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This paper presents and discusses procedures for estimating regression 
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inference problems. We show that pointwise root-n-consistency and global 
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any smoothing, even for discrete regressors with unbounded support. 
These results still hold when smoothers are used, under much weaker 
conditions than those required with continuous regressors. Such 
estimates are useful in semiparametric inference problems. We discuss in 
detail the partially linear regression model and shape-invariant 
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models where continuous and discrete regressors are present. The paper 
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1. INTRODUCTION 

In econometrics practice, few explanatory variables in regression models 

are continuous. Many of them are dummies, qualitative variables or 

counts; and others, though continuous in nature, are recorded at 

intervals and can be treated as discrete. This chapter is concerned with 

nonparametric and semiparametric inference in regression models where 

regressors are not continuous. 

When regressors are discrete with bounded support, a mere average 

of those observations of the dependent variable with the same regressor 

value will yield a root-n-consistent conditional expectation estimate. 

In section 2 we show that sequences of weights constructed in this way 

are also consistent in the sense of Stone (977), even when the discrete 

regressors have unbounded support, like the Poisson distribution. This 

procedure does not require any smoothing. As a corollary we show that, 

when regressors are discrete, commonly used nonparametric sequences of 

weights -like regressograms, kernels or k-nearest neighbours- are also 

consistent under weaker conditions than those required in the presence 

of continuous regressors. 

The weights introduced in section 2 are applied, in section 3, to 

estimation of semiparametric models where root-n-consistency of 

parameter estimates is not easy to achieve due to the problem of bias, 

which enforces to application of bias reduction techniques like higher 

order kernels. When all regressors are discrete, there is no bias 

problem in the estimation of these models. 

We consider first the partially linear regression model, see e.g. 

Green et a1. (985), Denby (1986), Engle et a1. (1986), Rice (1986), 

Heckman (1986), Chen (1988), Speckman (988) and Robinson (1988), to 

mention only a few. We prove a Central Limit Theorem (CLT) for the 
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coefficient estimates of the partially linear regression model when all 

regressors in the unknown part of the model are discrete. This CLT does 

not require independence between regressors and regression errors -a 

feature typically present when regressors are continuous. Then, 

heteroskedasticity is allowed. We also provide some guidance on how to 

deal with discrete and continuous regressors in the _unknown part of this 

regression model. Secondly, we analyse shape-invariant modelling, as 

suggested by Hardle and Marron (1990) and Pinkse and Robinson (1993). 

Section 3 also discusses applications in other semiparametric models and 

concludes with a Monte Carlo experiment. Proofs are confined to an 

appendix. 

2. NONPARAMETRIC CONSISTENT WEIGHTS WITH DISCRETE REGRESSORS 

Let Z be an IRq-valued discrete random variable. That is, 

3 VclR
q
, V countable set, with NZcV)=l and,., eV .NZ=,., »0. (2.ll

I I 

Let « ,Z ), ..., « ,Z) be independent and identically distributed 
1 1 n n 

(L Ld.) random vectors. In this section we present asymptotic 

properties of alternative nonparametric estimates of the conditional 

expectation (or regression function) m«,.,) i5 El< IZ=,.,}. 

2.1. Nonparametric regression estimates for discrete variables 

When regressors are discrete, m«,.,) can be estimated by 

where, hereafter, summations run from 1 to n unless otherwise stated, 

and the nonparametric weights are defined as 

w (,.,) =1(Z =,.,)/() 1(Z =,.,»,
nJ J'~ k 

2 

I 



where I(A) is the indicator function of event A and. hereafter. we 

arbitrarily define % to be O. Observe that these nonparametric weights 

do not require any smoothing value and. hence. we will refer to mr"c"') as 

the non-smoothing estimate. When the sample size is small and there are 

many different values of Z in the sample. it may be convenient to 

smooth. We will consider three popular nonparametric smoothing estimates 

of the regression function. the regressogram. kernels and Jc-nearest 

neighbours. 

Regressogram� weights are defined as 

where .5 (",)
nj 

= (3 i, lsisk(n) : ",E::S,
1 

Z E::S)
j 1 

and ::SI' .... ::s
ken) 

are 

pairwise disjoint subsets such that lJdn)::s
j=1 j 

:: IRq. The corresponding 

regressogram estimate of m{",) is 

When studying� its asymptotic properties. we have to assume that 

V E max V(::s) ~ O. (as n ~ o:l). (2.2) 
n� 1

1$ 1 Sk (n) 

where V(S) denotes the volume of the set S. The main advantage of these 

weights is that they are easy to compute. 

Kernel weights� are defined as 

where l/J is a� function from IRq to IR and h is a sequence of positive real 
n 

numbers. The� kernel esttmate of ml/"') is 
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This estimate, which was first defined by Nadaraya (964) and Watson 

(964), is the most popular one in the nonparametric literature. We will 

assume that 

~ has bounded support and h ~ 0 (as n ~ CD). (2.3)
n 

The k-nearest neighbour estimate of mr,.('l-) (hereafter referred to as 

k-NN estimate) is defined as follows: let ZO) be the jth coordinate of 

Z (lsjsq), and s the sample standard deviation of ZO), Z{j).nj 1 ... , n 

First of all, we define for u, v E IRq 

where the sum extends over all j, lsjSq, such that s > O. Let c 
nj In 

(lsisn) be constants satisfying 

Define now for a given (ZsiSn) 

d(i.,n,/f-) = #{j : lsjsn, p (Z ,/f-)< P (Z ,/f-»). 
n j n I 

A sequence of nonparametric weights can then be defined as 

e (I n /f-) ) ( . )
W (/f-) = ( " c /e L,n,/f- • 

nl ~=1 dCl,n,/f-)+k 

And the corresponding nonparametric estimate of mr,.(/f-) is 

Given a sequence k , the nonparametric estimate mr,.('l-) is said to be 
n 

a k-NN estimate if the following condition holds, 
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i > k .. c =O. 
n In 

There are different possible k-NN estimates, according to various 

choices of the sequence c . Some possible c are defined in Stone
In In 

(1977) (see also Devroye 1978). The uniform k-NN estimate 

(c = I(1sisk J/k ) is, possibly, the most popUlar one. In this caseIn n n 

if P (Z1,1-J< P (1-J n nk },w (1-J if P (ZI,1-J= P (1-Jnl n nk 

if P (Z ,1-J> P (1-Jn nk 

where now P (1-J is the k-th value obtained after sorting the sequence
nk 

of values p (Z ,r;J, ..., p (Z ,1-J, and d (1-J, e (1-J are 
n 1 n n nk nk 

d (r;) E # {j : 1sJsn, p (Z ,r;J< p (1»).
nk nj nk 

The k-NN weights are intuitively appealing. All nonparametric 

regression estimates can be viewed as local averages around the point at 

which regression is evaluated; with the k-NN estimates, one decides how 

many points are used in these local averages. 

2.2. Global consistency 

The non-smoothing weights satisfy the following property of global 

consistency. 

THEOREM 1: If (2.0 holds, EIIl:ll
r

<co and (l:,ZJ, (l:,Z J, ...,
1 1 

(l:n,ZnJ are L.td. random vectors then Ellml:(ZJ-ml:(ZJllr= o(1J. • 

Observe that the non-smoothing weights are not "universally consistent", 

as defined by Stone (1977), since we must assume that Z is discrete. 

Global consistency of other weights is proved as a corollary. For 

regressogram and kernel weights we have to assume that 
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3 ",,>0 : 'tI z , z ex>, z - z .. IJz -z II~",,>O. (2.4)
1 2 1 2 1 2 

COROLLARY 1: Assume that (2.0, (2.4) hold, EIIl;;lJr<oo and (l;;,Z), 

(l;; ,Z ), ..., (l;; ,Z ) are !.i.d. random vectors. 
1 1 n n 0 

a) If (2.2) holds, then ElJml;;(Z)- ml;;(Z)ll r = 00). 

b) If (2.3) holds, then Ellml;;(Z)- ml;;(Z)lJr = 00). _ 

Corollary 1.b has been proved by Devroye and Wagner (1980) 

considering jointly discrete and continuous regressors and under 

somewhat stronger conditions than (2.3). Devroye and Wagner need 

conditions on the kernel function which exclude, among others, 

Epanechnikov kernel and higher order kernels. They also need conditions 

on nhq
• 

n 

As for k-NN weights, applying Stone's (1977) results, we know that 

if the following condition holds, 

1/k + k /n ~ 0 (as n ~ 00), (2.5) 
n n 

then the k-NN estimates satisfy a similar result to theorem 1. In fact, 

in the discrete case, the non-smoothing estimates and the k-NN ones are 

asymptotically equivalent when (2.5) holds. 

THEOREM 2: If (2.0, (2.5) hold, EIJZIJ 
2

<00, (l;;,Z), (l;;,Z), ..., 
1 1 

(l;; ,Z ) are LLd. random vectors and ml'(tt-) is a k-NN estimate 
n n '" 

then there exists qoe(O,l) such that P(ml;;(Z)-ml;;(Z»= o(q~) -thus, 
A y -t

P(ml;;(Z)-ml;;(Z»= o(n ) 'tI telR (t fi.xed). _ 

This result will be used in section 3 for proving root-n-consistency of 

various semiparametric estimates which utilise k-NN weights. 

2.3. Pointwise root-n-consistency 

When regressors are discrete, all nonparametric estimates defined above 
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are root-n-consistent. We assume that l; is an IRB-valued random variable 

satisfying 

Ell;l;'} < 110. (2.6) 

Given ~eD, denote p(~). P(z=~), I(~). Var(l;IZ=~) and r(~)E p(~)-II(~), 

which can be estimated by p(~), I(~) and r(~) respectively, defined as 

.. -1 
p(~) = n I: I(Z ..,~), 

J J 

Given ~, ... , ~, let r<~ ,..,~) and r(~ ,..,~) be block diagonal
I f 1 f 1 f 

sf x sf matrices with components r(~/ and r(~/ (1~j~f) respectively. 

