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Unsteady numerical simulations of axisymmetric reactive jets with one-step Arrhenius kinetics
are used to investigate the problem of deflagration initiation in a premixed fuel-air mixture by
the sudden discharge of a hot jet of its adiabatic reaction products. For the moderately large
values of the jet Reynolds number considered in the computations, chemical reaction is seen to
occur initially in the thin mixing layer that separates the hot products from the cold reactants.
This mixing layer is wrapped around by the starting vortex, thereby enhancing mixing at the
jet leading head, which is followed by an annular mixing layer that trails behind, connecting
the leading vortex with the orifice rim. A successful deflagration is seen to develop for values of
the orifice radius larger than a critical value, ac, of the order of the flame thickness of the planar
deflagration, δL. Introduction of appropriate scales for the different flow variables provides the
dimensionless formulation of the problem, with flame initiation characterized in terms of a
critical Damköhler number ∆c = (ac/δL)2, whose parametric dependence is investigated. The
numerical computations reveal that, while the jet Reynolds number exerts a limited influence
on the criticality conditions, the effect of the reactant diffusivity on ignition is much more
pronounced, with the value of ∆c increasing significantly with increasing Lewis numbers Le.
The reactant diffusivity affects also the way ignition takes place, so that for reactants with
Le >∼ 1 the flame develops as a result of ignition in the annular mixing layer surrounding the
developing jet stem, whereas for highly diffusive reactants with Lewis numbers sufficiently
smaller than unity combustion is initiated in the mixed core formed around the starting
vortex. Steady computations of weakly reactive subcritical jets are also employed to determine
∆c, giving results in close agreement with those of unsteady computations for Le >∼ 1, when
the role of the leading vortex is secondary. The boundary-layer problem that emerges in the
limit of high jet Reynolds numbers is used to ascertain the effect of density variations and
variable transport properties on the predicted critical Damköhler numbers, and to confirm the
small influence of other dimensionless parameters such as the Zeldovich number, provided that
its value is sufficiently large. The analysis provides increased understanding of deflagration
initiation processes, including effects of differential diffusion, and points the need for further
investigations incorporating detailed chemistry models for specific fuel-air mixtures.
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1. Introduction

It is known that the starting jet formed by the sudden discharge of hot reaction
products into a fuel-air mixture can serve to initiate the combustion process [1]. The
problem has important implications in connection with the transport, handling,
and storage of fuels, particularly hydrogen, and may also find application in engine
ignition systems [2].

The starting jet formed by the sudden discharge of hot products into a quiescent
atmosphere through a circular orifice in a plane wall shows a characteristic structure
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including a leading vortex ring followed by a slender jet stem. The associated jet
dynamics has been studied in detail for constant density configurations [3, 4], and
also for low-Mach-number gaseous jets with variable temperature [5]. The vortex
sheet shed as the boundary layer separates at the orifice rim rolls up spirally to
form a toroidal vortex that travels downstream, wrapping around the fluid surface
separating the hot jet from the outer cold reactants. As a result of the roll-up, a
mixed core of reactants and combustion products is seen to form at the jet head,
providing a precursor ignition kernel where chemical reactions are enabled by the
relatively high temperature and radical content. Mixing also occurs in the annular
mixing layer surrounding the jet stem that trails behind the leading vortex. This
mixing layer may be strained due to the appearance of secondary vortices when
the jet Reynolds number is sufficiently large.

The combustion mode initiated by the hot jet depends fundamentally on the
value of the discharge orifice radius a, to be compared with the characteristic scales
of premixed combustion, with relevant lengths being the characteristic detonation
cell size δd and the characteristic deflagration thickness

δL =
λb/cp
ρuUL

, (1)

defined from the corresponding laminar burning rate ρuUL, with ρu and UL being
the values of unburnt gas density and freely-propagating planar-flame velocity and
λb and cp representing the thermal conductivity and specific heat at constant pres-
sure of the burnt mixture. For given conditions of pressure, composition and initial
temperature, there exists a critical orifice radius ac ∼ δL, with δL ∼ 3 × 10−4 m
at normal atmospheric conditions, below which ignition is precluded, whereas for
larger values of a > ac a deflagration forms following the jet discharge. The initia-
tion of a detonation requires much larger values of a, on the order of δd ∼ 10−1 m
[6].

