
© Ohmsha and Springer Japan 2013

This is a postprint version of the following published document:

Sánchez, L.M., Fernández, J., Sotomayor, R., Escolar, S., García, J.D. (2013). A Comparative Study and
Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures. New Generation
Computing, Volume 31, Issue 3, pp 139–161

DOI: 10.1007/s00354-013-0301-5

https://doi.org/10.1007/s00354-013-0301-5

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures1

A Comparative Study and Evaluation of
Parallel Programming Models for Shared-
Memory Parallel Architectures

Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad
Escolar and J. Daniel Garcia

Computer Architecture and Technology Area.
UNIVERSIDAD CARLOS III DE MADRID.
Madrid, Colmenarejo 28270 SPAIN

Correspondence author: lmsan@arcos.inf.uc3m.es

Received 1 November 2012 ∗1

Abstract Nowadays, shared-memory parallel architectures have evol-

ved and new programming frameworks have appeared that exploit these

architectures: OpenMP, TBB, Cilk Plus, ArBB and OpenCL. This arti-

cle focuses on the most extended of these frameworks in commercial and

scientific areas. This paper shows a comparative study of these frame-

works and an evaluation. The study covers several capacities, such as

task deployment, scheduling techniques, or programming language abs-

tractions. The evaluation measures three dimensions: code development

complexity, performance and efficiency, measure as speedup per watt.

For this evaluation, several parallel benchmarks have been implemented

with each framework. These benchmarks are created to cover certain sce-

narios, like regular memory access or irregular computation. The conclu-

sions show some highlights, like the fact that some frameworks (OpenMP,

Cilk Plus) are better for transforming quickly a sequential code, others

∗1 The final version of this paper is available at link.springer.com. Cite as: A Compara-
tive Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel
Architectures. Luis Miguel Snchez, Rafael Sotomayor, J. Daniel Garca, Javier Fernndez,
Soledad Escolar. New Generation Computing, 31(3):139-161. 07/2013. ISSN: 0288-3635.
DOI:10.1007/s00354-013-0301-5

2Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

(TBB) have a small footprint which is ideal for small problems, and oth-

ers (OpenCL) are suited for heterogeneous architectures but they require

a very complex development process. The conclusions also show that

the vectorization support is more critical than multitasking to achieve

efficiency for those problems where this approach fits.

Keywords Parallel programming, vector instructions, multithreading,

performance analysis, efficiency analysis, power consumption

§1 Introduction
Currently, commercial off-the-shelf computers include several hardware

features that impact on performance of user applications making use of para-

llel programming paradigms. Those characteristics include features to exploit

applications parallelism. They can be classified as: Instruction-Level Parallel-

ism (ILP), Thread-Level Parallelism (TLP) (e.g. hyper-threading, multicore)

and Data-Level Parallelism (DLP) (e.g. CPU vector instructions and other

SIMD architectures). Only the ILP approach can be effectively hidden from

the application software. In contrast, TLP and DLP have the inherent problem

of how to develop parallel applications that exploit these features to optimize

performance.

In order to address the former problem, several parallel programming

frameworks have appeared to ease the development of this kind of applications.

Among the goals of these frameworks are to ease the implementation and to hide

from the programmer the low-level details of the parallel hardware features. This

paper shows an evaluation of the following frameworks: OpenMP, Intel TBB,

Intel Cilk plus, Intel ArBB and OpenCL. These frameworks have been chosen be-

cause each one is focused on different hardware features and different approaches

to exploit them. Even though most of these frameworks are valid for different

architectures and CPUs, their performance may experience great variations on

different hardware architectures. However, the programming framework is not

the only software responsible for the final performance. The compiler has also a

great influence on the performance.

This paper is organized as follows: Section 2 shows the related work.

Section 3 describes several features for parallel computation that are present in

modern hardware. Section 4 enumerates parallel programming frameworks we

have used in our study and classifies their main characteristics. Section 5, lists

the set of benchmarks used for evaluation and describes the parallelism issues

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures3

they cover. Section 6 describes the evaluation procedure, the results we have

obtained, and outlines our main conclusions. Finally Section 7 presents the final

conclusions.

§2 Parallel Computing Architectures
Modern off-the-shelf computers include many hardware features which

are suited for parallel computation. This section shows a brief summary of these

features and the impact they can have on the performance and the development

of parallel applications.

2.1 Thread-Level Parallelism (TLP)
Thread Level Parallelism (TLP) is the most extended trend used to

take advantage of parallel hardware features. TLP creates the parallelism by

executing concurrently several threads that coordinate their actions to achieve

a common goal. Modern computers architectures include many features to im-

prove TLP: Hyper-threading, several threads executing on one core; Multicores,

multiple cores connected to the same memory banks; and ccNUMA architectures

(Cache Coherent Non-Uniform Memory Access), multiple cores with their own

memory banks but with a unified vision of the memory.

