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I. INTRODUCTION 

In his seminal paper, Granger (1981) introduced both the concept of cointegration and of 

fractional integration to econometrics. Since then, cointegration has revolutionized time series 

econometrics, as is well documented through textbooks such as e.g., Banerjee et al. (1993). 

Fractionally integrated time series models have become popular with economic data, too. 

Successful application include Diebold and Rudebusch (1991), Sowell (1992), Cheung and Lai 

(1993), Crato and Rothman (1994) and Hassler and Wolters (1995). See Baillie (1996) for a 

recent overview. Empirical evidence hence ranges from consumption over GNP to prize indexes. 

These three examples are not only driven by a possibly fractional stochastic trend, but certainly 

also by a deterministic trend often approximated as linear. Therefore, the title of the present paper 

suggests itself 

We consider the regression model Yt = a + fix t +::t. To our knowledge, not many related 

results have been published in the fractional context assuming stochastic regressors An early 

exception is the work by Cheung and Lai (1993) with an application and some heuristic theory 

Very recently, Robinson and Hidalgo (1997) covered the case where x t and Zt are both 

stationary fractionally integrated and independent of each other. Our assumptions are very 

different The error term is fractionally integrated of order d z and may be correlated with the 

regressor The latter is nonstationary fractionally integrated and moreover driven by a linear time 

trend. The assumptions allow for very flexible cointegration models where the equilibrium error 

Z t is i) short memory (d z = 0), ii) long memory but stationary (0 < dz < 0.5), iii) nonstationary 

but mean reverting (O.5<d z < 1), cl, Cheung and Lai (1993) for a discussion, or iv) 
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nonstationary and not mean reverting (dz ~ 1) . Our results even hold if dz equals or exceeds the 

order of integration of the regressors, which gives rise to nonsense or spurious regression. 

This paper does not consider detrended regressions because it is often believed in econometrics 

that "the cointegrating vector will annihilate both the stochastic trend and the deterministic 

trend" (Watson, 1994, p. 2895). In case of simple regressions we establish limiting normality of 

the appropriately normalized least squares estimator, thus generalizing the prominent result by 

West (1988). The limits as well as the rate of convergence are independent of the degree of 

integration of the regressor, which is dominated by its linear trend. On the other hand, t-statistics 

diverge with the rate depending on the (non)stationarity of the error terms. We propose a 

residual-based test applying the log-periodogram regression in order to decide whether the error 

term is mean reverting or not. In multivariate regressions, things get more complicated because 

the asymptotic results are influenced by the order of integration of both the regressors and the 

error. In particular, asymptotic normality no longer holds. 

This paper is organized as follows. The next Section becomes precise on the model and the 

underlying assumptions. In Section III asymptotic results are presented for simple regressions 

Section 1 V treats the multivariate case. Section V provides Monte Carlo evidence on the 

possibility of residual-based cointegration testing Concluding remarks are collected in Section VI 

Proofs are mainly relegated to the Appendix. 
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11. THE MODEL AND UNDERLYING ASSUMPTIONS 

Let us start by considering a simple regression model 

where 

(2) 

(3) 

(4) d >d. .\ z 

Without loss of generality, we shall assume that lizt = 0, i E {x, z}, for t::; 0 . Given the data 

generating process (henceforth denoted DGP) (1)-(3), condition (4) implies that (yp x) are 

(fractionally) cointegrated, allowing for stationary as well as nonstationary fractionally integrated 

innovation terms. This condition, in turn, justifies the cointegration title of the paper, but it is not 

needed in the derivations of the results in Sections 3 and 4. The provided distributional theory 

also covers the case of nonsense regressions in the presence of linear trends. Effectively, assume 

that 

I 11 )' = a + )/ + 1.' t J t ' 

and 

have independent stochastic components, where d y from y~ ex: 1( d y ) must not be smaller than 

d, . In this case, although the series are stochastically independent, model (1) shows up if b = PI' 
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With respect to the innovation vector Ut = (Uxt> uzj driving the stochastic processes, we shall 

assume that it satisfies the following general characterization. 