The present paper deals with hot jets of transverse size much smaller than δd, of
interest for pulsed combustion jet systems [2]. This problem is also relevant in con-
nection with the design of flameproof enclosures of electrical equipment [7], whose
orifices and gaps must be sufficiently small to ensure that, if a reactive mixture
enters the enclosure and becomes ignited, the jet of combustion products escaping
outside is unable to ignite the surrounding gas mixture. Typical hole/gap sizes for
these systems lie in the millimeter to submillimeter range, so that a deflagration is
seen to form following a successful ignition event. Of utmost importance for safety
applications is the critical size below which combustion transmission is precluded.
In the case of axysimmetric jets, values of critical orifice radii for propane/air
mixtures, measured in a specific experimental facility, are available [8]. Also, the
problem has been studied recently for hydrogen-air mixtures by a combination of
experimental and numerical methods [9], providing increased understanding of the
influence of the jet temperature and mixing process on the ignition occurrence. A
related problem also addressed in the past [10, 11] is that of jet diffusion flames
formed by the sudden discharge of a fuel jet into an oxidizer atmosphere.

As in previous studies [8, 9], the objective of the present work is to contribute
understanding to the problem of hot-jet initiation of a deflagration. To that end,
numerical integrations of the conservation equations are performed to describe the
combustion response for different values of the flow parameters and their influence
on the value of the critical orifice radius ac. The jet scales are used in formulating
the transient jet discharge in dimensionless form, yielding a problem that is in-
tegrated numerically to determine the critical Damköhler number (ac/δL)2, above
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which a deflagration forms, as a function of a reduced set of governing parameters.
The results are very dependent on the diffusivity of the deficient reactant through
its associated Lewis number, whereas dependences on additional parameters in-
cluding the jet Reynolds number are found to be much weaker.

For subcritical cases, a weakly-reactive jet flow is formed for large times, with
mixing of the hot products with the ambient gas and chemical reaction occuring
without deflagration formation. The resulting flow is slender and steady, and can
be therefore described with the boundary-layer approximation. The integration of
the resulting parabolic problem, independent of the jet Reynolds number, provides
a simpler alternative way to compute critical conditions for ignition. When the
reactant diffusivity is sufficiently small, the results obtained are in close agreement
with those of transient jet computations, but for larger reactant diffusivities, in-
cluding in particular that of lean hydrogen mixtures, significant differences appear.
Reasons for these differences are to be discussed below.

2. Formulation

Consider a jet of hot combustion products discharging at the initial instant with
uniform velocity Uj through an orifice of radius a into an stagnant unburnt mixture
at temperature T ′ = Tu and density ρ′ = ρu, containing a mass fraction Y = Yu
of reactant. A single irreversible reaction R → P will be assumed to describe the
conversion of reactant into products, with q denoting the amount of heat released
per unit mass of reactant consumed. Correspondingly, Tb = Tu + qYu/cp is the
adiabatic flame temperature. In typical cases, the resulting temperature increment
α = (Tb − Tu)/Tb takes on values in the range 0.7 ≤ α ≤ 0.85.

The rate w of reactant mass consumed per unit volume and unit time will be
assumed to be given by the Arrhenius law w = ρY B exp[−E/(RoT )] with B being
a constant frequency factor and E and Ro denoting the activation energy and the
universal gas constant. The value of the laminar burning rate obtained at leading
order in the asymptotic limit of large activation energy [1],

ρuUL =

{
2LeλbρbB exp[−E/(RoTb)]

cpβ2

}1/2

, (2)

will be used below in formulating the problem in terms of the Damköhler number

∆ =

(
a

δL

)2

, (3)

with the flame thickness δL defined for a given reactive mixture in (1). Here, ρb is
the burnt gas density, β = (Tb − Tu)E/(RoT 2

b ) is the Zeldovich number, and Le is
the reactant Lewis number. A successful deflagration initiation will be seen to occur
for values of a larger than a critical value ac of the order of the flame thickness,
i.e., values of the Damköhler number larger than a critical value ∆c = (ac/δL)2 of
order unity.

Compressibility effects are neglected in the analysis, as it is appropriate when
the overpressure in the neighboring compartment containing the products is small
compared with the existing ambient pressure, giving values of Uj much smaller
than the velocity of sound. The associated jet Reynolds number

Re =
ρbUja

µb
, (4)
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where µb is the viscosity of the burnt gases, will be assumed to be moderately large.
Note that, since Re ∼ (Uj/UL)(a/δL), with a ∼ δL being the distinguished limit for
deflagration initiation, this last assumption implies jet velocities Uj ∼ Re UL � UL.
Axial symmetry with no azimuthal motion will be assumed in the computations,
an approach that precludes the description of the helical modes often observed at
sufficiently large values of Re [12].

