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Abstract

The first version of MPI (Message Passing Interface) was released in 1994. At that
time, scientific applications for HPC (High Performance Computing) were charac-
terized by a static execution environment. These applications usually had regular
computation and communication patterns, operated on dense data structures ac-
cessed with good data locality, and ran on homogeneous computing platforms. For
these reasons, MPI has become the de facto standard for developing scientific parallel
applications for HPC during the last decades.

In recent years scientific applications have evolved in order to cope with several
challenges posed by different fields of engineering, economics and medicine among
others. These challenges include large amounts of data stored in irregular and sparse
data structures with poor data locality to be processed in parallel (big data), algo-
rithms with irregular computation and communication patterns, and heterogeneous
computing platforms (grid, cloud and heterogeneous cluster).

On the other hand, over the last years MPI has introduced relevant improve-
ments and new features in order to meet the requirements of dynamic execution
environments. Some of them include asynchronous non-blocking communications,
collective I/O routines and the dynamic process management interface introduced in
MPI 2.0. The dynamic process management interface allows the application to spawn
new processes at runtime and enable communication with them. However, this fea-
ture has some technical limitations that make the implementation of malleable MPI
applications still a challenge.

This thesis proposes FLEX-MPI, a runtime system that extends the functionali-
ties of the MPI standard library and features optimization techniques for adaptability
of MPI applications to dynamic execution environments. These techniques can sig-
nificantly improve the performance and scalability of scientific applications and the
overall efficiency of the HPC system on which they run. Specifically, FLEX-MPI
focuses on dynamic load balancing and performance-aware malleability for parallel
applications. The main goal of the design and implementation of the adaptability
techniques is to efficiently execute MPI applications on a wide range of HPC plat-
forms ranging from small to large-scale systems.

Dynamic load balancing allows FLEX-MPI to adapt the workload assignments
at runtime to the performance of the computing elements that execute the par-
allel application. On the other hand, performance-aware malleability leverages the
dynamic process management interface of MPI to change the number of processes
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of the application at runtime. This feature allows to improve the performance of
applications that exhibit irregular computation patterns and execute in computing
systems with dynamic availability of resources. One of the main features of these
techniques is that they do not require user intervention nor prior knowledge of the
underlying hardware.

We have validated and evaluated the performance of the adaptability techniques
with three parallel MPI benchmarks and different execution environments with ho-
mogeneous and heterogeneous cluster configurations. The results show that FLEX-
MPI significantly improves the performance of applications when running with the
support of dynamic load balancing and malleability, along with a substantial en-
hancement of their scalability and an improvement of the overall system efficiency.



Resumen

La primera version de MPI (Message Passing Interface) fue publicada en 1994, cuando
la base comun de las aplicaciones cientificas para HPC (High Performance Com-
puting) se caracterizaba por un entorno de ejecucion estatico. Dichas aplicaciones
presentaban generalmente patrones regulares de computo y comunicaciones, accesos
a estructuras de datos densas con alta localidad, y ejecucion sobre plataformas de
computaciéon homogéneas. Esto ha hecho que MPI haya sido la alternativa més ade-
cuada para la implementacion de aplicaciones cientificas para HPC durante més de
20 anos.

Sin embargo, en los dltimos anos las aplicaciones cientificas han evolucionado
para adaptarse a diferentes retos propuestos por diferentes campos de la ingenieria,
la economia o la medicina entre otros. Estos nuevos retos destacan por caracteristicas
como grandes cantidades de datos almacenados en estructuras de datos irregulares
con baja localidad para el analisis en paralelo (big data), algoritmos con patrones
irregulares de computo y comunicaciones, e infraestructuras de computacion hete-
rogéneas (cluster heterogéneos, grid y cloud).

Por otra parte, MPI ha evolucionado significativamente en cada una de sus
sucesivas versiones, siendo algunas de las mejoras més destacables presentadas hasta
la reciente version 3.0 las operaciones de comuniacién asincronas no bloqueantes,
rutinas de E/S colectiva, y la interfaz de procesos dinamicos presentada en MPI 2.0.
Esta tltima proporciona un procedimiento para la creacién de procesos en tiempo de
ejecucion de la aplicacion. Sin embargo, la implementacion de la interfaz de procesos
dindmicos por parte de las diferentes distribuciones de MPI atn presenta numerosas
limitaciones que condicionan el desarrollo de aplicaciones maleables en MPI.

Esta tesis propone FLEX-MPI, un sistema que extiende las funcionalidades de
la libreria MPI y proporciona técnicas de optimizacién para la adaptacién de aplica-
ciones MPT a entornos de ejecucion dindmicos. Las técnicas integradas en FLEX-MPI
permiten mejorar el rendimiento y escalabilidad de las aplicaciones cientificas y la
eficiencia de las plataformas sobre las que se ejecutan. Entre estas técnicas destacan
el balanceo de carga dinamico y maleabilidad para aplicaciones MPI. El diseno e
implementacion de estas técnicas esta dirigido a plataformas de computo HPC de
pequenia a gran escala.

El balanceo de carga dinamico permite a las aplicaciones adaptar de forma efi-
ciente su carga de trabajo a las caracteristicas y rendimiento de los elementos de
procesamiento sobre los que se ejecutan. Por otro lado, la técnica de maleabilidad
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aprovecha la interfaz de procesos dindmicos de MPI para modificar el niimero de pro-
cesos de la aplicacion en tiempo de ejecucion, una funcionalidad que permite mejo-
rar el rendimiento de aplicaciones con patrones irregulares o que se ejecutan sobre
plataformas de computo con disponibilidad dindmica de recursos. Una de las princi-
pales caracteristicas de estas técnicas es que no requiren intervenciéon del usuario ni
conocimiento previo de la arquitectura sobre la que se ejecuta la aplicacion.

Hemos llevado a cabo un proceso de validaciéon y evaluaciéon de rendimiento
de las técnicas de adaptabilidad con tres diferentes aplicaciones basadas en MPI,
bajo diferentes escenarios de computacién homogéneos y heterogéneos. Los resul-
tados demuestran que FLEX-MPI permite obtener un significativo incremento del
rendimiento de las aplicaciones, unido a una mejora sustancial de la escalabilidad y
un aumento de la eficiencia global del sistema.
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Chapter 1

Introduction

This chapter presents the four-step process followed to identify the motivation, scope,
and the main goal of this work. It then presents the concrete objectives and the
advantages of the approach this thesis is proposing. This chapter concludes with the
roadmap of this document.

1.1 Motivation

MPT (Message Passing Interface) [Mes94| is arguably the industry standard for devel-
oping message passing programs on distributed memory systems. MPI is the specifi-
cation of a library of functions for interfaces of message-passing routines that include
point-to-point and collective communication, as well as synchronization and parallel
I/0 operations. MPI has become the standard tool for scientific parallel applications
running on HPC systems.

MPI was initially designed to run parallel applications on homogeneous, ded-
icated, static environments such as computing clusters. The execution of an appli-
cation based on the typical MPI execution model uses a fixed number of processes
during the entire execution of the parallel program. However, selecting the most
appropriate number of processes for the application may become a challenge. This
number depends on the architecture and the program implementation. The most
common approaches here are either using a number of processes proportional to the
number of processors available or using a number of processes proportional to the
degree of parallelism in the application.

The challenge becomes even more complicated when the MPI program executes
on a dynamic execution environment, such as one or a combination of the following;:

e Heterogeneous (performance-wise) architectures.
e Non-dedicated systems.

e Parallel programs with irregular computation and communication patterns.
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Current high-performance computing systems are optimized for applications
that operate on dense data structures and regular computation and communica-
tion patterns. Dynamic execution environments introduce an additional degree of
complexity to the design and implementation of MPI programs and require opti-
mized approaches. Furthermore, the performance of these environments cannot be
predicted prior to execution. Dynamic approaches are required in order to change
the size of the program, its workload distribution, and the resources allocation at
runtime. These approaches have to be independent of the architecture such that the
MPI program can execute efficiently in a wide range of environments.

This thesis starts from the premise that the static execution model of MPI ap-
plications is not the best approach for dynamic execution environments and leads
to suboptimal performance, efficiency, and system throughput. The challenge is to
propose a dynamic execution model that addresses these issues through optimization
techniques that allow the MPI application to adapt to the execution environment
(resources available, their performance parameters, as well as the application perfor-
mance) within user-defined performance requirements.

Adaptability is a feature that enables the application to adjust its workload and
granularity to the specific characteristics and availability of the execution environ-
ment at runtime. This allows the programmer to focus on the algorithm implemen-
tation rather than the inherent platform constraints. The aim of adaptability is to
enable a program implementation to execute efficiently regardless of the underlying
hardware.

First step: Decide on the target applications: MPI parallel applications which
may exhibit regular and irregular computation and communication patterns.

1.2 Setting the context

Most MPI applications executing on high-performance computing clusters are imple-
mented on top of distributed memory systems. Data-driven applications where there
is a large synchronization component—such as event-driven simulations—are also
better suited to distributed, rather than shared, memory systems. It is in any case dif-
ficult to assume a shared memory system—even if distributed in its implementation—
if an application wants to take advantage of all the resources available (which may be
heterogeneous), whether they are part of a cluster or a cloud configuration. Finally,
although using distributed memory does not hide the mechanism of communication,
the developer does not have to deal with data protection mechanisms such as locks,
which may be tricky and can easily lead to performance penalties.

Second step: Decide on the system requirements: distributed memory systems
involving heterogeneous and non-dedicated resources.
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1.3 Setting the goal

The problem this thesis is focused to solve is to make MPI applications adaptable
when running on HPC architectures. This work focuses on two approaches to improve
adaptability: dynamic load balancing and malleability. The proposed system—called
FLEX-MPI—includes malleability of three different kinds: Strict malleability policy
(SMP), High performance malleability policy (HPMP), and Adaptive malleability
policy (AMP). This stands in contrast to the static execution model of standard
MPI applications where the application executes on a fixed number of processes.
FLEX-MPI monitors the performance metrics of the application, as well as the re-
sources allocated to the program to decide if the application performance satisfies
the requirements—or if it needs to be reconfigured.

Dynamic load balancing refers to the practice of adapting workload assignments
at runtime to the performance of the computing elements that execute the paral-
lel application. Traditionally, load balancing is achieved by distributing immutable
work assignments to the processes at the program start. This requires prior knowl-
edge of the execution platform and the program workload to be uniform during
execution. However, in practice this is often unfeasible because the user does not
have access to the characteristics of the system and certain classes of problems have
unpredictable workloads. Besides that, the challenge when designing dynamic load
balancing algorithms is how to capture the application performance at runtime and
how to efficiently redistribute the workload between processes.

The challenge when designing dynamic reconfiguration techniques for providing
malleability to MPI applications is not simply to modify the number of processes that
the application is running on according to the availability of resources, but to make
these decisions based on performance criteria. Reconfiguring actions should only
be triggered if process addition of removal may benefit the application performance.
For certain classes of problems, increasing the number of processors beyond a certain
point does not always result in an improvement in terms of execution time. This is due
to larger communication and synchronization overheads, in addition to the overhead
incurred by the reconfiguring operations. The support framework must decide how
many processors to run on before triggering a reconfiguring action. This number
depends on the set of available processors in the system, the reconfiguring overhead,
and the application performance when running on the new processor configuration.
Reconfiguring actions involve changing the data distribution of the application (which
may lead to load imbalance) and modifying its communication patterns. These lead
to changes in the application performance. In addition, this optimization process
is considerably more complex when running on architectures with heterogeneous
(performance-wise) compute nodes equipped with different types of processors.

Third step: Define the main goal: an adaptable execution model for MPI ap-
plications.

Before starting to explain the how and how much of the techniques we im-
plement to offer malleability, we must first define what. What are the performance
requirements that the FLEX-MPI implementation must optimize for; that is, how
should an optimized application behave like? What should it improve on? The reply
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is in the eye of the beholder—the target user, in this case. We may crave speed,
optimized resources, energy reduction, or lower costs. These are in general at odds
with each other, but generally applications put a lot more focus on one criteria than
the rest, or they may do so depending on the context. We need to be able to define
what our expectations are to optimize the chances of success.

To perform an effective reconfiguration, FLEX-MPI takes into account the user-
given performance constraint, which can be either the parallel efficiency or the oper-
ational cost of executing the program. The efficiency constraint results in minimizing
the number of dynamically spawned processes to maximize parallel efficiency. The
cost constraint focuses on minimizing the operational cost by mapping the newly
created dynamic processes to those processors with the smallest cost (expressed in
economic expense per CPU time unit) while satisfying the performance constraint.
FLEX-MPI implements a computational prediction model to decide the number of
processes and the process-to-processor mapping that can achieve the required per-
formance objective under a performance constraint.

Fourth step: Define the context for adaptability: application’s runtime perfor-
mance, resources availability and performance, and user-given performance criteria.

1.4 Objectives

The major goal of this thesis is to propose a set of optimization techniques
for adaptability in MPI applications. To be more specific, this work proposes
the following approaches:

e Dynamic load balancing. One of the objectives of this thesis is the design
and implementation of a dynamic load balancing algorithm for parallel ap-
plications which may exhibit regular or irregular execution patterns, running
either on homogeneous or heterogeneous (performance-wise) platforms which
can be dedicated or non-dedicated. This adaptability technique is aimed to
redistribute the application workload by using performance metrics collected
at runtime in order to improve the overall performance of the program.

e Computational prediction model. This thesis targets the design and im-
plementation of a computational prediction model that will guide FLEX-MPI
during the reconfiguration process by computing the performance of the ap-
plication prior to reconfiguring actions. The computational prediction model
must take into account the current application performance, as well as the
performance of the currently allocated and available resources.

e Performance-aware dynamic reconfiguration. The main approach for
adaptability pursued by this thesis is the design and implementation of high-
level performance-aware malleability policies. Rather than use the resource
availability as the unique criteria to trigger reconfiguring actions, these poli-
cies target to adapt the number of processes and type of processors of the
application to the current application performance, resources availability, and
a set of user-given performance objective and constraints.
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e Novel system architecture that supports adaptability in MPI appli-
cations. This thesis targets the design and implementation of system archi-
tecture that encapsulates the adaptability techniques which main design goals
are scalability and portability. This work proposes an architectural indepen-
dent dynamic execution model for MPI programs that allows them to take
advantage of the optimization techniques for adaptability.

1.5 Advantages of the approach

The main advantages of our approach when applied to MPI applications are as
follows:

e Dynamically adapt applications to take advantage of the available resources at
the time.

e Optimize applications based on the criteria defined by the user rather than
assuming a unique optimization metric.

e Automatically adapt applications without user intervention and with no prior
knowledge about the underlying architecture.

The work presented in this thesis brings to MPI applications high-level func-
tionalities to cope with the breakthrough of dynamic execution environments and
allow systems to improve their overall performance and throughput.

1.6 Structure and contents
This remainder of this document is structured as follows:

e Chapter 2 - State of the art overviews the current works related with the scope
and topics of this thesis. First, we overview the different types of high perfor-
mance computing architectures: cluster, grid and cloud. Second, we describe the
different types of parallel programming models both for shared and distributed
memory systems. Then we present several works related with the optimization
techniques proposed by this thesis: load balancing and dynamic reconfigura-
tion. Finally, we conclude with the summary and conclusions obtained through
the review of related works.

e Chapter 3 - FLEX-MPI: Adaptability techniques for MPI applications
overviews the design and implementation of FLEX-MPI architecture. Addi-
tionally, this chapter introduces the programming and execution models of
FLEX-MPI applications.

e Chapter 4 - Dynamic process and data management in MPI applications de-
scribes the design and implementation of the low-level functionalities of FLEX-
MPI: performance monitoring and communication profiling, dynamic process
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creation and termination, process scheduling, management of MPI communi-
cations, and data redistribution.

Chapter 5 - Performance-aware malleability and dynamic load balancing in
MPI introduces the high-level functionalities of FLEX-MPI for adaptability
in MPI applications: dynamic load balancing and performance-aware dynamic
reconfiguration policies. Additionally, this chapter presents the computational
prediction model.

Chapter 6 - Experimental results presents the results of the performance eval-
uation of MPI applications running FLEX-MPI for adaptability on different
cluster configurations.

Chapter 7 - Conclusions discusses the contributions of this thesis, publications,
and describes future works.

We conclude with the bibliography used to elaborate this dissertation.



Chapter 2

State of the art

2.1 Introduction

This chapter presents a review of the state of the art related to this thesis. The
chapter is organized in five sections: high performance computing, classification of
parallel computer architectures, parallel programming models, load balancing in par-
allel applications, and dynamic MPI parallel applications.

2.2 High performance computing

During the last decades the computer industry have experienced a dramatic tran-
sition from sequential to parallel processing. Almasi and Gottlieb [AG89| defined a
parallel computer as a “collection of processing elements that communicate and coop-
erate to solve large problems fast”. The idea behind it is to split up a large problem
into smaller tasks which are then solved concurrently by several processing elements.

Parallel computing systems can be classified depending on their memory model
and how processors communicate with each other into shared memory systems and
distributed memory systems. Figure 2.1 illustrates the typical architecture of a shared
memory system and a distributed memory system, where P stands for a CPU and
M stands for a memory module. The shared memory model offers a single address
space used by all processors, which means that each memory location is given a
unique address within a single range of addresses. The main advantage of the shared
memory systems is the high speed for sharing data between processes, while the
lack of scalability to a large number of compute nodes and their complexity are
their major drawbacks. On the other hand, distributed memory systems represent
a more cost-effective solution which consists of commodity stand-alone computers
(so-called compute nodes) interconnected by a high speed network. In distributed
memory systems each processor manages its own local address space, therefore each
processor has its own private data. Nowadays, multi-core processors are present on
each commodity computer, which makes each compute node a parallel computer
itself.
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Figure 2.1: Shared memory and distributed memory system architectures.

High performance computing refers to the use of parallel processing for solv-
ing data-intensive and compute-intensive applications. Parallel computing enables
to solve very large data-intensive applications which data set are large enough that
cannot be solved by a single computer. It also enables to save time by minimizing the
completion time of an application. Compute-intensive applications can benefit from
the computing power of multiple processors to execute faster. Nowadays, high per-
formance computing platforms are used to cover a wide range of parallel applications
from science to industry areas such as physics simulations (e.g. weather forecasting,
fluids mechanics, seismology, etc.), military simulations, data mining, or rendering
of medical images.

Supercomputer performance is commonly measured using as metric the num-
ber of floating-point operations per second (F'LOPS). Since 1993 the TOP500 list
[MSDS12| ranks the most powerful supercomputers in the world. The computational
power of the supercomputers ranked in the TOP500 list is measured using the HPL
(which stands for High-Performance Linpack) benchmark, a portable implementation
of the Linpack benchmark suite [DLP03|. The benchmark consists of a set of Fortran
subroutines for solving a dense linear system of equations for different problem sizes
in double precision arithmetic. The list is published twice a year and has evolved
from a simple ranking system to a primary source of information to analyze current
and future trends in supercomputer industry.

According to the data collected in the TOP500, distributed systems have become
the most popular approach for high performance computing. The most representative
distributed computing architectures are cluster, grid and cloud platforms. The last
issue of the TOP500 list, published in November 2014, shows that up to 85.8% of
the most powerful supercomputers in the world are clusters, while the remaining
14.2% of the share are systems based on the MPP (Massively Parallel Processing)
architecture.

Cluster and grid systems are different approaches of the same paradigm. At a
glance, cluster and grid architectures can be defined as distributed systems which
aim to solve large computational problems, but there are both conceptual and tech-
nical differences between them. Cluster architectures generally refers to a set of
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tightly coupled systems with centralized job management and scheduling policies,
interconnected through a high speed network [BT99|. In most cases, cluster archi-
tectures consist of homogeneous computer resources operating as a single computer
located in the same physical location. On the other hand, grid architectures are
fully decentralized systems, with distributed job management and scheduling poli-
cies, interconnected through relatively slow networks, and in most cases consisting of
heterogeneous computer resources (both different hardware and operating system)
located in different physical locations which can operate independently [Fos02].

Cloud is a new computing paradigm for on-demand distributed computing
emerged in the very last years that uses a pay-as-you-go model. Cloud computing
offers a set of computing services (infrastructure, platform, and software services)
usually supported by virtualization technologies [FZRLO08|. In the back-end, cloud
architectures are traditional interconnected clusters.

2.2.1 Cluster computing

Cluster computing normally refers to tightly coupled systems interconnected through
a high speed network, which allow to efficiently exploit locality minimizing the la-
tency in communication operations. Buyya|BT99| defined a cluster as a “type of par-
allel or distributed processing system, which consists of a collection of interconnected
stand-alone computers working together as a single, integrated computing resource”.
Each compute node of a cluster is a COTS (Commercial Off-The-Shelf) computer
itself, with its own processor—which may be a single processor or a multiprocessor,
memory, /O facilities, and operating system.

Cluster architectures can be found in many research centers and companies due
to their good cost to performance ratio. Figure 2.2 shows the typical architecture
of a cluster as it was defined by Buyya [BT99]. The main components of a cluster
are a set of multiple, independent computers, high performance networks, and the
middleware. Middleware is the piece of software which provides a single access point
to the system creating the illusion of a single system image (SSI), an abstraction of
the entire distributed system [TVRS85].

Cluster architectures offer the following advantages:

o Cost-effectiveness: clusters made of COTS components permits to obtain high
computational power at a relatively low cost. That makes high performance
clusters a cheaper replacement for the more complex and expensive traditional
supercomputers.

e High Performance: cluster systems allow to efficiently exploit parallelism and
achieve high performance computing for data-intensive or compute-intensive
applications maximizing the throughput.

e Expandability and scalability: cluster computing can scale to very large sys-
tems with hundreds or even thousands of interconnected machines working in
parallel.
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Figure 2.2: Traditional cluster computing architecture.

e High Availability: when a compute node fails its remaining tasks can be com-
puted by other node, ensuring that there is no interruption in service. Moreover,
replacing a faulty node is much faster and trivial when compared to replacing
a faulty component in an Symmetric Multi-Processing system.

Clusters can be classified [BT99] into different categories based on the following
factors:

e Application target: computational science or mission-critical applications.

— High Performance Clusters (HP clusters) are designed to exploit paral-
lel processing and perform computational-intensive operations. The aim
of HP clusters is to offer a very high computational power in order to
accomplish tasks in the shortest time maximizing the performance.

— High Availability Clusters (HA clusters) are designed to offer reliability
and constant access to both computational resources and service appli-
cations, with an aim for integrating performance and availability into a
single system.

— High Throughput Clusters (HT clusters) are designed to run sequential
jobs over long periods of time. In opposite of HP clusters, which need
large amounts of computational resources to perform parallel jobs in short
periods of time, HT clusters also require large amounts of resources for ex-
ecuting sequential jobs over long periods of time (months or years, rather
than hours or days).

— Load Balancing Clusters (LB clusters) are designed to share computa-
tional workload in order to achieve an optimal resource utilization avoid-
ing system overload.

10
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e Node ownership: cluster owned by an individual or dedicated as a cluster
node.

— Dedicated Clusters: computing resources are shared so that parallel com-
puting can be performed across the entire cluster. Compute nodes are not
viewed or used as individual workstations.

— Non-dedicated Clusters: compute nodes are individual workstations and
both parallel and user applications run simultaneously in the system.

e Node hardware: PC, Workstation, or SMP.

— Clusters of PCs (CoPs)
— Clusters of Workstations (COWs)
— Clusters of SMPs (CLUMPs)

e Node configuration: node architecture and type of OS it is loaded with.

— Homogeneous Clusters: compute nodes with the same architecture and
the same OS.

— Heterogeneous Clusters: compute nodes with different architectures (e.g.
a GPU cluster in which each compute node is equipped with a GPU and a
CPU, or a CPU cluster with different, performance-wise, processors across
the compute nodes) which may run different OSs.

2.2.2 Grid computing

Ian Foster [Fos02| proposed the definition of grid as “a system that coordinates re-
sources which are not subject to centralized control, using standard, open, general-
purpose protocols and interfaces to deliver nontrivial qualities of service”. In his paper
Foster suggests a three point list which contains the essence of the definition posted
above. First, a grid platform integrates and coordinates resources and users that live
within different control domains. Second, a grid is built from multi-purpose open-
source protocols and interfaces that address such fundamental issues as authentica-
tion, authorizations, resource discovery, and resource access. Finally, a grid allows
its constituent resources to be used in a coordinated fashion to deliver non-trivial
qualities of service related to response time, throughput, availability, security and
co-allocation of multiple resource types.

One of the motivations of grid computing is to provide access to computing
resources no matter where the users are located, which is the foundation of the
idea of power grid and the origin of the name given to this distributed comput-
ing approach. Users have transparent access to heterogeneous (both hardware and
software) computing resources which are geographically distributed and intercon-
nected through an heterogeneous network. Although their control is decentralized,
grid resources are managed by a software system such as the Globus Toolkit [FK97],
an open-source software for building computing grids. Globus Toolkit is the most

11
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widely used software for deploying large-scale grid infrastructures and includes sev-
eral software services for resource discovery, allocation, and management, security,
data management, and process creation.

The vast majority of the projects in which grid systems are involved can be
included within e-Science (computationally intensive science) paradigm. Some of the
most important research projects which are currently powered by grid systems are
the TeraGrid project in the United States, which aggregates the resources of 10
institutions serving 4,000 researchers over 200 universities, and the European Grid
Infrastructure (EGI), which provides 13,319 users and more than 300,000 computing
cores. Krauter et al. [KBMO02| proposed the following classification of grid systems
depending on their usage:

e Computational grid. This category denotes systems that have higher aggre-
gate computational capacity for single applications than any of its machine in
the system. Depending on how this capacity is utilized, computational grids
can be further subdivided into the following categories:

— Distributed supercomputing. Such grid type executes the application in
parallel on multiple machines in order to reduce the completion time of
a job and maximizing performance. Typically, applications that require
distributed supercomputing are grand challenge problems such as weather
modeling and nuclear simulation.

— High throughput. This grid subcategory increases the completion rate of a
stream of jobs and are well suited for “parameter sweep” type applications
such as Monte Carlo simulations.

e Data grid. Such grid category is for systems that provides an infrastructure
for synthesizing new information from data repositories such as digital libraries
or data warehouses that are distributed in a network. Data grids are based in
an specialized infrastructure provided to applications for storage management
and data access.

e Service grid. This category is for systems that provide services that are not
provided by any single machine. This category is further subdivided in the
following:

— On demand. This grid subcategory dynamically aggregates different re-
sources to provide new services.

— Collaborative. It connects users and applications into collaborative work-
groups. These systems enable real time interaction between humans and
applications via a virtual workspace.

— Multimedia. Such grids provides an infrastructure for real-time multime-
dia applications which requires supporting QoS across multiple different
machines whereas multimedia application on a single dedicated machine
may be deployed without QoS.

12
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2.2.3 Cloud computing

Cloud is a new computing paradigm for on-demand distributed computing emerged in
the very last years served in a pay per use model. Foster et al.[FZRLO08| defined cloud
as a “large-scale distributed computing paradigm that is driven by economies of scale,
in which a pool of abstracted, virtualized, dynamically-scalable, managed computing
power, storage, platforms, and services are delivered on demand to external customers
over the Internet”. According to Foster, clouds and grids share a lot of features in
their vision, architecture, and technology, but they also differ in several aspects such
as security, programming model, data model, applications, and abstractions.

The first concept in the definition above refers to the fact that cloud computing
is a distributed computing paradigm which involves a massive number of computer
resources. Second, cloud computing power is served in a pay-as-you-go model, in
which the user pays only for the requested resources and their usage. Third, cloud
provisions a computing platform, an storage platform, and a set of services which
are usually supported by virtualization technologies. These resources are abstracted
to the user and auto-scalable. Finally, cloud services and infrastructure (hardware
and software) are served to the users through the Internet following an on-demand
model which allows them to request an “unlimited” number of resources.

Cloud computing represents an opportunity for many individual users and small
companies which cannot afford to build and maintain its own infrastructure to start
small businesses and increase hardware resources only when there is an increase in
their needs [Vog08]. Although cloud computing offers the illusion of “unlimited” com-
puting resources, in the back-end cloud are interconnected clusters generally made
of the aggregation of heterogeneous hardware and software resources [VRMCLOS].

The most representative features of cloud computing are the following;:

e Elasticity. It defines the capability of the platform to adapt to variability in
the context of the application. This concept implicitly carries itself the notion
of scalability. Horizontal scalability in order to scale up or down the number of
instances needed to run the application, and vertical scalability to change the
type of instances resources in order to meet the requirements of the application.

e Reliability. Capability of the platform to accomplish the tasks assigned with-
out fails. Representative fails are service interruption or data loss, which could
be mitigated enforcing failure prevention techniques.

e Quality of Service. It defines the capability of the platform to accomplish
the user requirements, measured in response time, aggregate bandwidth and
computational power.

e Adaptability. Capability of the platform to adapt to different workload levels
ensuring the quality of service demanded by the user. The platform adaptability
is related to the middleware.

e Availability. It is related to the fault tolerance provided by the platform,
which is a critical point in the deployment of cloud infrastructures. In order to

13
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accomplish high availability in the platform, computing and data redundancy
techniques are used.