Then, we have 

THEOREM 3: If (2.Il, (2.6) hold, (l;,2), (l; ,2) are LLd. 
] ] n n� 

random vectors and ~ eD (j=1, .. ,f) then� 
J 

dn l / Z [ ~~(~t~~~~!)] -~~) N(O,r(~ , ..,~ »,
1 f 

ml;(~f)-ml;(~f) 

.. p •and r(~ , ..,~ ) ~ r(~ , ..,~ ).
1 f 1 f 

As a corollary to ttJeorems 2 and 3 we have, 

COROLLARY 2: Assume that (2.1), (2.6) hold, (l;,2), ..., (l; ,2 )
1 1 n n 

are LLd. random vectors and ~JeD (j=1, ..,f). 

a) If (2.2) and (2.4) hoLd, then 

1 2 d n / [ ~<~t~~~~!)] _':---4) N(O,r(~ 
1
, ..,~ 

f 
». 

ml;(~f)-ml;(~f) 
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b) If (2.3) and (2.4) hold, then 

nl/Z[ y~t~~~~~)] --~)
d N(O,r(", , ..,,,, )).

1 r 

mr.c"'r)-mr.c"'r) 

c) If mr.c"'l) is a k-NN estimate and (2.5) holds, then 

n'/z [ y~t~<~~)] --~) N(O,r(", , ..,,,, )).d •1 r 

mr.c'"r)-mr.c'"r) 

Of course, r(", , ..,,,,) in a), b) and c) can be consistently estimated as 
1 r 

in theorem 3. 

A similar result to corollary 2.b was established by Bierens (987) 

under different conditions. 

All theorems and corollaries stated in this section will be used in 

section 3 to prove asymptotic results in various semiparametric 

estimation problems. 

3. ESTIMATING SEMIPARAMETRIC MODELS WITH DISCRETE REGRESSORS 

Discrete regressors with possibly unbounded support are not a problem in 

some semiparametric models in which the focus of interest is to improve 

efficiency of the estimates. Stone's (977) results with k-NN weights, 

allowing for very general regressors, were first applied by Robinson 

(987) in semiparametric estimation in order to achieve asymptotic 

efficiency in regression models in the presence of heteroskedasticity of 

unknown form (the same result had been obtained by Carroll 1982, using 

kernels and under much more restrictive conditions on the regressors). 

These weights have been also applied to other semiparametric estimation 

problems by Newey (990), Delgado (992) and Delgado and Stengos (993). 
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In many semiparametric inference problems, however, a bias term. 

which increases with the dimension of the regressors set, makes it 

difficult to achieve root-n-consistency results. Robinson (1988) 

introduced the use of higher order kernels as a bias reduction technique 

in semiparametric problems. This technique has been also applied to 

other semiparametric procedures, like the average derivative method 

(Powell et al. 1989, Hardle and Stoker 1989) and shape-invariant 

modelling (Pinkse and Robinson 1993). among others. 

When regressors are discrete, the bias term exactly equals 0 and, 

hence, no bias reduction techniques are required. In this section we 

discuss how this fact can be exploited to obtain asymptotic properties 

in semiparametric models with discrete regressors. We analyse in detail 

the partially linear regression model and shape-invariant modelling, and 

make some remarks about how the same procedure may be used in other 

semiparametric estimation problems. 

As expected, in the mixed continuous-discrete case stronger 

conditions have to be imposed on the continuous part. However, no new 

techniques are required and theorems can be proved by combining the 

arguments in section 2 with the well-developed asymptotic theory for 

continuous variables. We only analyse the mixed case in the partially 

linear regression model. 

3.1. Partially linear regression model 

Suppose (Y,X,Z) is an IRxlRPxlRq-valued observable random variable such 

that 

ElY 1X,Z] = (3'X + 9(Z) a.s., (3.1) 

where (3 is an IRP-valued unknown parameter vector and 9 is an unknown 

real function. Given a random sample UY ,X ,Z ), l=l, ...n} from 
1 1 1 

(Y,X,Z), if we define £,. E l: -m,., where m,. E Ell: IZ ], then,
.,,1 1.,,1 ." I 1 I 
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£ = (3'£ + V, i=l,2, .. . ,n,
VI XI I 

where VI = YI-ElYIIXI,ZIJ· Let us assume that the following conditions 

hold, 

2 2 2
ElU X.Z J =ElU J = (J' < co, (3.2)1I I I I 

(3.3) 

Let us define i = 
-I 

n r £ £'
I XI XI 

and the unfeasible estimate 

~ = i-In-lr £ £ . 
I XI VI 

Under (3.0, (3.2) and (3.3), ~ is asymptotically 

normal and 

1/2 - 2 -IAsyVar(n «(3-(3)) = (J' ~ • (3.4) 

Chamberlain (992) has shown that (3.4) is a semiparametric 

asymptotic bound for model (3.0 in the absence of heteroskedasticity. 

Heckman (986) and Engle et aI. (986) proposed feasible estimates of (3 

using splines. but Rice (986) proved that the rate of convergence for 

these estimates is slower than n -112. Chen (988) proposed an estimate 

of (3 based on a piecewise polynomial estimator of the unknown function 

9, whereas Chen and Shiau 0990 proposed a two-stage spline smoothing 

estimate of (3. They both proved that with those estimators 

root-n-consistency is achieved. Speckman (988) and Robinson 0988. 

1993) proposed feasible estimates of (3 by estimating the conditional 

expectations in £ and £ . We follow here this approach.
VI XI 

Given «I,ZI)' «I,ZI)' «I-1,ZI_/ «I+I,ZI+l)' .., « ,Z ) 
n n 

i. i. d. random vectors, mJ" (Z ) E El< IZ J is estimated by,
~I I I I 

where now, for i-j 
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w (Z ) = I(Z =Z )/rr' I(Z =Z )). (3.5)
nJ I J I •'1c~1 k I 

Note that this is a "leave-one-out" estimate because l:; is not used to 
I 

estimate Efl:; IZ J. We use this estimate instead of an ordinary one in 
I I 

order to apply straightforwardly the global consistency results obtained 

in section Z. Specifically, applying theorem 1 we have that if (Z.1) 

holds, EII(II 
r 

<ClCl and (( ,Z ), •••, (l; ,Z ) are LLd. random vectors, then 
I Inn 

(3.6) 

where inJ- • inJ- (2 ), mJ- - mJ- (2 ). With these estimates we can obtain 
.... 1 .... 1 I .... 1 .... 1 I 

residuals CJ- = (-in,. for any random variable l:;. Using these estimated 
....1 1 ...1 

residuals for (= Y, X, it is possible to construct feasible estimates 
I I I 

for ~, (3 and (1'2. However, it is necessary to make a previous trimming: 

according to (3.5), if i is an observation such that r' I(Z =Z) = 0,
'1c~1 k I 

then in = 0, in = O. Therefore, those observations must not be taken 
YI XI 

into account in order to estimate the parameters of interest. So, let us 

define the random variable 

1 = I(r' I(2 =2 »0).
I '1c~1 k I 

We can now construct i = n-I" cc' 1 ~ = i-In-lE eel and 
L.I XI XI I' I XI YI I 

A2 -1" (A a,A;2I The estimate ~ achieves the semiparametric(1' = n L.I c yI -"" c I'XI 

bound (3.4) under certain regularity conditions as stated in the 

following theorem. 

4
THEOREM 4: If (Z.O, (3.1), (3.Z), (3.3) hold, EfU J<ClCl, EIIXII 4

<ClCl 

and (Y ,X ,2 ), ..., (Y ,X ,2 ) are LLd. random yectors, then
I I Inn n 

--~) N(O,I k)' 
d • 

Note that, unlike Robinson (988), it is not necessary to assume 

independence between regressors and regression errors. In addition, no 

smoothing is required to prove this theorem and the feasible estimate is 

conditionally unbiased: note that if 1 1 then,I: 
1 
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(3.7)� 

And, therefore, we also have the following equalities, 

c = I3'X +9(Z )+U -E W (Z XI3'X +9(Z )+U ) = l3'c +c ,
VI I I 1 J*I nJ I XI VI 

(3.8) 

£[~-131 (X ,Z), £=1, •••n1 = O. (3.9)
I I 

Conditional unbiasedness does not hold when regressors are 

continuous and smoothers are used for computing conditional expectations 

(see Robinson 1988 and Speckman 1988). Consistent estimates of 

conditional expectations with discrete regressors can be also obtained 

using smoothers, as has been discussed in section 2. However, the 

non-smoothing approach avoids the choice of a smoothing value and, on 

the other hand, if smoothers are used, (3.7), and then (3.9), do not 

necessarily hold. 

As noted in section 2, when the support of Z contains many 

different points and the sample size is small, it may be convenient to 

smooth. For instance, variables like "age" take many values and, in 

small samples, many observations are likely to be thrown out on 

computing ~ and the actual sample size will decrease dramatically. In 

such cases it seems reasonable to smooth. 

'Y"" """'2 ,..,..,.. 2
Let us define t, 13 and 11' in the same way as t, 13, and 11' but 

using instead of (3.5) leave-one-out kernel weights defined, for i*j, as 

w (Z ) = I/I((Z -Z )/h )/\' .I/I((Z -Z )/h ).
nJ I I J n' ~~I I k n 

Then, it is straightforward to obtain, 

COROLLARY 3: If (2.0, (2.3), (2.4), (3.0, (3.2), (3.3) hold, 
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4Elu 1<00, EIIXII
4<00 and (Y ,X ,Z ), ..., (Y ,X ,Z ) are £.i.d.

1 1 1 n n n 

random vectors, then, 

dn 1/20:- 1ill2(~_f3) NW,I k)' • 

The same result follows when a regressogram estimate of El~IZ=~1 is 
_ -""'2 • 0 

used (Le., corollary 3 also holds when t. f3 and Cl' are replaced by t, f3 
° 2and Cl' -constructed using leave-one-out estimates based on regressogram 

weights- and assumption (2.3) is replaced by assumption (2.2». 

When we use k-NN weights theorem 3 also holds. but this corollary 

is not as straightforward as with regressogram or kernel weights. Let 
v 

m~l be a uniform k-NN estimate of m~(Zl) obtained as defined in section 

2.1 and using as observations the n-l random variables Z, ..., Z ,
1 1 - 1 

Z , ..., Z . Define now £ = ~ -m. for any random variable ~, and 
1+ 1 n ~l 1 ~l 

v -1 v v 

t =n Le c'
I XI XI' 

Then, we have, 

COROLLARY 4: If (2.ll, (2.5), (3.1), (3.2), (3.3), hold,� 

ElS(Zl1<oo, E[U41<00, EIIXII 4<00 and (Y ,X ,Z), ••• , (Y ,X ,Z ) are� 
1 1 1 n n n 

i.l.d. random vectors, then, 

--~) N(O,I ).d •k 

Note that ~. ~ and ~ employ non-parametric leave-one-out estimates. 

