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Abstract—For an additive white Gaussian noise channel, we
prove that Th. 41 in [Polyanskiy, Poor, Verdd 2010] is a lower
bound to the error probability of any channel code satisfying the
maximal power constraint. In contrast, the (tighter) lower bound
to the error probability in Eq. (20) in [Shannon 1959] only holds
under equal power constraint.

I. INTRODUCTION

We consider the problem of transmitting M equiprobable
messages over n uses of an additive white Gaussian noise
(AWGN) channel. In [1], Shannon derived a lower bound
on the error probability for codes subject to a certain power
constraint I'. Using geometrical arguments, Shannon lower-
bounded the error probability of a code with all the codewords
lying on the n-dimensional sphere with squared radius nl’
(equal power constraint) [1, Eq. (20)]. Then, he considered
a length-n code such that the codeword energy is not larger
than nI' (maximal power constraint). He argued that such code
can be transformed by adding an extra (n + 1)-th coordinate
to equalize the codeword energy to nI'. As a result, the lower
bound in [1, Eq. (20)], evaluated for the blocklength n + 1,
also holds for any length-n maximal power constrained code.

More recently, Polyanskiy, Poor and Verdd proved that a
surrogate binary hypothesis test can be used to lower bound the
error probability of a channel code [2, Th. 27]. Particularizing
this bound for the additive white Gaussian noise (AWGN)
channel under equal power constraint yields [2, Th. 41]. As
discussed above, evaluating [2, Th. 41] for a blocklength n+1
yields a converse bound for a length-n code in the maximal
power constraint setting.

While most of the analysis in [1] is focused in characterizing
the asymptotics of [1, Eq. (20)], this bound is extremely
accurate in the finite-length setting [3]. Indeed, in general,
Shannon’s approach yields tighter bounds than [2, Th. 41]
under equal power constraint. In this work, we prove that [2,
Th. 41] is directly a lower bound to the error probability of
a length-n maximal power constrained code (with no n +1
extension required). In contrast, Shannon lower bound only
holds under equal power constraint, and the n + 1 extension
argument is needed in the maximal power constraint setting.
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II. SYSTEM MODEL AND PRELIMINARIES

We consider the problem of transmitting M equiprobable
messages over n uses of an AWGN channel W with noise
power o2. Specifically, for the input « = (zy, s, ...,T,) and
output ¥ = (y1,Y2,---,Yn) the channel W = Py |x has a
probability density function (pdf) given by

n
w(yle) =[] ezeo @), (1)
i=1
where ¢, ,(-) denotes the pdf of the Gaussian distribution,
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The encoder maps a message v € {1,..., M} to the channel
as © = ¢, using the codebook C £ {ey,...,¢pr}. Based

on the channel output y, the decoder guesses the transmitted
message v € {1,..., M}. The error probability is thus given
by P.(C) £ Pr{V # V} where the underlying probability is
induced by the chain of source, encoder, channel and decoder.
We consider codebooks satisfying a certain power constraint:

« Equal-power constrained codes,

L.(T) 2 {c | led? =nl, i=1,...,M}. @)
« Maximal-power constrained codes,

Lam 2{c| el <nl, i=1,...,M}. @

« Average-power constrained codes,

cm2fe| £ llel?<at}. G

Clearly, L¢(T') € Ln(T') C Ly(T). While the equal-power
constraint is easier to analyze, the maximal and average-power
constraints are more useful in practice. Here, we present lower
bounds on P.(C) under equal and maximal-power constraints.

A. Shannon’59 lower bound

Let @ be the half-angle of a n-dimensional cone with
vertex at the origin and with axis going through the vector
x = (1,...,1). We denote by ®,(6,0?) the probability that
such vector is moved outside this cone by effect of the i.i.d.
Gaussian noise with variance o2 in each dimension.

Theorem 1 ([1, Eq. (33)]): Let C € L.(T') be a length-n
code of cardinality M satisfying an equal power constraint.



Let 6, a denote the half-angle of a cone with solid angle
equal to Q,,/M, where €, is the surface of the n-dimensional
hypersphere. Then,

0_2
Pe(c) Z (I)n <9n,Ma F> . (6)

While this bound is conceptually simple and accurate for
relatively short codes [3], it is difficult to evaluate. The
computation of this bound is treated, e.g., in [4], [5].

