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Abstract

We present two statistical depth functions given in terms of the random variable
defined as the minimum number of observations of a random vector that are needed
to include a fixed given point in their convex hull. This random variable measures the
degree of outlyingness of a point with respect to a probability distribution. We take
advantage of this in order to define the new depth functions. Further, a technique to
compute the probability that a point is included in the convex hull of a given number
of i.i.d. random vectors is presented.

Consider the sequence of random sets whose n-th element is the convex hull of n
independent copies of a random vector. Their sequence of selection expectations is
nested and we derive a depth function from it. The relation of this depth function with
the linear convex stochastic order is investigated and a multivariate extension of the
Gini mean difference is defined in terms of the selection expectation of the convex hull
of two independent copies of a random vector.

Keywords: Convex hull, Depth function, Linear convex stochastic order, Multivariate Gini
mean difference, Random set, Selection expectation, Simplicial depth, Sphere coverage

AMS 2000 subject classifications: 62H05, 60D05

1 Introduction and preliminaries

Depth functions assign a point its degree of centrality with respect to a data cloud or a
probability distribution. In the last years depth functions and depth-trimmed regions (central
regions constituted by all points whose depth is, at least, a fixed given value) have received
a lot of attention from the statistical community. Among others, the works of Liu [11],
Liu et al. [12], Mizera [13] and Zuo and Serfling [26] provide us with particular examples
and desirable properties of depth functions, as well as interesting theoretical frameworks
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and statistical applications. Other authors like Cascos and López-Dı́az [1], Koshevoy and
Mosler [6] or Zuo and Serfling [27] have devoted their attention to the study of families of
central regions.

In accordance with Definition 2.1 in [26], if P is the set of probability distributions on
the Borel sets of Rd, ξ a random vector in Rd and Pξ its probability distribution, a statistical
depth function is defined in the following way.

Definition 1. A statistical depth function is a bounded nonnegative mapping D(·; ·) : Rd ×
P −→ R satisfying

i. D(Ax+b; PAξ+b) = D(x; Pξ) holds for any random vector ξ in Rd, any d×d nonsingular
matrix A, and any b ∈ Rd;

ii. D(θ; P ) = sup
x∈Rd

D(x; P ) holds for any P ∈ P having “center” θ;

iii. D(x; P ) ≤ D(θ + α(x − θ); P ) holds for any P ∈ P having deepest point θ and any
α ∈ [0, 1];

iv. D(x; P ) −→ 0 as ‖x‖ → ∞, for each P ∈ P.
The term center that has been used in ii. denotes a point of symmetry.

Every depth function has its associated family of central regions. The central region of
depth α associated with the depth function D(·; P ) is denoted by Dα(P ) and defined as

Dα(P ) := {x ∈ Rd : D(x; P ) ≥ α}. (1)

For any notion of depth, the point (set of points) of maximal depth can be considered as
a natural candidate for a location estimate and, in the same way, for any fixed α, the central
region Dα(P ) is a set-valued location estimate. Closely related to the notions of multivariate
location estimates, appear notions of multivariate symmetry, see [20, 28]. We will make use
of the angular symmetry.

Definition 2. Let ξ be a d-dimensional random vector and x ∈ Rd, we say that ξ is angularly
symmetric about θ if (ξ − θ)/‖ξ − θ‖ and −(ξ − θ)/‖ξ − θ‖ are identically distributed.

Stochastic orders are partial order relations among probability distributions of random
vectors, see [16]. Given ξ and η two random vectors, they are ordered with respect to:

• the convex order, denoted by ξ ≤cx η, if Ef(ξ) ≤ Ef(η) for every convex function f
such that both expectations exist;

• the increasing convex order, denoted by ξ ≤icx η, if Ef(ξ) ≤ Ef(η) for every increasing
convex function f such that both expectations exist;

• the linear convex order, denoted by ξ ≤lcx η, if 〈ξ, u〉 ≤cx 〈η, u〉 for every u ∈ Rd, where
〈·, ·〉 denotes the scalar product.
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A compact random set in Rd is a measurable mapping from a certain probability space
(Ω,A, Pr) into the family K of compact sets in Rd endowed with the topology generated
by the Hausdorff distance and the corresponding Borel σ-algebra, see Molchanov [14] for a
comprehensive treatment of random sets.

A random vector ξ is a selection of a random set X if ξ ∈ X almost surely. Every
nonempty random compact set X has at least one selection. If at least one selection of X
is integrable, we can define the selection expectation of X, denoted by EX, as the set of the
expectations of all its integrable selections, i.e.

EX := {Eξ : ξ is an integrable selection of X}.
We say that a compact random set is convex if it is almost surely convex. The selection

expectation of a compact convex random set is convex.
The support function of K ⊂ Rd is defined by h(K,u) := sup{〈x, u〉 : x ∈ K} for all

u ∈ Rd. The support function of the selection expectation of a random set on any direction
coincides with the expectation of its support function on that direction, i.e. h(EX, u) =
Eh(X, u) for all u ∈ Rd.

The order statistics of a random variable are denoted in the usual way, given ξ1, . . . , ξn

a random sample of size n, it will be ordered as ξ1:n ≤ ξ2:n ≤ . . . ≤ ξn:n. If x ∈ Rd and
1 ≤ i ≤ d, x(i) stands for the i-th component of x, i.e. x = (x(1), . . . , x(d)). The unit sphere
in Rd centred at x is denoted by Sd−1(x). We write shortly Sd−1 if the sphere is centred at
the origin. By agreement (∞)−1 = 0 and finally, co K stands for the convex hull of set K.