These features help to increase the performance if the application is split

into several tasks. Every task is typically executed by a single thread, and all

the threads are executed in parallel. The main challenge for the programmer is

actually how to split the application into tasks efficiently, in such a way that they

can exhibit a high degree of concurrency. The tasks must be equally weighted

in terms of computation and time to obtain the maximum performance. More-

over, the programmer has to deal with the issues derived from managing data

shared between tasks in a coordinated way. Usually, this involves a memory

access policy that allows exclusive accesses for a task. A desirable trait for a pa-

rallel programming framework is that it eases this job, while obtaining the most

efficient code possible. A parallel programming framework should simplify the

process of writing parallel programs from scratch, and the process of modifying

existing sequential programs into parallel ones.

2.2 Data-Level Parallelism (DLP)
Data-Level parallelism exploits parallelism by executing the same opera-

tion over each one of the elements of a big set of data in parallel. This is known

4Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

as the Single Instruction Multiple Data (SIMD) approach. Modern computers

include many features to improve DLP, of which two most prominent approa-

ches are: 1) to enhance the CPU with data parallel units that are used through

special instructions (e.g. vector instructions); and 2) to use computing elements

outside the CPU that are focused on handle SIMD code (e.g. GPUs).

Both approaches have advantages and disadvantages. The CPU can only

execute a reduced number of simultaneous operations (in the order of tens), while

the GPU can execute a larger number of operations (in the order of thousands).

In contrast, the CPU uses the main memory directly, while the GPU has to

transfer first the data to its local memory.

An application designed for SIMD architecture has to pack together the

operations that are repeated over each element of a dataset using the appro-

priate instructions. Parallel programming frameworks are designed to ease the

process of packing operations to the programmer. Specifically, some parallel

programming frameworks oriented to CPU, with the support of the compiler,

can reorder the code of the executable program in order to take advantage of

the CPU vector instructions. This can be achieved without explicitly modifying

the source code. Some parallel programming frameworks can work with CPUs

and GPUs from different vendors. There are frameworks, such as OpenCL that

can work with both without changing the source code.

2.3 Parallel Memory Access
Parallel programming frameworks also have to deal with issues related

to memory access. As part of the memory hierarchy, caches have to ensure co-

herency when several cores write the same address by invalidating or updating

the individual copies of data. Also, ccNUMA architectures penalize the perfor-

mance when a core accesses a memory bank outside those that belong to this

core. This penalization becomes more pronounced when tasks are moved be-

tween cores. In the case of GPUs, the lack of a unified CPU-GPU memory space

forces the program to transfer data from one to another. Moreover, the GPU

memory organization has several memory spaces that may be shared between

the processing units. This makes codifying applications very difficult. Parallel

programming frameworks have to manage these memory related problems using

techniques as the ones mentioned below:

• Defining special data structures to act as data containers. This improves

the memory access to those datasets that follow regular access pattern.

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures5

• Rearranging the executable code to improve the memory access.

• Offering task scheduling policies that consider the cache and the ccNUMA

effects when moving tasks between cores.

• Using synchronization mechanisms only when necessary to enhance mem-

ory access.

2.4 Energy Consumption vs. Performance in Parallel Ar-
chitectures

The use of TLP and DLP paradigms allows to increase the performance

of the applications. However, it generally increases energy consumption. Never-

theless, it is not easy to find a correlation between both. Energy consumption

depends on several factors, such as the hardware components which have diffe-

rent consumption rates, the time of usage of a resource (e.g. memory, CPU,

GPU, etc.), etc. For example, there are differences between using several cores

or one core with a vector processing unit. Performance increases when applica-

tions make use of the underlying hardware in an efficient way. This means to

execute applications faster or doing more jobs in the same interval of time using

the same hardware. Hardware components are used efficiently only if the increase

in performance is at least equivalent to the increase in energy consumption.

Parallel programming frameworks are only focused on increasing per-

formance. However, nowadays the economic cost of the energy consumption is

becoming a huge part of the overall cost of the system. Therefore, the additional

cost in energy consumption may not compensate the increase in performance.

Consequently, it is a good practice to study applications efficiency together with

the raw performance. Here, efficiency is measured as performance per energy

unit 11).

§3 Parallel Programming Frameworks
This section presents the parallel frameworks evaluated in this paper,

which are the following ones:

Open Multi-Processing (OpenMP) 4) is an open specification that

defines a language extension for task parallelization based on compiler directives.

OpenMP includes parallel loops, parallel regions that are executed by all the

cores, and support for shared variables, among others.

Intel Threading Building Blocks (TBB) 12) is a C++ library for

task parallelization. Its features include classes that implement generic tasks,

6Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

parallel loops, task scheduling, etc.

Intel Cilk Plus 19) is an extension to the C/C++ languages for task

parallelization, including spawn functions, parallel loops and special arrays that

ease the vectorization.

Intel Array Building Blocks (ArBB) 5) is a C++ library that allows

defining small fragments of code called kernels which are parallelized and used

vector instructions. ArBB includes a specific set of basic data classes and meth-

ods to define these kernels, which are executed using an abstract machine that

includes just-in-time compilation and optimization, separated memory manage-

ment and a task scheduler that adapts to the architecture without recompiling

the code.

Open Computing Language (OpenCL) 17) is a standard extension

of C/C++. It allows to write SIMD kernels that can be compiled just-in-time

and executed on both CPUs and GPUs without recompiling the code. It can

also generate specific binary files for each specific architecture.

