Smiles, Bid-ask Spreads and Option
Pricing B

Ignacio Pena
Universidad Carlos III de Madrid, Spain
e-mail: ypenya@eco.uc3m.es

Gonzalo Rubio

Universidad del Pats Vasco, Bilbao, Spain
e-mail: jepruirg@bs.ehu.es

and Gregorio Serna™

Universidad de Castilla La Mancha, Toledo, Spain
e-mail: gserna@emp.uc3m.es

Abstract

Given the evidence provided by Longstaff (1995), and Peria, Rubio and Serna
(1999) a serious candidate to explain the pronounced pattern of volatility estimates
across exercise prices might be related to liquidity costs. Using all calls and puts
transacted between 16:00 and 16:45 on the Spanish IBEX-35 index futures from
January 1994 to October 1998 we extend previous papers to study the influence of
liquidity costs, as proxied by the relative bid-ask spread, on the pricing of options.
Surprisingly, alternative parametric option pricing models incorporating the bid-ask
spread seem to perform poorly relative to Black-Scholes.
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1. Introduction

Given the Black-Scholes (1973) (BS henceforth) assumptions, all option prices on the
same underlying security with the same expiration date but with different exercise
prices should have the same implied volatility. However, after the October 1987 crash,
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the implied volatility computed from options on stock indexes in the US market
inferred from the BS formula appears to be different across exercise prices. This well
known volatility smile suggests that the BS formula tends to misprice deep in-the-
money and deep out-of-the-money options. In fact, as pointed out by Rubinstein
(1994), Ait-Sahalia and Lo (1998) and Dumas et al. (1998) (DFW henceforth), implied
volatilities of the S&P 500 options decrease monotonically as the exercise price
becomes higher relative to the current level of the underlying asset. On the other hand,
Taylor and Xu (1994) show that currency options tend to present a much more
pronounced smile. Similar patterns of implied volatilities across exercise prices are
found by Pefa er al. (1999) (PRS henceforth) in the Spanish options market.
Moreover, Bakshi et al. (1997), and Fiorentini et al. (1998) report smile shapes for the
(implied) instantaneous volatility under stochastic volatility and jump-diffusion
option pricing models.

There have been various attempts to deal with this apparent failure of the BS
valuation model. In principle, as explained by Das and Sundaram (1999) and others,
the existence of the smile may be attributed to the well known presence of excess
kurtosis in the return distributions of the underlying assets. It is clear that excess
kurtosis makes extreme observations more likely than in the BS case. This increases
the value of out-of-the-money and in-the-money options relative to at-the-money
options, creating the smile. However, at least in the US market, the pattern shown by
data contains a clear asymmetry in the shape of the smile. This may be due to the
presence of skewness in the distribution which has the effect of accentuating just one
side of the smile.

Given this evidence, extensions to the BS model that exhibit excess kurtosis and
skewness have been proposed in recent years along two lines of research: jump-
diffusion models with a Poisson-driven jump process, and the stochastic volatility
framework are the two key developments in the theoretical option pricing literature.

Unfortunately, however, the empirical evidence regarding these new models is quite
disappointing. Bates (1996), and Bakshi ez al. (1997) reject the jump-diffusion option
pricing model on both currency options and equity options respectively. The stochastic
volatility model proposed by Heston (1993) is rejected by Bakshi ez al. (1997), and
Chernov and Ghysels (1998) for options written on S&P 500 index. Fiorentini et al.
(1998) reject the same model for equity options on the Spanish IBEX-35 index and
argue that the ultimate reasons behind the performance failure of Heston’s model are
closely related to the time-varying skewness and kurtosis found in the data.

An alternative option pricing approach has been suggested by Rubinstein (1994),
Jackwerth and Rubinstein (1996) and Jackwerth (1996), and a related series of papers
by Derman and Kani (1994), Dupire (1994), Chriss (1995), Derman et al. (1996).
Instead of imposing a parametric functional form for volatility, they construct a
binomial or trinomial numerical procedure so that a perfect fit with observed option
prices is achieved. This procedure captures (by construction) the most salient
characteristics of the data. In particular, the implied tree employed in the numerical
estimation must correctly reproduce the volatility smile. The most popular models
within this family use recombining binomial trees implied by the smile from a given set
of European options.

Empirical tests of implied binomial trees have been proposed by DFW and
Jackwerth (1996). DFW analyse the out-of-sample behaviour of the time-varying
volatility function obtained by the in-sample implied binomial trees. The key empirical
issue becomes the stability of the volatility function. Surprisingly enough, DFW find



that the pricing (and hedging) out-of-sample performance of the implied binomial
trees is worse than that of an ad hoc BS model with variable implied volatilities.

On the other hand, Jackwerth (1996) tests the pricing performance of implied
binomial trees, the BS model, and the constant elasticity of variance model. He
chooses the parameters of these models to fit the observed prices of longer
term options best and then price shorter options with those parameters. In the 1987
post-crash period, Jackwerth favours the pricing behaviour of implied binomial trees.

Given the weak favourable evidence provided by these richer (relative to BS)
models, and the empirical results of Longstaft (1995) and PRS, a serious candidate to
explain the pronounced pattern of volatility estimates across exercise prices might be
related with liquidity costs. In fact, after the October 1987 crash, portfolio insurers
began buying index options to implement their insurance strategies. In particular,
institutional investors are interested in buying out-of-the-money put options as an
insurance mechanism. This institutional buying pressure on out-of-the-money put
options will increase put prices to a level where market makers are induced to accept
the bet that the index level will not fall below the exercise price before the option’s
expiration. Therefore, and independently of the distributional characteristics of the
underlying asset, liquidity costs, as proxied by the relative bid-ask spread, may induce
patterns in implied volatilities.

It should be pointed out that all previous models mentioned above have been
developed and tested in a competitive, frictionless framework. However, as noticed
above, it may certainly be the case that liquidity costs account for some of the
differences observed between market prices and theoretical prices.' Interestingly, PRS
show that liquidity costs are a key determinant of the implied volatility smile in the
Spanish options market.

The objective of this paper is to analyse the potential effects that illiquidity, as proxied
by the relative bid-ask spread, has on option pricing. To the best of our knowledge, the
only existing paper testing an option pricing model with liquidity cost is due to Ferreira
et al. (1999) who study the effects of liquidity costs using a non-parametric methodology.
In this paper, we propose a very different (parametric) approach. In particular, a
deterministic implied volatility function along the lines suggested by DFW is employed.
However, contrary to these authors, the implied volatility function is modified to
incorporate the relative bid-ask spread. We solve a forward partial differential equation
where, in our case, the volatility function is given by o(K, BA, T') where K is the exercise
price, BA is the relative bid-ask spread and 7' is the expiration date.

Constantinides and Zariphopoulou (1999) (and the different papers mentioned in
their references) address the issue of the effect of transaction costs on option pricing
from a different (theoretical) point of view. They consider an investor in an economy
with bonds, stocks and a call option, and state his intertemporal consumption and
investment problem in the presence of proportional transaction costs. An upper
bound to the reservation write price of a call option is derived in closed form. Our
objective in this paper is much more modest. We are explicitly concerned with
liquidity costs. Moreover, within the (always difficult) concept of liquidity, we limit
ourselves to the relative bid-ask spread.

