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ABSTRACT. In a regression model with conditional heteroskedasticity of unknown 
form, we propose a general class of M-estimators scaled by nonparametric 
estimates of the conditional standard deviations of the dependent variable. We 
give regularity conditions under which these estimators are asymptotically 
equivalent to M-estimators scaled by the true conditional standard deviations. 
The practical performance of these estimators is investigated through a Monte 
CarIo experimento 

1. Introduction 

Cross-sectional data are typically heteroskedastic, often containing aberrant 
observations or gross errors. Under these circumstances, the least squares 
,estimation method produces inefficient estimates. It is difficult to determine 
the source of inefficiency. As Huber (1973) pointed out: 

" 
'In the regression case, uncontrollable inhomogeneity of 
l'ariance among the disturbances and genuinely long tailed error 
distributions have almost indistinguishable effects both 
impairing the efficiency of the estimates'. 

Hence, it seems worthwhile to correct for heteroskedasticity using robust 
regression analysis. Carroll and Ruppert (1982) considered M-estimators scaled 
differently for each observation. The scale estimators were obtained under 
prior information on the functional form of the heteroskedasticity. 
Simulations reported by Carroll and Ruppert (1982) are encouraging. These 
estimators are expected to be nonrobust when the parameterization of the 
heteroskedasticity is incorrecto Asymptotically efficient estimators in the 
presence of unknown heteroskedasticity have been obtained by Carroll (1982), 
Robinson (1987) and Delgado (1989). However, these estimators have an 
unbounded influence function to residual s and leverage. 

In this paper we establish the asymptotic properties of M-estimators with 
bounded influence function in the presence of heteroskedasticity of unknown 
nature. The conditional scale estimates are consistent nonparametric estimates 
of the conditional standard deviation of the dependent variable. The rest of 
the paper is organized as follows. In the next section we discuss a general 
class of optimal M-estimators which scale by the true conditional standard 
deviation of the dependent variable. In section 3 we present our M-estimators. 
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In section 4 we give conditions under which these M-estimators are adaptive. 
In section 5 we report the results of a Monte CarIo experiment and in section 
6 we sumarize our conclusions. Proofs are confined to the appendix. 

2. Optimal Bounded Regression in the Presence 01" Heteroskedasticity 

We consider the usual regression model. We have independent observations 
{(YI , XI), 1:s i:s n} from a IR xPIR random variable (Y, X) where, 

(1.2) 

and 8° is a pxl vector of unknown parameters, 0'(.) is an unknown function and 
CI are, conditionally on XI, symmetric about zero with VadcII XI)= 1. The 
class of weighted least squares estimators is defined as, 

where {al, l:si:s n} are suitable weights. Under regularity conditions, 
n1/2[9n(a)_ 8°1's limiting covariance matrix has lower Gauss-Markov bound 
~o= {E[XX,O'-2(Xm-1

, and it is achieved by the unfeasible generalized least 
squares estimator 9n(O') , where 0'1= O'(XI). When the errors are conditionally 
normally distributed, 11\0 is the Cramer-Rao bound, but the normal model is 
never exactll true. In the presence of departures from the normality 
hypothesis, 8n(O') may be very inefficient. On the other hand outlying XI 
observations can adversely affect estimators such as (2.2). Therefore, it 

(2.2) 

seems reasonable to consider estimators which bound the influence of the data. 
Maronna and Yohai (1981) proved the asymptotic properties of a very general 

class of M-estimators of location and scale, implicitly defined as the 
simultaneous solution to, 

, 
Ei ~(Xi' (YC X i8)/O') Xi = O and Ei ;t(Xi, (Yi- Xi0)lO') = O, 

where E[~(X, (Y- X'o°)lO') XIX1= O and E[;t(X, (Y- X'Oo)/O')IX1= O. All known 
proposals for 1/>(. ,.) (see Hampel et. al 1986) may be written in the form, 

~(X, r)= w(X) I/I(r v(X)) 

for appropriate functions 1/1: IR ~ IR and weight functions W: IRP ~ IR+ and v: 
IRP ~ IR+. The function 1/1(.) bounds the influence of residual s and w(.) and 

(2.4) 

v(.), the influence of leverage. Relles (1968) and Huber (1973), uses w(X)=I, 
v(X)= 1. There are a large number of I/I-function proposals. A popular proposal 
is the Huber's I/I-function, Le. I/I(u)= u min{l, cl I u I}, where c> O is an 
appropriate chosen constant. In these cases, the corresponding M-estimators 
have bounded residual influence but the influence of leverage is unbounded. 
For a discussion on different choices of w(.) and v(.), see Hampel et. al 
(1986). Under conditional heteroskedasticity, estimator.s as (2.3) are not 
scale invariant. Carroll and Ruppert (1982) named a (0'), the optimal 
M-estimator (OME) under heteroskedasticity, where 
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, 
Q {a (a), a}= O, 

n n 

and Q {a, a}= ¿. ¡P(X., (Y.- x.a)/a,} X.I a .. 
n 1111111 

(2.5) 

The conditions for asymptotic normality of the OME are very similar to those 
given in Maronna and Yohai (1981). Let us introduce the following notation, 

A(to)= E{X 0'(Xf
1 

¡P(X, c- to'X 0'(Xf
1
)}, L(X)= sUPu!¡P(X, U)! IIXII and 

H(X)", sUPu
! ¡p'ex, U)! where tf>'(X, U)= a¡p(X, U)/au. We assume, 

Nl.- For each X, ¡P(X, .) is odd, uniformly continuous, nondecreasing, ¡pe X, U» 
O for U) O and the conditional distribution of c is symmetric about zero. 

N2.- Pr{O'(X)s <5}= O for sorne (5) O. 

N3.- A(to) has a nonsingular derivative at O, - V(O') say, 
(that is ! A(to)- A(O)+ V(O') to! = oClltoll ». 

N4.- E{H(X) IIXII 2 L(X)}( oo. 

N5.- E{H(X) IIXII 2}( oo. I 

N6.- EIIXII( oo. 