Intel Math Kernel Library (MKL) 8)is a library of optimized mathe-

matical functions using multitasks and CPU vectorization.

These frameworks use different approaches to implement parallel appli-

cations and to use the hardware efficiently. Thus, each framework has its own

characteristics in terms of task deployment, vectorization support, task schedul-

ing, programming language abstractions, and configuration capabilities. In this

section we compare those characteristics across the considered frameworks. Ta-

ble 1 shows a summary of the characteristics. Of these, only MKL is not a general

purpose library, rather a mathematical library. Therefore it is not included in

the comparison.

3.1 Task deployment
Each framework deploys the tasks over the processing units according

to different approaches. OpenMP, TBB and Cilk Plus allow the programmer

to define individual tasks for each core, or to define the whole problem as an

iterative loop and let the framework to unroll the loop using several tasks. These

frameworks offer two methods to obtain the tasks from a loop and to schedule

them: 1) a static method and 2) a dynamic method. The static method obtains

the tasks dividing the number of iterations between the number of cores. Thus,

there are as many tasks as cores, and they are scheduled from the beginning.

The dynamic method assigns a predefined, small number of iterations to each

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures7

task. Therefore, the number of tasks can be bigger than the number of cores.

After that, new tasks are created dynamically during the whole execution and

distributed between idle cores. OpenMP can choose between a static or dynamic

approach. TBB and Cilk Plus implement a dynamic approach OpenCL and

ArBB require the use of kernels, functions of code that are executed over different

data. Both deploy a copy of the same kernel onto the processing unit of the GPUs

and CPUs. Then, each unit executes the kernel over different data. OpenCL

requires that the programmer decides the data size handle by one kernel. Also

the kernel in OpenCL is responsible for locating and managing the data assigned.

In contrast, ArBB distributes, locates and manages the data for each kernel

transparently to the kernel and the programmer. Internally, ArBB implements

the kernels as tasks using the same approach that TBB and Cilk Plus use for

parallel loops.

3.2 Vectorization support
Each framework uses different techniques to adapt the application to

the vectorization support of each CPU. This adaptation is usually done by the

compiler used for the target CPU. This approach, which is the one followed

by OpenMP, TBB and Cilk Plus, requires to recompile the source code to use

the vectorization support of a different CPU. ArBB compiles the kernels using

its own compiler that generates an intermediate code. This code is interpreted

on-the-fly for the target platform. Therefore, ArBB can use the vectorization

support of the target CPU without recompiling the source code. OpenCL uses an

heterogeneous approach that works for both GPUs and CPUs. The framework

compiles the source code of the kernels using its own compiler. This compilation

can be done on-the-fly. Another option is compile several version of the kernel

and then the framework chooses one to be executed on-the-fly.

3.3 Task scheduling
Each framework implements its own strategy to schedule tasks onto

processing units. OpenCL uses a low-level approach where one kernel is deployed

onto several processing units and this deployment cannot change until all the

units have finished. The kernel is responsible to know which processing unit and

which data have been assigned.

The rest of the frameworks use a high-level approach. They implement

software tasks that are executed on top of system threads. Each core has assigned

8Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

one system thread. The software tasks can be moved from one system thread to

another. A scheduler decides which task is executed in every system thread and

which ones are queued. OpenMP uses a global queue for all the system. TBB,

Cilk Plus and ArBB use a local queue for each core and allow idle cores to steal

tasks from other queues 7).

3.4 Programming language abstractions
Each framework includes different programming language abstractions

to ease the implementation of the code. The level of these abstractions is directly

related with the level of complexity of the final code. OpenCL uses low-level

programming language abstractions that make the programmer responsible for:

1) controlling data transfers within the CPU and GPU memories 2) deploying

the kernels over the computing units, and 3) distributing the data between the

kernels.

The rest of the frameworks offer several high-level Programming lan-

guage abstractions that ease the implementation and the adaptation to different

CPUs. TBB framework includes the definition of user-defined task classes that

can be instantiate as task objects executed in parallel. TBB also offers prede-

fined methods that can dynamically instantiate and execute task objects of a

certain class to implement different parallel abstractions (parallel loop, fork-join,

pipeline, etc). These methods also distribute the data onto the task objects.

Cilk Plus framework can execute a function in a parallel task (spawn)

and synchronize the result with the code of the main task. Cilk Plus can also

define parallel loops using a keyword of the language (cilk for). This framework

also has an array notation that can define simple algebraic operations between

each corresponding element of the two matrices. Finally, Cilk Plus incorporates

an abstraction called hyperobject that allows the programmer to implement a

reduction operation with a single object.

ArBB framework let the programmer to define kernels. The kernels are

deployed by mapping them onto the data. This framework also has an array

notation that can use any kernel as the operation between the two matrices.

OpenMP framework uses pragma directives to define the language abs-

tractions. The main pragma directive is the parallel region that allow the user

to define parallel loops, individual tasks, etc.