Cloud computing offers different service models to access their services through
the Internet:

e Infrastructure as a Service (IaaS). It defines a set of hardware comput-
ing resources which can be accessed through the Internet. The access to these
resources is supported by virtualization technologies, which offers virtual ma-
chines empowered by hypervisor software and running in physical machines.

e Platform as a Service (PaaS). It offers computing resources to host and
run client applications with a set of established computing requirements such
as number of cloud instances, operating system, programming language envi-
ronment or database. These software are accessible through APIs.

e Software as a Service (SaaS). It defines a model to access applications or
services on-demand, in which both software and associated data are hosted in a
cloud server hidden to the users. Users are allowed to online access the software
from application clients.

Depending on the deployment model it is possible to categorize cloud computing
as follows:

e Private clouds. Internal datacenters of a business which owns to a private
organization and it is not publicly available. The use and access to the platform
are restricted to the users and activities of such organization.

e Public clouds. It provisions a publicly available platform which it is usu-
ally offered as infrastructure (compute and storage), platform and software re-
sources. Such services are offered by public cloud providers as Amazon, Google
or Rackspace.

e Hybrid clouds. The combination of both private and public cloud paradigms
results in a model in which a set of services remain private and has others
which are provided publicly. Hybrid clouds provide the security of a private
cloud with the flexibility of a public cloud.

e Federated clouds. A federation of clouds is considered as the union of dis-
parate cloud computing infrastructures, including those owned by separate
organizations, which take advantage of the interoperability and aggregated ca-
pabilities in order to provide a seemingly infinite service computing utility
[RBL*09].

Cloud computing systems are subject to performance variability due to sev-
eral characteristics of their infrastructure: performance degradation induced by
virtualization, heterogeneous configuration of both virtualized and physical re-
sources, and shared resources among a large number of users. Several computer

14
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scientists have analyzed the viability of cloud computing infrastructures for high
performance computing giving special attention to MPI based applications per-
formance in the cloud[EH08, HZK"10]. Most of them pointed out performance
unpredictability as one of the most noticeable flaws of cloud computing plat-

forms [AFGT09, AFGT10, JRMT10].

2.2.4 Performance analysis of parallel applications

In order to analyze the performance of a parallel program, several metrics are taken
into account. The first metric is the parallel completion time. The parallel completion
time (7") measures the time invested by the system on executing the parallel program.
The completion time of a parallel program consists of the sum of the computation
time, communication time, synchronization time, and I/O. The computation time
usually depends on the size of the problem, the processes to processors mapping,
and the performance of the underlying hardware. The communication time is highly
dependent on both the performance of the interconnection network and the process
mapping. The synchronization time during which the process remains idle waiting
for other processes usually depends on the load balance of the parallel tasks between
the processes.

Normally, the relative speedup is the most widely used metric for evaluating
the performance of a parallel program. It is defined [Kwi06] as the ratio between the
completion time of the sequential version of the program executed on one processor to
the completion time of the parallel version executed on p processors (Equation 2.1).
The relative speedup (S) measures how much faster the parallel algorithm runs than
the sequential algorithm. However, sequential execution is not available for very
large data-intensive programs which have to be executed in parallel due to memory
restrictions. In that cases, the speedup is relative to r processors (r > 1) and measures
how much faster the program runs on p processors than the program executed on r
processors (being p > r) (Equation 2.2).

Tsequential(l)

Sy, = 2.1
P Tparallel(p) ( )
T
S, = parallel(r) (22)
Tparallel(p)

Nowadays, parallel computing architectures are becoming more complex—multi-
core processors, several levels in the memory hierarchy, etc.—and therefore it seems
important to evaluate how the parallel program exploits the underlying hardware.
Exploiting properly the underlying hardware and making an efficient utilization of the
available computing power are important to achieve the best performance. Parallel
efficiency is a performance metric directly related with the speedup and evaluates
how well the parallel program uses the computing resources. The parallel efficiency
(E) is defined as the ratio of speedup to the number of processors (Equation 2.3).
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E = if (2.3)

Ideally, using p processors the parallel program runs p times faster than the
sequential version of the program. Scalability is a performance metric which refers
to the ability of the program to demonstrate a proportionate performance improve-
ment with the addition of more processors. Two types of scalability are defined:
strong scaling refers to the ability of the program to achieve scalability when the
problem size of the problem stays fixed as the number of processes increases; weak
scaling refers to the ability of the program to achieve scalability when the problem
size per processors stays fixed as the number of processes increases. However in prac-
tice a parallel program does not achieve such scalability due to the communication
and synchronization overheads introduced by parallelization. In fact, at some de-
gree of parallelism adding more processors causes a performance degradation. The
inefficiency factor |[BDMT99] is defined as the ratio between achieved speedup and
theoretical speedup and it measures the impact of the communication and synchro-
nization overheads on the performance of the parallel program.

Another useful performance metric is granularity (G) [ST96], defined as the ra-
tio of computation to communication in the parallel program (Equation 2.4). Fine-
grained applications are characterized by performing a relatively small amount of
computational work between communication phases, which leads to a small granu-
larity ratio. Coarse-grained applications exhibit a high computation to communica-
tion ratio due to relatively large amounts of computational work are done between
communication phases. The finer the granularity the larger speedup can be achieved
by the parallel program. However if the granularity decreases then the overheads of
communication and synchronization between processes increase, which degrades the
performance of the application. Otherwise, if the granularity is too coarse it may
lead to load imbalance.

G = Leomp. (2.4)

Tcomm

During the last years the operational cost of the program execution has become
a key performance metric [DYDS'10, DBSDBM13| which measures the cost of run-
ning the program in the parallel system. This cost reflects the expenses on hardware
acquisition and maintenance, software licenses, electricity, security, etc. The opera-
tional cost (C) of the program execution is defined as the cost of running the system
per time unit multiplied by the completion time of the application (Equation 2.5).

C = cost per time unit x T (2.5)

2.3 Classification of computer architectures

The most popular classification of computer architectures was proposed by Michael
J. Flynn in 1966. Flynn’s taxonomy |Fly72| is based on the notion of a stream of
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information which can be either an instruction or data. The instruction stream is
defined as the sequence of operations performed by the processor. The data stream is
defined as the sequence of data transferred between the memory and the processor.
Flynn’s classification scheme defines four classifications of computer architectures
that are based on the number of concurrent instructions (single or multiple) and
data streams (single of multiple) available in the architecture.

e Single Instruction Single Data (SISD) refers to a single processor com-
puter which cannot exploit neither instruction or data parallelism. The pro-
cessing elements performs a single instruction which operates on a single data
stream at a time. SISD computers follow the von Neumann architecture.

e Single Instruction Multiple Data (SIMD) refers to the classification of
a parallel computer architecture which performs a single instruction that op-
erates on different sets of data at a time using multiple arithmetic logic units
controlled by a single processing element working synchronously, then exploit-
ing data parallelism. Today’s examples of SIMD computers are the Intel Xeon
Phi processor and a GPU (Graphics Processing Unit).

e Multiple Instruction Single Data (MISD) refers to an uncommon paral-
lel architecture in which multiple instructions operate on the same set of data.
Although there are no examples of commercial MISD computers, this classifi-
cation is normally used for fault tolerance machines which redundantly perform
the same instruction to detect and fix errors.

e Multiple Instructions Multiple Data (MIMD) refers to a general-purpose
parallel computer equipped with multiple processors working asynchronously
which execute their own instruction stream and operate on different sets of
data. The MIMD classification can be further divided in different subcategories.
One the most widely used classifications considers that MIMD systems are
subdivided depending on memory organization [Bel89|, which can be either
shared memory or distributed memory as described in Figure 2.1. In addition
to the Flynn’s taxonomy, another popular classification considers that parallel
MIMD computers can be further subdivided into Single Program Multiple Data
(SPMD) and Multiple Program Multiple Data (MPMD). However, rather than
a classification of computer architectures, SPMD and MPMD also represent
programming techniques for achieving and exploiting parallelism in parallel
computers.

— Single Program Multiple Data (SPMD) [DGNPS8S| refers to a pro-
gramming model in which multiple instances of the same program are
simultaneously executed on multiple, autonomous processors and operate
on different subsets of data. SPMD programs are usually implemented us-
ing the message-passing communication model to communicate processes
running on different processors. In the message-passing model, processes
send and receive messages either in a synchronous or asynchronous mode
to communicate data to other processes. Messages also can be used for
collective synchronization purposes.
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— Multiple Program Multiple Data (MPMD) refers to a programming
model in which multiple instances of at least two different programs are
simultaneously executed on multiple, autonomous processors and operate
on different subsets of data. In practice, MPMD applications are not as
common as SPMD applications.

2.4 Parallel programming models

A natural classification of programming models for parallel computers uses the mem-
ory model of the target architecture to divide the existent approaches. Processes in
a parallel program usually communicate to send or receive data to other processes
and perform synchronization operations. One of the key properties of shared mem-
ory systems is that communication operations are implicitly performed as a result of
conventional memory access instructions (i.e. load and stores), while in distributed
memory systems communication operations are genuine communications (i.e. send
and receives) [CSG99|. Therefore, it makes sense to use a programming model specif-
ically designed for shared memory systems or a programming model specifically de-
signed for distributed memory systems depending on the memory model of the target
architecture.

Table 2.1 [DM98| summarizes a comparison between the most widely used stan-
dard parallel programming models for shared and distributed memory architectures.

Pthreads OpenMP HPF MPI

Scalable sometimes yes yes yes
Incremental parallelization yes yes no no
Portable yes yes yes yes

High level no yes yes yes
Supports data parallelism no yes yes yes
Performance oriented no yes no yes

Table 2.1: Comparison of different standard parallel programming models.

2.4.1 Shared memory programming

POSIX threads [NBF96], OpenMP |[DM98] and High Performance Fortran
(HPF) |Lov93] are the most widely used standard parallel programming models for
shared memory systems. Other alternatives are CILK [BJK195] and Intel Threading
Building Blocks (TBB) [Phe08|. Pthreads is the implementation of the standardized
threads programming interface for UNIX systems. OpenMP is a portable standard
API which supports incremental parallelization in many programming languages,
while High Performance Fortran is a set of extensions to Fortran 90 for supporting
parallel processing.

Though it is beyond of the scope of this work, in recent years GPGPU (General-
Purpose Computing on Graphics Processing Units) has become a trend on HPC.
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Figure 2.3: Typical OpenMP parallel program execution.

GPGPU refers to the utilization of graphics processing unit to perform scientific
computations. A GPU a has a massively parallel set of processors, as well as a high-
speed shared memory. CUDA [Cor15]|, OpenCL [SGS10], OpenACC [WSTaM 12|, and
C++ AMP |GM12] represent the most used alternatives for programming shared
memory GPU and heterogeneous CPU/GPU systems.

2.4.1.1 POSIX threads

POSIX threads [NBF96], referred to as Pthreads, is the implementation of the POSIX
standard for threads in UNIX systems. The term thread, derived from thread of ex-
ecution, is defined as an independent set of programmed instructions that can be
scheduled to run as such by the operating system. A thread is generally contained
inside a process, sharing process resources but with its own independent flow of con-
trol. Threads model is efficiently used for parallel programming due to significant
advantages. Creating a new UNIX process is a heavier operation than threads cre-
ation since threads require fewer system resources than processes. Context switching
is also a lightweight operation since the thread context switching occurs within the
same process. Threads programming model is particularly suitable for multicore ar-
chitectures, in which each computing core manages a bunch of threads which execute
concurrently.

2.4.1.2 OpenMP

OpenMP [DM98] is a portable standard API designed for shared memory archi-
tectures. It consists of a set of compiler directives, runtime library routines, and
environment variables that extend many programming languages (such as Fortran,
C and C++) to exploit parallelism in shared memory computers. The most impor-
tant feature of OpenMP is that it supports incremental parallelization (through an
explicit programming model) in sequential programs. OpenMP is thread-based and
it follows a fork-join parallelism model in which the master thread executes sequen-
tially while no parallel regions are detected. The user annotates these regions (e.g.
loops) and then the master thread automatically forks the desired number of paral-
lel threads to perform the parallel section. When the threads complete the parallel
computation, the results are gathered by the master thread (Figure 2.3).
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2.4.1.3 High Performance Fortran

High Performance Fortran (HPF') [Lov93]| is a set of extensions to Fortran 90 for sup-
porting parallel processing and accessing to high performance architecture features.
The design objectives of HPF were to specify a language which supports efficient
data parallel programming, achieve high performance in both SIMD and MIMD sys-
tems, and support code tuning. HPF can be successfully used in both shared memory
and distributed memory systems. The developer writes its code following the SPMD
model annotated with a set of directives and statements which define the data paral-
lelism and then the architecture-specific compiler generates the code for each specific
architecture. It works for SIMD, MIMD, RISC and vector systems. HPF implements
a data-parallel approach in which the data is distributed at the beginning of the
execution and all of the threads are kept alive during the program execution.

2.4.2 Distributed memory programming

Message-passing is the traditional programming model for distributed memory sys-
tems. The basics of the model is the communication of concurrent processes using
send and receive routines. Transferred data is divided and passed out to other pro-
cesses using data buffers. Although the message-passing model was designed for
programming in distributed memory systems, but it can be used for programming
parallel application in shared memory systems. Some of the existent message-passing
distributions implement specific optimizations for shared memory systems [BMGO06a]
in which intra-node communications are performed using shared memory mechanisms
with lower latency and overhead, instead of sockets (used for inter-node communi-
cations). The main advantages of the message-passing model are: [Com07]:

e Portability: message passing is implemented on most parallel platforms.

e Universality: the model makes minimal assumptions about underlying parallel
hardware. Message-passing libraries exist on computers linked by networks and
on shared and distributed memory multiprocessors.

e Simplicity: the model supports explicit control of memory references for easier
debugging.

The two most widely used message passing environments are Message Passing
Interface (MPI) and Parallel Virtual Machine (PVM). Both MPI and PVM can be
used for SPMD and—with some restrictions—MPMD models. MPI is a language-
independent standard specification for interfaces developed as a library of message
passing routines and the several existent implementations cover a wide range of
programming languages and architectures. On the other hand, the main idea behind
PVM is to assemble a diverse set of interconnected resources into a “virtual machine”
which can consists of single processors, shared memory multiprocessors, and scalable
multiprocessors.
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2.4.2.1 Message Passing Interface

The Message Passing Interface is the specification of a library of functions for inter-
faces of message-passing routines. The standard was released for the first time in 1994
by the MPI Forum [Mes94|, an organization which involves about 60 people from 40
organizations with representatives from the computer industry, government research
laboratories and academics. The MPI standard has many language, architecture, and
hardware specific implementations which cover a wide range of languages such as C,
Fortran, C++, Java or Python.

The execution model of MPI programs consists of a set of processes and a logical
communication pattern which allow them to communicate. Although the last version
of the MPI-3.0 norm allows MPI processes to access memory from another MPI pro-
cess, the basic inter-process communication requires a send-receive communication
model. The basic communication model of MPI is based in point-to-point communi-
cations, which allows a pair of processes to send and receive messages between them.
MPI processes are encapsulated within a communicator. The notion of a communi-
cator is a set of processes that can be treated as a group for collective operations
and supports an associated topology [DS98|. The basic MPI collective operations
include broadcast, reduction, and barriers in addition to another set of more com-
plex operations. Advanced features of MPI support both blocking and non-blocking
communications—which allow to overlap computation and communication—and par-

allel I/0.

The MPI standard has multiple implementations and there are vendor supplied
and publicly available implementations. The most popular publicly available imple-
mentations of MPI are:

e MPICH |GLDS96| is a high performance and widely portable implementation
developed at Argonne National Laboratory. MPICH implementation efficiently
supports multiple platforms including commodity clusters, different high-speed
networks, and proprietary high-end computing systems.

e OpenMPI |GFB™04] is an all-new open source implementation which combines
three MPI implementations: F'T-MPI developed by the University of Tennessee,
LA-MPI developed at Los Alamos National Laboratory, and LAM/MPI devel-
oped by the Indiana University. OpenMPI efficiently supports a wide range of
parallel machines and interconnection networks.

In addition to MPICH and OpenMPI, there are a large number of other sig-
nificant publicly available implementations such as LAM/MPI [BDV94], one of the
predecessors of the OpenMPI project, MVAPICH [Pan|, a hardware specific imple-
mentation for InfiniBand networks, CHIMP [BMS94|, a portable, programmable,
and efficient MPI implementation, and MPI-LITE [Bha97|, which supports mul-
tithreaded computation within MPI. On the other hand, the most significant MPI
vendor-supplied implementations are HP-MPI [Com07], Intel MPI [Cor11] and IBM-
MPI.
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Although MPI was designed for programming parallel programs in distributed
memory systems, it also can be used in shared memory systems. In a more com-
plex scenario, an hybrid MPI+OpenMP programming model can be efficiently ex-
ploited [RHJ09]. An hybrid model shows a significant improvement in performance
parallelizing the master task with MPI processes and exploiting parallelism in parallel
regions with OpenMP.

2.4.2.2 Parallel Virtual Machine

Parallel Virtual Machine [GBD"94] is a software system that allows a set of het-
erogeneous interconnected computers to work as a single high performance parallel
machine, a large “virtual machine”. It was developed by the University of Tennessee,
Oak Ridge National Laboratory, and the Emory University in 1989. PVM is message-
passing based and handles message routing, data conversion, and task scheduling in
a transparent way to the user. The main features of PVM are the translucent access
to hardware, process-based computation (each PVM task is responsible for a part of
the computation), explicit message passing model, and heterogeneity and multipro-
cessor support. PVM implements both point-to-point and collective communication
operations between processes. Although in the first versions of PVM there were only
two collective communication routines (broadcast and barrier) PVM 3.3 implements
several new collective routines including global sum, global max, and scatter/gather.

The PVM system consists of two components: a daemon, and a library of PVM
interface routines. The daemon needs to be running in the computers which will
build the virtual machine and its main functions are process management and per-
forming message-passing operations between processes. The PVM library contains
the routines for message passing operations. PVM programs can be written in C,
C++, Fortran-77 or Fortran-90 programming languages.

2.5 Load balancing in parallel applications

Load balancing is a major issue in the parallelization of parallel applications [LTWO02]
because it may have a huge impact on the overall performance of the program. Load
balancing refers to the practice of distribute equal amounts of work to each process
in a parallel application. In the case of a heterogeneous (performance-wise) system,
load balancing is achieved by distributing portions of work that are proportional to
the computational power of each processor. The goal of load balancing is to minimize
wait and synchronization times between parallel tasks. That is, minimizing the time
during which the processes are idle waiting for other processes to complete their
computation. Load imbalance occur when the processes finish their computation at
different times, forcing others to wait idle. Load balancing is critical to parallel com-
puting due to performance reasons. Efficient load balancing leads to high performance
and efficient resources utilization.

Load balance in parallel applications is achieved by using either static or dy-
namic load balancing techniques [Don98|. Static load balancing refers to the prac-
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tice of distributing immutable work assignments to the processes at the program
start. Static load balancing requires prior knowledge of the execution platform and
the program workload to be uniform during execution. However in practice this is
often unfeasible because the user does not have access to the characteristics of the sys-
tem and certain classes of problems have unpredictable workloads. Dynamic load
balancing techniques, on the other hand, allow to adapt the workload assignments
at runtime to handle classes of problems with variable workloads during execution
or cope with non-dedicated systems.

Dynamic load balancing techniques can be classified [Don98| as:

e Dynamic load balancing by pool of tasks, typically used in parallel pro-
grams following the master/slave paradigm. The master process uses a queue
of tasks that can be performed in parallel. Initially, the master sends one task
to each slave process. As the slaves compute the task assigned they request
more tasks to the master until the queue of parallel tasks is empty.

e Dynamic load balancing by coordination, typically used in SPMD pro-
grams. Every number of fixed iterations all the processes synchronize, evalu-
ate load balance, and, if load imbalance is detected, redistribute the workload.
Usually load imbalance is detected by comparing execution time measurements
between the processes. When the difference between the fastest and the slowest
process surpasses a threshold a load balancing operation is required.

Dynamic load balancing techniques by coordination are the most useful approach
to achieve load balance in SPMD, MPT applications [Don98]. The mechanism for load
balancing detection can be easily implemented using time measurements of the MPI
processes. Then, a data redistribution functionality is required to redistribute the
workload between processes each time load imbalance is detected. Much work have
been done in supporting dynamic load balancing in SPMD, MPI applications.

Cermele et al. [CCN97] address the problem of dynamic load balancing in SPMD
applications with regular computations, assuming that each processor may have a
different computational capacity. Their technique implements different load balanc-
ing policies that use both current and historic performance data to make decisions
about the workload distribution.

Charm++ [KK93] is a programming language and runtime system based on
C++ for parallel programs, which are decomposed into a set of objects. One of the
main characteristics of Charm+- is dynamic load balancing, which provides multiple
load balancing strategies ranging from centralized to fully distributed techniques.
Charm+-+ instruments the parallel application to collect performance metrics of
every object and the computation and communication pattern of the program, then
the runtime system can decide to migrate an object from processor to processor at
runtime in order to maximize the performance of the application.

HeteroMPI [LRO6] is a library extension of MPI for supporting load balanced
computations in heterogeneous systems. HeteroMPI propose a large API for pro-
gramming on heterogeneous systems including the modification of several of the
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standard MPI routines. The load balancing algorithm depends on the estimation
of the computational power of each processor. While HeteroMPI does not provide
any method to automatically estimate processor speeds at runtime, the API does
provide a function specifically designed to benchmark the processors. However, the
benchmark code has to be provided by the application programmer.

Galindo et al. [GABCO08]| present an approach to load balance of SPMD applica-
tions in heterogeneous systems. Their method is based on simple time measurements
within the application source code. The load balancing algorithm uses time mea-
surements and the current number of rows of the dense data structure assigned to
the process to change the size of the partitions in the next program iteration, an
inaccurate method when it comes to sparse data structures. Their approach does not
include a data redistribution method because it is targeted to parallel applications
with replicated, non-distributed data, which is unrealistic for the vast majority of
parallel applications based on the message-passing model.

Martinez et al. [MAG™11] present ALBIC, a dynamic load balancing system
based on [GABCO08| which focus on load balancing of parallel applications which ex-
ecute on heterogeneous, non-dedicated systems. They introduce a method for mea-
suring the computational power of processors which uses system load data obtained
from the Linux kernel using a specific module that has to be added to the kernel.

ADITHE [MGPG11] is a framework for automatic tuning of iterative algorithms
which execute on heterogeneous systems. ADITHE estimates the computational
power of each type of processor during the first iterations of the program by mea-
suring the computation times. Then, the data partition attached to each process is
reassigned according to the data collected during the benchmarking phase.

Pimienta et al. [GABCO8| introduce a methodology for automatic tuning of MPI
applications as part of the AutoTune project [MCS™13]. Their approach also uses
time measurements to detect load imbalance and redistribute the data when it is
detected.

2.6 Dynamic parallel applications

2.6.1 Taxonomy of parallel applications

Feitelson and Rudolph [FR96] proposed a classification of parallel applications in
four categories based on who (user or system) decides the number of processors
used during their execution and when (at the beginning or during execution) it is
decided that number. In rigid and moldable applications the number of processes
allocated is fixed during their execution. We refer to these classifications as static
parallel applications. On the other hand, dynamic parallel applications—malleable
and evolving—may change their number of processes at runtime to cope with varying
workloads and changes in the availability of resources in the system.

¢ Rigid parallel applications are inflexible applications which run with the
specified number of processors before starting the execution until the end of
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it. Neither user nor system are allowed to change the resource requirements
during execution. This kind of applications required optimal decompositions
based on the problem size, in order to avoid inefficient assignments.

e Moldable parallel applications let the system to set the number of proces-
sors at the beginning of execution and the application initially configures itself
to adapt to this number. Once the parallel application is running the number of
processes cannot be changed. A moldable application can be made to execute
over a wide range of processors. There is often a minimum number of proces-
sors on which it can execute and above that number additional processors can
be used to improve performance.

e Malleable parallel applications can adapt to changes in the number of
available processors during execution. As moldable applications, malleable ap-
plications can be made to execute over a wide range of processors. However,
malleable applications can change their number of processes during execution
according to the availability of resources in the system. In malleable applica-
tions the number of processes is imposed by the resource management system
(RMS), which provides control over parallel jobs and computing resources. An
interesting benefit of malleability is it can be used to allow the system to collect
information about the application at runtime by trying several configurations
and evaluating the resulting performance. This information can later be used
to guide reconfiguration decisions.

e Evolving parallel applications may change its resource requirements during
execution, noting that it is the application itself which triggers the changes.
The reason for the interest in this feature is that many parallel applications are
composed of multiple phases, and each phase may contain different degrees of
parallelism. It is an interesting approach because it is possible for applications
to obtain additional resources when needed, and releasing them when they can
be used more profitably elsewhere (thereby reducing the cost of running the
application).

2.6.2 Supporting malleability in MPI applications

Dynamic parallel applications can be reconfigured to change the number of pro-
cesses at runtime. Dynamic reconfiguration allows the parallel application to change
both the number of processes and their mapping to processors to cope with vary-
ing workloads and changes in the availability of resources in the system. Current
HPC systems are usually managed by resource management systems with static
allocation of resources. That is, the number of resources allocated for a parallel
application cannot be remapped once the job is running on the compute nodes.
However, dynamic parallel applications allow more flexible and efficient scheduling
policies |Utrl0], and it is proved that the throughput and resource utilization can
be significantly improved when static and dynamic jobs are co-scheduled in the sys-
tem [Hun04, KKD02, CGR™09].
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Enabling malleable features to MPI applications has been an important area
of research in the past years. Today’s most challenging large-scale applications for
distributed memory systems are developed using the message-passing model. MPI
has become the de facto standard for programming parallel applications for HPC
architectures due to its advantages over PVM such as the multiple implementations
freely available, the asynchronous communication features, the high performance of
the low level implementation of communication buffers, and its portability [GL9S8,
GKP96, Har94, Hem96, Sap94].

Malleability allows the MPI program to increase the number of processes when
there are idle processors in the system and then decrease the number of processes
when currently allocated processors are degrading the application performance or
they are requested by the RMS for another application with higher priority. Mal-
leability is provided either by a technique called offline reconfiguration or using
dynamic reconfiguration.

2.6.2.1 Offline reconfiguration

The basic approach to support reconfiguration of MPI applications is provided
via offline reconfiguration, which consists of a mechanism based on stopping the
execution of the application, checkpointing the state in persistent memory, and
then restarting the application with a different number of processes. Sathish et
al. [SD03, SD05, VDO03| introduce a framework that supports offline reconfigura-
tion of iterative MPI parallel applications. The framework is supported by the Stop
Restart Software (SRS), a user-level checkpointing library, and the Runtime Support
System (RSS), that runs in each machine involved in the execution of the MPI pro-
gram in order to handle data checkpointing. SRS provides a set of routines which
should be called from the MPI program to stop and restart the application with a
different number of processes. Data redistribution is done via file-based checkpoint-
ing.

Raveendran et al. [RBA1lla, RBA11b] propose a framework which provides mal-
leability to MPI applications which execute on cloud computing platforms using of-
fline reconfiguration and storing the program data in a cloud-based file system with
a centralized data redistribution. The decision of changing the number of processes
is based on several constraints such as the completion time of the application. Their
work assumes that each program iteration executes approximately the same amount
of work. Based on this they calculate the required iteration time to meet the user-
given completion time. By comparing the current iteration time with the average
time per iteration they decide whether to switch to a different number of MPI pro-
cesses and virtual machine instances. The source code of the program needs to be
modified in order to provide to the framework the knowledge about the original
dataset distribution, live variables, and kernel regions.
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2.6.2.2 Dynamic reconfiguration

Dynamic reconfiguration provides malleability by allowing the application to change
the number of processes while the program is running. Dynamic reconfiguration is
provided either using operating system-level approaches such as processor virtual-
ization or process migration, or using the dynamic process management interface of
MPT introduced with MPI-2. The MPI-1 specification [Mes94] requires the number
of processes of an MPI application to remain fixed during its execution. While MPI
does not natively support malleability, the dynamic process management interface
introduced by the MPI-2 specification consists of a set of primitives that allow the
MPI program to create and communicate with newly spawned processes at run-
time. This interface is implemented by several of the existing MPI distributions (e.g.
MPICH [Gro02| and OpenMPI [GFBT04]) and has been used by several approaches
to provide dynamic reconfiguration to malleable MPI applications.

Adaptive MPI (AMPI) [HLK04| is an MPI implementation which uses processor
virtualization to provide malleability by mapping several virtual MPI processes to
the same physical processor. AMPI is built on top of Charm++, in which virtualized
MPI processes are managed as threads encapsulated into Charm+-+ objects. The
runtime system provides automatic load balancing, virtual process migration, and
checkpointing features. Adaptive MPI programs receive information about the avail-
ability of processors from an adaptive job scheduler. Based on this information, the
runtime system uses object migration to adapt the application to a different number
of processes.

Process Checkpointing and Migration (PCM) [MSV06, MDSV08] is a runtime
system built in the context of the Internet Operating System (I0S) [EMDSV06| and
uses process migration to provide malleability to MPI applications. The PCM/IOS
library allows MPI programs to reconfigure themselves to adapt to the available
processors as well as the performance of the application by using either split/merge
operations or process migration. Split and merge actions change the number of run-
ning processes and their granularity, while process migration changes the locality of
the processes. Processor availability is managed by an IOS agent which monitors the
hardware. Although adaptive actions are carried out without user intervention, PCM
requires that the programmer instruments the source code with a large number of
PCM primitives.