N7.- E{L(xí2
}( oo. 

Condition NI implies that E{¡P[X¡, C¡S(X¡))! XI}= O for any function sex¡) 
depending on X¡ iO!: 1. Condition N2 is required by Robinson (1987) and Delgado 
(1989) for the adaptation proof of the semiparametric weighted least squares 
estimator (SWLSE). Alternatively, N2 may be removed by multiplying 11 XII by 
0'(Xf

1 
in N4-N7. We have found convenient to set out the conditions in this 

way in order to make comparisons with conditions needed in the next section. 
e;pnditions N3-N7 are required by Maronna and Yohai (1981). N3 and N7 guarantee 
that the asymptotic covariance matrix of the OME is positive definite (p.d). 
.Note that for bounded influence estimators, as those with ¡p-functions as 
~.4)" L(X) is bounded. However, for classical M-estimators (Le. w(X)=v(X)= 

'J), N4 implies that E!lXII
3

( 00 which seems a quite stron2 requirement. A 
norma lit y proof in this case is possible, assuming E!lXII ( 00, by using the 
results in Yohai and Maronna (1979). When, in (2.4), 11 XII w(X), "'C) and ",'C) 
are bounded, N4-N7 holds if EIIXII2( oo. 

Theorem 1. - If NI-N7 hold, 

where, ~ = v(O'f1 E[¡P(X, c)2 XX' /0'2ex ») V(O'¡-l. 
1 

Proof. - See Appendix. 

The purpose of this paper is to obtain estimators first order asymptotically 
equivalent to 9n(0'). We propose to estimate O'(X¡) by nonparametric regression. 

3.- Bounded Influence Function Semiparametric Estimators 

When the functional form of O'(X¡) is known and a preliminary root-n-consistent 
estimator of a

O
, en say, is available, consistent estimators of 
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O'Z(XI)= [O'(XI)¡Z are obtained by regressing (YI- X; 9n)z against the known 
design of O'Z(XI). Under regularity conditions. the corresponding weighted 
least squares estimators (WLSE) of 9° are as first order efficient as 9n(O'). 

Carroll and Ruppert (1982) suggested the use the of consistent parametric 
weights to construct robust estimators such as those defined in (2.5) but 
using w(X)=v(X)=l and X fixed. They proved that these estimators are. under 
regularity conditions. asymptotically equivalent to 9n(O'). These estimators 
are nonrobust with respect to the assumed parameterization of O'z(X). 

Rose (1978) proposed several nonparametric estimators of O'Z(XI). One of them 
is obtained by performing a nonparametric regression of (YI- xi 9n)z against 
the regressors on which O'z(X¡) is known to dependo Carroll (1982) and Robinson 
(1987) proved. under different regularity conditions. that the corresponding 
SWLSE asymptotically achieves the Gauss-Markov bound. Carroll (1982) used 
kernel regression while Robinson (1987) used k nearest neighbors (k-nn) 
regression. 

In this paper we follow Robinson's approach. If O'(X) is known to depend on a 
subset dx1 (d:s p) vector XI= (Xli •...• Xdl)· of nondegenerate elements of XI. 
and given a positive integer k= k(n). the sequence of k-nn nonparametric 
weights {wIJ(k). i.j=l •...• n} is defined by 

p + r -1 

~~! IJ cT(k) 1:s i.j:s n 
IJ 

where for 1:s i:s n. ci(k» O. 1:s i:s k; c¡(kl=O i> k; ~=lci(k)= l. and 

where the sums are over l:st:Sn. t;f: i.j and 1(.) is the indicator function. 

p .. = I: d (X. _ X. )z/sZ. sZ= (n-l)-lI:.{X. _ [n- 1I:.X. ]}z. 
lJ m=1 1m Jm m m 1 1m J Jm 

The uniform weights cl(k)= k-l. i=l •...• k.satisfy these conditions. 
Other weights satisfying these conditions can be found in Stone (1977). These 
k-nn weights do not use the own observation. This sample splitting is not 
required for the consistency of the k-nn weights but it is technically 
convenient in semiparametric estimation. This sample splitting technique has 

(3.1) 

al so been employed by Robinson (1987) and Delgado (1989). Given a preliminary 
root-n-consistent estimator of 9°. 9n sayo a consistent estimate of O'~ is. 

1 

(3.2) 

We suggest estimating 9° by the semiparametric weighted M-estimator (SWME). 
9n(0-) where 0-1= [o-¡¡l/z. Unlike 9n(O') and 9n(0-). 9n(0-) has bounded influence 
function. 

One would expect that the higher order efficiency of Bn(o-) will improve by 
using an iterative procedure (Le. computing new 0-1 at each iteration). A full 
iterated SWLSE

z 
is obtained at once by using the following pure nonparametric 

estimator of O' (Xi)' 

(3.3) 
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Dehzado (1989) proved, under Robinson (1987) regularity conditions, that 
1/Z;,.. v ,.. v v 

n [en(O')- en(O'»)= op(1). We pro{?ose to use al so en(O') as a possible 
alternative to 9n(o.) where (TI= [O'~)I/2 

4.- Asymptotic Theory 

Robinson (1987) noted that it is technically convenient to relate the moment 
conditions on (Y, X) and the rate of convergence of k. We assume that, 

Kl.- lim max. c.(k) k < 00 as n ~ oo. 
1 1 

K2. -k -V/4n ~ and n -lk ---7 O as n ---7 00 for v> 4. 

Besides NI-N3, we need stronger moment conditions in N4-N7. In particular 
for the v in K2 we need, 

Rl.- (a) ~IH(X)IIXf UX)IV/(V-2)<,00 and (b) EIH(X)IIXII UX)le 0'(X)IIv/(V-2)< oo. 

R2.- (a) EIH(X) IIXllelV/(V~2)< 00 and (b) EIH(X) IIXII le 0'(X)IIv/(V-2)< oo. 

R3.- EIIXI1 2v/(V-2)< oo. 

R4. - El UX) 12
v/(V-2) < oo. 

