics of starting buoyant jets, dimensional analy-
sis can be applied to a characteristic magnitude, i.e., the
steady penetration depth, xst. Thus, xst will depend on the jet
density, � j, the ambient density, �0, the jet viscosity, � j, the
ambient viscosity, �0, the mean injection velocity, Uj, the
diameter of the injection orifice, D, and the gravitational ac-
celeration, g,

xst = f1�� j,�0,� j,�0,D,g,Uj� . �1�

Forming dimensionless groups the equation above yields

xst
� =

xst

D
= f2�Re,Fr,

�0

�j
,
�0

�j
� . �2�

In the experimental setup employed in this work the
ambient-to-jet density ratio, �0 /� j, could not be modified in-
dependently from the Reynolds and Froude numbers. How-
ever, the effect of �0 /� j in the flow conditions explored is
expected to be negligible. Indeed, the density ratio was never
varied more than 30%, which, according to Iglesias et al.,12

is small to induce significant differences in the flow, of the
order of those obtained in this work varying the Froude
number.

To evaluate the effect of the Reynolds number, several
experiments and simulations were performed varying the
Reynolds number while keeping constant the Froude num-
ber. In agreement with the results of previous investigations
in homogeneous jets, the effect of the Reynolds number is
negligible at large Re. For the same reason, the ambient-to-
jet viscosity ratio, �0 /� j, is not expected to have an impor-
tant role in the formation of negatively buoyant jets under
the conditions explored in this work. Finally, as the differ-
ence of density of the fluids is caused by the different com-
position, the thermal diffusion has been also neglected.

In our study, Sec. II describes the experimental setup and
the experimental techniques used to perform the measure-
ments. Section III includes experimental visualizations of the
time evolution of the jet for different Froude numbers. A
description of the numerical method used is detailed in Sec.
IV and the most important results and conclusions are sum-
marized and discussed in Secs. V–VII.

II. EXPERIMENTAL SETUP

To generate jets under well defined conditions, a com-
puter controlled piston moving inside a vertical cylinder was
used to inject downward different ethanol/water solutions
into an acrylic tank filled with fresh water �ambient fluid�.
The fluid inside the cylinder discharged into the tank through
a circular orifice placed at the center of the upper wall,
whose diameter could be varied among fixed values, i.e.,
D=2, 1.5, and 1 cm �see Fig. 1�. To avoid any effect of the
tank walls on the dynamics of the jet, its dimensions,
60�60�100 cm3, were much larger than the characteristic
diameter of the jet. The tank was hermetic except for the
orifice and four windows located near the bottom, built with
the aim of evacuating the ambient fluid at a rate equal to the
injected volumetric flow rate. These windows connected with
an open water pool where the tank was fully submerged.

Besides the orifice diameter and the jet injection veloc-
ity, the jet density was also varied in the experiments to
obtain the desired range of nondimensional parameters char-
acteristic of buoyant jets. To do so, the cylinder was filled
with ethanol/water solutions with alcohol concentrations
varying from 4% to 100% in weight, thus allowing dimen-
sionless density differences in the range 10−4��� /� j �3
�10−1, with ��=�0−� j. A guillotine, flush to the wall, was
necessary to fill the feeding cylinder with the desired solu-
tion, but once the cylinder was filled, the guillotine was open
and the water inside the tank was left to become quiescent.
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Properly choosing the jet injection velocity, Uj, the ori-
fice diameter, D, and the jet density, � j, the jet Reynolds
number could be varied from 800 to 2500, whereas the den-
simetric Froude number ranged from 0.2�Fr to Fr=�, this
latter value corresponding to jets of the same density as that
of the ambient fluid, � j =�0. Notice that Fr=�, which corre-
sponds to a Richardson number equal to zero, is not neces-
sarily associated to a high Reynolds number and represents a
homogeneous jet, i.e., a jet that discharges into a stagnant
pool of the same liquid. Table I shows the values of the
physical and dimensionless parameters of the experiments
presented in this work. To check the repeatability of the
experimental results, each session of experiments was per-
formed several times under the same conditions.

Due to the initial acceleration of the piston the stationary
exit velocity was not instantaneously reached but it was
achieved after a short period of time, t1. The mean exit ve-
locity can therefore be written as

u�t� = �Ujt/t1, t 	 t1

Uj , t � t1,
	 �3�

where t1 is the acceleration time. Thus, to take into account
this initial acceleration phase, the time was made dimension-
less using the following expression:

t̂ = � t2/2t1Uj/D , t 	 t1

�t − t1/2�Uj/D , t � t1,
	 �4�

which measures the volume injected in a time t, and it is
equivalent to the definition used by Gharib et al.1

A continuous 5 W argon-ion laser was used to illuminate
the flow. The laser beam was conducted through a series of
lenses and mirrors to obtain a thin laser sheet accurately

aligned with the jet axis and parallel to two of the tank side-
walls. A high-speed camera, RedLake system X3+, was em-
ployed to record the development and evolution of the jet.
Besides being used for visualization purposes, consecutive
image frames were also analyzed, using high-speed particle
image velocimetry �PIV� to obtain the velocity fields in a
symmetry plane of the jet. The combination of the con-
tinuous laser and the high-speed camera allowed us to obtain
a high temporal resolution. Images were recorded at
250 frames/s with a resolution of 1024�1280 pixels, which
allowed the visualization of the jet up to ten orifice diameters
downstream from the origin. However, in some experiments,
where larger magnifications were required, only an area of a
few diameters was imaged.

Interrogation windows of 32�32 pixels with 50% over-
lap were typically used in the PIV analyses performed to
compute the velocity fields from the high-speed movies. This
enabled measurements of velocity fields with spatial resolu-
tions always better than 2.5 mm, this value corresponding to
the observation of ten diameters using the widest orifice.
Since the PIV technique requires the presence of visible
tracer particles in the flow, the water filling the tank, as well
as the ethanol/water solution were seeded with neutrally
buoyant, hollow glass spheres �Potters Particles Inc. of mean
density of 1.1 g /cm3�.