In addition, in ~ and ~ a previous trimming is made. Such a trimming is 

not necessary for ~. 

The homoskedasticity assumption can be easily removed but the 

13 



asymptotic variance will change in the usual way (see e.g. Eicker 1963 

and White 1980). Let us assume that, instead of (3.2), we have 

2 2ElU X,Zl = er (X,Z) > 0 a.s. (3.10)1 

The following theorem summarises the results for the heteroskedastic 

model. 

THEOREM 5: If (2.0, (3.1), (3.3), (3.10) hold, EW41<rJO, EIIXII 4<rJO 

and (Y ,X ,Z ), ..., (Y ,X ,Z ) are L.L.d. random vectors, then,
III n n n 

where the matrix ~ is defined by 

.... "'-1 -I .... ........ 2........ .... -1�
'It = ~ (n E(c -(3'c ) c c' I}~ . •I YI XI XI XI I 

Up to now we have only analysed the case when all regressors are 

discrete. A similar methodology can be applied when there are both 

discrete and continuous regressors, though notation and proofs become 

more lengthy and less intuitive 2
• Suppose that (3.0 holds for a random 

vector Z such that 

(3.10 
Z(2)C IRq is absolutely continuous; q+s =r, q~l, 

We estimate m,. !5 Ell: IZ 1 using Nadaraya-Watson kernel weights
",I I I 

(Nadaraya 1964, Watson 1964) for the continuous regressors and the 

non-smoothing weights for the discrete regressors, Le. 

W (Z )=K (a )I(ZUJ,Z{I)/l K (a )I(ZUJ,Z{I),
nj I 1 j n I j . '1c Ik n I k 

2 
All notation used earlier In this subsection will be redefined now In 

order to adapt It to the new assumptions. 
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where hereafter we denote 

K is a function from IRq to IR defined as K(z) = k(z )k(z ) •• 'k(z ), k is 
1 2 q 

a function from IR to IR ("kernel function") and a is a sequence of 
n 

positive real numbers ("smoothing values"). We estimate m(l by 

for any random variable (. (Note that, unlike in previous sections, this 

is not a "leave-one-out" estimator). Using these estimates it is 

possible to construct estimated residuals £
A 

(1 and estimates of the 

parameters of interest i, ~ and a.2 as in the discrete case, but now 

where b is a sequence of positive real numbers (trimming values). 
n 

Some additional assumptions are required to prove that a similar 

result to theorem 4 holds when there are both continuous and discrete 

regressors in the unknown part of the model. Given deV, we denote 

9 (u) := 9(d,u), e (u) := E[X IZll)=d, Z(2)=u] and f (u) is the probability
d d d 

density function of Z(2) IZl1l=d. We will assume that 

3 telN 9 e ~4 , e e ~2 , f e ~Q) uniformly in V, (3.12)
d tq d tq d tq 

the kernel function k is in the class X and (3.13)
2tq 

b -4 4tq 0 4 2q
0 (as n ~).b --+,n a--+, nb a --+ Ill, (3.14 ) 

n n n n n 

Classes ~<X and X are defined in Robinson 1988, and "uniformly in V" 
fl W 

means that the constants which appear in the definition do not depend on 

the value d. The following theorem justifies asymptotic inferences on f3. 
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THEOREM 6: If (3.0, (3.2), (3.3), (3.W, (3.12), (3.13), (3.14) 

hold, U is independent of (X,Z), EIIXII 4<oo and (Y ,X ,Z), ..., 
1 1 1 

(Y ,X ,Z ) are LLd. random vectors, then, 
n n n 

• 

Unlike when all regressors are discrete, in theorem 6 it is 

required independence between regressors and regression errors. Hence, 

this result does not follow straightforwardly in the heteroskedastic 

model. 

As noted in previous sections, when the sample size is small and 

there are many different values of Z{ 1 ) in the sample, it may be 

necessary to smooth in the discrete part as well. In such a case theorem 

6 does not apply directly, but similar results to corollaries 3 and 4 

may be easily deduced from this theorem. 

Assumption (3.12) is difficult to verify as the functions f, e 
d d 

and ~ are not known. Assumption (3.14) restricts the choice of a and 
d n 

-c -db : if we suppose that a = Cn and b = Dn for real numbers C, D, c, 
n n n 

d, then (3.14) means that in a two-dimensional cId graphic, the point 

(c,d) must lie within the triangle whose vertices are 

Olq(l+2t),(2t-l)14(2t+l)), O/4tq,O), and O/2q,O). In practice, if we 

try to maintain c as close as possible to (q+4tq)
-1 (the optimal 

smoothing value for the nonparametric estimate), possible values are 

c=11(4tq-l) and d=11(l6tq-3). In semiparametric models, the choice of a 
n 

is not as critical as in nonparametric ones. In empirical applications 

these admissible values may be used as a reference. 

3.2. Shape-invariant modelling 

1# 1# q
Let us assume that (l:,Z), (l: ,Z ) are both IRxlR -valued observable random 

1# 
variables such that Z and Z are discrete that is, 

3 7)cIRQ
, 7) countable set, such that NZc7))=l, NZ

1#
c7))=l. (3.15) 
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We will denote ?f as the following subset of 7>: 

#I 
Note that we do not require that the probability function of 2 and 2 is 

positive in exactly the same points, but an assumption on , will be 

necessary -see (3.20) below. 

Let us suppose that there exists a linear relationship between the 
#I #I +f 

regression functions m(If,) • El<I2=If,J and m (If,) • El< 12 =If,J. that is, 

:3 9 =(9 ,9 )elR
2 

(9 .0) such that m 
#I 

(1f,)=9 +9 m(lf,) "'Ilf,e?f. (3.16)
o 10 20 20 10 20 

Given independent random samples ((< ,2 ),i=l, ..,n)} and 
1 1 

#I #I. 3((< ,2 ),J=l, ..,n) , the objective of this section is to propose
J J 

root-n-consistent estimates of the unknown parameter 9 . We also discuss o 
how our results may be extended to non-linear semiparametric 

relationships when regressors are discrete. 

The relationship specified in equation (3.16) appears when the two 
#I 

curves m(t;.) and m (If,) are noisy versions of a similar function, but 

there is no reasonable parametric model for each regression function. 

Figures 1-2 show two sets of 1000 simulated observations for which 

(9 ,9 ) = 00,5) and 
10 20 

m(r;) = 'V5 (Figure 1) 

(Figure 2) 

(Figures 1 and 2 about here) 

#I 
In these simulations. 2 and 2 were taken to be Poisson variables with 

3
We assume that the size or both random samples Is the same ror the sake 

or simplicity. This assumption Is. obviously. not necessary. 

17 
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mean 8 and the errors were taken independent normal variables with zero 

mean and variance 1. 

Lawton et al. (972) and Gasser et al. (984) (among others) 

provide with examples in which similar models to (3.16) may apply. In 

econometrics practice, these models are likely to appear when analysing 

certain microeconomic data. Consider, for instance, the case in which 

(l:,Z) are, respectively, "percentage of expenditure on food" and "age of 

the reference person" for households in a low level of income and 
#I #I 

(l: ,Z ) are the same variables but considered for households in a high 

level of income. After a nonparametric analysis of data, it may seem 
#I 

unreasonable to assume that m(~) and m (~) are the same function; but it 

may be possible that a relationship as (3.16) holds and then it will be 

of interest to estimate 8 . o 

Some recent papers have analysed similar models to (3.16) in 

settings which are different from ours. Hardle and Marron (990) 

consider a (possibly non-linear) parametric relationship between the two 

unknown regression functions when regressors are fixed and taken equally 

spaced on the unit interval. Pinkse and Robinson (993) consider the 

same kind of relationship as Hardle and Marron (990) when regressors 

are continuous random variables, and prove that a more efficient 

estimate is obtained by pooling the two data sets. 

The true parameter 8 satisfies that 8 = argmin Q(8), where o 0 

(3.17) 

(v(.) is any positive real "weight function", chosen in such a way that 

the summation is finite). We can obtain a feasible estimate replacing 

the unknown regression functions by the non-smoothing estimates m(~) and 

in#I(~) defined in section 2. Thus, let us define the least squares 

estimate 

18 



where the weight function we consider here is 

for a fixed real value £>0. We assume that £ is taken in such a way that 

£ 4! (p e (O,l) : 3 ...e!) such that NZ=...)=p or NZ*=...)=p) (3.18) 

This is a mere technical condition which does not restrict, in practice, 

the choice of £. This condition is introduced in order to ensure that 

V "'E' w(...) converges to w(...) , where we denote 
n 

The value £ must also satisfy condition (3.20) below. We choose this 

weight function in order to consider only those points in , for which 

there are enough observations in our random samples to construct 

accurate estimates of the conditional expectations m(...) and m (* ...). 

We assume in our model that 

(3.19) 

:3 N tha t:E' su ch·...1··N...2 

a) m("'1 )~m(...2) (3.20) 

b) P(Z="'I »£, NZ*="'1»£ for '=1.2. } 

(3.21) 

Assumption (3.19) ensures that we can apply the asymptotic results 

proved in section 2.3. Assumption (3.20) is an identifiability 

condition: it ensures that e is the only solution to (3.17) when w(...) o 
is used as weight function. Assumption (3.20 avoids degenerate cases 

which could be treated in a simpler way. Let us define 
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* 2A(~) = r (~) + 9 r(~), 
20 

* A*
where r(~), r (~), r (~) and f(~) are as defined in section 2.3. Then we 

have the following result, 

THEOREM 7.- If (3.15), (3.16), (3.18), (3.19), (3.20), (3.20 

hold and «;1,21), *«;1,2* 1), ..., «; ,2 ), 
n n 

* *«; ,2) 
n n 

are t.t.d. 

random vectors then, 

where the matrices A and V are defined by 

A = 

Furthermore, the asymptotic variance-covariance matrix may be 
A-I'" A-I A A

consistently estimated by A VA , where A and V are defined as 

A, V, replacing m(~), w(~) and A(~) by m(~), w(~) and ~(~). • 

According to the definition of w(~), the summation in A and V extend 

only over a finite number of terms. Moreover, A is positive definite as 

a consequence of (3.20) and Cauchy inequality. 

