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Abstract

This paper studies how a seller should design its price schedule when con-
sumers’ preferences are subject to temptation. As in Gul and Pesendorfer (2001),
consumers exercise costly self-control to some degree and foresee their impulsive
behavior and self-control. Since consumers may pay a premium for an option set
that is less tempting, the seller may offer multiple small menus. Building on the
standard model of adverse selection and second-degree price discrimination, we
characterize the optimal menu of menus for the seller. In particular, we show that
if consumers are tempted by goods of higher quality, the seller can achieve perfect
discrimination: consumers’ choices appear as if the seller can observe consumers’
preferences directly. To achieve this, the seller “decorates” menus by adding items
that are never chosen but are tempting to consumers.
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1 Introduction

Impulse purchasing is widespread among consumers. A marketing study finds that
between 27% and 62% of department stores sales fall into impulse purchasing (Bellenger,
Robertson, and Hirschman, 1978). If consumers’ behavior exhibits impulse purchasing
and temptation, sellers may try to take advantage of this behavior, perhaps by offering a
large selection of tempting products. There is a complication, however, since consumers
usually recognize their impulsive behavior and may be able to control it to some degree,
or may try to stay away from undesirable and tempting opportunities. Behavior of this
kind with temptation and self-control can be analyzed with a class of utility functions
introduced by Gul and Pesendorfer (2001). Using their utility-function formulation,
the present paper extends the standard model of adverse selection and studies a seller’s
optimal strategy against consumers who exhibit temptation and self-control.

Standard economics assumes that a consumer evaluates a choice set based only
on the most preferred element in the set, since a consumer cares only about what he
will choose from the set. This implies that if a set X contains another set Y , then a
consumer likes X at least as well as Y : there is no disutility of having more options.
Consumers who are subject to temptation, however, may dislike a larger choice set
since it may contain options that are tempting and undesirable. For example, suppose
that there are two options s (salad) and b (burger) and that the consumer prefers s

to b but b is tempting to him (whatever this means). The consumer may then prefer
not to have b in the choice set. The reason is that, confronted with the choice set
{s, b}, the consumer may succumb to temptation and choose a burger, and even if he
resists temptation and chooses a salad, he may have to incur psychological costs in the
process. Anticipating these possibilities, the consumer may prefer the singleton choice
set {s}. The set {s} is desirable for the consumer since it gives no room for temptation
and allows him to commit to the ex ante desirable choice.

To formulate choice behavior of this kind, Gul and Pesendorfer (2001) introduced
the following class of preferences: the consumer prefers a choice set X to another set
Y if and only if W (X) > W (Y ) where W is defined by

W (X) ≡ max
x∈X

[
U(x) + V (x)

]
−max

x∈X
V (x).

The interpretation is that U is the utility function of the untempted part of the consumer
while V is the utility function of the tempted part. The first maximization identifies
what the consumer actually chooses as a compromise between the preferences of these
selves. The second maximization identifies the most tempting alternative. To better
understand this formulation, we can rearrange it as

W (X) = U(x̂)−
[
max
x∈X

V (x)− V (x̂)
]

(1)
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where x̂ denotes what the consumer chooses, i.e., a maximizer of U(x) + V (x). The
term maxx∈X V (x)−V (x̂) denotes the forgone utility of the tempted self: the tempted
self wants to choose a maximizer of V (x) but ends up with x̂ after self-control. The
forgone utility can be interpreted as the cost of self-control. With this interpretation,
(1) says that the overall utility W (X) is equal to the untempted self’s utility from the
chosen item minus the cost of self-control.

This paper considers consumers who have preferences of the type described above
and studies a seller’s optimal supply decision. We use the classic model of nonlinear
pricing and second-degree price discrimination by Mussa and Rosen (1978) and Maskin
and Riley (1984) and consider a monopolist selling goods that are indexed by a single-
dimensional quality level q ∈ R. The seller does not observe consumers’ preferences
directly and therefore can set prices only via indirect price discrimination schemes that
rely on consumers’ self-selection.

In the standard nonlinear pricing problem, the seller chooses a set of goods Q ⊆ R
to sell and a price function p : Q → R that specifies the price p(q) for each quality level.
The choice of Q and p determines the choice set for consumers, which is a menu of
quality-price pairs given by M = {(q, p(q)) : q ∈ Q}. Given the menu, each consumer
chooses the most preferred pair (q, p(q)) in the menu. Anticipating consumers’ choices,
the seller chooses a menu that maximizes the expected profits.

The present paper considers the same profit-maximization problem when consumers’
preferences exhibit temptation and self-control as described above, extending the prob-
lem by allowing the seller to offer multiple menus. With standard consumer preferences,
the number of menus that the seller offers is immaterial. However, if consumers may
prefer smaller, less tempting menus, the seller may profit from offering multiple menus,
i.e., a menu of menus. For example, the seller may open multiple retail stores (possibly
with different brand names) with smaller and specialized selections and let consumers
choose which store to visit. By offering multiple stores, the seller can make the selection
in each store less tempting and hence more appealing to consumers with self-control
costs.

Another example is weight-loss programs (e.g., Weight Watchers), which specify
the aimed level of weight loss, the number of weekly visits, food discounts, as well as
the penalty fee for weight gain. In this example, q denotes the realized level of weight
loss and p(q) specifies the total fee for each realized weight loss. By offering multiple
plans or fee schedules, the firm may be able to better discriminate participants.

A feature of the extended problem is that consumers may not choose a menu if it
contains tempting options and the ex-ante overall utility from the menu is low, or if
another menu offered by the seller yields a higher ex-ante utility. Therefore, the seller’s
problem has to deal with the new conditions of individual rationality and incentive
compatibility that pertain to the choice of a menu, as well as the usual conditions
of individual rationality and incentive compatibility that pertain to the choice of a
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quality-price pair within the chosen menu.
We study a simple case in which there are only two types of consumers: high and low.

As usual, we assume that the high-type consumers have a higher marginal valuation for
additional quality than the low-type consumers. However, this statement is ambiguous
in our problem since a consumer has multiple states of mind and his marginal willingness
to pay depends on which state he is in. Specifically, each consumer has three possible
states of mind: (i) untempted state, which is captured by the utility function U and in
which the consumer is not tempted at all; (ii) tempted state, which is captured by the
utility function V and in which the consumer is tempted and succumbing to temptation;
and (iii) self-controlled state, which is captured by U +V and in which the consumer is
tempted but exercising self-control. We assume that a high-type consumer in a given
state of mind has a higher marginal valuation for additional quality than a low-type
consumer in the same state of mind. That is, a change of the state does not reverse
the relative positions of types.

There is a number of possibilities for the heterogeneity of consumers since each
consumer is characterized by a pair of utility functions. One important way to classify
these possibilities is to look at the relation between the two utility functions for a given
consumer, which pertains to the direction in which the consumer is tempted. We say
that a consumer is tempted upwards if his marginal valuation for additional quality is
higher when he is tempted than when he is not, which means that he is tempted toward
goods of higher quality. Conversely, a consumer is tempted downwards if his marginal
valuation for additional quality is lower under temptation. While upward temptation
may be easier to imagine, downward temptation is not unusual. For example, in the
case of weight-loss programs, downward temptation means that consumers are tempted
to lose less weight. Even in the case of shopping, consumers may become more frugal
when they make decisions and pay.1

Our first result says that if the high-type consumers are tempted upwards, then
regardless of the direction of the low-type consumers’ temptation, the seller can obtain
the same level of profits as in the case where he can observe each consumer’s preferences
directly. That is, consumers’ choices under the seller’s optimal scheme appear as if
perfect discrimination is feasible. To achieve perfect discrimination, the seller offers
two menus and “decorates” the one intended for the low type, adding a quality-price
pair that is irrelevant for the low type but is ex post tempting and ex ante undesirable
for the high type. By adding such an item, the seller can lower the high type’s ex-ante
utility from the menu intended for the low type. We can show that there is a way to
decorate the menu so that the high type has no incentive to choose it. Then, although
the added item is not chosen by any consumer, it completely eliminates the high type’s

1Using survey techniques, Ameriks, Caplin, Leahy, and Tyler (2003) find evidence of heterogeneity
in the direction of temptation in a two-period saving problem among TIAA-CREF participants: 20%
of participants are tempted to consume less in the first period.