B. PPV’10 lower bound

In [2], Polyanskiy er al. proved that the error probability of
a binary hypothesis test with certain parameters can be used to
lower bound the error probability P.(C) for a certain channel
Py x. In particular, [2, Th. 27] shows that

P.(C) > infsup {aﬁ (PXPy|X,PX X Qy)}7 @)
Px Qvy

where ag (P, Q) is the minimum type-I error for a maximum

type-1I error 8 € [0, 1] in a binary hypothesis testing problem

between the distributions P and Q).

The bound (7) is usually referred to as the meta-converse
bound since several converse bounds in the literature can
be recovered from it via relaxation. While it is possible to
restrict the set of distributions Qy over which the bound is
maximized and still obtain a lower bound, the minimization
over Px needs to be carried out over all the n-dimensional
probability distributions (not necessarily product) satisfying
the power constraint considered.

For the Gaussian channel, Polyanskiy et al. fixed Qy
to be zero-mean Gaussian distributed with variance 2 and
independent entries, i.e., Qy = @ with pdf

q(y) = H@o,e(yi)- (®)
i=1

Particularizing (7) for this channel and fixing Qy = @, yields
> 1 1

P.(C) > Jnt {aﬁ (PW, P x Q)} , 9)

where the minimization is over all input distributions P
satisfying a certain power constraint I', denoted by Pr. For
this choice of Q, a1 (+,-) presents spherical symmetry. Then,
restricting the input codebook to lie on the surface of a n-
dimensional hyper-sphere of squared radius nI' (equal power
constraint), setting 02 =T+ o2, the following result follows.

Theorem 2 ([2, Th. 41]): Let C € L.(T') be a length-n code
of cardinality M satisfying an equal power constraint. Then,

P(C) 2 ay (¢5 . 200): (10)

where 62 =T + o2.

This expression can be evaluated via the probability of
two noncentral x? distributions (see Appendix A for details).
However, for fixed rate R £ %log2 M, the term zvi =g—nlit
decreases exponentially with the block-length and traditional
series series expansions of the noncentral y? fail even for

moderate values of n (see discussion in [2, p. 2326]).
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Fig. 1: Induced integration regions by (a) the Shannon’59
lower bound (6), and (b) the PPV’10 lower bound (10).

C. Comparison between Shannon’59 and PPV’10

Shannon’59 lower bound in Theorem 1 corresponds to the
probability that the additive Gaussian noise moves a given
codeword out of the n-dimensional cone centered at the code-
word (cone that roughly covers 1/M-th of the output space).
We show next that the PPV’10 lower bound in Theorem 2
admits an analogous geometrical interpretation.

Let x = (VI,...,VT) and let § > o. For the hypothesis
test on the right-hand side of (10), the condition

Yor.y) o

©0.0(Y)
for some ~ > 0, defines the boundary of the decision region
induced by the optimal Neyman-Pearson test. We next study
the shape of this region. To this end, we note that

lyl* [y —=[? .
202 202

(1)

= —O—n

lyl® |y — | 0% —o?
262 - 202 - - 25202 (||y||2 - 2a<way> + U,HZI}HQ)
(12)
0% —o2
= —W(Hy —az|® + (a—a?)|z|?),
(13)
where a = % > 0 for 62 > 02, and where (x, y) denotes

the inner product between x and y.
Using (13) with ||z||> = nT" and #? = T + o2, we obtain
that the boundary of the decision region (11) becomes

ly = (1 + )l

=7

where ¥ = no? (1 + %2) (1 +log(1+ L) + %log("y)).

As (14) corresponds to the equation of an n-dimensional
sphere, we can alternatively describe the PPV’10 lower bound
in Theorem 2 as the probability that the additive Gaussian
noise moves the codeword x out of the n-dimensional sphere
centered at (1+%2)m (that covers 1/M-th of the output space).
Note that the “regions” induced by Theorem 1 correspond
to cones, while those induced by Theorem 2 correspond to
spheres (see Fig. 1). Cones are close to the optimal ML
decoding regions for codewords evenly distributed on surface
of an n-dimensional sphere with squared radius nI"." On the
other hand, “spherical regions” allow different configurations
of the codewords inside the sphere. Then, the meta-converse
bound may hold beyond the equal-power constraint.

This intuition is proven to be right in the next section.

(14)

Indeed, in n = 2 dimensions Shannon’59 lower bound yields the exact
error probability of an M-PSK constellation. See Section III-A for details.