As in section 3.1, the non-smoothing estimates used in this theorem 

may be replaced by regressogram, kernel or k-NN estimates (the same 

proof applies, changing references to theorem 3 by references to 

corrresponding corollaries). 
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On implementing this estimate, the practitioner only has to choose 

the fixed value c. If the asymptotic variance-covariance matrix were 

known, obviously c should be such that the most efficient estimate were 

obtained. In practice, the choice of this value must depend on the 
11

sample size and variance of Z and Z , the objective of this choice being 

to consider only those points for which we have accurate estimates. 

The asymptotic variance-covariance matrix of 9 reminds us of the 

"heteroskedastic" nature of the model. Observe that 

As usual, we can obtain a more efficient estimate in a second stage if 

we use weighted least squares. Specifically, let us define the 

generalised least squares estimate as 

where the trimming function we consider now is 

.. -1 0: -1 11 0: 
U (If.) = 1(n L1(Z =If.)~pln ) x 1(n L1(Z =If.)~pln ), 

n J J J J 

for fixed positive real values p and 0:. Observe that, unlike w(If.) , the 
n 

trimming function Lt (If.) satisfies that 
n 

_...:.p-~) 1. 

Hence, asymptotically all values in '!f are taking into account on 

computing 9 whatever the values p and 0: we choose. We assume that 

11 11 
3 6 > 0 such that 't/ If.e'!f Var«IZ=If.»6 and Var« IZ =If.»6, (3.22) 

THEOREM 8.- If (3.15), (3.16), (3.18), (3.19), (3.20), (3.22) 
11 11 11 11 

hold and «I,ZI)' «I,ZI)' ..., « ,Z ), « ,Z) are f..f..d. 
n n n n 

random vectors then, 
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where the matrix 0 is defined by 

Furthermore, 0 may be consistently estimated by 0, defined in the 

same way as 0 replacing m('t-) and A('t-) by m('t-) and ~.('t-). • 

If we compare theorems 7 and 8 we observe that there are at least 

two reasons why S is preferable to a: on the one hand, S is more 
-1 -1 -1

efficient than aA 

(it is easy to prove that A VA -0 is positive 

definite); on the other hand, the asymptotic distribution of n 1/2(S_a) 

does not depend on the choice of any real number, whereas the asymptotic 
1/2 A

distribution of n (a-a) may be severely affected by a bad choice of c. 

In section 3.4 we analyse the finite-sample behaviour of both estimates 

in various statistical models. 

The linear relationship considered in (3.16) may be too simple to 

capture the true nature of the observations. More general parametric 

relationships may be considered. Specifically, 

(where S(.,.) is a known real function and a is an unknown vector of 

parameters) may be a more realistic assumption than (3.16). But, 

essentially, the same ideas which underlie our proposed estimate may be 

also used in this case -we prefer the simpler model (3.16) for the sake 

of clarity. Even more general models can be considered, such as 

if 
m ('t-) = S(a ,m(T(a ,'t-»

1 2 

for known real functions S(.,.), TC,.) and unknown vector parameters 
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9 , 9 , But here the function T and the parameter space must be such 
1 2

that T(9 ,!J) E 7). Hence, strong conditions should be imposed on n.,.),
2 

the parameter space and the estimates of 9 . 
2 

3.3. Other semiparametric models 

In some semiparametric problems it is not straightforward to achieve 

root-n-consistency owing to the bias introduced by the nonparametric 

estimate, as in the models studied in previous sections or in the 

"average derivative estimation (ADE) method" (see e.g. Powell et al. 

1989, Hardle and Stoker 1989 or Robinson 1989). In the ADE model 

Chamberlain (1986) proved that if all regressors are discrete then the 

parameter of interest may not be identifiable (even up to a scale 

coefficient). In the mixed continuous-discrete case, it would be 

possible to achieve root-n-consistency, but the involved resulting model 

will probably not capture the true relationship between the variables 

concerned (see Stoker 1991, section S.2.a). 

In other semiparametric problems, the goal is to improve efficiency 

rather than achieve root-n-consistency. In most of these models, 

implementation of discrete regressors using our methods is 

straightforward. For instance, in the asymptotic efficient estimation in 

the presence of heteroskedasticity of unknown form, Robinson (1987) 

proved (using k-NN regression estimates) that the semiparametric 

estimate is asymptotically efficient even when regressors have discrete 

or mixed distribution. As a consequence of our results in section 2, 

when all regressors are discrete the same asymptotic distribution is 

obtained using non-smoothing, regressogram or kernel weights. 

Nonparametric k-NN weights have been also used in other semiparametric 

inference problems in which weights presented in this chapter are also 

straightforwardly applicable (see e.g. Newey 1990 and Delgado 1992). 

3.4. Simulations 

We have generated observations from the regression models discussed in 
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sections 3.1 and 3.2 and computed the various semiparametric estimates 

discussed there. The results are contained in Tables I, 2, 3, 4 and 5. 

First we have generated observations from eight partially linear 

regression models. In models 1-6 we have taken X and Z to be scalar 

random variables. In these six models Z was taken from a Poisson 

distribution with mean >. (specified below) and X was taken as X ... Z + V, 

where V was generated from a normal population independent of Z with 

zero mean and variance 1. In all models the error term U is independent 

from V and was generated from a normal population with zero mean and 

variance ,/(Z). The complete description of models 1-6 is as follows: 

Model >. cr 2 (Z) Underlying model for y 
u 

0.3 1 Y =1 + X + Z + U 

2 3.0 1 Y ... 1 + X + Z + U 

3 0.3 1 Y =1 + X - 3(Z-1)2 + U 

4 3.0 1 Y =1 + X - 3(Z-1) 2 + U 

5 0.3 (1+z13l y =1 + X - 3(Z-1)
2 + U 

6 3.0 (1+z13l y =1 + X - 3(Z-1) 2 + U 

Note that models 1 and 2 are linear and homoskedastic, models 3 and 4 

are nonlinear and homoskedastic and models 5 and 6 are nonlinear and 

heteroskedastic. In models with uneven label, the variance of Z is small 

and in every sample the majority of values will be 0 or 1; however, in 

models with even label samples will contain many different values of Z. 

In models 7 and 8, Z was taken to be a bivariate Poisson 

distribution, Z = (Z ,Z ) (both Z and Z with mean >.), V and U were as 
1 2 1 2 

in models 1-6 and X = ZI + Z2 + V. The complete description of these 

models is: 
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Model Underl y ing mode I for Y 

7 0.3 1 Y = 1 +X- 3(Z _1)2_ 3(Z -1l+ u 

8 3.0 1 y. 1 +X- 3(Z _1)2_ 3(Z -1l+ u 

In all models the semiparametric estimates ~ ~ and ~ 

(non-smoothing, kernel and uniform k-NN estimates, respectively) were 

computed. In models 1-6 the kernel we used was the Epanechnikov kernel 

(the most efficient one in nonparametric estimation), defined as 

k(u) • 0.75(1-u
2
)I( Iu IsV. 

In models 7-8 the kernel used was the product of two univariate 

Epanechnikov kernels. On computing both the kernel and the k-NN 

estimates smoothing values (h and k respectively) have to be selected. 
n n 

We have simply selected three possible hand k trying to cover 
n n 

meaningful intervals for them. Observe that, according to our selection 

of the support 7) and the kernel function k, if h <1 then the kernel 
n 

estimate is the same as the non-smoothing one. 

From the results in section 3.1, the asymptotic distribution of 

the non-smoothing estimate ~ is 

dModels 1-4, 7-8: ---+) N(O,V, 

d 2
Model 5: ---+ NW,1.1 ). 

d 2
Model 6: ---+) N(0,2 ). 

The same asymptotic distributions hold for the kernel and k-NN 

estimates. 

We report the sample mean CM) and mean square error (E) of each 

estimate. Table 1 contains results corresponding to a sample size of 

n=40 observations; the reported values are based on r=5000 replications. 
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Tables 2 and 3 contain corresponding results for n=200, r=2000 and 

n=1000, r=500, respectively. 

In nonparametric estimation, the typical trade-off between bias and 

variance is closely related with the degree of smoothing. Specifically, 

bias increases/decreases as the amount of smoothing increases/decreases 

and variance increases/decreases as the amount of smoothing 

decreases/increases. This behaviour is observed using any smoother. 

However, in semiparametric estimation problems this relationship is not 

so evident. In fact, we find in the simulations reported here that, for 

fixed sample size, the non-smoothing estimate can perform better than 

the others in terms of bias and variance, and this fact is stressed when 

the nonparametric part of the model exhibits high volatility. 

In models and 2 (both linear) all estimates have similar 

behaviour; the k-NN estimates perform slightly better than the others in 

model 1 and the kernel estimates seem to be the better ones in model 2 

(though, as expected, in both cases the non-smoothing estimate is the 

one with lowest bias). In models 3, 5 and 7 (nonlinear in Z and with low 

variance for Z) the non-smoothing estimate is the most adequate one, but 

the other nonparametric estimates also behave properly. In models 4, 6 

and 8 (nonlinear in Z and with high variance for Z) the non-smoothing 

estimate is, again, the better one but, unlike in previous models, 

kernel and k-NN estimates perform rather poorly. In the heteroskedastic 

models the variance varies in the expected direction. In the 

two-dimensional models there is an increase in variance as a result of 

the poorer performance of the nonparametric estimate. 

These results are not a surprise and can be explained in terms of 

the closeness between mJ-(If.) and mJ-(If. ) when If. and If. are close values 
, 1 , 2 1 2 

within V. Since the set V is discrete, the traditional concept of 

continuous function is useless to assess this relationship of closeness. 