3



incentive to mimic the low type and therefore enables the seller to extract the full
surplus from the high-type as well as the low-type consumers.

On the other hand, the perfect-discrimination result does not hold if the high-type
consumers are tempted downwards. If the high type is tempted downwards, tempting
the high type requires adding an item of relatively lower quality, but adding such an
item also changes the actual choice of the low type, and therefore extracting full surplus
from both types is not possible.

When the high-type consumers are tempted downwards, the seller’s optimal strat-
egy depends on the degree of the high type’s temptation. We say that the high type’s
temptation is strong if the high type in the tempted state has a lower marginal val-
uation for additional quality than the low type in the self-controlled state. That is,
when the high type is fully tempted and the low type is self-controlled, the relative po-
sitions of the types are reversed. If this reversal does not occur, i.e., if the high type’s
temptation is weak, then we show that offering a single menu is never optimal for the
seller. Under weak temptation, the item offered to the low type is tempting to the high
type. Therefore, by offering a separate menu for each type, the seller can reduce the
high type’s self-control cost and weaken its incentive-compatibility condition. On the
other hand, if the reversal occurs, i.e., if the high type’s temptation is strong, then the
seller gains nothing from offering multiple menus. We show that the optimal scheme in
this case coincides with the solution to the standard nonlinear pricing problem where
consumers are assumed to be always in the self-controlled state, i.e., their preferences
are always U + V .

In our basic model, the seller is not allowed to charge entry fees, fees that are
charged even to consumers who end up buying nothing or using no service (e.g., annual
membership fees, fixed monthly fees, etc). In Section 4, we extend the model to allow
for entry fees. The perfect-discrimination result continues to hold without any change.
On the other hand, the optimal scheme when the high-type consumers have downward
temptation is affected considerably by the availability of entry fees. In particular, when
the high type’s temptation is strong, while offering one menu is optimal without entry
fees, it is never optimal if entry fees can be charged. This also implies that the seller
strictly prefers to charge entry fees. The seller may also profit from decorating the
menus with items that are never chosen by consumers.

There is a growing number of papers that study optimal strategies against agents
who have non-standard preferences. O’Donoghue and Rabin (1999), Gilpatric (2001),
and DellaVigna and Malmendier (2004) study optimal contracts when agents have
(quasi-) hyperbolic discounting. Eliaz and Spiegler (2004) derive the optimal contract
when the principal knows that consumers’ preferences change in the second period but
consumers themselves believe that the change may not occur. Esteban, Miyagawa, and
Shum (2003) consider the same problem as the present paper but examine the case
where the seller offers a single menu and there is an infinite number of types. Esteban
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and Miyagawa (2004) extend the model to oligopoly and characterize Bertrand–Nash
equilibria when firms compete by offering a menu of menus.2

There is also an empirical literature that tests for preference reversals with pricing
data. Wertenbroch (1998) finds evidence that consumers tend to forgo quantity dis-
counts for goods that have delayed negative effects (e.g., cigarettes). Della Vigna and
Malmendier (2002) find evidence of time inconsistent behavior in consumers’ enrollment
decisions in health clubs. Miravete (2003) looks for evidence of irrational behavior in
consumers’ choices of calling plans and finds that their behavior is actually consistent
with rationality and learning. Oster and Morton (2004) find evidence that magazines
that have payoff in the future (e.g., intellectual magazines) are sold at a higher price.

2 Model

We consider a monopolist that sells a collection of goods (or services). The goods
are indexed by q ∈ R+, which represents the quality (or quantity) of the good. The
good with quality q = 0 is the equivalent of nothing. Each consumer is interested in
consuming at most one unit of one good. An offer from the monopolist is defined as
a pair (q, t) ∈ R2

+, which means that the monopolist offers one unit of good q for a
price of t.3 A set of offers M ⊆ R2

+, such that (0, 0) ∈ M , is referred to as a menu.
The restriction (0, 0) ∈ M comes from the assumption that those consumers who do
not buy any good can avoid payments; the assumption will be relaxed in Section 4. To
simplify exposition, we often specify a menu M without noting that it includes (0, 0):
by writing M = {(q, t), (q′, t′), . . .}, we mean M = {(0, 0), (q, t), (q′, t′), . . .}.

2.1 Consumers’ Preferences

Consumers have preferences over menus and their preferences are indexed by a number
γ ∈ R+. Let n(γ) ∈ [0, 1] denote the proportion of consumers whose preferences are of
type γ, so that

∑
γ n(γ) = 1. Let Γ denote the support of n(·) and assume that Γ is

finite.
Using the utility representation by Gul and Pesendorfer (2001), we assume that the

utility function of a type γ consumer is given by

Wγ(M) ≡ sup
(q,t)∈M

[
Uγ(q, t) + Vγ(q, t)

]− sup
(q,t)∈M

Vγ(q, t), (2)

where Uγ and Vγ are functions from R2
+ to R. Although sup is used in (2) to accom-

modate all menus, we will focus on menus such that at least the maximization problem
2Gul–Pesendorfer preferences have been applied to a variety of models: e.g., Krusell, Kuruşcu, and

Smith (2000) to a neoclassical growth model; Krusell, Kuruşcu, and Smith (2002) and DeJong and
Ripoll (2003) to an asset-pricing problem; and Miao (2004) to an optimal stopping problem.

3We write (q′, t′) À (q, t) if q′ > q and t′ > t.
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associated with Uγ + Vγ has a maximum.
Functions Uγ and Vγ are the utility functions of the two different selves of the con-

sumer γ. Function Uγ represents the preferences of the untempted (or committed) self,
while Vγ represents the preferences of the tempted self. What the consumer actually
chooses is an offer (q̂, t̂) ∈ M that maximizes Uγ + Vγ (if a maximum exists), which is
considered as a compromise between the preferred alternatives of the two selves. On the
other hand, the second maximization problem identifies the most tempting alternatives
in the menu.

To see why we have the second maximization problem, we can rearrange (2) to
obtain

Wγ(M) = Uγ(q̂, t̂)−
[

sup
(q,t)∈M

Vγ(q, t)− Vγ(q̂, t̂)
]
,

where (q̂, t̂) denotes a maximizer of Uγ + Vγ . Then, the second term on the right-hand
side measures the utility that the tempted self loses from self-control: the tempted self
would like to maximize Vγ but ends up with (q̂, t̂) after self-control. The forgone utility
can be thought of quantifying the disutility from self-control and will be called the
self-control cost. With this definition, the overall utility from a menu M for type γ is
given by Uγ(q̂, t̂) minus the self-control cost.

While the first maximization in (2) attaches equal weights to the two utility func-
tions, this is without loss of generality since different weights can be accommodated by
changing the scales of the utility functions.

We assume that Uγ and Vγ are continuous, strictly increasing in q, strictly decreasing
in t, quasi-concave, and satisfy Uγ(0, 0) = Vγ(0, 0) = 0.

We now introduce binary relations (%, Â, ∼) defined over utility functions. Given
two utility functions U and Û , we write U % Û if at any point (q, t) ∈ R2

+, the
indifference curve of U is at least as steep as that of Û when we measure the first (resp.
second) argument on the horizontal (resp. vertical) axis. Formally, U % Û if and only
if for all (q, t), (q′, t′) ∈ R2

+ such that q′ > q, we have

Û(q′, t′) ≥ Û(q, t) implies U(q′, t′) ≥ U(q, t), and

Û(q′, t′) > Û(q, t) implies U(q′, t′) > U(q, t).

If U % Û and U % Û , then the two functions are ordinally equivalent in the sense that
they induce the same indifference map. This is denoted as U ∼ Û .

We also write U Â Û if the indifference curve of U is strictly steeper than that of
Û at any point (q, t) ∈ R2

+. Formally, U Â Û if and only if for all (q, t), (q′, t′) ∈ R2
+

such that q′ > q, we have

Û(q′, t′) ≥ Û(q, t) implies U(q′, t′) > U(q, t).

6



We assume the following on Uγ and Vγ .

A1. For all γ, γ′ ∈ Γ, if γ′ > γ, then Uγ′ Â Uγ , Vγ′ Â Vγ , and (Uγ′+Vγ′) Â (Uγ+Vγ).

