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Abstract

Angelesco systems of measures with Jacobi type weights are considered. For such
systems, strong asymptotics for the related multiple orthogonal polynomials are
found as well as the Szegő-type functions. In the procedure, an approach from
Riemann-Hilbert problem plays a fundamental role.

Key words: approximation by rational function, rate of convergence, simultaneous
approximation,
1991 MSC: 41A20,41A25,41A28

1 The statement of the Riemann-Hilbert problem

In this work the problem considered is a particular case of the general situation
analyzed in [2]. However, due to the simplicity of the case considered, we are
able to compute the Szegő-type functions in great detail (cf. (11)).
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Ciencia y Tecnoloǵıa and CCG 06–UC3M/ESP–0690 of Universidad Carlos III
de Madrid-Comunidad de Madrid and by grant SFRH/BPD/31724/2006 from
Fundação para a Ciência e a Tecnologia.
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Let ∆1 = [−λ,−1] and ∆2 = [1, λ] be two intervals on the real line R. For each
j = 1, 2, take a holomorphic function hj, on a neighborhood Vhj

of ∆j, i.e.
hj ∈ H(Vhj

). We also require that such function hj does not vanishes on Vhj
,

acquiring only positive values on ∆j. Observe that 1/hj ∈ H(Vhj
), j = 1, 2.

Let us define the system of measures (σ1, σ2) where σ1 and σ2 have the differ-
ential form

dσj(x) =
hj(x)dx√

(λ− |x|)(|x| − 1)
, x ∈ ∆j, j = 1, 2.

This system (σ1, σ2) belongs to the class of Angelesco systems introduced
by Angelesco in [1]. Fix a multi-index n = (n1, n2), we say that a polyno-
mial Qn 6≡ 0 is a type II multiple-orthogonal polynomial corresponding to
a system (σ1, σ2), if deg Qn ≤ |n| = n1 + n2 and Qn satisfies the following
orthogonality conditions

∫

∆j

xνQn(x)dσj(x) = 0 , ν = 0 , . . . , nj − 1, j = 1, 2 . (1)

It is well known (see [1]) that for any multi-index n = (n1, n2), the polyno-
mial Qn has for each j = 1, 2, exactly nj simple zeros lying in the interior set

of ∆j, which we represent by
◦
∆j. We will denote the function of the second

kind

Rj
n(z) =

1

2πi

∫

∆j

Qn(x)
dσj(x)

x− z
. (2)

Let us take a subset of multi-indices Λ = {n = (n, n) : n ∈ Z}. In the present
article we obtain results about the strong asymptotics of the sequence of multi-
orthogonal polynomials {Qn : n ∈ Λ}. An effective method for such study with
this kind of so “very nice” measures, is analyzing the Riemann-Hilbert problem
for multi-orthogonal polynomials, which was introduced in [12]. Let us consider
a 3×3 matrix, Y , whose entries are complex functions Ys,k : C\(∆1∪∆2) → C,

s, k = 1, 2, 3. Given a point x ∈
◦
∆1 ∪

◦
∆2, the following matricial limits, where

z ∈ C \ (∆1 ∪∆2) tending to x, represent the formal pointwise non tangential
limits of all entries of Y at the same time:

lim
z→x

Y (z) = Y+(x) , =m (z) > 0 and lim
z→x

Y (z) = Y−(x) , =m (z) < 0 .

Let δs,k : N2 → {0, 1} denote the Kronecker delta function, i.e. δs,k = 0 when
s 6= k, and δs,s = 1, s, k ∈ N. Let us look for a matrix function Y , which
satisfies the following conditions:

(1) The entries of Y , Ys,k, belongs to H(C \ (∆1 ∪ ∆2)), which we write as
Y ∈ H(C \ (∆1 ∪∆2));
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(2) For each ∆j, j = 1, 2, the so called jump condition takes place

Y+(x) = Y−(x)




1 δ1,jh1(x)√
(λ−|x|)(1−|x|)

δ2,jh2(x)√
(λ−|x|)(1−|x|)

0 1 0

0 0 1




, x ∈
◦
∆j ;

(3) Given a multi-index n = (n, n) ∈ Λ, we require the following asymptotic
condition at infinity,

