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Abstract—ForanadditivewhiteGaussiannoisechannel,we
provethatTh.41in[Polyanskiy,Poor,Verd́u2010]isalower
boundtotheerrorprobabilityofanychannelcodesatisfyingthe
maximalpowerconstraint.Incontrast,the(tighter)lowerbound
totheerrorprobabilityinEq.(20)in[Shannon1959]onlyholds
underequalpowerconstraint.

I.INTRODUCTION

Weconsidertheproblemoftransmitting M equiprobable
messagesovernusesofanadditivewhiteGaussiannoise
(AWGN)channel.In[1],Shannonderivedalowerbound
ontheerrorprobabilityforcodessubjecttoacertainpower
constraintΓ.Usinggeometricalarguments,Shannonlower-
boundedtheerrorprobabilityofacodewithallthecodewords
lyingonthen-dimensionalspherewithsquaredradiusnΓ
(equalpowerconstraint)[1,Eq.(20)].Then,heconsidered
alength-ncodesuchthatthecodewordenergyisnotlarger
thannΓ(maximalpowerconstraint).Hearguedthatsuchcode
canbetransformedbyaddinganextra(n+1)-thcoordinate
toequalizethecodewordenergytonΓ.Asaresult,thelower
boundin[1,Eq.(20)],evaluatedfortheblocklengthn+1,
alsoholdsforanylength-nmaximalpowerconstrainedcode.
Morerecently,Polyanskiy,PoorandVerdúprovedthata
surrogatebinaryhypothesistestcanbeusedtolowerboundthe
errorprobabilityofachannelcode[2,Th.27].Particularizing
thisboundfortheadditivewhiteGaussiannoise(AWGN)
channelunderequalpowerconstraintyields[2,Th.41].As
discussedabove,evaluating[2,Th.41]forablocklengthn+1
yieldsaconverseboundforalength-ncodeinthemaximal
powerconstraintsetting.
Whilemostoftheanalysisin[1]isfocusedincharacterizing
theasymptoticsof[1,Eq.(20)],thisboundisextremely
accurateinthefinite-lengthsetting[3].Indeed,ingeneral,
Shannon’sapproachyieldstighterboundsthan[2,Th.41]
underequalpowerconstraint.Inthiswork,weprovethat[2,
Th.41]isdirectlyalowerboundtotheerrorprobabilityof
alength-nmaximalpowerconstrainedcode(withnon+1
extensionrequired).Incontrast,Shannonlowerboundonly
holdsunderequalpowerconstraint,andthen+1extension
argumentisneededinthemaximalpowerconstraintsetting.
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II.SYSTEMMODELANDPRELIMINARIES

Weconsidertheproblemoftransmitting M equiprobable
messagesovernusesofanAWGNchannelW withnoise
powerσ2.Specifically,fortheinputx=(x1,x2,...,xn)and
outputy=(y1,y2,...,yn)thechannelW =PY|X hasa
probabilitydensityfunction(pdf)givenby

w(y|x)=
n

i=1

ϕxi,σ(yi), (1)

whereϕµ,σ(·)denotesthepdfoftheGaussiandistribution,

ϕµ,σ(x)
1

√
2πσ
e−

(x µ)2

2σ2 . (2)

Theencodermapsamessagev∈{1,...,M}tothechannel
asx=cvusingthecodebookC c1,...,cM .Based
onthechanneloutputy,thedecoderguessesthetransmitted
messagev̂∈{1,...,M}.Theerrorprobabilityisthusgiven
byPe(C) Pr{̂V=V}wheretheunderlyingprobabilityis
inducedbythechainofsource,encoder,channelanddecoder.
Weconsidercodebookssatisfyingacertainpowerconstraint:

• Equal-powerconstrainedcodes,

Le(Γ) C ci
2=nΓ, i=1,...,M. (3)

• Maximal-powerconstrainedcodes,

Lm(Γ) C ci
2≤nΓ, i=1,...,M. (4)

• Average-powerconstrainedcodes,

La(Γ) C 1
M

M

i=1
ci
2≤nΓ. (5)

Clearly,Le(Γ)⊂Lm(Γ)⊂La(Γ). Whiletheequal-power
constraintiseasiertoanalyze,themaximalandaverage-power
constraintsaremoreusefulinpractice.Here,wepresentlower
boundsonPe(C)underequalandmaximal-powerconstraints.