But observe that, 

a) In models 1 and 2, we have m (O)=l, m (1)=3, myC2)=5,y y 
m (J)=7, m (4)=9 and so on. In these models, close values in V have y y 
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fairly close conditional expectations and, as a result, if the sample 

size is small (as in Table 0, smoothing may improve the behaviour of 

the estimates. For a fixed sample size, the higher the variance of 2 the 

better it will be to smooth: in this case, it will be likely to have 

points '; for which 2=,; in only a few observations and, then, smoothing 

will improve the accuracy of the nonparametrlc estimate. This is what we 

see when comparing models I and 2 in table 1: in the latter, we achieve 

by smoothing a comparatively more important improvement when we smooth. 

b) In models 3, 4, 5 and 6, we have my(OJ=-Z, my(V=z, 

my(ZJ=O, m (3J=-B, m (4J=-ZZ and so on. Thus, close values in V do noty y 
have close conditional expectations. As a result, in no case is 

smoothing advisable. Even more, the higher the variance of 2, the worse 

it will be to smooth: if 2 has small variance we will have plenty of 

information for each observed data point and the smoothing will not 

worsen dramatically the performance of the nonparametric estimate; 

however, if 2 has large variance, then "noisy" information which comes 

from smoothing will seriously affect the performance of the 

nonparametric estimate. In tables I, 2 and 3 we observe that in models 

3-8 the non-smoothing estimate is the best one and the other 

nonparametric estimates only seem adequate in those models in which 

Var(2J =0.3. 

To sum up, if the unknown part of the partially linear regression 

model does not exhibit high volatility, then the k-NN and the kernel 

estimates may perform slightly better than the non-smoothing one if the 

smoothing values are properly chosen. Otherwise, smoothing techniques 

are not adequate and may produce extremely misleading results, as in 

models 4, 6 and 8 -and observe that this may happen even though there 

exist continuous functions from IRq to IR my<.J and mX(.J such that 'V ,;eV 

E{Y 12=lf-J=my<lf-J and E{X I2=,;J=m (lf-J.X

We have also generated observations from five pairs of regression 

curves with similar shape and computed the semiparametric estimates 
N

described in section 3.2. In all cases 2 and 2 were taken as 

independent random variables from a Poisson distribution with mean ;>. 
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(specified below), V and V* were taken as independent random variables 

*(also independent from Z and Z ) from a normal distribution with zero 

mean and variance 1 and, finally, l;; = m(Z) + V and l;;* = m*(Z*) + V*, 

where m(Z) is specified below and m*(.) and m(.) satisfy (3.16) for 

a = 00,2). The complete description of all models is as follows: o 

Model 9 10 11 12 13 

1.0 3.0 2.0 0.5 5.0 

m(Z) 2+Z 2+Z 

A trimming value £ had to be chosen in order to compute Sand, 

additionally, positive real values p and a had to be selected to compute 

S. According to theorem 7, the performance of S depends crucially on the 

choice of £; according to theorem 8, the performance of S does not 

depend on the choice of £, cS and a. In order to analyse how to choose £, 

we have first computed in models 9-13 what values in ~ should satisfy 

w('1) = 1 to achieve as good an estimate of a as possible4. We obtained 

that these values are: (O,1,2,3J in model 9, (l,2,3,4,5,6J in model 10, 

(O,1,2,3,4,5,6J in model 11, (O,l) in model 12 and (l,2,3,4,5,6,7,B,9J 

in model 13. Thus, we observe that the higher the variance of Z, the 

greater the number of values in ~ which must satisfy w('1) = 1 -and, 

hence, the smallest the positive real number £ should be. Therefore, in 

our simulations we have selected two values of £ which are inversely 

proportional to the standard deviation of Z. Specifically, we chose £ = 
I 

0.05 x Var(Zi/2 and £ = 0.1 x Var(Z)1I2. With this choice, according
2 

to theorems 7 and 8, the asymptotic distribution of n l /2(S-a) is N(O,t)
I 

for £ and N(O,t) for £, and the asymptotic distribution of n l /2(S-a)
I 2 2 

is N(O,t), where the symmetric matrices t, rand t are specified
3 I 2 3 

below for each model: 

4
We say that the estimate S obtained with a value £ Is the best one If 

for every other positive real number 7), the determinant of the 

A-IVA-I asymptotic varlance-covarlance matrix (see th. 7) obtained for ~ 

Is greater than or equal to the determinant of the matrix A-IVA­
obtained for £. 
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M. 9 10 11 12 13 

E [80.3 -26.0] 75.0-13.7] 11.5 -3.25] [16.5 -5.50] 260 -133.4] 

1 8.97 [ 2.78 [ 1.72 3.89 [ 70.6 

E 

2 

[84.2 -28.3] 

10.2 r40S 

-:~~:] ros -::::] [ 

16.5 -5.50] 

2.75 

[320 -166.5] 

88.5 

-15] [46.6 -8.33] [ 7 -1 ] [10.6 -2.50] [161 -82.6] 

5 1.67 0.5 1.11 43.7 

We report in table 4 the mean (M) and variance (V) of e and a 
computed using non-smoothing weights for the nonparametric estimates and 

a=O.Ol, p=O.1. In table 5 we report corresponding results when the 

nonparametric estimates are computed using kernel weights (with 

Epanechnikov kernel) and h=1.2. All reported values are based on n=40 

observations and r=10000 replications. 

We observe that in models 9, 10, 11 and 12 the non-smoothing 

estimate performs better than the kernel one, whereas in model 13 the 

kernel estimate seems to be the most adequate one. Again, these results 

are not a surprise: in model 13 the regression function has low 

variability (Le. close points in V have close conditional expectations) 

and as Var(Z)=5 in every sample there are many different values 

-therefore, smoothing improves the accuracy of estimates. 

If we compare e and a, we observe that, surprisingly, in some cases 

the former performs better than the latter (models 10 and 11 when £ is 
1 

used>' This also happens with some other well-known two-stage 

estimators, and the reason for this fact is because the weights i\(Jt.) are 

so poorly estimated in the first stage that no improvement is achieved 

in the second stage. However, in this specific model, the generalised 

least squares estimate still has an advantage over the ordinary least 

squares estimate: results do not depend on the choice of c when using e, 
unlike what happens with e (see, for instance, models 9 and 12). This is 

the main reason why a seems preferable to e when estimating the 
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parameters relating two regression curves with similar shape. 

We observe that in models 9, 10, 11 and 12 the non-smoothing 

estimate performs better than the kernel one, whereas in model 13 the 

kernel estimate seems to be the most adequate one. Again, these results 

are not a surprise: in model 13 the regression function has low 

variability (Le. close points in D have close conditional expectations) 

and as Var(Z)=5 in every sample there are many different values 

-therefore, smoothing improves the accuracy of estimates. 

If we compare e and e, we observe that, surprisingly, in some cases 

the former performs better than the latter (models 10 and 11 when €: is 
1 

used). This also happens with some other well-known two-stage 

estimators, and the reason for this fact is because the weights 'A(",) are 

so poorly estimated in the first stage that no improvement is achieved 

in the second stage. However, in this specific model, the generalised 

least squares estimate still has an advantage over the ordinary least 

squares estimate: results do not depend on the choice of €: when using a, 
unlike what happens with e (see, for instance, models 9 and 12). This is 

the main reason why a seems preferable to e when estimating the 

parameters relating two regression curves with similar shape. 

APPENDIX.- Proofs. 

Proof of theorem 1: We must prove that the sequence of non-smoothing 

weights satisfies conditions 1-5 of Theorem 1 in Stone (977). It is 

straightforward to see that Stone's conditions 2 and 3 hold. The other 

conditions also hold as it is proved in propositions 1.1-1.3 below. 

Proposition 1.1.- For every nonnegative Borel function f:lR
q ---+ IR, 

E{f(Z») < 0Cl .. EfL W (Z)f(Z») s 2E{f(Z») 't/n2:1
J nJ J 
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= 2nE[[(Z )UZ =Z)/o+E uz =Z»]
1 1 k k 

= 2E{f(Z )](Z=Z )E[n/(2+E
n 

](Z =Z»IZ,Z J)
1 1 k=2 k 1 

Given .... eV, if we define B* • En ](Z =....). and p • NZ=....), then 
n k=2 k ....� 

E[n/(2+B*») = ~-l (n-1) pSO_p )n-l-sn/(2+5)� 
n Ls=O 5 .... ....� 

S -I~-I ( n) S+IO_ )n-S-I� 
p.... L ...o 5+1 p.... p ....� 

= p -1[1-0-p )n) S p -I.� 
.... .... .... 

Therefore. if NZ) is the positive discrete random variable with 

support 23 = (p :....eV) and probability function NNZ)=p ) = p V P e23. 
.... .... .... .... 

E[E W (Z)[(Z») s 2E([(Z )UZ=Z )E[n/(2+r:.': UZ =Z»IZ,Z J)
J nJ J 1 1 k=2 k 1 

s 2E{f(Z )UZ=Z )p(Z)-I) 
1 1 

= 2E([(Z )E[UZ=Z )NZ)-IIZ J).
1 1 1 

Given ....eV. the random variable H( ....,Z)=](Z=....)NZ)-I is discrete and 

its support contains two values: NH(....,Z)=O) = 1-p , NH(....,Z)=p -I) = p . 
.... .... .... 

Thus, E[H(....,Z»)=1 V ....eV and. hence. 

E[E W (Z)f(Z»):s 2E([(Z )E[UZ=Z )NZrIIZ J) = 2E[f(Z ») •
J nJ J 1 1 1 1 

Lemma 1. - Let Z be a discrete random variable with support V and 

probability function NZ=....) = p V ....eV; let Z, Z, ... , Z be LLd. 
.... 1 n 

random variables and me71. m~O (m fixed). Then 

Lim nNr' ](Z =Z)=m) = O. 
n~al ~ k 

PROOF: N~](Zk=Z)=m) = E....eVNZ=....)N~ ](Zk=Z)=m IZ=....). But ~](Zk=Z) 

conditional on Z=.... has binomial distribution B(n,p ). where p ENZ=....). 
.... .... 