Y (z)




z−2n 0 0

0 zn 0

0 0 zn




= I+O (1/z) as z →∞,

where I is the identity matrix of size 3× 3;
(4) For each i, j = 1, 2, we set the following behavior around the endpoints

c1,1 = −λ, c2,1 = −1, c1,2 = 1 and c2,2 = λ,

Y (z) = O




1 δ2,j + δ1,j√
|z−ci,j |

δ1,j + δ2,j√
|z−ci,j |

1 δ2,j + δ1,j√
|z−ci,j |

δ1,j + δ2,j√
|z−ci,j |

1 δ2,j + δ1,j√
|z−ci,j |

δ1,j + δ2,j√
|z−ci,j |




, as z → ci,j .

This problem, which consists in finding the matrix function Y, was called in [12]
a Riemann-Hilbert problem for type II multiple orthogonal polynomials, and
for the system of measures (σ1, σ2), RHP in short. The solution Y is unique
and has the form

Y (z) =




Qn(z) R1
n(z) R2

n(z)

d1Qn1
−
(z) d1R

1
n1
−
(z) d1R

2
n1
−
(z)

d2Qn2
−
(z) d2R

1
n2
−
(z) d2R

2
n2
−
(z)




, (3)

with

dj
−1 = − 1

2πi

∫

∆j

xn−1Qnj
−
(x)dσj(x) ,

where n1
− = (n− 1, n) and n2

− = (n, n− 1).

The key of our procedure is inspired in the works [2,3,9,10] and it is based
in finding the relationship between Y and a matrix function R which is the
solution of the following RHP:

(1) R : C→ C3×3 belongs to H(C \ γ);
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(2) R+(ξ) = R−(ξ)Vn(ξ), ξ ∈ γ;
(3) R(z) → I as z →∞;

where Vn ∈ H(A), with A ⊂ C a certain domain, Vn = I + εn, such that
εn → 0 uniformly on compact subsets of A as n → ∞, and γ is a contour or
system of contours, that is contained in A. In this case we can assure that

R = I+O (εn) .

The RHP for Y is not normalized in the sense that the conditions (3) at infin-
ity for Y and R are different. In order to normalize the RHP, we are going to
modify Y in such a way that we set another RHP with the same contours (pos-
sibly different jump conditions), for which the solution tends to the identity
matrix as z →∞. For normalizing we need to take into account the behavior
of Y (z) for large z. This behavior depends on the distribution of the zeros of
the multiple-orthogonal polynomials. The zero distribution of the orthogonal
polynomials is usually given by an extremal problem in logarithmic potential
theory. In section 2 we introduce some concepts and results which we will
need about this theory and we will normalize the Riemann-Hilbert problem
at infinity. In section 3 such a Riemann-Hilbert problem with oscillatory and
exponentially decreasing jumps can be analyzed by using the steepest descent
method introduced by Deift and Zhou (see [5,6]). The first work such that
the orthogonal polynomials appear as solution of a Riemann-Hilbert prob-
lem is [7], and in [4] these ideas were for the first time applied to get strong
asymptotics for orthogonal polynomials.

2 The equilibrium problem and the normalization at infinity

Let us fix j ∈ {1, 2}. M1/2(∆j) denotes the set of all finite Borel measures
whose supports, i.e. supp (·), are contained in ∆j with total variation 1/2.
Take µj ∈M1/2(∆j) and define its logarithmic potential as follows

V µj(z) =
∫

log
1

|z − x|dµj(x) , z ∈ C .

For each pair of measures (µ1, µ2), where µj ∈ M1/2(∆j), j = 1, 2, we define
the quantities

mj(µ1, µ2) = min
x∈∆j

(2V µj(x) + V µk(x)) , j, k = 1, 2, j 6= k .

The following Proposition is deduced immediately from the results of [8].

Proposition 1 There exists a unique pair (µ̄1, µ̄2) ∈M1/2(∆1)×M1/2(∆2),
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which satisfies for j, k = 1, 2

2V µ̄j(x) + V µ̄k(x) = mj(µ̄1, µ̄2) = mj, x ∈ supp (µ̄j) = ∆j , j 6= k .

