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Abstract 
In this paper, we present a generalized dynamic factor model for a vector of time series, which 
seems to provide a general framework to incorporate all the common information included in a 
collection of variables. The common dynamic structure is explained through a set of common 
factors, which may be stationary, or nonstationary as in the case of common trends. Also, it 
may exist a specific structure for each variable. Identification of the non stationary factors is 
made through the common eigenstructure of the lagged co variance matrices. Estimation of the 
model is carried out in state space form with the EM algorithm, where the Kalman filter is used 
to estimate the factors or not observable variables. It is shown that this approach implies, as 
particular cases, many pooled forecasting procedures suggested in the literature. In particular, it 
offers an explanation to the empirical fact that the forecasting performance of a time series 
vector is improved when the overall mean is incorporated into the forecast equation for each 
component. 
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1 Introduction 

The pooling of information by means of a common mean or "borrowing strenght from the 

average" appears in a natural way in empirical Bayes methods (e.g. Efron and Morris, 

1973; Morris, 1983; Casella, 1983), hierarchical Bayesian models (Berger and Deely, 1988) 

and shrinkage estimators (James and Stein, 1961 and Green and Strawderman, 1991). 

In the time series literature, these ideas have been used by Garcia Ferrer et al (1987) 

and Zellner and Hong (1989) among others to show that forecasting of the annual output 

growth rates of several countries can be improved in terms of an out-of-sample root­

mean-squared criteria by introducing a median real stock return of all countries. This is a 

relevant example of how the forecast of a set of variables can be improved by adding the 

overall mean of the variables to the univariate ARMA models fitted. Other examples can 

be found in Clemen (1989), Ledolter and Lee (1993) and Min and Zellner (1993), among 

others. 

This paper has two main contributions. The first one is a generalization of the dynamic 

factor model studied by Pena and Box (1987) to the nonstationary case. The second one 

is to show that the forecast generated from this model implies, as particular cases, many 

pooled forecasting procedures suggested in the literature. It is shown that the forecasts 

from the factor model incorporate a weighted average of all the components collected in 

the time series vector, with weights proportional to the inverse of the variances of the 

error terms of the series. 

This article is organized as follO\vs. Section 2 presents the generalized dynamic factor 

model and study its properties. Section 3 analyzes the problem of separating the non­

stationary factors from the stationary ones and shows how this can be carried out by 

a generalization of a method proposed by Pena and Box (1987) for stationary factors. 

Also, this section summarizes the relationship between cointegration and factor models. 

Section 4 briefly reviews the estimation using the EM algorithm. Section 5 develops the 

forecasting equations and shows how a pooled forecasting procedure is obtained. Section 

6 applys the model to four financial series of Spanish interbank interest rates: 1 day, 3 

months, 6 months and 1 year. Two factors of different nature are found: the first factor 

is nonstationary and can be interpreted as a common trend driving all the series; the 

second factor is stationary and can be interpreted as a factor that differentiates between 

the short and the long run in the four series. Finally, a specific factor to each of the series 

is found, which explain the dynamic structure particular to each of the series. It is shown 

that the factor model provides better forecasts than a vector ARMA model. 
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2 The Factor Model 

In the time domain, dynamic factor models have been studied by Engle and \iVatson 

(1981, 1983), Shumway and Stoffer (1982), Peiia and Box (1987), Tiao and Tsay (1989), 

Gonzalo and Granger (1991) and Reinsel and Ahn (1992), among others. Let Yt be an m­

dimensional vector of observable time series, generated by a set of not observable factors. 

\iVe assume that each component of the vector of observed series, Yt, can be written as a 

linear combination of common and specific factors; that is 

Yt 
m xl 

P it + nt 

mxr rx1 mx1 
(1) 

where it is the r-dimensional vector of common factors, P is the factor loading matrix, 

and nt is the vector of specific factors. Therefore, all the common dynamic structure 

comes through the common factors, it, and the vector nt explains the dynamics specific 

to each time series. If there is not any specific dynamic structure, nt is reduced to white 

nOIse. 

\Ve suppose that the vector of common factors follows a VARMA(p, q) model 

(2) 

where <I>(B) = 1- <I>(l)B-,···, -<I>(p)BP, and 8(B) = 1- 8(1)B-,···, -8(q)BQ, are 

r X 7· polinomial matrices and B is the backshift operator. The sequence of vectors at are 

normally distributed, have zero mean and covariance matrix ~a, with full rank and are 

serially uncorrelated, that is E (ata~_h) = 0 h =I o. 
The components of the vector of common factors, it, can be either stationary or 

nonstationary. The specific dynamic structure associated with each of the observable 

series is included in the vector of specific factors, nt. Of course, some componentes of nt 

can be white noise, while other ones can have dynamic structure and follow an ARMA 

model. In general, 

(3) 

with <I>n and en m X m diagonal matrices given by <I>n(B) = 1- <I>n (1 )B-,· .. , -<I>n(P )BP, 
and en(B) = 1- e n(l)B-,···, -8n(q)BQ, and therefore each component follows an uni­

variate ARMA(pi' qi), i = 1,2,···, m, being p=max(Pi) and q=max(qi), i = 1,2,···, m. 