In Section 2 we study depth functions given by the number of observations of a random
vector necessary to contain a point in their convex hull with a certain probability and by the
expected number of observations of a random vector that are needed so that the given point
is contained in their convex hull. A technique to compute the probability that a point belongs
to the convex hull of a fixed number of i.i.d. random vectors is described in Subsection 2.2.
Section 3 is devoted to the study of central regions defined as the selection expectation of the
convex hull of a set of independent copies of a random vector. A stochastic order defined in
terms of the inclusion of such central regions is investigated and a volume statistic of these
central regions is proposed as a multivariate extension of the Gini mean difference. Finally,
some conclusions are briefly discussed in Section 4.

2 Degree-type depth functions

For a point x ∈ Rd and a d-dimensional random vector ξ, we draw independent copies of
the random vector ξ1, ξ2, . . . until x belongs to their convex hull, x ∈ co{ξ1, . . . , ξn}. We are
interested in the number of independent copies that must be drawn.

In Chiu and Molchanov [2] the degree of a typical point of a point process is defined as
the random variable N being the smallest number such that the typical point is contained
in the interior of the convex hull of its nearest N neighbours.

In Liu [11] the simplicial depth is defined as the probability that a point in Rd lies in the
convex hull of the simplex whose vertices are d + 1 independent copies of a random vector
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in Rd,
SD(x; Pξ) := Pr(x ∈ co{ξ1, . . . , ξd+1}).

We define the random variable degree as the minimum number of independent observa-
tions of a random vector that are needed to include a given point in their convex hull.

Definition 3. The random variable degree of a point x with respect to a probability distri-
bution Pξ is defined as

degree(x; Pξ) := min{n ∈ N : x ∈ co{ξ1, . . . , ξn}}.

For certain points, the random variable degree(x; Pξ) might take the value +∞ with
positive probability. Nevertheless, this does not endanger its measurability.

Clearly, for any n ∈ N, the probability that the random variable degree is not greater
than n is equal to the probability that x is contained in the convex hull of n independent
copies of ξ,

Pr
(
degree(x; Pξ) ≤ n

)
= Pr(x ∈ co{ξ1, . . . , ξn}). (2)

The first depth function we propose, the counting depth, is given in terms of a quantile
of the distribution of the random variable degree.

Definition 4. The counting depth, denoted by Dp(·; ·), is the inverse of the number of
independent copies of a random vector that are needed so that a given point belongs to their
convex hull with a certain fixed probability p ∈ (0, 1), i.e. if x ∈ Rd,

Dp(x; Pξ) :=
(

min{n ∈ N : Pr(x ∈ co{ξ1, . . . , ξn}) ≥ p}
)−1

.

Observe that for any random vector ξ in Rd, the following relations between the degree,
the simplicial depth and the counting depth do necessarily hold:

SD(x; Pξ) = Pr
(
degree(x; Pξ) ≤ d + 1

)
; (3)

Dp(x; Pξ) =
(

min{n ∈ N : Pr(degree(x; Pξ) ≤ n) ≥ p}
)−1

. (4)

The second depth function we propose, the expected degree depth, is given in terms of the
expectation of the random variable degree.

Definition 5. The expected degree depth, denoted by ED(·; ·), is defined as the inverse
of the expectation of the degree of a point with respect to a probability distribution, i.e. if
x ∈ Rd,

ED(x; Pξ) :=
(
Edegree(x; Pξ)

)−1

.
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If ξ is an absolutely continuous random variable and Fξ its cumulative distribution func-
tion, then for any x ∈ R the counting depth for any fixed p ∈ (0, 1) and the expected degree
depth can be easily obtained in terms of Fξ(x),

Dp(x; Pξ) =
(

min
{
n ∈ N :

(
Fξ(x)

)n
+

(
1− Fξ(x)

)n ≤ 1− p
})−1

and

ED(x; Pξ) =
Fξ(x)(1− Fξ(x))

1− Fξ(x)(1− Fξ(x))
.

Since degree is a random variable that measures the outlyingness of a point with respect
to a probability distribution, any decreasing transformation of its mean or quantile p will
measure its centrality and would be a sensible candidate for a depth function. We have
chosen the inverse for the sake of simplicity.

2.1 Properties

We will show that the notions of counting and expected degree depth are in fact statistical
depth functions.

Proposition 6. For any A ∈ Rd×d and b ∈ Rd, we have that

Pr
(
degree(Ax + b; PAξ+b) ≤ n

)
≥ Pr

(
degree(x; Pξ) ≤ n

)
∀n ∈ N, (5)

and if A is nonsingular, the equality holds.

Proof. Let A ∈ Rd×d, b, x ∈ Rd and n ∈ N. If x ∈ co{ξ1, . . . , ξn}, then Ax + b ∈ co{Aξ1 +
b, . . . , Aξn + b}, so Pr(x ∈ co{ξ1, . . . , ξn}) ≤ Pr(Ax + b ∈ co{Aξ1 + b, . . . , Aξn + b}) and the
first part of the result holds by equation (2).

If A ∈ Rd×d is nonsingular, x ∈ co{ξ1, . . . , ξn} holds if and only if Ax + b ∈ co{Aξ1 +
b, . . . , Aξn + b} and the second part of the result is now straightforward.

Corollary 7. The counting depth and the expected degree depth are affine invariant. More-
over, an affine transformation simultaneously applied to a random vector and a point does
not decrease the counting and the expected degree depths. That is, given A ∈ Rd×d and
b ∈ Rd, we have that for any p ∈ (0, 1)

Dp(Ax + b; PAξ+b) ≥ Dp(x; Pξ) and ED(Ax + b; PAξ+b) ≥ ED(x; Pξ),

and if A is nonsingular both equalities hold.

In Liu [11], the author shows that the simplicial depth, when considered on an absolutely
continuous and angularly symmetric distribution, is monotonous relative to the point of
angular symmetry. The same property is satisfied by the counting depth and the expected
degree depth. The argument of the proof of the next result follows the same lines as that of
Theorem 3 in [11].
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Proposition 8. If Pξ is absolutely continuous and angularly symmetric about θ, then for
any α ∈ [0, 1] and x ∈ Rd,

Pr
(
degree(θ + α(x− θ); Pξ) ≤ n

)
≥ Pr

(
degree(x; Pξ) ≤ n

)
∀n ∈ N. (6)

Proof. For convenience, we take the origin as the point of angular symmetry, i.e. θ = 0,
which supposes no restriction, since by Proposition 6, the random variable degree is affine
invariant.