3.5 Configuration capabilities

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures9

Each framework offers different possibilities to configure the manage-

ment of the tasks and the parallel programming abstractions. OpenMP frame-

work allows modifying the management of the parallel loops using three methods:

1) the static method, 2) the dynamic method and 3) the guided method. The

static method divided the loop iterations between the tasks. The dynamic and

guided method delivers a fixed number of iterations to each task. This value is

static with the dynamic method while it can be changed with the guided method.

Cilk Plus framework allows to make changes to the size of the data that is de-

livered to each task and the maximum number of cores. TBB framework also

allows to change the data size and the maximum number of cores. Furthermore,

this framework can include a user-defined scheduling algorithm to replace the

one by default. ArBB allows to change the maximum number of cores but it

handles all the rest of the options. Finally OpenCL is the framework that is

most sensitive to changes in the configuration. The reason is the lack of a sche-

duler and a default distribution of the data. This makes the performance of the

application very sensitive to the data size that the programmer selects for each

client.

OMP Cilk Plus TBB ArBB OpenCL
Task Tasks & Tasks & Tasks & SIMD SIMD
Deployment Par. loops Par. loops Par. loops kernels kernels

(stat/dyn) (dynamic) (dynamic) (dynamic) (static)
Vectorization Comp. Comp.
support Compiler Compiler Compiler on-the-fly on-the-fly &

versions
Scheduling Softw. tasks Softw. tasks Softw. tasks Softw. tasks Static
Techniques Glob. queue Local queue Local queue Local queue

spawn
Language Parallel cilk for Task obj. Kernels Kernels
Abstractions regions Hyperobjects Par. methods Array op.

Array op.
Configuration Data size Data size Data size Max. cores Data size
Capabilities Max. cores Max. cores Max. cores

Scheduler Scheduler
Table 1 Summary of the Characteristics of the Parallel Frameworks.

§4 Benchmarks
We have evaluated the frameworks listed in Section 3 by using a set

of benchmarks. These benchmarks cover some common scenarios representing

complex problems, which are solved by decomposing them in parallel tasks.

All of the frameworks proposed are designed to ease the programming of these

10Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

kinds of problems. Among the possible scenarios, we have left out, those that

involves irregular data access, where the data is indexed in memory with an

access pattern that is unknown at compilation time. We do not include them in

this study because these scenarios are so hard and complex that require a most

extensive study.

Next, we present the scenarios we have chosen to test the frameworks

and the associated benchmarks:

Regular computation: This scenario involves a heavy computation

with very little or none access to memory. This scenario involves computing a

set of computational operations that generate partial results. These operations

can be mapped onto cores by using different criteria. The key of this scenario is

that all computation operations require the same computational effort.

To cover this scenario, we implement a benchmark to obtain the value

of π. The benchmark is based on the numerical integration of:∫ 1

0

4

1 + x2
dx

The integral becomes in a sum where the individual sums are grouped in several

tasks. The partial results are accumulated together to compute the final result.

Irregular computation: In this scenario, each computation element

requires a different amount of computational effort, which ranges from almost

none to very significative, as opposite to the regular computation scenario.

We implement a benchmark to draw the Mandelbrot fractal. This bench-

mark performs iterative operations to calculate each element (pixel) of the image.

The algorithm performs several iterations for computing each partial result. The

number of iterations range between one to a certain value, which is different for

each partial result. This means that some elements only iterate once and other

may perform the maximum possible number of iterations. The challenge of the

mapping between computational operations to cores is to achieve that all the

cores perform the same computational load.

Regular memory access: This scenario involves some computation

and a great number of memory accesses. The problem requires to compute se-

veral partial results where each one requires a large number of memory accesses.

The key is that the data location is known at compilation time and it normally

follows a regular pattern.

We implement two benchmarks to illustrate this scenario: 1) the matrix

multiplication algorithm and 2) the 2D convolution algorithm, a filtering tech-

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures11

nique used to apply effects to images. Both of them make an intensive use of

matrix-based operations. The matrix multiplication involves access to one row

and to one column to obtain one element. The 2D convolution algorithm re-

quires access all the neighbors elements to an specific element on the image. The

matrix multiplication benchmark is implemented using the framework-specific

extensions for matrixes. In contrast, the 2D convolution is implemented using

only iteration loops over the matrix elements.

Data reduction: This scenario involves a large number of shared data

modifications. In this scenario, the tasks compute their partial results and write

them on a shared memory area. The final result is computed by a task, which

performs a reduction operation over all of the partial results. The more complex

the results are, the more difficult the reduction is.

We implement a benchmark to calculate the histogram of an image,

which is the number of pixels of each colour that are present in the image. We

split the image into fragments that are processed by different tasks. Each task

creates an array to store the occurrences of grey shades on the fragment. At

the end, all the arrays created are accumulated into one common array. For this

purpose, the operations for data reduction of each framework are used.

§5 Evaluation
We evaluate the parallel programming frameworks by executing and

comparing the benchmarks implemented (described in Section 4) under the next

metrics: the complexity of the code, performance and energy.

5.1 Code development complexity
For evaluating the code development complexity, we use the Code Churn

estimation 10), which allows to measure the code transformation complexity

based on the amount of added (LA), deleted (LD) and modified (LM) lines.