A2. For all γ ∈ Γ, either Vγ Â Uγ or Vγ ≺ Uγ .

A3. For any pair of utility functions f, g ∈ {Uγ , Vγ , Uγ + Vγ : γ ∈ Γ} such that
f ≺ g and any pair of offers x, y ∈ R2

+ such that f(x) > f(y), there exists an offer
z ∈ R2

+ such that

f(z) = f(y),

g(z) = g(x).

A1 is a single-crossing property saying that the indifference curves of Uγ , Vγ , and
Uγ +Vγ are steeper (in the strict sense) for higher types. Given a menu, this assumption
implies that the most preferred quality level is (weakly) larger for higher types.

A2 says that each consumer is tempted in one direction or the other. For γ such
that Vγ Â Uγ (which implies Vγ Â Uγ + Vγ Â Uγ), the consumer’s marginal willingness
to pay for additional quality is higher when he is tempted than when he is not. This
means that the consumer is tempted towards goods of higher q, and hence we say
that the consumer is tempted upwards. On other hand, if Vγ ≺ Uγ (which implies
Vγ ≺ Uγ + Vγ ≺ Uγ), then the consumer’s marginal willingness to pay for additional q

is lower when she is tempted. Thus, the consumer is tempted downwards.
A3 appears complex but it suffices that for any two utility functions f and g such

that either f ≺ g or f Â g, any indifference curve of f crosses any indifference curve of
g somewhere, provided that these curves are first extended from R2

+ to R2 (that is, the
curves may hit the axes before they cross). The assumption simply rules out the case
where the indifference curves get closer and closer asymptotically but never cross.

We sometimes consider the case where preferences exhibit no income effect. Given
that a consumer is characterized by multiple preference relations, there are a few ways
to assume quasi-linearity. The simplest way is to assume that the preference relations
associated with U , V , and U +V are all quasi-linear (in the ordinal sense). An example
is the following:

Example. There exists a pair of functions u, v : R+ × Γ → R such that

Uγ(q, t) = u(q, γ)− t, (3)

Vγ(q, t) = βγ

[
v(q, γ)− t

]
, (4)

where βγ > 0 is the weight attached to the tempted utility.
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2.2 Computation of Ex-Ante Utility

Here is a convenient way to compute the (ex-ante) utility Wγ(M). Given a menu M

and a consumer type γ, let y ∈ R2
+ be an offer solving the following two equations:

Uγ(y) + Vγ(y) = sup
x∈M

[
Uγ(x) + Vγ(x)

]
,

Vγ(y) = sup
x∈M

Vγ(x).

That is, y is the intersection of the highest attainable indifference curves of Uγ + Vγ

and Vγ . The offer y itself does not necessarily belong to M but is well-defined if the
menu is bounded. The offer y is useful since Uγ(y) gives the consumer’s ex-ante utility
for the menu M :

Wγ(M) = Uγ(y) + Vγ(y)− Vγ(y) = Uγ(y).

2.3 Monopolist’s Problem

The monopolist can offer any finite number of menus. Given a number of menus S, let
(Ms)S

s=1 denote the list of menus offered by the firm.
Let an assignment function for a given list of menus (Ms)S

s=1 be a function α =
(s, (q, t)) : Γ → {0, 1, . . . , S}×R2

+ that specifies the menu and the offer that the monop-
olist expects a given consumer type to choose. The first component s(γ) ∈ {0, 1, . . . , S}
specifies the menu that consumers of type γ are expected to choose. If s(γ) = 0, con-
sumers γ are not expected to choose any menu and we define M0 ≡ {(0, 0)}. The
second and third components (q(γ), t(γ)) specify the offer that consumers γ are ex-
pected to accept. Since these consumers choose menu s(γ), the offer (q(γ), t(γ)) has to
be included in the menu: for all γ ∈ Γ,

(q(γ), t(γ)) ∈ Ms(γ). (5)

We often denote the pair (q(γ), t(γ)) as x(γ), so we write an assignment function as
α(γ) = (s(γ), x(γ)).

Let C(q) denote the per-consumer cost of producing good q. We assume that
C is differentiable, strictly increasing, convex, and satisfies C(0) = 0. For a given
offer (q, t) ∈ R2

+, let π(q, t) denote the per-consumer profits generated by the offer:
π(q, t) ≡ t−C(q). To simplify exposition, we assume that for any type γ and any utility
function fγ ∈ {Uγ , Vγ , Uγ + Vγ}, there exists a unique offer x À 0 that maximizes π(x)
subject to fγ(x) ≥ 0.

The monopolist’s problem is to choose a list of menus (Ms)S
s=1 and an associated
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assignment function α = (s, (q, t)) that maximize expected profits
∑

γ∈Γ

n(γ)
[
t(γ)− C(q(γ))

]
(6)

subject to the following pair of incentive-compatibility conditions:
Ex-Ante Incentive Compatibility. For each type γ ∈ Γ, choosing the menu s(γ) is

at least as good as choosing any other menu in terms of ex-ante utility:

Wγ(Ms(γ)) ≥ Wγ(Ms) for all s ∈ {0, 1, . . . , S}. (ex-ante IC)

Note that the right-hand side includes the option of s = 0. By definition, M0 ≡ {(0, 0)}
represents the option of not choosing any real menu: e.g., not entering any store or not
participating in any weight-loss plan. Thus ex-ante IC implies the following ex-ante
condition of individual rationality:

Wγ(Ms(γ)) ≥ 0. (ex-ante IR)

Ex-Post Incentive Compatibility. For each type γ ∈ Γ, the offer x(γ) ≡ (q(γ), t(γ)),
which is contained in the menu Ms(γ) by (5), is at least as good as any other offer in
the menu in terms of ex-post utility:

Uγ(x(γ)) + Vγ(x(γ)) ≥ Uγ(x) + Vγ(x) for all x ∈ Ms(γ). (ex-post IC)

Since we assume that each menu contains (0, 0) and we normalize Uγ(0, 0) = Vγ(0, 0) =
0, ex-post IC implies the following ex-post version of individual rationality:

Uγ(x(γ)) + Vγ(x(γ)) ≥ 0. (ex-post IR)

That is, choosing the assigned offer x(γ) is at least as good as not choosing any offer.4

A list σ = ((Ms)S
s=1, α) that satisfies both of the IC conditions is called a feasible

schedule. If it solves the maximization problem, we call it an optimal schedule.
Note that the profit in (6) depends only on the offers that the consumers actually

choose, i.e., (q(γ), t(γ)). This comes from our assumption that adding offers to a menu
is costless if they are not chosen by any consumer. Including such offers in a menu is
immaterial in the standard nonlinear pricing problem, but may be advantageous for
the seller in the present problem since such offers may tempt consumers and affect their
ex-ante utilities.5

4Note that the ex-ante conditions pertain to the assignment of menus while the ex-post conditions
pertain to the assignment of offers. Therefore, ex-ante IR does not imply ex-post IR since ex-ante IR
itself does not place any restriction on x(γ).

5Another implicit assumption in the above formulation is that the seller can add menus costlessly.
Introducing a small cost of creating menus (e.g., setup costs for retail stores) does not affect our
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To see the difference between our profit-maximization problem and the standard
one in the nonlinear pricing literature, suppose, for the moment, that the ex-ante utility
function for each consumer γ is given by

Wγ(M) = sup
x∈M

[
Uγ(x) + Vγ(x)

]
.

With this utility function, the utility for a menu depends only on the most preferred
offer in the menu. Therefore, the optimal schedule is identical to the standard optimal
tariff with consumers’ preferences given by Uγ + Vγ . This reduced problem is a useful
benchmark for our problem and will be referred to as the standard problem with utility
functions Uγ + Vγ .

Another useful benchmark is the case when there is no temptation at all: Vγ = Uγ

(or Vγ ∼ Uγ). In this case, Wγ(M) = supx∈M Uγ(x) and the seller’s problem reduces
to the standard problem with utility functions Uγ .