RS.- Ele O'(X)l
v

< oo. 

The difference between assumptions N and R are similar as in the weighted 
least squares estimator case. The asymptotic normality of 9n1r) needs that 
EIIXf< 00 and the SWLSE of Robinson (1987) needs EIIXI1 2V/<V- < oo. This last 
condition implies RI-R4 when, in (2.4), w(X) IIXII, 1/1(.) and 1/1'(.) are bounded. 
R3 and RS are needed in Robinson (1987), Newey (1987) and Delgado (1989). 

Theorem 2.- If NI-N3, Kl, K2 and RI-RS hold: 

(a) n
1l2[9

n
(o.)- eO

) ~ N(O, ~1)' 

n1
/2[9 ((T)- eO

) ~ N(O ~1)' n ' 

Proof.- See Appendix. 

Maronna and Yohai (1981) recommended to construct interval estimators, 
estimating the asymptotic variance by its natural sample analog. In our case, 
~ is estimated by, 

1 

A _ A (A )-1 -1", ' A-2 2( [ ,v (A») A-l) A (A )-1 
~1 - Vn O' n L.i Xi Xi O'i ¡p Xi' Yi- xien O' O'i Vn O' 

where V (0.)= n-
11:. X.X: o.~2 ¡P' (X., [Y.- x:a (0.») o.~I). 

n 1111 1 1 In 1 

We can substitute 0.1 by (TI in (4.1). 

5.- Monte CarIo 

The experiments follow the model 

Y.= eO 
+ eO 

X. + e.O'(X.), i~ 1 
1 1 2 1 1 1 

(4.1) 

(5.1) 
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with 9~ = 9~ = 1. and XI-iid Uniform(O, 2). The EI'S were generated iid and 
independent of Xi as follows, 

CONTAMINATED.- E.- iid {.9 N(O, 1) + .1 N(O, 9)}/vr:8. 
I 

NORMAL.- E.-iid N(O, 1). 
I 

Note that VarCE)=l in all models. The residual eonditional varianees are 
eonstrueted aeeording to the models, 

Model 1.- er(X.)= exp('1 X.) 
I I 

o 
Model 2.- er(X

i
)= 11.+ Xl. 

We have only used uniform weiQ'hts; i.e. in (3.1) el= l/k for all is k. We 
~~lJf'Yl~~l~Yl 

reoort two ehoiees of k, 9n(er) , 9n(er) , 9n(er) , 9n(er) are eomputed with k= 
112 ~~2~Y2~~2~Y2 2/3 

In 1, while 9n(er) , 9n(er) , 9n(er) ,9n(er) are eomputed with k= In l. 
We compare the unfeasible estimator 9n(er), the OLSE Sn(l), the SWLSE's 9n(er) 

and 9n(er), the unfeasible OME 9n(er), the M-estimator with fixed seale 9n(1) 
and the SWME's 9n(er) and 9n(er). In order to save spaee we only report results 
for the slope eoefficient. We have only eonsidered the classical Huber's 
estimator, i.e. ",(U)= U min{l, e/l U I} in (2.4), where we ehoose e= 1.345. The 
robust estimators were eomputed using reweighted le,!st squares. This e 
produces, under norma lit y, 9n(er) 95% as efficient as 9n(er). We al so report 
results for the least absolute deviation estimator (LADE) without sealing. , 
This estimator is used as the starting point in the reweighted procedure for ,~ 
the Huber's estimators and for the estimation of the residuals in order to 
compute erl. 

The tables show the bias (BIAS), varianee (VAR) and the relative efficieney 
(EFF) of the different estimators for sample sizes of n= 30, n= 100 and n= 500 
with 10,000, 5,000 and 1,000 replieations respeetively. The efficieney is the 
ratio of the mean square error (MSE) of the estimator with respeet to MSE of 
Sn(er). We report results for the different disturbanees and the 
heteroskedasticity models 1 and 2 with different parameter values for o and '1 
which produce different degrees of heteroskedasticity. All the programs were 
written in FORTRAN-77 double precision and NAG-13 routines were used to 
generate the variates. The programs were run on the Indiana University VAXes. 

The simulations strongly support the applieability of our theorem. 
Through the experiments, the SWME's are always more efficient than the 
SWLSE's. We observe important gains in efficieney of the semiparametrie 
estimates as the sample size inereases while the EFF of the others 
estimators is not signifieantly affeeted. It is obviously due to the faet 
that the nonparametric estimates of the residual varianees beeome more 
aeeurate as the sample size inereases. This al so happens when working with 
parametrie weights. Therefore, for the smallest sample size (n= 30) and when 
the heteroskedasticity is mild, the SWME's are, sometimes, more inefficient 
than the LADE. However, when n= 100 or 500, the SWME's EFF is typically 
greater than one under departures from norma lit y . Samples sizes of 30 or 100 
are small in a eross-seetion eontext where samples of several thousands of 
observations are eommon. In the normal case, the SWME's EFF is quite close to 
their asymptotie values when n=500 and always is greater than the SWLSE's 
EFF. ]t is observed, in general, that for similar degrees of 

6



heteroskedasticity, the semiparametric estimators based on 0-1 behaves slightly 
better than those based on erl when the conditional variances are small, while 
the latter perform better than the former when the conditional variances are 
larger. The choice of k does not seem to affect significantly the results. We 
proceed to discuss the tables in sorne detail. 