For each j = 1, 2 the measure µ̄j is absolutely continuous and has the following
differential form

dµ̄1(x) =
ρ1(x)dx√

(λ− |x|)(|x| − 1)
, dµ̄2(x) =

ρ2(x)dx√
(λ− |x|)(|x| − 1)

,

where ρj is a function which has an analytic continuation to a neighborhood Vρj

of the interval ∆j.

In what follows we consider Vj = Vhj
∩Vρj

. The pair (µ̄1, µ̄2) is called extremal
or equilibrium pair of measures with respect to (∆1, ∆2). Let us denote for
each j = 1, 2 the analytic potentials

gj(z) =
∫

∆j

log(z − x)dµ̄j(x) = −V µ̄j(z) + i
∫

∆j

arg (z − x)dµj(x) ,

where arg denotes the principal argument function.
Substituting the logarithmic potential in Proposition 1 we obtain for each
j, k = 1, 2 with j 6= k that

−(gj+(x) + gj−(x))− gk−(x) = mj , x ∈ ∆j .

Observe that if c1,1 = −λ, c2,1 = −1, c1,2 = 1 and c2,2 = λ, then

gj+(x)− gj−(x) =





0 if c2,j ≤ x

iπ if c1,j ≥ x

2iπ
∫ c2,j
x dµ̄j(t) if x ∈ ∆j

.

Let us introduce the matrices

G(z) =




e−n(g1(z)+g2(z)) 0 0

0 eng1(z) 0

0 0 eng2(z)




and L =




1 0 0

0 e−nm1 0

0 0 e−nm2




. (4)

We define the matrix function T = LY GL−1, where L,G are as in (4) and Y
is given by (3). Hence T is the unique solution of the RHP:

(1) T ∈ H(C \ (∆1 ∪∆2));

(2) T+(x) = T−(x)M(x), x ∈ ◦
∆1 ∪

◦
∆2;

(3) T (z) = I+O(1/z) as z →∞;
(4) T and Y have the same behavior on the endpoints of the intervals ∆j,

for j = 1, 2;
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where the jump matrix M has the form

M(x) =




e−2niπ
∫ c2,j

x
dµ̄j(t) δj,1h1(x)√

(λ−|x|)(|x|−1)

δj,2h2(x)dx√
(λ−|x|)(|x|−1)

0 e2nδj,1iπ
∫ c2,1

x
dµ̄1(t) 0

0 0 e2nδj,2iπ
∫ c2,2

x
dµ̄2(t)




, (5)

with x ∈
◦
∆j.

3 The opening of the lens

Let us consider

φ1(z) = −π
∫ −1

z

ρ1(ζ)dζ√
(ζ + λ)(ζ + 1)

, z ∈ V1

and

φ2(z) = −π
∫ λ

z

ρ2(ζ)dζ√
(ζ − λ)(ζ − 1)

, z ∈ V2 .

We have considered
√

(ζ + λ)(ζ + 1) and
√

(ζ − λ)(ζ − 1) as analytic functions

on C \∆1 and C \∆2, respectively, where we have taken the branches which
are positive for real ζ > −1 and ζ > λ, respectively. Observe that for each
j = 1, 2, the function φj ∈ H(Vj \ ∆j), the real part of the functions φj±
vanish on ∆j, <e (φj±)(x) = 0, x ∈ ∆j, and their derivatives

φ′j±(x) = ∓iπ
ρj(x)√

(λ− |x|)(|x| − 1)
.

By the Cauchy-Riemann conditions we have that

±∂<e φ±
∂y

(x) > 0 , x ∈ ∆j .

Since <e φj is a harmonic function on Vj \∆j we can assure that <e φj(z) > 0,
z ∈ Vj \∆j.

Factorize the jump matrix function M in (5) as follows

M(x) =




1 0 0

δj,1e−2nφ1−(x)
√

(λ−|x|)(|x|−1)

h1(x)
1 0

δj,2e−2nφ2−(x)
√

(λ−|x|)(|x|−1)

h2(x)
0 1
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×




0 δj,1h1(x)√
(λ−|x|)(|x|−1)

δj,2h2(x)√
(λ−|x|)(|x|−1)

− δ1,j

√
(λ−|x|)(|x|−1)

h1(x)
δj,2 0

− δ2,j

√
(λ−|x|)(|x|−1)

h2(x)
0 δj,1




×




1 0 0

δj,1e−2nφ1+(x)
√

(λ−|x|)(|x|−1)

h1(x)
1 0

δj,2e−2nφ2+(x)
√

(λ−|x|)(|x|−1)

h2(x)
0 1




.