'The issue of mispricing due to liquidity costs has been discussed by Longstaff (1995), and PRS
and briefly mentioned by Eberlein ef al. (1998).



We employ an extensive database of intraday transaction prices for call and put
options on the Spanish IBEX-35 index futures from January 1994 to October 1998.
Given that we are particularly concerned with liquidity effects, it may be relevant to
explore alternative option markets which are probably narrower than the fully
investigated S&P 500 index options traded at the Chicago Board Options Exchange
(CBOE).

Surprisingly, liquidity costs do not seem to be a key factor in explaining the behaviour
of option market prices. As DFW, an ad hoc BS pricing model performs better than our
model. Of course, we assume a particular functional (parametric) relationship between
volatility and liquidity costs which may well explain the failure of our option pricing
model. At the same time, as fully discussed below, the instability of the parameters of
our implied volatility function may also explain the poor performance of our model.

This paper is organised as follows: the next section contains a brief summary of the
Spanish option market. The data are described in Section 3. The theoretical model
employed in the paper appears in Section 4. Section 5 presents the empirical results
regarding the out-of-sample performance of the liquidity costs-adjusted deterministic
volatility function option valuation model. Finally, we conclude with a summary and
discussion.

2. The Spanish option on the IBEX-35 index futures

Our empirical analysis focuses on the Spanish official derivative market. The IBEX-35
index is based on a portfolio composed of the 35 most liquid Spanish stocks traded in
the continuous auction market system, weighted by market value. MEFF (the Spanish
official derivative market for risky assets) trades a futures contract on the IBEX-35,
the corresponding option (call and put) on the IBEX-35 futures contracts, and
individual option contracts for blue-chip stocks. Trading in the derivative market,
which started in 1992, has experienced tremendous growth from the very beginning.
The volume traded in MEFF represented 40% of the volume traded in the Spanish
regular continuous market in 1992 and 138% in 1996. The number of all traded
contracts in MEFF relative to the contracts traded in the CBOE reached 21% in 1996.
In this paper we are concerned with the option on the IBEX-35 index futures, which is
a cash settled European option with trading during the three nearest consecutive
months and the other 3 months of the March—June—September—December cycle.
These options expire on the third Friday of the contract month. Daily trading takes
place from 10:30 to 17:15. The multiplier has changed from 100 Spanish pesetas times
the IBEX-35 index at the beginning of the sample period to 1000 pesetas during 1998,
and prices are quoted in full points, with a minimum price change of one index point.’
The exercise prices are given by 50 index point intervals. Finally, it should be noticed
that liquidity is concentrated in the nearest expiration contract. In fact, during the
sample period almost 90% of crossing transactions occurred in this type of contract.

3. The data

Our data sample includes transaction prices of all options (call and put) on the IBEX-
35 index futures traded daily on MEFF over the period 3 January, 1994 through 9

2 Starting in January 1999, it has been changed to 10 euros.



October 1998. As noticed in the previous section, given that liquidity is concentrated
in the nearest expiration contract, our daily set of observations includes only options
with the nearest expiration day, but eliminating all transactions taking place during
the last week before expiration. This is to say, for each monthly expiration date cycle,
we only take into account prices for the first 3 weeks of the cycle.

As in the extant literature about option pricing, the use of simultaneous prices for
the options and the underlying security is an issue of major concern to us. Due to the
characteristics of our data, which are based on all reported transactions during each
day throughout the sample period, we cannot observe simultaneously enough options
on exactly the same underlying security price, with the same time-to-expiration but
with different exercise prices. To avoid large variations in the underlying security
price, we only take into account the 45-minute interval from 16:00 to 16:45. The
number of crossing transactions during this interval is almost 25%. Moreover, we
eliminate from the sample all trades after 16:45 so that we avoid data which may
reflect trades to influence market maker margin requirements. Therefore, we eliminate
potential problems with artificial trading that are most likely to occur at the end of the
day. Also, using data from the same period each day avoids the possibility of intraday
effects in the IBEX-35 futures options market. Finally, all option prices that violate
the well known arbitrage bounds are eliminated from the sample.

After applying these exclusionary criteria, we obtain a final daily sample of 13,056
observations (7466 transaction prices for calls and 5590 transaction prices for puts)
during 1154 days. It should be noted that there are as many prices for each option per
day as transactions occurred in this option during our 45-minute window. To estimate
the implied volatility for each of our 13,056 transaction prices, we take as the
underlying asset the average of the bid and ask price quotation given for each futures
contract simultaneously observed with each transacted option during the 45-minute
interval. Daily series of annualized repo T-bill rates with either 1 week, 2 weeks or 3
weeks to maturity are used as proxy for riskless interest rates. One of these three
interest rates will be employed depending upon how close the option is to the
expiration day. Finally, as discussed by French (1984), volatility is a phenomenon
related to trading days, while interest rates are paid by the calendar day. Therefore we
adjust Black’s (1976) option pricing formula reflecting both trading days and calendar
days until expiration. These implied volatilities will be used as the basis for
constructing the deterministic volatility function.

Figure 1 presents some implied volatility functions in the volatility/strike price
space for 3 representative days in our sample: the first one at the beginning of the
sample (24 January 1994), the second one at the middle (11 April 1996) and the last
one at the end of the sample (29 September 1998). These curves are representative of
the sample period in that there is not clear evidence about the shape of the implied
volatility function in the Spanish market. This is to say, on the one hand there are
cases in which a quadratic function seems to fit better than a straight line (e.g., calls
for 24 January 1994). On the other hand, for some other cases a straight line seems to
fit better than a quadratic function (e.g., puts for 11 April 1996 and 29 September
1998). For the rest of the cases in Figure 1 (puts for 24 January 1994, calls for 11 April
1996 and calls for 29 September 1998), it is difficult to specify a priori a functional
form for the implied volatility function. In any case, it seems that two functional forms
are the best in capturing the shape of the implied volatility function in the Spanish
market: a straight line or a quadratic function with the right-hand branch shorter than
the left-hand one.
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4. Liquidity costs-adjusted deterministic volatility option valuation model

We next theoretically investigate how liquidity costs, proxied by the relative bid-ask
spread, influence option values. Given the evidence provided by DFW and PRS, we
posit three different parametric forms for the deterministic volatility function o(K, T):

Model 1: 0 =bg + ¢
Model 2: 0 =by + b K+ ¢
Model 3: o = by + b K + b2K* + ¢

(M

where o is the implied volatility and K is the exercise price. Note that in our context
the general function o(K, T') is equal to o(K), because our daily set of observations
includes only options with the nearest expiration day. Thus, model 1 is the volatility
function of the BS constant volatility model. Model 2 posits a linear relation between



volatility and the exercise price (the ‘volatility sneer’). Finally model 3 incorporates a
quadratic term to capture the typical smile shape (the ‘volatility smile’).?

Given that PRS find evidence of linear Granger causality from liquidity costs to the
shape of the volatility smile in the Spanish market and the theoretical arguments given
in Section 1, we propose three alternative forms to introduce a linear term in the bid-
ask spread within the deterministic volatility option pricing model:

Model 4: 6 =by + bBA + ¢
Model 5: 0 =by + b1 K+ brBA + ¢ 2)
Model 6: 0 = by + b K + byK* + b3BA + ¢
where BA is the relative bid-ask spread defined as usual as
ask — bid
" 1/2(ask + bid)

We next briefly describe the deterministic volatility function option valuation model
proposed by DFW. Assuming that the local volatility rate of the underlying asset is a
deterministic function of asset price and time, the option’s value is given by the
following partial differential equation:
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where F is the asset price for forward delivery on the expiration day of the option, fis
the forward option price, o(F, ) is the local volatility of the price F and ¢ is current
time. Equation (3) can be used to value both calls and puts and both European and
American-style options. For a European call option the boundary condition,
f(F, T)=max(F— K,0), is applied at the option’s expiration (f(F,T)=
max(K — F, 0) for puts).