Assumption 1. Let Ut = (lIxt> lI zt )' be generated by the linear process 

if) 

(5) u l = L C] V t _ j , 

]=0 

where the sequence of random vectors VI = (vxt> vzj is i.i.d. (O,~) with ~ > 0 and the sequence 

(if matrix coefficients {C} if) is 1-summable ill the sense (~l Brillillger (1981). Further, assume 
] ]=0 

Hence, throughout this paper, we shall allow U I be generated by the linear process (5). This 

general class of stationary 1(0) processes includes all stationary and invertible ARMA processes 

and is therefore of wide applicability. On the other hand, under this assumption, the process U r IS 

strictly stationary and ergodic with continuous spectral density given by 

/'" (/,) = -2
1 (f C] exp( ijA)J ~(f c] eXP(iJA)J * . 
IT ]=0 ]=0 

Let us first be concerned with the case where 0.5 < d z < 1.5 such that ~ = (x 1° ,Z I)' is a 

nonstationary fractionally integrated vector process with component Wold representations given 

by (2) and (3) and define the vector random element 
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(6) KT (r) = y;1 W[Trl' 

for r E[O,!], with YT =diag{Td
"-1/2, Tdz-I12} and where [.] denotes the integer part. Note that 

KT(r) ED[0,l]2 = D[O,l] x D[O,l], the product metric space of all real valued vector functions on 

[0,1] that are right continuous at each element of [0,1] and possess finite left limits. Endow each 

component space D[O,l] with the Skorohod metric. Then, under Assumption 1, the following 

functional central limit theorem for nonstationary fractionally integrated processes holds. 

Theorem 1. Under Assumption 1, with d z > 0.5, 

.there => denotes weak convergence of the associated probability measures in the sense (~f 

Billingsley (1968) and Bd(r) is a two-dimensiollalfractiollal Brownian motion with long-run 

c01'Uriclllce matrix D., denoted Bd (r) == FBM(D.) , 1I'ith 

(8) 

and gll'(!1l hy 

r 

(9) B" (I') = f cD(r - s)dB(s) , 
o 

facto/'ialjimctioll and B(r) is a two-dimensional Brownian motion with covariance matrix D.. 

1 Notc that under condition (4), max{ d x' d z } = d x so that r ~ max{4, (8 - 8d x) /(2d x-I)} . In spite of this 

fact. ho\\c\cr, \\'c ha\'c writtcn Assumption 1 in thc most gcneral manner in order to also cncompass thc spurious 
case 
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Both random vector processes Bd(r) and B(r) belong to C[0,lr = C[0,1] x C[0,l] almost 

surely, where C[0,l] is the space of continuous functions defined on the unit interval. This 

functional central limit theorem has been recently proved by Marmol and Dolado (1998a). Let 

(7) jointly with the Continuous Mapping Theorem (Billingsley, 1968), the following lemma can be 

deduced. As a matter of notation, for the rest of this paper all sums run from 1 to T, and all 

integrals are from ° to 1 if not indicated otherwise. We write integrals with respect to Lebesgue 

measure such as f B(r)dr as f B in order to save space. Similarly, stochastic integrals such as 

f B(r)dW(r) are written simply as f BdW for similar reasons. Lastly, all limits given in the paper 

are as the sample size T ~ Cl) . 

rClIllllct 1. Under Assumption 1, with d; > 0.5, 

(10) 

(11 ) .: Z => r ] ,-1 '-cl Lt f B 
t cl, 
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and joint convergence of (10) through (13) also applies, where XO = r- I 2:XtO and .. 
Assume now that dz < 0.5, i.e., that Zt is an essentially stationary stochastic process with 

uniformly bounded second moments (cf, Wooldridge, 1994) and define the partial sum process 

Sz,t = 2::=1 z] , Sz,o = 0 . Note that Sz,t is a nonstationary fractionally integrated process of order 

1 :::; s~ = 1 + dz < 1.5 for which Assumption 1 and hence Theorem 1 apply, yielding 

( 14) j 'l 2-,,- S' B ( ) 1 fr ( )d. IR ( ) 
• C • [T 1 => . I' = ( ) I' - e . ( . e , 

" r " r 1 + d . 
z 0 

which is a fractional Brownian motion in the sense of Mandelbrot and Van Ness (1968). Now, 

using expression (14) and the Continuous Mapping Theorem, it is straightforward to derive the 

follo\\ing results. 

rL'IJIIJICl:2 Ullder Assumption 1, H'ith d. < 0.5, 

and 

On the other hand, the weak convergence of the sample moment 2: x~ Zt when dz < 0.5 is 

further more complicated, as we cannot appeal to the invariance principle (7) and the Continuous 
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Mapping Theorem, since in this case the latter result does not longer apply. Nonetheless, in the 

case where Zt is a short-memory process, i.e., in the case where dz = 0, Marmol and Dolado 

(1998a) prove the following lemma. 