The sequence of vectors et are normally distributed, have zero mean and diagonal co­

variance matrix ~e. Recall that if all the dynamic structure comes through the common 
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factors, the components of nt are white noise, and 8 n(B) = I and ipn(B) = I. We as­

sume that the noises from the two different set of factors, common and specific, are also 

uncorrelated for all lags, 

(4) 

The model as stated is not identified, because for any r X r non singular matrix H the 

observed series Yt can be expressed in terms of a new set of factors, 

Yt = P* it + nt (5) 

ip*(B)it = 8(B)*a; (6) 

with p*'p* = (H-1),P'PH-1, it = Hit, a; = Hat, ip*(B) = HipH-l, 8*(B) = H8H-l, 

and ~: = H~aH'. Models (1), (2) and (5), (6) are identical from the point of view of the 

available data. 

To solve the identification problem, we follow the work by Hannan (1969, 1971, 1976) 

and Kohn (1979) which has been more recently extended to nonstationary state space 

models by 'Vall (1987), and look for parametrizations that are unique in their effect on 

first and second moments of the observed time series. The observational equivalence 

between two parameter structures gives a set of relation equations between the matrices 

from the bvo alternative parametrizations of the model, and restrictions should be imposed 

until the relation between the two structures is given by the identity matrix. In this case, 

both parametrizations are the same. 

As the scale of the factors is irrelevant, the factors noise covariance matrix, ~a, may be 

chosen to be the identity matrix. Then, ~: will not be the identity unless H is orthogonal, 

and still the model is not identified to rotations. Other common solutions used to avoid 

this indeterminancy is to choose P, such that P' P = I. Some parameters of the processes 

followed by the factors may be also restricted by the nature of the processes. (For example, 

if there is a common trend orthogonal to some stationary factors, the matrix ip has already 

some fixed paramenters.) When nt is white noise and the factors are stationary model 

(1) and (2) is the factor model studied by Peiia and Box (1987). 

3 Stationary and nonstationary factors 

For dynamic stationary factor models, Peiia and Box (1987) developed a method of iden­

tyfing the number of common factors based in the common eigenstructure of the lagged 

covariances matrices of the vector of time series. Nevertheless, in many cases real time 

3 



series vectors are nonstationary. Suppose that the vector of time series is 1(1). In a gen­

eral case, some common factors will be stationary, while others will be nonstationary. A 

factor can also be a common trend, in the sense of Stock and Watson (1988), driving all 

the series. 

Suppose that the specific factors, if they exist, are stationary, and that there are 

some common 1(1) factors. To identify this non-stationary common factors, we define the 

matrix of sample second moments, 

(7) 

Notice that the sum of second moments is divided by T2, so that only the submatrix of 

Ay associated with the 1(1) factors will converge to a non zero random matrix. To see 

this, subtitute Yt, expressed as in (1), in the equation above (7) 

Ay( k) = ;2 LYt-kY: P( ;2 L ft-kf:)P' + P( ;2 L ft-k n:) 

+ (;2 L nt-kfnp' + ;2 L nt-kn~) 

Let us call 

and 

fJI(k) = plim ;2Lfl,t-kf~,t 
Since the specific factors are 1(0) and the first and second moments of nt exist and are 

finite, it is straightforward to show (see appendix), that 

For the common stationary factors, f2,t, stationarity and the existence of finite first and 

second moments imply 

From equation (4), both noise processes, the one associated with the common factors, 

at, and the one associated with the specific ones, et, are uncorrelated for all lags. In 

Appendix 1, it is also shown that 
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so, 

ry(k) = plim ;2 LYt-kY; = P( plim ;2 L ft-kfnp' = prj(k)p' (8) 

or more explicitly 

r (k) = [P P] [ rh (k) 0 1 [ P{ 1 = pr (k)P' 
y I 2 0 0 P' 1 h I 

2 

(9) 

Following the discussion in Pena and Box (1987) but applying it now to the nonstationary 

factor model, the random matrix, r y (k) has as non zero eigenvalues the diagonal term 

of rh (k) and as eigenvectors corresponding to these eigenvalues PI. So the number of 

nonstationary common factors is the number of non-zero eigenvalues of ry(k), equals the 

number of eigenvalues of, rh (k) 
Common factors are very related to cointegration relationships. See Stock and \;Yatson 

(1988), Johansen (1991), Gonzalo and Granger (1991), Reinsel and Ahn (1992) and Escrib­

ano and Pena (1994), among others. Let Yt be a vector of m variables, Yl,b Y2,b· .. ,Ym,b 
that are 1(1). It is said that the m 1(1) variables are cointegrated of order 1 and rank 

1,1 < m, if there are 1 linearly independent combinations of them, say ZI,b Z2,t,· .. ,Zrr,b 

that are 1(0) or in a short way, each component of Yt is 1(1), but AYt are 1(0), where 

A = [aij] and rank(A) = 1 < m. The existence of cointegration relations in a set of time 

series variables is directly related to the existence of common 1(1) factors as it can be 

seen in Escribano and Pena (1994), from where we take the following result. The vector 

of m time series Yt is cointegrated of order 1 and rank 1 < m if, and only if, Yt has m - 1 
common factors that are 1(1). 