We want to see the number of transformations done in the parallel version with

regard to the sequential version. Table 2 shows the results (LA, LD, LM) for

each benchmark and for each parallel programming framework. We also show

the total churn value computed as LA+ LD + LM .

The results show that OpenCL is the framework with the highest com-

plexity in terms of code development. It is important to notice that the im-

plementation performed is as general as possible and it has not been manually

tuned for the target architecture. A manual tuning could probably improve the

12Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

OMP Cilk Plus TBB ArBB OpenCL

MM
LA 3

3
7

13
23

31
23

31
119

127LD 0 5 8 8 8
LM 0 1 0 0 0

PI
LA 4

8
7

10
20

27
17

24
127

134LD 3 1 7 7 7
LM 1 2 0 0 0

Histogram
LA 12

16
13

18
28

31
11

20
222

230LD 0 0 2 8 8
LM 4 5 1 1 0

Conv2D
LA 2

2
3

4
23

37
25

39
125

139LD 0 0 14 14 14
LM 0 1 0 0 0

Mandelbrot
LA 3

3
3

4
32

48
27

43
247

263LD 0 0 16 16 16
LM 0 1 0 0 0

Total 32 49 174 157 893
Table 2 Churn code evaluation. Notation: MM: Matrix Multiplication; PI: PI benchmark;

Histogram: Histogram benchmark; Conv2D: 2D Convolution benchmark; Mandelbrot: Man-

delbrot benchmark.

performance observed but it will also increase greatly the complexity of the de-

velopment. However, the results are still far higher than the others, with implies

that OpenCL is in a different level of complexity than the rest. Next in comple-

xity are the TBB and ArBB frameworks. Their results are close to each other,

but much lower than OpenCL. Finally Cilk Plus and, specially, OpenMP show

the lowest values, making them the frameworks of choice to port a sequential

application with little modifications.

5.2 Performance evaluation
We evaluate each parallel programming framework by executing the

benchmarks proposed in Section 4 on a multisocket multicore architecture with

a ccNUMA architecture. It includes four Intel Core Xeon E7-4807 sockets. Each

socket counts with 6 cores at 1.87 GHz with hyper-threading (two threads per

core). This results in a total of 24 cores and 48 threads. Each CPU has a local

memory of 32 GB in 4 banks with a total memory 128 GB. Also, each core

includes the SSE4.2 instruction set of 128 bits.

We compile all the benchmarks using the Intel C/C++ compiler with

two options: 1) ’-O0’, no optimization; and 2) ’-O3’, full optimization with

vectorization, loop unrolling, etc. We measure the energy consumption and

performance for these benchmarks. The benchmarks have been executed several

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures13

times, where in each execution we vary the amount of data to process and the

number of parallel threads. Table 3 shows the version of the software used in

this comparison, most of them are included in Intel Parallel Studio XE 2013.

Software Intel compiler Intel TBB MKL ArBB Intel OpenCL driver

Version 13.0.0 4.1 11.0 1.0.0.030 1.5-15294
Table 3 Software version used.

Figures 1 and 2 show the performance results. Figures 1 depicts the

performance results for the execution of each benchmark implemented in the

corresponding framework using both no optimization (-O0) and full optimization

(-O3). In the x-axis we represent different problem sizes. For π benchmark we

use scientific notation to express the maximum resolution size. For the rest of

the tests we present the problem size as the number of elements N in a square

matrix of N ×N . The y-axis shows in a logarithmic scale the execution time in

seconds for each test.

Figure 3 shows the performance varying the number of threads ranging

between 2 and 48 while we maintain the largest problem size for each benchmark.

The results obtained may be summarized as follows:

Performance overload: Each framework has an overload due to the

initial setup. This overload is mainly the result of the task deployment and task

scheduling techniques used in each framework, and also the result of using the

run-time that performs the on-line compilation in those frameworks that use

this technique (ArBB and OpenCL). The overload includes threads creation,

data distribution, and other actions. Other actions, like task scheduling, also has

great initial overload, but they also create an overload during the whole execution

that is lower than the initial one. The initial overload can be compensated if the

problem size is large enough. However, for small size problems it may represent

a high percentage of the total overload. Thus, small workloads may show a lower

performance than the sequential version because this initial overload. Figure 1

shows this effect for benchmarks with a small problem size: for a resolution of

1e4 in the π benchmark or for images with size smaller or equal than 2048×2048

in case of histogram benchmark. The overload of the two sequential versions are

represented by a flat line with crosses (-O0) and by a discontinued line with the

symbol × (-O3). If the performance line of a benchmark is under these lines

indicates that the framework outperforms the sequential versions. Otherwise, if

the performance line is over them indicates the opposite.