To write the problem in dimensionless form, the initial jet velocity Uj is used
as scale for the axial and radial velocity components, u and v, the jet radius a is
used to scale the axial and radial coordinates x and r, and the characteristic time
a/Uj is used to scale the time t. The pressure differences from the far-field ambient
value, p′ − p′a, are scaled with the dynamic pressure ρbU

2
j to give the variable

p = (p′−p′a)/(ρbU2
j ). Normalized forms ϕ = Y/Yu and Θ = (T ′−Tu)/(Tb−Tu) are

introduced for the reactant mass fraction and the temperature. In terms of these
dimensionless variables, the conservation equations for the transient axisymmetric
jet reduce to

∂u

∂x
+

1

r

∂

∂r
(rv) = 0 (5)

Du

Dt
= −∂p

∂x
+

1

Re

[
1

r

∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂x2

]
(6)

Dv

Dt
= −∂p

∂r
+

1

Re

[
∂

∂r

(
1

r

∂

∂r
(rv)

)
+
∂2v

∂x2

]
(7)

Re
Dϕ

Dt
=

1

Le

1

Pr

[
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂x2

]
− Ω (8)

Re
DΘ

Dt
=

1

Pr

[
1

r

∂

∂r

(
r
∂Θ

∂r

)
+
∂2Θ

∂x2

]
+ Ω (9)

where

Ω =
∆β2

2Pr Le
ϕ exp

[
− β(1−Θ)

1− α(1−Θ)

]
(10)

and

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂r
(11)

represent the dimensionless reaction rate and material derivative, respectively, and
Pr is the constant Prandtl number. As can be seen, variations of density and
transport properties arising from temperature and composition changes have been
neglected in writing (5)–(9). Although this simplifying assumption introduces a cer-
tain degree of inaccuracy in quantitative predictions of ∆c, the associated errors
are not expected to be very large. This shall be confirmed below in the frame-
work of the boundary-layer integrations of section 4.2, which include a number of
computations with variable density and variable transport properties.

The problem is to be integrated for t > 0 with boundary conditions

x = 0 :

{
r ≤ 1 : u = 1, v = ϕ = Θ− 1 = 0
r > 1 : u = v = ∂ϕ/∂x = ∂Θ/∂x = 0

(12)
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corresponding to a jet of combustion products issuing at temperature T = Tb from
an orifice in a nonpermeable adiabatic wall. For x > 0, the symmetry condition

r = 0 : ∂u/∂r = v = ∂ϕ/∂r = ∂Θ/∂r = 0 (13)

is imposed at the axis, whereas the boundary conditions as r2 + x2 → ∞ include
the ambient values ϕ−1 = Θ = 0, along with an outflow condition for the velocity
and pressure at the external boundaries of the domain, which was selected to be
a cylindrical surface of radius rmax � 1 extending downstream to xmax � 1. The
values rmax = 200 and xmax = 500 were employed in most computations, except
for some slowly developing ignition events, such as those shown below for the less
diffusive reactant with Le = 2, for which larger values rmax = 300 and xmax = 800
were required.

Initial values u = v = Θ = 0 and ϕ = 1 are used for the temperature and
reactant mass fraction at t = 0. Note that, for the incompressible flow assumed
here, the outer stagnant fluid is impulsively set into motion at the initial instant
to adjust to the boundary condition for the velocity imposed at the orifice, so that
the velocity distribution for t � 1 corresponds to the potential flow generated by
a uniform distribution of volumetric sources located at the orifice [5].

3. Results of numerical integrations

Integration of (5)–(9) with the given initial and boundary conditions provides the
evolution of the flow for a given set of values of the flow parameters, namely
Re, Le, ∆, Pr, α, and β. The conservation equations were discretized following a
cell-centered finite-volume procedure. A second-order upwind scheme was used to
evaluate the face values of the variables for the convective terms, while second-order
central differences were used for the diffusive terms. The pressure-velocity coupling
was achieved with an algorithm of the SIMPLE family. The time discretization
was implicit and first-order accurate. The computational domain was discretized
in a block-structured grid. As a representative example, for the equidiffusional case
Le = 1 with Re = 100 the initial grid consisted of a square grid with δx = δr =
0.5 covering the whole domain plus a very refined grid in a region of dimensions
(0 ≤ x ≤ 1.5, 0 ≤ r ≤ 1.25) around the jet exit, with minimum spacing δx = δr =
7.8125× 10−3. This original grid was dynamically adapted every 10 time steps to
extend the refined grid up to the region where the gradient of Θ reached a threshold
value of 0.001. The number of computational cells ranged from 32,042 for the
original grid to more than 500,000 for the more developed jets. The computational
time step was dynamically determined based on the estimation of the truncation
error associated with the time integration scheme, resulting in time steps of the
order of δt ∼ 10−3. The selected grid size and time step was varied in a number of
runs for Le = 1 with Re = 100 to test the results to be independent of the specific
values selected.