In our case the number of nonstationary factors or common trends is rI. So, the 

rank of cointegration of the m variables collected in Yt is m - rI. In other words, we 

can find rI common trends because there are m - rI cointegration relations. Remember 

that the number rI of common trends or non stationary factors is the number of non-zero 

eigenvalues of ry(k), (see 8) which can empirically estimated as the number of non zero 

eigenvalues of Ay(k), (see 7) for T large. 

4 Estimation 

l\lodel estimation is carried out by writing the model in state space form and using the 

EM algorithm. In the time series context, this was first done by Shumway an Stoffer 

(1982) while Stock and Watson (1983) suggested to use the EM algorithm with a final 

pass through the scoring to calculate an estimator of the information matrix. In this 

section, we follow their work, which we briefly review. 
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The model can be written in state space form as follows: the vector of observable time 

series Yt, is given by the measurement equation, 

Yt 
m xl 

P Zt + Et 
mxs sx1 mx1 

(10) 

with E( Et) = 0, E( EtE~) = E( and E( EtE~) = 0 if t =I- T. The vector of factors Zt is driven 

by the transition equation, 

Zt 
s x 1 

G Zt-l + Ut 
s X s s xIs x 1 

(11) 

with E(Ut) = 0, E(UtU~) = Eu and E(UtU~) = 0 if t =I- T. Both noises, Et and Ut, are also 

uncorrelated for all lags, E(EtU~) = 0 for all t and T. To write an ARMA(p,q) model in 

state space form, a state vector of dimension max(p, q + 1 ) (e.g. Akaike, 1974; Gardner 

et al 1980; Ansley and Kohn, 1983) gives a minimal representation with uncorrelated 

errors in the transition and measurement equations. In this case, the ARMA model is a 

common factor, not observable, and the state vector, Zt, has to be increased to consider 

also the common trends and the specific factors. Its dimension is 1'1 + R + R*, where 

1'1 is the number of common trends, R = max(p, q + 1) where (p, q) is the order of the 

VARMA proccess followed by the common factors and R* is refered to the number of 

specific factors different from white noise and it is equal to I:~l max(pi, qi + 1) where 

(pi, qi) are the orders of the ARMA proccesses followed by the specific factors. 

Once the model is written in state space form, estimation will be carried out by 

the EM algorithm (Dempster et aI, 1977). In this case, two different set of unkowns 

should be distinguished: the parameters of the model (P, G, E( and Eu ), usually known 

as hyperparameters and from now on denotated by a, and the state variables (Zt). The 

problem to be solved is to maximize the density of the observed data Y = (Yl, Y2, . ", YT), 

which is highly non linear function of these parameters. This problem is equivalent to 

consider the" complete data set" of the observed time series Y and the not observed 

state vectors Z = (ZI, Z2, ... , ZT) and maximize the expectation of the joint density of all 

data, conditioned on the observed although incomplete data, evaluated at the estimation 

of the unknown parameters a(k) available. This second problem is much easier to solve. 

Therefore 6: = arg max log jy (Y; a) can be found as 6: = arg max E ZIY log jy,Z (Y, Z; a). 

From (10) and (11) 

T 

log jy,z(Y, Z; a) = 2:(log j(Yt\Zt; a) + log j(Zt\zt-l; a)) + log j(zo; a) (12) 
t=1 

6 



vVhen some componentes of the state vector are nonstationary there are several ways to 

handle this situation as (i) introducing proper prior information, (ii) estimating Zo as a 

nuisance parameter, (iii) setting ~Ol = 0, so the last term in the equation above just 

disappear. Using this last approach and taking expectations in (12) with respect to the 

distribution of jZIY, 

EZIY log jy,z(Y, Z; a) 
Tm T 1 [~ - 1 - 1 -T log(21l") - "2 log I~fl- 2EzIY ~(Yt - Pzd'~-; (Yt - Pzt) 

Ts T 
T log(21l") - "2 log I~ul 

~ 'tEZIY [(Zt - GZt_J)'~:I(Zt - Gzt- 1)] 
t=l 

(13) 

This last expression is then maximized to estimate a and gives us the follow­

i~1g estimators for the hyperparameters, G = [2:: EZjY(Zt_IZ~_!)l-l[2:: EZjY(Zt-lZDJ, 

F = [2:: EzlY (ZtZ~)l-I[2:: EzjY(ZtyDJ, tf = liT 2:: EtE~ with Et = Yt - Fzt. 
Each iteration of the EM algorithm takes two steps:(i) E or expectation step where 

the moment matrices involved in the estimation of the hyperparameters are calculated 