III. FLOW VISUALIZATIONS

Flow visualizations of four jets with Reynolds number
Re=1000 at different Froude numbers are displayed in Fig. 2
for the same dimensionless times, namely, t�= tUj /D=1, 2,
4, and 6 respectively, which expressed in terms of Eq. �4�,
with t1Uj /D=2, correspond to t̂=0.25, 1, 3, and 5. The visu-
alizations were obtained using a laser sheet as light source
and recording the light scattered by the seeding particles in-
troduced in the jet. A high contrast was obtained by increas-
ing the concentration of particles in the jet with respect to

TABLE I. Summary of the experimental parameters. Here e/w �%� is mass
fraction of the ethanol/water solution.

Session
D

�cm�
Uj

�m/s�
e/w
�%�

� j

�kg /m3�

 j

�10−6 m2 /s� Re Fr

A 1.5 0.0732 0 999 1.00 1098 �

B 1.5 0.1397 0 999 1.00 2095 �

C 2.0 0.1289 0 999 1.00 2578 �

D 1.5 0.1114 10 982 1.53 1093 5.0

E 2.0 0.0815 10 982 1.53 1066 2.0

F 2.0 0.1296 75 853 2.36 1098 0.5

G 1.5 0.2028 30 954 2.79 1088 6.0

H 1.5 0.0865 10 982 1.53 848 3.0

I 2.0 0.0761 10 982 1.53 995 1.8

J 1.0 0.1646 100 789 1.52 1079 1.0

K 2.0 0.1463 65 877 2.67 1093 0.8

L 1.5 0.1097 100 789 1.52 1079 0.3

M 2.0 0.0944 90 818 1.88 1002 0.2
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FIG. 1. Sketch of the experimental facility.
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that of the ambient fluid. In addition, the slightly different
refraction indices of the ethanol/water mixtures helped to
delimit the jet’s boundary in the images.

A visualization of a jet of density equal to that of the
ambient fluid, Fr=�, can be seen in the first row, Figs.
2�a�–2�d�. The formation of the leading vortex and of sec-
ondary instabilities in the trailing jet can be observed as the
vortex head moves downward. In this case, all the snapshots
show the heading vortex still connected to the jet, although
the starting point of the pinch-off process can be inferred in
Fig. 2�d�. The following rows of Fig. 2 correspond to visu-
alizations of jets of fluid lighter than the ambient injected
downward �negatively buoyant jets�. Figures 2�e�–2�l� corre-
spond to Fr=5 and Fr=2, respectively, whereas Figs.
2�m�–2�p� correspond to a jet with a smaller Froude number,
Fr=0.5. Two different phenomena may occur depending on
the Froude number: For large values of Fr the jet is formed

with a vortex ring at its front, whereas for small values of Fr,
no jet is formed at all. Note that at Froude numbers Fr=5
�Figs. 2�e�–2�h�� and Fr=2 �Figs. 2�i�–2�l��, the formation of
the leading vortex ring, similar to the case of the homoge-
neous jet, can be easily identified. However, comparing to
the case of Fr=�, in these cases the jet moves slower, and it
may even stop before the axial symmetry is lost. Neverthe-
less the existence of a vortex ring at the front of the jet is
clear. Another interesting aspect is the production of small
vortices of lighter fluid that are convected toward the top of
the tank. Observe one of these vortices, clearly identified on
the top wall in Fig. 2�l�, moving radially outward. Again the
appearance of secondary trailing vortices in the jet is evident.
Furthermore, it has been noticed in some cases an oscillatory
motion around the maximal penetration depth, as described
by Turner,8 while in other cases the axial symmetry was lost
before it happened.
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FIG. 2. Flow visualizations at t̂=0.25, 1, 3, and 5, respectively. First row ��a�–�d�� corresponds to Fr=�, second ��e�–�h��, third ��i�–�l��, and fourth ��m�–�p��
to Fr=5, Fr=2, and Fr=0.5, respectively �experiments A, D, E, and F in Table I�. The diameter of the orifice is marked, as well as the axial distance measured
in diameters. To visualize the jet a higher particle seeding concentration was introduced into the piston. The jet Reynolds number is approximately 1000 in
the four cases.
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If the Froude number is small enough �see Figs.
2�m�–2�p��, the vortex ring produced at the beginning of the
piston motion is not able to travel downward and remains
close to the wall, forming a caplike type of flow. The forma-
tion of this vortex ring is clear in the visualizations and it can
be detected with PIV analysis as well as in the numerical
simulations, as it will be shown in Sec. V. The vortex ring is
not able to penetrate into the ambient due to the buoyancy
forces, and it is pushed toward the top wall, where it begins
to move radially as a second vortex forms at the front posi-
tion. So as in the cases described above, there is also vortex
shedding from the vortex head. As the injection of fluid from
the cylinder continues, the flow spreads radially and the vor-
tices travel near the top wall.

As a summary, there seems to exist a critical Froude
number, Frc, that distinguishes two different flow regimes: a
regime at Fr�Frc where it can be observed the formation of
a vortex ring followed by a trailing jet and a regime at
Fr�Frc where no jet is formed at all. This critical Froude
number has a value close to unity, as described later on in
Sec. V.

IV. NUMERICAL SIMULATIONS

To perform the numerical simulations the unsteady,
laminar Navier–Stokes equations in cylindrical coordinates
were integrated using a finite volume technique. The energy
equation was not used since the temperature was not in-
cluded in our study and hence, only the continuity, Eq. �5�,
momentum, Eqs. �6� and �7�, and species conservation, Eq.
�8�, equations were solved,

��
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In Eqs. �5�–�8� ux and ur are the axial and radial components
of the velocity, ��t ,x ,r� and ��t ,x ,r�, which depend on time,
t, as well as on the axial, x, and radial position, r, are the
density and viscosity of the ethanol/water solution, � is the
diffusion coefficient, and X is the mass fraction of one of the
fluids.