The values Pr = 0.7, α = 0.8, and β = 10 were used for the numerical
computations as representative of typical combustion conditions in realistic fuel-
air mixtures. Moderately large values of the jet Reynolds number in the range
50 ≤ Re ≤ 400 were used, while the effect of the reactant diffusivity was inves-
tigated by considering Lewis numbers in the range 0.3 ≤ Le ≤ 2, with the lower
limit being selected as representative of combustion in lean H2-air mixtures.
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3.1 Subcritical and supercritical events

For a fixed pair of values of Re and Le, a critical value of the Damköhler number
∆c was found to characterize ignition, so that for values of ∆ above ∆c the jet
discharge results in the formation of a deflagration that propagates from the jet into
the surrounding ambient, consuming the available reactant, whereas for ∆ < ∆c

the deflagration does not form, leading instead for t � 1 to a weakly reactive
steady solution in which the chemical reaction is confined to the slender jet, but
does not propagate to the surrounding cold reactant.

The criticality condition was determined by incrementally increasing the
Damköhler number until a successful deflagration emerges, with the value of ∆c

defined as the largest value of ∆ for which ignition is not observed. For instance, in
the particular case Re = 100 and Le = 1 the critical Damköhler number was found
to be ∆c = 0.76. The flow evolution in this marginally subcritical case and also in
the accompanying marginally supercritical case ∆ = 0.77 is illustrated in Fig. 1,
which shows snapshots of the temperature field at different instants of time. Note
that, because of the condition Le = 1 the isocontours of temperature and those of
reactant mass fraction are related according to Θ = 1− ϕ. Correspondingly, peak
temperatures cannot exceed in this case the adiabatic flame value Θ = 1.

For ∆ = 0.76 the products in the discharging jet mix with the outer fluid without
significant chemical reaction, yielding for large times a slender weakly-reactive flow.
For ∆ = 0.77, however, a deflagration emerges. Appreciable chemical reaction is
observed first in the jet stem far behind the leading vortex ring, as is clearly
noticeable in the plot for t = 800. The reactive front propagates downstream
assisted by convection to reach the jet head at t ' 1000. These results suggest
that the role of the leading vortex on ignition is only secondary with Le = 1, a
finding further discussed below.

To understand the subsequent evolution of the flow, it is of interest to anticipate
that the propagation velocity of the reactive front is of the order of the propagation
velocity for the steady planar deflagration, UL, whereas the axial velocity in the jet
is of the order of its value at the exit, Uj . According to (3), the relationship

UL

Uj
=

∆1/2

PrRe
(14)

holds, indicating that, for the values ∆ ∼ O(1) that characterize ignition, the con-
dition UL ∼ Re−1Uj � Uj applies. As a result, the reactive front cannot propagate
ahead of the jet leading edge, as can be seen in the figure for t > 1000, but travels
instead with the leading vortex once it reaches it, which occurs in this case before
significant radial flame progression is observed.

On the other hand, the radial propagation of the flame into the fresh mixture
surrounding the jet stem depends on the competition of the flame propagation
velocity with the radial entrainment velocity induced by the jet as it develops,
of order Uj/Re ∼ UL, whose value decreases inversely proportional to the radial
distance. Therefore, the flame progresses radially into the surrounding atmosphere
at an increasing rate. Sufficiently far from the jet axis, the axial flow velocity
found is so small that the flame can propagate upstream towards the bounding
wall located at x = 0, consuming eventually all of the available reactant. These
late stages of flame evolution are exhibited, for instance, in the computations shown
in the lower plots of Fig. 2, to be discussed below.
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3.2 Effects of reactant diffusivity

The presence of the leading vortex continues being inconsequential for deflagration
initiation when a less diffusive reactant with Le > 1 is considered. In this case,
ignition still occurs in the jet stem, at a given distance upstream from the leading
vortex that increases for larger values of Le. This is illustrated in Fig. 2 for Le = 2.
To facilitate the comparison with the results of Fig. 1, the jet Reynolds number
is also Re = 100 and the conditions selected are marginally supercritical, which
corresponds in this case to a Damköhler number ∆ = 7.4 (∆c = 7.3). As can
be seen, a thin reactive front progresses radially from the ignition point into the
cold ambient mixture, eventually propagating upstream once it reaches the slowly
moving outer fluid located far from the axis. Less favourable conditions are found
in this case for axial flame propagation inside the jet towards the jet head, because
due to the reduced reactant diffusivity the reactant mixture found near the leading
vortex is leaner. Consequently, as compared to the case Le = 1, the flame for
Le = 2 reaches the leading vortex at a relatively late stage.

The sequence of events leading to ignition is fundamentally different for highly
diffusive reactants with Le� 1, as illustrated in Fig. 3 for Le = 0.3, Re = 100, and
∆ = 0.035. As in Fig. 2, the case considered corresponds to marginally supercritical
conditions (∆c = 0.034). As can be seen, ignition occurs in this case in the well-
mixed region found at the jet head near the axis. Combustion spreads from the
ignition point in the form of an annular edge flame that propagates for 50 < t < 70
around the leading vortex under the influence of the induced vortical motion. The
resulting edge flame, which for t > 70 stands off at an almost constant radial
distance from the axis, serves as origin for a liftoff slender cylindrical flame that
develops downstream, which, at later times, is seen to propagate slowly into the
surrounding reactant mixture.