,,,ith a = a(k), where a(k) denotes the parameter vector obtained at iteration k. These 

moment matrices are sufficient statistics of the parameters to be estimated. (ii) M or 

maximization step, where you obtain the unknown parameters of the model through the 

maximization of the above function, 

a(Hl) = arg max EZIY(1og L(Y Z; ala(k))), a E P 

The procedure is implemented as follows: 

1. Set up the factor model and the initial conditions for the model parameters, and for 

the state variable Zl and its covariance var(zJ). This is done by (i) Set the number of 1(1) 

factors as the number of non zero eigenvalues of fy(l). (ii) Set P as the r first eigenvectors 

of fy(l), F is a known function of P. (iii) Set G by writting the ARMA model as the 

transition equation of the state space model. (iv) Set Zl = F-Yl = (F'Ft1F'Yl' (v) Set 

~f = I or any diagonal matrix. 

2. Run the Kalman filter to estimate the state with the information available until 

time t, Ztlt = E(ztIYt, ... , Yl)' The state vector and its covariance matrix can be estimated 

through the well-known Kalman filter forecasting equations: 

Ztlt-l = GZt-1I t - ll 

".;ith associated covariance matrix, 

Vtlt-l = GVt-Ilt-l G' + ~u, 
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and also 

Ytlt-l = PZt-1I t - 1 (16) 

with covariance matrix given by, 

(17) 

Once a new observation of the time series is available the forecast for the state vector and 

its covariance matrix can be actualized trough the updating equations of the Kalman 

filter: 

(18) 

(19) 

v,'here Kt is the filter gain, given by 

}
T T7 p-,,,,-l 
\t = Vtlt-l Lltl t - 1 (20) 

3. The E step requires the computation of ZtlT = E(ZtIYT, ... , Yl)' Any smoothing 

algorithm can be used at this point. The most widely used, and the one used here, is the 

fixed interval smoother, see Harvey (1989, p.154-155). 

4. The maximization step of the EN! algorithm gives a new estimation of the pa­

rameters of the model, that is we find 6: = (P, G, to tu) such that maximizes the log 

likelihood function logf(aIY). This maximization is done in two steps. At iteration k, 

the estimation of the covariance matrices found in iteration k - 1 is used to calculate the 

system matrices G and F. These system matrices just estimated are then used to update 

the covariance matrix, ~E' Recently, several algorithms have been developed, as the ECM 

algorithm (Meng and Rubin, 1993) or the ECME algorithm (Liu and Rubin, 1994) where 

the maximization step is replaced by several conditional maximizations. 

5. And finally, repeat 2, 3, and 4 until convergence. 

The equations of the EM algorithm allow the maximization of the log likelihood to 

obtain a new estimation of the parameters of the model, in a simpler way than the usual 

scoring algorithm. The procedure is repeated until convergence. It can be proved that 

under proper conditions at each iteration the value of the log likelihood never decreases 

and the algorithm converges to a stationary point: a local maximum, a global maximum 

or a saddle point. Therefore, in order to be sure that we reach the desired maximun one 

should try different set of initial values. The main characteristic of this algorithm is that 
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it does not require at each iteraion the inverse of the information matrix as in the score 

algorithm. Another advantage is that it gives, by definition, positive definite estimation of 

the covariance matrices. Its main drawback is that it does not give standard errors of the 

parameter estimates. There are several ways to obtain them as the SEM algorithm (Meng 

and Rubin, 1991) or the SEeM algorithm (van Dyk et aI, 1995) if we are using conditional 

maximization at the M-step. Also one can calculate the information matrix, and this is 

the approach followed here. As the convergence of the algorithm is only linear, in some 

applications a large number of iterations are needed until the stationary point is reached, 

once we are in a neighbourhood of it, and lately several methods have been developed 

to accelerate the convergence rate. Nevertheless, for the factor model, convergence IS 

obtained in few iterations. So, the standard EM algorithm was used. 

5 Forecasting and pooling techniques 

In this section it is shown that this approach implies as particular cases some of the pooled 

forecasting procedures suggested in the literature. This also will give a better insight of 

how common factors affect prediction. Forecast is made applying equations (14) through 

(17) to time period t + h,h = 1,2,···.To build the h-steps ahead forecast, first equation 

(14) is used h times to estimate Zt+hlt 

with associated covariance matrix obtained applying (15) 

s-1 

'~+hlt = GhVtltG'h + L Gj"EuG'j-l. 

j=O 

(21) 

(22) 

Then, the h-steps ahead forecast for the vector of observable time series is calculated 

applying equation (16) to Zt+hlt and from equation (21) 

(23) 

with covariance matrix given by (17) 

(24) 

Since Ztlt is a linear combination of Ztlt-l and Yt given by equation (18), 

(25) 
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vvith Al = FGh(I - KtF). The prediction of Yt+h is also a linear combination of the 

forecast of the state at time t with the information given at time t - 1 and the vector of 

observations at time t. To find out how the information carried in Yt is incorporated into 

the forecast of Yt+h, as Kt, the filter gain, is given in (20), so 

(26) 

where Vtlt-I and ~tlt-I are given by (15) and (17) respectively. Applying to the inverse 

of (17), the well-known formula for the inverse of a sum of matrices (A + BC D)-I 

