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Abstract—Hybrid speech recognizers, where the estimation of
the emission pdf of the states of Hidden Markov Models (HMMs),
usually carried out using Gaussian Mixture Models (GMMs),
is substituted by Artificial Neural Networks (ANNs) have sev-
eral advantages over the classical systems. However, to obtain
performance improvements, the computational requirements are
heavily increased because of the need to train the ANN.

Departing from the observation of the remarkable skewness of
speech data, this paper proposes sifting out the training set and
balancing the amount of samples per class. With this method
the training time has been reduced 18 times while obtaining
performances similar to or even better than those with the whole
database, especially in noisy environments.

However, the application of these reduced sets is not straight-
forward. To avoid the mismatch between training and testing
conditions created by the modification of the distribution of the
training data, a proper scaling of the a posteriori probabilities
obtained and a resizing of the context window need to be
performed as demonstrated in the paper.

Index Terms—Robust ASR, Additive noise, Machine Learning,
Hybrid ASR, Artificial Neural Networks, Multilayer Percep-
trons, Hidden Markov Models, Active Learning, ANN/HMM,
MLP/HMM.

I. INTRODUCTION

IDDEN Markov Models (HMMs) have become the

most employed core technique for Automatic Speech
Recognition (ASR). After several decades of intense research
in the field, the HMM-based ASR systems seem to be close
to reaching their limit of performance. Some alternative ap-
proaches, most of them based on Artificial Neural Networks
(ANNSs), were proposed during the late 1980s and early 1990s.
However, two main difficulties have prevented them from
becoming mainstream: their inability to cope with the variable
time duration of speech acoustic units and their increased
training computational requirements.

Nonetheless, hybrid ANN/HMM systems (see [1] for an
overview), and especially those based on Multilayer Per-
ceptrons (MLPs), have found a place in the development
of recognizers given that modern computers are becoming
increasingly capable of coping with their computational re-
quirements. However, their training with very large databases
requires several adjustments and great doses of know-how [2]-

[4].
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Recent introduction of other types of models, such as Sup-
port Vector Machines (SVMs) in the hybrid architecture [5]—
[7] have been found to be advantageous in noisy environments.
Unfortunately, the computational demands of these machines
are much greater than those of the MLPs (between two and
three orders of magnitude, depending on the recognition task
and the system architecture). SVMs being relatively new in
the ASR field, there is a lack of know-how necessary to make
them competitive and it becomes extremely difficult to test
and tune these models owing to the large turnaround time for
a single test. However, in state-of-the-art ASR experiments,
large databases have become the only warrant of relevant and
statistically reliable results.

To alleviate the problem of increased computational training
requirements in hybrid systems, we propose the use of bal-
anced training sets which contain the same number of samples
per class. We have investigated this proposal under a hybrid
MLP/HMM setup more appropriate and quick for research. Its
application to SVMs is beyond the scope of this paper, but in
our opinion, the conclusions are sufficiently clear and generic
to be translated, to some extent.

The rationale for this proposal is that the nature of speech
being extremely unbalanced, not all samples of a given
database are equally informative, as will be exposed in section
III. The problem of skewed or imbalanced data is receiving
great attention in the machine learning community (see for
example, [8]-[10]) and its solution is still under debate.
Nevertheless, given that the speech databases are, by far, much
more populated than the ones in the standard experimental
frameworks in machine learning, barely any applications of
these methods have been employed in ASR, with the notable
exception of [11]. These solutions, however, do not take
into account their computational requirements, which is our
primary goal in this paper.

On the other hand, data selection techniques for active learn-
ing are becoming more popular in the ASR field. Nonetheless,
they are not intended for reducing the computational cost of
the traning stage, but for improving the performance. These
techniques make use of different metrics to determine the
worth of a given sample in the training process selecting
the most informative. In conventional HMM systems, the
selection unit is utterance (though the metric can be obtained
at several levels [12]-[16]). In the case of hybrid systems,
the computational effort needed to train the nets is typically
much greater than that for the rest of the system and, therefore,
we have focused our efforts on this task. This allows a much
finer selection of the training data that, in this case, has been
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performed on a frame basis. By using approximately 13%
of the database, we achieve a similar performance as with
the whole database in clean conditions and with a significant
improvement in noisy conditions. The training of the proposed
system is approximately 18 times faster.

Balancing the training data creates a mismatch between
training and testing conditions since the learnt distribution of
the data does not match those of the test. Thus, a proper scaling
of the a posteriori probabilities and an adaptation of the word
insertion probability need to be performed as demonstrated in
the paper. Although this issue have received some attention in
many relevant papers [11], [18], [20], [25], we found out that,
in the ASR field, it has not been systematically addressed.
Furthermore, depending on the task, the researchers choose to
approach the problem in one way or another, finding in some
cases that the experiments contradict the theoretical facts.

Finally, another side-effect of the modification of the orig-
inal distribution of the training data can be observed in the
selection of the optimal context window in the MLP. The use
of extended context windows being a fundamental advantage
of hybrid systems and an important source of improvement
over conventional HMM systems, we have drawn the evolution
of the balanced and unbalanced systems’ performances with
the context window. We found that the former achieve better
results with shorter windows which, in turn, becomes another
source of reduction of the computational demands.