A.Shannon’59lowerbound

Letθbethehalf-angleofan-dimensionalcone with
vertexattheoriginandwithaxisgoingthroughthevector
x=(1,...,1). WedenotebyΦn(θ,σ

2)theprobabilitythat
suchvectorismovedoutsidethisconebyeffectofthei.i.d.
Gaussiannoisewithvarianceσ2ineachdimension.
Theorem1([1,Eq.(33)]):LetC∈Le(Γ)bealength-n

codeofcardinalityM satisfyinganequalpowerconstraint.



Let θn,M denote the half-angle of a cone with solid angle
equal to Ωn/M , where Ωn is the surface of the n-dimensional
hypersphere. Then,

Pe(C) ≥ Φn

(
θn,M ,

σ2

Γ

)
. (6)

While this bound is conceptually simple and accurate for
relatively short codes [3], it is difficult to evaluate. The
computation of this bound is treated, e.g., in [4], [5].

B. PPV’10 lower bound

In [2], Polyanskiy et al. proved that the error probability of
a binary hypothesis test with certain parameters can be used to
lower bound the error probability Pe(C) for a certain channel
PY |X . In particular, [2, Th. 27] shows that

Pe(C) ≥ inf
PX

sup
QY

{
α 1
M

(
PXPY |X , PX ×QY

)}
, (7)

where αβ (P,Q) is the minimum type-I error for a maximum
type-II error β ∈ [0, 1] in a binary hypothesis testing problem
between the distributions P and Q.

The bound (7) is usually referred to as the meta-converse
bound since several converse bounds in the literature can
be recovered from it via relaxation. While it is possible to
restrict the set of distributions QY over which the bound is
maximized and still obtain a lower bound, the minimization
over PX needs to be carried out over all the n-dimensional
probability distributions (not necessarily product) satisfying
the power constraint considered.

For the Gaussian channel, Polyanskiy et al. fixed QY

to be zero-mean Gaussian distributed with variance θ2 and
independent entries, i.e., QY = Q with pdf

q(y) =

n∏
i=1

ϕ0,θ(yi). (8)

Particularizing (7) for this channel and fixing QY = Q, yields

Pe(C) ≥ inf
P∈PΓ

{
α 1
M

(
PW,P ×Q

)}
, (9)

where the minimization is over all input distributions P
satisfying a certain power constraint Γ, denoted by PΓ. For
this choice of Q, α 1

M
(·, ·) presents spherical symmetry. Then,

restricting the input codebook to lie on the surface of a n-
dimensional hyper-sphere of squared radius nΓ (equal power
constraint), setting θ2 = Γ + σ2, the following result follows.

Theorem 2 ([2, Th. 41]): Let C ∈ Le(Γ) be a length-n code
of cardinality M satisfying an equal power constraint. Then,

Pe(C) ≥ α 1
M

(
ϕn√

Γ,σ
, ϕn0,θ

)
, (10)

where θ2 = Γ + σ2.
This expression can be evaluated via the probability of

two noncentral χ2 distributions (see Appendix A for details).
However, for fixed rate R , 1

n log2M , the term 1
M = 2−nR

decreases exponentially with the block-length and traditional
series series expansions of the noncentral χ2 fail even for
moderate values of n (see discussion in [2, p. 2326]).

(a) (b)

Fig. 1: Induced integration regions by (a) the Shannon’59
lower bound (6), and (b) the PPV’10 lower bound (10).

C. Comparison between Shannon’59 and PPV’10

Shannon’59 lower bound in Theorem 1 corresponds to the
probability that the additive Gaussian noise moves a given
codeword out of the n-dimensional cone centered at the code-
word (cone that roughly covers 1/M -th of the output space).
We show next that the PPV’10 lower bound in Theorem 2
admits an analogous geometrical interpretation.

Let x =
(√

Γ, . . . ,
√

Γ
)

and let θ > σ. For the hypothesis
test on the right-hand side of (10), the condition

ϕn√
Γ,σ

(y)

ϕn0,θ(y)
=
θn

σn
exp

[
‖y‖2

2θ2
− ‖y − x‖2

2σ2

]
= γ (11)

for some γ > 0, defines the boundary of the decision region
induced by the optimal Neyman-Pearson test. We next study
the shape of this region. To this end, we note that

‖y‖2

2θ2
−‖y − x‖2

2σ2
= −θ

2−σ2

2σ2θ2

(
‖y‖2 − 2a〈x,y〉+ a‖x‖2

)
(12)

= −θ
2−σ2

2σ2θ2

(
‖y − ax‖2 + (a−a2)‖x‖2

)
,

(13)

where a = θ2

θ2−σ2 ≥ 0 for θ2 ≥ σ2, and where 〈x,y〉 denotes
the inner product between x and y.

