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Abstract 
This paper is focused on the development of nonlinear neural models with the purpose of long-term or multi-
step time series prediction schemes. Multi-step prediction tries to achieve predictions several steps ahead 
into the future starting from information at time k. In the context of time series prediction, the most popular 
neural models are based on the traditional feedforward neural network. However, this kind of models may 
present some problems when a long-term prediction problem is formulated. In this paper, a neural model 
based on a partially recurrent neural network is proposed as an alternative. For the new model, a learning 
phase with the purpose of long-term prediction is imposed, which allows to obtain better predictions of time 
series in the future. The recurrent neural model has been applied to the logistic time series with the aim to 
predict the dynamic behaviour of the series in the future. Models based on feedforward neural networks have 
been also used and compared against the proposed model. 

1. Introduction 

The ability to forecast the behaviour of a system hinges, generally, on the knowledge of 
the laws underlying a given phenomenon. When it is expressed as a solvable equation, one 
can predict the behaviour along the future once the initial condition is given. However, 
phenomenological models are often unknown or extremely time consuming. 

Nevertheless, it is also possible to predict the dynamic behaviour of the system along the 
future by extracting knowledge from the past. We are interested in time series processes 
which can be viewed as generalized nonlinear autoregressive models, also named NAR 
models. In this case, the time series behaviour can be captured by expressing the value 
x(k+l) as a function of the d previous values of the time series, x(k),...,x(k-d), that is: 

x(k + l) = F(x(k),...,x(k-d)) (1) 

where k is the time variable and F is some function defining a very large and general class of 
time series. This function can be very complex and its explicit form is usually unknown. 

The standard prediction method involves approximating the function F in such way that 
the model given by eq.l allows to predict or find the sequence x(k+l),x(k+2),x(k+3),... 
starting from the observed sequence at the current time k, x(k),...,x(k-d). In many time series 
applications, one-step prediction schemes are used to predict the next sample of data based 
on previous samples. However, one-step prediction may not provide enough information, 
specially in situations where a broader knowledge of the time series behaviour can be very 
useful or in situations where it is desirable to anticipate the behaviour of the time series 
process. 

The present study deals with long-term or multi-step prediction, i.e. how to achieve 
predictions several steps ahead into the future, x(k+l),...,x(k+h), starting from information 
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at time k. Hence, the goal is to approximate the function F such that the model given by eq. 
1 can be used as a multi-step prediction scheme. 

The neural models most widely used in time series applications are built up using 
multilayer feedforward neural networks [1-3]. However, these models may not produce 
efficient predictions along the interval [k+l,k+h] because they have exclusively been trained 
with the purpose of one-step prediction. 

In this paper, a recurrent neural multi-step prediction model is presented, which is based 
on a partially recurrent neural network. The neural network has feedback connections from 
the output to the input layer and its parameters are determined with the purpose of long-
term prediction. Therefore, this recurrent neural model is expected to provide better 
predictions than traditional feedforward neural models. 

2. Multi-step prediction neural models 

In this section, the traditional neural models for the purpose of multi-step prediction are 
reviewed and their disadvantages are outlined. In the next one, the recurrent neural model is 
presented as an alternative to traditional models. 

2.1. Traditional neural models 

The use of traditional neural models consists of approximating the function F appearing 
in eq. 1 by a multilayer feedforward neural network as follows: 

x(k + l) = F(x(k),...,x(k-d),W l) (2) 

where Wi is the parameter set of the model, which is obtained using the backpropagation 
algorithm [4]. The update of the parameter set is based on the local difference between the 
measured and predicted values, i.e.: 

e(k + l) = —(x(k + l ) -x (k + l))2 (3) 
2 

When the model given by eq. 2 has to predict the behaviour of time series in the future, 
i.e. along the interval [k+1, k+h], its structure has to be modified. The predictive network 
output must be fed back as an input for the next prediction and all the remaining input 
neuron values are shifted back one unit, i.e., 

x(k + l) = F(x(k),...,x(k-d),W,) (4) 

x(k + 2) = F(x(k +1), x(k),..., x(k - d + 1), W,) (5) 

x(k + h + 1) = F(x(k + h),...x(k + l),x(k),...,x(k - d + h), W,) (6) 