The rest of this paper is organized as follows: Hybrid
ANN/HMM systems are presented in section II with especial
attention to the computation of the required likelihoods from
the outputs of MLPs. Some notions of the data selection
methods proposed in the literature are sketched in section III
with an emphasis on the treatment of skewed data, which we
have illustrated with speech data examples. Next, our proposal
is described also in section III. Finally, experiments and results
are presented followed by conclusions and suggested future
lines of research.

II. HYBRID ANN/HMM SYSTEMS FOR ASR
A. Motivation

As a result of the difficulties faced in the application
of ANNs to speech recognition, mostly motivated by the
duration variability of the speech instances corresponding
to the same class, a variety of different architectures and
novel training algorithms that combined both HMMs with
ANNs were proposed in the late 1980s and early 1990s. The
fundamental advantage of this approach is that it introduces
a discriminative technique (ANN) into a generative system
(HMM) while retaining its ability to handle the temporal
variability of the speech signal. For a comprehensive survey of
these techniques, see [1]. Besides, these hybrid architectures
are very flexible allowing, for example, the introduction of
long-term information into the feature vectors [2], [17].

In this paper, we have focused on systems that employ
ANNs to estimate the HMM state posterior probabilities
proposed by Bourlard and Morgan [18], [19]. Though at the
time this approach was suggested, the use of ANN in speech
recognition was still a challenging issue from a computational

point of view, modern computers have certainly made it attrac-
tive. As a result, many recent papers make use of this technique
[20]-[23] even substituting HMMs for more complex DBNs
(Dynamic Bayesian Networks) as in [24].

The following are among the significant advantages of using
hybrid approaches (from [25]):

¢ Model accuracy: ANNs have greater flexibility to provide
more accurate acoustic models including the possibil-
ity of using different combinations of features along
with different sizes of context. Features do not need
to be uncorrelated because the network learns the local
correlation between its input units. Therefore we can
concatenate different types of inputs into the same input
vector or even patch several consecutive feature vectors
to represent the context. This has been used to include
alternative features such as spectral parameters obtained
by frequency filtering (FF) [20] or articulatory features
[24] in the speech recognizer.

o Local discrimination ability (at a frame level). MLPs are
trained to obtain class boundaries instead of providing an
accurate (generative) model for each particular class.

« Parsimonious use of parameters: all the classes share the
same ANN parameters (this does not hold for every ANN,
but it does for MLPs).

« HMMs and ANNSs exhibit complementary abilities for
ASR tasks, which lead to higher recognition rates, espe-
cially under noisy conditions.

« Adaptation techniques have also been proposed (for ex-
ample, speaker adaptation as in [22], [26], [27]).

As a drawback, we can mention that these implementations
rely on an initial segmentation of the training set at the level of
the classes considered by the ANN. That is, if the target of the
ANN is phoneme classification, each training frame must have
its corresponding phoneme label. However, large databases are
rarely manually labeled at a phoneme level because of the
enormous human effort necessary for the task. Therefore, most
state-of-the-art hybrid recognizers perform an initial forced
alignment with conventional HMM. This alignment becomes
the ground truth for the training of the ANN. We have made
use of this approach and further subdivided the phonemes
into three sections (initial, middle, and final) making a finer
segmentation attending to the distribution of the frames into
the states of the HMM employed for forced alignment. We
have used this alignment to illustrate important characteristics
of the speech signal in section III.

B. Estimating the class likelihood for the HMMs

The starting point for the hybrid approach is the well-
known capability of feed-forward networks, such as Multilayer
Perceptrons, of estimating a posteriori probabilities, P(q;|z;),
of a certain class ¢;, given an input feature vector z;, when
the system is trained in classification mode (see [28] for the
fundamentals of MLPs).

Adopting a Maximum a Posteriori (MAP) criterion, the
speech recognition problem can be stated as finding the
sequence of words W that maximizes the quantity P(W|X)
where X = z1,...,zp is the sequence of input observation
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features. However, to solve this problem, it is usually factor-
ized using the Bayes theorem as

P(W|X) o« P(X|W)P(W) (1

where the a priori probabilities P(W') are usually modeled
using a language model and the likelihoods P(X|W) are
estimated by the HMMs. In this context, W is modeled as a
sequence of states W = qq, ..., qr, where each state describes
the probability of occurrence of some feature vectors p(z|q;)
(emission probability density function)!. The probability of the
initial state P(q;) and the probability of transition between
states P(g;|q;) complete the model.

GMMs are mostly used to model the emission pdfs while
in the hybrid formulation, the outputs of the ANN substitute
these models. In the next section, we evaluate the necessary
transformation that MLP outputs need to undertake.

C. MLP: posteriors and scaled likelihoods

To obtain the true emission (likelihood) pdfs from the
outputs of the MLPs, we must use Bayes’ rule once more:

_ Plaln)
= Pl @

Given that, in the decoding stage, the scaling factor p(x;)
remains constant for every class, we can drop it from the
equation. Therefore, the a posteriori probabilities should be
normalized by the class priors to obtain what is called scaled
likelihoods. Thus, systems of this type continue to be locally
discriminant given that the ANN was trained to estimate a
posteriori probabilities [29].