2.4 Perfect Discrimination

It is also useful to consider the case where the seller can observe each consumer’s type
directly and offer a menu for each type separately. A perfect discrimination offer for a
given type γ is an offer x∗γ that maximizes the per-consumer profit π(x) subject to

Uγ(x) + Vγ(x) ≥ 0, (7)

Uγ(x) + Vγ(x)−max{0, Vγ(x)} ≥ 0. (8)

That is, x∗γ is the most profitable offer that satisfies ex-post IR and such that the
associated singleton menu {x∗γ} satisfies ex-ante IR. Since (8) implies (7), the binding
constraint is (8):

Uγ(x∗γ) + Vγ(x∗γ)−max{0, Vγ(x∗γ)} = 0. (9)

If the consumer is tempted upwards (i.e., Vγ Â Uγ + Vγ), then Vγ(x∗γ) > 0 and
therefore (9) implies 0 = Uγ(x∗γ) + Vγ(x∗γ) − Vγ(x∗γ) = Uγ(x∗γ). Thus x∗γ is the offer at
which the iso-profit curve is tangent with the curve of Uγ = 0.

If the consumer is tempted downwards, on the other hand, an offer where the ex-
post IR condition (7) binds also satisfies the ex-ante IR condition (8) since the consumer
is tempted by (0, 0): Vγ(0, 0) > Vγ(x∗γ). Thus, the ex-post IR condition binds at x∗γ
and therefore x∗γ is the offer where the iso-profit curve is tangent with the curve of
Uγ + Vγ = 0.

To summarize, at the perfect discrimination offer x∗γ , the iso-profit curve is tangent

qualitative results.
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with the curve of Fγ = 0 where Fγ is defined by

Fγ ≡
{

Uγ if Uγ ≺ Uγ + Vγ ,

Uγ + Vγ if Uγ Â Uγ + Vγ .
(10)

Thus, what is tangent with the iso-profit curve is the “flatter” curve between Uγ = 0
and Uγ + Vγ = 0. Under our assumption, the offer x∗γ is unique for each type. The
following lemma will be useful.

Lemma 1. Suppose that an offer x maximizes Uγ + Vγ in a menu M . Then M

satisfies ex-ante IR for γ only if Fγ(x) ≥ 0. If x is the only non-trivial offer in the
menu, i.e., M = {x}, then M satisfies ex-ante IR for γ if and only if Fγ(x) ≥ 0.

Proof. Since supy∈M Vγ(y) ≥ max{0, Vγ(x)},

Wγ(M) = Uγ(x) + Vγ(x)− sup
y∈M

Vγ(y)

≤ min{Uγ(x), Uγ(x) + Vγ(x)}. (11)

The second line is non-negative if and only if Fγ(x) ≥ 0. If M = {x}, then supy∈M Vγ(y) =
max{0, Vγ(x)} and hence the inequality in (11) holds with equality. Q.E.D.

3 Optimal Menu of Menus

We now characterize the optimal schedule for the seller when there are only two types
of consumers: γL and γH such that γL < γH . Let nL and nH denote the fractions of
consumers of types γL and γH , respectively (nL + nH = 1).

The following lemma is useful and general.

Lemma 2. For consumers with downward temptation, any menu satisfies ex-ante IR.

Proof. Let γ be any type who is tempted downwards. Let M be any menu and x

be any offer in M such that Vγ(x) ≥ 0. Since the consumer is tempted downwards,
Vγ(x) ≥ 0 implies Uγ(x) ≥ 0 and hence

Uγ(x) + Vγ(x) ≥ Vγ(x),

which implies

sup
y∈M

[
Uγ(y) + Vγ(y)

] ≥ Vγ(x).
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Since this holds for all x ∈ M such that Vγ(x) ≥ 0, we have

sup
y∈M

[
Uγ(y) + Vγ(y)

] ≥ sup
y∈M

Vγ(y),

which means Wγ(M) ≥ 0. Q.E.D.

A corollary of this lemma is that if all consumers are tempted downwards, the ex-
ante IR condition can be ignored completely. An interesting implication is that if the
optimal schedule consists of a single menu, the only effective condition is ex-post IC
(which includes ex-post IR) and therefore the optimal schedule coincides with that in
the standard problem with utility functions Uγ + Vγ .

3.1 When High Type is Tempted Upwards

To characterize the optimal schedule, we first consider the case when the high-type
consumers are tempted upwards: VH Â UH + VH . The next proposition states that
if the high-type consumers are tempted upwards, the monopolist can obtain the level
of profits associated with perfect discrimination: it is as if the seller can observe con-
sumers’ types directly. To achieve perfect discrimination, the monopolist offers two
menus and “decorates” the one assigned to the low type by adding an offer that is ir-
relevant for the low type but is tempting and ex ante undesirable for the high type. By
adding such an offer, the seller can deter the high type from choosing the menu. This
effectively eliminates the incentive-compatibility condition for the high-type consumers
and enables the seller to extract the full surplus from them.

Proposition 1. If the high-type consumers are tempted upwards, then the optimal
schedule assigns the perfect discrimination offer to each type and generates the same
level of profits as perfect discrimination.

Proof. Let x∗L and x∗H denote the perfect discrimination offers for L and H, respec-
tively. See Figure 1. Since the high type is tempted upwards, FH = UH . Let y be the
intersection of the UH = 0 curve and the indifference curve of UH + VH through x∗L:

UH(y) + VH(y) = UH(x∗L) + VH(x∗L), (12)

UH(y) = 0.

The offer y is well defined by Assumption A3.
If VL(y) ≤ VL(x∗L) (which occurs if VL ≺ UH + VH , which is the case if the low

type is tempted downwards), then let z = y. Otherwise, let z be the intersection of the

12
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Figure 1: Optimal schedule in Proposition 1

indifference curve of VL through x∗L and the indifference curve of VH through y:

VL(z) = VL(x∗L),

VH(z) = VH(y). (13)

We claim that an optimal schedule is to offer ML = {x∗L, z} to L and MH = {x∗H} to
H, assigning x∗L and x∗H to L and H, respectively. To see that this schedule is feasible,
we compute each type’s ex-ante utility and ex-post optimal choice for each menu.

If the high type chooses MH : By the definition of x∗H (see (9)), the high type’s
ex-ante utility from {x∗H} is zero. Since UH(x∗H) = 0 and the high-type consumers are
tempted upwards, we have UH(x∗H)+VH(x∗H) > 0. Thus, upon choosing MH , high-type
consumers will indeed choose x∗H over (0, 0).

If the high type chooses ML: Upon choosing ML, high-type consumers are willing to
choose x∗L. Indeed, (12) implies that they are indifferent between x∗L and y. In the case
of z 6= y, since z À y and VH Â UH +VH , we have UH(y)+VH(y) = UH(x∗L)+VH(x∗L) ≥
UH(z) + VH(z). On the other hand, the high-type consumers are tempted by z in the
menu: since x∗L and y are indifferent for UH + VH , y À x∗L, and VH Â UH + VH , we
have VH(y) > VH(x∗L), which together with (13) implies VH(z) > VH(x∗L). Putting
these facts together, we obtain that the high-type consumers’ ex-ante utility from ML
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is

UH(x∗L) + VH(x∗L)− VH(z) = UH(y) = 0.

Thus, ex ante, the high-type consumers are indifferent between ML, MH , and M0.
If the low type chooses MH : Since UL(x∗H) < 0 = UL(0, 0) and the self-control costs

are non-negative, the low type’s ex-ante utility from MH is at most 0.
If the low type chooses ML: By the previous argument, the high-type consumers

like x∗L at least as well as z in terms of UH + VH . Since UL + VL ≺ UH + VH and
z À x∗L, the low-type consumers prefer x∗L to z in terms of UL + VL. Since x∗L satisfies
ex-post IR by (7), the low-type consumers will indeed choose x∗L upon facing the menu
ML. We also show that the low type’s ex-ante utility from ML is zero. Indeed, since
VL(x∗L) ≥ VL(z), i.e., x∗L is at least as tempting as z, the offer z does not affect the low
type’s ex-ante utility at all. Then ML is equivalent to the singleton menu {x∗L} for the
low type, and {x∗L} gives zero ex-ante utility to the low type by the definition of x∗L.
Thus, the low type has a (weak) incentive to choose ML over MH and M0. Q.E.D.