Hence. 

fr' (Z » ~ ( n ) m(1 )n-mnP,~1 k=Z =m = nt......eV p.... m p .... -p.... 
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=nL-m(n) (n-m) (-ll(L s+m+l).
s=o m s 1f:EV p1f: 

Define p = sup p < 1 and q E (O,l-p). (If P = 1, Z is degenerate and 
o If.EV If. 0 0 

Lemma 1 is straightforward). Then, 

'V k~l and 'V If.EV, (p /(1-q))k s p /(1-q)<p /p ,
If. If. If. 0 

k.. L <T\(p /(1-q)) < L <T\ P /p = l/p ,
1f:ELI If. 1f:ELI If. 0 0 

k k k-l.. L <T\ p < (1-q) /p < (1-q) /p .
1f:ELI If. 0 0 

Therefore, the previous equality implies that 

:s n -1( n )~-m(n-m)(_ll(1_ l+m 
Po m L..=o s q 

-1 ( n ) m n-m=Po m n(1-q) q = 0(1). •� 

Proposition 1.2.- L W (Z) _--:....p-~) 1. 
k nk 

PROOF: LkWn/Z) = Icr.cI(Zk=Z)~O). So, for £:>0, P(IL W /Z)-ll>c) :sk n

P(LkWn/Z)=O) = P(LkI(Zk=Z)=O) = 0(1) (by lemma 1). • 

Proposition 1.3. - max W (Z) _..:....p~) O. 
J nJ 

PROOF: 'Vc>0, P(lm,x Wn/Z)I>c) = P(~I(Zk=Z)~O, l~I(Zk=Z»c) = 

P(O~ I(Zk=Z)<l/c). Define :J(c)= IN n (O,l/c), which is a finite subset 

of IN. Then, P(O~I(Zk=Z)<l/c) = ~E:J(c)P(~I(Zk=Z)=m) = 0(1), since the 

sum contains a finite number of terms, all converging to 0 (Lemma 1). • 

Proof of Corollary 1: We only prove the second statement here (the first 

one follows in a similar way). By (2.4) we know that 3 M : IIxll~M .. 

~(x) = 0, and there exists n o such that 

n~n 
o 

.. Jl,/h ~M 
n 

and IIIf.-Z 11th 
J n 

~ MI(If.~Z )
J 

if If.EV. 

Hence if n~n and If.EV, then at (If.) = W (If.) and inr(If.) = mr(If.); so this o nJ nJ , , 
corollary follows from theorem 1. • 
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Proof of Theorem 2: Observe that if L
j
I(Z

j 
=Z)l:k, then 

I(Z =Z)= 1 .. e(i.,n,Z)= LI(Z =Z) and d(i,n,Z):: 0 .. Co) (Z)= w (Z)
I j j nl nl 

Therefore, Nmr,(Z)-. mr,(Z)) S pr£/(ZrZ)< k) 

k -I 
:: I:;.=oNE/(ZtZ)=m) 

:s -I~k -I ( n ) (1- )m n-m
Po '"'m-o m q q , 

where kE kn' P~ 1 is as in Lemma 1, and the last equality holds for 

qe(O,V (as in Lemma 1). By (2.5) there exists n such that nl:n .. o� 0 
ksn/2. So, if nl:n ,

o 
Nm(Z)-.m(Z)) S -I~k -I ( n ) (1- )m n-m S -I k ( n ) n-k

Po '"'m=o m q q� Po k q , 

where the second inequality holds because the summation contains k terms 

which are all less or equal than qn-knl/(k!(n-k)!). Denote q I! ql/4< 1; 
o 

then, by Stirling's formula, 

and all terms in this product converge to 0 by (2.5) (the third term is 

equal to exp(n x [(n-k)log(q )/n + (kln)log(k/n) + (1/2n)log(k)J)). _ 
o 

Proof of Theorem 3: Given ...e1), let us define U ( ...) = (r, -m}"(...))I(Z =...).
j j ~ j 

Then, 

where s=dim(r,), 1 is the identity matrix of order sand P is the [x[
B� n 

-I� -I
diagonal matrix P E� diag[n LI(Z =... ), ..., n LI(Z =... )). Now, by 

n� j jl J jf 

Khinchine's Law of Large� Numbers, 

-I P(P 8 1) ~ diag[p(... ), ..., p(... )) 8 1 ; 
n B� 1 f B 

and by Lindenberg-Levy's� Central Limit Theorem 
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p(1- )t(1- )
1 1 

[ o 

Combining both results we obtain theorem 3. _ 

Proof of Corollary 2: Follows from theorem 3 in the same way as 

corollary 1 and theorem 2 were proved. _ 

Proof of Theorem 4: From equation (3.8), it suffices to prove that 

d 2---+) N(O,cr t), (A.I) 

(A.2) 

Propositions 4.1-4.4 below prove (A.I); (A.2) is easily proved with 

simi lar arguments. 

-1/2 2A A

Proposition 4.1. - Elln L (m -m )m I 11 = o(V.
I XI XI UI I 

-1/2 A 2 -1~ 2 A 2A A

PROOF: Elln L (m -m )m I 11 = n L. E[lIm -m 11 m I J 
I XI XI UI I 1=1 XI XI UI I 

-1 ,..,.. ,., A 

+ n LL EfI m (m -m )'(m -m )m I J 
I J, J I I UI XI XI xJ XJ uJ J 

,.. 2 ..... 2 A '" A A= E[lIm -m 11 m I J + (n-VE[I m (m -m )'(m -m )m I J. 
Xl Xl Ul 1 1 Ul Xl Xl X2 X2 U2 2 

We prove that the first term converges to 0 ana the second one is O. 

For the first term, applying Cauchy-Schwartz inequality. 

A A A A2 A 2 2 A 2 4 4 1/2
E[lIm -m 11 m I J ~ E[lIm -m 11 m J ~ (Ellm -m 11 E[m)) . 

Xl Xl Ul 1 Xl Xl Ul Xl Xl Ul 

A A4 
Ellm -m 11 converges to 0 (applying (3.6»; m is an estimate of m 5 

Xl Xl Ul Ul 

A4 
E[U IZ J = 0, and hence E[m J converges to 0 applying also (3.6>'

1 1 Ul 

As for the second term. defining jl = (X •...X ,Z ,••• ,Z J. then 
1 n 1 n 

EfI m (m -m )'(m -m )m I J = 
1 Ul Xl Xl X2 X2 U2 2 

E[L I (m -m )'(m -m )U2w (Z)W (Z)I J 
J=3 1 Xl Xl X2 X2 J nJ 1 nJ 2 2 

A A 21(n-2)E(1 (m -m )'(m -m )W (Z)W (Z)I E[U jl)) = 
1 Xl Xl X2 X2 n3 1 n3 2 2 3 
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-- ---------- ----

2 
cr (n-Z)L j"'ILI 1"'2ElI (m -X )'(m -X)W (Z)W (Z)W (Z)W (Z)l J.

j ,~ ,~ I XI j X2 I nj I nl 2 n3 I n3 2 2 

All terms in this last expression are 0 because if we denote 

11 
Wjl(ZI,Z2""'Z ) • W (Z)W (Z)W (Z)W (Z),

n ~ I ~ 2 ~ I ~ 2 
Then, we have 

W11 (Z,Z ,••. ,Z ) = UZ =Z =Z =Z =Z )/~ UZ =Z»4 ~ j I I 2 n I 2 3 j I =2 k I 

Ell (m -X )'(m -X)W (Z)W (Z)W (Z)W (Z)l J = 
I XI j X2 I nJ I nl 2 n3 I n3 2 2 

11 
Ell W (Z,Z ,...,Z )1 (m -m )'(m -m )J = O.

I JI I 2 n 2 XI XJ X2 XI 

The last equality holds because the variable whose expectation is taken 

is 0; note that, 
•
If 

11
W (Z,Z ,...,Z)

JI I 2 n 
'* 0, then Z =Z 

I J 
and Z =Z,

2 I 
hence 

(m -m )'(m -m )XI Xj X2 XI E (ElXIZ J-ElXIZ ))'(ElXIZ J-ElXIZ))I J 2 I = 0). • 

-I/~ ,. 2
Proposition 4.2 Elln L (X -m )m 1 11 = 0(1).I I XI UI I 

-1 A A 

+ n L L Ell (X -m )'m m (X -m )1 J
I J, j:ltl I I XI UI UJ J XJ J 

2m2 = EllIX -m 11 1 J + (n-1)ElI (X -m )'m m (X -m )1 J.
I XI UI I I I XI UI U2 2 X2 2 

The first term converges to 0 as in proposition 4.1. As for the 

second one, 

Ell (X -m )'m m (X -m )1 J = 
I I Xl UI U2 2 X2 2 

2cr (n-Z)E(I W (Z)W (Z)l E[(X -m )'(X -m )1 Z ,... ,Z J) = o. •
I n3 I n3 2 2 I XI 2 X2 I n 

Proposition 4.3.- Elln-I/1:(m -m )U 111 2 = 0(1).
I XI XI I I 

-I/~ ,. 2
PROOF: Elln L (m -m )U 1 11 = I XI XI I I 

,. 2 2 A A 

Elllm -m 11 U 1 J + (n-1)Ell U (m -m )'(m -m )U I J.
XI XI I I I I XI XI X2 X2 2 2 

The first term converges to 0 (applying Cauchy-Schwartz inequality as in 

previous propositions) and the second one is 0 (because U and U,
I 2 

conditional on ~, are independent random variables whose expectation is 
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exactly equal to 0). • 

d 2Proposition 4.4. - n-I/~ (X -m )U 1 ---~) N(O,er ~). 
~ I XI I I 

PROOF: By Central Limit Theorem it follows that, 

-I/~ d 2 n L(X -m )U ---~) N(O, er ~), 
I I XI I 

since E((X-m )U]= E{(X-m )E[UIX,Z]} =0 and E((X-m )U2(X-m )'] =er2~. 
X X X X 

On the other hand, 

+ r r .. E[U (X -m )'(X -m )U 0-1 )(1-1 )]) = 
I ],J~ I I I XI J XJ J I J 

2 2 2= E[II(X -m )U 11 0-1 )] = er E[IIX -m 11 0-1 )].
I XI I I I XI I 

The term with double summation is 0 because (U,X,Z) and (U,X,Z)
I I I J J J 

are independent when i~j. Applying now Cauchy-Schwartz inequality and 

lemma 1 we conclude that this final term converges to O. • 

Proof of Corollary 3: Follows from theorem 2 in the same way as 

corollary 2 was deduced from theorem 1. • 

Proof of Corollary 4: When k-NN weights are used, equation (3.8) no 

longer holds. Instead, 

The second term converges to 0 as proposition 4.5 below proves. As for 

the first term, the proof of theorem 4 applies except for proposition 

4.1 (in all propositions, references to theorem 1 must be replaced by 

references to Stone's corollary 3 (Stone 1977), where it is proved that 

uniform k-NN weights are universally consistent). Proposition 4.1 must 

be replaced by proposition 4.6 below. 