In view of the critical values of the Damköhler number found for Re = 100 as
the Lewis number increases, i.e., ∆c = (0.034, 0.76, 7.3) for Le = (0.3, 1.0, 2.0), it
is clear that the reactant diffusivity influences significantly the critical conditions
necessary for ignition. Differential diffusion effects greatly facilitate flame initiation
for Le < 1, as can be seen in the radial profiles of temperature and reactant
shown in Fig. 3. The reactant diffusses into the hot jet before significant heat
loss to the cold surrounding ambient reduces its temperature significantly, thereby
producing a preheated reactant mixture. These favourable combustion conditions
lead to superadiabatic temperatures upon ignition, with peak values as large as
Θ = 2.05 for Le = 0.3. Because of the relatively large temperature sensitivity of
the chemical reaction the resulting deflagrations are initially much more robust
than those found in the equidiffusional case Le = 1, and successful initiation is
possible with a much smaller jet radius (i.e., much smaller values of ∆).

The opposite behavior is found for Le > 1, for which the peak temperature
reached after ignition lies initially below the adiabatic flame temperature Θ = 1,
as can be observed in the radial temperature profiles of Fig. 2. Heat loss towards
the relatively cold fluid found near the axis hinders flame propagation into the
outer reactant mixture. This heat-loss effect is more pronounced for smaller values
of the jet radius, so that successful flame initiation requires for Le > 1 larger values
of a, thereby resulting in larger values of ∆c.

3.3 Influence of the Reynolds number

The effect of the Reynolds number on flame initiation is illustrated in Fig. 4, where
the results shown for Re = 50 and Re = 400 are to be compared with those given
previously in Fig. 3 for Re = 100, the Lewis number in all cases being Le = 0.3. In
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principle, the chemical time is not directly affected by changes in the jet Reynolds
number. However, since the formulation employs the jet velocity and the jet radius
as scales, changes in Re modify the time scale for the evolution of the temperature
and mass fraction distributions as well as the resulting flame propagation velocity,
as is apparent in the factor Re appearing in the conservation equations (8) and (9),
and also in the denominator of (14). As a result, ignition is seen to occur at later
times when the Reynolds number is increased, and the emerging front propagates
more slowly.

The qualitative differences that arise for increasing values of the Reynolds number
are illustrated in Fig. 4, where a long cylindrical flame of almost constant radius
is seen to develop for Re = 400, because the radial displacement of the resulting
flame is very small, while for Re = 50 the flame is seen to advance rapidly into
the cold reactant mixture, moving upstream towards the orifice wall. It is worth
noting that in this latter case the flame propagates initially from the ignition core
with the aid of the vortical motion associated with the starting vortex, giving an
evolution qualitatively similar to that found for Re = 100. The specific manner in
which combustion spreads from the mixed core in this case Le = 0.3 is however
qualitatively different for Re = 400. The flame is also convected downstream by
the vortical motion and is initially wrapped in the leading vortex, but the resulting
annular edge flame fails to propagate along the strained mixing layer located at the
leading edge of the starting vortex and does not contribute to the establishment of
a cylindrical flame. The standoff edge flame that appears for large times at x ' 110
develops instead from the core ignition region that lags behind the vortex near the
axis.

Although ignition failures are not shown in Figs. 3 and 4, it is of interest to
mention that for Re = 50 and Re = 100 the marginally subcritical cases, arising
for ∆c = 0.032 and ∆c = 0.034, exhibit very limited chemical activity during the
jet development period, while in the case ∆c = 0.038 for Re = 400 the ignition
core and the incipient flame are clearly apparent, giving up to t = 200 temperature
contours indistinguishable from those shown in the right-hand-side plots of Fig. 4.
At later times, however, an annular edge flame stabilized away from the axis is
not observed. Instead, the reactive pocket remains trapped at the jet head and is
convected downstream, causing initiation to fail.

The numerical results indicate, however, that all these subtle differences between
the different ignition histories appearing for different Re seem to have only a minor
effect on the resulting value of ∆c. As a result, the Damköhler number ∆c is an
appropriate parameter to characterize flame initiation in high Reynolds number
jets, in that its value is almost independent of Re. In particular, for Le = 0.3, the
numerical computations yield ∆c = (0.032, 0.034, 0.038) for Re = (50, 100, 400),
respectively. This motivates below consideration of the boundary-layer flow arising
for Re→∞.