III. LOWER BOUND FOR MAXIMAL-POWER CONSTRAINTS

In order to lower bound the error probability of a maximal-
power constrained codebook we start by considering the gen-
eral meta-converse in (7). In order to make the minimization
over Px in (7) tractable we shall use the following result.

Lemma 1 ([6, Lem. 25]): Let Px = Zj A Px; with A; >
0, >2;A; = 1, be a convex combination of the distributions
Px ; and let {PXJ.} have pairwise disjoint supports. Then, the
hypothesis testing error trade-off function satisfies

a3 (Px Py x, Px x Qy)
= min > Njag, (Px, Pyix, Px, x Qy). (15)
522; X J

This lemma asserts that it is possible to express the test (7)
as a convex combination of disjoint sub-tests provided that the
type-1I error is optimally distributed among them. Applying
this decomposition in (9) for the Gaussian channel under
maximal power constraint, we obtain the following result.

Theorem 3 (Maximal power constraint): Let C € L,(T") be
a length-n code of cardinality M satisfying a maximal power
constraint and let n > 1. Then, for any 6 > o,

P(C) 2 oy (¢75 . 200)- (16)

Proof: For any 0 < p < VT, we define the input set

S, £ {x||z|?> = np?}. Then, any input distribution Px

induces a distribution over the parameter p, P, = Pr{S,}.
We consider the conditional distribution

dPx (x)

dp,

0, otherwise.

T €S,

dPx |, (x) = { (17)

It follows that Px (z) = [ Px|,(x)dP, with dP, satisfying
dP, >0, [ dP, = 1. Then, we apply Lemma 1 to the right-
hand side of (9) to obtain

inf
PePr

{aﬁ (PW, P x Q)}
{/aﬂp (P,W, P, x Q) dpp} (18)

= inf
{PPHBP}:
f BP de:ﬁ

= inf } {/aﬁp (902,0‘7 908,9) de} ) (19)

{F0:Bp
S Bo de:ﬁ

where the last step follows from the spherical symmetry of
each of the sub-tests in (18) and since « = (p,...,p) € S,.

To solve the optimization in (19) we resort in the following
lemma, which is then proven in the appendices.

Lemma 2: Let 0 < 0, with 0,0 € Rt and n > 1. Then,
ag (90;‘_’0, cpgﬁ) is non-increasing in p for any fixed 5 € [0, 1].

According to Lemma 2, for any 0 < p < VT, it holds that
ag (wZ,g,%ie) > ag (30%70,90879). As any maximal-power
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Fig. 2: Lower bounds to the channel coding error probability
over an AWGN channel with n = 2 and SNR= 10 dB.

constrained input distribution P € Pr satisfies P, = 0 for
p > /T, we conclude that
{P p7ﬁp}:

{/ a’Bp (‘pgﬁ’ (P'[’)L’B) de}
I Bo de:ﬁ

- {PipI’lﬁfp}i {/agp(w%,a’(pgﬂ)dpp} (20)

J Bo de:ﬁ

Z aﬁ (Sp?/f’oa @8’9)7

inf

21

where in (21) we used that the function ag(-, -) is convex with
respect to 3, hence, [ag,(-,-)dP, > ayrg ap,(-s-)-

Then, using (9), (19) and (21) the result follows. [ |

Setting 2 = I" + 02 in Theorem 3, we recover the bound
in Theorem 2. We conclude that the bound in Theorem 2
also holds for maximal power constraint. This is not the case
however for the Shannon’59 lower bound in Theorem 1, as
we show next with an example.

A. Example: 2-dimensional constellations

We consider the problem of transmitting M > 2 codewords
over a additive Gaussian noise channel with n = 2 dimensions.
Figure 2 compares the bounds in Theorem 1 (evaluated for
n = 2 and n = 3) and Theorem 3 with 6> = I + o2.
For reference, we include the simulated ML decoding error
probability of an M-PSK (phase-shift keying) and M-APSK
(amplitude-phase-shift keying) constellations satisfying the
maximal power constraint. For n = 2, Shannon’59 lower
bound in Theorem 1 coincides with the ML decoding error
probability of the M-PSK constellation (as the 2-dimensional
cones are precisely the ML decoding regions of the M-
PSK constellation). Theorem 1 only applies for codebooks (or
constellations) satisfying the equal power constraint. Indeed,
the M-APSK simulated error probability violates the bound
evaluated for n = 2. Theorem 3 applies to both equal and
maximal power constraints, as it does Theorem 1 evaluated
for n = 3. We can see that Theorem 3 is tighter in this setting.