The main disadvantage of feedforward models in the context of multi-step prediction is 
that the parameter set has been obtained with the purpose of one-step prediction, i.e. to 
minimise the local errors given by eq. 3. During the training phase, the model captures the 
relation between the actual observations of the original time series, x(k),...,x(k-d) and the 
next sampling time, x(k+l). However, when the model is acting as multi-step prediction 
scheme (see eq. 4-6) a group of the input neurones receives the earlier approximated values, 
x(k + h),...x(k + l),x(k),...,x(k-d + h). This fact may produce a non desired behaviour of 
the model when a multi-step prediction problem is posed because errors occurred at some 
instant are propagated to future sampling times. Thus, the capability of traditional neural 
model to predict the future may decrease. 
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2. Recurrent neural model 

The recurrent neural model proposed in this paper is presented as an alternative to 
aditional neural models when the goal is to predict the future behaviour of time series, 
asically, the recurrent model consists of imposing a special learning phase with the purpose 
long-term prediction. 

The recurrent neural model is based on a partially recurrent neural network [5]. The 
network consists of adding feedback connections to a multilayer feedforward neural network 
om the output neurone to the input layer. The number of recurrent connections depends on 
e prediction horizon value. If the horizon is h, the input layer of the network is formed by a 
oup of h neurones that memorize previous network outputs; generally, these neurones are 
tiled context neurones. The remaining neurones in the input layer receive the original or 
easured time series data (see fig. 1). When the prediction horizon, h, is higher than the 
jmber of input neurones, d+1, all input neurones of the network are context neurones and 
> measured time series value is fed into the network. 

Input layer Hidden layer Output layer 
Figure 1. Partially recurrent neural network 

In the context of multi-step time series prediction, the training procedure of the partially 
current neural network is carried out as follows: 
t each instant k+1, starting with k=d, 
ep 1. The neurones in the input layer receive the measured sequence x(k),...,x(k-d). 
Hence, in the first step the number of context neurones is zero and the network output is 
given by: 

x(k + l) = F(x(k),...,x(k-d),W2) (7) 
ep 2. The number of context neurones is increased by one unit; this neurone memorizes 
the previously calculated output of the network, x(k +1). Thus, the prediction at instant 
k+2 is given by: 

x(k + 2) = F(x(k + l),x(k),...,x(k-d + l),W2) (8) 
ep 3. Step 2 is repeated until h context neurones are achieved. When the instant k+h+1 is 
reached, the output of the recurrent model is given by: 

x(k + h + l) = F(x(k + h),...x(k + l),x(k),...,x(k-d + h),W2) (9) 
ep 4. At this moment, the parameter set of the recurrent neural model, W2, is updated. In 
order to impose a training phase with the purpose of long-term prediction, the learning is 
based on the sum of the local errors along the prediction horizon, i.e. along the interval 
[k+1, k+h]. Hence, the parameter set W2 is updated following the negative gradient 
direction of the error function given by: 
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1 h 

e(k +1) = - • J ) (x(k + i +1) - x(k + i +1))2 (10) 
2 i=i 

Since the internal structure of the partially recurrent network is like a feedforward neural 
network, the training can be realised using the traditional backpropagation algorithm, 
although other extensions of this algorithm should be feasible [6-7]. 

Step 5. At this point the time variable k is increased by one unit and the procedure returns to 
step 1. The procedure finalises when the instant k=N-h is reached, where N stands for the 
number of patterns. 

The structure of the recurrent model (eq. 7-9) is identical to the structure of the 
traditional neural model when it is used for prediction (eq. 4-6). However, there exists an 
important difference between them: the way to obtain the parameter sets of the models. 

As it was said before, the parameter set Wi is obtained training a multilayer feedforward 
network and remains fixed during the prediction phase. This means that the parameter set 
Wi is updated using the local error measured at each instant (eq. 3). When the recurrent 
neural model is used, the update of the parameters at each instant is based on the measured 
error along the prediction interval [k+1, k+h]. Thus, the set of parameters W2 has been 
determined to minimize the prediction error in the future. In consequence, the recurrent 
model is trained in such way that it acts as a multi-step prediction scheme as opposed to the 
traditional model given by eq. 2 which is trained to predict exclusively the next sampling 
time (one-step prediction scheme). 

Due to the recurrent structure of the proposed model, errors occurred at the same 
instant are propagated into the next sampling time as usual in the traditional neural models. 
However, in the recurrent neural model the propagated errors are reduced during the 
training phase because the learning is carried out using the predicted output at earlier time 
steps. Thus, the errors are corrected and better predictions in the future may be expected. 