We will show that for any α ∈ [0, 1], the relation Pr(x ∈ co{ξ1, . . . , ξn}) ≤ Pr(αx ∈
co{ξ1, . . . , ξn}) holds for any n ∈ N. Since ξ is absolutely continuous, the probability Pξ

of any hyperplane equals 0, and thus when n ≤ d, it holds that Pr(x ∈ co{ξ1, . . . , ξn}) =
Pr(αx ∈ co{ξ1, . . . , ξn}) = 0. Let us take n ≥ d + 1.

We consider the arrow from αx to x and the events that it enters or leaves the random
polytope co{ξ1, . . . , ξn},

Ain := {the arrow from αx to x enters co{ξ1, . . . , ξn}};
Aout := {the arrow from αx to x leaves co{ξ1, . . . , ξn}}.

Since the probability of any hyperplane is 0, then with probability 1, the affine dimension of
co{ξ1, . . . , ξn} equals d and the affine dimension of any subset of d independent copies of ξ
equals d− 1.

Given d points x1, . . . , xd ∈ Rd with affine dimension d−1, we denote by H({x1, . . . , xd})
the closed halfspace whose boundary is the affine hull of those points, aff{x1, . . . , xd}, and
contains the origin of coordinates. If 0 ∈ aff{x1, . . . , xd}, let H({x1, . . . , xd}) be any of the
two closed halfspaces with boundary aff{x1, . . . , xd}. We denote by C the set of d-tuples of
points of Rd whose convex hull intersects the segment co{x, αx}, i.e. C := {(x1, . . . , xd) :
xi ∈ Rd, co{x1, . . . , xd} ∩ co{x, αx} 6= ∅}.

For any subset S of d elements from {1, 2, . . . , n}, we denote by AS
in the event that the

convex hull of d independent copies of the random vector ξ, given by {ξi : i ∈ S}, intersects
with the arrow from αx to x and none of the remaining independent copies of ξ belongs to
H({ξi : i ∈ S}), that is

AS
in :=

{{ξi : i ∈ S} ⊂ C and ξj /∈ H({ξi : i ∈ S}) ∀j /∈ S
}
,

and clearly

Pr(AS
in) =

∫

C

Pr
(
ξ /∈ H({x1, . . . , xd})

)n−d

dPξ(x1) . . . dPξ(xd).

Moreover, we denote by AS
out the event that the convex hull of the d independent copies

of the random vector with index in S, {ξi : i ∈ S}, intersects with the arrow from αx to x
and all of the remaining copies of ξ belong to H({ξi : i ∈ S}), that is

AS
out :=

{{ξi : i ∈ S} ⊂ C and ξj ∈ H({ξi : i ∈ S}) ∀j /∈ S
}
,

6



and clearly

Pr(AS
out) =

∫

C

Pr
(
ξ ∈ H({x1, . . . , xd})

)n−d

dPξ(x1) . . . dPξ(xd).

Now, since
(

n
d

)
is the number of different configurations for a set S ⊂ {1, . . . , n} with d

elements, we have Pr(Aout) =
(

n
d

)
Pr(AS

out) and Pr(Ain) =
(

n
d

)
Pr(AS

in).
If β ∈ {α, 1}, we denote by Bβ the event ‘βx belongs to the convex hull of the n inde-

pendent copies of ξ’, that is, Bβ := {βx ∈ co{ξ1, ξ2, . . . , ξn}}. We finally have that

Pr
(
αx ∈ co{ξ1, . . . , ξn}

)− Pr
(
x ∈ co{ξ1, . . . , ξn}

)

= Pr(Bα \B1)− Pr(B1 \Bα).

The new events are easily obtained from the previous ones,

Bα \B1 = Aout \ Ain, B1 \Bα = Ain \ Aout,

which leads to

Pr
(
αx ∈ co {ξ1 , . . . , ξn}

)− Pr
(
x ∈ co{ξ1, . . . , ξn}

)

= Pr(Aout)− Pr(Aout ∩ Ain)−
(
Pr(Ain)− Pr(Ain ∩ Aout)

)

= Pr(Aout)− Pr(Ain).

By the angular symmetry of ξ about the origin and the fact that the origin belongs to

H({x1, . . . , xn}), it holds that Pr
(
ξ ∈ H({x1, . . . , xd})

) ≥ 1/2, and thus Pr
(
ξ /∈ H({x1, . . . , xd})

)n−d ≤
Pr

(
ξ ∈ H({x1, . . . , xd})

)n−d
, or equivalently Pr(AS

out) ≥ Pr(AS
in). As a consequence we obtain

that Pr(Aout) ≥ Pr(Ain) and finally

Pr
(
αx ∈ co{ξ1, . . . , ξn}

) ≥ Pr
(
x ∈ co{ξ1, . . . , ξn}

)
.

The relation between the random variables degree(Ax + b; PAξ+b) and
degree(x; Pξ) expressed in equation (5), as well as the relation between
degree(θ + α(x − θ); P ) and degree(x; P ) expressed in equation (6) is known in the liter-
ature on stochastic orders as dominance under the usual stochastic order, see [16].

Proposition 8 can be immediately restated in terms of the counting depth and the ex-
pected degree depth.

Corollary 9. If P is absolutely continuous and angularly symmetric about θ, then for any
p ∈ (0, 1), α ∈ [0, 1] and x ∈ Rd, it holds that Dp(x; P ) ≤ Dp(θ+α(x−θ); P ) and ED(x; P ) ≤
ED(θ + α(x− θ); P ).