The frameworks with the largest overload are OpenCL and ArBB due

14Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

Fig. 1 Performance varying the problem size for Pi, Mandelbrot and Histogram benchmarks

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures15

Fig. 2 Performance varying the problem size for Matrix Multiplication and Convolution 2D

benchmarks

to its runtime, as shown in Figure 1 and 2 where their performance is lower

than the sequential version for small and medium size problem. However, for

large size problems, OpenCL and especially ArBB obtain better performance

than other frameworks because they take more advantage of the vectorization

support. This means that these frameworks may be used for large computation

loads. A special case is the histogram benchmark, where the sequential version

has a high hit rate for the cache. The parallel versions of that benchmark

however are not able to achieve that rate and for this reason, they obtain a

lower performance in most of the cases. The lighter frameworks are Cilk Plus

and, especially TBB, which obtain better performance than others frameworks

with smaller workloads because they impose a smaller overload in the initial

setup and a better distribution of the data thanks to the dynamic scheduling

over ccNUMA architectures.

As the framework overload becomes negligible, which occurs with larger

workloads and when vectorization techniques are applied, the performance of

most of the frameworks tends to converge.

16Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

Fig. 3 Performance varying the number of threads

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures17

Vectorization: Some frameworks rely on the compiler to generate vec-

tor instructions for executables; the others generate intermediate code and, at

execution time, they interpret this code. OpenMP, TBB and Cilk Plus follow the

first trend. Figures 1, 2 and 3 show that, without loss of generality, the optimized

version (-O3) of the benchmarks perform better than the non-optimized versions

(-O0) for all problem sizes considered. OpenCL uses its own compiler for the

kernels, so the options of the compiler have no effect. OpenCL benchmarks can

be compiled just-in-time (option Comp in the legend) or precompiled (option

Bin in the legend). The difference in terms of performance between both is only

noticeable with large workloads and only for some benchmarks (Mandelbrot and

Convolution 2D). ArBB and MKL obtain a similar performance without the

compiler optimizations. The reason is that MKL is a library that is already

compiled and ArBB uses its own compiler to generate an intermediate code that

is converted into vectorized code at execution time. In fact, both OpenCL and

ArBB generate the vectorized code at execution time, while OpenMP, Cilk Plus

and TBB generate vectorized code at compilation time.

Performance of the reduction operations: The histogram bench-

mark in Figures 1, 2, and 3 shows that each framework performs differently due

to the usage of specific reduction operations. The two frameworks that per-

form better than the sequential solution are TBB (using the join method) and

ArBB (using matrix-specific reduce operations). In contrast, Cilk Plus hyper-

objects, which implement their own reduction operations, perform worse than

TBB and ArBB. OpenCL shares a global array which must be accessed via

atomic functions, impacting negatively on the performance. OpenMP forces the

programmer to define a hand-made parallel reduction phase, leaving to the pro-

grammer experience such a responsibility, which may impact on the applications

performance.

The rest of the results in Figures 1, and 2 and 3 can be broken down for

the set of benchmarks as follows:

• π benchmark involves a regular computation and a data reduction ope-

ration using simple data types, that is similar to the operation used in

Histogram benchmark but with complex data types. The OpenMP code

for the histogram is different because OpenMP cannot reduce complex

data types. The performance of TBB using the join operation for the

reduction of simple data types is worse than the reduction strategies of

the rest of the frameworks, with the exception of OpenCL. However, the

18Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

same join operation has a great performance when it is employed with

complex data types, as shown by the Histogram results.

• Mandelbrot benchmark involves irregular computation, which is a prob-

lem for the scheduling policies. OpenMP, with its dynamic scheduling,

presents poorer results than the rest of the frameworks, which share the

same scheduling policy. Furthermore, Cilk Plus shows remarkable results

for all configurations, because its matrix-specific operations are used to

operate several elements at once, resulting in a better vectorization.

• For 2D convolution and for matrix multiplication benchmarks TBB, Cilk

Plus and OpenMP perform very similarly. ArBB, on the other hand,

performs a little better on the convolution and a lot better on the matrix

multiplication thanks to the array operations with generic kernels and

a better vectorization. MKL, which can only be used for the matrix

multiplication, obtains the best results.

5.3 Energy efficiency
We evaluate the energy consumption of the benchmarks proposed in

Section 4 on an Intel Core i7-2600 socket that contains four cores at 3.40 GHz

with hyper-threading (two threads per core) and 8 GB of memory. This is an

Intel Sandy Bridge that includes the AVX vector instruction set of 256 bits. It

has the ability of measuring energy consumption using the Likwid 13) tools. The

energy consumption is also measured using an ammeter connected to each one of

the power cables that feed the motherboard. The results are collected using an

analog interface equipment from National Instruments, which is managed using

an application made with LabView. The values obtained from both the Likwid

tools and the ammeter confirms the same results for the energy consumption.

Figure 4 shows the efficiency results for all benchmarks described in Sec-

tion 4. We measure efficiency as speedup per watt on y-axis, meanwhile in x-axis

we show the different configurations for these benchmarks. All the benchmarks

use the largest problem size. Also, Figure 4 shows the efficiency obtained for

each benchmark by using different number of threads, ranging between 1 and 8,

and using the non-optimization and full-optimization compiler options.