Now we are going to follow a procedure analogous to the one in [3]. For each j =
1, 2 let us fix a closed curve γj contained in Vj, with the clockwise orientation.
Set Γj the bounded connected component of C\γj. Let us introduce the matrix
function S, defined by

S(z) = T (z)




1 0 0

iδ1,je−2nφ1(z)
√

(z+λ)(z+1)

h1(z)
1 0

iδ2,je−2nφ2(z)
√

(z−λ)(z−1)

h2(z)
0 1




, z ∈ Γj ,

and S(z) = T (z) , z ∈ C \ Γj.

The matrix function S satisfies the RHP:

(1) S ∈ H(C \ ∪j=1,2(∆j ∪ γj));
(2) The jump conditions j = 1, 2 are,

S+(x) = S−(x)




0 δ1,jh1(x)√
(λ−|x|)(|x|−1)

δ2,jh2(x)√
(λ−|x|)(|x|−1)

− δ1,j

√
(λ−|x|)(|x|−1)

h1(x)
δ2,j 0

− δ2,j

√
(λ−|x|)(|x|−1)

h2(x)
0 δ1,j




,

when x ∈
◦
∆j, and if z ∈ γj,

S+(z) = S−(z)




1 0 0

iδ1,je−2nφ1(z)
√

(z+λ)(z+1)

h1(z)
1 0

iδ2,je−2nφ2(z)
√

(z−λ)(z−1)

h2(z)
0 1




;

(3) S(z) = I+O (1/z) as z →∞;
(4) The conditions for the endpoints are the same as for T .

Now, we consider the limiting problem, because for the matrix S the jump
matrix function on each γj for j = 1, 2 tends to the identity matrix when
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n →∞. We look for the matrix function N which satisfies the following RHP:

(1) N ∈ H(C \ (∆1 ∪∆2));

(2) The jump conditions in
◦
∆j for j = 1, 2 are,

N+(x) = N−(x)




0 δ1,jh1(x)√
(λ−|x|)(|x|−1)

δ2,jh2(x)√
(λ−|x|)(|x|−1)

− δ1,j

√
(λ−|x|)(|x|−1)

h1(x)
δ2,j 0

− δ2,j

√
(λ−|x|)(|x|−1)

h2(x)
0 δ1,j




; (6)

(3) N(z) = I+O (1/z) as z →∞;
(4) N satisfies the same conditions for the endpoints as S.

Let us consider the matrix function K = [Kk,l], k, l = 1, 2, 3 that is the solution
of the RHP:

(1) K ∈ H(C \ (∆1 ∪∆2));

(2) The jump conditions in
◦
∆j for j = 1, 2 are, because of (6),

K+(x) = K−(x)




0 δ1,j√
(λ−|x|)(|x|−1)

δ2,j√
(λ−|x|)(|x|−1)

−δ1,j

√
(λ− |x|)(|x| − 1) δ2,j 0

−δ2,j

√
(λ− |x|)(|x| − 1) 0 δ1,j




(7)

(3) K(z) = I+O (1/z) as z →∞;
(4) The conditions for the endpoints are the same as for N .

Notice that when hj = 1, j = 1, 2, K and N have the same RHP. Analogously

to the ideas in [3], let us again consider
√

(z + λ)(z + 1) and
√

(z − λ)(z − 1)

as analytic functions on C \∆1 and C \∆2, respectively, where we have taken
the branches which are positive for real z > −1 and z > λ, respectively,

(
1

i

√
(z + λ)(z + 1)

)

±
(x) = ±

√
(λ + x)(−x− 1) , x ∈

◦
∆1

and (
1

i

√
(z − λ)(z − 1)

)

±
(x) = ±

√
(λ− x)(x− 1) , x ∈

◦
∆2 .