The absolute continuity assumption in Corollary 9 is necessary, as the following example
shows.
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Example 10. Let ξ be a random variable such that Pr(ξ = −1) = Pr(ξ = 1) = 0.45 and
Pr(ξ = 0) = 0.1. The median of ξ is 0, and therefore ξ is angularly symmetric about 0, but
if 0.1 < p ≤ 0.45, then −1 and 1 are the deepest points with respect to the counting depth.
It is also easy to compute that ED(−1; Pξ) = ED(1; Pξ) = 0.45, which is greater than the
depth of the median, ED(0; Pξ) = 11/29.

Remark 11. If ξ is the same random variable as in Example 10, we easily obtain that
SD(0; Pξ) = 0.595 and SD(1; Pξ) = SD(−1; Pξ) = 0.6975. Since −ξ is distributed as ξ,
in accordance with Theorem 3.3 in [28], the point of maximal simplicial depth should be
the origin. The problem in the argument given by the authors there is that in a previous
result, Theorem 3.1 in [28], they do not take into account the possibility of having several
nonconnected points of maximal simplicial depth.

Proposition 12. For any n ∈ N, it holds that Pr
(
degree(x; Pξ) ≤ n

)
−→ 0 as ‖x‖ → ∞.

Proof. Let n ∈ N, we have that Pr({x ∈ co{ξ1, . . . , ξn}) ≤ nPr(‖ξ‖ ≥ ‖x‖) which clearly
tends to 0 as ‖x‖ → ∞.

Corollary 13. The counting depth and expected degree depth are negligible for points with
arbitrarily large norm, i.e.,

lim
‖x‖→∞

Dp(x; P ) = 0 and lim
‖x‖→∞

ED(x; P ) = 0.

We conclude that both, the counting depth and the expected degree depth, are statis-
tical depth functions. In accordance with Corollary 9, the notion of center that appears in
statement ii. of Definition 1 must be interpreted as point of angular symmetry for absolutely
continuous (angularly symmetric) distributions and the monotonicity given in iii. must also
be considered relative to the point of angular symmetry.

Corollary 14. The counting depth and the expected degree depth are statistical depth func-
tions in the sense of Definition 1.

2.1.1 Further propositionerties

We will obtain some further properties of the depth functions that are defined in terms of
the random variable degree. These properties will be derived from some known results of
geometric probabilities and computational geometry.

Given x, y1, . . . , yn ∈ Rd, with yi 6= x for every i ∈ {1, . . . , n}, the point x belongs to
the polytope co{y1, . . . , yn} if and only if every closed halfspace containing x, contains, at
least, one point from {y1, . . . , yn}. Equivalently, the hemispheres of Sd−1(x) with center at
the projections of yi on Sd−1(x) (i.e. the intersections of the ray with origin at x passing
through yi with the unit sphere centred at x) cover the sphere Sd−1(x). The fact that the
problem of the coverage of the sphere with a given number of hemispheres was equivalent
to the problem of computing the probability that a point lies in the convex hull of a given
number of random vectors was observed, among others, by Jewell and Romano [5].
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In Wendell [24], the author derives an expression for the probability pd,n that n identically
distributed random vectors in Rd which are angularly symmetric about some point and such
that their distribution assigns probability zero to every hyperplane through the point of
angular symmetry all lie on one halfspace with the point of angular symmetry in its boundary,
namely he obtains

pd,n =
1

2n−1

d−1∑
i=0

(
n− 1

i

)
, for n ≥ d. (7)

We define count(d, p) :=
(

min{n ∈ N : 1− pd,n ≥ p}
)−1

.

Proposition 15. If a random vector ξ in Rd is angularly symmetric about θ and its distri-
bution assigns probability zero to every hyperplane through θ, then

i. Pr(degree(θ; Pξ) ≤ n) = 1− pd,n for any n ≥ d;

ii. Dp(θ; Pξ) = count(d, p) for any p ∈ (0, 1);

iii. ED(θ; Pξ) = (2d + 1)−1;

iv. SD(θ; Pξ) = 2−d.

Proof. Formulation i. relates pd,n with the random variable degree. Statements ii. to iv.
follow directly from i.

Observe that statement iv. in Proposition 15 is stronger than Theorem 4 in [11] where
the same conclusion is obtained under absolute continuity assumption on ξ.

The mean number of hemispheres uniformly distributed necessary to cover the sphere is
2d + 1 (statement iii. in Proposition 15) as can be found, for example, in [3] page 69.

Further, in [24] the author obtains the following relation

pd,n = (pd,n−1 + pd−1,n−1)/2.

From this relation and formula (7), we derive equation (8) which involves only probabilities
for a fixed dimension d and together with pd,d = 1 can be useful to compute the counting
depth for any p ∈ (0, 1),

pd,n = pd,n−1 − 1

2n−1

(
n− 2

d− 1

)
, if n ≥ d + 1. (8)

In Wagner and Welzl [22], it is shown that for absolutely continuous random vectors, the
value pd,n is an upper bound for the probability that a point is contained in the convex hull
of n i.i.d. random vectors in Rd. Next we write this result in terms of the random variable
degree and derive immediate consequences for the counting depth, the expected degree depth
and the simplicial depth.

Proposition 16. If ξ is an absolutely continuous random vector in Rd, then for any x ∈ Rd,
it holds that
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i. Pr(degree(x; Pξ) ≤ n) ≤ 1− pd,n for any n ≥ d;

ii. Dp(x; Pξ) ≤ count(d, p) for any p ∈ (0, 1);

iii. ED(x; Pξ) ≤ (2d + 1)−1;

iv. SD(x; Pξ) ≤ 2−d.

We remark that, in order for these bounds to hold, it is enough to assume that the
random vector is absolutely continuous. The bound for the simplicial depth expressed in
statement iv. in Proposition 16 was obtained by Liu [11] assuming also angular symmetry.

2.2 Examples

2.2.1 Degree and convex hull intersection

We will present a technique to compute the probability that a point is contained in the
convex hull of a given number of independent copies of a random vector.