A-I - A-I B(DA-I B + C- It 1DA-1 for A and C nonsingular matrices, 

~-l = ~-1 _ ~-1 F(F'~-I F + v:- 1 )-1 F'~-l tlt-1 ( ( ( tlt-l ( (27) 

Replacing the expression above in equation (26), 

P- Gh}' P-A p-,,,-l D,,-l itYt = 2 L.J( Yt = LJ( Yt (28) 

with D = FA 2F' and A2 = GhVtlt_1(I -FTJ-;lF(F'~-;l F+ ~~~lt1), an s x s and m X m 

matrices. If the filter reaches an steady state, Vtlt-l and A2 can be considered as time 

invariant matrices respectively. The h-steps ahead forecast of the time series vector Yt+h 

is given then by the following linear combination 

(29) 

and as ~-;I is a diaginal matrix, the j-th component of the vector of time series predicted 

can be written as 

( ) 
dj1 dj2 djm ) 

= A1Z tlt- 1 j + (-2 Y1,t + -2 Y2,t + ... + -2 Ym,t . 
0"1 0"2 O"m 

(30) 

,,,here (Y)j represents the j-th component of vector Y and dji is the (j,i) element of matrix 

D. This equation shows that the forecast for each component of the vector Yt incorporates 

a pooling term which is a weighted sum of all the individual series with weights inversely 

proportional to the noise variance of each serie. 

5.1 The single factor model 

A single factor model can be of special interest. From the macroeconomic point of view 

it can be seen as an unobserved variable describing the state of the economy, approach 

related to the theory of the bussiness cycle. In many research areas it can represent 

the situation where there are several measures available of the same unobserved dynamic 
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variable. Besides this practical interest, from the theoretical point of view it is also 

interesting since it clarifies the nature (permanent or transitory) of the pooling term 

of the forecasting equation of the vector of time series. For special cases it has deeper 

implications as it will be pointed out. 

When the vector of time series is generated by one common factor the model is 

Yt P ft + et 
(31 ) 

m xI m x 1 1 x 1 m xI 

with E(ct) = 0, E(ctc~) = ~o ~( diagonal and E( CtC~) = 0 if T =I t. First, it will be 

analyzed the case where the common factor is given by 

ft <p ft-l + at 
(32) 

1 x 1 1 x 1 1 x 1 1 x 1 

with E(at) = 0, var(at) = O"~, cov(ataT) = 0 if T =I t and 1<p1 :::; 1. Notice that this 

specification implies AR(I) stationary factors when 1<p1 < 1, as well as common trends for 

<p = 1. The model is already in state space form with P = P, Zt = ft, r = s = 1, llt = at 

and G = <p. 

For a general factor loading matrix P = (Pl, P2, ... ,Pm)" the pooling term implied 

in forecasting equation (29) D~-;lYt = PA2i}f~-;lYt and A2 is now an scalar given by 
2 2 

A2 = <jJhO"j2 tJt-l (1 - Ct) with Ct = I:~l -3-(I:~1 -3- + ~ tl and O"} tJt-l the variance of 
, (Ji (Jl (J f,t!t-l ' 

the single factor at time t with the information given at time t - 1. The forecast of Yt+h 

is, from (29) 

A h 2 ( ) - (Pl P2 Pm) 
Yt+h = lZtJt-l + <p 0" j,tJt-l 1 - Ct P 2' 2" .. '-2 Yt· 

0"1 0"2 O"m 
(33) 

The j-th component of the vector of time series is predicted as 

• (A))..h 2 (1 )(PIPj P2Pj PmPj) Yj,t+h = lZtJt-l j + 'f' O"tJt-l - Ct -2-Y1,t + -2-Y2,t + ... + -2-Ym,t . 
0"1 0"2 O"m 

(34) 

This equation shows that the forecast for each component of the vector Yt incorporates 

a pooling term which is a weighted sum of all the individual series, with weights inversely 

proportional to the noise variance of each serie and directly proportional to the product of 

the factor loading of the serie with the remaining factor loadings. For a stationary common 

factor 1<p1 < 1 and <ph -t 0 when h gets larger. So this pooling term exponentially decay 

towards zero, which means that for long term predicitons this pooling effect disappears 

or has a transitory nature. For a common trend <ph = 1 and the nature of the pooling 

term is permanent, as it should be expected. 
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Another interesting conclusion can be drawn when the common factor, stationary or 

not, affects to all the series in a similar way. In this case the loading matrix P can be an 

m x 1 vector of ones, 1 = (1,1"",1),. The forecast of the vector Yt+h is just inversely 

proportional to the noise variance of each of the series. 