It is worth noting that for less diffusive reactants with Le >∼ 1 the influence of
Re on the solution is similar to that discussed above for Le = 0.3, in that dimen-
sionless ignition times also increase with increasing Re and critical values ∆c are
only weakly affected by changes of Re. For these less diffusive fuels, ignition devel-
ops always from the jet stem, and only minor qualitative differences are observed
between ignition events for different Re.
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4. Initiation criterion based on weakly-reactive steady solutions

4.1 Steady computations

As seen above in Fig. 1, in subcritical configurations with ∆ < ∆c the weakly-
reactive jet that develops for t � 1 is steady and slender. The resulting solution
can be described by integrating the original conservation equations (5)–(9) with
the time derivative neglected in (11). A critical Damköhler number (∆c)S was de-
termined as part of the steady computations, so that convergence of the integration
was found to be possible only for ∆ ≤ (∆c)S, whereas for ∆ > (∆c)S a converged
solution satisfying the prescribed boundary conditions could not be attained.

The resulting critical Damköhler numbers determined for Le = 1 and Le = 2 with
this alternative numerical strategy are exactly equal to those found by integration
of the transient jet, i.e., (∆c)S = ∆c = (0.76, 7.3) for Le = (1, 2) and Re = 100.
Full steady computations may therefore be used to estimate the critical Damköhler
for reactants with Le >∼ 1. With Le� 1, however, ignition spreads from the mixed
core at the transient jet head, not described in the steady computations, which
therefore yield significant overpredictions for (∆c)S > ∆c. For instance, for Le = 0.3
the steady computations give (∆c)S = (0.44, 0.047, 0.045) for Re = (50, 100, 400),
to be compared with the transient values ∆c = (0.033, 0.034, 0.038).

4.2 Boundary-layer steady computations

4.2.1 The boundary-layer problem

In the steady configuration, the hot products mix with the surrounding cold re-
actant in a long development region of characteristic length x ∼ Re across which
the radial velocity and the transverse pressure differences take on small values of
order v ∼ Re−1 and p ∼ Re−2. The conservation equations therefore reduce, with
relative errors of order Re−2, to their boundary-layer form, with axial derivatives
neglected in computing the molecular transport terms and with pressure differences
neglected in the momentum equation. The solution becomes independent of Re by
introduction of the rescaled variables x̃ = x/Re and ṽ = Re v. Then, the problem
reduces to that of integrating the parabolic equations

∂

∂x̃
(ρu) +

1

r

∂

∂r
(ρrṽ) = 0 (15)

u
∂u

∂x̃
+ ṽ

∂u

∂r
=

1

ρ r

∂

∂r

(
rµ
∂u

∂r

)
(16)

u
∂ϕ

∂x̃
+ ṽ

∂ϕ

∂r
=

1

LePr

1

ρ r

∂

∂r

(
rµ
∂ϕ

∂r

)
− Ω (17)

u
∂Θ

∂x̃
+ ṽ

∂Θ

∂r
=

1

Pr

1

ρ r

∂

∂r

(
rµ
∂Θ

∂r

)
+ Ω (18)

with initial conditions

x̃ = 0 :

{
r ≤ 1 : u− 1 = ϕ = Θ− 1 = 0
r > 1 : u = ϕ− 1 = Θ = 0

(19)
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and boundary conditions

x̃ > 0 :

{
r →∞ : u = ϕ− 1 = Θ = 0
r = 0 : ∂u/∂r = ∂ϕ/∂r = ∂Θ/∂r = ṽ = 0.

(20)

As can be seen, for increased generality, the boundary-layer problem has been
formulated by accounting for variable density ρ = ρ′/ρb and variable transport
coefficients, while maintaining the assumption of constant Prandtl and Lewis num-
bers, so that a single function µ = µ′/µb = λ′/λb = (ρ′D′)/(ρbDb) represents the
variation the viscosity µ′, thermal conductivity λ′, and reactant diffusivity D′ from
their values in the burnt gas, denoted by the subscript b.

The problem (15)–(20) was integrated with a Crank-Nicholson scheme, using
centered finite differences in the radial direction to determine the critical value of
the Damköhler number corresponding to the boundary-layer approximation, (∆c)BL

for Pr = 0.7 and different values of Le, α, and β. The jet was verified to develop
correctly, in that sufficiently far downstream the velocity was seen to approach the
self-similar Schlichting solution [14] with the correct value of the virtual origin [15].