Equation (3) is called the backward equation of the BS model in terms of forward
prices. Dupire (1994) shows that, for European-style options, the forward option
value must be a solution of the forward partial differential equation:

o _o

= 4
K2 T @

1
3 oX(K, T)K?

where K is the exercise price and T is the expiration date, with initial conditions given
by (K, 0) = max(F — K, 0) for calls and f (K, 0) = max(K — F, 0) for puts.

Let us next assume that the relative bid-ask spread is a deterministic function of
exercise price and time. Hence, B4 = BA(K, T).* A reasonable way of justifying this
assumption is by checking the relationship between degree of moneyness and relative
bid-ask spreads. The evidence regarding this relation is reported in Table 1. This is not
a formal test, but it provides an intuitive explanation of the relationship assumed

3See PRS for a detailed discussion and tests of smiles versus sneers.

4 Again note that in our context the general function BA(K, T) is equal to BA(K) because our
daily set of observations includes only options with the nearest expiration day.



Table 1

Sample characteristics of IBEX-35 futures options.

Average prices, average relative bid-ask spread and the number of available options are
reported for each moneyness category. All options transacted over the 45-minute interval from
16:00 to 16:45 are employed from 3 January 1994 to 9 October 1998. K is the exercise price and
F denotes the futures price of the IBEX-35 index. Moneyness is defined as the ratio of the
exercise price to the futures price. OTM, ATM, and ITM are out-of-the-money, at-the-money,
and in-the-money options respectively.

Moneyness Average Average Number of
K/F price bid-ask spread observations
Panel A: Calls
Deep ITM 0.90-0.97 297.6168 0.1423 107
I™ 0.97-0.99 139.5263 0.1283 551
ATM 0.99-1.01 91.9031 0.1720 2312
OT™M 1.01-1.03 60.9031 0.2335 2336
Deep OTM 1.03-1.08 43.2079 0.3775 2160
All calls — 74.5784 0.2470 7466
Panel B: Puts
Deep OTM 0.90-0.97 46.6134 0.3388 1927
OTM 0.97-0.99 66.5545 0.2109 1605
ATM 0.99-1.01 92.9196 0.1607 1605
I™ 1.01-1.03 125.6550 0.1267 371
Deep ITM 1.03-1.08 341.6585 0.1778 82
All puts — 75.2082 0.2345 5590

above. Table 1 employs the five intervals for the degree of moneyness used by PRS
and Fiorentini et al. (1998). These intervals are determined by choosing intervals of
2% length, except for the first and last intervals. 0.90 and 1.08 are the minimum and
maximum values respectively for the degree of moneyness in our sample. The
underlying justification in deciding these intervals is that we want a homogeneous
number of observations in every interval when taking calls and puts together. We
define moneyness as the ratio of the exercise price to the futures price. Deep out-of-
the-money options have the highest bid-ask spreads. This is to say, whenever the
degree of moneyness is relatively high, the average bid-ask spread tends to be
relatively high (low) for call (put) options.

In order to test our assumption more formally, we compute a nonparametric x>
Pearson test of independence between BA and the degree of moneyness. The use of a
nonparametric test may be justified by noting that we do not know the exact
functional form of BA(K) and, of course, by running a regression we would be
imposing a given parametric form for BA(K). To implement our nomparametric test
we stack all observations in the same sample. Hence, we have 7466 calls and 5590 puts.
The test is implemented separately for call and put options. Note that we use the
degree of moneyness instead of the exercise price (K) because we want to avoid the
effect of different underlying asset prices corresponding to different days in the
sample. It turns out that we reject the null hypothesis of independence between the
relative bid-ask spread and the degree of moneyness (p-value = 0.0000 for both call



and put options). This is to say, there is some dependence between the relative bid-ask
spread and the degree of moneyness (and therefore between the relative bid-ask spread
and the exercise price within our 45-minute window in a given day), but we do not
know what kind of dependence exists.

Given this evidence and our assumptions, we can introduce liquidity costs within
the deterministic volatility function option valuation model through the volatility
factor: 0%(K, BA(K,)). Note that we again drop the time variable, T, since our daily set
of observations includes only options with the nearest expiration day. Therefore, the
forward option value with liquidity costs must be a solution of the following equation:

o _o

= 5
0K?> 9T ®

! o2(K, BA(K))K>
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with the initial condition: f(K, BA(K)) = max(F — K,0) when T=0 for calls, and
f(K, BA(K)) = max(K — F, 0) when T = 0 for puts. Since the exact functional form of
BA(K) is unknown, as a first (linear) approximation to introduce the bid-ask spread
within the model, we replace o(K, BA(K)) in (5) by the expressions of o(K, BA) given
by models 4, 5 and 6. Also, to test the simple deterministic volatility option pricing
model without liquidity costs, we just replace o(K) in (4) by the parametric models 1, 2
and 3.

5. The empirical performance of the liquidity costs-adjusted deterministic volatility
function option valuation model

5.1. The estimation of the model

For each day in the sample we first estimate cross-sectionally the six parametric
models given by expressions (1) and (2). In each cross-sectional regressions we employ
all available options for every day from 3 January 1994 to 9 October 1998. For
example, for model 6, we run the following cross-sectional regression for each day ¢
during the sample the period:

;i =by+ b1 K; + szf + b3BA;+¢j; j=1, ..., number of available options on day ¢
(6)

where 6; is the implied volatility of option j previously estimated, and BA; is the
relative bid-ask spread for each option j on each particular day in the sample period. It
should be noted that these cross-sectional regressions are estimated separately for calls
and puts. Equations (6) are run with 6319 observations during 755 days for call
options (4246 observations during 610 days for put options). Note that we lose some
observations from our original sample because our six models are run whenever there
are enough observations to run model 6. o A
Therefore, we obtain a daily series of cross-sectional estimators, b, by, bo, and bs,,’
which can be used as inputs to infer the appropriate deterministic volatility function
with liquidity costs to be employed in solving equation (5). Hence, for each day 7 + 1
during the sample period we estimate the following implied volatility function with

3 Again note that we have a different set of estimators for calls and puts.



liquidity costs:
éfjr+l :50r+51szr+l +52zK,2t+1 +};3rBAjr+l—7- (7)

where the exercise prices for each option j are directly observed and will, in fact,
coincide with exercise prices observed on day . However, we need an estimate of the
bid-ask spread for option j on day ¢ + 1. For a given call (put) option, this estimate is
the average of the relative bid-ask spreads for all call (put) options with the same
exercise price and time to expiration, negotiated during the day ¢ + 1 until just before a
particular transaction occurs. This period of time is called 7 in equation (7). Note that
each option will have a different 7 depending upon its crossing time during our
window from 16:00 to 16:45. Thus, for each particular call and put option available,
the volatility obtained by equation (7) is employed as an input in solving the forward
partial differential expression given by (5).