~ h2 ( 11 1 
Yt+h = A1Ztl t - 1 + cP O"j,tlt-1 1 - cd1( 2' 2"'" -2 )Yt 

0"1 0"2 O"m 
(35) 

with Ct = L~1 ~(L~l ~ + ~ t1 and for the j-th component of the vector of time 
• O"i 0", 0" 1,tlt-1 

senes, 

~ ( ) h2 ( 1 1 1 
Yj,t+h = AZtlt - 1 j + cP 0" j,tlt-1 1 - Ct)( 2Y1,t + 2Y2,t + ... + -2 Ym,t) 

0"1 0"2 O"m 
(36) 

Of course for the nonstationary case cP h = 1 while for the stationary one the pooling term 

disappears in the long run. 

Obviously, if the series have a similar variability the optimal forecast from this model 

is obtained by shrinking each serie towards the common mean. That is, if 0"; = O"~ 

... = 0"2 = 0"2 then m , 

Yj,t+h = 

2 

( ) hO"j,tlt-1( )( ) 
AZt1t - 1 j + cP 0"2 1 - Ct Vl,t + Y2,t + ... + Ym,t (37) 

This can be an explanation to the fact that the incorporation of the mean of a vector 

of time series improves the forecasting performance of a model as it was empirically found 

by Garcfa Ferrer et al (1987) and Zellner and Hong (1989). 

For a 1IA (q) proccess; the dimension of the state vector is s = R = q + 1 and the 

It is straightforward to show that Ch = 0 for h > q, for any q positive integer. So the 

pooling term is transitory and has a cut-off for h > q. 

An AR(p) proccess can be written as an infinite MA proccess so in the infinite horizont 

of prediction the pooling term disappear. From the practical point of view, for h large 

enough it can be considered that it is vanished. For smaller values of h, the forecast for 

each component of the vector Yt incorporates a pooling term which is a weighted sum of 

all the individual series with weights inversely proportional to the noise variance of each 

serie. The consecuences for an ARMA(p, q) model can be derived from the above results 

for AR and MA proccesses. 
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6 An application to Spanish Interbank Interest Rate 

The data consist of 164 observations, from June 84 until January 96, of four time series 

of Spanish interbank interest rates: one day, rI, three months, rgO, six months, r180, and 

one year, r365. Figure 1 shows a graph of the series. 
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Figure 1 Graphs of the four series of Spanish Interbank Interest Rate 

The sample was divided in two periods. The first includes 134 observations (from 

June 84 until June 93) and was used for estimation, the second include 30 (from July 93 

until January 96) points and was reserved to evaluate and compare the models in terms of 

forecasting. Predictions 1,2, ... ,30 steps ahead were calculated for the four series, and their 

mean square error evaluated. First, an VMA(1) model was fitted to the differenced series. 

A log transformation was tried first, but it gave worst results in forecasting than the 

originals series because of the smoothness of the 1 year interest rate serie. The VARMA 
model fitted to the series is given in Table 1. 
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.34 -.67 .47 -.96 2.16 .63 .39 .20 

()= 
-.09 0 0 -.46 

~(= 
.63 .56 .46 .31 

0 -.62 .88 -.73 .39 .46 .42 .29 

0 0 -.18 .23 .20 .31 .29 .25 

Estimation was carried out with SeA software. Notice the large variance of the first 

serie, as can be seen in Figure 1. 

The first thing required for fitting a factor model is to find the number of common 

factors. This is done through the eigenstructure of the second moment matrices of the 

series. Table 2 shows the largest and second largest eigenvalues of Ay( k) = ,f2 LYtY~-k 
where Yt = Yt - c, and their corresponding eigenvectors. 

Table 2: First and second eigenvalue and eigenvector Ay( k) 

lag 1 2 3 4 5 lag 1 2 3 4 5 

10,\ 2.37 2.31 2.11 1.98 1.80 10,\ .072 .055 .053 .051 .046 

.52 .52 .52 .52 .52 .79 .79 .82 .85 .87 

.53 .53 .53 .52 .52 -.02 -.01 -.04 -.12 -.16 

.50 .50 .50 .49 .49 -.29 -.28 -.31 -.34 -.34 

.4.5 .45 .45 .45 .46 -.53 -.. 54 -.48 -.38 -.30 

The stability of the eigenstructure through the lagged covariance matrices suggested 

t\yO common factors. The first factor is a common trend since there is one "large" sta­

ble eigenvalue in the lagged covariance matrices. Notice the stability of the eigenvector 

associated with this largest eigenvalue. The second common factor is a sationary one. 

An specific factor to each of the interbank interest rate series was also found. The final 

estimated factor model is given in Table 3. 

Table 3: Matrices of the factor model, ~a = I 

.64 .49 .25 0 0 0 1.15 0 0 

.66 .27 ~ = [ ~ °92] ~n = 
0 .41 0 0 0 .677 0 

p= ~e= 
.60 .08 0 0 .50 0 0 0 .577 

.51 -.14 0 0 0 .46 0 0 0 
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The elements of the first column of the loading matrix are all positive and more or less 

of similar magnitude. Then the first factor can be interpreted as a mean of all the series 

or a common trend driving all the series. In the second column of matrix P, the first 

and second elements are positive, the third is close to zero and the fourth one is negative. 