Lemma 3. Under Assumption 1, with d z = 0, 

and 

(19) r I", o~ ~f.,,:; 
~Xt~l x= 

Finally, when Zt is a long memory process, with 0 < d: < 0.5, it can be proved (cf, Cheung 

and Lai, 1993; Chan and Terrin, 1995 and Marmol and Dolado 1998b) the following result. 

Lemm({ 4. Under AsslImption 1, H'ith 0 < d~ < 0.5, 

(20) 

H'here 'Pc is afllllction of the fractional Browl/ian motions Bd" and Bd,' 

Lastly, using the above results, it is rather direct to prove the next result. 
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Lemma 5. Under DGP (1)-(3) and Assumption 1, 

2 

(21) r3:L(xt - x)-4 ~2 • 
and 

Ill. REGRESSION RESULTS 

Consider now the estimation by ordinary least squares of the ~ coefficient in the cointegrating 

regression (1) 

Ihc()l'cm 2. Under DGP (1)-(3) and Assumption 1, 

~ 

(24) ~ -4 ~ for all 0:::; do < 1.5 and 0.5 < d x < 1.5. 

1I'I1el'e 

(27) 

and 
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(28) 

I 
with co ~ denoting the long-run variance of lIzt, i.e., co ~ = (0,1).0(0,1)' . 

A 

Consequently, the least squares estimator ~ is consistent for all 0::;; dz < 1.5 and 0.5 < dx < 1.5 . 

There is no bias resulting from the correlation between regressors and regression errors. Note, 

A 

however, that the convergence of ~ to its theoretical counterpart is slower as dz ~ 1.5 and 

larger samples are needed in order to improve the reliability of any finite sample analysis. 

Converse comments apply for dz ~ ° . On the other hand, upon appropriate normalization, we 

obtain well defined limiting distributions given by expressions (25) and (26). These limits, in turn, 

do not depend on the order of integration of the stochastic regressor component x ~ . In particular, 

in case of simply detrending, x t = t , expression (25) has been recently provided by Hassler (1997, 

expression (19»). 

A 

Ivloreover, Theorem 2 shows also that, l,lpon appropiate normalization, ~ has limiting Gaussian 

distributions for all 0::;; d= < 1.5. In particular, when d= = 0, from expressions (26) and (28), 

West's (1988) classic result follows 

Let now ](2 and t~ denote the standard coefficient of determination and t-Student statistic 

testing for the true parameter values, respectively. Their asymptotic behavior is characterized in 

the next theorem. 
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Theorem 3. Under DCP (1)-(3) andAsSllmption 1, Ihen 

(30) 

(31 ) 
2 (2 ) P 12 var(z t ) If 0 ~ dz < 0.5, T R - 1 ~ - 2 2 . 

~ ~ 

(32) 

(33) 

From the above theorem, the following comments are in order. Firstly, note from expressions 

(30)-(33) that both the limiting distributions and the rates of convergence of the coefficient of 

determinations and the I-Student statistic only depend on the stochastic behavior of the 

perturbation term, Zt. Secondly, the coefficient of determination tends to one in probability 

\vhether 0 5 < er < 1. 5 or 0 ~ d, < 0.5, even that at different rates. Indeed, note that the rate is 

higher in the stationary case than in the nonstationary case, since 3 - 2dz < 2 . The behavior of the 

coefficient of determination, in turn, can be explained under classical arguments. Since the 

behavior of the regressor Xl is asymptotically dominated by the assumed deterministic trend, then, 

asymptotically, regression (1) becomes equivalent to a regression among trending variables and, 

consequently, the coefficient of determination tends to one, independently of the goodness of fit 

of the proposed regression. 
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With respect to the inferential results, we can observe from expressions (32) and (33) that the 

standard I-Student statistic testing for the true slope parameter in regression (1) diverges except in 

the case where d z = O. This result has also been noted by Marmol (1998) for the case where no 

deterministic terms in expression (2) is assumed. Therefore, with long memory or nonstationary 

fractionally integrated error terms, standard inference is not valid in our context, since the 1-