Table 1 shows results for CONTAMINATED errors. Note that the contamination 
is quite moderate. Simulations using this distribution have been al so 
reported by Huber (1973) and Carroll and Ruppert (1982). We have considered 
MODEL 1 and MODEL 2 with '1= O, -1, -2 and 0= 1,3 5. So, in MODEL 1 we have 
small variances while in MODEL 2 the variances are larger. The severity of the 
heteroskedasticity is comparable in the two models when '1= -1, -2 and 0= 3, 5. 
When n=500 the semiparametric estimators efficiencies are fairly close to 
their asymptotic values. However, when n= 30, the semiparametric estimators 
are more inefficient than the LADE and OLSE, in sorne cases, especially when 
the heteroskedasticity is mildo When the heteroskedasticity is heavy, i. e. '1= 
-2 and 0= S, the SWLSE's are more efficient than than the OLSE for n= 30, but 
they are more inefficient than the LADE in MODEL 1 (when '1= -2). As expected, 
the SWME's are always more efficient than the SWLSE's. However, the SWME's are 
generally more inefficient than the LADE for n=30 in MODEL 1. In MODEL 2, 
with n= 30, the SWME's appear to be more inefficient than the LADE only when 
0= O, 1 and k= Inll2). When n=lOO, the SWLSE's are always more efficient than 
the OLSE but the SWLSE's are still more inefficient than the LADE in MODEL 1 
and MODEL 2 for 0= 1,3. For n= lOO, the SWME's are always more efficient than 
LADE, OLSE and SWLSE's. They, sorne times, appear to be more efficient than en 
(e.g. '1=0, -1, 0= 3), as the asymptotic theory predicts. This prediction is 
fully supported when n= 500. In this case, the SWME's EFF is always greater 
than 1 and the SWLSE's EFF is closer to 1, but they still behaves worse than 
the LADE when '1 and o are small. We have tried other distributions (e.g. 

'·Student and Laplace) with similar results. 
In Table 2 we report results for NORMAL errors with MODEL 1 ('1= -2) and 

. MODEL 2 (0= 5). When n= 30, the LADE is more efficient than 9n(er) and en(er) in 
'-MODEL 1. In the other cases, the SWME's are more efficient than LADE. As the 
sample size increases, the SWME's EFF approaches their asymptotic value (.95). 
Note that for n=500, the SWME's EFF are closer to their asymptotic value than 
the SWLSE's EFF. In fact the SWME's appear to be more efficient than the 
SWLSE's in all cases reported, though asymptotically it is 5% more 
inefficient. this fact is of practical importance. In Tables 3 and 4 we 
report results for LAPLACE and T4 errors. The OME's EFF is smaller, in these 
cases, than in the CONTAMINATED case and, therefore, the SWME's when n= 500 
are less spectacular. However, the differences in EFF between the SWME's and 
SWLSE's are larger than in the CONTAMINATED case. For n= 30, the SMWE's 
typically perform better than the LADE and always perform better than the 
SWLSE's. 

6. Conclusions 

We have seen that the introduction of robust methods in the estimation of 
semiparametric models is of practical relevance. The Monte CarIo reported 
shows that our method can be widely used, without great losses in efficiency 
when the data are close to normal but heteroskedastic. 
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APPENDIX 

Proof of Theorem 1: In proving the theorem we do not need to assume that an(O") 
uniquely solves Qn (a, 0")= o but rather that II Qn(Sn(O"), 0")11 is majorized by 
twice the infimum of IIQn(a, 0")11 over a. Let define, 

-112 ( -112 -1 -1) -1 Un(8, a)= n Li If¡ Xi' (ee n 8'Xi O"i )O"iai Xi a i . 

Since Q (S (0"), 0")= U (n112(S (0")- aO), 0")= O, 
n n n n 

where 

8-= - V(<r)-1 U (O, 0")= O (1), 
n p 

by N3 and since by Chevyshev's inequality Un(O, 0")= Op{[EIIU (O, 0")f1112} 

Op(O by NI and _Nl Then noting that, by the Lindeberg-Levy central limit 
theorem (clt), 8 ---? N(O, ~1), the theorem follows from (a.2) after 
establishing that, 

We conclude (a.4) from (a.3) and 

sup IIU (8, 0") - U (O, 0") + V(O") 811 = o (1). 
11811s M n n p 

(a.6) follows from N3 and, 

(a.O 

(a.2) 

(a.3) 

(a.4) 

-(a.51 .' 

(a.6)' 

sup IIU (8, 0") - U (O, 0') - E{U (8, O')}II = o (1). (a.7) 
11811s M n n n p 

In order to prove (a.?), take for convenience M=l. For O( <S( 1 define, 

S (8,0')= sup IIU
n

(8
1

, 0") - U
n

(8, 0")11. (a.8) 
n 118

1
_ 811s <S 

Since for each fixed o we can cover the ball of radius 1 in IRP by a finite 
number of balls of radius <S, we conclude (a.7) from, 

U (8, 0") - U (O, 0") - E{U (8, 0") - U (O, O")}= o (1), (a.9) 
n n n n p 

for each fixed 8, and for all O( <S( 1, all n and all 11811s 1, 

E{Sn(8' O')}s <S 0(1), (a.lO) 

S (8, 0")- E{S (8, O")}= o (1), 
n n p 

(a.ll) 

(a.9) follows from, 
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applying a mean value theorem (mvt) argumento N2 and N4. (a.lO) foHows from 

by N2 and N5. (a.U) is proved using similar arguments as in (a.9). in 
particular. 

{ } { 
2 } -112 { -2 11 11 2 } -112 Var Sn(l:.. 0') s E Sn(l:.. 0') s o n E O'(X) X H(X) UX) = O(n ). 

(a.4) holds if for each 71> O. "r> O and M. there exists a MI satisfying. 

pr{ inf IIU (l:.. 0')11 > 71} > 1- "r. 
11l:.lls MI n 

(a.12) 

and (a.12) follows from(a.6) using same arguments as Jureckova's (1977) proof 
of her Lemma 5.2. 

Proof of Theorem 2 (a): Let introduce the foHowing notation. 
-2 .- 2 -2 2 
O'i= Lj(YF Xln) Wij and O'i=Lj O'j W ij 

where W •• = w . . (k). 
lJ lJ 

We need the foHowing Lemmas. proved in Robinson 

'temma l. - Let f(.) be a Eorel function such that El f(x) 1 P < oo. 