The results show that in most of cases, using one thread with vectoriza-

tion is more efficient than using eight threads without vectorization. For exam-

ple, consider the sequential solution of the 2D convolution benchmark, with is

vectorized by the compiler. This configuration is more efficient than most of

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures19

the others, except ArBB with 8 threads. This is because ArBB always uses the

vectorization support. The conclusion is that vectorization is the more efficient

solution when the problem is suited to employ it. The reasons for this behaviour

are that vectorization supposes that the problem meets several requirements like

absence of synchronization, regular access to the memory and usage of shared

control. Problems that do not meet these requirements cannot improve their

performance using vectorization and have to rely on the TLP approach.

We present the results of power consumption using the ammeter for two

benchmarks: π and Matrix Multiplication. We measure the power consumption

of these benchmarks across the execution time.

First, Figure 5 shows π benchmark. The x-axis represents the execution

time interval ranging between 176 and 225 seconds. The y-axis represents the

power consumption in watts of two different hardware components: CPU is

shown in a red line and memory is shown in a blue line. The graph shows eight

executions of π: four were compiled with no optimization and the rest with

full optimization. We indicate the number of threads used for each execution,

ranging between 1 to 8.

Second, Figure 6 shows an execution of Matrix Multiplication bench-

mark using ArBB, MKL and OMP, all compiled with the full optimization op-

tion. We use different number of threads ranging between 1 to 8. The x-axis

represents the execution time interval ranging between 10.5 and 44 seconds. The

y-axis represents the power consumption in watts of CPU and RAM.

The results are summarized as follows:

• The execution time decreases when the number of threads grows.

• The power consumption increases with the number of threads. Also,

if we compare the tests with 4 threads (without hyperthreading) and

the tests with 8 threads (with hyperthreading) we see that the use of

hyperthreading to increase the number of threads consumes a lot less

than using new cores.

• Finally, the same test with vectorization support can increase the power

consumption twice or more compared with the same test without vectori-

zation. However the performance is improved greatly which, at the end,

increases the efficiency.

§6 Related Work
Performance of TBB and OpenMP in scientific and industrial applica-

20Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

Fig. 4 Efficiency varying the number of threads by using Likwid

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures21

Fig. 5 Power consumption varying the number of threads for π benchmark with OMP.

tions has been studied by several authors. In 18), the authors studied several

implementations using OpenMP and TBB in a medical processing application,

changing the locking mechanisms in the critical sections of the code. As result

of these analysis, they concluded that OpenMP is slightly outperforms TBB.

However, in 2) the results show that TBB outperforms OpenMP. In this paper,

an exhaustive low-level analysis explains that TBB succeeds due to producing

efficient code for a substring-finder benchmark. Other authors 15) exploit the

behavior of task programming with OpenMP and TBB running on ccNUMA

architectures, where TBB uses work-stealing task scheduler 3) to improve data

locality. In 1) also compare these technologies with OpenCL 17) including a us-

ability and portability evaluation. They conclude that the latter helps to create

highly portable code, at the cost of a greater development effort to achieve op-

timal performance for each hardware architecture (CPU/GPU).

A correct use of the compiler is essential to build an efficient binary

executable, increasing the performance as shown 9) and 6).

The new supercomputers included in top500 21) make use of these tech-

nologies to increase performance. However, When considering power consump-

tion or energy efficiency these architectures are not optimal for parallel compu-

ting. Thus the study of new CPUs with new vector instructions, such as AVX2,

becomes a interesting issue 22). For these reasons, the study of new CPU ar-

chitectures with the new vector instructions as AVX2 becomes in a potential

interest point 16) 23). Recently, new C/C++ extensions have emerged, allowing

22Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

Fig. 6 Power consumption of Matrix Multiplication benchmark using ArBB, MKL and OMP

with different number of threads.

for transparent use of SIMD instructions such as 14) or 20).

In addition, an appropriate use of compilers is essential to build an

efficient binary executable, thus increasing performance, as shown in 9) and 6).

§7 Conclusions
In this paper we have compared several parallel programming frame-

works (OpenMP, TBB, Cilk Plus, ArBB and OpenCL) which are oriented to-

wards shared-memory parallel architectures. We have performed a qualitative

comparison based on several factors like task deployment, vectorization support,

task scheduling, programming language abstractions and configuration capabil-

ities. Furthermore, we have evaluated they usability, by implementing several

parallel benchmarks and measuring the cost of adapting the original sequential

code to each one of these frameworks. Finally, we have evaluated their perfor-

mance executing these benchmarks over different hardware architectures and we

have measured how efficient they are analyzing the power consumption on the

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures23

execution.

The main conclusion of this study is that each framework have different

characteristics that made some more fitted that others depending on the scenar-

ios. If the goal is to perform a quick improvement of a sequential code making

it parallel, then OpenMP and Cilk Plus are the correct choice. If we want our

parallel code to be object-oriented then TBB is the answer. ArBB is the easiest

one to code complex array operations. OpenCL is by far the more complex to

use but if the portability between CPU-GPU is required is the only choice.

Furthermore, according to the evaluation, TBB is the best choice when

the size of the problem is small due to its low overload. ArBB stands when the

problem involves operating with arrays and it is also the best option to execute

the same code in different CPUs without recompiling. Also, those problems that

involve parallel reduction operations with complex data types are better served

using TBB but if the reduction involves simple data types then OpenMP and

Cilk Plus are better choices.