Utrera et al. [UCLO04] introduces a technique called Folding by JobType (FJT)
which provides virtual malleability to MPI programs. The FJT technique combines
moldability, system-level process folding, and co-scheduling. Parallel jobs are sched-
uled as moldable jobs, in which the number of processes is decided by the resource
manager just before the job is scheduled on the compute nodes. FJT introduces
virtual malleability to handle load changes and take advantage of the available pro-
cessors. This is done by applying a folding technique [MZ94| based on co-scheduling
a varying number of processes per processor.

Sena et al. [SNAST07| proposes an alternative execution model for MPI ap-
plications that targets grid computing environments. They introduce the EasyGrid
middleware, an application management system that transforms the MPI application
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to take advantage of dynamic resources and provides monitoring and fault tolerance.
Their approach focus on MPI master-worker applications in which workers are cre-
ated dynamically to deal with heterogeneity and resources availability. One of the
main avantages of the EasyGrid is that does not require source code modifications.

Cera et al. [CGR™10| introduces an approach called dynamic CPUSETs map-
ping for supporting malleability in MPI. CPUSETs are lightweight objects which are
present in the Linux kernel. They enable users to partition a multiprocessor machine
by creating execution areas. CPUSETs features migration and virtualization capa-
bilities, which allows to change the execution area of a set of processes at runtime.
Cera’s approach uses CPUSETSs to effectively expand or fold the number of physical
CPUs without modifying the number of MPI processes.

Weatherly et al. [WLNL03, WLNLO6| introduce Dyn-MPI, a runtime system
which measures the execution time of the MPI application and the system load and
decides whether to drop nodes from computation based on the ratio between com-
putation and communication. This work focuses on MPI based applications which
use dense and sparse data structures. The goal of Dyn-MPI is to drop nodes from
computation when their participation degrades the overall performance of the ap-
plication thus reducing the number of processes of the MPI application. However,
Dyn-MPI does not provide capability to scaling up the number of MPI processes.
Nodes workload and computation timing are monitored by a daemon which should
run in each of the compute nodes. Dyn-MPI requires a significant effort from the
developer for translating the MPI source code to Dyn-MPI.

Cera et al. [CGR109, Cer12| introduce an approach to support malleability us-
ing the dynamic process management interface of MPI-2. Their work focus on adapt
the number of processes of the parallel application according to resources availabil-
ity (malleability) and the internal state of applications with unpredictable needs
(evolving). They also integrate their solution with OAR [CDCG™05], a resource
management system which supports dynamic allocation of resources. Leopold et
al. |[LSB06, LS06] present the malleable implementation of WaterGAP, a scientific
application that simulates global water prognosis availability using MPI-2 features.

ReSHAPE [SRO7, SR09, SR10] is a runtime framework for malleable, iterative
MPI applications that uses performance data collected at runtime to support re-
configuring actions. The ReSHAPE framework decides whether to expand or shrink
the number of processes of the application when the iteration time has been im-
proved due to a previous expansion or the current processor set do not provide any
performance benefit as a result of a previous expansion, respectively. The authors
assume that all iterations of a parallel application are identical in terms of computa-
tion and communication times and have regular communication patterns. Dynamic
reconfiguration is provided by a remapping module which uses the dynamic process
management interface of MPI-2 to spawn new processes. ReSHAPE also features a
process scheduler and an efficient data redistribution module.

Dynamic MPI applications require support from the RMS in terms of adaptive
job scheduling strategies in order to maximize the efficiency and overall performance
of the system. In recent years several approaches have been presented in the area
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of adaptive batch scheduling policies for malleable and evolving parallel applica-
tions [BGA14, GKM14, PIR"14, PNR™15]. These works evince the existing gap
between dynamic applications and their lack of full support in the current resource
management systems.

2.7 Summary and conclusions

This chapter presents the state of the art in the topics that are covered by this thesis.
We have started describing the background topics that are necessary to understand
the area of research of the dissertation: high-performance computing, parallel com-
puting architectures, and parallel programming models. Specifically, this work focus
on optimization techniques for performance and adaptability in MPI applications
which execute on computing clusters. The MPI model was appropriate for parallel
applications that use the SPMD paradigm. A large proportion of the scientific MPI
applications are iterative. We propose an approach which includes a performance-
aware dynamic reconfiguration technique and a novel dynamic load balancing tech-
nique by coordination for iterative, SPMD MPI-based applications.

Several works focus on enabling malleable capabilities to MPI applications.
Some of the existing approaches use offline reconfiguration to provide malleabil-
ity [SD03, SD05, VD03, RBAlla, RBA11b|. This mechanism has several impor-
tant drawbacks, one of the major ones being the overhead introduced by the
I/O operations carried out every time the application is reconfigured, which de-
grades the performance of the parallel application. Dynamic reconfiguration, on the
other hand, is a most efficient approach which allows the application to reconfig-
ure at runtime. Several works enable malleability using operating system-level ap-
proaches such as processor virtualization and process migration [HLK04, MSV06,
MDSV08, UCL04, CGR*10, WLNL03, WLNLO6]. This presents several drawbacks,
such as the lack of portability of these approaches. One of the major advantages
of MPI is their portability across different systems because all the functionalities
of MPI are encapsulated on the library itself. However, system-level approaches
provide malleability using techniques that are external to the MPI library and
it restricts their portatiliby. Indeed, the MPI library features the dynamic pro-
cess management interface that allows to spawn MPI processes at runtime. Sev-
eral works use the dynamic process management interface to enable malleability in
MPI [CGR™09, Cer12, SNdST07, LSB06, LS06, SR07, SR09, SR10].

We observe that most of the existing approaches work under the assumption
that increasing the number of processors in a parallel application does not increase
its execution time. Furthermore, these approaches use reconfiguring actions to ex-
pand the number of processes to the maximum number of processors available in
the system. In practice however parallel applications show a performance threshold
beyond which increasing the number of processors does not lead to a significant per-
formance improvement [LTW02] but increases the operational cost and decreases the
parallel efficiency of the program due to increasing communication and synchroniza-
tion overheads when the number of processors increases [BDMT99|. To perform an
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efficient dynamic reconfiguration a malleable action must be driven by performance.
The decision to change the number of processors has to be made based on the present
and future performance of the application with the new processor configuration. Thus
a precise computational model is required to analyze and estimate the application
performance.

In dynamic load balancing we observe that time measurements are the widely
used approach to detect load imbalance in SPMD, MPI applications. However, this
method is not precise to detect and balance the workload in applications which
executed on heterogeneous, non-dedicated systems. One of the method proposed
consists on access to system load data using a kernel module [MAG™11]. While this
method provides promising results, it is very intrusive and data can not be accessed
at the process granularity.

Then, after analyzing the existing works and techniques for enabling malleability
and dynamic load balancing in MPI applications we conclude that none of them
satisfy the main goals of this thesis.
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Chapter 3

FLEX-MPI: Adaptability
Techniques for MPI Applications

3.1 Introduction

The aim of this thesis is to provide adaptability to MPI applications. To be spe-
cific, our work focuses on dynamic load balancing and malleability. In this chapter
we introduce the FLEX-MPI architecture, the malleable execution model for MPI
applications, and the FLEX-MPI programming model. First we describe the design
of the FLEX-MPI runtime system, which implements optimization techniques for
enhancing the performance and adaptability of parallel MPI applications. Then, we
present the dynamic execution model used by FLEX-MPI to enable malleability and
dynamic load balancing in MPI applications. Finally, we introduce the programming
model for malleable applications in FLEX-MPI.

3.2 Runtime system overview

This section describes the environment that provides support for malleable applica-
tions in MPI. In addition, we summarize each of the functionalities of the FLEX-MPI
runtime system. The FLEX-MPI extends the functionalities of the MPICH |Gro02]
runtime system, one of the most popular implementations of MPI. This makes any
MPI application based on MPICH to be compatible with FLEX-MPI.

FLEX-MPI is provided as a library—implemented in C language—and its func-
tionalities can be accessed via an application programming interface. The highly-
optimized, efficient implementation of FLEX-MPI has a negligible overhead in the
overall performance of the MPI application and preserves the portability of the
MPICH implementation.

FLEX-MPI enables malleability to MPI applications via novel malleability poli-
cies that use a performance-aware dynamic reconfiguration technique. The malleabil-
ity policies take into account the resources available in the system, their performance,
and the operational cost of the underlying, heterogeneous hardware. FLEX-MPI uses
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Figure 3.1: The FLEX-MPI runtime system architecture.

this information to increase the application performance, maximize the resource uti-
lization, and minimize the operational cost of the program execution.

Figure 3.1 shows the environment of the FLEX-MPI runtime system which con-
sists of the following components:

e MPI application. The user’s MPI application instrumented with the FLEX-
MPI application programming interface. The instrumented MPI application
interacts with the MPI standard library to perform MPI operations and the
FLEX-MPI library to perform adaptability actions—such as dynamic load bal-
ancing and malleability.

e MPI library and PMPI interface. FLEX-MPI is implemented on top of
MPICH. That makes FLEX-MPI fully compatible with MPI programs that use
all the new features of the MPI-3 standard [MPI|. PMPI is a profiling interface
provided by MPI that allows to profile MPI calls and collect performance data
in a user-transparent way.

¢ Resource Management System (RMS). The resource management system
which controls the resources availability and schedules the parallel jobs sub-
mitted by the users. The RSM feeds FLEX-MPI with availability of resources
and system information such as: number of compute nodes available and their
operational cost.
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e PAPI library. The Performance API (PAPI) [MBDH99| is a portable API
which provides access to low-level hardware performance counters that enable
to measure software and hardware performance. These performance counters
are collected by FLEX-MPI via PAPI, and are used to guide performance-aware
reconfiguring actions.

e User-given performance objective and constraints. Reconfiguring ac-
tions in FLEX-MPI are performance-driven. The performance-aware malleabil-
ity policies of FLEX-MPI allow to reconfigure the application to satisfy a set
of user-given performance objective (e.g. completion time or maximum perfor-
mance) and constraints (e.g. efficiency or cost).

¢ FLEX-MPI library. The FLEX-MPI library includes several components
that enable dynamic load balancing and performance-aware malleability func-
tionalities to MPI applications. These functionalities can be accessed from any
MPI application using the FLEX-MPI API and are described in the following
sections.

3.2.1 Process and data management layer

FLEX-MPI functionalities are divided into low-level functionalities of the process
and data management layer and high-level functionalities of the malleability logic
layer. The process and data management layer offers basic mechanisms to collect
runtime performance metrics of the MPI program, change the number of processes
of the application, expand and shrink the MPI communicator, schedule dynamic MPI
processes, and move data between processes as a result of workload redistributions.
The process and data management layer is directly interconnected with the MPI
program and the MPI and PAPI libraries, and it consists of the following components:

e Monitoring. The monitoring component gathers performance metrics for each
iteration of the parallel application. This includes hardware performance coun-
ters via PAPI, communication profiling via PMPI, and the execution time for
each process.

e Dynamic process management. The dynamic process management com-
ponent uses the dynamic process management interfaces of MPI to spawn and
remove processes at runtime from the parallel application.

e Process scheduler. FLEX-MPI implements a dynamic scheduler that han-
dles the scheduling of newly spawned processes in the system satisfying the
requirements of the reconfiguring policy.

e Data redistribution. FLEX-MPI includes an efficient data redistribution
component that uses standard MPI messages to move data between processes
as a result of a dynamic reconfiguring action or a load balancing operation.
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3.2.2 Malleability logic layer

The malleability logic layer provides malleable capabilities to MPI applications. This
layer includes high-level functionalities which implement a computational predic-
tion model, dynamic load balancing techniques, and malleability policies—including
performance-aware dynamic reconfiguration. These functionalities use the perfor-
mance metrics collected by the low-level functionalities to make decisions respect
to the number of processes of the application depending on the malleability policy,
the user-given performance objective and constraints, and the current and predicted
performance of the application. Each time a reconfiguring action or a load balance
operation is triggered, the malleability logic layer takes advantage of the low-level
functionalities to apply the new processor configuration. A processor configuration
describes a set of processing elements allocated to the MPI program.

e Load balancing. The load balancing algorithm ensures that the workload
assigned to each process of the MPI program is proportional to the compu-
tational power of the processor—calculated using runtime performance data
collected by the monitoring functionality—which runs the MPI process. The
algorithm also considers non-dedicated scenarios in which the MPI program
executes simultaneously with other applications.

e Computational prediction model. The computational prediction model
component uses runtime performance metrics gathered via monitoring to esti-
mate the performance of the parallel application with a new processor config-
uration prior to the reconfiguring action.

e Malleability policy. FLEX-MPI includes performance-aware malleability
policies: Strict malleability policy (SMP), High performance malleability policy
(HPMP), and Adaptive malleability policy (AMP). These policies automati-
cally reconfigure the application depending on its performance collected at
runtime and the user-given performance criteria. The malleability policy ana-
lyzes the runtime performance data of the application collected by monitoring
and then uses the computational prediction model to make decisions about
the most appropriate number and type of processors to satisfy the user-given
performance criteria. Changing the number of processors involves using the
dynamic process management and scheduling functionalities to spawn or re-
move processes, and the load balancing and data redistribution functionalities
to redistribute the workload each time a reconfiguring action is carried out.

3.3 FLEX-MPI execution model

FLEX-MPI introduces a malleable execution model for MPI applications, rather than
the static execution model of MPI standard applications. The malleability model im-
plies that, each time FLEX-MPI is invoked in the iterative section of the program,
it acquires the control of the program execution to monitor the application perfor-
mance and evaluate whether a dynamic reconfiguring action is necessary. FLEX-MPI
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Figure 3.2: Workflow diagram of a malleable FLEX-MPI application.

then returns the control to the application once it has collected performance metrics
or at the end of the reconfiguring action.

Figure 3.2 shows the workflow diagram of a malleable MPI application using
Flex-MPI. Each box shows in square brackets the Flex-MPI components that provide
the corresponding functionality. Initially the MPI application runs on n processes.
At every iteration, the MPI program instrumented to use the Flex-MPI API auto-
matically feeds the per-process values of the chosen runtime performance metrics to
the monitoring (M) component (label 1.a). These include hardware performance
counters, communication profiling data, and the execution time for each process.
This allows FLEX-MPI to monitor the performance of each processor core in which
an MPI process is running. In this work we consider that each of the computing cores
of a multi-core processor is a processing element (PE). We also assume that compute
nodes are not oversubscribed. That is, the maximum number of MPI processes per
processor corresponds to the number of PE in the processor. Once Flex-MPI has
collected these metrics it returns the control to the MPI application (label 1.b).

Additionally, at every sampling interval—consisting of a fixed, user-defined num-
ber of consecutive iterations—FLEX-MPI evaluates the current performance of the
application and decides if it satisfies the user-defined performance requirements or
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the application has to be reconfigured. Every sampling interval the monitoring com-
ponent feeds the gathered performance metrics to the malleability policy (MP)
component (label 2). This allows the MP to track the current performance of the
application and decide whether it needs to reconfigure the application in order to ad-
just the performance of the program to the goal imposed by the malleability policy.
Otherwise, the application continues its execution with the same number of processes
and resources allocated.

A reconfiguring action involves either the addition (label 3.a) or removal (label
3.b) of processes and remap the processor allocation. The MP uses the computa-
tional prediction model (CPM) component to estimate the performance of the
application during the next sampling interval based on the runtime performance
metrics gathered via monitoring. If the current performance does not satisfy the
requirements of the malleability policy, then the CPM informs the MP that the ap-
plication requires a new reconfiguring action. Otherwise, the application does not
need to be reconfigured. In case of a reconfiguring action the CPM estimates the
number of processes and the computing power (in F'LOPS) required to satisfy the
performance objective. Using this prediction, the MP computes the new process-to-
processor mapping based on the number and type of the processors that are available
in the system and the performance criteria (efficiency or cost).

The dynamic process management (DPM) component implements the pro-
cess spawn and remove functionalities—the process scheduler (PS) is responsible
for rescheduling the processes according to the new mapping. A reconfiguring action
changes the data distribution between processes, which may lead to load imbalance.
Each time a reconfiguring action is carried out the load balancing (LB) compo-
nent computes the new workload distribution based on the computing power of the
processing elements allocated to the application. The data redistribution (DR)
component is responsible for mapping and redistributing the data between processes
according to the new workload distribution.

In case of a process spawning the DPM creates the new processes in the sys-
tem and expands the MPI communicator to accommodate newly spawned processes.
Once all the current processes are encapsulated within the same communicator the
load balancing and data redistribution functionalities redistribute the application
workload. On the other hand, in case of a process removing action FLEX-MPT firstly
calculates the new workload distribution, then disconnects those processes marked
by the malleability policy to leave the program, and finally shrinks the MPI commu-
nicator with the smaller number of processes. Once Flex-MPI has reconfigured the
application to the new number of processes (m), it resumes its execution (labels 4.a
and 4.D).

3.4 FLEX-MPI programming model

FLEX-MPI introduces a programming model and an application programming inter-
face to provide malleable capabilities to MPI applications. FLEX-MPI is compatible
with iterative applications based on MPICH which operates on both dense and sparse
data structures with one-dimensional data decomposition and distributed data.
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L3: |MPI_Comm_size(...);
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L8: XMPI_Monitor_si_init ();
L6: for (i=displ; i < displ+count; i ++) {
L7: //Parallel computation L9: for (i=displ; i < displ+count; i ++) {
L8: } L10: //Parallel computation
L11: }
L9: MPI_Allreduce (...);
L10: |} L12: MPI_Allreduce (...);
L11: (MPI_Finalize (); L13: XMPI_Eval_reconfig (...);
L14: XMPI_Get_process_status (...);
L15: if (status == XMPI_REMOVED) break;
L16: |}

L17: (MPI_Finalize ();

Figure 3.3: Comparison of the legacy code (left) and the instrumented FLEX-MPI
code (right) of an iterative MPI application.

An MPI application instrumented with FLEX-MPI performs three types of MPI-
related calls, as shown in Figure 3.1. Native MPI functions (i.e. MPI_Comm_rank) are
directly managed by the MPI library. However, some of the calls to native MPI
functions are wrapped by FLEX-MPI via the PMPI interface. FLEX-MPI uses the
PMPI interface to collect performance data and initialize the library functionalities
in a user-transparent way. PMPI allows FLEX-MPI to intercept MPI calls from the
application without modifying the source code of the MPI program.

Application developers can access the FLEX-MPI library via the FLEX-MPI
API, which consists of a low-level API and a high-level API. The interfaces provided
by the FLEX-MPI API carry the XMPI prefix. When using the high-level API the
number of processes and the process-to-processor mapping are decided by FLEX-
MPI depending on the malleability policy used and the available resources in the
system. Otherwise, when using the low-level API the developer decides the number
of processes, their mapping to the processors in the system, and the data distribution
of the application. In some aspects, the low-level API brings to MPI programs a
programming model equivalent to use the fork system call to create processes in
pure C programs.
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Figure 3.3 shows a comparison between a simplified legacy code sample and
this code instrumented with Flex-MPI functions of the high-level API for automatic,
dynamic reconfiguration. The SPMD application (Figure 3.3 left) uses a data struc-
ture (vector A) distributed between the processes (L4). In the iterative section of
the code (L5-10) each process operates in parallel on a different subset of the data
structure. At the end of every iteration the program performs a collective reduce op-
eration (L9). In the legacy code all the MPI specific functions (in red) are managed
by the MPI library.

The instrumented code (Figure 3.3 right) consists of wrapped functions (in or-
ange), native MPI functions (in red), FLEX-MPI functions which allow the parallel
program to get and set some library-specific parameters (in blue), and FLEX-MPI
functions to access the dynamic reconfiguration library functions (in green). Ad-
ditionally, all the references to the default communicator MPI_COMM_WORLD in the
legacy code are replaced with XMPI_COMM_WORLD, a dynamic communicator provided
by FLEX-MPI. To simplify the presentation the instrumented code shows the high-
level interfaces of the Flex-MPI API without the required function parameters.

In FLEX-MPI the MPI initialize (L1), finalize (L17), and communication (L12)
functions are transparently managed by the FLEX-MPI library using PMPI. The
rest of the MPI specific functions (L2-3) are directly managed by the MPI library.
The parallel code is instrumented with a set of functions to get the initial partition
of the domain assigned to each process (L4) and register each of the data structures
managed by the application (L5). This last operation is necessary to know which
data structures should be redistributed every time a reconfiguring action is carried
out.

The data redistribution component communicates with the newly spawned pro-
cesses to pass them the corresponding domain partition before starting the execution
of the iterative section (L6) and the current iteration of the program (it). Newly
spawned processes will compute at most the remaining number of program itera-
tionts (L7). This number is variable and depends on the iterations when the process
is created and destroyed. The iterative section of the code is instrumented to monitor
each process of the parallel application (L8) during every iteration. In addition, at
every sampling interval the malleability policy evaluates whether reconfiguring (L13)
is required. The malleability policy and the performance objective and constrains are
provided by the user to FLEX-MPI as arguments of the mpiexec/mpirun command.
Then each process checks its execution status (L14). In case that the malleability pol-
icy decides to remove a process, this leaves the iterative section (L15) and terminates
execution.

3.5 Summary

In this section we describe the architecture of the FLEX-MPI runtime system that
extends MPICH by providing malleable capabilities and dynamic load balancing
to iterative MPI applications. FLEX-MPI consists of a process and data manage-
ment layer and a malleability logic layer. The process and data management layer
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provides mechanisms to performance monitoring, change the number of processes,
schedule new processes, and data redistribution. The malleability logic layer im-
plements functionalities for automatic dynamic reconfiguration and dynamic load
balancing. FLEX-MPI introduces a dynamic execution model that allows MPI ap-
plications to take advantage of these adaptability techniques. Finally, we describe the
programming model of FLEX-MPI applications and briefly overview the FLEX-MPI
API.
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Chapter 4

Dynamic Process and Data
Management in MPI Applications

4.1 Introduction

In this chapter we describe the design and implementation of the software compo-
nents of the process and data management layer of FLEX-MPI (Figure 4.1). These
components support the low-level functionalities of FLEX-MPI: performance moni-
toring and communication profiling, dynamic process creation and termination, pro-
cess scheduling, management of MPI communications, and data redistribution. We
also describe the low-level application programming interface which allows MPI ap-
plications to access those functionalities of the process and data management layer
of FLEX-MPI.

FLEX-MPI library

Figure 4.1: Process and data management layer inside the FLEX-MPI library.
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Table 4.1 summarizes the low-level interfaces of the FLEX-MPI API that pro-
vide the low-level functionalities of the process and data management layer. These
interfaces will be covered in greater detail in the following sections.

Table 4.1: Flex-MPI low-level interfaces.

Interface Description

XMPI_Monitor_iter_begin Starts iteration monitoring

XMPI_Monitor_iter_end Stops iteration monitoring
XMPI_Spawn Spawns dynamic processes
XMPI_Remove Removes dynamic processes
XMPI_Get_wsize Retrieves current data partition
XMPI_Register_vector Registers a vector
XMPI_Register_dense Registers a dense data structure
XMPI_Register_sparse Registers a sparse data structure

XMPI_Redistribute_data Data redistribution

4.2 Monitoring

This section describes the functionalities of the monitoring component of FLEX-
MPI. The monitoring component allows to collect performance metrics from the
MPI program and the hardware system. These metrics are then later used by the
performance-aware malleability policies to evaluate whether a dynamic reconfiguring
action is necessary to improve application performance. The monitoring component
uses the Performance API (PAPI) [MBDH99] to access computation performance
metrics of the MPI program and the hardware system, and the Profiling MPI inter-
face (PMPI) to profile communications of the MPI program.

Figure 4.2 and Figure 4.3 describe the parameters of XMPI_Monitor_iter_begin
and XMPI_Monitor_iter_end interfaces, respectively. These low-level interfaces
provide the functionality of program monitoring in FLEX-MPI. When they are
placed at the begin and end of the iterative section of the program, these
functions collect performance metrics of the application during the current pro-
gram iteration and return the performance counters at the end of the iteration.
XMPI_Monitor_iter_begin takes as input an array with the names of PAPI hard-
ware events (i.e. PAPI_FLOPS, PAPI_TOT_CYC) to be monitored during the program
iteration. XMPI_Monitor_iter_end returns an array with the hardware performance
counters for each hardware event defined in XMPI_Monitor_iter_begin.
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XMPI_MONITOR_ITER_BEGIN(events)

IN events names of hardware events (array of strings)

int XMPI_Monitor_iter_begin (char *events[])

Figure 4.2: Parameters of FLEX-MPI’s XMPI_Monitor_iter_begin.

XMPI_MONITOR_ITER_END (counts)
OUT counts hardware counters (array of long long integers)

int XMPI_Monitor_iter_end (long long *counts)

Figure 4.3: Parameters of FLEX-MPI’s XMPI_Monitor_iter_end.

4.2.1 Computation monitoring

PAPI is a portable API which provides access to a wide variety of hardware per-
formance counters (i.e. floating point operations, CPU completed instructions, etc.).
PAPI allows software developers to establish in real time a connection between soft-
ware performance and hardware events. PAPI offers a high-level API—which provides
access to preset events of the CPU—and a low-level API that enables fine-grained
measurement of events from the program executable and the hardware. We use low-
level PAPI interfaces to track in runtime the number of floating point operations
FLOP (PAPI_FLOPS hardware event), the real time Treal (i.e. the wall-clock time),
and the CPU time T'cpu (i.e. the time during which the processor is running in user
mode) of the MPI program. These metrics are collected for each MPI process of the
parallel application, and they are preserved during context switching. This allows
the monitoring component to collect performance metrics for each of the process-
ing elements on which an MPI process is running. FLEX-MPI uses these metrics to
calculate the computing power of each processing element as the number of floating
point operations per second FLOPs following Equation 4.1.

FLEX-MPI considers both dedicated and non-dedicated system—in which the
MPI applications is sharing resources with other user’s applications. We use T'real
and T'cpu values to detect whether the application is running on a dedicated or a non-
dedicated system. The real time is always a little higher than the CPU time because of
the OS noise. We assume that when the difference between Treal and T'cpu surpasses
a pre-defined threshold—including the OS noise—the application is running on non-
dedicated mode. This mechanism allows us to apply more effective load balance
strategies that take into account the actual performance of each processing element
in the system.

FLOPs — - FEOT (4.1)
Tcpu(secs.)
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Figure 4.4: Performance analysis of the number of F'LOP in Jacobi for varying matrix
sizes and 8 processes (a), and a varying number of processes and a matrix of 2,000
rows (b).

Different performance metrics can be used to measure the performance of an
application (e.g. FLOP, processor cycles, or CPU completed instructions). We use
the number of FFLOP because they specifically provide a quantitative value of the
workload performed by the process. FLEX-MPI targets SPMD applications whose
computation is based on floating point operations, which is reasonable for many
MPI-based parallel applications (e.g. linear system solvers, particle simulation, and
fluid dynamics). These applications usually exhibit a linear correlation between the
FLOP and the workload size per process. That is, the number of FFLOP is pro-
portional to the workload computed by the process. Otherwise, for those kinds of
applications which CPU usage pattern is correlated with a different performance met-
ric (e.g. integer-based operations), the monitoring component can be easily tuned to
collect the specific performance counters that best fit the computation pattern of the
application. For instance, the the number of integer instructions can be collected via
the PAPI_TOT_INT hardware event.

Figure 4.4 illustrates a performance analysis of the MPI implementation of
Jacobi—a linear system solver—executed on a homogeneous cluster during 1,000
iterations and a sampling interval of 100 iterations. We measured the number of
FLOP performed by the application when computing three matrices (A, B, and C)
with different coefficients (1,000, 2,000, and 4,000, respectively) and executing with
a varying number of processes. Figure 4.4 (a) shows how the total count of FLOP
varies proportionally as the matrix size increases. Figure 4.4 (b) shows that the total
count of F'LOP when operating on the same matrix slightly varies as the number of
processes increases. This short experiment demonstrates the linear correlation that
exists between program computation and the F'LO P performance metric in the class
of parallel applications that FLEX-MPI targets. Regardless, the monitoring compo-
nent of FLEX-MPI is very flexible and the performance metrics collected can be
easily changed to model the performance of a different class of applications.

MFLOP

The events counted by hardware performance counters are processor specific.
In heterogeneous systems, different processors may count different values for the
same hardware event. FLEX-MPI performs an initial calibration of the counters by
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performing a measurement of the per-processor counts for a sample of hardware
events on the different types of processors. This calibration is carried out by running
a microbenchmark with a negligible overhead in performance before starting the
computation of the application in the system.

4.2.2 Communication profiling

PMPI is an interface provided by the MPI library to profile MPI programs and
collect performance data without modifying the source code of the application or
accessing the underlying implementation. The monitoring component of FLEX-MPI
uses PMPI to profile MPI communications of the parallel application. Specifically,
we collect the type of MPI communication operation (i.e. MPI_Gather), the number
of processes involved in the operation and their ranks in the MPI communicator, the
size of the data transferred between processes, and the time spent in the operation.

The PMPI interface allows every single standard MPI function to be called either
with the MPI or the PMPI prefix, both of them with identical syntax. In fact, MPI
interfaces are weak symbols for PMPI interfaces, which provide the corresponding
functionality. Figure 4.5 illustrates an example of the PMPI functionality when an
MPI function is invoked within a FLEX-MPI application. The FLEX-MPT library
intercepts the function call (label 1), invokes MPI_Wtime to save the time in which the
MPI function was called, and then invokes the corresponding PMPI_Gather interface
of the MPI library which actually implements the functionality of the communication
operation (label 2). Once the MPT library has performed the operation it returns the
control to the FLEX-MPI library (label 3) that uses the Collect_Perf_data routine
to collect performance data of the communication operation. Finally, the FLEX-MPI
library returns the control to the MPI application (label 4).