Student statistic will reject with probability one any null hypothesis. Moreover, note that when 

0.5 < do < 1. 5, the I-Student statistic does not have an asymptotically Gaussian distribution, in 

~ 

spite of the fact that the corresponding ~ estimator does have an asymptotically Gaussian 

distribution given by expression (25). In contrast, when O:s: d z < 0.5, it follows from expression 

(28) that the standardized I-Student statistic I; = rd: Irl has an asymptotically Gaussian 

distribution given by 

(34) * N( 12 v·: 1[1 == 0, (~);, 
var "'t 

which, in the particular case where d, = 0 and I/ ot an i.i.d. process, allow us to obtain the 

classical inferential result that 

IV. THE MUL TIV ARIA TE CASE 

In this section, we shall consider the multivariate extension of the cointegrating regression (1) 

where now x t is an m-dimensional stochastic vector process generated as 
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with X;' = (X ~l' X ~,t"'" x ~J' being an m-dimensional stochastic vector process of nonstationary 

fractionally integrated processes with memory parameter d x and IT an m-dimensional vector of 

constants acting as nuisance parameters in our set-up. 

Under the obvious generalization of Assumption 1 from the case m = 1 to this multivariate 

framework, where now llxt = (ll],XI"'" llm,xJ, the long-run covariance matrix of xI' denoted 

Qxx, is positive definite, which in turn implies that the components of XI are not allowed to be 

cointegrated among themselves. 

Moreover, following the analysis of Section 2, it IS straightforward to prove a multivariate 

version of Lemma 2, 

(36) 

that is no longer invertible for m > 1 . This fact complicates the limiting distribution theory of the 

least squares estimator of ~ in regression (1 '). In order to develop a complete asymptotic theory 

in this case, we can follow the treatment suggested by Park and Phillips (1988, p. 477). For this, 

let us define an orthogonal matrix (~,~) of order J1l with ~ = (It ITtl2 IT so that ~ expands the 

null space of IT, and transform the regression equation (1 ') as 

(1 x 111 - 1) and (111 -1 xl), respectively. With this transformation, the deterministic trends of XI 

are now concentrated in fit and the stochastic trends in ht. Specifically, 

14 



I 
( 

,)1/2 '0 
(38) fll = n n t+~ XI 

I 

and I 
(39) f · ~'O 

. 21 =~ X t . 

Now, writing the transformed regression (37) in a more compact way as 

where p' = (a, Y l' Y'2) and F;' = (1, ht, f~t), the asymptotic results for the least squares estimators 

of the parameters in (37) are given in the following theorem. 

Theorem 4. Under DGP (1 '), (2') and (3) and AsslImption 1, when d z > 0.5, 

When 0 < d~ < 0.5, 0.5 < d, < 1.5 or d~ = 0, d, ~ 1, 

lt1zere A, \)1' fJ2,fJ3are defined in the Appendix, expressions (A21), (A14), (A15) and (A26), 

re\'fJeClil'ei}' and lvhere ~ = diag{TO 5 T 15 TU'l } '1-, T "m~l . 

Now, denoting 
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and 

the limiting distributions of ~ in regression (1 ') can be characterized from Theorem 4 m a 

straightforward manner using the expression fi - f3 = ~(rl - r 1) + S(r 2 - r 2) . 