E{L·I f(X.)- f(X ) 1 Pw .}= 0(1). 
1 1 1 11 

Lemma 2.- Pr{min. O',S o}= O aH n and sorne o> O. 
1 1 

Lemma 3.- Pr{er s o}= O all n and sorne o> O. 
1 

Lemma 4.- Pr{min. er.s O}= O aH n and sorne o> O. 
1 1 

Lemma 5.- {mino ;;:'~fl= O (1). 
1 1 P 

Lemma 6.- {mino a.~}-I= O (1). 
1 1 P 

Lemma 7,- L.la.~- ;;:'~12= O (k-1). 
1 1 1 P 

1
-2 -21 VI2 -V/4 Lemma 8.- E{ 0'1- 0'1 }= O(k ). 

Lemma 9.- max.la.~- ;;:'~I = O (k-I12
). 

1 1 1 P 

(1987). 
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1
-2 -21 -V/4 Lemma 10.- maxi erC er i = opto k ). 

We follow the same strategy of proof as in Theorem 1. We first prove that, 

sup Ilu (a, 0-) - u (0, 0-) + V(er) all = o (1). (b.l) 
Ilall!S M o n p 

We cooc1ude (b.l) from (a.6) aod, 

sup IIU (Il, 0-) - u (0, 0-) - {U (a, er) - U (0, er)}11 = o (1). 
Ilall!S M o o o o p 

(b.2) follows from, 

11 
-1/2 A-l --1 A 11 sup o ¿. X. (IT. - IT. ) R. (a, IT) = o (1), 

Ilall!S M 1 1 1 1 1 p 

11 
-1/2 --1 --1 A 11 sup o ¿. X. (IT. - IT. ) R. (a, IT) = o (1), 

11 a II!S M 1 1 1 1 1 p 

11 
-112 --1 -1 A 11 sup o ¿. X. (IT. - IT. ) R.(a, IT) = o (1), 

Ilall!S M 1 1 1 1 1 p 

11 
-112 -1 A -sup o ¿. X. IT. [R. (a, IT)- R.(a, IT»)II= o (1), 

Ilall!S M 1 1 1 1 1 p 

11 
-1/2 ~ - -sup o ¿. X. IT. [R. (a, IT)- R.(a, IT»)II= o (1), 

11 a II!S M 1 1 1 1 1 p 

11 
-112 -1 11 sup o ¿. X. IT. [R. (a, IT)- R.(a, IT») = o (1), 

Ilall!S M 1 1 1 1 1 P 

(b.Z) 

(b.3) 

(b.4) 

(b.S) 

(b.6) 

(b.7) 

'.> 
(b.6) 

by Lemmas 5, 6 and 9 and Rl (where, heoceforth, K is a geoeric coostant). The 
left hand side of (b.4) is bouoded by, 

-1 \' 11 11 2 ( ) A-1 1--1 --1
1 K o Li Xi H Xi IT i IT i - IT i !S 

K maxilcT~ - iT~1 {mioiO- i mioilT i minilT i (mioicT i + mioiiTi)f
l 

0-
1 

¿i IIX¡II2 H(Xi) 

= ° (o k-V
/

4
) P , 

by Lemmas 2,3 and 6 and Markov's inequality, noting that, by Holder's 
inequality, 

10



by Lemma 1 and R1.(b.6), (b.7) and (b.8) follow by using same arguments as in 
(b.3), (b.4) and (b.S), after bounding the former expressions using a mvt 
argumento Next we prove that, 

sup IIU (~, 0.) - U (O, 0') + V(O') ~II = o (1). 
II~II~ M n n p 

(b.9) 

We conclude (b.9) from (b.l) and, 

IIU (O, 0.) - U (O, 0')11= o (1). (b.lO) 
n n p 

(b.ll) 

(b.12) 

(b.13) 

(b.14) 

(b.lS) 

Using the fact that I/>(X,.) is odd and c is conditionally symmetric about zero, 
(b.ll) follows from Chevyshev's inequality since, 

11 
-112 --1 -1 11 2 11 11 2 1--1 -11 2 2

11 E n ¿. X. (O'. - 0'. ) I/>(X., c.) = E{ X O' - O' I/>(X, c) } 
III III 1 II 11 

2 1-2 21 ~ K E{L(X) O' - O' }, 
I I 1 

I>l" N2, Lemma 3 and 4; and by Holder's inequality, 

E{~(X í2 1a-2 - O'2 1}~ {EIL(X )I ZU/(V-2l}(V-2l/V E{ 1a-2 - O'2IV/2}2/V = o (1), 
111 I II P 

by Lemma 1 and R4. We conclude (b.12) from Chevyshev's inequality, since, by 
triangle inequality, Lemma 3 and 4 and Holder's inequality, 

11 
-1/2 ~ --1 { --1 11 2 

E n L.i Xi O'i I/>(Xi, CiO'iO' i )- I/>(Xi , c i )} s 

EIIIX 11 2 a--2 {I/>(X, C O' a--I)- I/>(X, C )}21 = 
I I IIII II 

EIIIX 11 2 a--2(a--1_ 0'-1) C O' {I/>(X , C O' a--1
)_ I/>(X, C )} X 

1 1 I 1 11 1111 II 
I 

J I/>(XI' e O' (. a--I
+ (1- .) 0'-1» d. s 

I I I I o 
EIIIX 11 le O' 1 la- - O' 1 H(X) L(X )Is 1 11 I I I 1 

by Lemma 1. Now note that the left hand side of (b.13) is bounded by, 

11



{ }
-l 1/2 }1I2 . ~ . - . - . ~ ~2 -2 2 -1 2 

mm.er. mm.er. (mm.er.+ mm.er.) {E. ler.- er. l } {n E. L(X.) = o (1) 11 11 11 11 1 1 1 1 1 P 

by lemmas 5, 6 and 7. The left hand side of (b.14) is bounded by, 
. - . - -1 -1/2 1- - 1 {mm. er. mm. er.} n E. L(X.) er.- er. = o (1), 
1111 1111 P 

by Lemmas 4 and 5 and Chevyshev's inequality, since, 

Eln-
l12 

E. L(X.) Ia..- 0-·112s C + C 
1 1 1 1 1 2 

where, by Holder's inequality, 

C
1
= E{L(X/ 1a.