Therefore, using previous day out-of-sample estimators of parameters from models
1 to 6 and the estimator of the bid-ask spread described above, we can estimate
expression (7) for each individual option, and then solve equation (5) to obtain the
theoretical option values. Equation (5) is solved employing the Cranck-Nicholson
finite-difference method. Note that this procedure allow us to test the out-of-sample
performance of the option pricing model suggested in this paper under the alternative
specifications of the implied volatility functions given by models 1 to 6. The analysis of
the one-step-ahead prediction errors is carried out below.

Before testing the models, however, it is important to point out that in solving our
forward partial differential equation (5) we actually obtain the theoretical forward
option price which will have to be discounted back to the current day in order to
compare it with the market price.

5.2. Absolute and percentage pricing errors

We estimate models 1 to 6, for calls and puts separately, using all call and put options
available in our 45-minute window. It should be pointed out that we run these six
models whenever there are enough observations to run model 6. As explained above,
we then compute the theoretical price of each option using previous day estimators of
parameters from models 1 to 6 and the estimator of the relative bid-ask spread
described in the previous subsection.

In this way, we have 5190 (3326) pricing errors for call (put) options from 3 January
1994 to 9 October 1998.% These pricing errors are the basis for our analysis. Tables 2—
5 report two measures of performance for the alternative model specifications, and for
each of our five fixed moneyness categories. Tables 2 and 3 contain the absolute
pricing error for calls and puts, while the percentage pricing errors are shown in
Tables 4 and 5.

It should be noticed that we do not separate our daily sample into the five
moneyness categories before estimating the models, but after estimating these models
and computing theoretical prices. This is to say, we estimate our models, for call and
put options separately, using all options available on day ¢, and then we compute
theoretical prices for all options available on day ¢ + 1, using previous day estimators

® As previously noted, given that for some days we do not have enough cross-sectional options
to estimate model 6, we are forced to lose observations from our original sample.



absolute pricing error: calls.

The forward partial differential equation:
2*’c ac

1
— 0%(K, BA(K))K* —
27 ( K dK2>  oT

is solved replacing o2(K, BA(K)) by one of the following approximate expressions:
Model 1: c=by +¢
Model 2: 6 =by+ b1 K+ ¢
Model 3: o=by + b K+ b K> + &
Model 4: 0 =by + b1BA + ¢
Model 5: o0 =by + b1 K+ byBA + ¢
Model 6: 0 =bg + b1 K+ byK* + b3BA + ¢

where K is the exercise price, C is the option value, by, by, b, and b3 are previous day estimators
and BA is the relative bid-ask spread. The reported absolute pricing error is the root square of
the sample average of the squared difference between the model price and the market price for
each call option in a given moneyness category. The statistical significance of pricing errors is
assessed by means of a GMM overidentifying restrictions test to check whether the means of the
series of squared differences between the model and the market prices calculated from model 1
(the BS model) and one of models 2 to 6 are significantly different. Given that we have a time
series of cross-sectional observations, our data are correlated and we may therefore use the
Newey-West estimator for the weighting covariance matrix. The test statistic is distributed as a
x> with one degree of freedom under the null. Moneyness is defined as the ratio of the exercise
price to the futures price. OTM, ATM and ITM are out-of-the-money, at-the-money, and in-
the-money options respectively. All call options transacted over the 45-minute interval from
16:00 to 16:45 from 3 January 1994 to 9 October 1998 are used in the tests below.

Absolute pricing error: calls

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
2 X2 x> X2 x>

Moneyness (p-vélue) (p-vélue) (p-vélue) (p-value) (p-vélue)

Deep OTM  1.03-1.08  12.85 1512  384.2307  40.0321  46.3938 493.8777
- 1.1464 53145 1.2019 19972 7.1805
— (0.2843)  (0.0211)  (0.2729)  (0.1576)  (0.0074)
OTM 1.01-1.03 937 3087 4392902  63.8763 131.0489  510.6046
— 11749 8.4520 1.2455 1.7085  7.3310
— (0.2784)  (0.0036)  (0.2644)  (0.1612)  (0.0068)
ATM 099-1.01 1031 1589  553.6418  10.5614  69.3584  562.3090
— 1.9825  4.4084 03768  2.0312  4.4896
—(0.1591)  (0.0357)  (0.5393)  (0.1541)  (0.0341)
IT™M 097-0.99 803 7.2  417.5546  8.8776 124.5359  585.0269
— 1.0259  3.1981 0.4482 13877 3.0606
—  (03113)  (0.0737)  (0.5032)  (0.2388)  (0.0802)
Deep ITM  0.90-0.97 3143  27.09  448.0721  31.2182  27.6703 238.7342
— 32525 20796 00199  3.3563  1.1698
—  (0.0713) (0.1493)  (0.8877)  (0.0669)  (0.2794)
All calls — 1120 21.58  462.6511  42.8425  93.4947 525.3671
— 1.6536  8.8783 1.9314  2.1876  10.4000
—(0.1985)  (0.00288) (0.1646)  (0.1391)  (0.0013)




absolute pricing error: puts.

The forward partial differential equation:

1, ,0°P 0P

— 0" (K, BAKK)K™ —=—

2 0K?> 0T

is solved replacing o%(K, BA(K)) by one of the following approximate expressions:
Model 1:

Model 2:

o=by+e

o=by+bK+e
Model 3:
Model 4:
Model 5:

a=by+ b K+bK>+e¢
o=by+bBA+¢e
oc=by+b K+ b,BA+¢

Model 6: o = by + b1 K + by K> + b3BA + ¢

where K is the exercise price, P is the option value, by, b, b, and b; are previous day estimators
and BA is the relative bid-ask spread. The reported absolute pricing error is the root square of
the sample average of the squared difference between the model price and the market price for
each put option in a given moneyness category. The statistical significance of pricing errors is
assessed by means of a GMM overidentifying restrictions test to check whether the means of the
series of squared differences between the model and the market prices calculated from model 1
(the BS model) and one of models 2 to 6 are significantly different. Given that we have a time
series of cross-sectional observations, our data are correlated and we may therefore use the
Newey-West estimator for the weighting covariance matrix. The test statistic is distributed as a
x> with one degree of freedom under the null. Moneyness is defined as the ratio of the exercise
price to the futures price. OTM, ATM and ITM are out-of-the-money, at-the-money, and in-
the-money options respectively. All put options transacted over the 45-minute interval from
16:00 to 16:45 from 3 January 1994 to 9 October 1998 are used in the tests below.