Corollary 1. "When d z > 0.5, 

When c( = 0 and dx < 1, 

Therefore, from Corollary 1 we deduce that the limiting distribution of the least squares 

~ 

estimator ~ of the slope coefficient in the cointegrating relationship (1 ') is consistent but not 

normal if /JI > 1 and invariant to 11 for all 0 S; d; < 15 and 0.5 < c( < 1.5. In the particular case 

where d, = 1 and d z = 0, this result was proved by Park and Phillips (1988, Theorem 3.6, part 

A 

d) It is also worth noting that the distributions and rates of convergence of f3 depend now on 

d x ' in contrast with the results obtained for the simple regression model (1) in Theorem 2. Notice 

in particular that the rates of convergence are slower in the multivariate case than in Theorem 2, 

because d, < 1.5 . 
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In order to obtain Gaussian limiting distributions in the multivariate case under our set-up, when 

I 

d x = 1 and d z = 0, Hansen (1992) proposes the use of Fully-Modified tests statistics (cl, Phillips I 
and Hansen, 1990). His claim has recently been extended to the 0.5 < d x < 1.5 and d z = 0 case by 

Dolado and Marmol (1998) with the same conclusions. However, from the results obtained by 

Marmol and Dolado (1998b), the extension of these claims to the 0 <dz < 0.5 case seems not to 

be so clear, and more research in this direction is clearly needed. 

v. RESIDUAL-BASED COINTEGRATION TESTS 

Cheung and Lai (1993) investigate the purchasing power parity (PPP) hypothesis in fractional 

context. They do so by analyzing the residuals from a regression of the logarithms of the foreign 

price index in domestic currency on the logarithm of the domestic price index. If we follow 

Hassler and Wolters (1995), BailIie et al. (1996), or more recently Ooms and Hassler (1997), then 

logs of consumer price indexes of several industrial countries can be considered as fractionally 

integrated of order d x with 1 < d x < 1.5. At the same time those series display approximately 

linear time trends (which has not been taken into account by Cheung and Lai, 1993), so that the 

present framework seems to be adequate to test, e.g., the PPP hypothesis. 

Generally in case of cointegrating regressions, we consider the OLS residuals from (1) or (1)' 

and want to find out, whether the equilibrium deviations Zt are mean-reverting or not. This 

amounts to a one-sided test for 

In a first step, we could consider the differences of the OLS residuals (substituting the true 

models (1) and (l )'): 
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By assumption, Llx( is stationary, so that Theorem 2 and Corollary 1 yield under Ho 

(47) L'1Z =& - p {
o (T-05) m = 1 

( ( 0ATI-
d
,) m> 1" 

This provides the following intuition: In bivariate regressions (m = 1) t1Z( equals &( up to 

° p (rO)) . Moreover, the asymptotic distribution of the estimator from Theorem 2 is independent 

of d, and correlation between the regressor and error term. Hence we may expect that residual-

based tests behave asymptotically like tests based on the unobserved series &( directly. If m > 1, 

however, the difference between L'1Z( and &( is less negligible because d x < 1.5. Plus, the 

asymptotic distribution from Corollary 1 depends on the order of integration of the regressors. 

Thus, residual-based tests are likely to behave differently from tests based on L1.::-(. This intuition 

will be confronted with Monte Carlo evidence for the log-periodogram regression first proposed 

by Geweke and Porter-Hudak (1983). 

For this. notice that, in terms of differen~es (HI) becomes 

Assume for the moment that z( is observable. Then we could compute the periodogram of the 

differences, 

T 2 

I()"J) = rl L L1.::-( exp(O"Jt) , 
(=1 

at the harmonic frequencies )"j = 2,q / T, j = 1,2, ... ,11. Following Geweke and Porter-Hudak 

(1983) the log-periodogram regression amounts to 
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where R; = -In{4sin2(,q / T)},j= 1,2, •.. ,n. 

A test for (E2) could be based on the I-statistic where we make use of the asymptotic variance 

of the error term in (48): 

(49) 

Normality of the I-statistic testing for the true value b~ has recently be established rigorously by 

Robinson (1995). If 6z differs from zero, this requires that the first harmonic frequencies are 

neglected in (48), so that j=1I1 +1,111 +2, ... ,11, where 111 as well as 11 has to grow with T. In 

nonfractional context, however, i.e., under (E2), asymptotic normality as in (49) arises for 

111 + 1 = 0 already. The number of harmonic frequencies may not grow too fast in order to avoid a 

bias of ()~ due to eventual short memory (ARlv1A) parameters of &"( . Following the suggestion by 

Geweke and Porter-Hudak (1983), we choose 11 = [ T° 5] . 