A first order scheme was used to model the temporal
terms, and the time step was dynamically changed based on
the truncation error associated with the temporal integration
scheme. The convective derivatives were modeled with a
segregated method and a second-order implicit scheme
whereas for the diffusion terms a central-differenced second-
order accurate scheme was used. The gravitational term was
not negligible and, consequently, had to be also imple-
mented. A scheme from the family of the SIMPLE algo-
rithms was used for the coupling of pressure and velocity.

The numerical domain consisted of a rectangular grid of
size 10D in the radial direction and 20D in the axial direc-
tion: The simulations were stopped long before the front of
the jet reached any of the boundaries. An initial grid of more
than 30 000 cells, especially refined near the jet exit was
dynamically adapted as the jet developed using a pressure
gradient criterion. Tests were performed to check that the
grid was suitable for this problem by mesh refinement �the
same method was also used to test the suitability of the time
step�. Table II summarizes the characteristic dimensionless
parameters of the numerical simulations reported in this
work.

At time t=0 the fluid was considered to be at rest with
density, �0, and viscosity, �0, specified for the ambient fluid.
Previous studies have focused on the effects of the velocity
profile and the time evolution of the piston velocity at the jet
exit on the vorticity and on the total circulation of the

TABLE II. Summary of the combination of Reynolds and Froude numbers
of the numerical simulations performed. Here e/w �%� is mass fraction of
the ethanol/water solution of the jet.

Session
e/w
�%� Re Fr

i 0 2000 �

ii 0 1000 �

iii 10 2034 7

iv 3 1007 7

v 10 1308 3

vi 4 990 2.4

vii 10 1007 1.8

viii 86 2007 1

ix 91 2021 0.8

x 100 1908 0.4

xi 100 1230 0.4
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jet.5,6,14 In our simulations, to clearly identify the effects of
negative buoyancy from any other parameters, we imposed a
uniform and time-independent velocity profile at the injec-
tion orifice, Uj. The density, � j, and the viscosity, � j, were
determined using a polynomial fit to the experimental data
collected by Weast15 to take into account their nonlinear be-
havior of the fluid properties when ethanol and water are
mixed. The diffusion coefficient of ethanol in water obtained
from Perry and Green16 was also used in the calculations,
�=1.28�10−9 m2 /s. To check the relevance of having a
nonlinear dependence of the mixture properties with the eth-
anol concentration, we compared the results obtained from
numerical simulations performed using the real functions of
density and viscosity with those given using linearly varying
properties. However, the results obtained in both cases were
nearly identical on the time scales of interest.

A sketch of the numerical domain with the boundary
conditions imposed can be observed in Fig. 3. Nonslip ve-
locity was fixed at the upper boundary �wall� and static pres-
sure was imposed at the boundary opposed to the jet exit and
at the lateral boundary �outlet�. Finally symmetry conditions
were imposed on the axis �symmetry�.

V. EXPERIMENTAL AND NUMERICAL RESULTS

The most important parameters of negatively buoyant
jets have been obtained experimentally through the analysis
of the acquired images and compared to the simulations per-
formed with the numerical method described above.

A. Front position and penetration depth

The jet front position, defined as the position of the head
of the vortex, was automatically obtained from the experi-
mental images, using a gray threshold. All the experiments
displayed in Fig. 4 were carried out for different Froude
numbers keeping the Reynolds number close to 1000. Note
that a steady state is reached for experiments with small
Froude number, Fr�1, for which the final penetration depth
remains constant. Generally, this happens after the transient
regime, where the maximum penetration depth is achieved
before the jet drops to the constant depth. For intermediate
Froude numbers, 1�Fr�3, no stationary penetration dis-

tance is reached: For times longer than those represented in
Fig. 4 the front oscillated around a fixed position before loos-
ing its symmetry. Finally, for larger Froude numbers the im-
aged area was too small to observe this behavior.

Figure 5 summarizes the final penetration depth �steady
or oscillatory� obtained by different authors10,17–21 in a wide
range of Froude numbers. This plot is based on a similar
figure published by Kaye and Hunt17 compiling results avail-
able in literature, where we have included our measurements
for comparison. The different definitions of the Froude num-
ber used by other authors have been adequately expressed in
terms of the Froude number used in this work. Three differ-
ent regimes can be clearly identified: For very low Froude
numbers the steady penetration depth scales as xst

� �Fr1/3.
However, in an intermediate regime, where our subcritical
experiments lie, the dependence changes to a xst

� �Fr law.
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FIG. 3. Sketch of the numerical domain used in the simulations.
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Finally, for Fr high enough the final penetration depth scales
as xst

� �Fr1/2, although it should be pointed out that in this
latter regime no steady position is reached, and the results
correspond to the mean value around which the jet front
oscillates. We have also represented as an inset in this figure
the stationary penetration depth versus the Froude number
obtained from our measurements at Fr�1, to show its linear
dependence, xst

� �Fr. Notice that our results agree with those
reported by Kaye and Hunt,17 Friedman and Katz,18 and
Zhang and Baddour19 in the same range of Froude numbers.
However, no evidence has been found of any relationship
between the penetration depth and the Reynolds number for
the cases studied here.

B. Vortex head position

The leading vortex location was calculated as the point
of maximum vorticity �the details of the vorticity calculation
are given in Sec. V C�. To locate the vorticity peak, an esti-
mation of fractional displacement method, which consists of
a parabolic-fit estimator,22 was used.