Consider n points in the d-dimensional Euclidean space, x1, . . . , xn ∈ Rd and α1, . . . , αn >
0. Clearly it holds that 0 ∈ co{x1, . . . , xn} if and only if 0 ∈ co{α1x1, . . . , αnxn}.

Further, it holds that 0 ∈ co{(1, x1), . . . , (1, xi), (−1, xi+1), . . . , (−1, xn)} if and only if
co{x1, . . . , xi} ∩ co{xi+1, . . . , xn} 6= ∅. As a consequence, we obtain the following result.

Lemma 17. Let x1, . . . , xn ∈ Rd, α1, . . . , αi < 0 and αi+1, . . . , αn > 0, it holds that 0 ∈
co{(α1, x1), . . . , (αn, xn)} if and only if co{x1/α1, . . . , xi/αi}∩co{xi+1/αi+1, . . . , xn/αn} 6= ∅.

Figure 1: Four points in R2 that do not contain another fixed one, marked by ‘◦’, in their
convex hull.

Figures 1 and 2 explain Lemma 17 graphically in R2 and R3 respectively. In both figures,
the origin is marked by ‘◦’, the points whose first coordinate is negative by ‘+’ and the
points whose first coordinate is positive by ‘×’. The projections of the points in Figure 2
on the hyperplane {(1, x(2), x(3)) : x(2), x(3) ∈ R} are marked by the same symbol that was
used for the corresponding point. In accordance with Lemma 17, the origin belongs to the
convex hull of the other points if an only if the convex hulls of certain projections of them
have nonempty intersection.
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Figure 2: Five points in R3 that contain another fixed one, marked by ‘◦’, in their convex
hull.

Let ξ be a random vector in Rd, we will explain how to find the distribution of degree(x; Pξ)
when Pr(ξ = x) = 0. By the location invariance of the random variable degree, it is enough
to show how to compute its distribution when x = 0.

Let H be any closed halfspace such that the origin belongs to its boundary and the prob-
ability that ξ lies in the boundary of H is zero, Pr(ξ ∈ ∂H) = 0. By the affine invariance of
the random variable degree, it supposes no restriction to consider H = {(x(1), x(2), . . . , x(d)) :
x(1) ≥ 0, x(2), . . . , x(d) ∈ R}. Take a sequence of independent copies of ξ.

For any fixed n ∈ N, we define two events,

An := {0 belongs to the convex hull of the first n random vectors},
Bn

i := {out of the first n random vectors, exactly i lie in H}.
In order for An to hold, there must be, at least, one observation in H and, at least, one out
of H, so Pr(An|Bn

0 ) = Pr(An|Bn
n) = 0 and, by the law of total probability, we have

Pr(An) =
n−1∑
i=1

Pr(An|Bn
i )Pr(Bn

i ).

Clearly Pr(Bn
i ) is the probability of i successes out of n independent tries, with q =

Pr(ξ ∈ H) the probability of a single success,

Pr(Bn
i ) = Pr

(
Binom(n, q) = i

)
=

(
n

i

)
qi(1− q)n−i.

Let ξ1, . . . , ξn be n independent copies of ξ ordered in such a way that ξ
(1)
j > 0 if j ≤ i and

ξ
(1)
j < 0 if j ≥ i + 1, where ξ

(1)
j is the first coordinate of ξj. We remind that Pr(ξ(1) = 0) =

Pr(ξ ∈ ∂H) = 0. If ξ∗i := (ξ
(2)
i , . . . , ξ

(d)
i ) is the projection of ξi on the last d− 1 coordinates,

then by Lemma 17

Pr(An|Bn
i ) = Pr

(
co{ξ∗1/ξ(1)

1 , . . . , ξ∗i /ξ
(1)
i } ∩ co{ξ∗i+1/ξ

(1)
i+1, . . . , ξ

∗
n/ξ(1)

n } 6= ∅
)
. (9)
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Given ξ and η two random vectors in R2, Rogers [18] described a method to compute
the probability that the intersection of the convex hull n independent copies of ξ and m
independent copies of η is nonempty, for any n, m ∈ N. We can use his method to compute
the probability that a given point is contained in the convex hull of n i.i.d. random vectors
in R3.

Example 18. Let ϑ be a random vector in R3 such that its projection on S2(x) is uniformly
distributed (this would be the case, for example, for any spherically symmetric distribution
about x). Let τ be a random variable independent of ϑ satisfying, Pr(τ = −1) = q and
Pr(τ = 1) = 1− q for some q ∈ (0, 1).

If u ∈ R3 \ {0}, let ξ be distributed as τ ϑ sign(〈ϑ, u〉), where sign(x) = x/|x| if x 6= 0
and sign(0) = 0.

In accordance with (9), we have

Pr(An|Bn
i ) = Pr

(
co{η1, . . . , ηi} ∩ co{ηi+1, . . . , ηn} 6= ∅

)
(10)

where the η’s are independent and distributed as ξ∗/ξ1|ξ1>0 or equivalently as ξ∗/ξ1|ξ1<0.
Consequently, their density function is

fη(x, y) =
1

2π
(1 + x2 + y2)−3/2, x, y ∈ R.

Using the techniques described in [18], we can compute

Pr
(
co{η1, η2, η3} ∩ co{η4} 6= ∅

)
= 12−π2

2π2 ,

Pr
(
co{η1, η2} ∩ co{η3, η4} 6= ∅

)
= π2−8

π2

and finally we obtain

SD(x; Pξ) =
2q(1− q)

π2

((
(1− q)2 + q2

)
(12− π2) + 3q(1− q)(π2 − 8)

)
.

2.2.2 Bivariate degree

Jewell and Romano [5] have described a method to compute the probability that a point is
contained in the convex hull of a given number of i.i.d. random vectors in R2. We will solve
this same problem using the above technique.