Absolute pricing error: puts

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
X X X’ X X’
Moneyness (p-value)  (p-value) (p-value) (p-value) (p-value)
Deep ITM  1.03-1.08 18.0202  13.5146 14.5466  75.1225  21.1492 19.9220
— 1.4477 1.1347 1.0372 0.3382 0.1491
— (0.2289) (0.2868) (0.3085)  (0.5609) (0.6993)
I™ 1.01-1.03 184131 1482167 1119.1634 18.6136 143.9342 1258.3526
— 3.8618 5.9551  0.0623 2.8010 7.9271
— (0.0494) (0.0147) (0.8028)  (0.0942) (0.0049)
ATM 0.99-1.01 16.2081  90.0558 713.7516  16.2727 101.3588  746.1393
— 2.2341 9.7662  0.0064 1.4791 8.3455
— (0.1350) (0.0017) (0.9363)  (0.2239) (0.0039)
OTM 0.97-0.99 12.6136 61.4474 639.7685 13.7321 128.9690  661.5269
— 3.2429 3.1237 1.5658 2.3144 9.4268
— (0.07173) (0.0771) (0.2108)  (0.1281) (0.0021)
Deep OTM  0.90-0.97 13.6872 100.5576 606.3112 21.2107 127.8168  657.2460
— 2.6747 4.5443  7.0140 2.5080 5.3733
— (0.1019) (0.0330) (0.0081)  (0.1133) (0.0204)
All puts — 14.5965  90.6133 690.6239  18.8247 121.1081  735.6861
— 4.26101 16.6724  4.0108 4.3819 16.8954
— (0.0389) (0.0000) (0.0452)  (0.0363) (0.0000)




percentage pricing error: calls.

The forward partial differential equation:

1 2K, BAKYK 9°Cc oc
-0 IR =
2 0K? 0T

is solved replacing o2(K, BA(K)) by one of the following approximate expressions:
Model 1: 0 =by +¢
Model 2: 0 =by + b 1K+ ¢
Model 3: 0 =bg + b K+ hK* + ¢
Model 4: 0 =by+ b BA + ¢
Model 5: 0 =by + b1 K+ brBA +¢
Model 6: 0= by + b1 K+ b:K* + b3BA + ¢

where K is the exercise price, C is the option value, by, by, by and b3 are previous day estimators
and BA is the relative bid-ask spread. The reported percentage pricing error is the root square of
the sample average of the squared ratio of the model price minus the market price to the market
price for each call option in a given moneyness category. The statistical significance of pricing
errors is assessed by means of a GMM overidentifying restrictions test to check whether the means
of the series of squared ratios of the model price minus the market price to the market price
calculated from model 1 (the BS model) and one of models 2 to 6 are significantly different. Given
that we have a time series of cross-sectional observations, our data are correlated and we may
therefore use the Newey-West estimator for the weighting covariance matrix. The test statistic is
distributed as a x? with one degree of freedom under the null. Moneyness is defined as the ratio of
the exercise price to the futures price. OTM, ATM and ITM are out-of-the-money, at-the-money,
and in-the-money options respectively. All call options transacted over the 45-minute interval from
16:00 to 16:45 from 3 January 1994 to 9 October 1998 are used in the tests below.

Percentage pricing error: calls

Model 1  Model 2 Model 3 Model 4 Model 5 Model 6
2 x> X2 x> x2

Moneyness (p-value) (p-value) (p-value) (p-value) (p-value)

Deep OTM  1.03-1.08  3.3382 33712 309236 43181  6.0444  112.4591
— 16210 4.4863 22993  1.1823 1.2405
— (0.2029)  (0.042)  (0.1294) (0.2769)  (0.2654)
OTM 1.01-1.03 03190  0.6126  12.0759 03929  3.9782  13.6184
— 1.0751  9.7204 12319 1.5037 6.0183
— (0.2998)  (0.0018)  (0.2670)  (0.2201)  (0.0141)
ATM 099-1.01 00852  0.1311  6.0218  0.0937  1.3118 6.6521
- 22558 6.5112 12.0519  2.3699 8.7770
— 0.1331)  (0.0107)  (0.0005) (0.1237)  (0.0030)
IT™M 097-0.99  0.0655  0.0716  3.8538  0.0684  1.0402 5.3930
— 1.1094  3.0319  0.6529  1.7662 2.9077
- 0.2922)  (0.0816) (0.4191) (0.1838)  (0.0881)
Deep ITM  0.90-0.97  0.0705  0.0599  2.6393  0.0682  0.0613 1.4761
— 50722 1.8129 04715  4.6212 1.1469
— (0.0243)  (0.1782)  (0.4923) (0.0316)  (0.2842)
17926 1.8354  18.2322 23174  4.0210  60.6833
— 24545 6.5427  2.3349  2.6089 1.2906
— 0.1172)  (0.0105)  (0.1265) (0.1063)  (0.2559)

All calls




Percentage pricing error: puts.
The forward partial differential equation:
o*p 9P

1
- 02K, BAKK)K? — =—
2 ¢ &) 9K?> OT

is solved replacing o2(K, BA(K)) by one of the following approximate expressions:

Model 1: 0 =by +¢

Model 2: 0 =by + b1 K+ ¢

Model 3: 0 = by + b K+ b K* + ¢

Model 4: 0 =by + b)BA + ¢

Model 5: 0 =by + b K+ b,BA + ¢

Model 6: o0 = by + b K+ byK*> + b3BA+ ¢

where K is the exercise price, P is the option value, by, b, b, and b; are previous day estimators
and BA is the relative bid-ask spread. The reported percentage pricing error is the root square of
the sample average of the squared ratio of the model price minus the market price to the market
price for each put option in a given moneyness category. The statistical significance of pricing
errors is assessed by means of a GMM overidentifying restrictions test to check whether the
means of the series of squared ratios of the model price minus the market price to the market
price calculated from model 1 (the BS model) and one of models 2 to 6 are significantly
different. Given that we have a time series of cross-sectional observations, our data are
correlated and we may therefore use the Newey-West estimator for the weighting covariance
matrix. The test statistic is distributed as a x2 with one degree of freedom under the null.
Moneyness is defined as the ratio of the exercise price to the futures price. OTM, ATM and
ITM are out-of-the-money, at-the-money, and in-the-money options respectively. All put
options transacted over the 45-minute interval from 16:00 to 16:45 from 3 January 1994 to 9
October 1998 are used in the tests below.

Percentage pricing error: puts
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
X2 x2 X2 X2 X2
Moneyness (p-value) (p-value) (p-value) (p-value) (p-value)

Deep ITM  1.03-1.08  0.0446  0.0340  0.0422  0.1364  0.0448  0.0487
— 1.8003  0.1037  1.0538  0.0005  0.2606
— (0.1797)  (0.7474)  (0.3046)  (0.9815)  (0.6097)
IT™ 1.01-1.03  0.0837 13185 10.8523  0.0869  1.4498  12.3495
— 3.0539  5.8957  0.5227 24771  7.0692
— (0.0805)  (0.0152) (0.4697) (0.1155)  (0.0078)
ATM 099-1.01  0.1451  1.6407 12.6161  0.1406  1.8276  14.1094
— 24142 63917 0.5800  1.5606  5.0435
— (0.1202)  (0.0115) (0.4463) (0.2116)  (0.0247)
OTM 097-0.99  0.1546  2.2860  22.9224 02506  4.7349  25.1085
— 2.8463  3.6904 32897  2.0887  2.3478
— 0.0916)  (0.0547)  (0.0697)  (0.1484)  (0.1254)
Deep OTM  0.90-0.97 03199 57684  33.9285  0.7542  7.1642  38.0714
— 21706 52126 42811  1.8541  4.3071
- (0.1407)  (0.0224)  (0.0385)  (0.1733)  (0.0379)
All calls — 0.2148  3.5899 239841  0.4503  4.8960  26.7326
— 28013 9.2266  4.8937  3.0949  7.1922
— (0.0942)  (0.0024)  (0.0269)  (0.0785)  (0.0073)




of the parameters from models 1 to 6 and the estimator of the relative bid-ask spread
described in subsection 5.1. Once we have computed these theoretical prices, we
separate them into our five fixed intervals for the degree of moneyness to compute the
absolute and percentage pricing errors within each category.