On the other hand, it can also be shown that, theoretically,
HMMs can be trained using local posterior probabilities as
emission probabilities, resulting in models that are both locally
and globally discriminant. This fact was further reinforced by
posterior theoretical developments in the search of a global
ANN optimization procedure [25].

Nevertheless, in practice, there generally are mismatches
between the prior class probabilities implicit to the training
data and the priors that are implicit to the lexical and syntactic
models used in recognition. In fact, some experimental results
show that for certain cases, division by priors is not necessary
[25], leaving a choice for empirical assessment over the
particular task considered [20], [30].

In this paper we have further investigated in this direction
postulating that the balancing of the training set adds on
the advantage of producing the adequate (scaled) likelihoods
without the need of applying any corrections irrespective of the
different lexical and syntactic structures of the test set. In [11],
the theoretical foundations for this assertion were already laid
down although the experiments presented did not fully comply
with the expectations.

p(@elar)
p(zt)

I'We denote the HMM states as q; because, in this work, these states are
synonymous of classes.

III. DATA SELECTION AND THE PROBLEM OF CLASS
IMBALANCE IN SPEECH

In the ASR community, there has been a long-standing
saying that goes “there is no data like more data”. It recognizes
the empirical observation that one of the most influential
factors in the quality of a recognizer is the size of its training
database. However, with the growth of databases in the last
few years, a question about the eventual saturation of that
lemma has been raised [15] adding a preoccupation about an
adequate treatment of erroneously labeled samples. Several
active learning solutions implying a selection of the data have
been proposed not only in ASR but also in Spoken Language
Processing [31], [32], emotion recognition [33], or language
identification [34] among others. It is, however, worth noting
that the main goal of active learning is the improvement in
the precision of the target classifier disregarding, most of the
time, the computational costs. In other words, using a sample
selection method may increase the overall computational cost
of the complete system.

On the other hand, there has been an increased interest
among the machine learning community in assessing the influ-
ence of training classes imbalance and overlapping in a variety
of classification techniques. Though these two characteristics
are a well-known fact for speech practitioners, they have not
been fully explored in conventional speech recognition given
the need for treating speech utterances as the smallest unit
for selection in sequence models like the classical HMMs.
This is not the case of hybrid recognizers as each frame
is presented individually (and in fact in random order) to
the ANN. However, a probabilistic sampling method aimed
at changing the phoneme distribution of the training set in
a hybrid framework [11] is, to our knowledge, the only
contribution in this field. Once more, these methods do not
treat the problem of reducing the computational burden of the
classification algorithm.

In this paper, we propose a simple selection method that
takes into account the class imbalance problem of speech
data, which consists of downsampling the majority classes
so as to come out with fully balanced sets. This reduces
the computational demands significantly without producing
corresponding reductions in performance and even improves
the results in noisy environments.

With the purpose of contextualizing our proposal, the next
section introduces the basics of data selection and active
learning, and is followed by a presentation of the problem of
class imbalance, which we have illustrated with speech data
examples. Finally, we present our proposal with emphasis on
the implications of the downsampling method for the training
of the hybrid speech recognizer.

A. Generic data selection

Several data selection techniques have been proposed in
the literature and variations of these can be found under
names such as novelty detection, selective sampling or active
learning. In general, these methods can be classified into two
groups [35]:
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o Generative methods aim at selecting the best samples
from unlabeled data to maximize data labeling investment
returns. Though generative methods have important ap-
plications in speech recognition to avoid the expensive
process of speech labeling and tagging [36]-[38], we
are primarily concerned with the selection of labeled
data with the purpose of relieving the training burden
of the ANNSs that estimates the pdf of each state of the
underlying HMM.

o Selective methods try to select an adequate subset from
labeled data to maximize performance or reduce the com-
putational effort while maintaining a similar performance.
Here, we can further distinguish between wrapper and
filter approaches. The former employs a statistical re-
sampling technique (such as cross-validation) and uses
the actual target learning algorithm to estimate the ac-
curacy of the subsets. Its disadvantage is its high cost
as the learning algorithm has to be invoked repeatedly
and, therefore, is not adequate for our goals. The later
approach has been employed in several papers aiming
at selecting entire sentences to allow the selection to
be applied to a conventional HMM system. In those
works, different metrics at various levels (frame, phone
or utterance) were used [14], [15] recognizing that the
lenght of the training utterance is an important factor
[16]. Utterance selection was also used for discriminative
training [39] and utterance verification [40].

In [41] we used the filter approach at a frame level to
alleviate the computational training load of a system which
employed ANN to produce acoustic features for a conventional
HMM system. In that work, the recognizer was not hybrid
in the sense we are using in this paper, as the outputs of
the MLPs were not used to estimate the pdf of the states
of the HMMs. Our aim was then to reduce the number of
samples using a selection metric based on the entropy of the
outputs of a downsized ANN which acted as the filter. Its
design and dimensioning was an important issue in order to
obtain an efficient solution in terms of computational costs.
The class imbalance problem, noise robustness and the fact
that, in hybrid recognizers, the outputs of the ANN need to be
massaged to represent the likelihoods of the different classes
(or acoustic units) and the influence of the size of the context
window were not investigated at that point.