FLEX-MPI application

FLEX-MPI library

©

v

MPI_Gather (..) {

MPI_Gather (...);

&

tstart = MPI_Wtime(); MPI library

v

PMPI_Gather (..); < PMPI_Gather (..) {
1
//collect performance data @ : //MPI_Gather native implementation
Collect_Perf_data (“gather”, psend, precvy|==|}
dsize, MPI_Wtime-tstart);

-

Figure 4.5: lllustration of the behavior of PMPI in FLEX-MPI.

Besides profiling communication operations in MPI, we use PMPI to wrapper
the MPI initialize—MPI_Init—and finalize—MPI_Finalize—functions. This allows
FLEX-MPI to initialize and finalize its functionalities in a user-transparent way. The
behavior of the wrapper procedure is quite similar to the communication profiling.
First we proceed with the FLEX-MPI functionality encapsulated within MPI_Init
and MPI_Finalize; then we invoke the corresponding functions of the MPI library.
Basically, we wrapper MPI_Init to initialize global variables and monitoring. We
wrapper MPI_Finalize to release resources and deallocate library variables.
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4.3 Dynamic process management

This section describes the dynamic process management component of FLEX-MPI.
The functionality of the DPM is to support the creation and termination of dynamic
MPI processes in the FLEX-MPI application. This component is also responsible
for the management of communications between processes each time a reconfiguring
action is carried out.

4.3.1 MPI communicators

MPI is the de facto industry standard for programming high performance computing
applications in distributed memory systems. The MPI specification [Mes94] defines
the standard implementation of the message-passing libraries. The MPI Forum, the
group that define and maintain the MPI standard, has released up to date three
major issues of the MPI specification: MPI-1, issued in 1994; MPI-2, issued in 1997;
and MPI-3, issued in 2012.

The MPI standard defines a communicator as a context for a communication
operation between a set of processes which share that communication context. A
group of processes is an ordered set of process identifiers and each process belongs
to one or more groups of processes. Each process is identified within a group by a
unique rank which is used to send and receive messages. The MPI standard defines
two types of communicators:

e Intracommunicator for communication operations within a single, local
group of processes.

e Intercommunicator for communication operations between two (local and
remote) non-overlapping groups of processes.

MPI features point-to-point and collective communication operations. However,
at the lowest level collective operations are built upon point-to-point communication
functions. Point-to-point operations (MPI_Send and MPI_Recv) involve participation
of two processes, a sender and a receiver. A collective operation, on the other hand,
involves participation of all processes in a communicator. Both point-to-point and
collective operations can be performed using both types of communicators and MPI
provides blocking and non-blocking versions of the communication functions. Non-
blocking versions of point-to-point routines are present in MPI since MPI-1. How-
ever, non-blocking collectives are one of the major features introduced in the MPI-3
specification. A blocking communication function does not returns until the commu-
nication has finished. That is, all data have been received by the receiver process
or processes. In contrast, non-blocking communication functions return immediately,
even if the communication has not completed yet. Both the sender and receiver must
verify through a specific MPI function that the data has successfully been sent and
received by the processes. MPI provides a wide set of collective operations which can
be classified as:
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MPI InterO
MPI IntraO : MPI Intrai
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Figure 4.6: MPI communication between processes within a local group performed
using an intracommunicator (A) and communication between local and remote pro-
cesses using an intercommunicator (B).

g

e One-to-many. A single process sends data to many receivers. For instance,

the broadcast MPI_Bcast operation is an example of one-to-many operation in
MPI.

e Many-to-one. A subset of processes send data to one receiver. For instance,
the gather MPI_Gather operation employs the many-to-one communication pat-
tern.

e Many-to-many. Every process participates both in send and receive data.
For instance, the all-to-all MPI_A11ltoall operation follows the many-to-many
pattern.

Figure 4.6 illustrates an example of an MPI point-to-point communication be-
tween processes. Processes within the same group can communicate using the local
intracommunicator MPI IntraQ or MPI Intral. For instance, processes with ranks
P2 and P3 communicate using MPI Intra0 (label A). They belong to the same local
group of processes which are encapsulated within the intracommunicator. Processes
from different groups, on the other hand, communicate using the global intercommu-
nicator MPI Inter(0. Communication between process with rank P1 from the local
group and process with rank PO from the remote group is performed using the inter-
communicator (label B). MPI point-to-point functions require both the sender and
the receiver to know the rank of destination and source processes, respectively. When
two processes communicate using an intercommunicator, MPI_Send and MPI_Recv
take as parameter the rank of the destination or source process in the remote group.

MPI provides by default a global intracommunicator called MPI_COMM_WORLD
that encapsulates every process of the parallel application started with the mpirun
or mpiexec command.

The MPI-1 specification of the standard defined MPI applications as SPMD
(Single Program Multiple Data) programs. The first specification only allowed to
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MPI_COMM_SPAWN (command, argv, maxprocs, info, root,
comm, intercomm, error)

IN  command name of program to be spawned (string, significant only at root)

IN argv arguments to command (array of strings, significant only at root)

IN  maxprocs maximum number of processes to start (integer, significant only at
root)

IN info set of key-value pairs telling the runtime system where and how to
start the processs (handle, significant only at root)

IN  root rank of process in which previous arguments are examined (integer)

IN comm intracommunicator containing group of spawning processes (handle)

OUT intercom  intercommunicator between original group and the newly spawned
group (handle)

OUT error one code per process (array of integer)

int MPI_Comm_spawn (const char *command, char *argv[],
int maxprocs, MPI_Info info, int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])

Figure 4.7: Parameters of MPI's MPI_Comm_spawn.

start parallel applications using the mpirun/mpiexec command and specifying the
number of processes of the application as a command line argument. MPI-2 in-
troduced, among other advanced features such as parallel /O and RMA (Remote
Memory Access), the dynamic process management interface that allows MPI pro-
grams to spawn processes dynamically at runtime. The dynamic process management
interface provides two functions to dynamically spawn MPI processes at runtime:
MPI_Comm_spawn and MPI_Comm_spawn_multiple. The first routine allows to spawn
processes of the same binary with the same arguments, while the second one allows
to spawn processes of multiple binaries with different sets of arguments. Figure 4.7
shows the list of parameters of the spawning function MPI_Comm_spawn. This function
takes as input the intracommunicator of the spawning group of processes and returns
an intercommunicator which encapsulates parent and child groups of processes. The
spawning function is blocking and collective over all processes in the parent intra-
communicator and one of the processes in this group participates in the routine as
root.

MPI-2 and MPI-3 programs may have several instances of the global intracom-
municator MPT_COMM_WORLD. All processes started with mpirun/mpiexec are encap-
sulated within an instance of MPI_COMM_WORLD. Furthermore, those processes cre-
ated within the same call to the spawning function are encapsulated within a sep-
arate instance of MPI_COMM_WORLD. Separate calls to the spawning function result
in multiple instances of the global intracommunicator. The current implementation
of MPI_COMM_WORLD has two major drawbacks that collide with the dynamic process
management interface: (1) those processes encapsulated within the same instance of
MPI_COMM_WORLD cannot release resources and finalize their execution until every pro-
cess in the intracommunicator has made a call to the finalize routine MPI_Finalize,
and (2) an instance of the global intracommunicator cannot be deallocated at run-
time. These represent a problem for process removal in MPI dynamic applications:
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e Those processes started with the mpirun or mpiexec command cannot be re-
moved individually at runtime. They only can be removed from the program
when all of them invoke MPI_Finalize.

e Multiple processes spawned in the same call to MPI_Comm_spawn or MPI_Comm_
spawn_multiple cannot be removed individually at runtime. They only can be
removed from the program when all of them invoke MPI_Finalize.

While the first issue is a hard constraint imposed by the MPI standard and
its implementations, the second issue can be solved by spawning new processes in
separate calls to the spawning functions. This will allow later to remove each process
separately when the malleability policy or the programmer required it.

Communication with spawned processes in MPI also presents several issues.
MPI_COMM_WORLD is static and newly spawned processes cannot be added or removed.
The static singularity of MPI communicators is a good match to rigid and moldable
applications in which the number of processes and resources allocated remain fixed
during the program execution. However, malleable and evolving applications are not
currently fully-supported by the MPI standard. Theses applications require an ad-
vanced approach to communicate with dynamic processes at runtime. Graham et
al. [GKO09| proposed an approach to add support for fully-dynamic communicators
to the MPI standard. In their proposal, an MPI communicator can change its size
dynamically—grow and shrink. However, the MPI standard does not consider dy-
namic communicators.

The programmer has to explicitly manage communications with dynamic pro-
cesses using the available alternatives offered by the MPI standard. MPI intro-
duced a set of routines to dynamically allocate (MPI_Comm_create) and deallocate
(MPI_Comm_free/MPI_Comm_disconnect) new communicators in the program. These
routines allow to create new communicators that enable communication between
spawning and spawned processes. There are two alternative methods for communi-
cating with dynamic processes in MPI [RWS11]:

e Many communicator method. This method relies on an array of commu-
nicators, each of them point-to-point communicators between each pair of pro-
cesses in the program. These point-to-point communicators are created using
MPI_Comm_connect and MPI_Comm_accept routines, that enable client/server
communication between two groups of processes. Both groups may be com-
posed of one or more processes. Each time MPI_Comm_spawn is invoked, a set of
point-to-point communicators are created between each of the spawning and
spawned processes. The major drawbacks of this method are that it does not
scale well when the number of processes is very large and, more importantly,
it does not allow global collective operations between all processes. Figure 4.8
illustrates the many communicator method in a program with three processes.
Each process p uses a dynamic array that stores in each position ¢ a point-to-
point communicator p > ¢ that communicates processes with ranks p and i.
Each time a reconfiguring action is carried out every process reallocates the
array to adapt it to the new number of processes.
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Figure 4.8: Example of communication between dynamic processes using the many
communicator method

e Merge method. This method uses the merge MPI_Intercomm_merge routine
to merge parent and child intercommunicator into an intracommunicator. The
merged communicator can be successively used to spawn and communicate
new processes in multiple calls to the spawning routine, thus enabling collective
communications with dynamic processes. A drawback of this method is that
MPI_Comm_spawn and MPI_Intercomm_merge are blocking and collective over
all process in the communicators, which may degrade the performance of the
reconfiguration. When using the merge method all processes in the parent
intracommunicator act as parent processes.

Although the work in [RWS11| demonstrates that both methods performed sim-
ilarly in terms of performance, the merge method enables collective communication
operations between all processes. These are essential to the majority of MPI-based ap-
plications. In FLEX-MPI we use the merge method to enable global communications
in malleable MPI applications. Due to the fact that global, static intracommunicator
MPI_COMM_WORLD cannot be used in the merge operation, we use a global intracom-
municator called XMPI_COMM_WORLD that enables communication between processes
in FLEX-MPI programs using the merge method. This communicator is internally
managed by the dynamic process management component of FLEX-MPI. However,
it requries that every occurrence of MPI_COMM_WORLD in the program to be replaced
by XMPI_COMM_WORLD. FLEX-MPI rebuilds the XMPI_COMM_WORLD intracommunicator
in a user-transparent way each time a reconfiguring action is carried out.

4.3.2 Spawn

FLEX-MPI uses the dynamic process management interface of MPI to spawn new
processes in malleable programs. Figure 4.9 shows the parameters of the FLEX-MPI’s
low-level interface XMPI_Spawn. This routine allows to spawn dynamic processes at
runtime and enables communication between processes of the FLEX-MPI application
through the XMPI_COMM_WORLD communicator. XMPI_Spawn takes as parameters the
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XMPI_SPAWN (command, argv, nprocs, info, node_class)
IN  command name of program to be spawned (string, significant only at root)

IN argv arguments to command (array of strings, significant only at root)
IN  nprocs number of processes to start (integer, significant only at root)
IN info set of key-value pairs (handle, significant only at root)

IN  node_classset of identifiers telling the scheduler where to spawn the
processes (array of strings, significant only at root)

int XMPI_Spawn (const char *command, char *argv[], int nprocs,
MPI_Info info, char *node_class[])

Figure 4.9: Parameters of FLEX-MPI’s XMPI_Spawn.

name of the program and the number of new processes to be started, the arguments
to program, and a set of key-value pairs. In addition, the spawning routine takes as
optional input the node class parameter. The scheduler component of FLEX-MPI
uses this parameter to decide where to spawn new processes. Resource management
systems—i.e. Torque resource manager [Sta06]—use identifiers that allow cluster
administrators to create classes of hosts within the cluster. Node identifiers allow
cluster users to request resources by class instead of using the name of a particular
host, which allows to apply more efficient scheduling policies in the cluster. The
node_ class parameter allows the programmer to specify a node class for each new
spawned process. Each node class value must match at least one of the node identifiers
in the cluster. The FLEX-MPI scheduler then uses the node class to allocate the new
process into a particular host which node class matches the host identifier used by
the RMS.

The spawning function creates each of the new processes through a separate
call to MPI_Comm_spawn, thus allowing FLEX-MPI to remove later each dynamic
process individually. Those processes which are dynamically spawned and removed
at runtime are called dynamic processes. However, those processes started with the
mpirun/mpiexec command are static and cannot be removed at runtime. From now
on we refer to this set of processes as the initial set of processes.

Algorithm 1 shows the implementation of the FLEX-MPI’s spawning function.
The algorithm is iterative and the same procedure is repeated for each of the spawned
nprocs processes (line 1). First, the algorithm decides which nodes of the cluster will
allocate the new processes depending on the node class parameter. If provided (lines
2-5), the algorithm uses this parameter to schedule the new process to a particular
host. Otherwise, the algorithm delegates the scheduling task on the MPICH process
manager. The FLEX-MPTI’s scheduler will be covered in detail in Section 4.4. The
FLEX-MPTI’s scheduler uses the node class argument to allocate the new process
to a cluster node whose class corresponds to the class provided by the programmer
(line 3). MPI_Info_set allows to set the info key to the value of the host returned
by the FLEX-MPI scheduler (line 4). The info key is provided to the MPI’s spawn-
ing function MPI_Comm_spawn (line 6) which creates the new process into the host
new_host and returns an intercommunicator (intercomm) between the spawning pro-
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Algorithm 1 Implementation of FLEX-MPI’s XMPI_Spawn.

1: for n =1 to nprocs do

2:  if node class then

3: new_host = Schedule spawn (node_ class|n|);

4: MPI Info set (&info, "host", new_host);

5. end if

6: MPI_Comm _spawn (bin, argv, 1, info, 0, XMPI_COMM _ WORLD, &in-

tercomm, &mpierr);
7. MPI_Intercomm merge (intercomm, 0, &XMPI_COMM_WORLD);
8:  MPI_Disconnect (&intercomm);
9: end for

Algorithm 2 Implementation of FLEX-MPI's XMPI_Spawn for the creation of n
simultaneous processes.

if node class then

new_hosts = Schedule spawn _multiple (node_ class, nprocs);

for n =1 to nprocs do

MPI Info set (info[n|, "host", new_ hosts|n|);

end for
end if
MPI Comm _spawn (bin, argv, nprocs, info, 0, XMPI_COMM _WORLD,
&intercomm, mpierr);
MPI Intercomm merge (intercomm, 0, &XMPI_COMM_WORLD);
: MPI_Disconnect (&intercomm);

© *®

cesses encapsulated within the currently allocated instance of XMPI_COMM_WORLD and
the spawned processes. Then we use the merging function MPI_Intercomm_merge to
create a new, XMPI_COMM_WORLD intracommunicator that encapsulates both spawning
and spawned processes (line 7). Finally we disconnect the intercommunicator since
it will not be used anymore in the execution (line 8).

The design choice described above allows fine-grained control over the num-
ber of application processes to satisfy the performance constraints. The downside is
that process creation time varies linearly with the number of dynamically spawned
processes. For this reason, the current implementation of FLEX-MPI also supports
the creation of n > 1 simultaneous processes. However, due to implementation con-
straints of communicators in MPI, those processes spawned via an individual call to
MPI_Comm_spawn cannot be removed individually in subsequent sampling intervals—
and group termination may negatively affect the application performance. This is a
way to reach a trade off between process creation costs and the granularity of re-
configuring actions (as the number of processes simultaneously created or destroyed)
and may be useful for those execution scenarios which involve the dynamic cre-
ation of a large number of processes. Algorithm 2 shows the implementation of the
FLEX-MPT’s spawning function for the creation of n simultaneous processes via an
individual call to MPI_Comm_spawn.
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Figure 4.10: Actions of the dynamic process management functionality at process
creation.

Figure 4.10 illustrates the behavior of the dynamic process management compo-
nent when two dynamic processes (P3,P4) are added to an FLEX-MPI program al-
ready running on an initial set of processes (P0-2) (step 1). Each of the new processes
is spawned individually. This makes each process have its own (MPI_COMM_WORLD)
intracommunicator. FLEX-MPI spawns the first new process P3 (step 2.a), then
merges the intercommunicator intercomm into a new instance of XMPI_COMM_WORLD,
and deallocates the intercommunicator (step 2.b). Likewise, the dynamic process
management spawns process P4 (step 3.a) and enables communication using the
global intracommunicator XMPI_COMM_WORLD (step 3.b).

4.3.3 Remove

An MPI process finalizes execution by invoking MPI_Finalize. The finalize func-
tion terminates the MPI execution environment and allows the process to release
resources. MPI_Finalize is collective and blocking over all connected processes.
This implies that the process has to be previously disconnected from every com-
municator (i.e. XMPI_COMM_WORLD) before invoking MPI_Finalize. Nevertheless, the
MPI_COMM_WORLD is automatically deallocated by the finalize routine when all pro-
cesses in the communicator reach MPI_Finalize.

Due to these limitations, (1) any of the processes in the initial set can not be
removed at runtime, and (2) only those processes spawned through a separate call to
MPI_Comm_spawn can be removed at runtime. The process removal operation implies
the dynamic process to be disconnected from XMPI_COMM_WORLD. This allows the
process to leave the iterative section of the program and finish execution by invoking
MPI_Finalize.

Figure 4.11 shows the parameters of the FLEX-MPI’s low-level interface XMPI_
Remove. This routine allows the programmer to disconnect dynamic processes that
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XMPI_REMOVE (nprocs, node_class)

IN  nprocs number of processes to remove (integer, significant only at root)
IN node_classset of identifiers telling the scheduler from where remove the
processes (array of strings, significant only at root)

int XMPI_Remove (int nprocs, char *node_class[])

Figure 4.11: Parameters of FLEX-MPI’s XMPI_Remove.

can be removed from the MPI program at runtime. XMPI_Remove takes as input
parameters the number of processes to remove and the node class for each removed
process. The number of processes to remove must be greater than or equal to the
number of dynamic processes running in the application. The scheduler component
uses the node class to decide the host from where the process will be removed.

Algorithm 3 shows the implementation of the FLEX-MPI’s removing function.
The algorithm uses the FLEX-MPI scheduler to obtain the rank of each process
that will be removed (lines 1-7) depending on the node class parameter. If pro-
vided (line 3), the scheduler retrieves the rank of a process running on a cluster node
whose class corresponds to the value of the class in the parameter. Otherwise (line
5), FLEX-MPI randomly chooses the rank of a running process (except root). These
ranks are into an array (remwv_rank). Each process uses a flag word that stores a
value that indicates the status of the process in the program—running or removed.
XMPI_Sched_remove indicates the removed processes to change the flag value when
they are chosen to leave the program execution. FLEX-MPI provides a routine called
XMPI_Get_process_status that allows processes to access the status flag. Using this
functionality each process can evaluate its status when the removing function returns
and, in the proper case, leave the iterative section of the code and finish execution.
The next step in the algorithm consists of creating a group with the processes encap-
sulated within XMPI_COMM_WORLD (line 8), duplicating the intracommunicator (line
9), then deallocating it (line 10). This allows FLEX-MPI to create a new instance of
XMPI_COMM_WORLD that encapsulates only those processes that continue in the pro-
gram execution. The group running group is a group of processes that excludes
those processes that have been scheduled to remove (line 11). Finally, FLEX-MPI
allocates the new intracommunicator (line 12).

Figure 4.12 illustrates the behavior of the dynamic process management func-
tionality when process P4 is removed from the FLEX-MPI application (step 1). First,
the current instance of XMPI_COMM_WORLD is deallocated. This allows disconnect-
ing P4 from the rest of the processes (step 2). A new group is then formed via
MPI_Group_excl to exclude P4, and a new intracommunicator XMPI_COMM_WORLD is
allocated for this group. The status flag of P4 is set to XMPI REMOVE and the
process finishes its execution by calling MPI_Finalize (step 3).

o4



4.3 Dynamic process management

Algorithm 3 Implementation of FLEX-MPI’s XMPI_Remove.

1: for n =1 to nprocs do

2:  if node class then

3 remv_rank[n| = Schedule remove (node_ class|n|);

4. else

5: remv_rank[n| = PickRandomRank (nprocs-n);

6: end if

7: end for

8: MPI Comm _group (XMPI_COMM_WORLD, &group);
9: MPI _Comm _dup (XMPI_COMM_ WORLD, &dupcomm);

10: MPI Comm disconnect (XMPI COMM _ WORLD);
11: MPI __Group ~excl (group, 1, remv_rank, &running group);
12: MPI_Comm_create (dupcomm runnlng_group,&XMPI_COMM_WORLD);
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Figure 4.12: Actions of the dynamic process management functionality at process
removal.

4.3.4 Malleable MPI programs using the FLEX-MPI low-level API

This section shows how to use the FLEX-MPI’s low-level API to create malleable pro-
grams. Figure 4.13 shows the parallel code of a non-iterative SPMD program instru-
mented with the FLEX-MPI low-level API to spawn and remove dynamic processes.
The figure on the left corresponds to the code executed by the initial set of processes,
the figure on the right shows the code executed by the processes that are dynam-
ically spawned and removed. We assume that the programmer initially launches
the program to run with three processes via the command line (mpirun/mpiexec),
spawns three additional processes (XMPI_Spawn), then removes one of the dynamic
processes running on a dual class node (XMPI_Remove). Note that only those processes
in the initial set participate in the spawning action. However, the removing action
involves every process in the execution. After the removing action every process in
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Program: flex_static.c H Program: flex_dynamic.c

» MPI_Allgather (&sendbuf, scount, MPI_INT, &recvbuf, rcount,

MPI_Init (&argv, &argc); MPI_Init (&argv, &argc);

MPI_Comm_rank (XMPI_COMM_WORLD, &rank);
MPI_Comm_size (XMPI_COMM_WORLD, &size);

MPI_Comm_rank (XMPI_COMM_WORLD, &rank);
MPI_Comm_size (XMPI_COMM_WORLD, &size);

XMPI_Spawn (“flex_dynamic”, argv, 3, NULL, NULL); MPI_Allreduce (&sendbuf, &recvbuf, count, MPI_INT,

MPI_MAX, @, XMPI_COMM_WORLD);

MPI_Allreduce (&sendbuf, &recvbuf, count, MPI_INT,

MPI_MAX, @, XMPI_COMM_WORLD); XMPI_Remove (1, NULL);

XMPI_Remove (1, NULL);

status = XMPI_Get_process_status ();

i if (status != XMPI_REMOVED)

MPI_Allgather (&sendbuf, scount, MPI_INT,
&recvbuf, rcount, MPI_INT,
XMPI_COMM_WORLD);

MPI_INT, XMPI_COMM_WORLD);
MPI_Finalize ();

MPI_Finalize ();

PR ——

.............................................................................................................................

Figure 4.13: Malleable program instrumented with FLEX-MPI low-level interfaces.

the dynamic side evaluates its status (XMPI_Get_process_status) and those pro-
cesses flagged as removed reach the finalize function (MPI_Finalize). On the other
hand, the remaining processes perform a collective operation (MPI_Allgather), then
finish their execution.

4.4 Process scheduler

The process scheduler component of FLEX-MPI is responsible for scheduling the
creation and removal of dynamic processes in the system. The MPI standard del-
egates on the implementation the task of process scheduling and mapping of pro-
cesses to processors. For instance, the MPICH implementation features the Hydra
process manager that allows the programmer to decide the process scheduling by us-
ing a set of command-line options when the programmer launches the MPI program
via mpirun/mpiexec. Hydra features several scheduling policies as round-robin, or
process-core binding.

However, the Hydra process manager does not provide such flexibility when
dealing with dynamic processes. Hydra uses a round-robin policy for the spawned
processes via MPI_Comm_spawn. It distributes an equal number of newly spawned pro-
cesses among the available hosts, but the process manager does not track information
about the current number of running processes in each host or the last host in which
a dynamic process was spawned in a previous call to MPI_Comm_spawn. This results
in oversubscribed nodes and performance degradation when dealing with dynamic
processes.

The MPI standard does define a user-level mechanism that allows the program-
mer to specify the host that will allocate the spawned process [CPMT06, CPPT07].
This mechanism the programmer to have control over the scheduling of dynamic
processes and their mapping to processors by setting the MPI_Info argument of
MPI_Comm_spawn to the host name of the compute node where the new process needs
to be allocated. Our scheduler (1) uses the described mechanism to schedule new
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I Sched_spawn (“quad”)

NodeO (quad) Nodel (quad) Node2 (quad) N3 (dual) N4 (dual)

Figure 4.14: Example of process scheduling at process creation with the balance all

policy.

I Sched_spawn (“quad”)

NodeO (quad) Node1 (quad) Node2 (quad) N3 (dual) N4 (dual)

Figure 4.15: Example of process scheduling at process creation with the balance
occupied policy.

processes, (2) tracks the number of MPI running processes on each compute node,
and (3) avoids node oversubscription by balancing the processes between nodes of
the same class.

FLEX-MPT’s process scheduler features two scheduling policies for dynamic pro-
cesses: balance all, and balance occupied. The first one balances the number of pro-
cesses between the available compute nodes of the same node class. The second policy
balances the number of processes between those nodes of the same class where there
is already running at least one MPI process of the malleable application. The first
policy has as a primary goal to minimize the impact of resource sharing—memory,
buses, network devices, etc.—in the application performance. The second one has
as objective to save resources by minimizing the number of compute nodes used by
the application. The programmer can set the scheduling policy as a command-line
argument to FLEX-MPI.

4.4.1 Spawn

Figures 4.14 and 4.15 illustrate the behavior of the scheduling policies at process
creation in FLEX-MPI. The compute cluster consists of five nodes of two differ-
ent classes, quad—equipped with quad-core processors—and dual—equipped with

o7



Chapter 4. Dynamic Process and Data Management in MPI Applications

>

Sched_remove (“dual”)

NodeO (quad) Node1 (quad) Node?2 (quad) N3 (dual) N4 (dual)

Figure 4.16: Example of process scheduling at process removal with the balance all
policy.

Sched_remove (“dual”) A

NodeO (quad) Nodel (quad) Node2 (quad) N3 (dual) N4 (dual)

Figure 4.17: Example of process scheduling at process removal with the balance oc-
cupied policy.

dual-core processors. The malleable application is running with five processes and it
spawns a new dynamic process that needs to be allocated into a quad node. Following
the balance all policy (Figure 4.14), Node2 allocates the new processes in order to
balance the number of running processes between all nodes of the quad class. Oth-
erwise, under the balance occupied policy (Figure 4.15), Nodel allocates the process
in order to balance the number of running processes between those quad class nodes
that have at least one MPI process running (Node0 and Nodel).

4.4.2 Remove

Figures 4.16 and 4.17 illustrate the behavior of the scheduling policies at process re-
moval in FLEX-MPI. In this example a dynamic process is removed from a dual class
node. Following the balance all policy, the process will be removed from Node3, thus
balancing the number of processes running on dual nodes (Figure 4.16). Otherwise,
under the balance occupied policy (Figure 4.17), the dynamic process is removed from
Node/ in order to minimize the number of compute nodes used by the application.

4.5 Data redistribution

The data redistribution component provides a simple mechanism to automatically
move data between processes that operate on multiple data structures through a
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Figure 4.18: Sparse matrix A.

IA = (0012 3 3]
JA =[01230 3]
A=10423091 8]

Figure 4.19: Representation of sparse matrix A in coordinate scheme.

single operation. FLEX-MPI allows automatic redistribution of dense and sparse
data structures with one-dimensional decomposition and block partitioning.

4.5.1 Storage formats

The data redistribution component handles both one-dimensional (e.g. vectors) and
two-dimensional (e.g. matrices) data structures, that can be either dense or sparse.
FLEX-MPI assumes that vectors and dense matrices are stored in one-dimensional
arrays, while sparse matrices use a compressed storage format. FLEX-MPI can re-
distribute vectors and dense matrices stored in arrays, and sparse matrices stored in
CSC (Compressed Sparse Column) or CSR (Compressed Sparse Row) format. These
compressed formats take advantage of the sparse structure of the matrix to reduce
the footprint of the matrix in main memory and support efficient matrix operations.

Figure 4.18 shows a sparse matrix populated primarily with zeros. The basic
approach to represent sparse matrices in memory is the coordinate scheme. The
coordinate scheme uses three one-dimensional arrays of length number of non-zero
entries (nnz) of the matrix. Every nnz element a;; is represented by a triple (i, 7, ai;),
where 4 corresponds to the row index, j is the column index, and a;; is the numerical
value enclosed in the matrix entry. The arrays are usually sorted by row index, then
column index to improve access time. However, row-wise and column-wise operations
on data structures stored in coordinate scheme require very large searching opera-
tions. The first array I A stores the values of i, the second array J A stores the values
of j, and the third array A stores the values of a;;. Figure 4.19 shows the represen-
tation of matrix A in coordinate scheme. For instance, the triple (2, 3,9) represents
that the value of ag 3 is 9.