For each k = 1, 2, 3, we rewrite (7) as





(
1
i

√
(z + λ)(z + 1) Kk,2

)
± (x) = (Kk,1)∓(x)

(Kk,3)+(x) = (Kk,3)−(x)
, x ∈

◦
∆1

8







(
1
i

√
(z − λ)(z − 1) Kk,3

)
± (x) = (Kk,1)∓(x)

(Kk,2)+(x) = (Kk,2)−(x)
, x ∈ ◦

∆2

and we denote

ψk
0(z) = Kk,1(z) , ψk

1(z) =
1

i

√
(z + λ)(z + 1)Kk,2(z)

and ψk
2(z) =

1

i

√
(z − λ)(z − 1)Kk,3(z) .

Then from the relations (7), we may interpret each row k = 1, 2, 3 of such ma-
trix K as a function defined on a Riemann surface. Let R define the Riemann
surface which has two cuts. One of them connects the two branch points −λ
and −1 with the cut in the interval ∆1. The other cut is made in the in-
terval ∆2, to connect the two other branch points 1 and λ. The sheet R0 is
glued to another sheet R1 along the cut ∆1, and R0 is also glued to R2 along
the interval ∆2. Let us denote by ψk, k = 1, 2, 3, three multi-valued functions
ψk =

(
ψk

0 , ψ
k
1 , ψ

k
2

)
, such that for each k = 1, 2, 3 its components ψk

l , l = 0, 1, 2,
k = 1, 2, 3, map the corresponding sheet Rl onto C, and satisfy:

i) ψk
0 ∈ H(C \ (∆1 ∪∆2)), ψk

j ∈ H(C \∆j), j = 1, 2;
ii) ψk

0± = ψk
j∓, j = 1, 2;

iii) ψk
0 = δk,1 +O (1/z), and ψk

l (z) = −izδk,l+1 +O (1) , l = 1, 2, as z →∞;
iv) ψk

l (z) = O(1), at the endpoints.

Observe that ψ1 : R → C is a bounded holomorphic function on R, where
limz→∞ ψ1

0(z) := ψ1
0(∞) = 1. This implies that ψ1 is the constant function

identically equal to 1, i.e. ψ1 ≡ 1. For the cases when k = 2, 3, G. López
Lagomasino et al., [11], proved that up to complex constants c1, c2

ψ2(z) =
c1

ϕ(z)
and ψ3(z) = c2

ϕ1(z)

ϕ(z)
,

where

ϕ(z) =

(
1 + a2

(1− a2)2

)1/3 (
1 + G−1(z)

)
, ϕ1(z) =

1 + G−1(z)

1−G−1(z)
, (8)

G(w) =
H(w)

H(a)
, H(w) = w − (1− a2)2w

(1 + a2)(1− w2)
,

and a is the unique solution on the interval ]0, 1[ of the biquartic equation

a8 + (16λ2 − 8)a6 + 18a4 − 27 = 0 . (9)

In this case, H−1(z) is the solution of the cubic equation

w3 − zw2 +
a4 − 3a2

1 + a2
w + z = 0 . (10)
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Notice that given a value λ > 1, the equation (9) as well as (10) can be solved
by elementary methods.

Let us find the diagonal 3 × 3 matrix function D = diag(D0, D1, D2), such
that N(z) = D−1(∞)K(z)D(z). The conditions (7) imply that the entries
of D must satisfy the following conditions

hj(x)D0±(x) = Dj∓(x) , Dk+(x) = Dk−(x) when x ∈ ◦
∆j , j, k = 1, 2 , k 6= j ,

i.e. Dl, l = 0, 1, 2 are the Szegő-type functions.
Analogously to the function ψi

j, we obtain the following problem for the entries
of D:

i) D0 ∈ H(C \ (∆1 ∪∆2)), Dj ∈ H(C \∆j), j = 1, 2;
ii) hj(x)D0±(x) = Dj∓(x), j = 1, 2;
iii) Dl(z) = O (1) , l = 0, 1, 2, at the endpoints.

In order to find this matrix function D, we consider the function ϕ given
by (8), such that its components ϕl, l = 0, 1, 2, map the corresponding sheet
Rl on C, and satisfy:

i) ϕ0 ∈ H(C \ (∆1 ∪∆2)), ϕj ∈ H(C \∆j), j = 1, 2;
ii) ϕ0± = ϕj∓, j = 1, 2;
iii) ϕ0(z) = O (z) , ϕ1(z) = O (1/z) , and ϕ2(z) = O (1) , as z →∞;
iv) ϕ0ϕ1ϕ2(∞) = 1;
v) ϕl(z) = O(1), at the endpoints.