Therefore, if the high-type consumers are tempted upwards, then regardless of the
direction of the low-type consumers’ temptation, the seller can achieve the same level
of profits and purchasing pattern as in the case of perfect discrimination.6 The seller
decorates the menu intended for the low type with the offer z. The offer z is irrelevant
for the low type, but it is tempting to the high-type consumers and increases their
self-control costs up to the point where their ex-ante utility from the menu is zero.
Then the high type does not have any incentive to mimic the low type, and therefore
the menu for the high type needs to satisfy ex-ante IR only.7

For this perfect-discrimination result, it is immaterial how strongly the high-type
consumers are tempted upwards. What matters is VH Â UH , i.e., the marginal valua-
tion for additional quality is higher for VH than UH . The magnitude of the difference
may be arbitrarily small as long as the crossing condition A3 is satisfied. In addition,
since the condition VH Â UH depends only on the ordinal preferences associated with
these utility functions, the scales of these functions are not important. In particular,
the result holds even if the scale of VH is arbitrarily small compared to that of UH .
That is, the result remains true even if we scale down VH by multiplying it by a small
positive number ε > 0.

6For some cases, perfect discrimination can be achieved with a single menu. Indeed, if the low-
type consumers are tempted downwards and UH(x∗H) + VH(x∗H) ≥ UH(x∗L) + VH(x∗L), then an optimal
schedule offers a single menu M = {x∗L, x∗H}.

7The perfect-discrimination result also holds if self-control is costless, that is, consumers’ ex-ante
utility from a menu is given by Uγ(x̂γ) where x̂γ is a maximizer of Uγ + Vγ . Thus the consumer
anticipates his temptation and self-control (i.e., the fact that he will maximize Uγ + Vγ) but does not
incur psychological costs of self-control. With this utility formulation, perfect discrimination can be
achieved by the schedule constructed above with z ≡ y.
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The result implies that the optimal schedule and the maximum attainable profits for
the seller may change discontinuously as consumers’ preferences change. This can be
seen by considering the case where consumers have no temptation problem: Vγ = Uγ for
all consumers. With no temptation, the seller’s optimal strategy is to offer the optimal
menu M s = {xs

L, xs
H} in the standard nonlinear pricing problem where utility functions

are given by Uγ . By comparing these offers with perfect discrimination offers, we can
easily see that π(xs

L) ≤ π(x∗L) and π(xs
H) ≤ π(x∗H), and at least one of the inequalities

holds strictly under our assumptions. Thus

nLπ(xs
L) + nHπ(xs

H) < nLπ(x∗L) + nHπ(x∗H). (14)

Then, under no temptation, the optimal menu generates strictly less profits than perfect
discrimination.8 However, according to Proposition 1, once the high type’s temptation
preferences VH change slightly to exhibit upward temptation, the seller can achieve
perfect discrimination and obtain the profit level equal to the right-hand side of (14).

3.2 When High Type is Tempted Downwards

We now characterize the optimal schedule when the high-type consumers are tempted
downwards (i.e., VH ≺ UH + VH ≺ UH). As mentioned in the introduction, downward
temptation is not unusual. In some contexts, downward temptation is actually the
norm. We characterize the optimal schedule by proving a series of lemmas.

The first lemma shows that at any optimal schedule, the offer chosen by a high-
type consumer is at least as profitable for the seller as the one chosen by a low-type
consumer. The lemma also gives a lower bound for the maximum attainable profit for
the seller.

Lemma 3. Suppose that the high-type consumers are tempted downwards. If xH

and xL are the offers chosen by γH and γL at an optimal schedule, respectively, then
π(xH) > π(xL) and nHπ(xH) + nLπ(xL) > π(x∗L).

Proof. To prove the first inequality (which is not trivial since xL and xH might
belong to different menus), suppose that the inequality does not hold. Then π(xH) ≤
π(xL) ≤ π(x∗L), where x∗L is the perfect discrimination offer for L. See Figure 2.
Consider the schedule σ that offers a single menu M = {x∗L, x̂H}, where x̂H maximizes
π(·) subject to

UH(x̂H) + VH(x̂H) = UH(x∗L) + VH(x∗L). (15)

8On the other hand, if there is temptation, the seller’s profit in the standard problem with utility
functions Uγ + Vγ may be higher or lower than the profit from perfect discrimination. The reason is
that while x∗H has to be on the UH = 0 curve, the standard problem with Uγ + Vγ may assign an offer
above UH = 0 to the high type.
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Figure 2: Proof of Lemma 3. The curves labeled C are iso-profit curves and vertical
translations of the cost curve.

The assignment function is such that all consumers choose the menu M (over the trivial
menu M0 = {(0, 0)}) and x∗L and x̂H are chosen by the low-type consumers and the
high-type consumers, respectively. We first show that this schedule is feasible.

Since FL - UL + VL ≺ UH + VH and the indifference curve of FL is tangent with
the iso-profit curve at x∗L, we have x̂H À x∗L, FL(x̂H) < 0, and π(x̂H) > π(x∗L).

Given the menu M , we first consider the choice and utility of the low-type con-
sumers. Since FL(x∗L) = 0 and FL - UL + VL, we have UL(x∗L) + VL(x∗L) ≥ 0. On the
other hand, (15), x̂H À x∗L, and UH + VH Â UL + VL imply that UL(x∗L) + VL(x∗L) ≥
UL(x̂H) + VL(x̂H). Therefore, x∗L is an ex-post optimal choice for the low-type con-
sumers once they choose the menu M .

To show that M satisfies ex-ante IR for the low type, suppose that the low type is
tempted upwards (otherwise, ex-ante IR follows from Lemma 2). Since the high-type
consumers are tempted downwards,

UH + VH Â VH Â VL.

This together with (15) and x̂H À x∗L implies that VL(x∗L) ≥ VL(x̂H), i.e., x∗L is at least
as tempting as x̂H . Thus, the low type’s ex-ante utility from M is 0 by (9).

For the high-type consumers, since they are tempted downwards, any menu satisfies
ex-ante IR. It is evident that x̂H satisfies ex-post IC.

We have shown that offering the menu M = {x∗L, x̂H} satisfies all the incentive
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constraints. Since π(x̂H) > π(x∗L) ≥ π(xL) ≥ π(xH), the menu generates more profits
than the optimal schedule, a desired contradiction.

Lastly, the argument above also shows that the monopolist can always guarantee
itself profits of nLπ(x∗L) + nHπ(x̂H) > π(x∗L). Q.E.D.

The next lemma shows that at any optimal schedule, the low-type consumers derive
a higher utility in terms of FL from the offer assigned to them than from the offer
assigned to the high type (even if these offers belong to different menus).

Lemma 4. Assume that the high-type consumers are tempted downwards and con-
sider any optimal schedule. If xL and xH are the offers assigned to L and H, respec-
tively, then FL(xL) > FL(xH), where FL is defined by (10).

Proof. Suppose otherwise. Let ML denote the menu assigned to the low type. Since
ML satisfies ex-ante IR for the low type, Lemma 1 implies FL(xL) ≥ 0. Since x∗L is the
most profitable offer satisfying FL(x) ≥ 0 and we have FL(xH) ≥ FL(xL) ≥ 0, it follows
that π(x∗L) ≥ π(xH). But Lemma 3 implies π(xH) > π(x∗L), a contradiction. Q.E.D.

To obtain sharper characterizations, we further classify the high-type consumers
on the basis of the degree of their downward temptation, which can be measured by
comparing VH and UL + VL.

Definition. The high type’s downward temptation is weak if VH Â UL + VL and
strong if VH ≺ UL + VL.

Since the high type is tempted downwards, UL + VL ≺ UH + VH ≺ UH and VH ≺
UH + VH . Thus if VH is sufficiently similar to UH in terms of the marginal rate of
substitution, then temptation is weak. It is worth noting that the distinction of weak vs.
strong temptation depends only on ordinal preferences induced by the utility functions
and is independent of the scales of these functions. That is, the high type’s temptation
may be strong even when the scale of the function VH is arbitrarily small and therefore
self-control is not very costly. In other words, weak vs. strong temptation pertains to
how much temptation can possibly affect preferences (i.e., VH) and not how much it
actually does (i.e., UH + VH). This notion of weak vs. strong temptation turns out to
be useful for characterizing optimal schedules.

In what follows, we consider each case in turn, starting with the case of weak
temptation.