4.2.2 Constant property computations

For comparison with the results of the full numerical computations, integrations
with constant density and constant transport coefficients, that is, values of ρ = 1
and µ = 1 in (15)–(18), were carried out first. Sample solutions obtained for Le =
1.0, α = 0.8 and β = 10 are given in Fig. 5, which shows isocontours of ϕ and
radial temperature profiles for subcritical and supercritical values of ∆. As can be
seen, for ∆ = 0.85, as the jet develops the incipient reaction remains confined to
the near axis region, giving rise to a slender solution with a decaying temperature
along the axis. The plots for ∆ = 0.86, on the other hand, clearly show how
the chemical reaction that begins at the mixing layer separating the jet from the
ambient progresses successfully to form a flame that propagates away consuming
the reactant surrounding the jet. Therefore, the boundary-layer solution provides
the critical Damköhler number for ignition, as the largest value of ∆ for which a
weakly-reactive solution emerges. Note however that, for supercritical cases with
∆ > (∆c)BL, the boundary-layer solution obtained becomes meaningless, in that as
seen before in the transient computations the flame moving into the quasi-stagnant
surroundings would eventually propagate upstream, consuming all of the reactant
available and invalidating the ambient boundary conditions stated in (19) and (20).

The boundary-layer computations are the asymptotic form of the complete
steady problem in the limit Re → ∞. Therefore, the critical Damköhler num-
ber obtained from the steady computations for increasing values of Re naturally
approaches asymptotically that determined from the boundary-layer parabolic
problem. For instance, for Le = 1, the steady computations give (∆c)S =
(0.76, 0.79, 0.81, 0.82) for Re = (100, 200, 300, 400) whereas (∆c)BL = 0.85, while
for Le = 2, one obtains (∆c)S = (7.3, 8.1, 8.6) for Re = (100, 200, 300) and
(∆c)BL = 9.3.

The boundary-layer formulation was also used to verify that, for the relatively
large activation energies typical of combustion, the dependence of the critical
Damköhler number on the specific values of β and α is fairly weak. For instance,
for the case β = 10 and Le = 1.0 considered in Fig. 5, the value of (∆c)BL increases
from (∆c)BL = 0.85 to (∆c)BL = 0.89 when α = 0.8 is replaced by α = 0.9 in the
integrations. Similarly, keeping the value α = 0.8 but modifying β also results in
small changes in the critical conditions, which become for instance (∆c)BL = 0.82
and (∆c)BL = 0.87 for β = 12 and β = 8, respectively. Results of computations of
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critical Damköhler numbers obtained with the boundary-layer approximation for
β = 10 and α = 0.8 are shown in Fig. 6 along with those determined previously
with the complete transient and steady Navier-Stokes equations.

4.2.3 Variable property computations

To quantify the impact of the constant property assumption on the computed
critical Damköhler numbers, variations of density and transport properties with the
temperature T = T ′/Tb = 1 − α(1 − Θ) were also incorporated in the boundary-
layer computations. This was achieved by using the equation of state written in the
low-Mach-number approximation with constant molecular weight ρ = 1/T to com-
pute the density and the presumed power-law µ = T σ to calculate the temperature
variation of the transport coefficients, with σ = 0.7 used in the integrations. The
results were both qualitatively and quantitatively similar to those obtained with
ρ = µ = 1. In particular, differences in (∆c)BL were found to be always relatively
small. In fact, for small values of the fuel diffusivity, these differences were entirely
negligible, so that, for instance, the same value (∆c)BL = 0.043 was obtained for
Le = 0.3 regardless of the density and transport description employed. Differences
were larger for larger values of Le, with the variable property computations giving
for example (∆c)BL = 0.74 and (∆c)BL = 7.39 for Le = 1 and Le = 2, respectively,
to be compared with the values (∆c)BL = 0.85 and (∆c)BL = 9.37 obtained with
ρ = µ = 1. Although these quantitative findings pertain only to the boundary-
layer computations, they seem to indicate that the values of ∆c determined from
computations of transient jet flows including variations of density and transport
coefficients will not be far from those determined above with the constant-density
approximation, with larger departures most likely encountered for less diffusive fu-
els. Clearly, more computational work is required to further ascertain these detailed
quantitative aspects.

4.2.4 Connection with the hot-spot ignition problem

As a final remark, it is worth noting that by exchanging ϕ and Θ in the initial and
boundary conditions, the formulation given in (15)–(20) serves also to investigate
ignition of a premixed jet in a hot inert environment, a problem addressed in the
past in the planar case [13]. A connection between the problem of deflagration
initiation by a hot jet and that of hot-spot ignition can also be inferred in view
of the above boundary-layer formulation. To that end, consider momentarily how
the problem formulation simplifies when the stagnant ambient is replaced with a
coflow with velocity equal to that of the jet. In the boundary-layer approximation,
the solution for the velocity reduces in that case to u = 1. If constant density
is further assumed, then v = 0 and introduction of the time-like variable τ =
x̃/(LePr) into (17) and (18) reduces the problem to that of integrating the time
dependent reaction-diffusion equations for ϕ and Θ with initial conditions at τ = 0
given by Θ − 1 = ϕ = 0 for r ≤ 1 and Θ = ϕ − 1 = 0 for r > 1 and with
boundary conditions for τ > 0 given by ∂Θ/∂r = ∂ϕ/∂r = 0 at r = 0 and
Θ = ϕ− 1 = 0 as r →∞. Clearly, the resulting simplified formulation corresponds
to that required to describe ignition of a reactive mixture by a cylindrical hot
pocket of reaction products, so that the classical Spalding criterion for minimum
ignition energy, according to which ignition is achieved when the size of the hot
spot formed is comparable to or larger than the deflagration thickness, translates
in this case of hot-jet ignition in the criticality condition a >∼ δL, associated with
critical Damköhler numbers of order unity.
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5. Conclusions