Compressed formats preserve the high-performance for accessing operations and
also improve the performance of row-wise and column-wise operations by reducing
searching times. These formats are highly efficient for arithmetic operations—i.e.
matrix-vector product—and column slicing. Compressed formats use a representation

99



Chapter 4. Dynamic Process and Data Management in MPI Applications

IA = [0 2 3 4 6]
JA=[01230 3]
A=10423091 8]

Figure 4.20: Representation of sparse matrix A in CSR format.

structure in three arrays 1A, JA, and A. A and JA arrays are equivalent to the
coordinate scheme and their length is nnz. In contrast, in CSR A is an array of
length number of rows of the matrix plus one. I A[i] contains a pointer to the index
of JA that stores the occurrence of the first nnz element of row . The number
of nnz of row i is calculated by IA[i + 1] — [ A[i]. CSC format is similar to CSR
except A stores row indexes and JA contains column pointers. Figure 4.20 shows
the representation of matrix A in CSR format.

4.5.2 Domain decomposition

In parallel computing, decomposition or partitioning refers to the process of break-
ing down the problem into smaller partitions that can be distributed to parallel
tasks. The basic approach to data decomposition among parallel tasks is domain
decomposition. The most common domain decomposition is the one-dimensional do-
main decomposition using a block partitioning scheme [KGGK94|. Block-based, one-
dimensional domain decomposition corresponds to divide the data structure into
sets of rows or columns. Then, each portion of the domain is assigned to a parallel
task that operate on the data partition. Figure 4.21 illustrates the one-dimensional,
column-wise domain decomposition of dense (a) and sparse (b) data structures. One-
dimensional decomposition is performed by dividing the number of columns in the
matrix (V) by the number of processing elements (p).

A large proportion of SPMD applications usually operate on multiple data struc-
tures. However, the vast majority of these applications use the same domain decom-
position for all of their data structures. That is, every process computes the same
partition in each data structure. FLEX-MPI handles parallel applications that oper-
ate on multiple data structure with a global domain decomposition.

In parallel applications, the portion of the domain assigned to each process is
usually expressed as a combination of a count—the number of rows or columns as-
signed to the process—and a displacement. The displacement is the number of rows
or columns that represents the offset of the data partition relative to the starting par-
tition of the structure. FLEX-MPI provides a routine that allows processes to retrieve
the data partition assigned to the process, that changes as result of a data redistribu-
tion operation. Figure 4.22 shows the parameters of FLEX-MPI’s XMPI_Get_wsize.
This routine takes as input the process rank, number of processes, and number of
rows or columns of the data structure and returns the count and displacement of the
portion of the domain that is currently assigned to the process.
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nnz=N2

Process 0 Process 1 Process 2 Process p-1
nnzo=N2/p nnz1=N2/p nnz2=N2/p nnz,.1=N?/p Process O Process 1 Process 2 Process p-1

(a) (b)

Figure 4.21: One-dimensional data decomposition with block partitioning of dense
(a) and sparse (b) data structures.

XMPI_GET_WSIZE (rank, nprocs, count, displ)

IN rank  rank of process (integer)

IN  nprocs number of processes (integer)
OUT count  number of rows/cols (integer)
OUT displ displacement of data (integer)

int XMPI_Get_wsize (int rank, int nprocs, int *count, int *displ)

Figure 4.22: Parameters of FLEX-MPI’s XMPI_Get_wsize.

4.5.3 Data redistribution functionality

The data redistribution functionality provides a set of low-level interfaces to register
data structures and redistribute data. Every data structure susceptible to be redis-
tributed as a result of a load balancing operation or a dynamic reconfiguring action
must be registered in the source code of the program.

Registering routines allow FLEX-MPI to store a pointer to the memory address
of the data structure and the total size of the data, among other properties. This
pointer is then used by the data redistribution routine to access and redistribute data
in a user-transparent way. FLEX-MPI uses a struct type—or in other programming
languages, a record—that holds the properties of the redistributable data structure.
The data redistribution component uses MPI standard messages to efficiently move
data between processes. Registering routines must be also used to register data struc-
tures in FLEX-MPI programs that use the high-level API.

FLEX-MPI focus on MPI applications with distributed data structures in which
data partitions are not replicated among processes. However, certain classes of par-
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XMPI_REGISTER_VECTOR (address, size, datatype, scheme)

IN address pointer to the data structure (void)
IN  size size of data (integer)

IN datatype datatype of elements (handle)

IN scheme  data distribution scheme (handle)

int XMPI_Register_vector (void *address, int size,
MPI_Datatype datatype, XMPI_Scheme scheme)

Figure 4.23: Parameters of FLEX-MPI’s XMPI_Register_vector.

XMPI_REGISTER_DENSE (address, size, datatype, scheme)

IN address pointer to the data structure (void)
IN size size of data (integer)

IN datatype datatype of elements (handle)

IN scheme  distribution scheme (handle)

int XMPI_Register_dense (void *address, int size,
MPI_Datatype datatype, XMPI_Scheme scheme)

Figure 4.24: Parameters of FLEX-MPI’s XMPI_Register_dense.

allel programs commonly operate on data structures that are replicated among pro-
cesses. Data replication implies that every process stores a whole copy of the data
structure. For instance, in parallel linear system solvers that compute the solution
of Ax = b, vector = stores the approximation to the solution calculated in each
program iteration. Each process iteratively updates the partition of the vector that
corresponds to the portion of the domain assigned to the process. However, every
process needs the results calculated by all processes to compute the next program
iteration. For this reason, FLEX-MPI supports redistribution of fully distributed—
disjoint partitions—and replicated data structures.

FLEX-MPTI’s XMPI_Register_vector allows the programmer to register a vector
data structure. Figure 4.23 shows the parameters of this routine. This function takes
as input a user-defined string that identifies the data structure, a pointer to the
memory address of the array that stores the data structure, the data type, the size
of data in number of rows or columns, and the data distribution scheme. The data
distribution scheme takes as possible values either XMPI_DISTRIBUTED for distributed
data structures or XMPI_REPLICATED for replicated data distribution. This function
assumes that the nnz of the data structure corresponds to the value of the size
parameter.

FLEX-MPTI’s low-level interface XMPI_Register_dense allows the programmer
to register dense, 2D data structures—square matrices. Figure 4.24 shows the param-
eters of the registering routine, which interface is similar to XMPI_Register_vector.
XMPI_Register_dense assumes that the nnz of the dense data structure corresponds
to the squared value of the size parameter.
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XMPI_REGISTER_SPARSE (address_ia, address_ja, address_a, size,
datatype, scheme)

IN  address_ia pointer to the IA array (integer)
IN address_ja  pointer to the JA array (integer)
IN address_a  pointer to the A array (void)

IN size size of data (integer)
IN  datatype datatype of elements (MPI_Datatype)
IN  scheme distribution scheme (handle)

int XMPI_Register_sparse (int *address_ia, int *address_ja, int
*address_a, int size, MPI_Datatype datatype, XMPI_Scheme scheme)

Figure 4.25: Parameters of FLEX-MPI’s XMPI_Register_sparse.

XMPI_REDISTRIBUTE_DATA (scount, sdispl, rcount, rdispl)

IN  scount number of rows/cols of current data (integer)
IN  sdispl displacement of current data (integer)

IN  rcount number of rows/cols of new data (integer)
IN  rdispl displacement of new data (integer)

int XMPI_Redistribute_data (int scount, int sdispl, int rcount,
int rdispl)

Figure 4.26: Parameters of FLEX-MPI’s XMPI_Redistribute_data.

XMPI_Register_sparse is the low-level interface provided by FLEX-MPI to
register sparse data structures. Figure 4.24 shows the parameters of this routine. In
addition to the user-defined identifier, this function receives as input the addresses of
the three arrays (I A, JA, A) that store the sparse matrix, the data type of the matrix
values stored in A, the coefficient represented as the number of rows or columns, the
number of nnz of the matrix, and the data distribution scheme.

Registering functions must be placed in the code after the memory allocation of
each data structure susceptible to be redistributed, thus allowing FLEX-MPI to ac-
cess the address of each redistributable data structure. Once the data structures have
been registered, FLEX-MPI allows automatic redistribution of multiple data struc-
tures. FLEX-MPI’s XMPI_Redistribute_data provides the data redistribution func-
tionality in FLEX-MPT applications. This function allows the programmer to indicate
the current domain partition assigned to each process and the new domain partition
that each process will receive as result of the redistribution operation. Then, FLEX-
MPI uses MPI messages to move data partitions from old to new owners in a user-
transparent way. Figure 4.26 shows the parameters of XMPI_Redistribute_data.
This routine takes as input arguments the count (scount) and displacement (sdispl)
of the currently assigned domain partition and the count (rcount) and displacement
(rdispl) that indicate the new partition of the domain assigned to the process.

Algorithm 4 shows the implementation of FLEX-MPT’s
XMPI_Redistribute_data. This function performs data redistribution of every
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Algorithm 4 Implementation of FLEX-MPI’s XMPI_Redistribute_data.

1: for n =1 to ndata_structures do
2:  (scounts, sdispls, rcounts, rdispls) < calculatePartitions (scount, sdispl,
rcount, rdispl);
3: retrieveAddress (id[n|, &old partition|n|, &scheme[n]);
. if scheme[n| == XMPI _DISTRIBUTED then
5: MPI _Alltoallv (scounts, sdispls, &old_partition|n|, rcounts, rdispls,
&new _partition|n]);
6: else if scheme[n] == XMPI REPLICATED then
: MPI _Allgatherv (scounts, sdispls, &old_ partition[n|, rcounts, rdispls,
&new _partition|n]|);
8: end if
9: reassignPointer (&old partition|n|, &new partition|n|);
10: end for

data structure that has been previously registered (line 1). Since this function
receives as input the definition of the data partitions as a combination of the count
and displacement, calculatePartitions (1) computes the number of elements of the
data partition, and (2) returns four arrays that contain the number of elements
(scounts) and displacements (sdispls) of every data partition assigned to every pro-
cess and the number of elements (rcounts) and displacements (rdispls) of every new
data partition requested by every process (line 2). Then, retricveAddress uses the
user-defined identifier (id[n]) to retrieve the memory address (old _partition) and
the data distribution scheme (schemeln|) of the data structure (line 3). Depending
on the distribution scheme (line 4) the algorithm performs either MPI_Alltoallv
(line 5) or MPI_Allgatherv (line 7). MPI_Alltoallv allows to move data from
all to all processes, which is useful for redistributing distributed data structures.
MPI_Allgatherv gathers data from all processes and then delivers the combined
data to all processes, which is useful for data redistribution of replicated data
structures. The algorithm shows a simplified version of the actual implementation of
XMPI_Redistribute_data. Since sparse data structures are stored in three arrays,
redistributing sparse data implies to perform three MPI communication operations.
XMPI_Redistribute_data considers the type of the data structure—dense or
sparse—in order to perform the appropriate redistribution. Finally, we reassign the
old partition pointer to point to the address of the new partition, thus enabling the
process to access the new data partition (line 9).

4.6 Summary

In this section we describe the low-level functionalities of FLEX-MPI. These func-
tionalities are encapsulated in the process and data management layer of the FLEX-
MPI library. The monitoring component provides the performance monitoring and
communication profiling functionalities by means of hardware performance counters
and PMPI. The dynamic process management component of FLEX-MPI supports
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the creation and removal of dynamic processes in malleable applications and also
handles communications between processes. FLEX-MPI uses a global communicator
that enables communication between static and dynamic processes in malleable pro-
grams. The process scheduler is responsible for supporting the scheduling of dynamic
processes in the system taking into account the current availability of resources. The
data redistribution component provides a mechanism that redistributes the data be-
tween processes. The major feature of the data redistribution functionality is that it
redistributes multiple data structures through a single function call, thus minimizing
modification of the source code of the application. We also describe the low-level API
that provides access to low-level functionalities of the FLEX-MPI API.
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Chapter 5

Dynamic Load Balancing and
Performance-aware Malleability in

MPI

5.1 Introduction

In this chapter we describe the design and implementation of the software compo-
nents of the malleability logic layer of FLEX-MPI (Figure 5.1). These components
provide the high-level functionalities of FLEX-MPI: dynamic load balancing, per-
formance prediction, and performance-aware dynamic reconfiguration. This chapter
also describes the high-level application programming interface that provides access
to those functionalities of the malleability logic layer of FLEX-MPI.

FLEX-MPI library

Malleability logic layer

Figure 5.1: Malleability logic layer inside the FLEX-MPI library.

67



Chapter 5. Dynamic Load Balancing and Performance-aware Malleability in MPI

Table 5.1: FLEX-MPI high-level interfaces.

Interface Description

XMPI_Monitor_si_init Starts sampling interval monitoring

XMPI_Eval_lbalance Evaluates dynamic load balancing
XMPI_Get_data Retrieves data (significant to newly spawned processes)
XMPI_Eval_reconfig Evaluates dynamic reconfiguration

(including dynamic load balancing)

The functionalities of the malleability logic layer are high-level because adap-
tive actions are carried out without user intervention. The user does impose the
performance objective of the application and the performance constraints that the
parallel application must satisfy. Base on the performance criteria, FLEX-MPI’s
high-level functionalities decide to reconfigure the number of processes and rebal-
ance the workload guided by the current performance data provided by the low-level
monitoring component, the future application performance predicted by the compu-
tational prediction model, the malleability policy, and the availability of resources in
the system. The malleability policy uses low-level dynamic process management and
process scheduler components to change the number of processes at runtime. The
dynamic load balancing component uses the low-level data redistribution component
to redistribute the workload as result of a load balance operation.

Table 5.1 summarizes the high-level interfaces of the FLEX-MPI API that pro-
vide automatic, dynamic load balancing and performance-aware dynamic reconfig-
uration. Adaptive actions are performed at the end of every sampling interval—
consisting of a fixed, user-defined number of consecutive program iterations that can
be set as a command line argument to the FLEX-MPI program. At the end of every
sampling interval FLEX-MPI evaluates the performance of the application based on
the performance metrics gathered by the monitoring component during the sampling
interval. By default, FLEX-MPI uses a sampling interval of 100 iterations. However,
a different value can be set by the user as an option-argument to the FLEX-MPI
program.

FLEX-MPTI’s high-level API provides a routine to monitor the performance of
the application at the granularity of sampling interval. XMPI_Monitor_si_init func-
tion does not takes input parameters. This routine feeds the routines that evaluate
adaptive actions—XMPI_Eval_lbalance and XMPI_Eval_reconfig—with the perfor-
mance metrics collected during a given sampling interval. In addition, XMPI_Get_data
allows dynamically spawned processes to retrieve their data partition from the cur-
rent data owners using the data redistribution functionality. This function returns
the current program iteration so dynamic processes can compute only the remaining
iterations. For instance, a dynamic process spawned at iteration ¢ will compute only
n — ¢ iterations, where n is the total number of iterations of the program.
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5.2 Dynamic load balancing

This section describes the high-level functionalities provided by the dynamic load
balancing (DLB) component of FLEX-MPI. Load balancing is a major issue in par-
allel applications [LTWO02| because it can have a huge impact on the overall perfor-
mance of the program. In parallel applications, the slowest process determines the
global performance of the program. Load balancing aims to maximize times while
the processor is performing work and minimize processor idle times, thus maximizing
application throughput and efficiency of resource usage.

The basic approach to load balance is to use an static approach and distribute
equal amounts of work to each process in the parallel application—the workload
distribution is fixed during program execution. Static load balancing algorithms do
not rebalance the workload at runtime. However, today’s parallel applications may
face complex execution scenarios that require adaptive load balancing approaches.
We identify five issues that lead to load imbalance in parallel applications under a
static load balancing approach.

e Irregular applications. Irregular applications exhibit variable workloads and
irregular communication patterns during execution. In these applications the
amount of work each process will perform cannot be predicted, therefore it can-
not be assigned statically at program start. Current high-performance comput-
ing systems are optimized for data locality and applications that exhibit regular
computation and communication patterns [TF15|. In recent years, the emer-
gence of applications with irregular patterns and unpredictable data accesses
require optimized approaches for these issues [FTM™14].

e Sparse data structures. Static load balancing algorithms evenly distribute
the same amount of data among processes using column-wise or row-wise de-
composition. However, on sparse data structures non-zero elements are un-
evenly distributed. Sparse data structures result on unpredictable data accesses
to memory, which incur on large overheads and degraded performance. This
leads to load imbalance in parallel applications which workload depends on the
number of non-zero elements of the data partition. Furthermore, for certain
classes of problems their workload depends not only in the mnz but in the
values of the elements of the data structure.

e Dynamic parallel applications. Reconfiguring actions involve changing the
workload distribution of the application. Dynamic parallel applications require
a mechanism to change the data distribution of the application and achieve
load balance each time a reconfiguring action is performed. However, static
approaches do not support parallel applications with dynamic creation and
termination of processes.

e Heterogeneous systems. Parallel applications running on computing plat-
forms which consist of non-identical machines require non-uniform workload
distribution. The idea consists of assigning to each processing element (PE)
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a workload partition that is proportional to its computing power. Static ap-
proaches require prior knowledge about the underlying architecture, which is
not always feasible.

e Non-dedicated systems. In non-dedicated systems computing resources such
as CPU, memory, or buses are shared between multiple user programs. This
source of overhead can have a huge impact on the performance of the processor
that cannot be predicted. Parallel applications that run on non-dedicated sys-
tem require adaptive approaches that handle workload distribution to adapt it
to variable overheads.

These issues highlight that static load balancing algorithms cannot cope with
parallel applications that run on complex scenarios. Dynamic load balancing algo-
rithms, on the other hand, allow to change the workload assignments at runtime, thus
supporting dynamic parallel applications with irregular computation and communi-
cation patterns, applications that operate on sparse data structures, and complex
execution scenarios such as heterogeneous and non-dedicated systems. The mech-
anism that detects load imbalance can be implemented using time measurements,
then comparing execution times between processes.

FLEX-MPI implements a dynamic load balancing technique for SPMD ap-
plications that uses performance metrics collected by the monitoring functional-
ity to detect load imbalance and make workload distribution decisions. One of the
main advantages of this approach is that it does not require prior knowledge about
the underlying architecture. The DLB technique implements a coordination-based
method [Don98|. This means that all the processes synchronize at pre-defined times
and evaluate the load balancing algorithm. We consider to balance the application
workload (1) at the end of every sampling interval when the algorithm detects load
imbalance and (2) after a reconfiguring action—either to spawn or remove processes.

Figure 5.2 illustrates the dynamic load balance of a FLEX-MPI application
running on a heterogeneous dedicated system. Initially, the programmer distributes
equal amounts of data to each process. This results inefficient because the slowest
process (P2) forces other processes to wait idle until it finishes computation (a).
At the end of the sampling interval, the DLB algorithm of FLEX-MPI detects load
imbalance and computes a new workload distribution. The load balancing mechanism
detects load imbalance when the difference between the execution times of fastest and
slowest processes surpasses a pre-defined threshold. The new workload distribution
results in minimizing wait times and leads to an overall performance improvement
(b).

Figure 5.3 illustrates the data redistribution operation as result of the load
balancing operation in the FLEX-MPI application. Initially, the data structure is
distributed evenly (a), which leads to load imbalance because processes PO and P2
are running on processing elements more powerful than those processing elements
allocated to P2 and P3. The new workload distribution computed by the load balanc-
ing algorithm implies a data redistribution operation between processes (b). After
data redistribution the new data partitions are available to the processes (c).
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Figure 5.2: Dynamic load balance of a parallel application running on a heterogeneous
dedicated system.
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Figure 5.3: Workload distribution as result of a load balancing operation.

FLEX-MPI provides a high-level interface that allows the programmer to ac-
cess to the dynamic load balancing functionality. Figure 5.4 shows the parameters of
FLEX-MPT’s high-level XMPI_Eval_lbalance. This routine takes as input the pro-
cess rank, the number of running processes, the current iteration, the maximum
number of iterations allowed to perform, and the count and displacement of the cur-
rently assigned data partition—these will be automatically updated by the routine
with the count and displacement of the new data partition as result of the load
balancing operation. Additionally, the load balancing routine takes as input an op-
tional parameter (weight)—a double array of size the number of rows/columns of
the data structure. This optional parameter is used by the load balancing policies of
FLEX-MPI to make workload decisions, which are explained below.

FLEX-MPI implements two load balancing policies that optimize workload bal-
ance depending on the type of parallel application. The load balancing policy is
decided by the user, who provides the policy as a command line argument to the
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XMPI_EVAL_LBALANCE (rank, nprocs, it, maxit, count, displ, weight)

IN rank  rank of the process (integer)

IN nprocs number of processes (integer)

IN it current program iteration (integer)

IN maxit  maximum number of program iterations (integer)

INOUT count number of rows/cols of current data partition (integer)
INOUT displ  displacement of current data partition (integer)
IN weight array indicating the column-wise or row-wise workload (double)

int XMPI_Eval lbalance (int rank, int nprocs, int it, int maxit,
int *count, int *displ, double *weight)

Figure 5.4: Parameters of FLEX-MPI’s high-level XMPI_Eval_lbalance.

FLEX-MPI application. The first load balancing policy—XMPI_LB_NNZ—is suited to
parallel applications in which their workload depends on the number of non-zero ele-
ments of the data partition. This policy balances the workload by assigning to every
PE a data partition that contains the same number of non-zero elements. In this
case the weight array is unused. The second policy—XMPI_LB_WEIGHT—is suited to
parallel applications that operate on data structures in which their workload depends
on the values of the elements of the data structure. In this case the user must provide
the weight array. Each element of the array indicates the workload associated to the
row-wise or column-wise entries of the data structure.

Figure 5.5 illustrates an example of the load balancing of a data structure (a)
using different load balancing policies to balance the workload depending on (b) the
nnz and (c) the row-size or column-wise weights of the data structure. The column-
wise weights are calculated as follows: the array stores the number of positive column
elements (Figure 5.5 (a)). If the process workload depends on the number of non-zero
elements the load balancing algorithm distributes to each process a data partition
that contains the same number of nnz (Figure 5.5 (b)). Otherwise, if the process
workload depends on the values of the column-wise entries (i.e. the application com-
putes a function with the positive entries) the load balancing algorithm uses the
weight array. In this case the load balancing algorithm distributes to each process
a data partition of the same weight (Figure 5.5 (c)). This behavior provides high
flexibility since the array is provided by the user to the balancing operation. The
user can adapt the values of the array to the workload pattern and data structures
of each application.

5.2.1 Dynamic load balancing algorithm

FLEX-MPI’s dynamic load balancing algorithm balances the workload of both reg-
ular and irregular parallel applications, that operate on dense and sparse data struc-
tures, running on both homogeneous and heterogeneous systems. These systems can
be either dedicated or non-dedicated.
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Figure 5.5: Comparison of FLEX-MPT’s load balancing policies for (a) a data struc-
ture depending on (b) the nnz and (c) the weight.

In non-dedicated systems multiple user applications run concurrently and share
the computing resources of the compute nodes. Sharing resources means that appli-
cations have interferences which degrade their performance. Balance the workload of
parallel applications that run on non-dedicated systems represents a challenge be-
cause resources such as the CPU time allocated to the processes fluctuates over time.
Furthermore, the frequency and magnitude of the interference is unpredictable.

Our approach considers two types of external interferences: burst and long —
term interferences. Burst loads correspond to short-duration interferences which do
not significantly affect the application performance. Long-term interferences reduce
the CPU time allocated to the application thus affecting its performance. FLEX-MPI
is able to discriminate between these two kinds of loads and effectively balance the
application workload depending on the magnitude of the interference. FLEX-MPI
takes into account the overhead of the data redistribution operation associated to the
load balancing operation. The most useful approach is to tolerate short interferences
as to avoid the cost of rebalancing too eagerly. Otherwise, the algorithm rebalances
the workload when it detects a long-term interference present in the PEs.

The DLB algorithm implements a mechanism to discriminate between burst and
long-term interferences. We introduce a user-defined parameter k that represents the
sensibility of the algorithm to identify interferences as long-term loads. When a PE
has been running in non-dedicated mode during k£ consecutive sampling intervals
it is considered that long-term interference is present on that PE. In that case,
the workload should be considered to be redistributed because the interference is
responsible for the load imbalance.

Figure 5.6 illustrates the dynamic load balance of a parallel application running
on a heterogeneous, non-dedicated system. Besides the workload imbalance, a long-
term interference is present in two of the processing elements (a). The interference
increases load imbalance, thus degrading significantly the overall performance. The
load balancing algorithm takes into account both the interferences and the hetero-
geneous performance of the PEs to balance the workload of the parallel application,
thus minimizing the execution time of the program (b).
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Figure 5.6: Dynamic load balance of a parallel application running on a heterogeneous
non-dedicated system from sampling interval n (a) to n+ 1 (b).

Algorithm 5 shows the implementation of the dynamic load balancing algorithm
of FLEX-MPI. This algorithm is evaluated at the end of every sampling interval n.
The first step (lines 1-6) evaluates the load balance of the application. Function
evaluate LoadBalance (1ine 1) detects load imbalance when the difference between
the execution times (T'real) of fastest (min(Treal)) and slowest (max(Treal)) pro-
cesses is larger than a user-defined threshold value (T'Hy). If so, the application
workload is more unbalanced than what the user can tolerate.

The second step (lines 8-12) evaluates which of the processing elements in-
volved in executing the parallel application are dedicated and which not. When the
difference between the CPU time (T'cpu) and the real time (T'real) of a processing
element is small we can safely assume that it executes only the MPI process. Oth-
erwise, when the real time is significantly higher than the CPU time then the PE is
being shared between multiple processes of different user applications. The real time
counts the time during the processing elements is performing computation and the
overhead of the interference. The CPU time, on the other hand, only counts the dime
during the PE is performing computation. The real time is always a little higher than
the CPU time because of OS noise and interrupts. Function evaluate Local Dedicated
(line 8) uses a threshold parameter T'Hs to account for this overhead and mark the
difference between dedicated and non-dedicated processing elements. We consider
that values of the real time that surpass the CPU time by 5% are reasonable for
setting the tolerance threshold T'Hs between OS noise and interference.

Next step (lines 14-19) evaluates if any PE allocated to the parallel application
has been running non-dedicated during the current sampling interval n. Function
evaluateGlobal Dedicated (line 14) gathers the dedicated status of all processing
elements and returns true in case all of them have been running dedicated during the
sampling interval. Otherwise, it returns false in case of a non-dedicated system—that
is, any of the PEs has been running non-dedicated. The algorithm stores the result
in a circular buffer (dedicated system) of length K.
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In case the system has been running non-dedicated during the current sam-
pling interval n (line 21) the algorithm evaluates (line 26) whether the inter-
ference is burst or a long-term interference. Function evaluateInter ference (line
22) evaluates and returns the type of interference. If the system has been running
non-dedicated during the last k£ sampling intervals it is considered that long-term
interference is present on the system and the workload should be considered to be
redistributed. Otherwise, the interference is considered as an isolated burst.

When a bursty interference is detected, the algorithm tolerates it without per-
forming load balancing for (k—1) consecutive sampling intervals. In the £*" sampling
interval one of two things will happen: (1) either there will be another burst, in which
case it leads to the conclusion that rather than a series of bursts, a long-term load
is present and the workload will be rebalanced taking into account the interference,
or (2) the processing elements will run in dedicated mode, in which case it will also
be a candidate for load balancing evaluation.

The algorithm evaluates (1ine 29) whether it should redistribute the workload
if the workload is unbalanced and either (1) the system has been dedicated during
the current sampling interval but the application is unbalanced or (2) long-term
interference is detected on any of the PEs and it is leading to load imbalance. To
effectively balance the workload, the algorithm distributes to each process a data
partition which workload is proportional to the relative computing power of the
PE on which it is running. The relative computing power of processing element
i (RCP;) [BGB06, MAG'11] is computed as the computing power of the PE (in
FLOPS) divided by the sum of the computing power of the p PEs on which the
MPI program is running.

When the application is evaluated for load balancing, function compute FLOPs
(lines 31-34) computes the computing power of each PE i as the number of
FLOPS performed during the sampling interval. In order to effectively compute
the current computing power of the PE we use the real time, because it takes into
account, if exists, the magnitude of the interference.

Function compute RC'P (1ines 36-40) computes the relative computing power
of each processing element ¢ using hardware performance counters. The RC'P is used
by the algorithm to compute the new workload distribution (1ines 42-48). Function
computeDataDistribution (line 42) computes the new workload distribution—
count and displacement of each new data partition—depending on the RC' P of each
processing element. The data redistribution component uses the new workload dis-
tribution to make available the new data partitions to the processes.