-1/2 ... ...
Proposition 4.5 .- Elln r' C ca 11 = 00).

'1 XI I 
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-1/2 .... 1/2....PROOF: Elln r£ £e 11 :s n E(II£ £e 111 :s
I XI I XI I 

.. 2Thus, it suffices to prove that E(nll£9111 1 = 0(1). Now, 
~ .. '" 
£91 = 9(ZI)-m9 (Zll' Let A be the event (m • m 1 • V. If A is

9(Zll 9(Zll' I 
~ true, then, according to (3.7), £ = O. Therefore, if peA) = 1, this

91 
prop. is already proved. Otherwise, P(AC

) = cS > 0, and 

c 
now, nP(A ) converges to 0 (theorem 1 and lemma I) and the second term 

is bounded because E(e(Z II < 00. • 
I 

-1/2 .... 2
Proposition 4.6. - Elln r (m -m )m 11 = 00).

I XI XI Ul 

PROOF: As in proposition 4.1, it suffices to prove that 

(n-l)E(m (m -m )'(m -m )m 1 ~ O. 
UI XI XI X2 X2 U2 

Let A be the event (me = me J, for i=l,2. If A nA is true, then
I (ZIl (ZIl I 2 

E(m (m -m )'(m -m )m 1 = 0 
UI XI XI X2 X2 U2 

as in proposition 4.1. Hence if P(A nA) = 1, the prop. is already
I 2 

proved. Otherwise, 

E(m (m -m )'(m -m )m 1 = 
UI XI XI X2 X2 U2 

P((AnA f)E(m (m -m )'(m -m )m I(AnA f1;
I 2 UI XI XI X2 X2 U2 I 2 

now, (n-l)P((A nA f) ~ 0 and the second factor is bounded. 
I 2 • 

Proof of Theorem 5: As in theorem 4, it suffices to prove that 

n-I/~ £ £ 1 _d_~) N(O,Ift), (A.3)""J XI UI I 

{t p ) 1ft. (AA) 

(AA) follows in a similar way to (A.2); (A.3) follows in the same 

way as (A.I) (e.g.: in proposition 4.1, we have 
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EfI m (m -m )'(m -m )m I J = 
I UI Xl Xl X2 X2 U2 2 

~ 2 , * (n-2)L ... L. ... EfI er (X ,Z)(m -X) (m -X)W (Z,Z ,...,Z )1 J. 
j ,j~l 1.1~2 I 3 3 Xl j X2 I ]1 I 2 n 2 

and all terms in this double summation are 0 because 

El I W*]I(Z ,Z ,...,Z )1 Efer2
(X ,Z)(m -X )'(m -X) IZ , ...,Z J) = 

I I 2 n 2 3 3 Xl] X2 I I n 

* 2 ,EfI W (Z,Z ,•••,Z )1 er (m ,Z)(m -m ) (m -m )J =0).
I ] I I 2 n 2 X3 3 XI X] X2 XI 

Oddly enough, the moment condition required in both the homoskedastic 

model and the heteroskedastic one is the same. In the homoskedastic 

model, second order moments are required to prove (A.2) and fourth order 

moments are required to prove (A. I); in the heteroskedastic model fourth 

order moments are required to prove both (A.3) and (AA). • 

Proof of Theorem 6: The following lemmas will be used in the proof. They 

are versions of Robinson's (1988) lemmas adapted to the mixed case. 

Throughout this proof, Robinson will mean Robinson (1988). 

In the following lemmas, Z is a random variable which satisfies 

. bl Z(2) IZl1l d f(3.ll), Z ( 2 )(d) denotes the conditional random varla e =, d 

is the conditional probability density function of Z(2)(d), k is a 

function from IR to IR such that JIuk(u) Idu < co, K is a function from IRq 

to IR defined by K(u , ...,u) = k(u)'" k(u) and a is a sequence of 
1 q I q n 

positive real numbers. All notation here refers to that introduced in 

section 3.1 after (3.11). 

Lemma 2.- If there exist real numbers M, M' such that f (u)< M (Vu,
d 

Vde'D) and Ik(u) I < M' (V uelR) then. 

h(d,u) E EfIK«Z(21u)/a )IUzl1l=d)) = O(a:).
N

PROOF: h(d,u) = NZ( 14:d) x EfIK«Z(21u)/a )llzl14:dJ 
n 

= NZ( Ibd) x JIK«V-C)/a )If (v)dv
N d 
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Lemma 3.- If there exist real numbers M, M' such that f (u)< M (Vu,
d 

Vde'D) and Ik(u) \ < M' (V uelR) and g(d,u) is a function from IRr to IR such 

that El Ig(Z) I) < 00, then, 

qEllg(Z )K (a )II(Z(l)=Z(l)) = O(a ).
1 12 n 2 1 N 

PROOF: If h(Z) • h(ZOl,ZC2» is as defined in lemma 2, then 

El Ig(Z)K (a) II(Z(l)=Z(l)) = 
1 12 n 2 1 

q
Ellg(Z )lh(Z») $ Ca Ellg(Z)11 = C'a

q 

1 n 1 n 

where C'. CEl Ig(ZC~)ZC 2) ) 1J<00 (the last inequality holds by lemma 2). •�1 1 

Lemma 4.- If f e ~~ and k e X 0-1 < A $ L) then,
d ~ I 

PROOF: Similar to Robinson's lemma 4. •� 

Lemma 5.- Let g(d,u) be as in lemma 3 and define g (u) = g(d,u). If 
d 

there exist positive real numbers A, CX, fJ. such that Vde'D (and uniformly 

in d) f e ~~, g e ~cx and k e X (where l-1 <A $ l, m-I < fJ. $ m and 
d ~ d fJ. I+m-l 

'T/= min(fJ.,A+l) , then 

EIE[( (Z)- (Z)K (a )I(ZC1~Z(l)IZ \cx=O(acxCq+'T/»
gig 2 12 n 1 2 1 n 

PROOF: Similar to lemma 3's proof and applying Robinson's lemma 5 

to El IE[(g (Z< 2) (d»-g (Z <2) (d»)K«ZC 2) (d)-Z< 2) (d»/a ») ICX}. • 
dl d2 1 2 n 

We can now prove theorem 6. It will suffice to prove that 

n-l/~ (X -m )(U -m )1
t., I XI I UI I 

d 2
---+) N(O,(1' t), (A.5) 

-1 A A 

n E/XI-mxl)(XI-mx/11 
_.:...P-» t, (A.6) 

n-1/1: (X -m )(e -me )1
I I XI I I I 

P
-=---4) 0, (A.7) 

1\2(1' P 2)(1'. (A.S) 
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All of these results can be proved in a similar way to Robinson's 

propositions 1-15 though under our assumptions some of his propositions 

may be omitted and Cauchy-Schwartz inequality may be used instead. 

Lemmas in Robinson's appendix B do not apply any more; instead, the 

lemmas specified above must be used. _ 

Proof of Theorem 7: By solving the optimization problem, we obtain 

Let us now consider the unfeasible estimate 

(It is unfeasible because w(1) is unknown). First we prove 

Lemma 6: P(e :;t 8) = 00). 

PROOF: Let us define the following subsets of '!f: 

'!f = {1e'!f : P(Z=1)<£1,
1 

'!f = {1e'!f : P(Z=1»c and P(z 
~ 

=1)<£1,
2 

'!f = (1e'!f : P(Z=1»c and P(Z 
~ 

=1»c);
3 

so, '!f = '!f v'!f v'!f and, hence, 
1 2 3 

P(a:;t 8) ~ I: f1t.P(W(1)$W (1» =S + S + S , 
~e.:r n 1 2 3 

where SE I: P(W(1):;tW (1». We prove that S converges to 0 (the prooff1t. 
I ~e.:rl n 3 

for Sand S is similar). Let us define 
1 2 

E E {pelR : :3 1eIR such that P(Z=1)=P or P(Z 
~ 

=1)=P}. 

This set is closed in IR (note that 0 e Eh as c E E .. :3 a>o such that 

(c-a,c+a)1"\E = lZl. Then, if 1e'!f 3' applying Chebychev inequality we have, 

A -1 -1 ~ 

P(w(1):;tW/1» $ Pen 12/(Zt1)<E:J + Pen 12/(Zt 1)<c) 

$ P( In-
112 1(Z =1)-P(Z=1) I>a) + p(I n-112 1(Z =1)-P(Z~ =1) I>a)

J 1 J J 
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Hence, 53 ~ 2/n~ = 0(1). • 
'" ",11 '" Now we prove theorem 7: let us denote v('t-) • m ('t-)-9 -9 m('t-). Then 

10 20 

9 -9 ]n1l2 _110� 

[ 9 -9� 
2 20 

where now both summations run only through a finite number of terms 

which does not depend on n. Now, by theorem 3 

On the other hand, if f = # ('t-E' : w('t-) = 1) and we denote 't- , •.. , 't-
I r 

the points in , satisfying that w('t-) = 1, then 

v('t- ) ] 1] 1/2 : I 
x n ..m('t- ) [ . 

r v('t- )
f 

'" All 11 A

Now, as v('t-) = (m ('t-)-m ('t-» + 9 (m('t-)-m('t-», and the random samples in 
20 

which each nonparametric estimate is based are independent, by theorem 3 

V(~I)] 
1/2 • 

n .[ 
v('t- )

f 

and hence theorem 7 follows for the unfeasible estimate 9 and, applying 

lemma 6, also for the feasible estimate e. • 

Proof of Theorem 8.- By solving the optimization problem we obtain 

nl/2 9_I -9 10]� 

[ 9 -9� 
2 20 
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1/2 

where v('t-) is as in Theorem 7. Thus it suffices to prove that 

L't-E~/l, m('t-»'O, m('t-»~('t-)-Iu/'t-) ~ 0, (A.9) 

1/2 dA A A -lA 

n L't-d/1, m('t-»'v('t-YA('t-) U/'t-) ---+ N(O,O). (A.10) 

We prove (A.lO); (A.9) follows in a similar way. 