Our proposal is to replace the unobserved &" ( by the differences of the OLS residuals in order 

to compute the periodogram and run regression (48) It will now be analyzed whether the 

approximation (49) still holds in this situation. 

F or this, in Table 1 we investigate the level of a one-sided cointegration test in case of bivariate 

regressions by simulation. 2 If residuals and regressors are independent the experimental levels are 

close to the nominal ones. This holds, as expected, irrespective of d x . In case of (strong) positive 

C All computations were made by means of GAUSS386. Stationary fractionally integrated series were generated 
\\ithout approximation using the algorithm by Hosking (1984). Nonstationary series were generated according to 
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correlation between errors and regressors and d x > 1, the empirical levels may be very far below 

the nominal ones. This contrasts the intuition provided below (47) and therefore deserves further 

consideration. 

The correlation allowed for in Table 1 is 

corr(x;' ,.::J = rp~var(x~) 
~rp2 var(x~) + var(z~) 

where Zt = rpx~ + z~, cov(x~ ,z~) = o. 

Hence, the correlation for rp = 1 is rather strong and growing with d x because the variance of x;' 

is positively related to d x ' 

ccorr(x~ ,zJ 
Cd > o. 

x 

This is one explanation for the growing size distortion with increasing d x . Another reason arises 

from the proof of Theorem 2: 

= r- 15 - d, 
j..L~tZt - pr1 ~t~Zt 

r3~(Xt -x/ 

In other words: the largest d x' the more slowly vanishes the influence of the correlation on the 

distribution. Please notice that in case of /(1) regressors the correlation does not affect the 

experimental levels being again close to the nominal ones. 

an autoregressive scheme with 50 additional valued discarded for the log-periodogram regression in order to get 
rid of the starting value O. 
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On the other hand, in Table 2 the power of the proposed test is studied (in case of exogenous I 

regressors) for m = 1. As expected, it does not depend on dx . The power increases reasonably I 
fast with d z becoming smaller than one. 

Lastly, Table 3 turns to the multivariate case, m = 2,3. As suspected in our heuristic 

consideration following (47), the log-periodogram regression does not provide a valid test based 

on (49). Hence, more refined tools seem to be required to test cointegration in multivariate 

regressIons. 

VI. CONCLUDING REMARKS 

In this paper we considered the limiting behavior of the slope coefficient as well as the 

customary least squares statistics in the regression model Yt = a + fJ'Xt + Zt, where the regressors 

are assumed to be nonstationary fractionally integrated driven by a linear time trend and where the 

purely stochastic process Zt can be either short memory, long memory, nonstationary but mean 

reverting or nonstationary and not mean reverting. 

In the case of simple linear regressions, the least squares estimator converges to a normal 

distribution after adequate normalization. Neither the limit nor the rate of convergence depend on 

the order of integration of the regressors. The t-statistics diverge and the coefficient of 

determination approaches one. The latter does not necessarily mean that a reasonable model is 

estimated. Even in case of nonsense regressions where the memory parameter of Z t may exceed 

the order of integration of the regressor, the estimator eliminates the linear trend by converging to 

the ratio of the trend coefficients of Y
t 

and x
t

. 
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I 
Hence, we require tests that allow to discriminate between cointegration an such nonsense I 

regressions. Practitioners might appreciate for instance a test under the null hypothesis d z = 1 I 
with power against the alternative d z < 1. Under the alternative, the equilibrium error may be only 

mean reverting but not necessarily stationary, which seems to be too strong an assumption with 

some applications. In this sense, we provide Monte Carlo evidence supporting the intuition that 

such a test is available by applying the log-periodogram regression to bivariate OLS residuals. 

We also tackled multivariate regressions under the simplifying assumption that all regressors are 

integrated of the same order. Here this order affects the limiting distributions that are no longer 

normal. Moreover, the rates of convergence depend on the order of integration of the regressors, 

and convergence is more slowly than with simple regressions. This is likely to complicate the 

development of eventual residual-based cointegration tests. Experimentally, we found that the 

residual-based log-periodogram regressIOn does not provide a valid cointegration test in 

multivariate regressions. 
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Table 1: Level of bivariate tests 