Finally, the energy consumption and efficiency results show that CPU

vector operations are much more efficiency than multiple parallel threads. Al-

though parallel threads can handle a large number of scenarios where vector

operations do not work, like irregular computation problems or irregular data ac-

cess problems. So, applications that can handle a vectorization approach should

employ it to improve their efficiency.

§8 Acknowledgment
This work has been partially funded by the project ”Input/Output Scal-

able Techniques for distributed and high-performance computing environments”

of MINISTERIO DE CIENCIA E INNOVACION, TIN2010-16497. The work of

J. Daniel Garcia has been funded by ”Fundación Cajamadrid” through a grant

for Mobility of Madrid Public Universities Professors.

References

1) A. Ali, U. Dastgeer, and C. Kessler, “OpenCL for programming shared memory
multicore CPUs,” in In Proceedings of MULTIPROG-2012, 2012.

2) A. Marowka, “On performance analysis of a multithreaded application paral-
lelized by different programming models using intel vtune,” in Parallel Compu-
ting Technologies, 2011, vol. 6873, pp. 317–331.

3) A. Robison, M. Voss, and A. Kukanov, “Optimization via reflection on work
stealing in tbb.” in IPDPS. IEEE, 2008, pp. 1–8.

24Luis Miguel Sanchez, Javier Fernandez, Rafael Sotomayor, Soledad Escolar and J. Daniel Garcia

4) B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT
Press, 2007.

5) C. J. Newburn, B. So, Z. Liu, M. D. McCool, A. M. Ghuloum, S. D. Toit, Z.-G.
Wang, Z. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang, “Intel’s array
building blocks: A retargetable, dynamic compiler and embedded language,” in
CGO, 2011, pp. 224–235.

6) C. Kim, N. Satish, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,
M. Girkar, and P. Dubey, “Closing the Ninja Performance Gap through Tradi-
tional Programming and Compiler Technology,” Intel White Paper 2012, 2012.

7) G. Contreras and M. Martonosi, “Characterizing and improving the perfor-
mance of intel threading building blocks,” in Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, sept. 2008, pp. 57 –66.

8) Intel MKL. (2012, Jan.) Intel Math Kernel Library. [Online]. Available:
http://software.intel.com/en-us/intel-mkl

9) J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, and W.-
m. W. Hwu, “Efficient compilation of fine-grained SPMD-threaded programs for
multicore CPUs,” in Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization, ser. CGO ’10. New York,
NY, USA: ACM, 2010, pp. 111–119.

10) J. C. Munson and S. G. Elbaum, “Code churn: A measure for estimating the
impact of code change,” in Proceedings of the International Conference on Soft-
ware Maintenance, ser. ICSM ’98. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 24–.

11) J. Mair, K. Leung, and Z. Huang, “Metrics and task scheduling policies for
energy saving in multicore computers,” in Grid Computing (GRID), 2010 11th
IEEE/ACM International Conference, 2010, pp. 266–273.

12) J. Reinders, Intel threading building blocks - outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly, 2007.

13) J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments,” in ICPP Workshops,
2010, pp. 207–216.

14) M. Pharr and W. R. Mark, “ispc: A SPMD Compiler for High-Performance CPU
Programming,” in In Proceedings of Innovative Parallel Computing (InPar),
2012.

15) M. Wittmann and G. Hager, “Optimizing ccnuma locality for task-parallel
execution under openmp and tbb on multicore-based systems,” CoRR, vol.
abs/1101.0093, 2011.

16) N. G. Dickson, K. Karimi, and F. Hamze, “Importance of explicit vectorization
for cpu and gpu software performance,” J. Comput. Physics, vol. 230, no. 13,
pp. 5383–5398, 2011.

17) OpenCL. (2012, Jan.) Open Computing Language. [Online]. Available:
http://www.khronos.org/opencl

A Comparative Study and Evaluation of Parallel Programming Models for Shared-Memory Parallel Architectures25

18) P. Kegel, M. Schellmann, and S. Gorlatch, “Using openmp vs. threading building
blocks for medical imaging on multi-cores,” in Euro-Par 2009 Parallel Process-
ing, 2009, vol. 5704, pp. 654–665.

19) R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: an efficient multithreaded runtime system,” SIGPLAN Not.,
vol. 30, no. 8, pp. 207–216, Aug. 1995.

20) R. Leißa, S. Hack, and I. Wald, “Extending a C-like language for portable SIMD
programming,” in PPOPP, 2012, pp. 65–74.

21) Top500. (2011, Nov.) Supercomputer sites. [Online]. Available:
http://top500.org/lists/2011/11

22) V. Kindratenko and P. Trancoso, “Trends in High-Performance Computing,”
Computing in Science and Engineering, vol. 13, pp. 92–95, 2011.

23) V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey,
“Debunking the 100X GPU vs. CPU myth: an evaluation of throughput com-
puting on CPU and GPU,” SIGARCH Comput. Archit. News, vol. 38, no. 3,
pp. 451–460, Jun. 2010.

	Página en blanco