APPENDIX A
PROOF OF LEMMA 2

Let 0,6 > 0 and n > 1, be fixed parameters. We define
£ Jog oY)

Jp(y) = log =7 (22)
P (P()ﬁ(y)
0 15~0i—p) -0’y
=log — + 3 ; s . (23)
The trade-off as (7 ,,¢f 5) admits the parametric form
a(p,y) =Pr[5,(Yo) <v] =Prlp,(Z2) <1], @4
B(p,7) =Pr[3,(Y1) > 7] = Pr[n,(Z) > ], (29

in terms of the auxiliary parameter v € R. Here, Yo ~ ¢ ,,
Y~ @8,0 and, for Z ~ 01 and 6 £ 62 — o2, we defined
0 np?

Jop(2) 2log 2 — B2

o 26 > (Z =

2
307 2 w-F) . e

2 n 2
() 2 1og§ o %% 1_ 1(z7; - %”) .
The equivalence between the 1st and 2nd identities in (24) and
(25) follows from (23), (26) and (27) via a change of variables.
Given (26) and (27), since Z ~ 5,1, we conclude that
90,0(Z) and 31 ,(Z) follow a (shifted and scaled) noncentral
x? distribution with n degrees of freedom and non-centrality
parameters no?p? /62 and nf?p? /52, respectively. The cdf of
a noncentral y2 distribution can be written in terms of the gen-
eralized Marcum Q-function Q,,,(a,b) defined in (37). Then,
using (24), (25), (26) and (27), we characterize as (©7 ., 90 o)
as a function of an auxiliary parameter ¥ > 0 as

alp?) = Qg (f”fﬂ) : (28)
o
B(p,A) =1-Qx (ﬂa” g) . (29)

To prove that ag (cpgﬂ, cpgﬁ) is non-increasing in p, we need
to show that its derivative with respect to p is non-positive. To
this end, we could invert (29) to obtain the dependence of 7
with p for fixed 8 and substitute this 5(p) in (28) before taking
the derivative. However, given the nature of the functions
involved, there is no closed-form expression for 5(p). Instead,
we use the chain rule for total derivatives to write

98(p.7) _ 98(p.) | 9B(p,7) 07 (30)

Ip ap 5 oy
As [ is fixed, we set (30) equal to 0 and solve for g—z. Then,
2 _ _% (0,7) Iy (vntd)y/nd )

o EBpA) Iy (Ve
where I,,,(-) is the m-th order modified Bessel function of the
first kind and where we used that (see Appendix B)
OQm(a,b) O™ a2
da ~gm—1©
OQm(a,b) b a2e?

= — e 2

ob am—1

I, (ab), (32)

I_1(ab). (33)

We now evaluate the derivative of g—‘; for fixed 5. By
applying the chain rule for total derivatives and using (31),
(32) and (33), we obtain

da(p,y)  dalp,5) | dalp,7) 07
PRI P e (34)
__Vn Zi1677a2+b21g(\/ﬁ%) (35)
g az2
_ np A6 \ % _na42p"‘+62a2 o
5 (\/ﬁgzp) € s Iy (vVnf3) (36)

where a = \/ﬁ% and b = g in (35). As (36) is non-positive
for § = 02 — 62 > 0, then Lemma 2 follows.

APPENDIX B
DERIVATIVES OF THE MARCUM-() FUNCTION

For a > 0 and b > 0, the Marcum-() function is defined as
—1

Qa2 [ 2

The derivative (33) then follows directly from (37). For (32)
we make use of the series representation [7, Eq. (4.62)]

O gm 24,2
e 3

Ln_1(at)dt.  (37)

_t2 a? > a\T"
Qula,p)=e 5 Y (g) I.(ab) (39
r=l-m
and we write its derivative with respect to a to obtain
0Qm(a,b)
Oa

= TE i(ﬂ) (E—a)rr(ab) + 01 (ab) ). (39)
=e 2 ; L) r(a ~(ab) |.

Using the identity I}, () = 21, ()4 In+1(2) [8, Sec. 8.486]

and canceling terms we oal;tain (32). To the best of our

knowledge, the form of the derivative in (32) does not appear
in the literature for non-integer values of m. For integer values
of m, (32) can be easily obtained from (37) by using the
identities @, (a,b) =1 — Q1-m(b,a) and L, (z) = I_,,(x).
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