Imagine that, for each day ¢ in our sample, we separate all available calls (puts)
within our five categories of moneyness. Now suppose that for every day, each of our
five groups contains N, call (put) options.

The absolute pricing error is defined as:

1 T N,
2
APE= | —— Zl Zl (fH =M ®)
t=1j=
>N
t=1
where /jT,H is the theoretical option price for a given particular option pricing model

and f/’)" is the observed (market) price of the corresponding option.
The percentage pricing error is:

T N, TH M

2
1 TH _ £)
PPE= | —— LS 9
A "
t

t=1

To compare statistically the PPE for a pair of models (say the BS model and one of
models 2 to 6) we may compute the following set of moment conditions:’

-1

T T N
SN YW -

t=1 t=1 i=1 (0)
= (10)
T - 0

1
T N,
SN SO -0

t=1 t=1 j=1

where 9 is the common mean percentage pricing error under the null hypothesis that
both models have the same percentage error,® and f};"o is the theoretical option price
computed with one of models 2 to 6. The idea is to perform a GMM overidentifying
restrictions test to check whether the means of (/" —/}/f }\,")2 calculated from a
pair of model estimates are significantly different.

Given that we have a time series of cross-sectional observations, our data are
correlated and we use the Newey-West estimator for the weighting covariance matrix.
This test statistic is distributed as a x> with one degree of freedom under the null.

"The same procedure can be followed for the APE.

8 Let ) be the mean of the series of squared ratios of the Black-Scholes price minus the market
price to the market price: (/5 — /' M)// ) 2. Let 99, be the mean of the series of squared ratios
of the theoretical price calculated with one of models 2 to 6 minus the market price to the
market price: ((f,“,’[O —f'_/’.‘,")/f"?," 2. Under the null hypothesis both series have the same mean
percentage error: ¥ =19, = v.



Overall, the BS model performs better than models 2 to 6. Only models 2 and 4 for
in-the-money and deep in-the-money calls, and model 4 for in-the-money and at-the-
money puts, perform as well as the BS model. In fact, model 2, which posits a linear
relation between implied volatility and the exercise price, gives the second better
results for call options, while model 4, which posits a linear relation between implied
volatility and the relative bid-ask spread, gives the second better results for put
options. It should be pointed out that, in general, models 3 and 6, which incorporate a
quadratic term in the exercise price, value options significantly worse than the BS
model. It is probably the case that the reasons behind the poor performance of the
quadratic models are associated with the considerable variation in the coefficient
estimates found from day to day. Note that this is consistent with the findings of
DFW and might indicate that the volatility function is not stable over time. Some
evidence about the instability of the parameters is presented in subsection 5.3.
Another related reason behind the poor performance of the quadratic models may be
associated with the collinearity between K and K? (in fact, K and K? are highly
correlated), which can be related with the instability of parameter estimates with these
quadratic models.® Finally, recall that we assume a particular functional (parametric)
relationship between volatility and liquidity costs. This may also well explain the
failure of our model with bid-ask spreads.

5.3. Proportion of theoretical prices lying outside their corresponding bid-ask spread
boundaries

In this section we report another measure of the statistical significance of performance
for out-of-sample pricing errors: the proportion of theoretical prices lying outside
their corresponding bid-ask spread boundaries.!”

The following Z-statistic for the difference between two proportions is employed in
the tests. The statistic is given by:

7 P —Dp2
Vil =p)/m +pa(1—po)/na

where p; is always the proportion of BS (model 1) prices lying outside the bid-ask
spread boundaries, and p; is the equivalent proportion for models 2 to 6. n; and n, are
sample sizes corresponding to these proportions. The statistic is asymptotically
distributed as a standardized normal variable.

The results are shown in Tables 6 (calls) and 7 (puts). With this procedure we may
also test whether a theoretical model undervalues or overvalues market prices. This is
achieved by analysing the proportions of theoretical prices lying below the bid or
above the ask quotes.

If we look at all call options together (Table 6), the proportion of BS prices lying
outside the bid-ask boundaries is 45.70%. This proportion is almost the same for
models 2 and 4. Models 3, 5 and 6 perform significantly worse than the BS model. The
proportions of BS prices lying below the bid and above the ask quotes are 18.82% and
26.88% respectively. Hence, we can conclude that the BS model tends to overvalue

(11)

% Collinarity problems between BA and K, or between B4 and K2, have not been found.
10See Corrado and Su (1996) and also Fiorentini et al. (1998).



Table 6

Nonparametric testing for alternative option pricing models: calls.
The forward partial differential equation:
9*C aC
oK>  oT

% o(K, BA(K))K?

is solved replacing o>(K, BA(K)) by one of the following approximate expressions:
Model 1: 0 =bg + ¢
Model 2: 6 =by + b1 K+ ¢
Model 3: 0 =by + b K+ b,K* + ¢
Model 4: 0 = by + b|BA + ¢
Model 5: 0 =by + b1 K+ b,BA + ¢
Model 6: 0= by + b1 K + b2K> + b3BA + ¢

The statistical significance of performance for out-of-sample pricing errors is assessed by
analysing the proportion of theoretical prices lying outside their corresponding bid-ask
boundaries. The following Z-statistic for the difference between two proportions given by:

Pr— D2
Jm(l —p) (1 —pa)
+

z

n n

is employed in the tests, where p; is always the proportion of Black-Scholes (model 1) prices
outside the bid-ask boundaries, and p; is the equivalent proportion for models 2 to 6. n; and n;
are sample sizes corresponding to these proportions. The statistic is asymptotically distributed
as a standardized normal variable. All call options transacted over the 45-minute interval from
16:00 to 16:45 from 3 January, 1994 to 9 October, 1998 are used in the tests below.

Proportion of model prices lying outside the bid-ask boundaries: calls

Model I Model 2 Model 3 Model 4 Model 5  Model 6
Z-stat Z-stat Z-stat Z-Stat Z-Stat
Categories (p-value)  (p-value) (p-value) (p-value) (p-value)

All calls

p(Bid > Cyvoper > Ask) 04570 0.4470 0.5590 0.4684 0.4855 0.5930
— 1.0222 —10.4436 —1.1648 —2.9146 —14.0105
— (0.3067) (0.0000)  (0.2441)  (0.0036) (0.0000)

p(CmopkL < Bid) 0.1882 0.1676 0.1706 0.2073 0.2015 0.2146
— 2.7409 2.2959 —2.4462 —1.7160 —3.3606
— (0.0061) (0.0217)  (0.0144)  (0.0861) (0.0008)

P(CymopeL > Ask) 0.2688 0.2794 0.3881 0.2611 0.2840 0.3784
— —1.2087  —13.0408 0.8913 —1.7325 —12.0185
— (0.2267) (0.0000)  (0.3727)  (0.0831) (0.0000)

(continued)