We denote by Σj = ϕ0−(∆j) ∪ ϕ0+(∆j), for j = 1, 2 the closed curves in
the complex plane, with the clockwise orientation, and we denote by Ωj the
interior set of Σj for j = 0, 1, 2 and by Ω0 the exterior set of Σ1 ∪ Σ2. Taking
into account the behavior of the functions ϕl at infinity, Ωl = ϕl(R), l = 0, 1, 2.
Using (10) we get that ϕ(z) is the solution of the cubic algebraic equation

w3 −
(

1 + a2

(1− a2)2

)1/3

(3 + z)w2 +

(
1 + a2

(1− a2)2

)2/3 (
2z +

3 + a4

1 + a2

)
w − 1 = 0 ,

that is equivalent to

z =
w3 − 3

(
1+a2

(1−a2)2

)1/3
w2 +

(
1+a2

(1−a2)2

)2/3
3+a4

1+a2 w − 1
(

1+a2

(1−a2)2

)1/3
w2 − 2

(
1+a2

(1−a2)2

)2/3
w

=: r(w) .

Using this rational function r we consider the complex function D̃, defined as
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D̃(w) =





D0(r(w)) , w ∈ Ω0

D1(r(w)) , w ∈ Ω1

D2(r(w)) , w ∈ Ω2

.

This function D̃ verifies the multiplicative scalar Riemann-Hilbert problem

hj(r(ξ))D̃(ξ)− = D̃(ξ)+, ξ ∈ Σj, j = 1, 2 .

Taking into account that D0D1D2 is an entire function, and using the behavior
at z = ∞, it follows that D0D1D2 ≡ c, where c is a complex constant. We
can choose a single valued branch of the complex logarithm, and we have the
additive scalar Riemann-Hilbert problem

log hj(r(ξ)) + log D̃(ξ)− = log D̃(ξ)+, ξ ∈ Σj, j = 1, 2 .

Using the Sokhotsky-Plemelj formula we obtain that

log D̃(w) =
1

2πi

∑

j=1,2

∫

Σj

log hj(r(ξ))

ξ − w
dξ ,

and so, the Szegő-type functions, are given explicitly by,

Dl(z) = exp





1

2πi

∑

j=1,2

εj

∫

∆j

log hj(x)

( −ϕ′0+(x)

ϕ0+(x)− ϕl(z)

+
ϕ′0−(x)

ϕ0−(x)− ϕl(z)

)
dx



 , (11)

for l = 0, 1, 2, where εj = 1 if orientation of −ϕ0+(∆j) ∪ ϕ0−(∆j) is in the
clockwise direction, where we are considering that the intervals ∆j, j = 1, 2
are oriented from left to right, and εj = −1 if this not happen.

For this functions Dl the behavior at the end points of the intervals ∆j, for
j = 1, 2 is O(1) if we take into account the quadratic ramifications at these
points suggested by the Riemann surface, R.

Finally the matrix function N has the form

N(z) =




D0(z)
D0(∞)

i D1(z)

D0(∞)
√

(z+λ)(z+1)

i D2(z)

D0(∞)
√

(z−λ)(z−1)

D0(z)ψ2
0(z)

D1(∞)

i D1(z)ψ2
1(z)

D1(∞)
√

(z+λ)(z+1)

i D2(z)ψ2
2(z)

D1(∞)
√

(z−λ)(z−1)

D0(z)ψ3
0(z)

D2(∞)

i D1(z)ψ3
1(z)

D2(∞)
√

(z+λ)(z+1)

i D2(z)ψ3
2(z)

D2(∞)
√

(z−λ)(z−1)




.

Set R(z) = S(z)N−1(z). Since S and N have the same jump across
◦
∆j,

j = 1, 2, we have that R+(x) = R−(x) for x ∈
◦
∆j, j = 1, 2. From the
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definition of R, and the endpoint conditions for N, we can also deduce that
these endpoints are removable singularities. Hence R is an analytic function
across the full intervals ∆1 and ∆2, and it has jumps on the curves γj, j = 1, 2.
Then we have the following RHP for R:

(1) R ∈ H(C \ (γ1 ∪ γ2));
(2) The jump conditions are for j = 1, 2

R+(z) = R−(z) N(z)




1 0 0

i δ1,je−2nφ1(z)
√

(z+λ)(z+1)

h1(z)
1 0

i δ2,je−2nφ2(z)
√

(z−λ)(z−1)

h2(z)
0 1




N−1(z) if z ∈ γj ;

(3) R(z) = I+O (1/z).