Like the penetration depth, the axial position of the lead-
ing vortex, xv

�, is strongly influenced by the Froude number
�see Fig. 6�a��, not only because the maximum axial position
corresponds to the largest Froude number but also because

the velocity of the vortex ring decreases with time faster
when the Froude number decreases. On the contrary, the final
radial position, rv

�, is soon reached in all cases, meaning that
the vortex is not growing radially, as shown in Fig. 6�b�.
Thus, the dependence of the radial position of the leading
vortex with the Froude number is relatively small compared
to that of the axial position. It is important to notice that the
axial and radial locations of the vortex ring in the case of the
smallest Froude number shown in this figure, Fr=0.5, does
not refer to the initial vortex formed when the piston begins
to move, but to the vortex that, at each instant of time, is in
front of the jet.

C. Vorticity fields

A five point least-square method, proposed by Raffel
et al.23 and Acosta-Iborra,24 was used to calculate the out-of-
plane dimensionless vorticity from the velocity measure-
ments for the cases where the characteristic size of the vortex
was sufficiently large,

�� = �� ∧ u��
D/Uj = � �ur

�x
−

�ux

�r
� D

Uj
. �9�

Figure 7 shows the experimental dimensionless vorticity
contours of the jets displayed in Fig. 2. Figures 7�a�–7�d�
show the evolution of the out-of-plane vorticity for the
homogeneous jet. The formation of the vortex head can be
observed during the initial instants followed by the genera-
tion of secondary vortices as time evolves. During the time
that the vortex head has been tracked, the vortex ring re-
mains attached to the trailing jet and, consequently, there is a
continuous injection of vorticity from the jet into the leading
vortex. As described by Carter et al.,25 the vortex ring has an
initial round shape but as it engulfs more vorticity its shape
changes toward a more elliptic one.

The vorticity contours of the jet at Fr=5 are displayed in
Figs. 7�e�–7�h�. Notice that initially the vorticity distribution
is similar to that of the homogeneous jet, however, at longer
times, it is observed a faster formation of the secondary in-
stabilities and a more concentrated distribution of vorticity in
the trailing jet. Another phenomenon that takes place as time
evolves is the generation of a vorticity layer of negative sign
surrounding the vortex ring. Since this layer contains fluid of
density lower than that of the ambient fluid, it is pushed
upward by the buoyancy forces until it eventually reaches the
top wall. It will be shown later on in Sec. VI that this nega-
tive vorticity has a baroclinic origin, and therefore we will
refer to it, from now on, as baroclinic vorticity.

The evolution of vorticity for a jet at Fr=2 has been
represented in Figs. 7�i�–7�l�. As in the case of Fr=5, during
the initial times while the vortex ring is being formed, the
vorticity contours are similar to those for Fr=�. However, at
larger times several differences can be observed: �1� as was
already described above, the vortex head moves slower than
in the homogeneous case and, more importantly, �2� the
baroclinic vorticity layer, of opposite sign to that of the vor-
tex head, clearly develops at the outside of the jet. This layer
is generated at the front of the leading vortex and travels

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a)

t̂

x
∗ v

Fr = ∞
5
2
1
0.5

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t̂

r
∗ v

b)
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upstream faster than the vortex head itself, reaching the top
of the tank and expanding radially along the upper wall.

Finally, the extreme case is shown in Figs. 7�m�–7�p� for
Fr=0.5. In this case, the vortex head has no time to fully
develop before it is pushed away in the radial direction.
Meanwhile another vortex ring is formed which will not be
able to fully develop either and the same process is repeated
over and over.

In addition to the experimental measurements of the vor-
ticity fields described above, the vorticity was also calculated
from the velocity fields obtained in the numerical simula-
tions, as �
= ��ur /�x−�ux /�r�. The vorticity contours of four
jets with Re
1000 and different Froude numbers are shown
in Fig. 8 at the same nondimensional times as in Fig. 7.

The evolution of the vorticity of a homogeneous jet,
Fr=�, has been represented in Figs. 8�a�–8�d�. The forma-
tion of the vortex head during the initial instants, followed by
the jet, can be seen as time evolves. The vortex ring remains
attached to the trailing jet and, consequently, there is a con-
tinuous injection of circulation from the jet into the leading
vortex. Since the flow was not artificially perturbed there are
no secondary instabilities in any of the cases.

The appearance of the baroclinic vorticity is clear in the
vorticity fields of the lighter jets. In Figs. 8�e�–8�h� the vor-
ticity fields of a jet with Fr=7 have been plotted. The baro-
clinic vorticity layer surrounding the leading vortex ring is

clear at the largest time shown, t̂=5. In Figs. 8�i�–8�l� this
vorticity layer of opposite sign is identified at shorter times,
and even at an earlier stage it can be visualized in the case of
the subcritical jet �Figs. 8�m�–8�p��.

D. Total circulation, vortex circulation,
and formation number

The total circulation was calculated as the integral of the
axial velocity along the integration domain as

�� =
�

UjD
=

1

UjD
�

C

u� · dl� =
1

UjD
�

0

�

ux�r = 0,x�dx , �10�

where C is the curve enclosing surface S0 �see Fig. 15�.
Several experiments were carried out in order to deter-

mine the influence of the Froude number on the total circu-
lation. Figure 9 represents the time evolution of the dimen-
sionless total circulation of the jet for different values of the
Froude number obtained experimentally as well as from the
numerical simulations. The differences between the numeri-
cal results and the experiments are mainly caused by the
different velocity profiles at the exit of the orifice, as well as
by the different time evolutions of the piston velocity in our
experiments. The important aspect shown in Fig. 9 is the
different evolution of �� as the Froude number decreases. In
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fact, it can be observed that at Fr�1 the total circulation
reaches a maximum at t̂=1 and later on decreases toward a
constant value of approximately ��=0.5.