FLEX-MPI also balances the application workload after a reconfiguring action
is carried out by applying the kernel section of the DLB algorithm (lines 31-48).
In case of a process spawning action, FLEX-MPI distributes to new processes a data
partition that is proportional to their computing power. FLEX-MPI estimates the
computing power of newly spawned processes assuming that their computing power
is the same as processes currently allocated to PEs of the same processor class.
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Algorithm 5 Implementation of the FLEX-MPI’s dynamic load balancing algo-

rithm.
1: /* evaluateLoadBalance:
2: « MPI_ Allgather (Treal;, Treal)
3: * return true if (max(Treal) — min(Treal))/max(Treal) > TH;y
4: =« else false
5: %/
6: load imbalance < evaluateLoadBalance (Treal;, TH;)
7
8: /* evaluateLocalDedicated:
9: * return true if (Treal; — Tcpu;)/Treal; > THy
10: * else false
11: * /
12: dedicated_PE; + evaluateLocalDedicated (Treal;, Tcpu;)
13:
14: /% evaluateGlobalDedicated:
15: « MPI Allgather (dedicated PF;, dedicated PE)
16: * return true if all(dedicated PE]]) == true
17: * else false
18: x/
19: dedicated system[n%k] < evaluateGlobalDedicated (dedicated PE;)
20:
21: if (dedicated system[n%k] == false) then
22:  /x evaluatelnterference:
23: x return long _term if during last k(dedicated system[]) == false
24: * else burst
25: */
26:  inter ference < evaluatelnterference (dedicated system, k)
27: end if
28:
29: if ( (load _imbalance == true) and
( (dedicated system[n%k] == true) or (inter ference == long term) ) then
30:
31: /% computeFLOPS:
32: x return FLOPS,; «+ FLOPs;/Treal;
33: x/
34:  FLOPS; + computeFLOPS (FLOPs;, Treal;)
35:
36: /% computeRCP:
37: * MPI_Allreduce (FLOPS;, FLOPS,MPI_SUM)
38: * return RCP; + FLOPS,;/FLOPS
39: */
40:  RCP; < computeRCP (FLOPS,)
41:
42: /% computeDataDistribution:
43: x data__distribution[i].count + data_ structure.size * RC'P;
44: x data__distribution[i].displ <
45: x data__distribution[i — 1].count + data__distribution|i — 1].displ
46: x return data_distribution
47: */
48:  data_ distribution < computeDataDistribution (RCP;)
49: end if
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Figure 5.7: Load balancing operations performed by FLEX-MPT after process spawn-
ing (b) and process removing (c) actions.

This first estimation is then revised in subsequent sampling intervals using per-
formance metrics collected at runtime. Otherwise, in case of a process removing
action, the data partition of removed processes is distributed to those processes that
remain in the execution. The DLB algorithm computes a new workload distribution
in which each remaining process increases its data partition by a portion of the data
partition of the removed processes that is proportional to their computing power.

Figure 5.7 illustrates an example of the load balancing operations performed by
FLEX-MPI to balance the workload of a malleable application running on three pro-
cesses (a). The parallel application is running on a heterogeneous dedicated system
which consists of a PE allocated to process P2 that is twice as powerful the process-
ing elements allocated to processes PO and P1. FLEX-MPI spawns two processes and
schedules them to processing elements of the same type of the PE allocated to PO
(b). This results in a new workload distribution that assigns to processes P2-4 a data
partition of twice the size of the data partitions assigned to processes PO and P1. In
the third step, FLEX-MPI removes the dynamic process P4 and the load balancing
component rebalance the workload among the remaining processes (c).

5.3 Computational prediction model

This section describes the functionalities provided by the computational prediction
model (CPM) component of FLEX-MPI. The CPM implements a mathematical
model that allows the malleability policies to estimate the application performance
during the next sampling interval. The FLEX-MPI’s malleability policies evaluate
at the end of every sampling interval whether a reconfiguring action—either to ex-
pand or shrink the number of processes—might represent a benefit to the application
performance or not. Therefore, after that evaluation one of the two following things
will happen: (1) the policy decides to reconfigure the program to run on a different
processor configuration or (2) the policy decides that the current processor configu-
ration is the best suited to the application performance. A processor configuration
consists of a set of processing elements allocated to the MPI program.

7



Chapter 5. Dynamic Load Balancing and Performance-aware Malleability in MPI

The execution time of a parallel application (Ty;) during a sampling interval
(si) depends on the computation time (Ttomputation) and the communication time
(Teommunication) (Equation 5.1). In this work we assume that the MPI application uses
synchronous MPI communication operations. We assume that the synchronization
overhead counts as part of the communication time of the application.

Tsz’ = L computation + Tcommunication (51)

Besides the number of processes and the algorithm, the execution time of a par-
allel application during a sampling interval depends on: the processor configuration
performance and the system network performance. The values that model both type
of components are provided as input to the CPM. The monitoring component feeds
the runtime performance metrics (collected via PAPI) to the CPM that allow it to
estimate the computation cost of the application. To effectively estimate the commu-
nication cost of the application the CPM uses profiling data (collected by monitoring
via PMPI) and the system network performance. The network performance depends
both on the network topology and the network technology—that are specific to the
system environment.

However, a reconfiguring action involves changing the number of processes and
the workload distribution of the applications. These implies the overheads for the pro-
cess creation and termination operations (Tyoyerhead process reconfig), @ well as for the
data redistribution operations (Tyyerhead data redi;). Th&efore, the execution time
of a malleable application during a sampling interval that follows the reconfiguring
action (Ts;) is computed as Equation 5.2.

Tsir = Tcomputation + Teommunication + Toverheadﬁpracess77”econfig + Toverheadidatairedist
(5.2)
The overhead of data redistribution also depends on the system network per-
formance and size of data transferred, that is calculated at runtime. The overhead
of process creation and termination depends on the number of process spawned or
removed, the operating system, and the size of the program binary. Therefore, these
overheads are specific to the underlying hardware, the system environment, and the
application characteristics.

5.3.1 Modeling the computation cost

To estimate the computation time of the application during the next sampling inter-
val, FLEX-MPI implements different approaches depending on the type of parallel
application. We consider regular and irregular parallel applications. Regular parallel
applications are those with regular computation patterns. That is, all iterations of
the application are identical on terms of execution times. Irregular applications, on
the other hand, exhibit irregular computation and communication patters. In irreg-
ular applications computation times fluctuate, and the number of communications
and the size of data transferred vary over time.
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For parallel applications with regular computation patterns FLEX-MPI uses
linear extrapolation to predict the number of FLOPs in the next sampling interval
based on the values of FFLOPs gathered in the past intervals. Instead of assuming
that all iterations of the application are identical, we use extrapolation to account
for slightly variations that can be detected at runtime.

For those applications with irregular computation patterns FLEX-MPI uses a
profiling of the parallel application prior to the malleable execution. This profiling
collects the number of F'LOPs computed by the application in a previous execution
that is representative of the usual computation pattern of the application. The reason
to use profiled data is that there is no reliable method to predict the computation
pattern of irregular applications [KP11]. To provide an accurate estimation, the com-
putational prediction model of FLEX-MPI uses the number of F'LOPs collected at
runtime to correct differences between the profiled and measured performance. When
the CPM detects a significant difference between profiled data and performance data
collected during the last sampling interval, we calculate a correction factor that is
applied to compute the estimation for the next sampling interval.

Once the CPM has estimated the number of F'LOPs, it uses Equation 5.3 to
calculate the predicted computation time for the next sampling interval. It takes as
inputs the estimated FLOPs and the computational power (in FLOPS) of each
processing element (p) allocated to the program.

FLOPs
Tcomputati(m = Z;ﬁ 1 FLOP Sp

(5.3)

5.3.2 Modeling the parallel communication cost

As explained in Section 5.3 the performance of communications in a parallel ap-
plication depends on the network topology and the network technology used. The
network topology describes the arrangement of compute nodes on the system. There
are two types of network topologies: physical and logical. Physical topology refers
to the physical placement of nodes and the way they are actually connected to the
network through switches and cables that transmit the data. Logical topology in con-
trast defines how the data passes through the network without regard to the physical
interconnection of the nodes. Indeed a network’s logical topology usually does not
correspond to its physical topology. The most common yet basic logical topologies
are bus, star, ring, mesh, and tree [Hal09].

Network technology refers to the technologies used to interconnect nodes on
the system. The most popular high-performance network technologies for HPC sys-
tems are Ethernet [MB76], Myrinet [BKS*95], and Infiniband [A*00]. In the latest
TOP500 [MSDS12| list (November 2013), the number of supercomputer using Eth-
ernet interconnect is 42.40%, while 41.20% use Infiniband, and only 0.2% of the
supercomputers use Myrinet.

High-performance networks aim to minimize latency and maximize bandwidth
thus increasing communication performance. Network topology and technology affect
the latency and bandwidth of the system network. For instance, while Infiniband
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and Ethernet—in their most advanced versions—offer high bandwidths of up to 100
Gigabits per second, Infiniband offers lower latency but at higher costs.

Furthermore, MPI communication performance also depends on the MPI imple-
mentation used. Several MPI implementations implement some different optimiza-
tion techniques to improve the performance of communication. For instance, MPICH
implements Nemesis [BMGO06a, BMGO6b]—a communication subsystem that fea-
tures optimization mechanisms for intranode communication in shared memory sys-
tems. Other MPI implementations are specifically designed for a particular network
technology—such as MVAPICH |[KJP08|, an implementation designed for MPI on
Infiniband.

There are several parallel communication models (PCMs) to model the
performance and predict the execution time of MPI point-to-point and collec-
tive communication operations, the most known of which are LogGP [AISS95]
and PLogP |[KBV00]—which are based on LogP [CKP'93]—and the Hockney
model [Hoc94]. These models use a set of standardized system parameters to ap-
proximate the performance of the algorithms which implement the MPI operations.

PCMs based on LogP describe a communication network in terms of latency (L),
overhead (o), gap per message (g), and number of process involved in the communi-
cation operation (P). LogP models the time to send a constant-size, small message
between two nodes as L + 20 assuming that a sender’s delay g between consecutive
communication. LogGP extends LogP model to consider transmission of large mes-
sages. It introduces a new parameter (G) that represents the gap per byte and models
the time to send a message of size m between two nodes as L+20+ (m —1)G. PLogP
is another extension to LogP model that considers that latency, gap, and overheads
are dependent on message size. It introduces sender (o5) and receiver (o, ) overheads
and models the time to send a message between two nodes as L + g(m). Gap param-
eter in PLogP is defined as the minimum delay between consecutive communication,
implying that g(m) > os(m) and g(m) > o,(m).

The Hockney model, on the other hand, characterizes a communication network
in terms of latency and bandwidth. Hockney model assumes that the time to send a
message of size n—in bytes—between two nodes is « + nf, where « is the network
latency, and ( is the transfer time per byte. The Hockney model assumes the same
latency and bandwidth between every pair of nodes of the network. A flat network—
in which all nodes are connected to a central switch—provides that connectivity
properties. In this work we use the Hockney model to predict the execution times
of MPI communication operations in FLEX-MPI because the specification of the
MPICH implementation provides the cost models based on the Hockney model for all
algorithms of synchronous, point-to-point and collective operations [TRG05, TGO3].

In addition to o and 8 parameters, the MPICH cost models use two more param-
eters: p—the number of processes involved in the communication, and y—used for
reduction operations. y characterizes the computation cost per byte for performing
the reduction operation locally on any process |[TRGO05|. Table 5.2 summarizes the
cost models based on the Hockney model for the algorithms of several MPI routines
as provided by MPICH.
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Table 5.2: Algorithms and their cost for MPI routines in MPICH.

MPI routine Algorithm Duration
MPI_Send/MPI_Recv T=a+np
MPI_Bcast Binomial tree T = [logp|(a + nf3), for short messages (< 12KB) or p < 8

Van de Geijn’s

T=(logp+p—1a+ 2”}'%1715, otherwise

MPI_Scatter

Binomial tree

Tzlogpa—i—%nﬁ

MPI_Gather

Binomial tree

Tzlogpa—k%nﬁ

MPI_Allgather

Recursive-doubling

Ring

T =logp o+ %nﬁ, for short- and medium-size messages (< 512KB)

T=(p-1a+ Z%lnﬁ, otherwise

MPI_Reduce

Binomial tree

Rabenseifner’s

T = [logp|(a + np + n7y), for short messages (< 2KB)

T=2logp a+ 2%nﬁ + pp%ln% otherwise

MPI_Allreduce

Recursive-doubling

Rabenseifner’s

T =logp a+nlogp B+ nlogp ~, for short messages (< 2KB)

T=2logp a+ 2%nﬁ + pp%ln*y, otherwise

MPI_Alltoall

Bruck’s

Pairwise-exchange

T =logp o+ §logp 3, for short messages (< 256 bytes)

T = (p—1)a + np, otherwise

[epow uorpdrpaad reuorjyenduio)) ¢°g
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To predict the execution times of MPI communication for the next sampling in-
terval, FLEX-MPI’s computational prediction model uses the profiling data gathered
by the monitoring component during the last sampling interval, the system network
performance parameters—latency and bandwidth, and the MPICH cost functions
for point-to-point and collective operations.

FLEX-MPI requires that «, 5, and « are previously defined based on the actual
network performance. These values are specific to the particular system network
configuration and are provided to FLEX-MPI via a configuration file. We use a
performance benchmark that measures the values of o, 5, and ~ for the system
network. There are several network benchmarks that measure the performance of
MPI routines such as MPIbench [GCO01]|, SKaMPI [RSPM98|, and OMB (OSU Micro-
benchmark suite) |[Net09], among others. However, these test specifically measure
network performance metrics using MPI routines to communicate between nodes. For
this reason, we wrote our own network benchmark that uses Linux performance tools
to measure latency and bandwidth using TCP /TP packets. The network benchmark
performs several point-to-point tests and returns the latency and bandwidth between
every pair of nodes in the cluster network. It uses tcpping [Ste04] to measure the
network latency and Iperf [TQD™ 05| to measure bandwidth performance.

Our benchmark measures network performance metrics assuming a small vol-
ume of data traffic present in the system network while performing the benchmark.
However in practice the network traffic in a cluster fluctuates over time due to the
data exchanged between different user applications—which is unpredictable and af-
fects the performance of communication. To obtain precise estimations we introduce
A, a correction parameter that accounts for the difference between the estimation
and the real value as measured by the monitoring component for the last sampling
interval (Equation 5.4). This value is then used to correct for the estimation of the
current sampling interval (n) (Equation 5.5).

Tcommunication7estimatedin— 1

An =

Tcommunication_r@al_n—l
Tcommunication_estimated_n = Tcommunication_estimated_n X A (55)

5.3.3 Modeling process creation and termination costs

In case the malleability policy decides to spawn or remove processes, the CPM takes
into account the overhead of process creation and termination operations to predict
the execution time of the next sampling interval. The time spent by FLEX-MPI
on creating a dynamic process is different to the time spent on removing it. These
overheads depends on various factors such as the operating system, the MPI imple-
mentation, and the size of the program binary. The CPM uses an offline benchmark
that tests the costs of process reconfiguring actions in a particular environment.

A process spawning action in a Linux environment implies the OS’s process
manager to create the process through a fork-exec call, then allocate the address
space to the process, and enable communication with other MPI processes through
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a SSH connection. The associated overheads depend on the particular execution
environment of the FLEX-MPI application. Equation 5.6 models the cost associated
with the spawning of nprocs spawn dynamic processes in FLEX-MPI applications.
process__spawning _cost represents the cost associated with the spawning of a single
dynamic process in the application.

Toverhead process(spawn) = TPTOCS_SPAWnN X process_spawning _cost (5.6)

Equation 5.7 models the cost associated with removing nprocs remove dy-
namic processes from a FLEX-MPI application. process removing cost represents
the cost associates with removing a single dynamic process from the malleable appli-
cation. A process removing action implies at system level to deallocate the process
resources, then close all active SSH connections with other MPI processes, finally
safely finalize the process. It makes sense that the overhead of spawning a dynamic
process is significantly higher than the overhead of removing a single process.

Toverhead process(remove) = NPTOCS_TEMOvE X process_removing _cost (5.7)

Since the overheads of process creation and termination depend on the partic-
ular execution environment of the FLEX-MPI application, we wrote a benchmark
that measures these costs in the system. Our benchmark uses FLEX-MPI’s low-level
interfaces to test the time spent on reconfiguring actions and returns the average time
to create and terminate a dynamic application process in the system. We run this
benchmark offline for every considered application that we want to provide malleable
capabilities. The measured times provided by the benchmark are then provided as
input to the CPM. Section 6.3.1.1 discuses a practical evaluation of this benchmark.

5.3.4 Modeling data redistribution costs

To model the cost of data redistribution the CPM takes into account the system net-
work performance, the data size of the registered data structures, and the cost mod-
els for the MPI operations involved in the redistribution operation—MPI_Alltoallv
and MPI_Allgatherv. Once the load balancing component has computed the new
workload distribution it computes the total size of data that will be transferred be-
tween processes in the redistribution operation. That size depends on the number
of registered data structures, their size in bytes, and their data type (e.g. integer,
double, etc.). Then the CPM uses the network performance metrics to predict the
cost of redistribution using the MPICH’s cost models based on the Hockney model
for MPT_Alltoallv and MPI_Allgatherv, which are the collective operations used in
the data redistribution functionality.

The cost of data redistribution is computed using Equation 5.8, where nd and
ns are the number of dense and sparse data structures handled by the application,
data i and data__j are pointers to the FLEX-MPT’s struct type that holds the prop-
erties (i.e. memory address, size) of the data structure, p is the number of processes
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involved in redistribution, «, 3, v are the network performance parameters, and A is
the FLEX-MPI’s correction parameter for network performance estimation.

nd
Toverhead_data_redist = Z COStirdata*dense(dataia b« 67 7 A)—i_
i=1
s (5.8)
Z Cost _rdata_sparse(data;,p, o, 5,7, \)
j=1

The estimation takes into account the storage format and the distribution
scheme of the data structure. Equation 5.9 and Equation 5.10 model the costs as-
sociated to the redistribution of a single dense data structure and sparse matrix in
CSR or CSC format. Redistribution costs of a dense data structure (Equation 5.9)
are computed by the CPM using the cost model based on the Hockney model for the
algorithm of the corresponding MPI collective operation used to redistribute the data
structure. CPM uses the number of elements that will be redistributed (rdata(data;))
and their data type to calculate the size of data in bytes that will be moved between
processes. FLEX-MPI is aware of the current data partitioning, which allows the
CPM to effectively calculate the total size of data that will be redistributed among
processes. The specific MPI operation used depends on the user-defined data dis-
tribution scheme for the data structure, which can be distributed or replicated. As
explained in Section 4.5, data structures with distributed data scheme are redis-
tributed using MPI_Alltoallv, while data structures with replicated data scheme
are redistributed using MPI_Allgatherv.

Cost_rdata_dense(data;,p) = if (data;.scheme == XMPI DISTRIBUTED)
Cost_ MPI Alltoallv (rdata(data;),p, c, 5,7, \)
else if (data;.scheme == XMPI REPLICATED)

Cost_ MPI _Allgatherv (rdata(data;),p, «, 8,7, \)
(5.9)

Redistribution costs of a sparse data structure (Equation 5.10) are computed
by the CPM as the sum of the costs for redistributing 1A, JA, and A arrays that
store the sparse matrix in C'SR or C'SC' format. Redistribution costs for the array of
size number of rows/colums plus one that stores the pointers—IA in CSR and JA
in CSC—are computed using the cost model for MPI_Alltoallv, since this array is
distributed among processes regardless of the user-defined data distribution scheme.
Otherwise, the CPM computes the redistribution costs for the arrays of size nnz that
store the rows or columns indexes and the nnz values depending on the distribution
scheme.
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Cost_rdata_sparse(dataj,p) = Cost_MPI_Alltoallv (dataj.rows,p, o, 3,7, X)+
if (data;.scheme == XMPI_DISTRIBUTED)

2% Cost_MPI_Alltoallv (rdata(data;),p, o, 5,7, \)

else if (dataj.scheme == XM PI_REPLICATED)

)

2« Cost_ MPI_Allgatherv (rdata(data;),p, o, 5,7, A
(5.10)

5.4 Malleability policies

This section describes the implementation of the malleability policies of FLEX-MPI
that allow to reconfigure the number of processes of the application at runtime in
order to satisfy the performance requirements of each policy. FLEX-MPI provides
high-level malleability because reconfiguring actions are performed according to the
specifications of the policy without user intervention. The reconfiguring algorithm
of these policies is evaluated at every sampling interval. As a result, FLEX-MPI
decides whether or not reconfiguring the application taking into account (1) the
current application performance metrics provided by the monitoring functionality,
(2) the future application performance estimation provided by the CPM, (3) the idle
resources in the system, and (4) the performance objective and constraints provided
by the user.

FLEX-MPI features three high-level malleability policies: Strict malleability
policy (SMP), High performance malleability policy (HPMP), and Adaptive
malleability policy (AMP). The first one, SMP, implements the basic approach of
malleability that reconfigures the number of processes of the application depending
solely on the availability of resources of the system. That is, expanding the number of
processes when resources become available, then removing processes when they are
allocated to resources requested by the RMS in benefit of another application with
highest, priority in the system. However, increasing the number of processes of the
parallel application may degrade its performance but can increase the operational
cost and decrease the parallel efficiency of the program [LTWO02|. To perform an
efficient dynamic reconfiguration, the decision to change the number of processors
has to be made based on the present and future performance of the application with
the new processor configuration.

FLEX-MPI introduces two novel, performance-aware reconfiguring policies that
take into account the performance of the application to guide the process reconfigur-
ing actions. The first of these policies, HPMP, aims to reconfigure the application to
the processor configuration that provides the highest performance to the program.
That is, reconfiguring actions to expand the number of processes are carried out
when resources become available in the system and the computational prediction
model estimates a performance improvement as a result of the spawning action to
allocate those resources. Otherwise, the current processor configuration remains until
the RMS notifies the availability of additional resources or it requests some of the
currently allocated processors in benefit of an application with highest priority.
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XMPI_MONITOR_SI_INIT ()

int XMPI_Monitor_si_init (void)

Figure 5.8: Parameters of FLEX-MPI’s high-level XMPI_Monitor_si_init.

The second of the performance-aware policies, AMP, introduces a novel exe-
cution model for MPI applications that allows the user to define the performance
objective and constraints of the program. We use the completion time of the ap-
plication as the performance objective. FLEX-MPI automatically reconfigures the
application to run on the number of processes that is necessary to increase the per-
formance such that application completes within a specified time interval. FLEX-MPI
modifies the application performance by adding or removing processes whenever it
detects that the performance target is not achieved. The reconfiguration process also
depends on the user-given performance constraint which can be either the parallel
efficiency or the operational cost of executing the program. This technique improves
the performance of the parallel application while increases the resource utilization
and the cost-efficiency of program executions. This policy uses the Simplexr algo-
rithm [Dan98| for linear programming to reconfigure the application to the optimal
processor configuration that satisfies the performance objective and constraints.

FLEX-MPI introduces a set of high-level interfaces that allow the programmer
to enable dynamic reconfiguration in iterative SPMD applications. Figure 5.8 shows
the prototype of FLEX-MPI’s high-level XMPI_Monitor_si_init, which does not
take input parameters. This function enables the program to indicate the FLEX-
MPI library the start of an iteration. FLEX-MPI then starts collecting performance
metrics via the low-level monitoring functionality and accounts them for the current
sampling interval. This routine takes no input parameters and returns true in case
the initialization of the monitoring functionality for the current iteration succeeds.

Figure 5.9 describes the parameters of XMPI_Eval_reconfig. This function eval-
uates the algorithm of the malleability policy, then reconfigures the application to
the new processor configuration in case of a reconfiguring action to satisfy the mal-
leability policy. This routine takes as input the process rank, the number of running
processes, the current iteration, the maximum number of iterations allowed to per-
form, the count and displacement of the currently assigned data partition, and the
optional weight array. Additionally, this routine takes as input the arguments (argv)
to the new processes and the name of the program binary (command) to be spawned
during the reconfiguring action. As a result of executing this routine FLEX-MPI up-
dates the status of every process in the application, so those processes which current
status is removed can safely leave the iterative section of the program and finish their
execution. The user can set the malleability policy for the program via a command
line flag.

Figure 5.10 shows the parameters of XMPI_Get_data. This function allows dy-
namically spawned processes to transparently retrieve their data partition from the
current data owners using the data redistribution functionality. Additionally, this
function returns the current program iteration so dynamic processes can compute

86



5.4 Malleability policies

XMPI_EVAL_RECONFIG (rank, nprocs, it, maxit, count, displ, weight, argv, command)

IN rank rank of the process (integer)

IN nprocs number of processes (integer)

IN it current program iteration (integer)

IN maxit maximum number of program iterations (integer)

INOUT count number of rows/cols of current data partition (integer)

INOUT displ displacement of current data partition (integer)

IN weight array indicating the column-wise or row-wise workload (double)
IN argv arguments to command (array of strings, significant only at root)
IN command name of program to be spawned (string, significant only at root)

int XMPI_Eval_reconfig (int rank, int nprocs, int it, int maxit,
int *count, int *displ, double *weight, char *argv[],
char *command)

Figure 5.9: Parameters of FLEX-MPI’s high-level XMPI_Eval_reconfig.

XMPI_GET_DATA (it)

OUT it current program iteration (integer)

int XMPI_Get_data (int *it)

Figure 5.10: Parameters of FLEX-MPI’s high-level XMPI_Get_data.

only the remaining iterations. Note that this routine is significant only for newly
spawned processes.

Section 5.4.4 shows a detailed example of a SPMD parallel application instru-
mented with the high-level FLEX-MPI API to enable dynamic, performance-aware
reconfiguration. Following sections describe the algorithm and implementation of the
malleability policies featured in FLEX-MPI.

5.4.1 Strict malleability policy

The Strict malleability policy (SMP) is based on the assumption that increasing
the number of processes of a parallel application decreases the execution time per
iteration as a result of adding more resources to the program. Most of the existent
approaches in the literature do not take into account the application performance and
implement malleability techniques that depend solely on the availability of resources
in the system. The goal of this policy is to enable dynamic reconfiguration to parallel
applications that execute on systems with varying resource availability over time.

The SMP policy of FLEX-MPI decides to increase the number of processes of
the parallel application via dynamic reconfiguration if the following conditions take

place:
e There are idle processing elements in the system, and

e The number of processes of the new processor configuration does not surpasses
a user-given, maximum number of processes.
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On the other hand, the SMP policy decides to shrink the number of processes
of the application if the following condition takes place:

e The RMS requests allocated processing elements on behalf of another applica-
tion with highest priority.

Another powerful feature of the SMP policy allows the user to describe via
configuration file the process scheduling for the parallel application. This file must
contain the type of reconfiguring action, the number of processes to spawn or termi-
nate, the type of processors that allocate these processes, and the number of iteration
in which the reconfiguring action must be carried out. The SMP policy will auto-
matically adjust the number and type of processes of the application when resources
are available in the system.

5.4.1.1 SMP algorithm

Algorithm 6 Pseudocode for the implementation of the Strict malleability policy.

1: action,sys_procs_sel < getSystemStatus ()

2: if action == null then

3: return

4: end if

5: if action == SPAWN_ACTION then

6:  max_procs_spawn< numProcs (sys_procs _set)

7:  mew_procs_set < mapping (alloc_procs _set,sys _procs_set,action, max__procs__spawn)
8: else if action == SHRINK_ACTION then

9:  max_procs_remove < numProcs (alloc_procs_set - initial _procs_set)
10:  new _procs_set < mapping (alloc_procs _set,sys_procs_set,action, min_procs_remouve)
11: end if
12: if new procs_set != alloc_procs _set then
13:  submitAllocationRMS (new_procs_set)
14:  dynamicReconfiguration (new procs_set)
15:  updateProcessStatus ()

16:  new_workload_distribution < loadBalance (new procs _set)
17:  dataRedistribution (new _workload_distribution)
18: end if

Algorithm 6 shows the pseudocode for the implementation of the Strict mal-
leability policy algorithm. Every sampling interval FLEX-MPI evaluates the al-
gorithm, that may lead to a reconfiguring action. The first step (line 1) re-
trieves the current status of the system. Function getSystemStatus returns the
type of reconfiguring action required and the processor configuration associated
to the action (Q = sys_ procs_set). The action type can take three possible val-
ues: (1) SPAWN_ACTION in case there are idle processing elements in the system, (2)
SHRINK_ACTION in case the RMS requests allocated resources on behalf of another
application, or (3) null in case no reconfiguring action is required to the program.
The processor configuration describes either the layout of available PEs—in case of
a spawning action—or the layout of PEs that must be released by the FLEX-MPI

88



5.4 Malleability policies

application—in case of a shrinking action. FLEX-MPI uses the following syntax to
describe the processor configuration:

hostname:proc Type:numPE

This syntax is quite similar to the syntax of the MPICH’s machinefile, where
hostname stands for the nodename, procType stands for the processor type, and
numPE stands for the number of PEs of the node. If the action type is null
(lines 2-4) the algorithm then ends function execution without applying any
change in the application configuration. In case additional processes become avail-
able the algorithm computes (line 6) the maximum number of processes that
can be spawned (max procs spawn). This number corresponds to the num-
ber of available PEs of the processor configuration associated to the reconfigur-
ing event (max_procs_spawn = |Q]). Once the algorithm calculates the maxi-
mum number of processes, function mapping in line 7 returns the new proces-
sor configuration (new procs set). It describes the layout of currently allocated
PEs (P = alloc_procs _set) plus the layout of available resources (Q), where
new _procs_set = P U Q. Note that if MAX USER PROCS > |P| + |Q] the
algorithm will discard some processing elements of @) to satisfy the aforementioned
condition.

On the other hand in case of a shrink action the algorithm is limited to the
number of dynamic processes which have been previously spawned by FLEX-MPI
(max_procs _remove). This number is computed (line 9) as the number of pro-
cesses of the current processor configuration P minus the number of processes of
the initial set of processes, thus maz_procs remove = |P| -|initial _procs set|. In
line 10 function mapping returns the new processor configuration new procs_ set,
that is a subset of the currently allocated processing elements. The new processor
configuration consists of the current processor configuration minus the set of PEs
associated to the shrink action. Therefore new procs set = P\ Q, where Q C P.
If |Q] > |P| - |initial _procs set| then mapping will return the initial set of pro-
cesses because those processes can not be dynamically removed at runtime, thus
new _procs__set = initial _procs__set.