B. The problems of skewed and overlapped data

The class imbalance (or skewed data) is a known problem
in machine learning still under debate (see the special issues
[8], [9], [42]). Although most learning systems assume that
the training data sets are balanced, this is not always the case
in real-world data where several classes might be represented
by a large number of examples, but others by only a few.

This is certainly the case of speech data where we can
identify two sources for this lack of balance: first, the natural
distribution of the sounds of a given language is not uniform.
Moreover, this distribution depends on the task for which the
ASR system is being designed. Second, owing to the time
uniform sampling of the speech waveforms, those phonemes

with longer temporal durations produce a larger amount of
samples.

In Figs. 1 and 2 we show these distributions clearly ex-
hibiting the skewness of speech data. Full details of the
experiments configuration are provided in section IV but
we have considered it useful to illustrate this section with
this example. Recall from II-A that we need to perform a
preliminar forced alignment to obtain a partition of the training
frames into the classes considered by the frame-level classifier
implemented by the ANN.

The black series of Fig. 1 shows the relative frequency
of appearance of the (active) states of the initial Hidden
Markov Model that produced the forced alignment we used
for obtaining ANN labels (in percentage) in the training data
set. Thus it represents the first of the two sources of skewness
mentioned above. Note that due to the topology of the HMMs
employed (see section IV) the three black bars corresponding
to the same phoneme are equally tall with the exception of the
silence (/sil/) whose topology is slightly different to account
for the distinction between short and long pauses. Therefore,
the relative frequency of the phonemes in the database can be
computed as the sum of those three bars.

The white series of bars represent how the frames are dis-
tributed among these states, demonstrating the second source
of skewness. To make it clearer, Fig. 2 shows the average
number of frames the recognizer spends in each state. We
can see that, with the notable exception of /sil/ and /tS/, the
average duration is between 2 and 4 frames which is, however,
an important variation given that if, for example, a training set
contained the same number of /r/ and /s/, there would be twice
as many samples of the former as the later.

At this point we find it useful to explain that long pauses
at the beginning and the end of the utterances in the initial
available SpeechDat database [43] have been removed in all
the experiments and discussions of this paper, leaving only
short pauses between words. This can be clearly observed
in Fig. 2 where the central state of /sil/, mostly devoted to
model inter-word short pauses, received considerably longer
sequences of frames than the side ones that exclusively take
in pre and post utterance silences that have been cut out. This
is usual practice in ASR but it is even more important for our
experiments given that, even with the reduction, it keeps being
a majority class.

Another key observation of skewed data difficulties is
that highly imbalanced problems generally have highly non-
uniform error costs that heavily penalize the overall perfor-
mance when errors ocurr in the minority classes. The case
of ASR is one such example, since many times the short
phonemes are the key to distinguishing among confusable sets
of words, and therefore, are more informative. However, it is
not easy to effectively quantify these costs since they depend
on the confusability of the vocabulary of a particular task.
Here, it is not our intention to adapt our selection to a certain
task, but to extract more general conclusions.

On the other hand, a comparative analysis of techniques
to alleviate the problem of imbalanced training sets [44]
highlights the fact that class imbalance does not just hinder
the performance of the learning systems; a major point of
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Training Set State and Frame Distributions
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Fig. 1.

State and frame distributions in the training dataset using a plain HMM recognizer employed (three emitting states per phone labeled s2-s4 in the

figure) to produce the forced alignment for the MLPs training data labeling. Phonemes not present in the test set have been omitted for simplicity though
the same conclusions hold for them. The database employed in our experiments is the well-known SpeechDat Spanish database [43]. This large vocabulary
(more than 24,000 words) continuous speech recognition database comprises recordings from 4,000 Spanish speakers recorded at 8 KHz over the PSTN using

an E-1 interface, in a noiseless office environment.
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Fig. 2. Mean length of the states of the phonemes in the training dataset using a plain HMM recognizer employed to produce the forced alignment for the
MLPs training data labeling as in figure 1. Phonemes not present in the test set have been omitted for simplicity though the same conclusions hold for them.

concern is that the scarce availability of training samples
of the minority classes can be devastating in the presence
of complicating factors such as class overlapping [10]. The
difficulties also arise when the under-represented classes can
be internally partitioned into several subclasses [45] making
these subclasses unevenly represented in the training data.

We believe this is the case for speech data given that effects
such as coarticulation make the border of the classes quite
blurry and the mechanisms of production of certain classes
of phonemes (for example, plosives) produce non-stationary
signals. These are mainly the reasons for using subphonetic
units in speech recognition as we do (see section IV-B3), but

these units still tend to be quite overlapped owing to the
enormous difficulty of obtaining an accurate segmentation,
which most of the times is done automatically (at present,
very few databases are phonetically manually labeled).