Using (13) with ‖x‖2 = nΓ and θ2 = Γ + σ2, we obtain
that the boundary of the decision region (11) becomes∥∥y − (1 + σ2

Γ

)
x
∥∥2

= γ̄, (14)

where γ̄ = nσ2
(
1 + σ2

Γ

)(
1 + log

(
1 + Γ

σ2

)
+ 2

n log
(
γ
))

.
As (14) corresponds to the equation of an n-dimensional

sphere, we can alternatively describe the PPV’10 lower bound
in Theorem 2 as the probability that the additive Gaussian
noise moves the codeword x out of the n-dimensional sphere
centered at

(
1+σ2

Γ

)
x (that covers 1/M -th of the output space).

Note that the “regions” induced by Theorem 1 correspond
to cones, while those induced by Theorem 2 correspond to
spheres (see Fig. 1). Cones are close to the optimal ML
decoding regions for codewords evenly distributed on surface
of an n-dimensional sphere with squared radius nΓ.1 On the
other hand, “spherical regions” allow different configurations
of the codewords inside the sphere. Then, the meta-converse
bound may hold beyond the equal-power constraint.

This intuition is proven to be right in the next section.

1Indeed, in n = 2 dimensions Shannon’59 lower bound yields the exact
error probability of an M -PSK constellation. See Section III-A for details.



III. LOWER BOUND FOR MAXIMAL-POWER CONSTRAINTS

In order to lower bound the error probability of a maximal-
power constrained codebook we start by considering the gen-
eral meta-converse in (7). In order to make the minimization
over PX in (7) tractable we shall use the following result.

Lemma 1 ([6, Lem. 25]): Let PX =
∑
j λjPXj

with λj >
0,
∑
j λj = 1, be a convex combination of the distributions

PXj
and let

{
PXj

}
have pairwise disjoint supports. Then, the

hypothesis testing error trade-off function satisfies

αβ
(
PXPY |X , PX ×QY

)
= min

{βj}:
β=

∑
j λjβj

∑
j

λjαβj
(
PXjPY |X , PXj ×QY

)
. (15)

This lemma asserts that it is possible to express the test (7)
as a convex combination of disjoint sub-tests provided that the
type-II error is optimally distributed among them. Applying
this decomposition in (9) for the Gaussian channel under
maximal power constraint, we obtain the following result.

Theorem 3 (Maximal power constraint): Let C ∈ Lm(Γ) be
a length-n code of cardinality M satisfying a maximal power
constraint and let n ≥ 1. Then, for any θ > σ,

Pe(C) ≥ α 1
M

(
ϕn√

Γ,σ
, ϕn0,θ

)
. (16)

Proof: For any 0 ≤ ρ ≤
√

Γ, we define the input set
Sρ ,

{
x | ‖x‖2 = nρ2

}
. Then, any input distribution PX

induces a distribution over the parameter ρ, Pρ , Pr{Sρ}.
We consider the conditional distribution

dPX|ρ(x) =

{
dPX(x)

dPρ
, x ∈ Sρ,

0, otherwise.
(17)

It follows that PX(x) =
∫
PX|ρ(x) dPρ with dPρ satisfying

dPρ ≥ 0,
∫

dPρ = 1. Then, we apply Lemma 1 to the right-
hand side of (9) to obtain

inf
P∈PΓ

{
α 1
M

(
PW,P ×Q

)}
= inf

{Pρ,βρ}:∫
βρ dPρ= 1

M

{∫
αβρ
(
PρW,Pρ ×Q

)
dPρ

}
(18)

= inf
{Pρ,βρ}:∫
βρ dPρ= 1

M

{∫
αβρ
(
ϕnρ,σ, ϕ

n
0,θ

)
dPρ

}
, (19)

where the last step follows from the spherical symmetry of
each of the sub-tests in (18) and since x = (ρ, . . . , ρ) ∈ Sρ.