Once the new processor configuration has been computed, in 1ine 12 the al-
gorithm evaluates if the new processor configuration is different from the current
one (Q \ P # 0). If it is different a reconfiguring action is required, and so in
line 13 FLEX-MPI notifies the RMS the processing elements that will be allo-
cated for the application. Then in 1line 14 FLEX-MPI reconfigures the application
to the new processor configuration through the dynamic process management func-
tionality, whether to spawn new processes or remove processes from the program.
Function updateProcessStatus in 1line 15 updates the status of the processes. Re-
moved processes will notice their updated status and leave the iteration section of
the program and therefore the application execution. Function loadBalance in 1ine
16 computes the load balance for the new processor configuration using the load
balancing component and returns the new workload distribution. Finally, function
dataRedistribution (line 17) redistributes the workload using the data redistribu-
tion component of FLEX-MPI to efficiently move the data between processes.
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Figure 5.11: Execution time (left y-axis) and number of processes (right y-axis) per
sampling interval of an example execution of a FLEX-MPI application using the
SMP policy.

Figure 5.11 illustrates an example of a FLEX-MPI application using the SMP
policy. Initially the FLEX-MPI application runs on a set P processes and an execu-
tion time per iteration of ¢i,. At iterations A and B additional PEs become available,
so FLEX-MPI reconfigures the application to run on ¢ and then r processes, where
r > g > p. This decreases the execution time per iteration to ti, and ti, respectively
as a result of using more resources. However, at iteration C' the RMS requests some
resources so FLEX-MPI performs a reconfiguring action to remove those processes
from the application thus the execution time per iteration increases up to tis.

5.4.2 High performance malleability policy

High performance malleability policy (HPMP) is a novel performance-aware mal-
leability policy introduced by FLEX-MPI. The goal of this policy is to expand the
number of processes to the processor configuration that provides the highest perfor-
mance to the program in terms of completion time. To achieve this goal the HPMP
policy takes into account the current application performance collected via moni-
toring and the future performance as computed by the CPM to guide reconfiguring
actions to expand the number of processes. Otherwise if the CPM does not expect
an immediate performance improvement as a result of adding more resources to the
program, the number of processes remains until the next sampling interval.
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Therefore, the HPMP policy decides to expand the number of processes of the
application via dynamic reconfiguration if the following conditions take place:

e There are idle processing elements in the system, and

e The computational prediction model estimates a performance improvement as
a result of adding resources to the program.

On the other hand, the HPMP policy decides to shrink the number of processes
of the application if the following condition takes place:

e The RMS requests allocated processing elements on behalf of another applica-
tion with highest priority.

5.4.2.1 HPMP algorithm

Algorithm 7 Pseudocode for the implementation of the High performance mal-
leability policy.

1: action, sys_procs_set < getSystemStatus ()

2: if action == null then

3: return

4: end if

5: if action == SPAWN_ACTION then

6:  max_procs_spawn < numProcs (sys procs_ set)

7. Test P + CPM (alloc_procs_set)

8 for s =0to s =max_procs_spawn do

9: Test_ S + CPM (alloc_procs_set + (sys_procs_set, s))
10: if Test S < Test P then

11: procs_set < mapping (alloc_procs__set, sys_procs_set, action, s)
12: suitable _procs _sets < push (procs__set)

13: end if

14:  end for

15:  new_procs_set « selectBestProcsSet (suitable procs sets, HPMP)
16: else if action == SHRINK_ACTION then

17: maz_procs_remove < numProcs (alloc_procs_set - initial _procs_ set)
18:  new _procs_set «+ mapping (alloc_procs _set,sys _procs_set,action, max_procs_remove)
19: end if

20: if new procs_set != alloc_procs _set then
21:  submitAllocationRMS (new_procs_set)

22:  dynamicReconfiguration (new procs _set)

23:  updateProcessStatus ()

24:  new_workload _distribution < loadBalance (new procs_set)
25:  dataRedistribution (new_workload _distribution)

26: end if

Algorithm 7 shows the pseudocode for the implementation of the High perfor-
mance malleability policy algorithm. The algorithm is evaluated at the end of every
sampling interval 7. The first step (line 1) consists of retrieving the action type
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and the processor configuration associated to the action (Q = sys procs_set). If
the RMS notifies FLEX-MPI of the availability of additional resources in the sys-
tem, the algorithm computes first (1ine 6) the maximum number of processes that
can be spawned in the current sampling interval (max procs spawn). Then the
algorithm uses the computational prediction model to predict the execution time
for the next sampling interval (i + 1) under the current processor configuration
(P = alloc_procs_set). Function CPM in line 7 returns the execution time esti-
mated for the next sampling interval (T'est  P). Then the algorithm evaluates (1ines
8-13) the performance of every possible ezecution scenario. Every execution scenario
is associated to a processor configuration S which consists of the set of currently allo-
cated processes (P) plus s additional PEs ranging from 0—no reconfiguration—to the
maximum number available (max_procs spawn). Function CPM in line 9 then
returns the estimated execution time for the next sampling interval (T'est S) under
the corresponding processor configuration S. The idea behind this algorithm is to
evaluate all the possible execution scenarios (with different processor configurations)
and take the one that predictably will provide the highest performance.

In case the estimated execution time for T'est S is lower than Test P (line
10), the algorithm uses function mapping (1ine 11) to compute the processor con-
figuration for S as S = P U @', where @' C @ and s = |Q’|. Next the algorithm
stores the processor configuration in a list of suitable scenarios (1ine 12). Once every
possible execution scenario has been evaluated, function select Best ProcsSet (line
15) selects from the list of suitable execution scenarios the processor configuration
(new _procs_set) which leads to the highest performance according to the goal of
the HPMP policy. That is, the processor configuration with the minimum predicted
completion time for the next sampling interval.

On the other hand, a removing action (lines 16-19) involves computing the
new processor configuration taking into account the maximum number of processes
that can be removed from the application (maz_procs remove). Function mapping
(line 18) computes the new processor configuration (new procs set) which con-
sists of the currently allocated PEs minus those PEs associated to the shrink action
new procs_set = P\ Q.

Once the algorithm has generated the new processor configuration, it computes
the difference between the new and the current processor configuration (line 20)
and performs the necessary actions to reconfigure the number of processes of the pro-
gram. These include notifying RMS of the current availability of resources in 1ine
21, performing the actual reconfiguring action to expand or shrink the number of
processes in line 22, updating the processes status in line 23, and finally redis-
tributing the application workload by computing the new data distribution (line
24) and finally moving the data between processes (line 25).

Figure 5.12 illustrates an example of a FLEX-MPI application using the HPMP
policy. Initially, the application runs on a set of P processes and the execution time
per iteration is ¢i,. At iterations A and B additional resources become available and
the CPM estimates an immediate performance improvement, thus FLEX-MPI recon-
figures the application to expand the number of processes to ¢ and then r processes
respectively, where r > ¢ > p. The new execution scenario improves the performance
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Figure 5.12: Execution time (left y-axis) and number of processes (right y-axis) per
sampling interval of an example execution of a FLEX-MPI application using the
HPMP policy.

of the parallel application while decreases the execution time per iteration to ti,.
At iteration C' additional resources (S) become available. However, the algorithm of
the HPMP policy evaluates every possible execution scenario but the CPM does not
estimate a performance improvement, thus FLEX-MPI decides to keep the current
processor configuration which provides the highest performance to the program.

5.4.3 Adaptive malleability policy

Adaptive malleability policy (AMP) is the most sophisticated performance-aware
reconfiguring policy introduced by FLEX-MPI. The goal of the AMP policy is to
dynamically reconfigure the number of processes of the application to satisfy a user-
given performance objective. This policy allows the user to define the performance
objective and constraints of the application, using the completion time of the ap-
plication as the performance objective. FLEX-MPI automatically reconfigures the
application to run on the number of processes that is necessary to increase the per-
formance such that application completes within a specified time interval. The AMP
policy evaluates the performance of the application every sampling interval and mod-
ifies it by adding or removing processes whenever the reconfiguring policy detects
that the performance target is not achieved.

The reconfiguration process in AMP also depends on the user-given performance

93



Chapter 5. Dynamic Load Balancing and Performance-aware Malleability in MPI

constraint which can be either the parallel efficiency or the operational cost of ex-
ecuting the program. The efficiency constraint results in minimizing the number of
dynamically spawned processes and maximizing the number of dynamically removed
processes in order to maximize parallel efficiency. The cost constraint focuses on
minimizing the operational cost by mapping the newly created dynamic processes to
those processors with the smallest cost (expressed in cost unit per CPU time unit)
and removing processes from those processes with the largest cost while satisfying
the performance constraint. This cost may represent whether the economic cost or
the energetic cost, or any other unit that represents a cost associated to the usage of
the resources. For this reason we introduce a new syntax used to describe the layout
of resources in FLEX-MPI that includes the cost of the resources per processing
element per time unit:

hostname:proc Type:numPE:cost

To achieve its performance goal the AMP policy takes into account the current
application performance collected via monitoring and the future performance com-
puted by the CPM to guide reconfiguring actions to expand and shrink the number
of processes. The AMP policy decides to expand the number of processes of the
application via dynamic reconfiguration if all the following conditions take place:

e There are idle processing elements in the system, and

e The current performance of the parallel application does not satisfy the user-
given performance objective, and

e The CPM estimates a performance improvement that satisfies the performance
objective under the user-given performance constraint as a result of expanding
the number of processes.

On the other hand, the AMP policy decides to shrink the number of processes
of the application under the following circumstances:

e The current performance of the parallel application does not satisfy the user-
given performance objective, and

e The CPM estimates that shrinking the number of processes to a new proces-
sor configuration will satisfy the performance objective under the user-given
performance constraint.

5.4.3.1 Integrating linear programming methods to find the optimal pro-
cessor configuration

One of the main features of the AMP policy is that it uses algorithms for linear
programming to find the most appropriate process configuration to satisfy the user-
given performance objective under the performance constraints. Linear programming,
sometimes known as linear optimization, is a mathematical method for the optimiza-
tion of a linear function subject to a set of linear constraints. That is, maximizing

94



5.4 Malleability policies

or minimizing the linear objective function taking into account the constraints that
may be equalities or inequalities.

One of the best-known methods for linear programming problems is the Simplex
algorithm [Dan98| introduced by George Dantzig in 1947, which became the basis
of the mathematical optimization area. The Simplex method iteratively operates on
linear programs in standard form. Specifically, FLEX-MPI uses the implementation
of the Simplex algorithm included in the GNU Linear Programming Kit |GLP03]|.
A linear programming problem in standard form consists of a linear function, also
called objective function of the form:

f(x1,22) = 121 + com2 + ... + Cpy (5.11)

The objective function is subject to one or more linear constraints of the form:

ai1T1 + aipxo + ... + ity < b; (5.12)

And which variables are non-negative:

z; >0 (5.13)

Standard mazximization problem and standard minimization problem describe
two classes of special linear programming problems in standard form which seek to
maximize and minimize the objective function, respectively. The maximum or mini-
mum value of the objective function is called the optimal value, while the collection of
values of the variables (z1, x9, ..., x,) constitutes the optimal solution of the problem.
A linear programming problem is usually expressed in matrix form, so the standard
maximization problem becomes:

maz{c'z|Az < blz > 0} (5.14)

While the standard minimization problem becomes:

min{c’ z|Az > blz > 0} (5.15)

The AMP policy introduces mappingSimplex, a variant of the function mapping
described in Section 5.4.2 that uses the Simplex method to find the optimal processor
configuration that satisfies the performance objective and constraints of the FLEX-
MPI application. This is necessary because we consider heterogeneous architectures
consisting of processing elements with different performance characteristics and dif-
ferent cost. Basically, the idea is to use the number of processes and the cost of their
PEs allocated as the variables and coefficients of the objective function, and the
performance of the PEs as the constraints of the linear programming problem. Then
we use the Simplex method to find the optimal solution (i.e. processor configura-
tion) depending on the type of reconfiguring action and the user-given performance
constraints.
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The standard minimization problem shows up for spawning actions:

e Under the parallel efficiency constraint, the problem is to minimize the number
of processes that need to be spawned to satisfy the user-given performance
objective, thus allocating to the extent possible the most powerful processing
elements.

e Under the cost constraint, the problem is to minimize the cost associated to
the processes that need to be spawned to satisfy the user-given performance
objective, thus allocating to the extent possible the processing elements with
the smallest operational cost.

On the other hand, the standard maximization problem shows up for shrink
actions:

e Under the parallel efficiency constraint, the problem is to maximize the number
of processes that need to be removed to satisfy the user-given performance
objective, thus removing to the extend possible the less powerful processing
elements.

e Under the cost constraint, the problem is to maximize the cost associated to
the processes that need to be removed to satisfy the user-given performance
objective, thus removing to the extend possible the processing elements with
the largest operational cost.

5.4.3.2 AMP algorithm

Algorithm 8 shows the pseudocode for the implementation of the Adaptive mal-
leability policy algorithm. The algorithm consists of three phases: the first phase
for performance evaluation; the second phase for analysis of malleable reconfiguring
actions; and the third phase for process reconfiguring.

The First Phase (1ines 1-5) of the algorithm evaluates the current and fu-
ture performance of the application under the current processor configuration. The
first step (line 2) consists of capturing via monitoring the execution time T'real
of the current sampling interval i to update the accumulated execution time of the
application (T'exeqeeum). This value is used by function calculateGoal (1ine 3) to
compute the execution time T'goal that is necessary to satisfy the user-given perfor-
mance objective during the next sampling interval. This function computes T goal
by dividing the execution time remaining to the user-given performance objective
by the number of sampling intervals remaining. CPM (1line 4) then returns the
predicted execution time for the next sampling interval (T'est P) under the current
processor configuration P = alloc_procs _set, where p = |P|.

When the difference between the required and predicted execution times is bigger
than a given threshold tol (1ine 5) the algorithm goes to the second phase in order
to perform a reconfiguring action. AMP uses a default value of 1% for tol, though
the user can override this default and provide its own desired value.
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The Second Phase (lines 6-30) analyzes different process reconfiguring sce-
narios and selects the best one under user-given performance objective and per-
formance constraints. The algorithm first decides whether to increase (line 7) or
decrease (line 18) the number of processing elements depending on which of the
predicted and required times is bigger.

Algorithm 8 Pseudocode for the implementation of the Adaptive malleability pol-
icy.

1: First phase

2: Texegecum — Texreqccum + Treal

3: Tgoal + calculateGoal (Texesceum, Goal)

4: Test P <+ CPM (alloc_procs_set)

5: if |Test P — Tgoal| < tol then

6: Second phase

7. if Test_ P > (T'goal + tol) then

8: sys_procs_set + getSystemStatus(only available)

9: max__procs__spawn < numProcs (sys procs_set)

10: for s =0 to s = max_procs_spawn do

11: (AFLOPS, Teomm: Tspawn, Trdata) < CPMreconfig(p+s, T'goal, cFLOPS)
12: (procs_set, Teomp, cost)«mappingSimplex(constraint, AFLOPS, sys_procs_set, s)
13: TESt_S = Tcomp + Teomm + Tspawn + Trdata

14: if |Test S — Tgoal| < tol then

15: suitable _procs _sets < push (procs_set)

16: end if

17: end for

18:  else if T'goal > (Test_P + tol) then

19: max_procs_remove < numProcs (alloc_procs _set - initial _procs _set)
20: for r =0 to r = max_procs_remove do
21: (AFLOPS, Teomm, Tremoves Trdata) < CPMreconfig(p—r, Tgoal, cFLOPS)
22: (procs_set, Teomp, cost)«mappingSimplex(constraint, AFLOPS, alloc_procs_set,r)
23: TeSt_R - Tcomp + Teomm + Tremove + Trdata
24: if |Test R — Tgoal| < tol then
25: suitable _procs _sets < push (procs_set)
26: end if
27: end for
28:  end if
29: end if

30: new_procs_set + selectBestProcsSet(suitable procs sets+alloc_procs _set,AM P)

31: ———— Third phase
32: if new procs set = alloc_procs set then
33:  submitAllocationRMS (new_procs_ set)

34:  dynamicReconfiguration (new procs_set)

35:  updateProcessStatus ()

36:  new_workload _distribution < loadBalance (new procs _set)
37:  dataRedistribution (new workload distribution)

38: end if
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In case the algorithm decides to spawn new processes, it first retrieves (line
8) the processor configuration that corresponds to the layout of available processing
elements in the system (Q = sys procs_set). When used, the only available flag
tells the function getSystemStatus to return only the processor configuration of
available PEs. Once the processor configuration has been retrieved, the algorithm
computes (line 9) the maximum number of processes that can be spawned in the
current sampling interval (max_procs _spawn).

The next step (lines 10-17) consists of evaluating every possible execution
scenario for the application. Every execution scenario (line 10) is associated to
a processor configuration S which consists of the current processor configuration
(P) plus a subset of s additional processes, where s € (0, maz_procs spawn).
Function CPMreconfigin line 11 is a variant of C'PM that uses the computational
prediction model to calculate the number of FLOPS (AFLOPS) necessary to achieve
the performance objective T'goal of the application for the next sampling interval.
The CPM uses as a parameter the number of currently allocated PEs (p) and the
number of additional PEs (s) associated to the execution scenario evaluated and
returns the predicted reconfiguring overheads (both for process creation and data
redistribution) as well as the predicted communication time for the next sampling
interval when p + s processing elements are used.

Function mappingSimplex (1ine 12) uses the Simplex algorithm to find a set
procs__set of s PEs that satisfies the performance objective according to the user-
given constraint. In the case of imposing the efficiency constraint the function returns
the PE set whose computational power is closer to AFLOPS. In the case of the cost
constraint it returns the PE set with the smallest operational cost and computational
power closest to AFLOPS. Line 13 calculates the predicted execution time during
the sampling interval Test _S. Due to the reconfiguring overheads it is possible that
this time does not satisfy the performance objective. For this reason, in line 14
the algorithm evaluates if the deviation of the execution time is below a predefined
tolerance. If true, proc_set is stored in a list of suitable scenarios (1ine 15). This
procedure is repeated for each value of s.

On the other hand, to remove processes (1ines 18-28) the algorithm first com-
putes (1ine 19) the maximum number of processes that can be removed from the
application (max_procs remove). For each execution scenario (1ine 20) the algo-
rithm computes the computational power (1ine 21) that satisfies the performance
objective. Note that in case of a shrink action, this value represents the number of
FLOPS that has to be removed in order to degrade the performance of the applica-
tion to a point that satisfies the user-given performance objective. Every execution
scenario is associated to a R processor configuration which consists of the current pro-
cessor configuration P minus a subset of r PEs, where r € (0, maz_procs _remove).
Function CPMreconfig also returns the predicted reconfiguring overheads for data
redistribution and process removing associated to remove r processes, as well as the
predicted communication time when p — r processing elements are used. Function
mappingSimpler (line 22) then returns the specific subset of PEs that needs to
be removed to obtain the required computational power—maximizing the number of
processes that will be removed to improve efficiency and save operational costs.
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Figure 5.13: Execution time (left y-axis) and number of processes (right y-axis) per
sampling interval of an example execution of a FLEX-MPI application using the
AMP policy.

The last step of the second phase (1ine 30) consists of selecting from the list
of suitable execution scenarios the processor configuration which satisfies both the
performance objective and the performance constraint. For the efficiency constraint
the algorithm selects the scenario which leads to the smallest number of processes.
For the cost constraint it selects the one which leads to the minimum operational
cost.

Finally, in the Third Phase (lines 32-38) the algorithm calculates if the
current processor configuration and the configuration computed by the algorithm
are different. In that case, the algorithm reconfigures the application to run on the
newly selected processor configuration. In (1ine 33) FLEX-MPI notifies the RMS of
the new processor allocation, whether to allocate new processors or release currently
allocated PEs. The following steps consist in performing the process reconfiguring
through the dynamic process management functionality (line 34), updating the
status of the application processes (line 35), computing the load balance for the
new processor configuration (line 36), and redistributing the workload (l1ine 37)
between the processes of the new processor configuration.

Figure 5.13 illustrates an example of a FLEX-MPI application with regular com-
putation and communication patters using the AMP policy. Initially the application
runs on a set of P processes with an execution time per iteration of ti,, so the AMP
computes an estimated completion time for the static version of the application
(tstatic) of:

tstatic = tip x N
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However, the user-given performance objective is set to a performance improve-
ment of 25% by reducing the completion time of the program under P by 25%, and
the performance constraint is set to maximize the parallel efficiency. At iteration
A—which corresponds to the first sampling interval—the AMP policy expands the
number of processes to ¢ in order to improve the performance of the application. The
CPM estimates that the processor configuration @) represents the execution scenario
with the minimum number of processes that satisfies the performance objective of
the application. However, at iteration B the AMP policy detects via monitoring that
the current performance is higher than imposed by the user, so it decides to remove
some processes in order to satisfy the performance objective. Note that, since the
AMP policy is performance-aware, it is able to correct inaccurate estimations made
in previous sampling intervals. FLEX-MPI then reconfigures the application to run
on a new R processor configuration, which is a subset of the previous @ processor
configuration. The number of processes removed from R is the maximum number of
processes that satisfies that the R processor configuration will met the performance
objective. The parallel application runs on the R processor configuration until the
end of its execution with a completion time of:

tdynamic = tip X A+tiq X (B — A) + i, X (N — B)_|_
Toverheadﬁprocess7reconfig + TOverheadidatairedist

The completion time of the dynamic version of the application (tgynamic) com-
putes the execution time of the application itself plus the overheads of processes
reconfiguring actions and data redistribution. To summarize, the dynamic version
presents a performance improvement of 25% when comparing to the static version
of the application:

tdynamic = tstatic X 0.75

5.4.4 Malleable MPI programs using the FLEX-MPI high-level
API

This section shows how to use the FLEX-MPTI’s high-level API to create malleable
MPI programs. Figure 5.14 shows the parallel code of an iterative SPMD program
instrumented with the FLEX-MPI high-level API. This program operates on several
dense data structures that are shared between processes without replication. First,
each process retrieves the count and displacement of the domain partition assigned
to the process depending on the current number of processes and the total size of
the data structures (XMPI_Get_wsize). The program declares the data structures
and uses the registering function (XMPI_Register_vector, XMPI_Register_dense)
to indicate the size, type, and the data distribution scheme of each data structure.
Then, each process gets its status (XMPI_Get_data) so newly spawned processes can
retrieve the current program iteration and their data partition from the current pro-
cesses using the data redistribution functionality. On the other hand, those processes
into the initial set of processes will load their data partition from the file system.
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Program: spmd.c

MPI_Init (&argv, &argc);
MPI_Comm_rank (XMPI_COMM_WORLD, &rank);
MPI_Comm_size (XMPI_COMM_WORLD, &size);
XMPI_Get_wsize (rank, nprocs, dsize, &displ, &count);
double *A = (double*) malloc (dsize * count * sizeof(double));
double *x = (double*) malloc (dsize * sizeof(double));
double *x_recv = (double*) malloc (dsize * sizeof(double));
XMPI_Register_vector (&x, dsize, MPI_DOUBLE, XMPI_REPLICATED);
XMPI_Register_dense (&A, dsize, MPI_DOUBLE, XMPI_DISTRIBUTED);
status = XMPI_Get_process_status ();
if (status == XMPI_NEWLY_SPAWNED)

XMPI_Get_data (&it);
else if (status == XMPI_RUNNING) {

load_data_fs (&A, &x);

it = o;

for (it; it < maxit; it ++) {
XMPI_Monitor_si_init ();

for (i

=0; 1 < count; i ++) {
A[i] =

A[i] + func(A[i], x[i+displ]);

}

MPI_Allreduce (&x, &x_recv, dsize, MPI_INT, MPI_MAX, @, XMPI_COMM_WORLD);
XMPI_Eval_reconfig (rank, size, it, &count, &displ, NULL, argv, “spmd”);

if (XMPI_Get_process_status () == XMPI_REMOVED) break;

memcpy (x_recv, x, dim*sizeof(double));

ree(x)

}
free(A)
.F
free(x_recv)

)
;

' MPI_Finalize (); X

Figure 5.14: MPI malleable program instrumented with FLEX-MPI high-level inter-
faces.

We assume that the programmer initially launches the program to run with n
processes via the command line (mpirun/mpiexec) and uses the HPMP reconfig-
uring policy of FLEX-MPI to achieve the maximum performance being the maxi-
mum number of processes (n + m). The iterative section of the code includes the
XMPI_Monitor_si_init function to indicate the start of monitoring. Then, each
process operates in parallel on a different subset of the data structure, performs
a collective MPI operation (MPI_Allreduce), and the program allows FLEX-MPI
to reconfigure the number of processes to increase the performance. After the per-
formance evaluation and reconfiguring action, each process evaluates its status and
those processes flagged as removed jump out of the iterative section and finish their
execution. On the other hand, the remaining processes perform a memory copy op-
eration to update their current solution, then finish their execution either when the
maximum number of iterations is reached or their are flagged as removed in a fol-
lowing sampling interval.
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5.5 Summary

In this chapter we describe the high-level functionalities of FLEX-MPI that are en-
capsulated in the malleability logic layer of the library. The malleability logic layer in-
troduces high-level components for dynamic load balancing, performance prediction,
and performance-aware dynamic reconfiguration. These functionalities are high-level
because adaptive actions are performed without user intervention. FLEX-MPI intro-
duces a dynamic load balancing technique for SPMD applications that uses perfor-
mance metrics to detect load imbalance and makes workload distribution decisions.
Furthermore, it does not require prior knowledge about the underlying architecture
and works either for regular and irregular parallel applications.

The computational prediction model component implements a mathematical
model that allows to estimate the application performance. It allows FLEX-MPI to
estimate if a reconfiguring action may represent a benefit for the application in terms
of performance improvement.

Finally, FLEX-MPI features three high-level malleability policies: Strict mal-
leability policy (SMP), High performance malleability policy (HPMP), and Adap-
tive malleability policy (AMP). The SMP policy allows a FLEX-MPI program to
automatically change the number of processes at runtime depending on the avail-
ability of resources in the system. HPMP and AMP are performance-aware because,
in addition to the availability of resources, they take into account the performance
of the application to guide the process reconfiguring actions. HPMP automatically
reconfigures the application to run on the processor configuration which provides
the highest performance to the application. Meanwhile, the AMP policy uses a user-
given performance objective and constraints to guide reconfiguring actions such the
application completes within a specified time interval. This chapter also describes
the high-level API that provides access to those functionalities of the malleability
logic layer of FLEX-MPI.

102



Chapter 6

Experimental Results

6.1 Introduction

In the previous chapters we have provided a formal description of the different com-
ponents of FLEX-MPI. In this one we analyze and discuss the practical evaluation of
FLEX-MPI for different applications on homogeneous and heterogeneous platforms.
The main goal of this chapter is to demonstrate that FLEX-MPI is able to dynam-
ically adjust the number of processes of the parallel application at runtime to cope
with the availability of resources in the system and the user-defined performance
criteria. This chapter consists of five main sections:

e The first section summarizes the experimental conditions including a
description of the applications used as benchmarks as well as the main charac-
teristics of compute resources used for running the collection of experiments.

e The second section presents the performance analysis of the dynamic load
balancing algorithm through the evaluation of parallel benchmarks which
exhibit regular and irregular computation patterns, running on homogeneous
and heterogeneous cluster configurations, in dedicated and non-dedicated sce-
narios. The goal of this section is to evaluate the capabilities of the dynamic
load balancing algorithm to improve the performance, efficiency, and scalability
of parallel applications.

e The third section presents an empirical evaluation of the computational
prediction model, which consists of different components that are evaluated
separately including the performance models of CPU and network communi-
cations, and the model that estimates the process creation and termination
overheads. All these models have been tuned for our considered architectures
in order to provide an accurate prediction of the application performance. The
goal of this set of experiments is to validate the capabilities of the computa-
tional prediction model to effectively predict the performance of applications.

e The fourth section presents a performance analysis of malleable MPI
applications running with FLEX-MPI for dynamic reconfiguration. Several
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features are considered here: (1) the capability of FLEX-MPI for adjusting
dynamically the number of process of the MPI application at runtime, and
(2) the efficiency of the different malleability policies for achieving different
performance objectives, and (3) the capability of the policies for satisfying the
performance objective taking into account the performance constraints (i.e.
efficiency and cost). The goal of this section is to evaluate the performance
of the SMP, HPMP, and AMP malleability policies to satisfy the performance
objective and constraints of parallel applications running on dynamic execution
environments.

e Finally, the fifth section presents an analysis of the overhead of FLEX-
MPI and its impact on the application performance. The goal of this section
is to evaluate the impact the FLEX-MPI library on the performance of parallel
programs.

This chapter concludes with a summary of the results derived from this work.

6.1.1 Benchmarks

Our benchmark suite consists of three parallel applications used as benchmarks:
Jacobi, Conjugate Gradient (CG), and EpiGraph. All of them are written in C lan-
guage and modified to integrate high-level FLEX-MPI interfaces to enable dynamic
reconfiguration. The idea behind the election of these benchmarks was to consider
relevant applications with different characteristics. Jacobi and Conjugate Gradient
are compute-intensive applications broadly employed as computational kernels. Both
of them have a regular communication pattern and exhibit an approximately con-
stant execution time per iteration. The differences between them reside in the matrix
format that they use (dense matrices for Jacobi and sparse matrices for CG) and the
data locality degree of the memory references (which is smaller for CG). These dif-
ferences lead to different performance behaviors when they are executed with FLEX-
MPI. Finally, EpiGraph is a communication-intensive epidemic simulator with poor
data locality and a variable workload over time. EpiGraph represents an example of
a complex application with varying performance during its execution. The following
sections provide a more detailed description of each benchmark.