Techniques proposed to alleviate the problem of imbalance
can be separated into the ones that concentrate on the input
training data and those that adapt the training algorithm
[46], [47]. According to [46], in most cases the former are
preferable though some methods based on modifications of
certain classification algorithms (for example, Support Vector
Machines) are advantageous [48]. Besides, when a posteriori
probabilities are available, as in hybrid ASR, they can be
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further manipulated to account for different class error costs.
This process is more flexible than wiring these costs into
the classification algorithm because it allows adaptation to
change or unavailability during training costs [49]. We shall
concentrate on these techniques in the remainder of this paper.

Techniques applied to the selection of the input data can
be further classified into those based on oversampling of
the minority classes and those based on undersampling of
the majority ones. In principle, the advantage of random
undersampling is the avoidance of the overfitting that often
occurs with random oversampling. On the other hand, the
possibility of discarding some informative samples from the
majority classes is its major drawback. To overcome these
limitations techniques such as Kubat’s [50] for undersampling
or SMOTE (Synthetic Minority Over-sampling Technique) for
oversampling [51] have been proposed. In [8] several methods
based on ensembles and cascades of classifiers are designed
to make use of all the samples without biasing the classifier.

However, the best solution is generally a combination of
both through a wrapper approach [47], [49], [52] where the
amounts of under and over sampling are determined based
on performance evaluations of some partitions of the data
(sometimes referred as learning by recognition). This proposal
heavily depends on the performance metric used for the eval-
uations, which is a crucial notion in data selection. Examples
of such metrics include AUC (Area under the ROC curve), f-
measure (or 3 varied f-measure) [44], [46]. On the other hand,
[53] acknowledges difficulties when methods design for binary
classifications are to be exported to multiclass proposing
techniques as threshold moving to balance the misclassifying
costs of the different classes.

C. Balancing speech data

When dealing with speech data for ASR it is very important
to realize that the magnitudes of the databases employed in
order to obtain relevant results are usually many times bigger
than those employed in machine learning. For example, the
most recent papers reviewed in the previous subsection ( [8],
[49]) employ databases of thousands of examples (the largest
containing 20,000 samples), while in this paper our training
data set comprises 16 million speech samples. When testing
the benefits of undersampling techniques as in this paper, the
use of these large data sets is required in order to obtain
statistically significant results capable of corroborating the the-
oretical hypothesis and relevant in the sense of demonstrating
their effectiveness in a real situation when the implementation
of the recognizer with the full database is really challenging.

Therefore and owing to the enormous computational burden
involved in the wrapper method, we have ruled it out for our
recognizer. In an effort to keep it as simple as possible, and in
view of the fact that the (a priori) determination of the amounts
of undersampling needed for each class is very difficult given
its dependency on the particular database structure, we have
adopted what we call the balanced solution where each class
is equally represented in terms of number of samples. This
very simple but certainly efficient solution has the additional
advantage of producing the desired likelihoods as the outputs
of our MLPs as will be demonstrated in section IV-C.

Although frame accuracy is the only suitable figure of
merit to evaluate the performance of the MLP in the hybrid
archictecture, it is not an appropriate metric of the performance
of the complete ASR system when the database is skewed,
because it is biased toward the majority classes which, in
our problem, is clearly (but not exclusively) the silence. This
means that if not properly balanced, the MLP tends to model
these classes very accurately because they produce the highest
reward in terms of accuracy. Then, in an ASR problem, as we
know, the most unbiased metric is the WER (Word Error Rate),
which is our ultimate goal. Note that if this metric is used
under a wrapper approach for the determination of optimum
distribution of data for each iteration, the full recognizer
should be evaluated several times.

In section IV-D, both FER (Frame Error Rate) and WER
(Word Error Rate) will be analyzed, but here we find it useful
to illustrate the effects of balancing the data in terms of the
entropy of outputs of the MLPs:

Nq
he == p(qilae) logap (gilw1) 3)

i=1

where h; is a measure of the difficulty of a classification
decision based on the outputs of the MLP and N, is the
total number of emitting states of the system. Therefore, high
entropy values indicate that taking a decision is going to be
difficult while low values signify it will be easy to make it (not
necessarily implying the right class will be chosen). Entropy
was the metric employed in the filter approach in [41] and in
this section we illustrate that, though indirectly, the balancing
solution presented in this paper also contributes to reduce the
entropy of the minority classes.

Fig. 3 represents the average entropies of the outputs of the
MLP for the samples associated with each state of the HMM.
Not all phonemes improve with the balancing of the training
data, but most of them do (/B/, /N/, /d/, /il, /il, K/, It/, /tS/,
/u/, and /w/). A second group only increases entropy slightly
or in some of their states (/T/, /a/, /n/, /o/, and /s/) and a third
one becomes the most negatively affected by the balancing
(fel, /t/, and /sil/). Overall, the most harmed phonemes are the
most overrepresented in the unbalanced database.