To solve the optimization in (19) we resort in the following
lemma, which is then proven in the appendices.

Lemma 2: Let σ < θ, with σ, θ ∈ R+ and n ≥ 1. Then,
αβ
(
ϕnρ,σ, ϕ

n
0,θ

)
is non-increasing in ρ for any fixed β ∈ [0, 1].

According to Lemma 2, for any 0 ≤ ρ ≤
√

Γ, it holds that
αβ
(
ϕnρ,σ, ϕ

n
0,θ

)
≥ αβ

(
ϕn√

Γ,σ
, ϕn0,θ

)
. As any maximal-power
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Fig. 2: Lower bounds to the channel coding error probability
over an AWGN channel with n = 2 and SNR= 10 dB.

constrained input distribution P ∈ PΓ satisfies Pρ = 0 for
ρ >
√

Γ, we conclude that

inf
{Pρ,βρ}:∫
βρ dPρ= 1

M

{∫
αβρ
(
ϕnρ,σ, ϕ

n
0,θ

)
dPρ

}

≥ inf
{Pρ,βρ}:∫
βρ dPρ= 1

M

{∫
αβρ
(
ϕn√

Γ,σ
, ϕn0,θ

)
dPρ

}
(20)

≥ α 1
M

(
ϕn√

Γ,σ
, ϕn0,θ

)
, (21)

where in (21) we used that the function αβ(·, ·) is convex with
respect to β, hence,

∫
αβρ(·, ·) dPρ ≥ α∫

βρ dPρ(·, ·).
Then, using (9), (19) and (21) the result follows.
Setting θ2 = Γ + σ2 in Theorem 3, we recover the bound

in Theorem 2. We conclude that the bound in Theorem 2
also holds for maximal power constraint. This is not the case
however for the Shannon’59 lower bound in Theorem 1, as
we show next with an example.

A. Example: 2-dimensional constellations

We consider the problem of transmitting M ≥ 2 codewords
over a additive Gaussian noise channel with n = 2 dimensions.
Figure 2 compares the bounds in Theorem 1 (evaluated for
n = 2 and n = 3) and Theorem 3 with θ2 = Γ + σ2.
For reference, we include the simulated ML decoding error
probability of an M -PSK (phase-shift keying) and M -APSK
(amplitude-phase-shift keying) constellations satisfying the
maximal power constraint. For n = 2, Shannon’59 lower
bound in Theorem 1 coincides with the ML decoding error
probability of the M -PSK constellation (as the 2-dimensional
cones are precisely the ML decoding regions of the M -
PSK constellation). Theorem 1 only applies for codebooks (or
constellations) satisfying the equal power constraint. Indeed,
the M -APSK simulated error probability violates the bound
evaluated for n = 2. Theorem 3 applies to both equal and
maximal power constraints, as it does Theorem 1 evaluated
for n = 3. We can see that Theorem 3 is tighter in this setting.



APPENDIX A
PROOF OF LEMMA 2

Let σ, θ > 0 and n ≥ 1, be fixed parameters. We define

ρ(y) , log
ϕnρ,σ(y)

ϕn0,θ(y)
(22)

= log
θ

σ
+

1

2

n∑
i=1

θ2(yi − ρ)2 − σ2y2
i

σ2θ2
. (23)

The trade-off αβ
(
ϕnρ,σ, ϕ

n
0,θ

)
admits the parametric form

α(ρ, γ) = Pr
[
ρ(Y 0) ≤ γ

]
= Pr

[
0,ρ(Z) ≤ γ

]
, (24)

β(ρ, γ) = Pr
[
ρ(Y 1) > γ

]
= Pr

[
1,ρ(Z) > γ

]
, (25)

in terms of the auxiliary parameter γ ∈ R. Here, Y 0 ∼ ϕnρ,σ ,
Y 1 ∼ ϕn0,θ and, for Z ∼ ϕn0,1 and δ , θ2 − σ2, we defined

0,ρ(z) , log
θ

σ
− n

2

ρ2

δ
+

1

2

δ

σ2

n∑
i=1

(
zi −

σρ

δ

)2

, (26)

1,ρ(z) , log
θ

σ
− n

2

ρ2

δ
+

1

2

δ

θ2

n∑
i=1

(
zi −

θρ

δ

)2

. (27)

The equivalence between the 1st and 2nd identities in (24) and
(25) follows from (23), (26) and (27) via a change of variables.