Another interesting characteristic of starting jets is the
formation number, F, defined as the dimensionless time,

F= tfUj /D, at which the circulation injected by the discharg-
ing jet is equal to the circulation that the vortex head will
have once it eventually detaches.1 As already mentioned, to
calculate the circulation of the vortex ring, it must be discon-
nected from the trailing jet. Consequently, we considered the
pinch-off time to be the instant at which the vorticity contour
line ��=1 enclosed the vortex core, and estimated the vortex
circulation as the circulation inside that contour line.
Previous studies have shown that for neutrally buoyant jets,
the formation number, F, can vary depending on the velocity
profile and the time evolution of the piston velocity.5,6,14 For
our experimental setup the formation number for Fr=� var-
ied between 2.5 and 3.5 as can be deduced from Fig. 10. This
figure also shows that the evolution of the total circulation of
the jet does not depend on the Reynolds number, at least, in
the range of Reynolds numbers studied in this work.

In the case of light jets, Fr��, one would expect the
leading vortex to have a higher circulation since it discon-
nects from the trailing jet later than in the case of homoge-
neous jet; however, we have observed a different behavior.
Figure 11 compares both the total and the vortex circulation
of two jets with identical Reynolds number, Re=2000, and
different Froude numbers, i.e., Fr=� and Fr=7. The dashed-
dotted lines indicate the graphical procedure used to deter-
mine the formation time. Note that the vortex circulation,
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FIG. 8. �Color online� Numerical vorticity contours for t̂=0.25, 1, 3, and 5. First row ��a�–�d�� corresponds to Fr=�, second ��e�–�h��, third ��i�–�l��, and last
row ��m�–�p�� to Fr=7, Fr=3, and Fr=0.4, respectively �numerical simulations ii, iv, v, and xi of Table II�. Note that here t̂= t� since our numerical simulations
were started impulsively.
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and consequently the formation number, is substantially
smaller in the negatively buoyant jet �F�Fr=��=3 versus
F�Fr=7�=1�.

For jets of Froude number smaller than a critical value
close to unity, Fr�Frc�1, the formation number has no
meaning since there is no trailing jet and the vortex head is
connected to the emerging fluid because of the buoyancy
forces �see Fig. 2�p��.

VI. DISCUSSION

Observation of the visualizations and vorticity contours
shown in Secs. III and V suggests the existence of two dif-
ferent flow regimes: �1� a first regime where the leading vor-
tex ring does not have time to develop before it is pushed
radially away from the vorticity layer and �2� a second re-
gime where a trailing jet forms before the vortex ring reaches
the maximum penetration depth. The transition between

these two regimes seems to take place around a critical
Froude number of Frc�1. However, the mere examination
of the visualizations is not sufficient to provide a quantitative
characterization of what changes in the flow field when the
transition occurs. In what follows, the trajectories of the vor-
tex centers are analyzed with the aim of characterizing this
transition and providing a clear definition of both subcritical
and supercritical flows.

A. Vortex location

A close examination of Fig. 6 reveals that at short times,
t̂	1, the axial vortex position does not depend on the Froude
number, indicating that buoyancy effects are nearly negli-
gible during the initial instants of time. Indeed, it is reason-
able to assume that buoyancy effects will not take place until
the acceleration due to the reduced gravity, g�=��g /� j, has
time to induce a velocity comparable to the jet injection ve-
locity, Uj. Thus, we can define a gravitational time, tg, as

tg =
Uj

g�
=

� jUj

g��
= Fr

D

Uj
. �11�

In other words, the effect of the reduced gravity will
become important after a dimensionless time of the order of
the Froude number, t�� tg

�=Fr. With this idea in mind, we
can decompose the vortex location for any Froude number at
a given time as the sum of the vortex location for a homo-
geneous jet of Fr=�, xv���, plus a term that accounts for the
displacement caused by gravity, xv=xv���+xv,g�. Moreover, if
the velocity induced by gravity at a time t is of the order g�t,
the leading vortex of a light jet will deviate from the position
of the leading vortex of a homogeneous jet a distance
xv,g� �−1 /2g�t2, the minus sign indicating that gravity op-
poses the momentum flux in the case of light jets. Thus, the
vortex location can finally be given by xv=xv���−

1
2�g�t2,

which can be expressed in dimensionless form as

xv���
� − xv

�

Fr
=

1

2
�� t�

Fr
�2

, �12�

where � is a proportionality constant of order unity. To con-
firm this conjecture, the left hand side of Eq. �12� has been
plotted versus the dimensionless time t̂ /Fr in Fig. 12. It can
be shown in this figure that the numerical results collapse
remarkably well onto a parabola �t̂ /Fr�2 as the model pro-
vided in Eq. �12� predicts. Here, in the numerical simulations
t̂= t� since the flow is impulsively started, whereas the initial
piston acceleration has been taken into account in the experi-
mental measurements. Notice that although the experimental
results seem to follow the same trend for t̂ /Fr�2, some
disagreement is observed at shorter times, presumably due to
the effect of the velocity profile and the perturbations in the
flow.

Moreover, the time evolution of the axial position of the
leading vortex obtained from the numerical simulations for
different Froude numbers has also been plotted in Fig. 13. It
is interesting to point out that for the subcritical cases,
Fr�1, all the time evolutions of the axial vortex position,
scaled with the Froude number, xv

� /Fr, collapse onto a single
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curve when the time is as well rescaled with the Froude
number, t̂ /Fr. However, the time evolution of the vortex lo-
cation depends on the Froude number in the supercritical
cases, Fr�1. Note also that the collapse observed at Fr	1 is
only compatible with Eq. �12� provided that the vortex loca-
tion for Fr=� is of the form xv���

� =V0t�. Thus, in such cases
Eq. �12� can be expressed as

xv
�

Fr
= V0

t�

Fr
−

1

2
�� t�

Fr
�2

�13�

indicating that the leading vortex starts moving at a constant
speed, V0, independently of the Froude number.