The case of /sil/ deserves special attention since its middle
state was performing exceedingly well for the full unbalanced
database. The fundamental difference of this state is that it
is trained with short pauses (between words) as opposed to
the ones in the extremes that are exclusively trained with long
pauses (beginnings and ends of utterances). Contrary to their
denominations short pauses are longer than long ones (see
Fig. 2), but this is an effect of the presentation of the speech
waves in our database given that the initial and final silences
in the utterances have been suppressed as we indicated in
section III-B. This makes the central state of /sil/ to be the
most overrepresented class. Hence the classifier trained with
the unbalanced database finds it more profitable (in terms of
accuracy) to erroneously assign the /sil/ label to the minority
classes rather than miss a truthful one. This effect is clearly
rectified using the balanced sets and can explain the favorable
results we have obtained with these configurations as will be
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Fig. 3.

Average entropies per state for a connected digits test set when the MLP has been trained with approximately a million of balanced samples (gray

series), two million (white) and the full unbalanced trainset (black) of figures 1 and 2.

shown in section IV. We would like to highlight that, though
this is an extreme and clear case, the same principles apply to
the rest of majority classes.

IV. EXPERIMENTS AND RESULTS
A. Database

1) Description: The database employed in our experiments
is the well-known SpeechDat Spanish database [43]. This
large vocabulary (more than 24,000 words) continuous speech
recognition database comprises recordings from 4,000 Spanish
speakers recorded at 8 kHz over the PSTN using an E-1
interface, in a noiseless office environment.

The database is partitioned into three main sets: training set,
development or validation set, and test set, representing 80%,
8%, and 12% of the database, respectively.

The original database is preprocessed to eliminate the
silence samples placed at the beginning and end of the
sentences, using the time marks available for this purpose in
the database label files. As a result of this preprocess, the
training set contains approximately 50 hours of speech from
3,146 speakers (71,046 utterances). The callers speak 40 items
with varied content comprising isolated and connected digits,
natural numbers, spellings, city and company names, common
application words, phonetically rich sentences, etc. Most items
are read and some of them are spontaneously spoken.

The development set contains 7,436 utterances from 350
different speakers (5 hours of voice after preprocessing) with
the same varied content as the training data set. We use this
dataset to select both the back-propagation coefficient (i) in
the MLP and the word insertion log probability for the Viterbi
decoder.

Finally, the fest set (connected digits task) consists of 2,122
utterances and 19,855 digits (5 hours of post-processed speech)
from 499 different speakers. Thus, the number of recognized
phones is restricted to 18 (we have dropped the remaining
phones from our training data set). As shown in Fig. 4, the

number of discarded samples (on the right of the vertical
dotted line) only represents an 8.8% of the original training
set. Once more, we clearly observe the skewness of the data.

As we already mentioned in section III-C, we have prepared
alternative balanced data sets to reduce the training compu-
tational burden. The new training data sets are built from
the original one (non-balanced) by selecting phone samples
randomly so that each class is equally represented. Table I
summarizes the distribution of data into these sets.

2) Database contamination: We have tested our systems in
clean conditions and in the presence of additive noise. For that
purpose, we have used two different types of noises (white and
babble) extracted from the NOISEX-92 database [54]. These
noises have been added to the clean speech signals at four
different signal-to-noise ratios (SNRs), namely 12 dB, 9 dB,
6 dB, and 3 dB. Only the testing subset has been corrupted in
the way previously stated, whereas the acoustic models have
been estimated or trained using only clean speech.

B. Baseline system

1) Feature extraction: In our experiments, we have used
a classical parameterization based on 12 MFCCs (Mel-
Frequency Cepstral Coefficients) plus energy, and their first
and second derivatives. Thus, the resulting feature vectors have
39 components. These MFCCs are computed every 10 ms
using a temporal window of 25 ms.

In this work, we have considered a per-utterance normaliza-
tion of the cepstral coefficients, more appropriate in the case of
noisy environments where training and testing conditions do
not match. Besides, in the case of MLP/HMM hybrid systems,
this normalization is necessary to ensure the convergence of
ANNSs [28]. Thus, every parameter is normalized in mean and
variance according to the following expression:

NONS xgi) —
T T 0
g

“4)
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left) we have employed from the absent.

TABLE 1

Phoneme distribution in original unbalanced Training Set. The vertical dotted line separates the phonemes present in the Digits Test Task (to the

DATASET PARTITION: THE THREE EXPERIMENTS (NB -NON-BALANCED-, B1 -BALANCED 1- AND B2 -BALANCED 2-) CARRIED OUT IN THE PAPER
DIFFER IN THE TRAINING PORTION OF THE AVAILABLE DATASET USED. DEVELOPMENT AND TEST SETS ARE THE SAME FOR ALL OF THEM.

Exp Train Development Test

' # frames Distribution # frames Distribution # frames Distribution
NB 16,378,624 | Non-Balanced
B1 1,080,000 Balanced 1,682,065 | Non-Balanced | 1,656,102 | Non-Balanced
B2 2,160, 000 Balanced

(@)

th

where z;’ represents the 7" component of the feature
vector corresponding to frame ¢, and p(*) and o(¥) are the esti-
mated mean and standard deviation from the whole utterance,
respectively, for the i'” component.