Given (26) and (27), since Z ∼ ϕn0,1, we conclude that
0,ρ(Z) and 1,ρ(Z) follow a (shifted and scaled) noncentral
χ2 distribution with n degrees of freedom and non-centrality
parameters nσ2ρ2/δ2 and nθ2ρ2/δ2, respectively. The cdf of
a noncentral χ2 distribution can be written in terms of the gen-
eralized Marcum Q-function Qm(a, b) defined in (37). Then,
using (24), (25), (26) and (27), we characterize αβ

(
ϕnρ,σ, ϕ

n
0,θ

)
as a function of an auxiliary parameter γ̃ ≥ 0 as

α(ρ, γ̃) = Qn
2

(√
n
σρ

δ
,
γ̃

σ

)
, (28)

β(ρ, γ̃) = 1−Qn
2

(√
n
θρ

δ
,
γ̃

θ

)
. (29)

To prove that αβ
(
ϕnρ,σ, ϕ

n
0,θ

)
is non-increasing in ρ, we need

to show that its derivative with respect to ρ is non-positive. To
this end, we could invert (29) to obtain the dependence of γ̃
with ρ for fixed β and substitute this γ̃(ρ) in (28) before taking
the derivative. However, given the nature of the functions
involved, there is no closed-form expression for γ̃(ρ). Instead,
we use the chain rule for total derivatives to write

∂β(ρ, γ̃)

∂ρ
=
∂β(ρ, γ̃)

∂ρ
+
∂β(ρ, γ̃)

∂γ̃

∂γ̃

∂ρ
. (30)

As β is fixed, we set (30) equal to 0 and solve for ∂γ̃
∂ρ . Then,

∂γ̃

∂ρ
= −

∂
∂ρβ(ρ, γ̃)
∂
∂γ̃β(ρ, γ̃)

=
In

2

(√
nργ̃δ

)√
n θδ

In
2−1

(√
nργ̃δ

)
1
θ

, (31)

where Im(·) is the m-th order modified Bessel function of the
first kind and where we used that (see Appendix B)

∂Qm(a, b)

∂a
=

bm

am−1
e−

a2+b2

2 Im(ab), (32)

∂Qm(a, b)

∂b
= − bm

am−1
e−

a2+b2

2 Im−1(ab). (33)

We now evaluate the derivative of ∂α
∂ρ for fixed β. By

applying the chain rule for total derivatives and using (31),
(32) and (33), we obtain
∂α(ρ, γ̃)

∂ρ
=
∂α(ρ, γ̃)

∂ρ
+
∂α(ρ, γ̃)

∂γ̃

∂γ̃

∂ρ
(34)

= −
√
n

σ

b
n
2

a
n
2−1

e−
a2+b2

2 In
2

(√
nργ̃δ

)
(35)

= −nρ
δ

( γ̃δ√
nσ2ρ

)n
2

e−
nσ4ρ2+δ2γ̃2

2δ2σ2 In
2

(√
nργ̃δ

)
(36)

where a =
√
nσρδ and b = γ̃

σ in (35). As (36) is non-positive
for δ = θ2 − σ2 > 0, then Lemma 2 follows.

APPENDIX B
DERIVATIVES OF THE MARCUM-Q FUNCTION

For a > 0 and b > 0, the Marcum-Q function is defined as

Qm(a, b) ,
∫ ∞
b

tm

am−1
e−

t2+a2

2 Im−1(at) dt. (37)

The derivative (33) then follows directly from (37). For (32)
we make use of the series representation [7, Eq. (4.62)]

Qm(a, b) = e−
t2+a2

2

∞∑
r=1−m

(a
b

)r
I−r(ab) (38)

and we write its derivative with respect to a to obtain
∂Qm(a, b)

∂a

= e−
t2+a2

2

∞∑
1−m

(a
b

)r(( r
a
−a
)
I−r(ab) + bI ′−r(ab)

)
. (39)

Using the identity I ′m(x) = m
x Im(x)+Im+1(x) [8, Sec. 8.486]

and canceling terms we obtain (32). To the best of our
knowledge, the form of the derivative in (32) does not appear
in the literature for non-integer values of m. For integer values
of m, (32) can be easily obtained from (37) by using the
identities Qm(a, b) = 1−Q1−m(b, a) and Im(x) = I−m(x).
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