Let ξ = (ξ(1), ξ(2)) lie in R2 such that Pr(ξ(1) = 0) = 0. Let η be distributed as
ξ(2)/ξ(1)| ξ(1)>0 and ζ be distributed as ξ(2)/ξ(1)| ξ(1)<0, then

Pr(An|Bn
i ) = 1− Pr

(
{ηi:i < ζ1:n−i} ∪ {η1:i > ζn−i:n−i}

)

= 1− Pr(ηi:i < ζ1:n−i)− Pr(ζn−i:n−i < η1:i). (11)
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At the view of formula (11), it is clear that instead of η and ζ, we can take any strictly
monotonic transformation simultaneously applied to both of them. Consider, for example,
the inverse cotangent function defined on [0, π], we would have cot−1η and cot−1ζ. The new
random variables represent the angle from axis Y to the line that passes through the origin
and a given observation with positive (cot−1η) or negative (cot−1ζ) first coordinate measured
in the clockwise direction. In some cases it is more simple to compute the distributions of
these angles than those of η and ζ.

Example 19. Let ϑ be a random vector in R2 angularly symmetric about x and such that the
probability that ϑ lies on any line containing the origin is zero. Let τ be a random variable
independent of ϑ satisfying Pr(τ = −1) = q and Pr(τ = 1) = 1− q for some q ∈ (0, 1).

If u ∈ R2 \ {0}, let ξ be distributed as τ ϑ sign(〈ϑ, u〉).
The random variables η and ζ would be absolutely continuous and identically distributed,

therefore Pr(ηi:i < ζ1:n−i) =
(

n
i

)−1
and we conclude

Pr
(
degree(x; Pξ) ≤ n

)
= 1− qn − (1− q)n − 2

n−1∑
i=1

qi(1− q)n−i, (12)

ED(x; Pξ) =
(
Edegree(x; Pξ)

)−1

=
q(1− q)

1 + q − q2
,

SD(x; Pξ) = q(1− q).

An equivalent expression for probability (12) was obtained in [5].
We can further obtain the simple recursive formula

Pr
(

degree(x; Pξ) ≤ n
)

=
1

2

(
Pr

(
degree(x; Pξ) ≤ n− 1

)
+ 1− qn−1 − (1− q)n−1

)
, if n ≥ 2

which together with the fact that Pr(degree(x; Pξ) ≤ 1) = 0 simplifies the computation of
the counting depth for a given p ∈ (0, 1).

13



3 Expected convex hull

Stated elsewhere explicitly or not, all random vectors considered throughout this section are
supposed to have finite first moment.

For a random vector ξ, consider the sequence of random sets {co{ξ1, . . . , ξn}}n, where
the ξ1, ξ2 . . . are, as usual, independent copies of ξ.

Definition 20. The expected convex hull depth of a point with respect to a random vector
with finite first moment is the minimum number of independent copies of itself that are
needed so that the point belongs to the selection expectation of their convex hull. Let x ∈ Rd,
we define

Dch(x; Pξ) :=
(

min{n ∈ N : x ∈ Eco{ξ1, . . . , ξn}}
)−1

.

The central regions associated with the expected convex hull depth are, as usual, the
level sets of the depth function, see formula (1). Nevertheless, if bαc stands for the integer
part of α, they can be expressed the following way,

Dα
ch(Pξ) = Eco{ξ1, . . . , ξbα−1c} for α ∈ (0, 1].

Let us see that the expected convex hull depth is in fact a statistical depth function.

Theorem 21. The family of central regions induced by the expected convex hull depth satisfies
the following properties

i. D1
ch(Pξ) = {Eξ};

ii. Dα
ch(Pξ) ⊂ Dβ

ch(Pξ) for every β ≤ α;

iii. Dα
ch(PAξ+b) = ADα

ch(Pξ) + b for every A ∈ Rd×d and b ∈ Rd;

iv. Dα
ch(Pξ) is compact and convex.

From the propositionerties of the central regions, we derive the ones of the expected
convex hull depth.

Corollary 22. Let ξ be a random vector in Rd that induces probability Pξ,

i. Dch(Ax + b; PAξ+b) ≥ Dch(x; Pξ) for every A ∈ Rd×d and b ∈ Rd and
if A is nonsingular, equality holds Dch(Ax + b; PAξ+b) = Dch(x; Pξ);

ii. Dch(Eξ; Pξ) = sup
x∈Rd

Dch(x; Pξ);

iii. Dch(x; Pξ) is a quasiconcave function of x, i.e. for all α ∈ [0, 1], x, y ∈ Rd, it holds that
Dch(αx + (1− α)y; Pξ) ≥ min{Dch(x; Pξ), Dch(y; Pξ)};

iv. Dch(x; Pξ) −→ 0 as ‖x‖ → ∞.
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The monotonicity relative to the deepest point (statement iii. in Definition 1) is a direct
consequence of the quasiconcavity on x, that is, for all α ∈ [0, 1] and x ∈ Rd, we have that

Dch(x; Pξ) ≤ Dch

(
Eξ + α(x− Eξ); Pξ

)
.

Corollary 23. The expected convex hull depth is a statistical depth function in the sense of
Definition 1.

Let us show an example of central regions induced by the convex hull depth.

Example 24. Consider the distribution P that assigns probability mass 1/4 to each of the
points (1, 1), (1,−1), (−1, 1) and (−1,−1). We obtain the central regions induced by the
convex hull depth plotted in Figure 3.
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Figure 3: Contour plots of D1
ch(P ), D

1/2
ch (P ) and D

1/3
ch (P ).

3.1 Variability stochastic order based on the expected convex hull

Since the deepest point with respect to the expected convex hull depth is the expectation
of a random vector, we will analyze its relation with another depth function in the same
condition, the zonoid depth, thoroughly studied in [6, 15]. The zonoid depth characterizes
the linear convex order by inclusion relation of its corresponding trimmed regions. Next we
define the convex hull order also in terms of the inclusion relation of the expected convex
hull central regions.