Table 6

Continued

Proportion of model prices lying outside the bid-ask boundaries: calls

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Z-stat Z-stat Z-stat Z-Stat Z-Stat
Categories (p-value)  (p-value) (p-value) (p-value) (p-value)
OTM Calls (K/F>1)
p(Bid > CyopgL > Ask) — 0.4795 0.4702 0.5753 0.4951 0.5121 0.6079
— 0.8528 —8.8106 —1.4252 —29802 —11.8775
— (0.3938) (0.0000)  (0.1541)  (0.0029) (0.0000)
p(CmopEL < Bid) 0.1741 0.1571 0.1617 0.2017 0.1916 0.2069
— 2.0868 1.5188 —3.2275 —2.0709 —3.8247
— (0.0369) (0.1288)  (0.0012)  (0.0384) (0.0001)
p(CymopEgL > Ask) 0.3054 0.3131 0.4136 0.2934 0.3205 0.4010
— —0.7567 —10.3733 1.1959  —1.4859 —9.1806
— (0.4492) (0.0000)  (0.2317)  (0.1373) (0.0000)
ITM Calls (K/F< 1)
p(Bid > CyopgL > Ask)  0.3639 0.3511 0.4921 0.3580 0.3757 0.5325
— 0.6021 —5.8841 0.2771  —0.5523 —7.7478
— (0.5471) (0.0000)  (0.7816)  (0.5808) (0.0000)
p(CmopEL < Bid) 0.2456 0.2101 0.2091 0.2298 0.2416 0.2465
— 1.9097 1.9642 0.8368 0.2089 —0.0496
— (0.0562) (0.0495)  (0.4027)  (0.8345) (0.9604)
p(CmopgL > Ask) 0.1183 0.1410 0.2830 0.1282 0.1341 0.2860
— —1.5241 —9.4641 —0.6785 —1.0731 —9.6141
— (0.1274) (0.0000)  (0.4974)  (0.2832) (0.0000)
ATM Calls (1.01 > K/F>0.99)
p(Bid > CyopgL > Ask)  0.3858 0.3802 0.5109 0.3864 0.4057 0.5482
— 0.3259 —7.1868  —0.0369 —1.1552 —9.3532
— (0.7445) (0.0000)  (0.9705)  (0.2480) (0.0000)
p(CmopEL < Bid) 0.1892 0.1630 0.1848 0.1904 0.2010 0.2259
— 1.9480 0.3187 —0.0879  —0.8438 —2.5669
— (0.0514) (0.7499)  (0.9299)  (0.3987) (0.0103)
p(CymopgL > Ask) 0.1966 0.2172 0.3261 0.1960 0.2047 0.3223
— —1.4402 —8.4453 0.0416 —0.5754 —8.2161
— (0.1498) (0.0000)  (0.9668)  (0.5650) (0.0000)

call options. It is interesting to note that the same tendency to overvalue call options is

also found for models 2 to 6.

When we classify all call options by moneyness, similar conclusions are obtained.
This is to say, models 2 and 4 perform, in general, as well as the BS model, and models
3 and 6 (the quadratic models) perform significantly worse than the BS model. It
should be pointed out that the tendency to overvalue call options is not maintained
through the five categories of moneyness. All models tend to overvalue market prices
for out-of-the-money calls (K/F > 1) and to undervalue in-the-money calls (K/F < 1).

Similar conclusions are obtained when we look at put options (Table 7). When we
consider all put options together, the proportion of BS prices lying outside the bid-ask



Table 7

Nonparametric testing for alternative option pricing models: puts.

The forward partial differential equation:
1, ,0°P 0P
> o“(K, BA(K))K %zd—T
is solved replacing o2(K, BA(K)) by one of the following approximate expressions:
Model 1: c=by +¢
Model 2: 6 =by+ b1 K+ ¢
Model 3: 0 =by + b1 K+ b, K> + ¢
Model 4: 0 =by + b1BA + ¢
Model 5: 0 =by+ b1 K+ b, BA+ ¢
Model 6: 0 =bg + b1 K+ byK* + b3BA + ¢

The statistical significance of performance for out-of-sample pricing errors is assessed by
analysing the proportion of theoretical prices lying outside their corresponding bid-ask
boundaries. The following Z-statistic for the difference between two proportions given by:

pP1r—D2
(I=p1)  pa(l—p)
JPI )4 +P p2

z=

n n

is employed in the tests, where p; is always the proportion of Black-Scholes (model 1) prices
outside the bid-ask boundaries, and p; is the equivalent proportion for models 2 to 6. n; and n,
are sample sizes corresponding to these proportions. The statistic is asymptotically distributed
as a standardised normal variable. All put options transacted over the 45-minute interval from
16:00 to 16:45 from 3 January 1994 to 9 October 1998 are used in the tests below.

Proportion of model prices lying outside the bid-ask boundaries: puts

Model 1 Model 2 Model 3 Model4 Model 5 Model 6

Z-stat Z-stat Z-stat Z-Stat Z-Stat
Categories (p-value) (p-value) (p-value) (p-value) (p-value)
All puts
p(Bid > Cyoper > Ask)  0.5379 0.5177 0.6145 0.5544 0.5382 0.6584

16472 —6.3448 —1.3533  —0.0232 —10.1037
(0.0995)  (0.0000) (0.1759)  (0.9815)  (0.0000)
(CuopeL < Bid) 0.2748 04065 03581  0.2724 0.4020 0.3782
114428 —73323 02196 —11.0618  —9.0499
(0.0000)  (0.0000) (0.8262)  (0.0000)  (0.0000)

P(CrniopeL > Ask) 0.2631 0.1112 02564  0.2820 0.1362 0.2802
- 0.1618  0.6171 —1.7332  13.1122  —1.5695

(0.0000)  (0.5371)  (0.0830)  (0.0000)  (0.1165)

(continued)



Table 7

Continued

Proportion of model prices lying outside the bid-ask boundaries: puts

Model 1  Model 2 Model 3 Model 4 Model 5 Model 6
Z-stat Z-stat Z-stat Z-Stat Z-Stat
Categories (p-value) (p-value) (p-value) (p-value) (p-value)
ITM Puts (K/F> 1)
p(Bid > CyopgL > Ask)  0.5044 0.3721 0.5203 0.4691 0.4268 0.5891
— 4.5288  —0.5351 1.1887 2.6270 —2.8740
— (0.0000)  (0.5926)  (0.2346) (0.0086) (0.0040)
p(CmopeL < Bid) 0.0829 0.1534 0.1323 0.1093 0.1781 0.2028
— —-3.7014 —-2.6915 —1.5122 —4.8081 —5.8568
— (0.0002)  (0.0071)  (0.1305) (0.0000) (0.0000)
Pp(CymopEgL > Ask) 0.4215 0.2187 0.3880 0.3598 0.2487 0.3862
— 7.4989 1.1496 2.1340 6.2707 1.2106
— (0.0000)  (0.2503)  (0.0328) (0.0000) (0.2260)
OTM Puts (K/F< 1)
p(Bid > CyvopgrL > Ask)  0.5447 0.5476 0.6340 0.5719 0.5610 0.6728
— —0.2137 —6.7628  —2.0330 —1.2168 —9.8284
— (0.8308)  (0.0000)  (0.0402) (0.2236) (0.0000)
p(CmopEL < Bid) 0.3141 0.4582 0.4045 0.3057 0.4477 0.4139
— —11.1085 —7.0231 0.6711  —10.3080 —7.7420
— (0.0000)  (0.0000)  (0.5022) (0.0000) (0.0000)
p(CmopEgL > Ask) 0.0893 0.2295 0.2661 0.1133 0.2589
0.2306 14.5744 0.0983  —3.0565 11.6785 —2.4436
— (0.0000)  (0.9216)  (0.0022) (0.0000) (0.0145)
ATM Puts (1.01 > K/F>0.99)
p(Bid > CyopeL > Ask)  0.4971 0.4093 0.5261 0.5067 0.4266 0.5830
— 4.0315 —1.3192 —0.4359 3.2247 —3.9379
— (0.0000)  (0.1871)  (0.6602) (0.0013) (0.0000)
p(CmopEL < Bid) 0.1120 0.2452 0.2133 0.1602 0.2432 0.2529
— —8.0360 —6.3081 —3.2092 —7.9333 —8.4447
— (0.0000)  (0.0000)  (0.0013) (0.0000) (0.0000)
P(CmopEeL > Ask) 0.3851 0.1641 0.3127 0.3465 0.1834 0.3301
— 11.6324  —3.4652 1.8242 10.4419 2.6152
— (0.0000)  (0.0005)  (0.0681) (0.0000) (0.0089)