3.2.1 When High Type’s Temptation is Weak

The following lemma shows that the seller gains nothing from decorating the menu
intended for the low type.
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Lemma 5. Suppose that the high type’s downward temptation is weak, and let ML

and xL denote the menu and offer assigned to the low type at an optimal schedule.
If the high type is assigned to a different menu, then replacing ML with {xL} yields
another optimal schedule.

Proof. Since offers in ML \ {xL} may be tempting to the low type, WL(ML) ≤
WL({xL}). Therefore, it suffices to show WH(ML) ≥ WH({xL}), i.e., decorating the
menu for the low type does not decrease the high type’s ex-ante utility from the menu.
To prove this, let ε > 0. Then there exists an offer z ∈ ML such that

VH(z) > sup
y∈ML

VH(y)− ε,

VH(z) ≥ VH(xL). (16)

Thus the high type’s ex-ante utility from ML is

WH(ML) ≥ UH(z) + VH(z)− sup
y∈ML

VH(y) > UH(z)− ε.

Note that z has to satisfy UL(z) + VL(z) ≤ UL(xL) + VL(xL) (by ex-post IC) as well
as (16) and that VH Â UL + VL (weak temptation). Thus if z 6= xL, then z À xL and
hence UH(z) > UH(xL). Therefore, whether z = xL or not, WH(ML) > UH(xL) − ε.
Since ε > 0 is arbitrary, WH(ML) ≥ UH(xL) = WH({xL}). Q.E.D.

The next lemma shows that if the high type’s downward temptation is weak, then
at any optimal schedule, FL = 0 holds.

Lemma 6. Assume the high type’s downward temptation is weak. If xL is the offer
assigned to the low type in an optimal schedule, then FL(xL) = 0. Thus UL(xL) = 0
if the low-type consumers are tempted upwards and UL(xL) + VL(xL) = 0 if they are
tempted downwards.

Proof. Let ML and MH be the menus assigned to the low type and the high type,
respectively (possibly ML = MH). Let xH ∈ MH be the offer assigned to the high
type. Since ML satisfies ex-ante IR for the low type, FL(xL) ≥ 0. Suppose, by way of
contradiction, that FL(xL) > 0. By Lemma 4, FL(xL) > FL(xH). Hence, there exists
a small number ε > 0 such that

FL(xL + (0, ε)) > max{0, FL(xH)}. (17)

Let x′L ≡ xL + (0, ε). Consider a schedule σ′ that offers M ′
L ≡ {x′L} and M ′

H ≡ {xH}.
We show that this generates more profits.

Consider the low-type consumers first. By the construction of x′L (i.e., (17)), x′L
satisfies ex-post IR and M ′

L = {x′L} satisfies ex-ante IR for the low type. Thus, if the
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low-type consumers indeed choose M ′
L, then they will choose x′L (over (0, 0)) and this

increases the seller’s profits since π(x′L) > π(xL). However, the low-type consumers may
prefer M ′

H . If they prefer and choose M ′
H , they will choose xH , which also increases

the seller’s profits since π(xH) > π(xL) by Lemma 3.
Consider now the high-type consumers. Since M ′

H ⊇ MH and offers in M ′
H \MH

may be tempting to the high type, WH(M ′
H) ≥ WH(MH). By the argument in the

proof of Lemma 5, WH(ML) ≥ UH(xL). Thus

WH(M ′
H) ≥ WH(MH) ≥ WH(ML) ≥ UH(xL) > UH(x′L) = WH(M ′

L).

This shows that the high type’s ex-ante optimal menu is M ′
H . Once they choose M ′

H ,
they choose xH . Therefore, the schedule σ′ generates the same profits from the high-
type consumers as the optimal schedule. Since σ′ generates strictly more profits from
the low-type consumers, we obtained a desired contradiction. Q.E.D.

We now show that offering a single menu is not an optimal strategy if the seller
sells to both consumer types. The optimal strategy is to tailor a menu for each type.

Proposition 2. If the high type’s downward temptation is weak, then any optimal
schedule that sells some good q > 0 to low-type consumers offers a separate menu for
each type of consumers.

Proof. Suppose, by way of contradiction, that there exists an optimal schedule that
offers a single menu M and such that the low-type consumers choose an offer (q, t) such
that q > 0. Let xL and xH denote the offers that each type chooses under the optimal
schedule. By Lemma 6, FL(xL) = 0. Profit maximization within one menu implies
that the ex-post IC binds for the high type: UH(xH) + VH(xH) = UH(xL) + VH(xL).
Since the cost function is differentiable, xH À xL. This and VH ≺ UH + VH imply
VH(xL) > VH(xH). Since xL À 0 and VH Â UL + VL % FL, we have VH(xL) > 0 and
hence VH(xL) > max{0, VH(xH)}. This implies that the high type prefers a singleton
menu {xH} to another singleton menu {xL}:

WH({xH}) = UH(xH) + VH(xH)−max{0, VH(xH)}
= UH(xL) + VH(xL)−max{0, VH(xH)}
> UH(xL) = WH({xL}).

Now, consider an alternative schedule that offers ML ≡ {xL} and MH ≡ {xH +
(0, ε)} where ε > 0. If ε is sufficiently small, the high-type consumers prefer MH to ML,
and once they choose MH , they will choose xH+(0, ε) over (0, 0). Since FL(xH+(0, ε)) <

0, it is easy to verify that the low-type consumers get a zero ex-ante utility from ML

and MH , having a weak incentive to choose ML and xL. Since ε > 0, this schedule
generates more profits than the optimal one, a desired contradiction. Q.E.D.
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Figure 3: Optimal schedule when high type has weak downward temptation

The intuition behind Proposition 2 is simple. If only one menu is offered, the
high-type consumers are tempted by the offer intended for the low type. Thus, the
high-type consumers are willing to pay a premium if there is a separate menu that does
not contain the tempting offer. For example, in the case of weight-loss programs, if
a single plan serves dieters with different levels of eagerness, a reasonable weight loss
for a group of dieters may work as a tempting outcome for more eager dieters and
make them suffer more from self-control. Thus these eager dieters are willing to pay a
premium for a plan that is targeted for their aimed level of weight loss.

We can now describe the optimal schedule concretely. See Figure 3. By Lemmas 5
and 6, we can assume that the menu given to the low type is of the form {xL} such
that FL(xL) = 0. One option for the seller is to offer the perfect discrimination offer
x∗L to the low type. With this choice, the set of offers that can be assigned to the high
type is given by the kinked curve that follows the indifference curve of UH from x∗L to
y and then follows the indifference curve of UH + VH to the right. This kinked curve
is the set of offers x such that {x} gives the same ex-ante utility as {x∗L} for the high
type. Let xH denote the offer that is most profitable on the kinked curve. To consider
the interesting case, suppose, as in the figure, that the offer xH is on the indifference
curve of UH .

We now decrease the quality level offered to the low type along the FL = 0 curve.
Then, the kinked curve shifts upwards and therefore the most profitable offer that can
be given to the high type moves up (straight if preferences are quasi-linear). However,
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it eventually hits the VH = 0 curve. At this point, the offer for the high type is at the
kink and remains so for a while as we continue moving the offer given to the low type.
For example, if x′L is given to the low type, the most profitable offer that can be given
to the high type is y′. As we continue, the offer for the high type eventually moves to an
indifference curve of UH + VH , as depicted by x′′H . The pair of thick lines in the figure
show the paths of the offers. The seller’s problem is then to identify an offer x̂L between
the origin and x∗L on the FL = 0 curve to maximize the profits nLπ(x̂L) + nHπ(x̂H)
where x̂H is the associated offer for the high type. If the solution is such that x̂L 6= 0,
then the optimal schedule is to offer the singleton menus {x̂L} and {x̂H}. If x̂L = 0,
the optimal schedule is to offer {x̂H} only.

It is worth noting that the standard result of “no distortion at the top” does not
necessarily hold here. Indeed, if the optimal schedule offers a pair of menus like {x′L}
and {x′H} in the figure, then at the offer x′H , the iso-profit curve is not tangent with
the indifference curve of either UH or UH + VH .

To see the benefit of offering multiple menus, suppose that the seller is restricted
to offer one menu. Then, by ex-post IC, the offer to the high type needs to be on the
indifference curve of UH + VH that passes through the offer to the low type. Since the
high type is tempted downwards, the indifference curves of UH + VH are flatter than
those of UH . Therefore, one can see that, by offering two menus, the seller can expand
the set of offers that can be assigned to the high type, for any given offer to the low
type on FL = 0, if the low type is assigned a non-trivial good q > 0.