Definition 25. Let ξ, η be two random vectors with finite first moment, we define the convex
hull order by

ξ ≤ch η if Dα
ch(Pξ) ⊂ Dα

ch(Pη) for every α ∈ [0, 1].
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Remark 26. The convex hull order can be characterized in a simpler way by ξ ≤ch η if and
only if Eco{ξ1, . . . , ξn} ⊂ Eco{η1, . . . , ηn} for every n ∈ N.

The convex hull order is a stochastic order in the sense that it satisfies the reflexivity,
transitivity and antisymmetry propositionerties as a relation among probability distributions
of random vectors.

Proposition 27. Given ξ, η two random vectors in Rd,

i. reflexivity, ξ ≤ch ξ;

ii. transitivity, if ξ ≤ch η and η ≤ch ζ, then ξ ≤ch ζ;

iii. antisymmetry, if ξ ≤ch η and η ≤ch ξ, then ξ and η are identically distributed.

Proof. Since the convex hull order is defined by set inclusions and set inclusion is reflexive
and transitive, the first two statements clearly hold. The antisymmetry is satisfied by the
fact that the sequence of selection expectations of the union of independent copies of a
random vector characterizes its distribution, see [21].

3.1.1 Properties of the convex hull stochastic order

Proposition 28. The convex hull order satisfies the following propositionerties,

i. if ξ ≤ch η, then Eξ = Eη;

ii. if Eξ = 0, then ξ ≤ch aξ for every a ≥ 1;

iii. if ξ ≤ch η, then Aξ + b ≤ch Aη + b for every A ∈ Rd×d and b ∈ Rd;

iv. if ξ ≤ch η, then co(supp ξ) ⊂ co(supp η).

Where supp ξ stands for the support of ξ.
The convex hull order for random variables can be characterized in terms of inequalities

of the expectations of the extreme order statistics.

Lemma 29. Given ξ, η two random variables, ξ ≤ch η if and only if Eξn:n ≤ Eηn:n and
Eξ1:n ≥ Eη1:n for every n ∈ N.

We can show that it is a linear stochastic order.

Lemma 30. Given ξ, η two random vectors in Rd

ξ ≤ch η if and only if 〈ξ, u〉 ≤ch 〈η, u〉, for all u ∈ Rd.
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Proof. By definition ξ ≤ch η if and only if for every n ∈ N it holds that Eco{ξ1, . . . , ξn} ⊂
Eco{η1, . . . , ηn} which, by the relation of the selection expectation and the support function,
is equivalent to

Emax{〈ξ1, u〉, . . . , 〈ξn, u〉} ≤ Emax{〈η1, u〉, . . . , 〈ηn, u〉}

for every n ∈ N and u ∈ Rd. If together with each u ∈ Rd we consider its opposite, −u, the
relation among maximal values turns into a relation among minimal values and we easily
obtain the equivalence with 〈ξ, u〉 ≤ch 〈η, u〉 for all u ∈ Rd.

In Hoeffding [4], it is shown that the sequence of the expected maxima
{Eξn:n}n∈N characterizes the distribution of the random variable ξ.

Given two random variables ξ, η, conditions Eξ = Eη and Eξn:n ≤ Eηn:n are not sufficient
to guarantee ξ ≤ch η.

Example 31. Let ζ be exponentially distributed with mean 1. Let further ξ = 1 − ζ and
η = ζ − 1. It is easy to check that

Eξn:n = 1− Eζ1:n = 1− 1

n
; Eξ1:n = 1− Eζn:n = −∑n

i=2
1
i
,

Eηn:n = Eζn:n − 1 =
n∑

i=2

1

i
; Eη1:n = Eζn:n − 1 = 1

n
− 1.

Then clearly Eξ = Eη = 0 and Eξn:n ≤ Eηn:n for every n ∈ N, but Eξ1:3 = −5/6 < −2/3 =
Eη1:3 and it is false that ξ ≤ch η (neither does η ≤ch ξ hold).

The convex hull order is a variability stochastic order among random vectors strictly
weaker than the linear convex order.

Lemma 32. Let ξ1, . . . , ξn and η1, . . . , ηn be two sets of independent random variables and
f : Rn −→ R increasing convex, then if ξi ≤icx ηi, for all 1 ≤ i ≤ n, it follows that
f(ξ1, . . . , ξn) ≤icx f(η1, . . . , ηn).

Proof. Let ξi, ηi and f be as above. Further, let g : R −→ R be increasing and convex, then
g ◦ f : Rn −→ R is clearly increasing and convex.

Since for every 1 ≤ i ≤ n it holds that ξi ≤icx ηi and each of {ξ1, . . . , ξn} and {η1, . . . , ηn}
are composed by independent random variables, then by Theorem 3.4.4 in [16] (ξ1, . . . , ξn) ≤icx

(η1, . . . , ηn) and E(g ◦ f)(ξ1, . . . ξn) ≤ E(g ◦ f)(η1, . . . ηn). We conclude f(ξ1, . . . , ξn) ≤icx

f(η1, . . . , ηn).

Theorem 33. If two random variables ξ, η satisfy ξ ≤icx η, then Eξn:n ≤ Eηn:n for every
n ∈ N.

Proof. Let ξ1, . . . , ξn and η1, . . . , ηn be independent copies of ξ and η respectively. Since max :
Rn −→ R is increasing and convex, by Lemma 32 max{ξ1, . . . , ξn} ≤icx max{η1, . . . , ηn} and
finally Eξn:n ≤ Eηn:n for every n ∈ N.
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Remark 34. The order relation defined by Eξn:n ≤ Eηn:n for all n ∈ N has already been
considered by Wang and Young [23] under the name of dual stochastic dominance of infinite
order and Theorem 33 can be derived from Corollary 4.7 in [23]. Nevertheless, for the sake
of simplicity, since the above proof is quite straightforward, we have decided to include it
here, instead of formally introducing the dual stochastic dominance.