T dx = 1.0 1.1 1.2 1.3 1.4 rp 

1.2 2.2 1.3 1.9 1.0 

250 4.6 5.7 4.4 6.1 4.8 0 

8.9 10.1 8.7 9.8 8.3 

1.2 0.7 0.7 0.3 0.2 

250 5.1 3.2 2.0 0.8 0.6 1 

10.0 6.2 3.9 1.4 1.1 

1.5 2.0 1.9 1.2 1.3 

500 5.8 5.0 6.0 5.2 5.6 0 

9.5 10.3 11.0 9.0 10.3 

1.5 1.1 0.4 0.1 0.0 

500 4.8 3.4 1.2 0.5 0.1 1 

10.2 6.0 1.9 0.8 0.1 

The true model is Yt =xt +zl't= 1,2, ... ,1', x t = {+x~),Zt =rpx~ +z~, t:...d"X~ = 11 xl' &t =1I;t' 

where ll\r' ll;t are standard normal white noise sequences independent of each other. We present 

the percentage of rejections of one-sided tests at the 1 %, 5% and 10% level from 1000 
replications. 
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Table 2: Power of bivariate tests 

dz = 1.0 0.9 0.8 0.7 0.6 

dx = lA 

T= 250 4.8 13.8 24.2 38.9 54.4 

T= 500 5.6 15.7 33.2 53.5 70.1 

dx = l.0 

T= 250 4.6 14.4 26.0 36.8 52.6 

T= 500 5.8 15.8 33.3 52.3 69.7 

Th d 1 . 1 2 1~ I) 0 0 AdO Ad. etruemo e ISYt=Xt+zl'f=, ,""", , xt=f+xt,Zt=qX'(t +Zt, L..}.'X t = 11 xl' L..}.·Zt=lI:t , 

where !le!' lI:r are standard normal white noise sequences independent of each other. "Ve present 

the percentage of rejections of one-sided tests at the 5% level from 1 000 replications. 
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Table 3: Level of multivariate tests 

dx = 1.0 1.1 1.2 1.3 1.4 

3.3 2.5 4.8 3.9 4.1 

111=2 12.1 10.9 12.5 10.9 10.5 

20.1 16.5 21.6 17.8 16.7 

8.3 9.9 7.2 9.1 7.8 

..., 
III = _, 19.5 22.7 ] 7.8 21.4 18.5 

30.0 29.4 27.3 31.1 25.9 

The true model is Yt = x lt + .. +x rnt + z() t = 1,2, ... ,500, Xli = t + Xl~' i = 1,2, ... ,111, t-.dx Xi~ = U<,I' 

L1zt = 11:
1

, where lix,t, II zt are standard normal white noise sequences independent of each other. 

We present the percentage of rejections of one-sided tests at the 1 %, 5% and 10% level from 
1000 replications. 
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APPENDIX 

Pro(~f of Lemma 5. The lemma follows in a rather direct manner using Lemmas 1-4 and the 

Continuous Mapping Theorem (henceforth denoted CMT). 

Consider first the case where dz > 0.5. From the manipulation of L(Xt - xf we get 

(AI) L(Xt -xf =~2L(t-l)2 + L(x~ -xor +2~Ltx~ +2~lLx~, 

where t=T-1Lt. Now, as T-2Lt~1/2, it follows from (10), (11) and the CMT that 

Ltx;' -ILx~ =Op(T15 t d,). On the other hand, given that T-3 L(t-1)2 ~1/12, then 

expression (21) follows from (12) and the CMT, as 2dx < 3. Moreover, since (AI) does not 

depend on z / , then (21) holds also for do < 0.5 . 

In the same manner, from DGP (1)-(3), it can be deduced that 

(A2) L (Yt - yr = /3 2 L (x/ - xf + L (z/ - zr + 2/3L x/ (z/ - z) 

=/3~L(X/ -xf + L(Z/ -z)" +2/3JiLtz/ -2/3JiT1LtLZ/ +2/3Lx/Oz/-2/3r1LZ/LX;' 

so that, using Lemmas 1-4 and the CMT, we have that the first term in the right side of (A2) is the 

leading term of order 0 p (T 3
) whether d z > 0.5 or G( < 0.5 , giving rise to expression (22). 11 