Then in each compact K ⊂ C \ (γ1 ∪ γ2), using the same argument as in [10],
we have that R = I + O (e−cn) , with c(K) > 0 uniformly as n → ∞, so it
holds uniformly in compact sets of the indicated region that

Y (z) =




1 0 0

0 enm1 0

0 0 enm2




(
I+O

(
e−cn

))
N(z)

×




en(g1(z)+g2(z)) 0 0

0 e−n(m1+g1(z)) 0

0 0 e−n(m2+g2(z))




,

z ∈ C \ (Γ1 ∪ Γ2), and

Y (z) =




1 0 0

0 enm1 0

0 0 enm2




(
I+O

(
e−cn

))
N(z)

×




1 0 0

−iδ1,je−2nφ1(z)
√

(z+λ)(z+1)

h1(z)
1 0

−iδ2,je−2nφ2(z)
√

(z−λ)(z−1)

h2(z)
0 1







en(g1(z)+g2(z)) 0 0

0 e−n(m1+g1(z)) 0

0 0 e−n(m2+g2(z))




,

z ∈ Γj, where N is given by (3).

Finally, we state the main result of this paper.
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Theorem 1 The type II multiple orthogonal polynomial given by (1), has on
any compact K ⊂ C \ (∆1 ∪ ∆2), uniformly as n → ∞, the following strong
asymptotic behavior,

Qn(z) =
D0(z)

D0(∞)
en(g1(z)+g2(z))

(
1 +O

(
e−cn

))
,

d1Qn1
−
(z) =

D0(z)

D0(∞)
ψ2

0(z)en(m1+g1(z)+g2(z))
(
1 +O

(
e−cn

))
,

d2Qn2
−
(z) =

D0(z)

D0(∞)
ψ3

0(z)en(m2+g1(z)+g2(z))
(
1 +O

(
e−cn

))
,

and also holds on any compact K ⊂ ∆j , j, k = 1, 2 , j 6= k,

Qn(x) =

{
D0+(x)

D0(∞)
engj+(x) +

D0−(x)

D0(∞)
engj−(x)

}
engk(x)

(
1 +O

(
e−cn

))
,

d1Qn1
−
(x) =

{
D0+(x)

D1(∞)
engj+(x)ψ2

0+(x) +
D0−(x)

D1(∞)
engj−(x)ψ2

0−(x)

}

× en(gk(x)+m1)
(
1 +O

(
e−cn

))
,

d2Qn2
−
(x) =

{
D0+(x)

D2(∞)
engj+(x)ψ3

0+(x) +
D0−(x)

D2(∞)
engj−(x)ψ3

0−(x)

}

× en(gk(x)+m2)
(
1 +O

(
e−cn

))
.

We can also state:

Theorem 2 The second kind function given by (2), has on any compact K
of the indicated region, uniformly as n →∞, the following strong asymptotic
behavior,

R1
n(z) =

i D1(z)e−n(m1+g1(z))

D0(∞)
√

(z + λ)(z + 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆1 ,

R2
n(z) =

iD2(z)e−n(m2+g2(z))

D0(∞)
√

(z − λ)(z − 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆2 ,

d1R
1
n1
−
(z) =

iD1(z)ψ2
1(z)e−ng1(z)

D1(∞)
√

(z + λ)(z + 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆1 ,

d1R
2
n1
−
(z) =

iD2(z)ψ2
2(z)e−n(m2−m1+g2(z))

D1(∞)
√

(z − λ)(z − 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆2 ,

d2R
1
n2
−
(z) =

iD1(z)ψ3
1(z)e−n(m1−m2+g1(z))

D2(∞)
√

(z + λ)(z + 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆1 ,

d2R
1
n2
−
(z) =

iD2(z)ψ3
2(z)e−ng2(z)

D2(∞)
√

(z − λ)(z − 1)

(
1 +O

(
e−cn

))
, z ∈ C \∆2 .
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