Theorem 35. If two random variables ξ, η satisfy ξ ≤cx η, then ξ ≤ch η.

Proof. Let ξ ≤cx η, then ξ ≤icx η and −ξ ≤icx −η. By Theorem 33, we have Eξn:n ≤ Eηn:n

and E(−ξ)n:n ≤ E(−η)n:n or equivalently Eξ1:n ≥ Eη1:n for every n ∈ N which leads to
ξ ≤ch η.

We finally obtain the desired result.

Theorem 36. If two random vectors ξ, η satisfy ξ ≤lcx η, then ξ ≤ch η.

Proof. Let ξ ≤lcx η, then 〈ξ, u〉 ≤cx 〈η, u〉 for every u ∈ Rd and, by Theorem 35, we have
〈ξ, u〉 ≤ch 〈η, u〉 for every u ∈ Rd, which by Lemma 30 leads to ξ ≤ch η.

To end this section, we show an example of two random variables ordered with respect
to the convex hull order, but not with respect to the convex order.

Example 37. Let ξ be a discrete random variable such that Pr(ξ = −2/3) = Pr(ξ = 2/3) =
1/2 and η uniformly distributed in (−1, 1).

It can be easily shown that Eξn:n = (2n−1 − 1)/(3 × 2n−2) and Eηn:n = (n − 1)/(n + 1).
Thus, for all n ∈ N it holds that Eξn:n ≤ Eηn:n and since ξ and η are symmetric with respect
to 0 this is sufficient to prove that ξ ≤ch η.

If we consider the convex function f(x) = x+, clearly Ef(ξ) = 1/3 > 1/4 = Ef(η) and
then ξ ≤cx η does not hold.

3.2 Multivariate Gini mean difference

Families of central regions provide us with set-valued location estimates. Nevertheless, these
families grow at different rates depending on the scatter of the probability distribution that
we study. We propose two scatter estimates based on the expected convex hull central
regions. These scatter estimates generalize the Gini mean difference and the Gini index to
the multivariate setting. In Koshevoy and Mosler [7], Koshevoy et al. [9, 10], Oja [17] or
Wilks [25], the authors also propose multivariate extensions of the Gini mean difference, the
Gini index and other scatter estimates.

Let ξ be a random variable and ξ1, ξ2 be two independent copies of ξ. We will define the
Gini mean difference and the Gini index of ξ.

Definition 38. The Gini mean difference of ξ is defined as

M1(ξ) :=
1

2
E|ξ1 − ξ2|,
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and if Eξ 6= 0, its Gini index is given by

G1(ξ) :=
M1(ξ)

|Eξ| .

If vold stands for the d-dimensional volume (the Lebesgue measure on Rd), we have the
following relation for the volume of the expected convex hull central region of level 1/2 of a
random variable,

E|ξ1 − ξ2| = Eξ2:2 − Eξ1:2 = vol1Eco{ξ1, ξ2} = vol1D
1/2
ch (Pξ).

As a consequence, given a random vector ξ in Rd, the value

Md(ξ) :=
1

2
voldD

1/2
ch (Pξ) (13)

would be a natural candidate for a multivariate Gini mean difference. In the same fashion,
if all of the components of Eξ are nonzero, the Gini mean difference of the random vector
(ξ(1)/|Eξ(1)|, . . . , ξ(d)/|Eξ(d)|),

Gd(ξ) := Md

(
(ξ(1)/|Eξ(1)|, . . . , ξ(d)/|Eξ(d)|)

)
(14)

is a natural candidate for a multivariate Gini index.
The expected convex hull central region of level 1/2 can be decomposed in terms of the

expectation of the random vector and a convex body that is centrally symmetric about the
origin,

D
1/2
ch (Pξ) = Eco{ξ1, ξ2} = Eξ1 + Eco{0, ξ2 − ξ1} (15)

= {Eξ + x : x ∈ Eco{0, ξ2 − ξ1}}.

The information about location contained in D
1/2
ch (Pξ) is provided by Eξ and the information

about scatter by Eco{0, ξ2 − ξ1}.
From (15), the multivariate Gini mean difference and the multivariate Gini index defined

in (13) and (14) can now be written as

Md(ξ) = voldEco{0, ξ2 − ξ1} and Gd(ξ) =
Md(ξ)∏d
i=1 |Eξ(i)| .

The set Eco{0, ξ2 − ξ1} is a zonoid. Zonoids are a family of centrally symmetric convex
bodies extensively studied in Convex Geometry, see for example Chapter 3 in Schneider [19].
They have been recently introduced in Statistics by the lift zonoid theory of Koshevoy and
Mosler, see [6, 7, 8, 15]. In accordance with [8, 15], the set Eco{0, ξ2 − ξ1} is the zonoid
of the distribution of ξ2 − ξ1 (a symmetrization of the random vector ξ). Formulas for the
volumes of zonoids of empirical and general probabilities are derived in Proposition 2.9 and
Theorem 2.10 in [15].
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4 Conclusions

The aim of this paper is twofold, in the first place we wanted to study some generalizations of
the simplicial depth and develop techniques to compute them for population distributions.
As it has been explained in Section 2.1.1, this is equivalent to study the coverage of the
sphere with random hemispheres, an attractive problem that has received previous attention
from the statistical community. The empirical behaviour of the new notions of depth given
in Section 2 has not been considered in this paper and is left for future research.

In the second place, we wanted to obtain new relations between depth functions and
stochastic orders. Previous work of other authors (like Koshevoy and Mosler, see [6, 7, 8, 15]
for the lift zonoid theory, or Zuo and Serfling [29]) aim in this direction. In the last section
of the paper, we build scatter estimates based on the new central regions that generalize
the Gini mean difference and the Gini index to the multivariate setting. The study of the
statistical propositionerties and empirical behaviour of these indices is also left for future
research.
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