When the negative velocity induced by gravity effects is
comparable to the velocity of the leading vortex ring
of the homogeneous jet �Fr=��, the penetration depth
nearly reaches its maximum value. This occurs at times
t̂�2.5 Fr �see Fig. 13� and it explains also the collapse of
the xv

� /Fr− t̂ /Fr curves observed for Fr	1, displayed in Fig.
13. Indeed, the examination of the time evolution of the vor-
tex ring position for the homogeneous case, shown in Fig.
14, reveals that it starts moving at a nearly constant speed
until t̂�2. Afterward it exhibits an acceleration stage, until it
reaches its final speed, at approximately t̂�6 �V��0.5 ac-
cording to the slug-flow model3�. Therefore, for starting jets
such that the leading vortex ring reaches its maximum pen-
etration before this acceleration stage occurs, the assumption
of constant velocity, xv���

� =V0t�, describes fairly well the ob-
served xv

� /Fr− t̂ /Fr trajectories. Notice that this condition is
equivalent to Fr�1. On the contrary, those vortices that still
have not been significantly affected by gravity at t̂�2, feel
the acceleration stage and thus do not satisfy the condition of
constant initial velocity V0. For these cases Eq. �13� is no
longer valid and the xv

� /Fr− t̂ /Fr curves depend on the
Froude number.

To clarify this point, vertical �i.e., constant time� lines
have been plotted in Fig. 14 indicating the time at which the
vortices corresponding to different Froude numbers reach
their maximum penetration depth. Notice that vertical lines,
corresponding to subcritical cases, are placed at times when
the velocity of the homogeneous vortex ring has not changed
significantly with respect to its initial value.

A possible explanation for the acceleration stage of the
vortex ring for Fr=� is that at the beginning of the stage, the
vortex has engulfed enough vorticity to exhibit a self-
induced velocity faster than the initial convective one, V0.
Therefore, vortex rings of different Froude numbers show
coincident values of their axial locations during these first
instants, however, subcritical vortices never reach this self-
induced velocity because gravity forces push them away be-
fore this can occur.
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To conclude this section, a final comment must be made
about the apparent universality of the vortex gravitational
acceleration factor, �, used in Eq. �12�, that leads to the
collapse of the different curves shown in Fig. 12. It has been
shown in numerical simulations that the average density of
the leading vortex ring is not � j but a value between � j and
�0 due to the entanglement of jet and ambient fluid patches in
the vortex core and to molecular mixing. Therefore, it should
be more appropriate to say that the actual acceleration acting
on the vortex is �g� rather than g�, where ��1. The value
obtained from Fig. 12 is relatively low, about ��0.1, indi-
cating that the vortex ring entrains more ambient fluid than it
does from the jet. Furthermore, the fact that this parameter is
nearly constant for all Froude numbers, density ratios and
Reynolds numbers explored in this work indicate that the
proportions in which the jet and ambient fluids are mixed are
almost unaffected by these parameters. It is important to re-
mark that this parameter � must not be understood as the
actual mixing ratio existing inside the vortex ring but as a
free parameter obtained by fitting the kinematic model de-
scribed by Eq. �12� to the numerical and experimental data.
The parameter � would be exactly the mixing ratio only if
the vortex ring was a nondeformable object of constant size,
which obviously is not the case during its formation process,
when the vortex grows and changes its shape as a result of
the vorticity redistribution occurring through this stage.
Therefore, the value �=0.1 does not mean that the final com-
position of the vortex ring is 10% jet fluid and 90% ambient
fluid.

B. Evolution of the total circulation

The assumption that the vortex location can be expressed
as the location of the starting jet at Fr=�, plus a term that
accounts for the effect of the Froude number can also be
extended to describe the evolution of the circulation reported
in Sec. V for finite Froude numbers. The vorticity equation in
an axisymmetric, high Reynolds number, laminar flow with
nonuniform density is given by12

�

�t
��

r
� + � · �u�

�

r
� =

��� ∧ �p�


r�2 . �14�

Equation �14� can be integrated over the total fluid volume,
V, and divided by 2� to yield

d

dt
�

S0

�drdx +
1

2�
�

V

� · �u�
�

r
�dV

= �
S0

��� ∧ �p�


�2 drdx , �15�

where in the first and third terms, the differential volume has
been substituted by dV=2�rdrdx, transforming the volume
integral into a surface integral over a constant-
 surface, S0

�see Fig. 15�. The first integral can now be rewritten as

d

dt
�

S0

�drdx =
d�

dt
. �16�

On the other hand, application of Gauss’ theorem allows us
to write the second integral in Eq. �15� in the following way:

�
V

� · �u�
�

r
�dV = �

S

�

r
u� · n�dS , �17�

which represents the net vorticity flux across the control sur-
face S. Furthermore, the only vorticity flux across the inte-
gration surface is that occurring through the injection orifice,
and does not depend either on the Froude number or on the
density ratio. Applying these arguments to the vorticity equa-
tion in the case Fr=�, one obtains