The problem of deflagration initiation in a premixed fuel-air mixture by the sudden
discharge of a hot jet of its adiabatic reaction products is studied numerically. The
simulations are used to investigate the parametric dependence of the critical value
of the Damköhler number (ac/δL)2. It is found in particular that smaller values of
the reactant Lewis number facilitate deflagration development because rapid reac-
tant diffusion into the hot jet promotes superadiabatic temperatures upon ignition,
thereby giving rise to robust deflagrations whose outward propagation is assisted
in the first stages by the heat conducted from the products side. The reactant
diffusivity also influences the manner in which ignition takes place. For reactants
with molecular diffusivities on the order of or smaller than the thermal diffusivity,
the flame develops as a result of ignition in the trailing mixing layer behind the
leading vortex. Since unsteady mixing in the jet head plays in this case a minor
role, the critical value of the orifice radius can be computed precisely by consider-
ation of the slender weakly-reactive jet that develops for large times in subcritical
cases, with the value of ac determined from straightforward marching integration
of the boundary-layer form of the steady conservation equations. By way of con-
trast, for highly diffusive reactants with small Lewis numbers, ignition is found to
occur in the well-mixed region at the jet head, in agreement with previous experi-
mental observations of hot-jet flame initiation events in hydrogen-air mixtures [9].
Combustion spreads from an ignition point near the axis to the leading edge of
the starting vortex, where for sufficiently small values of the Reynolds number the
reacting front propagates radially outward in the form of an annular edge flame
under the influence of the induced vortex motion to occupy an equilibrium posi-
tion at a given radial distance from the axis. This standoff edge flame serves as
origin for a liftoff slender cylindrical flame that develops downstream, which, at
later times, is seen to propagate slowly into the surrounding reactant. This mode
of ignition changes qualitatively for sufficiently large Reynolds number, when the
premixed flame is not able to survive the roll-up process and the standoff edge
flame emerges instead from the core ignition region that lags behind the vortex
near the axis. Because of the occurrence of ignition within the transient starting
vortex, in this case of small Lewis numbers the boundary-layer computations based
on the slender weakly-reactive solution tend to overpredict the critical value ac by
a significant amount, so that consideration of the full transient computation is
needed to provide accurate results.

The value ∆c can be used to compute the corresponding value of the critical
orifice radius,

ac =
λb/cp
ρuUL

∆1/2
c , (21)

above which a deflagration forms as a result of the hot-jet discharge, a quantity
of relevance in connection with safety and technological applications. The solution
depends on the reactant Lewis number, with a dependence displayed in Fig. 6,
and also on the composition, initial temperature and pressure of the specific fuel-
oxidizer mixture considered, which enter in the solution through the value of the
burning rate ρuUL. With the chemistry model employed in the analysis, the results
can be anticipated to be applicable in general to fuels whose overall combustion
rate is characterized by a large temperature sensitivity. Chain-branching/chain-
terminating effects require however consideration of a more ellaborate combustion
model. For instance, the reduced mechanism developed recently for describing both
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high-temperature autoignition and deflagration propagation in hydrogen-air mix-
tures [16] could be used in hydrogen-deflagration studies. For light fuels such as
hydrogen, thermal diffusion, which was not considered above, is also anticipated
to play a nonnegligible role, promoting superadiabatic combustion through fuel
diffusion into the hot jet and therefore facilitating ignition.
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Figure 1. Isocontours of Θ = (0.1/0.9/0.1) obtained for Re = 100, Le = 1.0, α = 0.8, and β = 10 with
∆ = 0.76 (left plot) and ∆ = 0.77 (right plot).
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Figure 2. Isocontours and radial profiles of Θ = (0.1/0.9/0.1) (left plot) and ϕ = (0.1/0.9/0.1) (right
plot) obtained for Re = 100, Le = 2.0, α = 0.8, and β = 10 with ∆ = 7.4.
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Figure 3. Isocontours and radial profiles of Θ = (0.2/1.8/0.2) (left plot) and ϕ = (0.1/0.9/0.1) (right
plot) obtained for Re = 100, Le = 0.3, α = 0.8, and β = 10 with ∆ = 0.035.
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Figure 5. Isocontours of ϕ = (0.1/0.9/0.1) (upper half of the plots) and the accompanying Θ profiles
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