It is also interesting to compare the optimal schedule described above and that when
there is no temptation, i.e., Vγ = Uγ . To make the comparison meaningful, consider
the same set of functions Uγ and vary Vγ . Recall that, in the case when the high type
is tempted upwards, the presence of temptation makes perfect discrimination possible
and increases profits. In the current case, however, the presence of temptation actually
lowers profits, at least weakly and sometimes strictly. Indeed, without any temptation,
the optimal schedule offers a menu {xL, xH} such that FL(xL) = UL(xL) = 0 and
UH(xH) = UH(xL). A critical difference from the case with temptation is that, as we
move xL to the left on the FL = 0 curve, the associated xH moves up without hitting
the constraint of VH = 0 since VH = UH . Facing fewer constraints, the seller can earn
at least as much as in the presence of temptation. Recall that when there is temptation,
the constraint VH = 0 matters since an offer xH above the curve generates a positive
self-control cost for the high-type consumers, which lowers their ex-ante utility and
limits the amount of profits the seller can extract from them. Without temptation, this
effect disappears since there is no self-control cost.

3.2.2 When High Type’s Temptation is Strong

We now consider the case in which the high-type consumers have preferences with
strong downward temptation: VH ≺ UL + VL ≺ UH + VH . Note that since VL ≺ VH ,
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we have VL ≺ VH ≺ UL + VL and hence the low-type consumers are also tempted
downwards.

Since all consumers are tempted downwards, if the optimal schedule offers only
one menu, then as we mentioned earlier, the menu is simply the optimal menu in the
standard problem with utility functions Uγ +Vγ . We show that, indeed, offering a single
menu is optimal for the seller provided that preferences are quasi-linear. The key is the
following result.

Lemma 7. Suppose that the high type’s downward temptation is strong and the
preference relations associated with Uγ +Vγ and Vγ are quasi-linear for each type. Then
if xL is the offer assigned to the low type under an optimal schedule, UL(xL)+VL(xL) =
0.

Proof. Fix an optimal schedule σ. Let ML and MH (possibly ML = MH) denote
the menus that each type chooses and let xL ∈ ML and xH ∈ MH denote the offers
that each type chooses. See Figure 4. (For simplicity, xH is not shown since its location
is immaterial for the proof.) Suppose, by way of contradiction, that the ex-post IR is
not binding for the low type: UL(xL) + VL(xL) > 0. Then there exists t′ > 0 such that
the offer defined by x′L ≡ xL + (0, t′) satisfies UL(x′L) + VL(x′L) = 0. We consider a
schedule σ′ that offers the following set of menus:

{x′L} and {xH} if π(xH) > π(x′L),

{x′L} if π(xH) ≤ π(x′L).

We claim that offering this set of menus generates more profits than the optimal sched-
ule, which is a desired contradiction. Since x′L is more profitable than xL, it suffices
to show that the low type chooses x′L and the high type chooses xH in the first case
and x′L in the second. Since x′L satisfies ex-post IR for both types and ex-ante IR is
vacuous, what remains to be proved is that the high type likes the menu {xH} at least
as well as {x′L}: WH({xH}) ≥ WH({x′L}).

First, WH({x′L}) is given by

WH({x′L}) = UH(x′L) + VH(x′L)−max{0, VH(x′L)}
= UH(x′L) + VH(x′L) (18)

since VH ≺ UL + VL. On the other hand, since offers in MH \ {xH} may be tempting
for the high type,

WH({xH}) ≥ WH(MH). (19)
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Figure 4: Proof of Lemma 7

Since the initial schedule satisfies ex-ante IC,

WH(MH) ≥ WH(ML). (20)

The ex-post IC for the low type in the initial schedule implies that none of the
offers in ML is below the indifference curve of UL + VL that passes through xL. Since
VH ≺ UL + VL, no offer in ML is more tempting for the high type than the offer (q̂, 0)
defined by

UL(q̂, 0) + VL(q̂, 0) = UL(xL) + VL(xL). (21)

That is,

VH(q̂, 0) ≥ VH(x) for all x ∈ ML.

Since the right-hand side of (21) is strictly positive, q̂ is well-defined and q̂ > 0. By
quasi-linearity, UL(q̂, t′) + VL(q̂, t′) = 0. Let t′′ > 0 be defined by VH(q̂, t′′) = 0. Since
VH ≺ UL + VL, we have t′′ < t′.

Let y be an offer such that

VH(y) = VH(q̂, 0), (22)

UH(y) + VH(y) = UH(xL) + VH(xL). (23)
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Then

WH(ML) ≥ UH(xL) + VH(xL)− VH(q̂, 0)

= UH(y) + VH(y)− VH(y)

= UH(y) + VH(q̂, t′′) since VH(q̂, t′′) = 0

= UH(y) + VH(y + (0, t′′)) by (22)

> UH(y + (0, t′)) + VH(y + (0, t′)) by t′ > t′′ > 0

= UH(x′L) + VH(x′L) by (23).

This, together with (18)–(20), implies WH({xH}) > WH({x′L}), as desired. Q.E.D.

An implication of Lemma 7 is that the seller gains nothing by decorating the menu
assigned to the low type. To see this, consider an optimal schedule and let xL and ML

denote the offer and the menu assigned to the low-type consumers. Then since the low
type’s ex-post IR binds at xL and the high type’s temptation is strong (i.e., VH ≺ UL +
VL), the most tempting offer in ML for the high type is (0, 0), i.e, supx∈ML

VH(x) = 0,
regardless of other offers that may be present in the menu. The seller cannot change
this by decorating the menu, without violating the low type’s ex-post IC. This implies

WH(ML) ≥ UH(xL) + VH(xL) = WH({xL}).

Thus, decorating the menu for the low type cannot lower the high type’s ex-ante utility
from the menu and therefore the conclusion of Lemma 5 extends to the current case.

The difference from the previous case is that the seller also gains nothing from
offering multiple menus. To see this, note that

UH(xL) + VH(xL) ≤ WH(ML) ≤ WH(MH) ≤ UH(xH) + VH(xH),

where MH and xH denote the menu and the offer assigned to the high type. The
inequalities imply that at any optimal schedule, xH and xL satisfy the ex-post IC for
the high type even though xH and xL may belong to different menus. This means that
offering multiple menus does not enlarge the set of offers that can be given to the high
type and therefore it suffices to offer a single menu. Thus

Proposition 3. If the high type’s downward temptation is strong and the preference
relations associated with Uγ +Vγ and Vγ are quasi-linear for each type, then an optimal
schedule is a solution to the standard problem with utility functions Uγ + Vγ.

The comparison with the case with no temptation is relatively transparent. When
there is no temptation, the optimal schedule is identical to the one given in Proposi-
tion 3 with Vγ = Uγ . As we change Vγ to introduce downward temptation, the optimal
schedule changes and the seller’s profits decrease. However, the profits change contin-
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uously and do not exhibit the discontinuous jump that we saw in the case when the
high type is tempted upwards.

4 Entry Fee

We have so far assumed that any menu contains (0, 0), which means that consumers who
do not buy any good do not have to pay. This assumption plays an important role in
the above analysis since consumers with downward temptation may be tempted by the
option (0, 0) and the firm cannot remove this option from the menus. The assumption
that (0, 0) is included in any menu is certainly reasonable if menus represent retail
stores or restaurants. On the other hand, for weight-loss programs, gym clubs, cell-
phone plans, and other services, firms often charge initial fees independently of service
usage (e.g., fixed monthly fees), which correspond to the price of choosing q = 0. Once
a consumer chooses a menu with such a fee, (0, 0) as the final consumption is not
available. In this section, we extend our analysis to the case where the seller can charge
initial fees.

The model is the same as before except that menus are not required to include (0, 0).
With this change, ex-post IR does not follow from ex-post IC and hence need not be
imposed. On the other hand, the change does not affect ex-ante IR, since consumers
continue to have the option of not choosing any menu.

The perfect discrimination offer x∗γ is then the most profitable offer subject to the
constraint that {x∗γ} satisfies ex-ante IR. Since the menu {x∗γ} does not contain the
option (0, 0) (i.e., the menu is truly a singleton), it does not induce any temptation for
the consumer. Hence, for each type, x∗γ is simply the offer that maximizes π(x) subject
to Uγ(x) = 0.