1

2�
�

V

� · �u�
�

r
�dV = − �d�

dt
�

Fr=�

. �18�

Finally, the third integral in Eq. �15� represents the baroclinic
production of vorticity and will be denoted hereafter by
d� /dt �bar. Thus, it can be concluded that the difference be-
tween the circulation of neutrally buoyant jets and that of
nonhomogeneous jets is due to the generation of baroclinic
vorticity,

d�

dt
= �d�

dt
�

Fr=�

+ �d�

dt
�

bar
. �19�

In order to estimate the baroclinic production occurring
for Fr��, the same reasoning described by Iglesias et al.12

can be followed. First of all, since in our experiments and
simulations the Reynolds and Schmidt numbers are large, it
is assumed that the density gradients, and thus baroclinic
production, is confined to the jet-ambient interface, and the
corresponding surface integral in Eq. �15� must be only
evaluated along a thin layer surrounding the interface �see
Fig. 15�. This integral can be easily calculated using a new
system of coordinates �n , l�, where n is the normal to the
density interface and l is the coordinate tangent to this inter-

l = lt

�g

l = 0

x

r

l

n

S0
V

S

FIG. 15. Sketch of the coordinate system employed to evaluate the baro-
clinic production integral.
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face. In this new coordinate system, and according to the
hypothesis that density variations occur only at n=0, the
baroclinic integral can be expressed as

�d�

dt
�

bar
= �

S0

��� ∧ �p�


�2 drdx

= �
0−

0+ 1

�2

��

�n
dn�

0

lt �p

�l
dl

= − �p�xf,0� − p�0,D/2��� 1

� j
−

1

�0
� , �20�

where �0 is the density of the outer fluid and xf represents the
axial position of the jet front, l=0. Here the pressure at
x=0 can be set to zero without loss of generality and the
pressure at x=xf can be assumed to be p�xf ,0���0gxf. In-
deed, the pressure at this point is expected to differ from that
of a point located at the same x=xf, but far away from the
axis, r→�, in an amount of the order � jUj

2��0gxf, as shown
by

� jUj
2

�0gxf
=

� j

�0

Uj
2

gD

D

xf
= Fr

��

�0

D

xf
. �21�

It should be kept in mind that the parameter �� /�0 is typi-
cally small in all the cases investigated here, specially for
Fr�1. Using the above assumption Eq. �20� reduces to

�d�

dt
�

bar
= − �0gxf� 1

� j
−

1

�0
� = −

1

Fr
xf

�Uj
2. �22�

Since initially the front position, xf, does not depend on the
Froude number and advances at a nearly constant speed pro-
portional to Uj, xf

�� t�, one obtains

�bar
� � −

t�2

Fr
. �23�

Figure 16 shows the dimensionless circulation differ-
ence, ��Fr=�

� −��� /Fr as a function of t̂ /Fr in a logarithmic
plot. It can be observed that for short times it follows the

trend ��Fr=�
� −��� /Fr��t̂ /Fr�2 predicted by the model, pro-

vided in Eq. �23�. For larger times, t̂ /Fr�2.5, the baroclinic
production slows down and starts increasing linearly with
time �see Fig. 16�. Examination of Fig. 13 reveals that this
change in slope coincides with the time when the leading
vortex location, and therefore the jet’s front, reaches a maxi-
mum penetration, thus d� /dt �bar becomes constant in agree-
ment with the proposed model.

VII. CONCLUSIONS

Negatively buoyant starting jets have been studied ex-
perimentally and numerically in order to clarify the role of
buoyancy forces in their development. When the Reynolds
number is large enough and the density and viscosity ratios
are close to unity, the densimetric Froude number, Fr,
emerges as the only relevant parameter of the flow. The evo-
lution of a number of important jet features such as the tra-
jectory of the leading vortex ring, formation number, final
penetration depth, as well as the vorticity fields and total
circulation have been analyzed for starting jets with different
Froude numbers and compared to the case of neutrally buoy-
ant jets.

A first conclusion of the study is the existence of two
different flow regimes: For Froude numbers larger than about
Frc�1, the leading vortex ring detaches from the injection
orifice and advances downstream into the stagnant ambient
followed by a trailing jet, eventually reaching a maximum
penetration depth and loosing the axial symmetry for finite
Froude numbers. On the other hand, for Fr�1, the leading
vortex ring is pushed upstream by buoyancy forces and
spreads out radially before it has time to develop a self-
induced velocity. Analysis of the leading vortex location his-
tory reveals that the transition between these two regimes
occurs when the gravitational time, the time that gravity
takes to induce a velocity equal to the injection one, is of the
order of the vortex ring formation time, D /Uj. This condition
is equivalent to Fr�1. Based on these ideas, a simple model
has been proposed to describe the location of the buoyant
leading vortex ring as a function of time. The key idea is to
decompose the vortex velocity, and thus its position, as the
sum of that of the homogenous vortex ring minus a term that
accounts for the effect of gravitational acceleration. The
model, which only has one free parameter, describes fairly
well the trends observed in both simulations and experi-
ments.

Regarding the vorticity fields, the main difference ob-
served when they are compared to the vorticity distribution
observed for neutrally buoyant jets is the existence of a layer
of opposite sign to the one injected that moves upward due to
buoyancy effects. Examination of the vorticity equation re-
veals that the origin of this negative vorticity layer is the
baroclinic production. Furthermore, a model is also proposed
to evaluate the baroclinic production and therefore to explain
the observed evolution of the total circulation found in the
flow.

Finally, the effect of the Froude number on the vortex
ring formation number, F, has been evaluated. For Fr�1,
when this parameter can be defined, the formation number
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1
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FIG. 16. Contribution of the baroclinic production to the total circulation.
The dashed line is the prediction of the model for short times ��t̂2� whereas
the thick solid line goes as �t̂ �the numerical simulations correspond to the
same cases as in Fig. 12�.
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increases with the Froude number, eventually reaching the
range of values reported in literature for the homogeneous
case, F�3–4. This is consistent with the smaller size of the
negatively buoyant vortex rings compared to their neutrally
buoyant counterparts. Indeed, as described above, part of the
fluid transported by the trailing jet is taken from the vortex
ring and moved upward by buoyancy forces during the vor-
tex ring formation process.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of
Education under Project Nos. DPI2008-06624-C03-02 and
ENE2008-0615-C04. This work has been extracted from the
Ph.D. thesis of Marugán-Cruz.26

1M. Gharib, E. Rambod, and K. Shariff, “A universal time scale for vortex
ring formation,” J. Fluid Mech. 360, 121 �1998�.