2) HMM alignment system: A simpliflied left-to-right
HMM-based recognition system, based on that described in
[55], is employed to produce a forced alignment necessary to
obtain the labels for the MLP, as SpeechDat is not phonetically
labeled. We have used such a basic baseline ASR system
for the sake of simplicity. Nonetheless, it could include more
sophisticated techniques, with minimal impact on the overall
conclusions of this work.

Each of the 18 context-independent phone models consists
of 3 active states (plus initial and final non-emitting states)
where emission probabilities are modeled by a mixture of 32
Gaussians. From this system, we are interested in obtaining the
state-level segmentation of the training set, i.e., we label each
frame with one of the possible 54 states. To avoid the potential
appearance of empty states, the HMM topology does not allow
to obviate any of the states except in the /sil/ model whose
central state is designed to model short pauses and allows a
jump from the first emitting state to the last one and viceversa.

The Word Error Rate (WER) obtained for this baseline
HMM recognition system in clean conditions is 2.41%,
this value being higher than the WER obtained with the
MLP/HMM baseline system considered here, as we will show
in the following sections.

3) Baseline MLP/HMM system: Our hybrid MLP/HMM
baseline system employs an MLP to estimate the HMM state
emission probabilities that will be used by a Viterbi decoder to
obtain the transcribed word sequence. Fig. 5 shows the block
diagram of our MLP/HMM system.

We have trained MLPs with balanced and non-balanced
training sets specified in Table I. In all the cases, the MLP
has a single hidden layer with 1,800 units. The input MLP
dimension depends on the input context window considered
(see section IV-E), and the 54 outputs provide a posteriori
probabilities for each of the states of our system.

The different MLPs were trained using a relative entropy
criterion, and the back-propagation factor, p, was empirically
found for every network by using the development set de-
scribed in Table I. This set has also been employed to select the
adequate word insertion log probability for each experiment
with different training and test conditions, as we have found
the different balancing alternatives tested very sensitive to this
value [29].

C. Scaled likelihoods and a posteriori probabilities

In the hybrid approaches, the a posteriori probabilities
obtained as the outputs of the MLP substitute the emission
probabilities which are modeled by GMMs in classical recog-
nition systems. As we stated in section II-B these probabilities
must be transformed into (scaled) likelihoods to comply with
the theoretical framework. Nevertheless, this scaling does not
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always lead to the best performance, which is mostly attributed
to mismatches between the a priori probabilities of the training
and test datasets.

Given that the balancing of the data we are proposing
heavily modifies the training data structure and that for our
task, training and test sets have markedly different lexical
and syntactic structures (see section IV-A), it is of paramount
importance to investigate the effects of scaling on this system.
For this purpose, we have applied several scalings to the MLP
outputs with the aim of establishing the most suitable class
prior. In particular, we have compared the following a prioris:
none (No-scaling), a priori probabilities estimated from the
training set (P_Trn), from the development set (P_Dev) and
from the test set (P_Tst) (the last one to verify that the data
from the development set was capable of providing a suitable
estimation of the test structure, though of no practical utility).

Figs. 6-8 show Word Error Rates (WER) for these experi-
ments and the three balancing conditions described in Table I
in clean and noisy conditions. For clarity reasons, the figures
only show the results for SNR = 6 dB for both white and
babble noises. For all the other SNRs evaluated (3, 9, and
12 dB), the conclusions are identical. Figs. 6-8 only show the
results when the MLP input feature vectors are not augmented
with previous or future vectors (i.e. one frame long analysis
window). The same analysis with different context influence
(analysis windows of 3, 5, 7, and 9 frames long) has been
done, but it has been omitted for the sake of clarity, though
the same conclusions also hold (see section IV-E for more
information about the context influence in WER).

The main conclusion we can draw is that when the training
data are strictly balanced (experiments B1 and B2) the best
results are obtained with no scaling. In these cases the a prioris
of the balanced training sets are identical and thus the outputs
of the MLP are directly the likelihoods we are looking for.

On the contrary, when we do not balance the training set
(experiment labeled NB), we must normalize the MLP outputs
by the a priori estimated from the training data. This fact is
true across all the noisy conditions we have evaluated except
for clean conditions where no-scaling beats any normalization.
Anyhow, the difference appreciated with the best normaliza-
tion (a prioris from the training set) in clean conditions is
small while the preference for this normalization is clear for
all the noises and SNRs evaluated. This leads us to choose the
trainingset-based one as the reference normalization for NB.

It is worth mentioning that the differences between the
normalization by a prioris derived from the development
and test sets are usually non-significant (except from some
balanced experiments with babble noise for which the clear
winner is, nonetheless, the no scaling option).

As a conclusion, we can postulate that scaled likelihoods

should always be estimated using the prior probabilities from
the training data, which implies that, when these data are
balanced, there is no need for scaling at all.

D. The benefits of balancing training data

Once we have obtained the best scaling for each experiment
(no-scaling for B1 and B2 experiments, and training a prioris
for NB), we proceed to analyze the benefits of balancing
training data.