1
- 0-1 12}S {EIL(Xl)12(V-2l/Vr/(V-2){EIa.~_ o-~lvl2t/V= 0(k-1I2) 

and by Cauchy's and Holder's inequalities, 

C = E{ n-lE E L(X.) Ia..- 0-.1 L(X.) Ia..- o-.I}s E[n-l E E L(X.)2 Ia..- 0-.1
2
] 

2 i:¡/:j 1 1 1 J J J i:¡/:j 1 J J 

s {EIL(Xl)12V/<V-2lfV-2}/V {n Ela.~- o-~lvl2t/V= o[(n k-V/4 )2/V] 

by Lemma 8 and R4. Now note that, 

Iln-l/~ tI>(X
i
, cieri~¡I)- tI>(X

i
, c

i
er

i
o-¡I)II= 

.' 

11 
-1/z.-, ~-1 --1 JI , ~-1 --1 11 n Li cieri (er i - eri ) ti> (Xi' cieri[eri L + er i (1-L)]) dL 

o 

s K n-l/2¿iIIXill H(Xi ) Icieril I~il- a.¡I I+ K n-1I2¿iIIX¡II H(Xi) ICfi l I~> O:¡11 

= o (O, 
p - ~ using arguments in (b.13) and (b.14). Then by (b.9), U(A , er)= op(O and 

0= IIU [n1l2(() (0-)- aO), 0-111 s 2 IIU (A-, er)ll= o (1), (b.18) 
n n n p 

112 v ~ ° and given (b.9), n (an(er)- a )= Op(O, since for each r¡> o, L> o and M, 
there exists a MI satisfying, 

pr{ inf IIU (A, 0-)11 > r¡} > 1- L, 
IIAlls MI n 

using same arguments as Jureckova's (1977) proof of her Lemma 5.2. By (b.18), 

nll2(9 (0-)- aO)= V(erf1 U (O, er) + o (1) N(O ~) 
n n p --,)d ' l' 

by the cit. 

Proof of Theorem 2. (b): Following arguments given in the proof to Theorem 2, 
it suffices to prove that, 

sup IIU (A, 0-) - U (O, 0-) - {U (A, er) - U (O, er)}11 = o (1), (b.19) 
IIAlls M n n n n p 

12



and 

IIU (lI, a.) - u (O, 0')11 = o (1). (b.20) 
n n p 

(b.19) and (b.20) follow in a similar manner as (b.2) and (b.lO) but using the 
following Lemmas proved in Delgado (1989), 

Lemma 12.- Pdmin. ~.s o}= O all n and sorne o) O. 
1 1 

Lemma 13.- {min a.2f1= O (1). 

Lemma 14. - E{ la.: - ~: I V/2}= O(k -V/4). 

Lemma 15.- max.lo?- ~~I = O (k-1
/2). 

111 P 
02 2 ' o 

where 0'.= L. E(Y.IX.l w .. - {L. x. 9 
1 J JJIJ JJ 
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TABLE 1 

CONTAMINATED ERRORS 

MODEL 1 (3'= O. ) 

-------~=-~Q--------
________ ~=_lQQ ______ 

-------~=~QQ--------
BIAS VAA EFF BIAS VAA EFF BIAS VAA EFF 

en(a-) -5E-5 .1028 1.0000 -.0045 .0317 1. 0000 -6E-4 .0062 1. 0000 

e (1) 
n 

-5E-5 .1028 1.0000 -.0045 .0317 1. 0000 -6E-4 .0062 1.0000 

LADE -.0027 .1007 1. 0204 .0022 .0282 1. 1235 -.0016 .0059 1. 0528 
e (.;.) 1 

n 
-.0015 .3541 .2903 -.0043 .0569 .5564 6E-4 .. 0078 .7965 

e (.;.)2 
n 

.0031 .3073 .3348 -6E-4 .0488 .6483 -4E-4 .0069 .8961 

El (a-) 1 
n .0026 .3703 .27'76 -.0032 .0585 .5415 8E-4 .0079 .7908 

El (a-) 2 
n 

.0132 .2881 .3566 -.0025 .0477 .6639 -3E-4 .0069 .9009 

a (a- ) -9E-4 .0766 1. 3416 
n 

-.0025 .0220 1.4392 -8E-4 .0043 1.4327 

9 (l) 
n 

-9E-4 .0766 1. 3416 -.0025 .0220 1. 4392 -8E-4 .0043 1. 4327 
a (.;.)1 

n 
2E-4 .1488 .6909 -.006 .030 1.0429 -7E-4 .0050 1.2353 

a (.;.)2 3E-4 .1136 .9053 -.003 .027 1. 1471 -.0012 .0049 1.2697 
n a (o:) 1 6E-4 .1370 .7501 -.004 .029 1. 0752 -7E-4 .0050 1.,2413 n ~, a (a-)2 .0135 .1085 .9464 -.001 .027 1. 177 -.0011 .0048 1.2757 

, 

n 

MODEL 1 (3'= -1. ) 

-------~=-~Q--------
________ ~=_lQQ ______ 

-------~=~QQ--------
BIAS VAA EFF BIAS VAA EFF BIAS VAA EFF 

e (a-) 
n 

-2E-5 .0146 1. 0000 4E-4 .0046 1. 0000 -6E-4 88E-5 1. 0000 

e (1) 
n 

.0026 .0339 .4310 -.0031 .0096 .4816 -7E-7 .0020 .4384 

LADE -5E-4 .0193 .7594 -5E-4 .0053 .8824 -9E-4 .0010 .8064 

e (.;.)1 n -5E-4 .0529 .2767 .0014 .0086 .5391 -4E-4 .0011 .7808 

e (.;.)2 
n 

.0017 .0430 .3405 -2E-5 .0073 .6342 -7E-4 99E-4 .8942 

e (a-) 1 .0044 .0578 .2533 .0014 .0091 .5129 -ZE-4 .0011 .7785 n 
El (a-) 2 .0094 .0430 .3402 .0010 .0069 .6669 -7E-4 97E-4 .9075 

n a (a-) -.0010 
n 

.0109 1. 3354 -3E-4 .0032 1. 4432 -9E-4 62E-5 1. 4167 

a (1) 
n 

.0016 .0257 .5697 -.0026 .0072 .6453 -9E-4 .0014 .6098 

a (a.) 1 
n 

-3E-4 .0217 .6738 -6E-4 .0046 1. 0182 -.0013 71E-5 1. 2382 

a (a.)2 5E-4 .0176 .8317 -3E-4 .0042 1. 1051 -.0012 69E-5 1. 2695 
n a (a-) 1 n .0044 .0210 .6959 3E-4 .004:5 1. 0351 -.0012 71E-5 1.2381 

a (a-)2 
n 

.0087 .0187 .7822 4E-4 .0043 1. 0675 -.0011 70E-5 1. 2574 
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TABLE 1 (Cont. ) 