spread boundaries is 53.79%. Models 2, 4 and 5 perform similarly as the BS model,
since the differences between these model’s proportions and the BS proportion are not
significant. Once again models 3 and 6 perform significantly worse than the BS model.

If we classify all put options by moneyness, we find that all models tend to
overvalue market prices for in-the-money puts (K/F> 1) and to undervalue out-of-

the-money puts (K/F< 1).

Finally, we may conclude that the tendency of all models to overvalue out-of-the-
money calls and in-the-money puts and to undervalue in-the-money calls and out-of-
the-money puts is consistent with a ‘sneer’, rather than with a U-shaped volatility
smile (or at least with a quadratic function with the right-hand branch shorter than the



left-hand one). As pointed out in Section 3, it is interesting to observe that these two
functions (the linear function and the asymmetric quadratic function) seem to be the
two characteristic shapes of the implied volatility function in the Spanish market. The
point is that we are not able to capture the true shape of the curve, since our models,
which posit different linear relations between implied volatility and the exercise price
or the bid-ask spread and quadratic relations between implied volatility and the
exercise price, do not seem to improve the performance of the BS model.

On the other hand, as noticed above, the poor performance of models 2 to 6 may
be associated with the considerable variation in the coefficient estimates found from
day to day. Table 8 presents the mean, standard deviation and the coefficient of

Table 8

Summary statistics for parameter estimates.

The table presents the mean, the standard deviation and the coefficient of variation of
parameter estimates from the following models:

Model l:c =by + ¢
Model 4:0 = by + b BA + ¢
Model 6: o = by + b1 K 4+ byK* 4+ b3BA + ¢

where o is volatility, K is the exercise price and BA is the relative bid-ask spread. The coefficient
of variation is defined as the absolute value of the ratio of the standard deviation to the mean of
the variable. This coefficient provides an adimensional measure of the variation. These models
are estimated each day (whenever there are enough observations to run model 6) from 3 January
1994 to 9 October 1998, for call and put options separately. All options transacted over the 45-
minute interval from 16:00 to 16:45 are used in the estimations. There are 755 estimates for call
and 610 for put options.

Call Put

Model 1: 0 =by +¢

bo Mean 0.2118 0.2355
Std. Dev. 0.0689 0.0927
Coef. Var. 0.3253 0.3937

Model 4: 0 =by + b1BA + ¢

by Mean 0.2166 0.2240
Std. Dev. 0.0731 0.0917
Coef. Var. 0.3373 0.4095

by Mean —0.0268 0.0625
Std. Dev. 0.0962 0.1986
Coef. Var. 3.5838 3.1754

Model 6: 0 = by + b1 K+ by K> + b3BA + ¢

by Mean —0.0038 —0.0017
Std. Dev. 0.0828 0.1247
Coef. Var. 21.866 71.1571

by Mean 7.873678 %1077 —4.440654%1078
Std. Dev. 2.303259%107° 4.7883348*10°
Coef. Var. 29.2526 1078.3001

by Mean 0.112253 —0.0735
Std. Dev. 2.5054 3.594858

Coef. Var. 22.3197 48.9171




variation of the parameters computed with three models (1, 4 and 6) across the 755
cross sections for call options (610 for put options). We define the coefficient of
variation as the absolute value of the ratio of the standard deviation to the mean.
This coefficient represents an adimensional measure of variation, which can be used
to compare the degree of variation of different variables. The standard deviations
and the coefficients of variation of parameters from models 4 and 6 are generally
quite large, indicating that these parameters are not stable over time.!' As pointed
out by DFW, if the parameter estimates are highly correlated, the errors affecting
them may cancel out when looking at option prices. The correlations between the
parameter estimates with model 6 are presented in Table 9. These correlations are
generally not very large, except to a certain extent for put options. In any case, in
general, correlations do not seem to be high enough as to cancel out the errors
affecting the parameter estimates.

In summary, we may conclude that, relative to alternative deterministic
option valuation models, the BS model gives the best pricing results. However, it
should be noticed that linear models (2 and 4) present a very similar performance
record relative to the BS model. In particular, it is interesting to observe how in
model 4 the only variable explaining the implied volatility is the relative bid-ask
spread, indicating that liquidity costs may play a certain role in explaining option
prices.

Table 9

Correlations between parameter estimates.
The table presents the correlations between the parameter estimates with model 6:
O':b0+b1K+sz2+b33A +e

where o denotes volatility, K is the exercise price and BA is the relative bid-ask spread. The
model is estimated each day (whenever there are enough observations) from 3 January 1994 to 9
October 1998, for call and put options separately. All options transacted over the 45-minute
interval from 16:00 to 16:45 are used in the estimations. There are 755 estimates for call and 610
for put options.

by by by b3
Panel A: Calls
by 1 —0.0785 —0.0405 —0.1869
by 1 —0.0070 —0.6648
by 1 —0.2248
b3 1
Panel B: Puts
by 1 —0.2057 —0.1470 —0.4150
by 1 —0.8430 —0.3678
by 1 0.5044
b3 1

I As noticed in subsection 5.2 the instability of parameter estimates with models 3 and 6 may be
associated with collinearity problems between K and K.



6. Conclusions

To the best of our knowledge, this is one of the first papers testing an option pricing
model with liquidity costs, as proxied by the relative bid-ask spread. Given the
evidence provided by Longstaff (1995) and PRS, a serious candidate to explain the
pronounced pattern of volatility estimates across exercise prices might be related to
liquidity costs. PRS find that these costs are a key determinant of the volatility smile.
We employ an extensive database of intraday transaction prices for options on the
Spanish IBEX-35 index futures, from 3 January 1994 through 9 October 1998.
Following DFW and PRS we posit six different models for the implied volatility as a
function of exercise price and the relative bid-ask spread.

Our empirical results point out that these models do not improve the performance
of the BS model. However, the role of liquidity costs cannot be completely rejected
since a simple model imposing a linear relation between implied volatility and the
relative bid-ask spread performs in general as well as the Black-Scholes model. We
argue that the poor performance of the deterministic volatility function option
valuation model (either with or without liquidity costs) might be associated with two
factors. First of all, the considerable variation in the coefficient estimates found from
day to day, which would indicate that the volatility function is not stable over time. As
noted above, these findings are consistent with DFW. Secondly, it might be the case
that we are not able to capture the true shape of the volatility smile. More research is
clearly justified.
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