The magnitude of the first element (.49) is almost twice the one of the second coefficient 

(.27). This second factor can be interpreted as opposing the short and the long run in 

the series. 

Once the models were estimated, we made forecast 1, 2, ... ,30 steps ahead and calculate 

the mean square error of the first 10, 20 and 30 forecasts. Results for 10 periods ahead 

'were a little better for the VARMA model. Results for 20 and 30 steps ahead are given 

below, in Table 4. 

Table 4: Forecast comparison between the VARMA and the factor model 

VMA(I) model Factor model 

20 30 20 30 

1'1 1.40 14.46 1'1 1.91 1.45 

1'90 1.95 8.05 1'90 1.22 .93 

1'180 2.52 4.51 1'180 1.17 .85 

1'365 3.40 2.21 1'365 1.35 1.06 

1\ otice that although the VAR1IA model is able to forecast in the medium run, in the 

long run it fails. The generalized factor model seems to be able to capture the long run 

dynamics; that is the reason of its better performance. 

Appendix 

In this appendix, it IS shown that for nt, It defined as III section 2, 

(a) 

and 

(b) 
1" I P T2 L.J It-knt =-t 0 

(a) Let nt be an m x 1 vector of specific stationary factors, then 

1 " I P T2 L.J nt-knt -t 0 

15 



This is inmediatly, since under the stationary assumption and the assumptions made on 

the errors, (p. 3), 

Since E(nt_kn~) exists and is finite, 

(b) Let ft be an T X I vector of common factors and suppose that Tl of them are 

common trends, while T2 are stationary, T = Tl + T2, then 

(bl) First, it will be shown that for the stationary common factors, 

that is, ''le will prove that 

lim P[ll~ L h,t-kn~11 > E] = 0 
T-+oo T 

Let f2,t-k = Lt Ata2,t-k-t and nt = Li Ciet-i. Then for T > 0 and by the 11arkov 

inequality, V8 > 0, 

P[II~ ~f _.n/ll > 8] < E(II~Lf2,t-kn~ll) 
T2 ~ 2,t k t - 8 

and 

E(II
T
I

2 L L Ata2,t-k-t L e~_iC:II) 
t / i 

E(II T\ L L L A/a2,t-k-/e~_iC:II) 
t / i 

< II TI2 L L L A/E( a2,t-k-/e~_JC:11 = 0 
t / i 

since by hypothesis the noise sequences at and eT are uncorrelated for all t and T. So, 

P[II~ ~f _ n/ll > 8] < E(II~ Lf2,t-kn~ll) < O. 
T2 ~ 2,t k t - 8 -
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(b2) Now, for the term associated with the nonstationary common factors, 

1 " I P T2 L... f1,t-knt --+ 0 

Let fl,t-k = l:r:~ WI + fa, where Ws is a zero mean stationary proccess and fa is finite, for 

example fa = 0, so substituing ft,t-k for the former expression 

1 1 T-kt-k 1 T-k 

T2 L ft,t-kn~ = T2 L L wln~ + T2 L fon~. 
t=l 1=1 t=l 

The last term of the right hand side converges to zero in probability since it can be written 

as 
1" I fa 1 " I P 

T2 L... font = T T L... n t --+ 0 

and the second part of the right hand side goes to the expectation of nt as T gets larger, 

finite, and the first part goes to zero, so the product goes to zero. Now the first term can 

be written as 

Since Vt = Wtn~ has finite first (E( Vt) = 0) and second moments, 

1 T-k 
T2 L wtn~ ~ o. 

t=l 

Applying now the iVlarkov inequality to the second term of (38) 

for 8 > o. And applying the law of iterated expectations 

1 T-k t-1 1 T-k-1 T-k 

EIEtll(IIT2 L LWln~ll) = EIEtll(IIT2 L L wln~ll) :::; 0, 
t=2 1=1 1=1 t=I+1 

since nt is a zero mean stationary proccess and 

From (bl) and (b2), 

T
\ L ft-kn~ = T\ L [ fl,t-k 1 n~ = T\ L [ f

j
1,t-k

n
: 1 ~ 0 

f2,t-k 2,t-knt 

17 

(38) 



References 

AKAIKE, H. (1974) Markovian representation of stochastic proccesses and its application 

to the analysis of autoregressive moving average proccesses. Annals of Institute of 

Statistical Mathematics 26, 363-87. 

ANSLEY, C. F. and KOHN, R. (1983) Exact likelihood of vector autoregressive-moving 

average process with missing or aggregated data. Biometrika 70, 275-8. 

BERGER, J. O. and DEELY, J. (1988) A Bayesian approach to ranking and selection of 

related means with alternatives to Analysis-of-Variance methodology. Journal of the 

A merican Statistical Association 83, 364-73. 

CLEMEN, R. T. (1989) Combining forecasts: a review with annotated bibliography. 

Journal of Forecasting 5, 559-84. 

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977) Maximum likelihood from 

incomplete data via the EM algorithm. Journal of the Royal Statistical Society B 

39, 1-38. 