Fig. 9 presents the effects of balancing data in both Frame
and Word Error Rates. While FER decreases with the addition
of more training data, WER exhibits the opposite effect. Frame
accuracy is not an appropriate metric of the modeling ability
of the ANN over the whole unbalanced data set due to the
skewness of the training database that makes the system biased
toward the majority classes. Nevertheless, we must keep in
mind that, as the MLP training stage is done independenty of
the HMM, Frame Error Rate is the only available performance
metric for designing and evaluating the MLP.

Taking into account the WER, which is our ultimate goal,
we can conclude that using a balanced training subset of
approximately 6.5% of the training data does not damage the
performance of the system in clean conditions. Moreover, in
noisy environments, this balanced data selection is beneficial
being even more advantageous as SNR decreases.

E. Including context in balanced sets

The beneficial influence of the context in hybrid systems
is well attested [2], [17]. However, its inclusion incurs an
increase of computational demands owing to the increment
in the MLP input dimensions. Usually, a context length of
nine frames is employed when the acoustic units considered
are monophones. This is justified by empirical measures of
the phones’ mean length.

In this paper, however, the acoustic units employed by the
MLP are the states of the segmenting HMM in which case the
mean length is approximately three frames. Therefore, we find
it significant to analyze the evolution of the performance of our
hybrid MLP/HMM system with this contextual information
looking for some influence of the reduction of the training
data set.

Figs. 10-12 show these results. Again, for the noisy condi-
tions, we have chosen SNR = 6 dB as a representative case
for the sake of brevity, as the conclusions hold for the rest of
the SN Rs.

As an overall conclusion, we can observe that as we include
bigger contexts the performance differences between the three
experiments (B1, B2 and NB) decrease. In general, though in
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some cases the differences are not significant, the best choice
is to use B2.

Once more, we can observe a difference between the
evolution of the balanced and non-balanced experiments now
with the context length; for the balanced one, the best choice
is a three-frame wide context window as we cannot observe
any significant improvement from a bigger one. For the non-
balanced experiment, the curves are steeper from 1 to S context
lengths, the last being the best choice. We can hypothesize that
the skewness of the non-balanced set that, as pointed out in
section III, makes the MLP biased toward better modeling of
the longest phones, finds the use of wider context windows
helpful as they are more appropriate for those phones. When
that skewness is corrected, a smaller window is preferred.

Thus, we can conclude that the benefits of using a reduced

Likelihood scaling in a White Noise Environment with SNR = 6 dB with a context window length of 1 frame (i.e. no context). Vertical segments in

training set are twofold; fewer samples for training and a
smaller input dimension. Moreover, if we compute the number
of free parameters to estimate in the MLP, we find that the
choice of a reduced acoustic unit together with a balanced
training set implies an important reduction of the context,
compensating for the increase in the output dimension of the
MLP. In particular, for the state acoustic unit chosen in this
paper, the total number of free MLP parameters to estimate for
the balanced experiments is half those needed for monophones
and a standard context window of 9 frames, and for the non-
balanced, the proportion is approximately, two-thirds.

It is worth mentioning that the experiments presented in
section IV-C were also performed with all the context windows
presented in the present section and the conclusions extracted
were exactly the same as those obtained in that section: scaled
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likelihoods employed in NB experiment must be obtained by
normalizing the MLP outputs (a posteriori probabilities) with
the a priori probabilities estimated from the training set while,
for experiments B1 and B2 there is no need for normalization.

Finally, with regard to the computational burden, we must
point out that the best choice, B2 with a context length of 3
frames, is 18 times faster than NB and only 1.5 times slower
than B1 experiment.

V. CONCLUSIONS AND FURTHER WORK

The ANN/HMM hybrid systems presented in this work are
inspired by Bourlard and Morgan [18] and have been found to
compare favorably with a classical HMM-based system. In this
paper, we have investigated the reduction of the computational
burden associated with them by reducing the size of the
training data set. Specifically, we have found that:

o Balancing the data presented to the ANN to train with
the same number of samples per class (acoustic unit) is a
good and simple choice, obtaining similar or even better
performances than those obtained for the whole database.
This is attributed to a more balanced modeling of the
different classes by the MLP, suppressing the bias toward
better modelling of the most populated.

« In the previous situation there is no need to obtain scaled
likelihoods to introduce the outputs of the ANN into
the hybrid system. A posteriori probabilities give the
best results, as the a priori probabilities of the balanced
training set are identical for every class.

o Besides, shorter context windows provide comparable
results reducing the dimensionality of the input feature
vectors, which has an impact on the computational re-
quirements. For the acoustic unit considered in this paper
(state of phoneme), the optimal context window is three
frames wide with balanced data sets and five with non-
balanced ones.

Likelihood scaling in a Babble Noise Environment with SNR = 6 dB with a context window length of 1 frame (i.e. no context). Vertical segments in

e The previous conclusions become even more evident and
remarkable in noisy environments.

An immediate line of future research is the application of
the previous conclusions to more computationally demanding
models like SVMs. In this line of research, several peculiarities
of the SVM must be taken into account. In addition, the
application of more elaborate means of selecting the training
data is also a challenge always bearing in mind, however, that
the data selection method needs to remain very simple for the
final solution to be advantageous in terms of computational
requirements.
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