Pm()/ (~/ 111Co/"cm 2. Manipulating the numerator of (~- ~) in (23) yields 

Using Lemmas 1-4, it can be proved that ~Ltz/-~T-1LtLz/=Op(Tu+d,) and 

LX~z/ - rlLx~Lz/ =Op(Td,+d,) whether dz >0.5, O<dz <0.5, or dz =0 and dx zl, 

and 01'(1) for d z =0 and dx <l. Consequently, (A3) becomes 
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Now, using Lemma 1 and the CMT, we have that, when dz > 0.5, 

whereas that, when d z < 0.5, from Lemma 2 and the CMT, 

obtaining in this way expressions (25) and (26) using (A5), (A6), (21) and the CMT. Since 

A 

d z < 1.5, consistency of f3 to its theoretical counterpart follows for all dz :2: 0 . Finally, normality 

of the limiting distributions of T L5
-

d
, (~ - (3) in (25) and (26) follows from Marmol (1997) and 

Haldrup and Marmol (1997), respectively, noting that 8 2 (dz )-0.58 j (dJ= SCr-0.5)BJ, and 

8 6 (dJ-0.58 s (dJ= SCr-0.5)dBsz ·• 

Proof" of" Theorem 3. Consider first the asymptotic behavior of the least squares residuals, Zt, in 

regression (1): 

(A 7) L 2[2 = L (Zt - Z-)" + (fi - fJr L (x[ - xf - 2(fi - fJ)L (x[ - x)z[ 

= L ( Z [ - z-) 2 - (fi - fJ) 2 L ( x [ _ x) 2 . 

When d: >0.5, we have that LZt2 =Op(T2dz )+Op(T2dz )+Op(1), respectively, using Lemma 

1, (21) and (25), obtaining 

(AS) r 2dzLz~ =>0 3 (dJ-12{0 2 (dJ-±0j (dJf 
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Lemma 2, (21) and (26). Thus, in the stationary case and by ergodicity, 

Finally, using Lemma 2, Theorem 2, (A8), (A9) and the CMT, expressions (30)-(33) follow from 

the definitions of the coefficient of determination and the t-Student statistic 

Pro(!i (~f 17zeorem 4. The least squares estimators in model (40) turn out to be 

Let us first be concerned with the sample vector 

and for this, notice that, under Assumption 1, the multivariate version of the functional central 

limit theorem (7) jointly with the CMT imply that 

where along the proof of this theorem, Bd, will stand for an m-dimensional fractional Brownian 

motion associated with the x~ stochastic vector sequence so that Bd, (r) will be an (111 - 1)-

dimensional fractional Brownian motion with associated (positive definite) covariance matrix 

Now, when d z > 0.5, using (10), (11), (A12) and the CMT, we have that 
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and 

so that, by defining the diagonal matrix of order m + 1 

where 1/11\ denotes the identity matrix of order m -1, it follows that 

Equally, using the corresponding multivariate extensions of Lemmas 2-4 with Bd, (r) replacing 

Bd, (1'), jointly with the CMT, it is not difficult to prove that when do < 0.5, 

where 

if d, > 1, d z = ° , 

if d, = I,dz = 0, and 
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if 0 < d z < 0.5. On the other hand, when dx < 1, dz = 0, we must replace the weight matrix ::3 r 

for the following one 

(A19) r-* = d' {To. s 1,15 TI } :,.)r lag , , m-I , 

obtaining 

~ ( )~' F where 8" dx , dz =.!::. Ll"c . 

In the same manner, from Lemma 1, (38), (39) and the CMT, it can be proved that 

where 

(A2") '-' = d· {TO 5 T I5 'I'd, J } - '''r fag 1 , , 1 m-I. 

~(IT' TI)I 2 

2 

~(rr TI) 
-' 

(IT' TIt2 f rE", 

(IT' TI) 1/2 f rjj~, == A 

fE E' d;r, d;r, 

]\JO\v, noting from (A13) and (A22) that .]1 = rl'~r and that the matrix A in (A2l) is invertible 

(as), from the manipulation of(A10) it follows that, when (( > 05, then 

when 0 < (( < 0.5 or d
z 

= 0 and dx 2: 1 , 

and when d z = 0 and dx < 1, (A19)-(A22) and the CMTyields 
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where I 

This last result proves the theorem .• 
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