VAN DYK, D. A., MENG, X. L. and RUBIN, D. B. (1995) Maximun likelihood estima­

tion via the ECM algorithm: computing the asymptotic variance. Statistica Sinica 

5, 5.5-75. 

EFRON, B. and MORRIS, C. N. (1973) Stein's estimation rule and its competitors-An 

parametrical Bayes approach. Journal of the American Statistical Association 68, 

117-30. 

El\GLE, R. F. and VVATSON, M.\V. (1981) A one-factor multivariatetimeseries model of 

metropolitan wage rates. Journal of the American Statistical Association 76,774-81. 

ESCRIBANO, A. and PENA, D. (1994) Cointegration and common factors. Journal of 

Time Series Analysis 15, 577-86. 

GARCIA-FERRER, A., HIGHFIELD, R. A., PALM, F. and ZELLNER, A. (1986) Macroe­

conomic forecasting using pooled international data. Journal of Business and Eco­

nomic Statistics 5, 53-67. 

GARDNER, G., HARVEY, A. C. and PHILLIPS. G. D. A. (1980) An algorithm for exact 

maximun likelihood estimation of autogressive-moving average models by means of 

Kalman filtering. Applied Statistics 29,311-22. 

GONZALO, J. and GRANGER, C. W. J. (1995) Estimation of common long-memory 

components in cointegrated systems. Journal of Business and Economic Statistics 

13, 27-36. 

GREEN, E. J. and STRAWDERMAN, W. E. (1991) A James-Stein type estimator for 

combining unbiased and possibly biased estimators. Journal of the American Sta-

18 



tistical Association 86, 1001-6. 

HANNAN, E. J. (1969) The identification of vector mixed autoregressive- moving average 

systems. Biometrika 56, 223-5. 

HANNAN, E. J. (1971) The identification problem for multiple equation systems with 

moving average errors. Econometrica 39, 751-65. 

HANNAN, E. J. (1976) The identification and paramatrization of ARMAX and state 

space forms. Econometrica 44, 713-23. 

HARVEY, A. (1989) Forecasting Structural Time Series Models and the Kalman Filter 

(2nd edn). Cambridge: Cambridge University Press. 

JAMES, W. and STEIN, C. (1961) Estimation with quadratic loss. Proceedings of 

the Fourth Berkeley Symposium on Nlathematical Statistics and Probability (vol 1). 

Berkeley, CA: University of California Press, 361-80. 

KaHN, R. (1978) Local and global identification and strong consistency in time series 

models. Journal of Econometrics 8, 269-73. 

LEDOLTER, J. and LEE, C. (1993) Analysis of many short time series sequences: forecast 

improvements achieved by shrinkage. Journal of Forecasting 12, 1-1l. 

LIU, C. and RUBIN, D. (1994) The ECME algorithm: A simple extension of EM and 

ECM with faster monotone convergence. Biometrika 81, 633-48. 

1IENG, X. L. and RUBIN, D. B. (1991) Using EM to obtain asymptotic variance­

covariance matrices: the SEM algorithm. Journal of the American Statistical Asso­

ciation 86, 899-909. 

I\IE:'\G, X. L. and RUBIN, D. B. (1993) Maximun likelihood estimation via the ECM 

algorithm: a general framework. Biometrika 80, 267-78. 

Mm, C. and ZELLNER A. (1993) Bayesian and non-Bayesian methods for combin­

ing models and forecast with applications to forecasting international growth rates. 

Journal of Econometrics 56, 89-118. 

MORRIS, C. N. (1983) Parametrical empirical Bayes inference: theory and applications, 

with discussion. Journal of the American Statistical Association 78, 47-66. 

PENA, D. and Box, G. (1987) Identifying a simplifying structure in time series. Journal 

of the American Statistical Association 82, 836-43. 

REINSEL, G. C. and AHN, S. K. (1992) Vector autoregresive models with unit roots and 

reduced rank structure: estimation, likelihood ratio test, and forecasting. Journal of 

Time Series Analysis 13, 353-75. 

SHUMWAY, R. H. and STaFFER, D. S. (1982) An approach to time series smoothing 

and forecasting using the EM algorithm. Journal of Time Series Analysis 3, 253-64. 

STOCK, J. H. and WATSON, M. W. (1988) Testing for common trends. Journal of the 

19 



American Statistical Association 83, 1097-107. 

TIAo, G. C. and TSAY, R. S. (1989) Model specification in multivariate time series. 

Journal of the Royal Statistical Society Serie B 51, 157-213. 

\i\fATsoN, M.W. and ENGLE, R. F. (1983) Alternative algorithms for the estimation of 

dynamic, mimic and varying coefficient regression models. Journal of Econometrics 

23, 385-400. 

'VVALL, K. D. (1987) Identification theory for varying coefficient regression models. Jour­

nal of Time Series Analysis 8, 359-7l. 

ZELLNER, A., and HONG, C. (1989) Forecasting international growth rates usmg 

Bayesian shrinkage and other procedures. Journal of Econometrics 40, 183-202. 

20 