A A A -lA 

n L «0, m('t-»'V('t-YA('t-) U ('t-) = T + T + T + T + T • where
';E.r n I 2 3 4 5� 

1/2 -1 -I�A A A A

T = n L «0, m;-'t-»'v('t-)('A('t-) -A('t-) )U ('t-) 
I ';E.r ~ n� 

1/2 -I�A A A 

T = n L «(0, m('t-)-m;-('t-»'v('t-YA('t-) U ('t-) 
2 ';~ ~ n� 

1/2 -I�A A 

T 3 = n L't-E'!f0' mi:('t-»'V('t-YA('t-) (U/'t-)-U/'t-»� 

I /2 A - I -I -I�
T = n L «0, m;-('t-»'O, 9 ) (TJ('t-) -n('t-) }tJJ('t-YA('t-) U ('t-) 

4 ';E.r ~ 20 n 

1/2 -1-1
T = n L «0, m;-('t-»'O, 9 m('t-) "I('t-YA('t-) U ('t-) 

5 ';E.r ~ 20 n 

* 0: 0:where we denote U ('t-) = 1(P(Z ='t-)~p/n ) x 1(P(Z='t-)~p/n ), 
n 

* L 1(Z ='t-)/n 0 ]�
ft('t-) = J J� 

[� o L 1(Z ='t-)/n ' 
J J 

then T = LX and X is a triangular array with independent random 
5 J nJ nJ 

variables within rows which satisfies the Lindeberg condition (see e.g. 

Serfling 1980, section 1.9.3). Using similar arguments, it is easily 

proved that T ~ 0, 
I 

for 1:5i.:s4. _ 
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TABLE 1 

Sample size • 40. Number of replications. 5000 

Non-Smooth i ng Estimate 

M.l M.2 M.3 M.4 M.5 M.6 M.7 M.8 

M 1.0016 0.9993 1.0013 0.9994 1.0039 1.0008 1. 0024 0.9993 

E 0.0294 0.0379 0.0297 o .0384 0.0389 0.1666 0.0331 0.0926 

Kernel Estimates Ch =1.25, h =1.75, h =2.25)
1 Z 3 

M. 1 M.2 M.3 M.4 M.S M.6 M.7 M.8 

M 1. 0728 1. 0540 1. 1846 0.4974 1.1831 0.4944 1.3411 0.3244 
h 

1 E 0.0309 0.0320 0.0724 o .4048 0.0776 0.4972 0.1651 0.8043 

M 1. 1 150 1.0859 1.2989 o . 1647 1 . 2972 O. 1651 1. 5 198 -0.254 
h 

2 E 0.0380 0.0346 0.1436 1.0116 O. 1469 1 . 1036 0.3460 2.3823 

M 1 . 1 487 1.1717 1.3307 - 0.797 1 . 3320 -0.821 1. 5735 -1 .243 
h 

3� E 0.0481 0.0526 0.1630 3.8732 0.1699 4.0873 0.4120 6.5136 

k-NN Estimates (k =3, k =6, k =8)
123 

M. 1 M.2 M.3 M.4 M.S M.6 M.7 M.8 

M� 1. 0227 1.0699 0.9078 - 1 .043 0.9035 -1. 105 0.8547 -4.892 
k 

1� E 0.0279 0.0406 0.0804 12.848 O. 1040 14.045 0.1289 48.802 

M 1.0321 1.1413 0.0872 - 2.667 0.8805 -2.557 0.8615 -7.117 
k z E 0.0293 0.0532 0.0987 26.759 0.1044 25.420 0.1592 81. 239 

M 1 . 0346 1. 1878 0.8786 - 3.467 0.8824 -3.523 0.8932 -8.023 
k 

3� E 0.0282 0.0676 O. 1001 33.825 O. 1150 34.891 0.1592 95.943 
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TABLE 2 

Sampl e size • 200. Number of repl icat ions. 2000 

Non-Smoothing Estimate 

M.l M.2 M.3 M.4 M.5 M.6 M.7 M.8 

M 0.9998 0.9979 1.0006 0.9993 1.0008 0.9980 0.9991 1 .0002 

E 0.0052 0.0052 0.0050 0.0052 0.0069 0.0250 0.0058 0.0081 

Kernel Estimates (h =1.15, h =1.45, h =1.75)
1 2 3 

M.l M.2 M.3 M.4 M.5 M.6 M.7 M.8 

M 1.0511 1.0284 1 . 0952 o .6958 1. 0907 0.6973 1. 1999 0.5076 
h 

1 E 0.0075 0.0056 0.0152 0.1063 0.0155 0.1209 0.0466 0.2686 

M 1. 1022 1.0612 1. 2130 0.3545 1.2077 0.3579 1.4037 -0.033 
h 

2� E 0.0151 0.0083 0.0540 0.4461 0.0537 0.4590 0.1750 1 . 1400 

M 1. 1189 1. 0775 1.2599 0.2147 1. 2570 0.2129 1 .4846 -0.249 
h 

3� E 0.0188 0.0106 0.0780 0.6560 0.0774 0.6717 0.2486 1 . 6598 

k-NN Estimates (k =5, k =12, k =16)
123 

M.l M.2 M.3 M.4 M.5 M.6 M.7 M.8 

M 1.0046 1.0210 0.9603 0.2001 0.9636 0.1968 0.9012 - 1 . 971 
k 

1� E 0.0051 0.0059 0.0140 1 . 6441 0.0139 1.7434 0.0299 11 .352 

M 1. 0 146 1. 0468 0.9236 -0.705 0.9196 -0.645 0.8384 -4. 100 
k 

2 E 0.0053 0.0080 0.0193 4.8134 0.0206 4.5358 0.0472 29.590 

M 1 . 0 187 1. 0656 O. 9027 -1.133 0.9045 -1. 112 0.8207 -5.067 
k 

3� E 0.0055 0.0105 0.0242 6.9217 0.0249 6.6985 0.0550 40.999 
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TABLE 3 

Sample size • 1000, Number of replications. 500 

Non-Smooth i ng Estimate 

M.l M.2 M.3 M.4 M.5 M.6 M.? M.8 

M 0.9999 1. 0007 0.9992 O. 9981 1.0040 1. 0012 0.9992 1. 0009 

E 0.0010 0.0011 0.0010 0.0010 0.0013 0.0042 0.0011 0.0012 

Kerne 1 Estimates (h =1.05, h =1.15, h =1.25)
1 2 3 

M. 1 M.2 M.3 M.4 M.5 M.6 M.? M.8 

M 1.0158 1.0067 1.0133 0.9223 1.0166 0.9176 1. 0433 0.8496 
h 

1� E 0.0012 0.0011 0.0013 0.0071 0.0015 0.0116 0.0029 0.0244 

M 1.0513 1.0317 1.0859 0.7077 1 . 0847 0.7113 1. 1794 0.4674 
h 

2� E 0.0035 0.0020 0.0086 0.0875 0.0086 0.0886 0.0335 0.2879 

M 1.0777 1.0434 1. 1302 0.5482 1 . 1342 0.5466 1. 2657 0.1977 
h 

3� E 0.0069 0.0027 0.0183 0.2069 0.0197 0.2111 0.0725 0.6505 

k-NN Estimates (k =11, k =22, k =28)
1 2 3 

M.l M.2 M.3 M.4 M.5 M.6 M.? M.8 

M 1.0016 1.0080 0.9768 0.6732 O. 9787 0.6515 0.9359 -0.608 
k 

1� E 0.0010 0.0009 0.0020 O. 1909 0.0022 0.2356 0.0063 2.9525 

M 1. 0027 1.0153 0.9610 0.3599 0.9661 0.3448 0.9153 -1.553 
k 

2 E 0.0009 0.0011 0.0036 0.5639 0.0038 0.6295 0.0107 7.0295 

M 1.0029 1. 0 183 0.9639 0.2252 0.9630 0.2153 0.9073 -1.977 
k 

3� E 0.0009 0.0013 0.0032 0.7873 0.0037 0.8683 0.0119 9.4193 
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V 

TABLE ..� 

Non-smoothing estimates ("=40, r=10000)� 

9 
1 

9 
2 

9 
1 

9 
2 

(: 
1 

(: 
2 

(: 
1 

(: 
2 

(: 
1 

(: 
2 

(: 
1 

(: 
2 

M 9.969 9.658 2.025 2 . 141 10.059 10.062 1.990 1.989 
M 8 

V 3.942 60.167 0.533 8.221 2.314 2.315 0.272 0.272 

M 10.267 10.235 1.948 1 . 953 10.266 10.270 1.948 1.947 
M 9 

2.191 3.063 0.087 O. 127 2.529 2.520 0.101 0.101 

M 10.090 10.067 1.968 1 . 976 10.073 10.073 1.969 1.968 
MID 

V 0.281 0.338 0.076 o . 192 0.297 0.298 0.085 0.085 

M 9.985 9.801 2.010 1 .999 10.032 10.032 1.993 1.992 
MII 

V 0.548 1 .934 0.090 O. 141 0.490 0.490 0.082 0.082 

M 12.491 12.530 0.690 0.660 12.554 12.560 0.650 0.647 
MI2 

V 1.443 1 .955 0.377 0.522 2.425 2.465 0.647 0.656 

TABLE 5 

Kernel estimates (n=40, r=10000) 

9 9 e 9 
1 2 1 2 

(: (: (: (: (: (: (: (: 
1 2 1 2 1 2 1 2 

M 9.746 9.583 2.093 2.155 9.804 9.807 2.071 2.070 
M 8 

V 3.923 8.200 0.475 1 .105 3.134 3.130 0.354 0.354 

M 10.020 9.971 1.998 2.008 10.013 10.015 1.999 1.999 
M 9 

V 2.271 3.070 0.090 0.127 2.543 2.538 0.102 0.102 

M 10.089 10.053 1.974 1 .989 10.067 10.068 1.982 1.981 
MID 

V 0.509 0.600 0.234 0.381 0.501 0.501 0.245 0.244 

M 10.008 9.719 1.974 2.024 10.059 10.062 1.955 1.953 
MII 

V 2.228 3.276 0.251 0.259 2.487 2.504 0.286 0.290 

M 11.670 11 . 708 1.125 1 . 100 11.732 11. 733 1.087 1.087 
MI2 

V 2.405 3.567 0.643 0.980 1.087 1.087 1.152 1.198 
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