3. Experimental verification 

The simulations have been conducted and applied to the map of the form: 
x(k + l) = Xx(k) ( l -x (k) ) (11) 

with X = 3.97 . This map describes a strongly chaotic time series which is called logistic time 
series. 

Two different structures of NAR models have been considered, named Model 1 and 
Model 2. From equation 11, it follows that the logistic map at instant k+1 depends on the 
value at instant k. Hence, the first NAR model has the following structure: 

Model 1: x(k +1) = F(x(k)) (12) 
As the ultimate goal in this paper is to predict the future, it is suitable to consider NAR 

models that own more information about the past behaviour of the time series. Thus, a 
second NAR model has been considered which is given by the following structure: 

Model 2: x(k + l) = F(x(k),x(k-l),x(k-2)) (13) 
Each model structure has been identified using both the feedforward neural network and 

the partially recurrent neural network. The capability of neural models to predict the future 
has been evaluated using the following error function: 

. N-li 

E = — Y(x(k + h)-x(k + h))2 (14) 
2N S 
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where h is the prediction horizon and N is the number of test patterns. In this work, four 
prediction horizons, h=l, h=2, h=3 and h=4, have been used to test the capability of neural 
models to predict the future. 

The prediction errors (eq. 14) for the first and the second structure of NAR models (eq. 
12, 13) are presented in Table 1 and Table 2, respectively. 

Model 1 

Prediction 
horizons 

h=l 

h=2 

h=3 

h=4 

Traditional 
Neural Model 

0,00154 

0,01006 

0,04667 

0,11900 

Recurrent 
Neural Model 

0,00154 

0,00586 

0,01809 

0,09592 

Model 2 

Prediction 
horizons 

h=l 

h=2 

h=3 

h=4 

Traditional 
Neural Model 

0,00152 

0,00904 

0,04807 

0,07827 

Recurrent 
Neural Model 

0,00152 

0,00464 

0,00784 

0,01123 

Table 1. Prediction Errors in Model 1 Table 2. Prediction Errors in Model2 

In figure 2, figure 3 and figure 4 some of the predictions of the logistic time series 
provided by the traditional neural model and the recurrent neural model for the different 
structures of NAR model are shown. 

0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 
Figure 2. Model 1, Horizon=3 

(a) Traditional neural model (b) Recurrent neural model 

0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 
Figure 3. Model2, Horizon=3 

(a) Traditional neural model (b) Recurrent neural model 

0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 0 10 2 0 3 0 4 0 5 0 6 0 70 8 0 9 0 
Figure 4. Model2, Horizon=4 

(a) Traditional neural model (b) Recurrent neural model 
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4. Discussion and Conclusions 

From the experimental results we can conclude that the second structure of NAR 
model is more adequate to predict the future of the logistic time series because the model 
has more information about the behaviour of the time series through the extended number 
of input neurones. Both the traditional neural model and the recurrent neural model 
provide better approximations when this structure is used (see Table 1 and Table2). 

The Model 1 is able to predict the future when short prediction horizons are defined. 
However, when the prediction horizon is increased, the performance of this structure of 
model decreases (see Table 1). When the prediction horizon is fixed to four sampling times, 
both traditional and recurrent neural models do not provide appropriate predictions. This is 
due to the fact that these models do not own enough information about the time series. 
Hence, if the goal is multi-step prediction, the number of the inputs have an important 
significance on the quality of predictions. 

Assuming that the structure of NAR model has enough information through the input 
in order to predict the future, the immediate question that arises concerns the choice of the 
neural approach to be used. The results presented in the previous section show that models 
based on the partially recurrent neural network provide better approximations than models 
built up with multilayer feedforward neural networks (see Table 1 and Table2). The 
recurrent neural model has been trained with the purpose of multi-step prediction which 
seems to be a better approach. 

Furthermore, it is pointed out that the improvement of recurrent neural models over 
traditional ones is more significant when the prediction horizon is increased (see Table 2). 
For short prediction horizons (h=2), the approximations provided by the traditional neural 
models are adequate; although even in this cases the recurrent models obtain the smallest 
prediction errors. This superiority is more evident for long-term predictions (h=3, h=4). 

In consequence, for short prediction horizons the traditional models may be more 
suitable because they provide acceptable predictions and they are easier to build up. 
However, if the prediction horizon increases, the most convenient performance is provided 
by the recurrent neural model. 
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