MODEL 2 (0= 3. ) 

-------~=-~º--------
______ ~=_1ºº ________ N=500 --------------------

BIAS VAR EFF BIAS VAR EFF BIAS VAR EFF 
9

n
(0') -.0015 4.8231 1.0000 -.0361 1. 3672 1.0000 .0197 .2781 1.0000 

9 (1) 
n -.0653 23.390 .2061 -.0348 6.9974 .1975 -.0172 1. 3980 .1992 

LADE -.0455 9.0602 .5322 .0054 2.4612 .5560 -.0051 .4824 .5712 
• • 1 9n (0') -.0397 19.105 .2524 -.0245 2.6323 .5197 .0322 .3846 .7222 

9 (a.)4 -.0320 
n 16.698 .2888 -.0268 2.2223 .6156 .0226 .3381 .8226 

9 (a.) 1 
n -.0519 21. 121 .2283 -.0249 2.7676 .4943 .0304 .3895 .7132 

9 (a.)4 
n -.0290 16.021 .3010 -.0276 2.2027 .6211 .0220 .3375 .8238 

a (O') 
n .0139 3.6326 1.3276 -.0236 1.0115 1.3522 .0219 .1975 1. 4067 

á (1) 
n -.0487 8.7229 .5527 .0043 2.4801 .5517 -5E-4 .4954 .5622 

á (a.) 1 
n -2E-4 7.7019 .6262 -.0132 1.4622 .9357 .0354 .2500 1.1084 

a (';')4 -.0290 
n 6.9172 .6971 -.0159 1.3926 .9825 .0250 .2406 1. 1543 

á (a.) 1 
n .0117 7.3163 .6592 -.0082 1. 4371 .9522 .0344 .2487 1. 1144 

a (a.)4 
n -.0063 6.5064 .7413 -.0163 1.3660 1.0016 .0245 .2401 1. 1573 

MODEL 2 (0= 5.) 

-------~=-~Q-------- -------~=_!QQ------- -------~=~QQ--------
BIAS VAR EFF BIAS VAR EFF BIAS VAR EFF 

8
n

(0') .0194 39.714 1. 0000 -.1011 9.8887 1. 0000 .0592 1.8264 1.0000 

9 (1) 
n -.5159 1461. 4 .0271 -.2760 442.68 .0223 .1996 88.534 .0207 

LADE -.2619 258.41 .1536 .0603 56.269 .1759 .0139 9.4482 .1936 

9 (a.) 1 
n -.1122 206.76 .1920 -.0536 21. 595 .4583 .0848 2.6485 .6890 

9 (a.)4 -.1928 
n 

231. 36 .1716 -.1033 19.826 .4990 .0598 2.3742 .7695 
• y 1 9n (0') -.1644 216.73 .1832 -.0530 21. 978 .4503 .0783 2.6674 .6844 
• y 4 9n (er) -.2036 211. 56 .1876 -. 1026 19.534 .5065 .0569 2.3597 .7744 

en (er) .0720 30.293 1.3107 -.0727 7.3305 1.3494 .0658 1. 2893 1. 4144 

9n (1) -.2749 256.30 .1549 .0464 57.008 .1736 .0047 9.9333 .1842 

á (a.) 1 .0353 82.535 .4812 -.0227 11. 716 .8448 .1010 1.7162 1. 0599 
n 

e (a.)4 -.1151 99.400 .3995 -.0634 12.559 .7879 .0737 1. 6991 1. 0735 n . 
9 (a.) 1 

n .0584 75.235 .5276 -.0182 11. 026 .8978 .0982 1.6752 1. 0861 
y y 4 
9n (er) -.0652 89.291 .4447 -.0620 12.217 .8100 .0719 1. 6848 1.0827 
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BIAS VAA EFF 

TABLE 1 (Cont.) 

MODEL 1 (.= -2. ) 

N= 100 --------------------
BIAS VAA EFF BIAS VAA EFF 

e (~) -3E-6 .0016 1.0000 6E-4 46E-5 1.0000 -lE-4 95E-6 1.0000 n 
e (1) .0028 .0227 .0701 -.0028 .0063 .0725 -4E-4 .0013 .0697 n 
LADE 3E-4 .0047 .3359 -5E-5 .0012 .3791 -5E-4 23E-5 .4103 

e (~)1 -3E-4 .0065 
n 

e (~)2 6E-4 .0056 
n e (~)1 .0041 .0172 
n e (~)2 .0107 .0192 
n 

e (~) -3E-4 .0012 
n 

e (1) .0021 .0174 
n 

e (a.) 1 -3E-4 . 0027 
n e (~)2 5E-5 .0025 
n 

e (cr)l .0028 .0051 
n e (cr)2 .0084 .0068 
n 

BIAS VAA 

.2449 

.2826 

.0931 

.0829 

1.3003 

.0920 

.599 

.6466 

.3122 

.2326 

EFF 

.0010 

1E-4 

9E-4 

6E-4 

3E-4 

-.0022 

4E-4 

2E-4 

4E-4 

5E-4 

98E-5 .4681 -3E-5 

78E-5 .5868 -lE-S 

.0014 .3355 -3E-4 

.0016 .2841 -4E-4 

32E-5 1.3991 -2E-4 

.0047 .0974 -6E-4 

SOE-5 .9189 -3E-4 

46E-S 1.0006 -3E-4 

74E-4 .6718 -5E-4 

.0010 .4450 -6E-4 

MODEL 2 (0= 1. ) 