2D. I. Pullin, “Vortex ring formation at tube and orifice openings,” Phys.
Fluids 22, 401 �1979�.

3K. Shariff and A. Leonard, “Vortex rings,” Annu. Rev. Fluid Mech. 24,
235 �1992�.

4N. Didden, “Formation of vortex rings: Rolling-up and production of cir-
culation,” Z. Angew. Math. Phys. 30, 101 �1979�.

5W. Zhao, S. H. Frankel, and L. Mongeau, “Effects of trailing jet instability
on vortex ring formation,” Phys. Fluids 12, 589 �2000�.

6G. Pawlak, C. Marugán-Cruz, C. Martínez-Bazán, and P. García-Hrdy,
“Experimental characterization of starting jets dynamics,” Fluid Dyn. Res.
39, 711 �2007�.

7L. Pantzlaff and R. M. Lueptow, “Transient positively and negatively
buoyant turbulent rounds jets,” Exp. Fluids 27, 117 �1999�.

8T. S. Turner, “Jets and plumes with negative or reversing buoyancy,” J.
Fluid Mech. 26, 779 �1966�.

9P. Philippe, C. Raufaste, P. Kurowski, and P. Petitjeans, “Penetration of a
negatively buoyant jet in a miscible liquid,” Phys. Fluids 17, 053601
�2005�.

10W. Lin and S. W. Armfield, “Direct simulation of weak axisymmetric

fountains in a homogeneous fluid,” J. Fluid Mech. 403, 67 �2000�.
11R. W. Cresswell and R. T. Szczepura, “Experimental investigation into a

turbulent jet with negative buoyancy,” Phys. Fluids A 5, 2865 �1993�.
12I. Iglesias, M. Vera, A. L. Sánchez, and A. Liñán, “Simulations of starting

gas jets at low Mach numbers,” Phys. Fluids 17, 038105 �2005�.
13R. P. Satti and A. K. Agrawal, “Computational study of buoyancy effects

in a laminar starting jet,” Int. J. Heat Fluid Flow 29, 527 �2008�.
14M. Rosenfeld, E. Rambod, and M. Gharib, “Circulation and formation of

laminar vortex rings,” J. Fluid Mech. 376, 297 �1998�.
15R. C. Weast, CRC Handbook of Chemistry and Physics �CRC, Cleveland,

1985�.
16R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook

�McGraw-Hill, New York, 2007�.
17N. B. Kaye and G. R. Hunt, “Weak fountains,” J. Fluid Mech. 558, 319

�2006�.
18P. D. Friedman and J. Katz, “The flow and mixing mechanisms caused by

the impingement of an immiscible interface with a vertical jet,” Phys.
Fluids 11, 2598 �1999�.

19H. Zhang and R. Baddour, “Maximum penetration of vertical round dense
jets at small and large Froude numbers,” J. Hydraul. Eng. 124, 550
�1998�.

20W. D. Baines, J. S. Turner, and I. H. Campbell, “Turbulent fountains in an
open chamber,” J. Fluid Mech. 212, 557 �1990�.

21P. N. Papanicolaou and T. J. Kokkalis, “Vertical buoyancy preserving and
non-preserving fountains, in a homogeneous calm ambient,” Int. J. Heat
Mass Transfer 51, 4109 �2008�.

22J. Westerweel, Digital Particle Velocimetry. Theory and Application �Delft
University Press, Delft, 1993�.

23M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry-A
Practical Guide �Springer-Verlag, Berlin, 1998�.

24A. Acosta-Iborra, “Métodos autoadaptativos para la derivación de campos
de velocidad procedentes de la técnica de velocimetría por imagen de
partículas �PIV�,” Ph.D. thesis, Universidad Carlos III de Madrid,
2004.

25J. E. Carter, J. Soria, and T. T. Lim, “The interaction of the piston vortex
with a piston-generated vortex ring,” J. Fluid Mech. 499, 327 �2004�.

26C. Marugán-Cruz, “Experimental and numerical analyses of starting jets
with different jet-to-ambient density ratios,” Ph.D. thesis, Universidad
Carlos III de Madrid, 2008.

117101-14 Marugán-Cruz, Rodríguez-Rodríguez, and Martínez-Bazán Phys. Fluids 21, 117101 �2009�

http://dx.doi.org/10.1017/S0022112097008410
http://dx.doi.org/10.1063/1.862606
http://dx.doi.org/10.1063/1.862606
http://dx.doi.org/10.1146/annurev.fl.24.010192.001315
http://dx.doi.org/10.1007/BF01597484
http://dx.doi.org/10.1063/1.870264
http://dx.doi.org/10.1016/j.fluiddyn.2007.06.003
http://dx.doi.org/10.1007/s003480050336
http://dx.doi.org/10.1017/S0022112066001526
http://dx.doi.org/10.1017/S0022112066001526
http://dx.doi.org/10.1063/1.1907735
http://dx.doi.org/10.1017/S0022112099006953
http://dx.doi.org/10.1063/1.858749
http://dx.doi.org/10.1063/1.1858533
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.12.002
http://dx.doi.org/10.1017/S0022112098003115
http://dx.doi.org/10.1017/S0022112006000383
http://dx.doi.org/10.1063/1.870122
http://dx.doi.org/10.1063/1.870122
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:5(550)
http://dx.doi.org/10.1017/S0022112090002099
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.023
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.023
http://dx.doi.org/10.1017/S0022112003006980


Physics of Fluids is copyrighted by the American Institute of Physics (AIP).  Redistribution of journal material

is subject to the AIP online journal license and/or AIP copyright.  For more information, see

http://ojps.aip.org/phf/phfcr.jsp