High Type with Upward Temptation. The perfect discrimination result (Proposi-
tion 1) continues to hold without any change. The construction of the optimal schedule
(and the decoration) is also identical. The proof is therefore omitted.

Proposition 4. If the high-type consumers are tempted upwards, the optimal sched-
ule assigns the perfect discrimination offer to each type and generates the same level of
profits as perfect discrimination.

High Type with Weak Downward Temptation. For the case where the high-type
consumers are tempted downwards and their temptation is weak, Proposition 2 con-
tinues to hold: the optimal schedule that does not exclude the low-type consumers
offers multiple menus. However, the optimal menu of menus may differ from that with-
out entry fees. Specifically, the optimal schedule can be characterized as follows. By
the argument in the proof of Lemma 5, WH(ML) ≥ UH(xL) for any optimal sched-
ule. By ex-ante IC, WH(MH) ≥ WH(ML). Since the self-control cost is non-negative,
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UH(xH) ≥ WH(MH). Putting these inequalities together, we get

UH(xH) ≥ UH(xL). (24)

For the low type, non-negative self-control cost and ex-ante IR imply

UL(xL) ≥ WL(ML) ≥ 0. (25)

Inequalities (24) and (25) show that the menu {xH , xL} satisfies the pair of binding
constraints in the standard nonlinear pricing problem with utility functions Uγ . Thus,
the standard problem with utility functions Uγ has fewer constraints. Let {xH , xL}
denote the optimal menu in the standard problem (possibly xL = 0). We claim that
offering a pair of singleton menus {xH} and {xL} is optimal in our problem. Indeed,
since these menus are truly singletons and do not induce any temptation, consumers
evaluate them by Uγ . Thus

WH({xH}) = UH(xH) = UH(xL) = WH({xL}),
WL({xL}) = UL(xL) = 0 ≥ UL(xH) = WL({xH}).

This shows that the pair of singleton menus satisfies ex-ante IC and ex-ante IR. Since
the pair (xL, xH) maximizes profits subject to (24) and (25), there is no schedule that
generates more profits. Thus

Proposition 5. If the high-type consumers are tempted downwards and their temp-
tation is weak, an optimal schedule is to offer {xL} and {xH} where (xL, xH) is a
solution to the standard problem with utility functions Uγ.

High Type with Strong Downward Temptation. In the case where the high-type
consumers are tempted downwards strongly, the feasibility of entry fees changes the
character of the optimal schedule considerably: the optimal schedule differs from the
one in Proposition 3 in many respects, as described below.

First, since ex-post IR does not have to be satisfied, the seller can offer xL such
that UL(xL) = 0. That is, the seller can offer the optimal single menu for the standard
problem where utility functions are UL for the low type and UH +VH for the high type.
Since UL is steeper than UL + VL, this menu generates more profits than the one in
Proposition 3.

Second, the seller can earn even more profits by offering multiple menus, as in
Proposition 5. Indeed, if the seller divides the menu into two separate menus {xL}
and {xH}, ex-post IC becomes vacuous (since menus are singletons) and ex-ante IC
for the high type requires UH(xH) ≥ UH(xL), which allows for more profits than
ex-post IC for the high type in the single-menu schedule, i.e., UH(xH) + VH(xH) ≥
UH(xL) + VH(xL). Thus, the schedule in the previous paragraph is dominated by the
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Figure 5: Decoration is profitable

schedule in Proposition 5.
Finally, the seller may be able to do even better by decorating the menu intended for

the low type and thereby weakening the ex-ante IC condition for the high type. To see
this, let {xL} and {xH} be the pair of menus offered by the schedule in Proposition 5.
Suppose further that the scale of the function VL is small and therefore UL + VL and
UL induce similar indifference curves. That is, the low type’s temptation is not intense
and has little influence on the actual choice. For the example (4), this means that
the weight βL is small. The seller can then offer a pair of menus {x′L, (0, 0)} and {x′H}
depicted in Figure 5, where (0, 0) is a decoration that is added in the menu intended for
the low type to tempt the high type. The high type’s ex-ante utility from the decorated
menu is then

WH({x′L, (0, 0)}) = UH(x′L) + VH(x′L)− VH(0, 0) = UH(y) < UH(xL) = WH({xL}).

The strict inequality holds as long as x′L is sufficiently close to xL, which is guaranteed
if the indifference curve of UL + VL is sufficiently close to that of UL. The inequality
implies that the decoration makes the menu intended for the low type less desirable
for the high type and hence the seller can extract more from the high type. The offer
x′H is located strictly above xH and the difference between them is bounded away from
zero as x′L approaches to xL. Thus, if the indifference curves of UL + VL and UL are
sufficiently close to each other, the decorated schedule generates strictly larger profits.

The optimal schedule can be identified as follows. See Figure 6. Pick an offer z such
that UL(z) = 0 and another offer xL that is indifferent to z for UL + VL and such that
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Figure 6: Optimal schedule with strong downward temptation

xL ≥ z (so that UL(xL) ≥ 0). Given a choice of z and xL, compute the high type’s ex-
ante utility from the menu {xL, z}, which is equal to UH(y) in the figure. Then, among
the offers xH such that UH(xH) = UH(y), choose one that maximizes the per-consumer
profit π(xH). Then nHπ(xH) + nLπ(xL) gives the maximum level of profits Π(xL, z)
that the seller can earn given the choice {xL, z}. To look for the optimum, first vary
xL between z and A on the UL + VL indifference curve to maximize Π(xL, z). This
gives an optimal offer xL(z) as a function of z. Finally, choose z between (0, 0) and x̂L

to maximize Π(xL(z), z), where x̂L is the offer given to the low type in the schedule of
Proposition 5. If the chosen z equals x̂L, the optimal schedule coincides with that in
Proposition 5.

The optimal schedule can be characterized analytically for the class of quasi-linear
specifications given by (3) and (4) with differentiable functions. The seller’s problem
is to choose three offers (qL, tL), (qH , tH), and (qz, tz) to maximize the expected profits

nL(tL − C(qL)) + nH(tH − C(qH))
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subject to

uH(qH)− tH = uH(qL)− tL + βH

[
vH(qL)− tL

]− βH

[
vH(qz)− tz

]
,

uL(qL)− tL + βL

[
vL(qL)− tL

]
= uL(qz)− tz + βL

[
vL(qz)− tz

]
,

uL(qz)− tz ≥ 0,

uL(qL)− tL ≥ 0. (26)

The first-order conditions are

u′H(qH) = C ′(qH),

u′L(qL)− nHu′H(qL)− nLC ′(qL) + J(qL) = 0,

J(qz)qz = 0, J(qz) ≥ 0, qz ≥ 0

where J(·) is defined by

J(q) ≡ nHβH

[u′L(q) + βLv′L(q)
1 + βL

− v′H(q)
]

+
βL(1− ηL)

1 + βL

[
v′L(q)− u′L(q)

]
(27)

= nHβH

[
v′L(q)− v′H(q)

]
+

βL(1− ηL)− nHβH

1 + βL

[
v′L(q)− u′L(q)

]
(28)

where ηL ≥ 0 is the Lagrange multiplier for (26).
In (28), the first term is negative, and the term [v′L(q)−u′L(q)] is also negative. Since

J(qz) ≥ 0, we have βL − nHβH < βLηL. This inequality has the following implication.
If the optimal schedule involves decoration, then UL(xL) > 0 and so ηL = 0, which is
possible only if

nHβH > βL.

That is, if this inequality is not satisfied, the decoration does not increase profits and
therefore the schedule in Proposition 5 is optimal.

5 Conclusion Remark

We have shown that a monopolist can separate consumers better and raise more profits
by offering multiple menus, adding items that are never chosen by consumers, and
charging entry fees. On the other hand, clearly our model captures only a fraction
of real-life maximization problems of sellers. A particularly important difference from
reality comes from our assumption that consumers have complete information about the
menus offered by the seller and their own preferences. In reality, we often have to visit a
store to find out what are offered and what we are looking for. This gives an advantage
to stores with large selections and makes advertisements important. Extending the
model in this direction therefore appears to be an interesting topic for research.
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