N= 100 --------------------
BIAS VAA EFF BIAS 

12E-5 .7513 

llE-5 .8546 

13E-5 .7229 

15E-5 .6048 

68E-6 1. 4010 

97E-5 .0977 

79E-6 1. 1982 

77E -6 1 . 2366 

87E-6 1.0921 

llE-5 ,8253 
;, 

VAA EFF 

e (~) -4E-5 .3627 1.0000 -.0067 .1061 1.0000 .0015 .0222 1.0000 n 
a (1) -.0057 .4716 .7691 -.0047 .1399 .7588 3E-4 .0283 .7836 

n 
LADE -.0079 .3865 .9383 .0024 .1123 .9455 -.0022 .0227 .9779 

e (.,.)1 -.0053 1.2806 .2832 -.0056 .2016 .5269 .0042 .0286 .7750 
n 

e (.,.)2 .0018 1.1202 .3237 -.0037 .1692 .6278 .0019 .0254 .8714 
n 

e (cr)l -.0061 1.3736 .2640 -.0048 .2065 .5143 .0042 .0289 .7661 
n 

e (cr)2 .0089 1.0821 .3352 -.0025 .1670 .6358 .0019 .0254 .8738 
n 

e (~) 5E-4 .2715 1.3357 -.0042 .0778 1.3637 -.0015 .0155 1.4262 
n 

e
n

(l) -.0070 .3113 1.1649 -.0010 .0914 1.1616 -.0013 .0189 1.1709 

e (~)1 -4E-4 .5389 .6731 -.0040 .1101 .9640 .0031 .0186 1.1962 
n 

9 (.,.)2 -.0036 .4175 .8688 -.0027 .0979 1.0842 -.0013 .0179 1.2353 
n 

9 (~)1 .0064 .5006 .7244 -.0037 .1072 .9902 .0030 .0185 1.1962 
n . 

9 (cr)2 .0087 .3956 .9166 -.0018 .0960 1.1063 -.0013 .0179 1.2353 
n 
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TABLE 2 

NORMAL ERRORS 

MODEL 1 ( .. = -2. ) 

N= 100 N=500 -------------------- --------------------
BIAS VAA EFF BIAS VAA EFF BIAS VAA EFF 

e (~) -2E-4 .0016 1.0000 n -2E-4 46E-5 1.0000 -2E-4 92E-6 1.0000 

e (1) .0028 .0448 .0707 n -7E-4 .0069 .0675 -7E-4 .0013 .0681 

LADE lE-4 .0072 .2232 -7E-5 .0019 .2458 -6E-4 35E-5 .2581 

e (~)1 lE-4 .0049 .3277 
n 

e (~)2 8E-4 .0039 .4121 
n 

e (~)1 .0048 .0118 .1369 
n 

e (~)2 .0117 .0122 .1311 
n 

a (~) -3E-4 .0017 .9637 
n 

a (1) .0025 .0217 .0746 
n 

a (~)1 lE-4 .0031 .5201 
n 

a (~)2 9E-5 .0029 .5729 
n 

a (~)1 .0034 .0060 .2692 
n e (~)2 .0084 .0079 .2039 
n 

-7E-5 64[-5 

6E-4 56E-5 

5E-4 .0010 

8E-4 .0013 

lE-4 48E-5 

-6E-4 .0064 

-lE-4 58E-5 

2E-5 54E-5 

2E-4 85E-5 

7E-4 .0012 

MODEL 2 (o'" 5. ) 

.7198 -lE-4 10E-5 .9057 

.8225 -3E-4 97E-6 .9500 

.4638 -4[-4 11E-5 .8439 

.3543 -6E-4 14[-5 .6584 

.9653 -3E-4 98E-6 .9443 

.0725 -8E-4 .0013 .0733 

.8042 -3E-4 10E-5 .9087 

.8647 -3E-4 97E-6 .9487 

.5465 -5E-4 11E-5 .8598 

.3959 -6E-4 14[-5 .6583 

_________ ~=_lQQ ____ _ 

BIAS VAA EFF BIAS VAA EFF BIAS VAA EFF 

a (~) .0176 39.134 1.0000 -.0972 9.8403 1.0000 .0637 1.7540 1.0000 
n 

a (1) -.5878 1490.7 .0262 -.2371 441.68 .0223 .2241 87.482 .0201 
n 

LADE -.3699 394.42 .0992 .0495 86.638 .1137 .0062 14.855 .1183 

a (~)1 .0112 160.79 
.n • 2 e (~) -.0714 162.41 
n a (~)1 -.0039 158.70 
n a (~)2 -.0192 142.78 
n a (~) .0546 40.576 
n 

en(l) -.3630 391.76 

e (~)1 .0569 99.315 
n e (~)2 -.0367 117.45 
n e (~)1 .0663 91.335 
n a (U)2 .0094 104.85 
n 

.2434 -.0311 15.677 

.2409 -.1191 15.872 

.2466 -.0149 15.011 

.2741 -.1137 15.431 

.9644 -.0918 10.283 

.0999 -.0363 87.009 

.3940 -.0354 13.701 

.3331 -.1047 14.854 

.4284 -.0169 12.966 

.3732 -.0990 14.465 

.6282 

.6200 

.6561 

.6377 

.9570 

.1132 

.7188 

.6626 

.7596 

.6804 

.0754 2.0997 

.0624 2.0867 

.0688 2.0572 

.0586 2.0709 

. 0711 1. 8492 

7E-4 15.251 

.0859 2.0444 

. 0668 2. 0589 

.0795 2.0009 

.0636 2.0433 

.8350 

.8409 

.8526 

.8475 

.9481 

.1153 

.8568 

.8520 

.8758 

.8587 
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