6.1.1.1 Jacobi

Jacobi is an application which implements the iterative Jacobi method—named af-
ter Carl Gustav Jacob Jacobi—for solving diagonally dominant systems of linear
equations. A system of n linear equations can be represented as Equation 6.1, where
A represents a dense square matrix of order n consisting of the coefficients of the
variables of the system, = are n unknowns (associated to the solution), and b are n
constant terms.

Algorithm 9 shows the pseudocode of the sequential implementation of Jacobi
from [BDGRY5]. The main computation involves a dense matrix-vector product and
several divisions. x,q stores the current solution to the system for every iteration.
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Algorithm 9 Jacobi iterative method pseudocode.

1: Generate a initial value to the solution x
2: for k =0 to k = |maxzimum_number_iterations| do
3: fori=0toi=ndo

4: Znewli] =0

5: for j =0 to j = nwithj # i do

6: Tnew [7'} = Tnew [Z] + A[Z] [.7] * xold[j]
7 end for

8: Tnew(i] = (bi] — Znewli]) /A[][J]

9:  end for
10: Told = Tnew
11: Check convergence; continue if necessary
12: end for

Based on it, a new solution (Zey,) is computed for each iteration which is subse-
quently used as input for the following iteration. The algorithm finishes when the
convergence criteria is met (producing a solution under a given tolerance error) or
when the maximum number of iterations is reached.

Az =10 (6.1)

The parallel implementation of Jacobi performs a block distribution of i-loop.
Data dependencies are only related to Tnew and z,g, so the parallel model involves
two communication calls. The first one to perform the initial distribution of A among
the existing processes (usually following a block partitioning strategy), the second
one to update ;g values for all the processes. The initial data distribution is per-
formed before starting the iterative section of Jacobi, while updating the x4 vector
is performed as the end of every iteration of the outer loop (k-loop).

6.1.1.2 Conjugate Gradient

Conjugate Gradient implements an iterative algorithm for determining the solution
of systems of linear equations (that follow the same principle as in Equation 6.1) that
require of symmetric, positive-definite matrices. CG improves the gradient descent
minimization problem by making every gradient direction conjugate to the previous
ones.

Algorithm 10 shows the sequential pseudocode of CG from [BDGR95|, where
functions prod and mult compute respectively the dot product and the matrix dot
product. The solution (x) is updated in each iteration by a multiple of the search
direction (v). In the same way, the search direction v is updated using the residuals
r. We can notice that CG involves one matrix dot product and several vector dot
products per iteration.
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Algorithm 10 Conjugate Gradient pseudocode.

1: Generate a initial value to the solution r = b — Axg
2:v=r

3: c=prod(r,r)

4: for k =0 to k = |maximum_number_iterations| do
5:  z=mult(A,v)

6: «=c/prod(v,z)

7. fori=0toi=ndo

8: z[i] = z[i] + a * vi]

9: r[i] = r[i] — a * 2]
10:  end for
11:  d=prod(r,r)
122 pB=d/c
13:  fori=0to¢=ndo

14: vli] = r[i] + B * v[i]

15:  end for

16:  c=d

17: Check convergence; continue if necessary

18: end for

The conjugate gradient method is often based on sparse matrices that are too
large to be handled as dense matrices by a direct implementation. The implementa-
tion used to benchmark the performance of FLEX-MPI uses a sparse matrix storage
format which provides an irregular memory access pattern. This leads to a less pre-
dictive performance behavior, given that the computation cost is related to the sparse
matrix structure. The parallel implementation of GC involves communications for
exchanging the results of the search directions and residuals.

6.1.1.3 EpiGraph

EpiGraph [MMSC11b, MSMC15b] is an epidemiological simulator for urban environ-
ments that operates on a sparse matrix that represents the interconnection network
between the individuals in the population. EpiGraph is designed as a deterministic,
scalable tool which simulates the propagation of influenza in scenarios that cover
extended geographic areas. It consists of three main components: the social model,
the epidemic model, and the transportation model.

The social interconnection model is represented via an undirected connection
graph that captures heterogeneity features at the level of both the individual and
each of his interactions. The epidemic model is specific to the infectious agent under
study and extends the classic SIR epidemic model [KM27| to include additional
states. Finally, the transportation model reflects the movement of people between
cities for work, study, or vacation, and it is based on the gravity model proposed by
Viboud et al. [VBST06].

Algorithm 11 shows the pseudocode of EpiGraph’s simulation algorithm. The
iterative algorithm has four phases which execute every time step and for each one
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Algorithm 11 EpiGraph’s spatial transmission algorithm.

Require: (regions, social, status, distance, parameters) where regions are the urban re-
gions considered in the simulation, social is the set of graphs describing the social
network of each urban region; status contains characteristics and health status of each
individual for each urban region; distance stores the distance for every pair of urban
regions; and parameters are parameters of the epidemic model for each individual)

Ensure: (status) where status is the updated status of individuals.

1: for timestep = 1 — simulation_time do

2:  for all region n € regions do

3: for all individual | € social,, do

4 UpdateStatus(l, statusy, (1), parameters(l))

5: if statusy (1) is infectious then

6: ComputeSpread(l, socialy,, status,, parameters(l))
T end if

8 end for

9 Interventions(status,,)

10: for all region m € wurban_regions, (m # n) do
11: Transportation(social,,, socialy, distancen, r)
12: end for

13:  end for

14: end for

of the simulated urban regions. The first phase (1ine 4) consists in updating the
status of every local individual [ based on the epidemic model. The second phase
(line 6) consists in computing the dissemination of the infectious agent using the
social model. The third phase (1ine 9) consists in evaluating both pharmaceutical
and non-pharmaceutical interventions in order to mitigate the propagation of the
infectious disease. Finally, in the fourth phase, the propagation of the infection via
the transportation model (1ine 11) is computed once a day for each pair of urban
regions. Fach subset of processes corresponding to a region compute the number of
individuals which move from this region to another region depending on the size of
the populations and the geographical distance between them.

EpiGraph uses a large portion of memory to store each status and connections
of each individual. For example, a simulation of an area with 92 cities with an over-
all population of 21,320,965 inhabitants requires 31.3 GB of memory. This amount
of data requires parallel data distribution and processing. EpiGraph’s workload, on
the other hand, varies over time depending on the number of infected individuals
during each iteration. Figure 6.1 shows a performance analysis of EpiGraph run-
ning on 8 processes for simulations of different populations: 1,000,000, 2,000,000 and
3,000,000 million inhabitants and a simulated time of 60 days, which corresponds
to 86,400 iterations. We can observe the irregular computation pattern performed
by the application on each execution phase. In addition, the communication pattern
is irregular, and the number of communications and the size of the data sent be-
tween processes varies over time. All these features make EpiGraph a challenging
application for testing FLEX-MPI.
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Figure 6.1: Performance analysis of the number of FFLOP in EpiGraph for varying
matrix sizes and 8 processes.

6.1.2 Evaluation platform

The platform we used for evaluation is a heterogeneous cluster which nodes are
interconnected via Gigabit Ethernet using a flat network topology. All compute nodes
are connected to the same switch and therefore the latency and bandwidth are equal
for all node pairs. The nodes run Linux Ubuntu Server 10.10 with the 2.6.35-32
kernel and the MPICH 3.0.4 distribution. The cluster is managed by the TORQUE
resource manager [Sta06|.

Table 6.1 summarizes the specifications of each node class that integrate the
cluster ARCOS. The heterogeneous cluster consists of 26 nodes of four different
Intel-based processor types with different performance and hardware characteristics.
The amount of available resources varies drastically among the classes, ranging from
a single but extremely powerful C8 class node to 20 less powerful C1 class nodes.

Table 6.1: Configuration of the heterogeneous cluster ARCOS with number of com-
pute nodes and cores for each node class.

Class Nodes Cores Processor Frequency RAM
C1 20 80 Intel Xeon E5405 2.00 GHz 4 GB
c7 3 36 Intel Xeon E7-4807  1.87 GHz 128 GB
C6 2 24 Intel Xeon E5645 2.40 GHz 24 GB
C8 1 24 Intel Xeon E5-2620  2.00 GHz 64 GB
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Table 6.2: Problem classes for the benchmarks evaluated.

Problem Class Order NNZ  Size (MB)

A 10,000  1.0x108 381

Jacobi B 20,000  4.0x10% 1,523
C 30,000  9.0x10% 3,454

A 18,000 6,897,316 99

CG B 36,000 14,220,946 210

C 72,000 28,715,634 440

A 1,000,000 145,861,857 1,308

EpiGraph B 2,000,000 180,841,317 1,803
C 3,000,000 241,486,871 2,462

In order to perform an elaborated evaluation, we have used different problem
classes for our benchmarks. Table 6.2 summarizes the problem classes (A, B, C) used
for Jacobi, CG, and EpiGraph in terms of matrix order and number of Megabytes.
The dense matrices we use for Jacobi were randomly generated using MATLAB
Software [Guil5|, a programming environment for numerical computing that includes
a wide number of software tools for generating and managing random matrices. The
sparse matrices in Conjugate Gradient are a subset of the University of Florida Sparse
Matriz Collection [DH11]|, from Timothy Davis and Yifan Hu. We collected these
matrices from their publicly available repository of matrices. The sparse matrices
used by EpiGraph are generated by the application based on actual data from real
social networks [MMSC11b].

6.1.2.1 Cost model

The cost model summarizes the operational cost associated to each computing core of
the cluster ARCOS. The high-level Adaptive malleability policy of FLEX-MPI uses
this cost model to guide performance-aware dynamic reconfiguring actions under the
cost constraint.

To perform a realistic evaluation of the high-level malleability policies, we as-
signed an operational cost to each computing core based on the economic costs in-
curred when using the equivalent Amazon EC2 instances in terms of performance. We
obtained the performance evaluation of different EC2 instances and their economic
cost from [IOYT11]. The authors used the High Performance Computer LINPACK
benchmark [PWDCO5] to report the performance of different instance types in terms
of GFLOPS. Table 6.3 summarizes the performance (in GFLOPS), economic cost (in
$/hour), and economic efficiency (in GFLOPS per $1) per computing core of each
instance type.
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Table 6.3: Performance evaluation and cost model of the Amazon EC2 platform.

Performance Cost Economic efficiency
Instance type per core per core per core
(GFLOPS) ($/hour) (GFLOPS/$1)
m1l.small 2.00 0.100 20.00
cl.medium 1.95 0.100 19.50
ml.xlarge 2.85 0.200 14.25

Table 6.4: Performance evaluation and cost model of the cluster.

Related Performance Cost Economic efficiency
Class Amazon EC2 per core per core per core
instance type (GFLOPS) ($/hour) (GFLOPS/$1)
C1 ml.small 1.90 0.095 20.00
Cc7 cl.medium 2.25 0.115 19.50
C6 ml.xlarge 2.90 0.204 14.25
C8 - 4.62 0.462 10.00

Table 6.4 summarizes the actual performance, costs, and economic efficiencies
for each node class of the cluster ARCOS. We evaluated the performance of each
node class in the cluster ARCOS using the HPL benchmark for values of N (order
of the coefficient matrix A) between 18,000 and 110,000, depending on the RAM
capacity of each node. This approach allows us to achieve the maximum performance
in each compute node and consequently, obtain realistic performance values. We then
assigned each node class an economic cost that is proportional to those in Table 6.3
in terms of their performance per processor core. We associated each class with an
Amazon EC2 instance of similar performance (column Related Amazon EC2 instance
type in Table 6.4). Based on this association we assigned the same economic efficiency
to the classes as that of the corresponding Amazon EC2 instances. For C8 nodes the
performance is not similar to any of the Amazon EC2 instances. We assigned them
a smaller economic efficiency which allows us to evaluate the effectiveness of using
FLEX-MPI with three node categories: a powerful, expensive, economically inefficient
class C8, two not highly powerful, but cheap and highly cost-efficient classes C1 and
C7, and a class C6 of intermediate performance and efficiency.
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6.2 Performance evaluation of the dynamic load balanc-
ing algorithm

This section presents a performance analysis of the Dynamic Load Balancing (DLB)
algorithm of FLEX-MPI and summarizes the results of the evaluation of this com-
ponent. The goal of this section is to demonstrate the performance of the algorithm
to improve the performance of both regular and irregular parallel applications run-
ning on homogeneous and heterogeneous cluster configurations, in dedicated and
non-dedicated systems.

This section is organized as follows: first, we analyzed and evaluated the per-
formance of the algorithm to improve the performance of applications running on a
homogeneous, dedicated cluster configuration. Second, we evaluated the capabilities
of the algorithm on a performance-wise heterogeneous, dedicated system. Finally,
we analyzed the behavior of the load balancing algorithm when external applica-
tions with workload that vary over time are sharing the underlying architecture for
execution.

To provide a comprehensive evaluation of the DLB algorithm we have evaluated
Jacobi, Conjugate Gradient and EpiGraph benchmarks and their respective problem
classes described in Table 6.2, running on a wide number of processes ranging from 4
to 80 processes depending on the cluster configuration of the experiment. Every test
case is defined using the X.Y.Z formula, where X stands for the benchmark applica-
tion, Y represents the problem matrix, and Z stands for the number of processes of
the experiment. In all test cases we compared the performance and load balancing
of the application running the unbalanced, native MPI version of the program to
the FLEX-MPI version using DLB. Jacobi, Conjugate Gradient and EpiGraph use a
block partitioning of the matrix such that every process operates on a data partition
that corresponds to the matrix order divided by the number of processes, therefore
creating workload imbalance across PEs. For that reason the considered benchmarks
provide a good case study for the DLB algorithm and its capabilities.

Additionally, we present a performance comparison of the different load balanc-
ing policies (XMPI_LB_NNZ and XMPI_LB_WEIGHT) for those experiments that involve
the EpiGraph benchmark. Since the workload of EpiGraph exhibits a correlation
to the evolution of the epidemic over time, this benchmark takes advantage of the
weight policy to balance the workload depending on the number of infected individ-
uals per processing element.

6.2.1 Homogeneous dedicated system

This section evaluates the performance of the dynamic load balancing algorithm for
our benchmarks running on an homogeneous dedicated system. The homogeneous
cluster configuration consists of C1 class nodes of the ARCOS cluster. The number of
processes ranges from 4 processes allocated to four C1 nodes to 80 processes allocated
to twenty C1 nodes running 4 processes per node.
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Figure 6.2: Performance evaluation of Jacobi, CG and EpiGraph on a homogeneous
dedicated system.
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Figure 6.3: Load balancing of Jacobi, CG and EpiGraph on a homogeneous dedicated
system.
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Figures 6.2 and 6.3 show the experimental results of the DLB algorithm on the
homogeneous cluster configuration for Jacobi, CG and EpiGraph. The performance
evaluation takes into account the I/0, computation and communication times of
the processes, as well as the FLEX-MPI overhead. Figure 6.2 illustrates the exe-
cution time of the original benchmarks running native MPI, and FLEX-MPI using
dynamic load balancing. Additionally, for the EpiGraph benchmark these figures
show the execution time of the benchmark running FLEX-MPI using the weight
policy. The X axis displays the test case: the name of the benchmark, the problem
class, and the number of processes of the execution. The Jacobi benchmark does
not take much advantage of DLB when running on a homogeneous dedicated system
because it is a regular application that operates on a dense data structure. However,
these results demonstrate that FLEX-MPI does not introduce any overhead on the
execution of the program while improving its performance up to 16.05% for J.B.80.
The CG benchmark does exhibit a significant performance improvement using DLB
that ranges from 0.73% for CG.A.32 to 44.21% for CG.C.32. Likewise, the EpiGraph
benchmark exhibits a performance improvement of up to a dramatic 66.64% for
E.C.64 when using the weitght DLB policy. These results demonstrate that the DLB
algorithm is a good approach for applications that exhibit dynamic conditions such
as CG—operates on a sparse data structure—and EpiGraph—exhibits an irregular
computation and communication pattern. These applications are very prone to load
imbalance.

Figure 6.3 illustrates the total resource consumption of native MPI and FLEX-
MPI benchmarks, computed as the execution time of the application multiplied by
the number of PEs used. We can observe that FLEX-MPI enables the parallel appli-
cation to significantly reduce its resource consumption when using the DLB algorithm
for load balancing at runtime. For instance, the resource consumption for EpiGraph
in E.B.80 is reduced from 63840 secs. to 51360 secs. when using the nnz policy and
up to 27840 secs. when using the weight policy, which represents a reduced resource
consumption of 56.40% regarding the unbalanced execution. The benchmarks ex-
hibit a reduction of their resource consumption of up to 16.05% for Jacobi, between
0.73% and 44.20% for CG, and between 10.53% and 66.63% for EpiGraph. These
results demonstrate the capabilities of the dynamic load balancing to improve the
efficiency of resources consumption. Besides the performance improvement in terms
of speedup and scalability, the DLB algorithm reduces the processor time which may
have a huge impact on the economic cost and energy consumption of the computing
facilities.

These results reflect the capability of the DLB algorithm to balance the work-
load of the application at runtime, thus reducing synchronization times between pro-
cesses and improving their performance by adapting the workload to the computing
power of the PE. CG and EpiGraph exhibit a large performance improvement even
when running on homogeneous systems because the initial block partitioning leads
to unevenly distributed nonzero entries across processes, therefore creating workload
imbalance.
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6.2.2 Heterogeneous dedicated system

This section evaluates the performance of the DLB algorithm for our benchmarks
running on an heterogeneous dedicated system. The heterogeneous cluster configu-
ration consists of nodes of different classes of the ARCOS cluster, ranging from 4
to 48 processes. Table 6.5 summarizes the description of the heterogeneous cluster
configuration for the test cases considered in the performance evaluation.

Table 6.5: Number of processes (Np) and their mapping to the available node classes
(number of nodes and PEs per node) in the heterogeneous configuration.

Nodes (PE)
Np C1 C7 C6 C8
4 1(1) 1(1) 1(1) 1(1)
8 1(2)1(2) 1(2) 1(2)
16 1(4) 1(4) 1(4) 1(4)
32 2(4) 1(8) 1(8) 1(8)
48 4 (4) 2 (8) 2 (8) 1 (16)

Figures 6.4 and 6.5 show the experimental results of the DLB algorithm on
the heterogeneous cluster configuration for our considered benchmarks. Figure 6.4
illustrate the performance evaluation of the benchmarks by means of the comparison
of the execution time of the native MPI version to the FLEX-MPI version that uses
DLB. The performance improvement ranges from 11.85% (J.B.32) to 32.33% (J.C.4)
for Jacobi, 2.02% (CG.B.32) - 30.66% (CG.C.48) for Conjugate Gradient and 18.25%
(E.A4) - 69.21% (E.C.32) for EpiGraph. On the other hand, Figure 6.5 illustrate
the total resource consumption of the benchmarks when running native MPI and
FLEX-MPI codes on the heterogeneous cluster. These experiments show that DLB
can effectively reduce the resource consumption of the application up to 32.45% for
Jacobi, 30.71% for CG, and 69.20% for EpiGraph.

These results demonstrate that both regular and irregular applications can take
advantage of DLB when running on heterogeneous systems. Besides the uneven dis-
tribution of sparse data structures, the initial block partitioning strategy used for
most of the applications does not consider the performance difference among PEs.
This is because mostly it is difficult to obtain a fair estimation of the mapping of
the performance to the data structure—which may be sparse. Additionally, the user
often does not have knowledge about the characteristics of the underlying hardware
because he does not have privileged access to the system.

These results reflect the capabilities of the DLB algorithm to balance the work-
load of the application taking into account the specific computing power of each type
of PE, which may vary significantly, and without requiring prior knowledge of the
underlying architecture.
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Figure 6.4: Performance evaluation of Jacobi, CG and EpiGraph on a heterogeneous
dedicated system.
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Figure 6.5: Load balancing of Jacobi, CG and EpiGraph on a heterogeneous dedicated
system.
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Figure 6.6: Performance analysis of Jacobi (a) and EpiGraph (b) on a heterogeneous
dedicated system.

In order to provide a comprehensive analysis of the DLB algorithm when dealing
with irregular applications and heterogeneous systems, Figure 6.6 illustrates a typical
execution of Jacobi (a) and EpiGraph (b) running with the support of FLEX-MPI
for load balancing. These figures show the overall execution time (red line) of the
application, the difference (blue bars) between the fastest and slowest processes,
and the threshold value (black dotted line). The threshold value is computed at
runtime by the DLB algorithm. When the time difference between processes surpasses
this threshold value, the algorithm detects load imbalance and then triggers a load
balancing operation in order to rebalance the workload of the application.
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Due to the regular computation pattern of Jacobi the amount of work done in
each iteration is the same. This leads to very small variations over time in the execu-
tion time per iteration. When executing on a heterogeneous system, Jacobi requires a
single data redistribution operation to balance the workload. It is carried out during
the first sampling interval, in which the workload imbalance is larger than the imbal-
ance tolerated by the algorithm. From that moment on the application is balanced
and no further data redistribution operations are necessary. In contrast, EpiGraph is
an irregular application which exhibits a highly variable workload per iteration. This
kind of applications may require several data redistribution operations to balance
the workload because the variations over time create performance differences that
surpass the threshold value of the DLB algorithm in each sampling interval.

6.2.3 Non-dedicated system

This section evaluates the performance of the DLB algorithm for our benchmarks
running on a non-dedicated system. The primary goal of the evaluation is to analyze
the capability of the DLB algorithm to adapt the workload of the application to the
dynamic execution environment at runtime.

The following experiment evaluates how well the load balancing algorithm per-
forms when external applications with workload that vary over time are sharing the
underlying architecture for execution. We run Jacobi for a heterogeneous configu-
ration with one C1 node and one C6 node, each running 4 processes per node. We
artificially introduce an external load which simulates an irregular computing pat-
tern, creating an interference in our application. This interference is created by two
processes which are simultaneously executed on the C1 node together with the target
application. The interference consists of a burst of short computing intervals followed
by a single long computing interval which lasts until the end of the execution.

Figure 6.7 shows what happens on one of the PEs when we run Jacobi using
FLEX-MPI with DLB and we introduce an interference on a subset of the process-
ing elements. The workload redistribution triggered by the load balancing algorithm
leads to a different number of F'LOP performed by the process (in red). The amount
of data which needs to be redistributed depends on the magnitude of the interfer-
ence (in blue) and the value of the k parameter—described in Algorithm 5. The &
parameter allows the user to modify the behavior of the DLB algorithm in response
to the changes in the execution environment such as it represents the number of con-
secutive sampling intervals during which an interference is considered as long term,
thus triggering a load balancing operation. Small values of &k lead to load balancing
operations each time an interference is detected by the algorithm. Otherwise, large
values of k can tolerate external loads that last several sampling intervals.

Returning to Figure 6.7, we can observe that for the smallest value £ = 1
the application adapts immediately to changes in the performance of the processing
element, carrying out load balance for every external load burst. With k = 3 the
first smaller interference bursts are discarded, then the application adapts to the
larger one. Finally, larger values of k lead to discarding all the interference bursts
but considering the long-term load.
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Figure 6.7: Performance analysis Jacobi on a heterogeneous non-dedicated system
for different values of k: (a) k=1, (b) k=3, and (c) k = 5.
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6.3 Computational prediction model validation

FLEX-MPI uses a computational prediction model (CPM) that increases the accu-
racy in the search of best execution scenario (by spawning or removing processes)
that better meets the performance requirements. The model consists of several com-
ponents for predicting computation and communication times, overhead of creation
and termination of MPI processes and overhead of data redistribution operations.
Each one of these components has to be tuned according to the application and
hardware characteristics.

This section summarizes the performance evaluation of the CPM to predict,
for a given reconfiguration scenario (change the number of processes to run on a
different processor configuration), both the computation and communication times
as well as the overhead associated to the application reconfiguration (process creation
and removal, and data redistribution). Prior to the model evaluation, we describe
the experiments conducted in order to collect the system parameters required by the
computational prediction model for our considered benchmarks.

6.3.1 Parameter values

The CPM requires as input a set of hardware-specific parameters that are necessary
to compute the predicted values for creation and termination of MPI processes,
as well as the network parameters to predict the performance of communication
operations in the parallel application and the data redistribution overhead. This
section summarizes the experiments carried out to collect the values of the parameters
that correspond to the overhead of MPI process creation and termination for Jacobi,
CG, and EpiGraph, and network performance for the cluster ARCOS.

6.3.1.1 Creation and termination of MPI processes

The overhead of process creation and termination depends on the number of pro-
cess spawned or removed, the operating system, the MPI implementation, and the
size of the program binary. Therefore, these overheads are specific to the system
environment and the application. We measure the overhead of process creation and
termination in the cluster ARCOS using predefined reconfiguring points during the
execution of the benchmarks. These values are used to effectively predict the over-
head of reconfiguring actions in FLEX-MPI.

Figures 6.8 (a) and (b) show the overheads of process creation and termination
for Jacobi, CG, and EpiGraph in the cluster. These results are the average values
of multiple repetitions of the experiments. The size of the binaries are 28KB each
for Jacobi and Conjugate Gradient, and 184KB for EpiGraph. In these figures the
x-axis represents the number of dynamic processes spawned or removed. For the
measurement of the overhead of process creation all applications start with 8 initial
processes. For instance in Figure 6.8 (a) the x value 8 means that the application
goes from executing on 8 to 16 processes.
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Figure 6.8: Measured times for the creation and termination of dynamic MPI pro-
cesses on 20 computing nodes of class C1.

For the measurement of the overhead of process termination we trigger the
process removing action when the application is running on 80 processes. The mea-
surement of process termination is slightly more complex due to the fact that only
those processes which have been previously spawned dynamically can be later re-
moved. For instance, we measure the overhead of removing 32 processes—ax value
32 in Figure 6.8 (b)—by starting the application with 48 processes, spawning 32
dynamic processes, then removing them and measuring the time spent in this last
operation.

Table 6.6 shows the average creation and destruction times in the cluster ARCOS
for our benchmarks. These values show that in the case of our benchmarks the
creation and destruction costs do not depend on the binary size but of the number
of processes that are created or destroyed, and the execution environment (operating
system and MPI implementation).
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Table 6.6: Average process creation and termination overheads for Jacobi, CG, and
EpiGraph in the cluster ARCOS.

Action Average time (ms) Standard deviation (ms)
Creation 519.700 8.000
Termination 0.801 0.060

Table 6.7: Hockney model parameters measured on the ARCOS cluster.

Parameter Description Measured value
Latency 100 psecs.
Transfer time 0.008483 psecs. per byte
¥ Computation cost of reduction operation 0.016000 usecs. per byte

6.3.1.2 Network parameters

The CPM uses the communication models of MPICH implementation to predict the
performance of communication operations in FLEX-MPI. This allows FLEX-MPI to
model the performance of communications of the parallel application as well as the
performance of data redistribution operations.

The communication models of MPICH are based on the Hockney model [Hoc94],
which characterizes a communication network in terms of latency and bandwidth.
Every communication model based on the Hockey model requires the following pa-
rameters: « is the network latency, and 3 is the transfer time per byte. Addition-
ally, the communication models of MPICH use a ~ parameter—used for reduction
operations—that represents the computation cost per byte for performing the reduc-
tion operation locally on any process.

Given the fact that the network topology of the cluster ARCOS is flat, we assume
that latency and bandwidth are equal for all the node pairs. Therefore we conducted
several point-to-point experiments in order to obtain the values of the parameters
of the Hockey model in the cluster. Our network benchmark measures the network
latency and bandwidth between all the node pairs of the system, for data streams of
different sizes using UNIX-based network performance tools. Specifically, our bench-
mark uses tcpping [Ste04] to measure the network latency and Iperf [TQDT05] to
measure bandwidth performance. We fine-tuned specific command options in order
to adapt the tools to the network performance of the cluster and obtain the most
accurate results.

Table 6.7 summarizes the average parameter values for the Hockney model mea-
sured for multiple repetitions by our network benchmark on the cluster ARCOS. The
«a parameter was directly reported by the network benchmark, while f was com-
puted using the network bandwidth and the size of data transferred between nodes.
Furthermore, the v parameter was computed by performing several MPI reduction
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operations (i.e. MPI_Reduce and MPI_Allreduce) and measuring the average time
per byte spent by each process to compute the reduction operation.

6.3.2 Model validation

Once we collected all the parameters for the benchmarks and the evaluation platform,
we feed the computational prediction model with those values and validate its capa-
bilities to predict the performance of the parallel application prior to reconfiguring
actions. First we validate the capabilities of the CPM to predict the performance of
communication operations in FLEX-MPI applications. We evaluated the accuracy of
the estimations of the CPM by comparing predicted times versus measured times for
a wide range of MPI-based communication operations. To be specific, we evaluated
the MPI_Send and MPI_Recv point-to-point operations, as well as the collective op-
erations MPI_Bcast (one-to-many), MPI_Gather (many-to-one), and MPI_Allreduce
(many-to-many). These operations represent the whole diversity of MPI communi-
cation types: one-to-one, one-to-many, many-to-one, and many-to-many.

The MPICH distribution we are using implements a set of optimizations for
intra-node communication. It is important to evaluate whether our evaluations are
correct in the case that there is more than one process mapped to the same node.
For these tests we used nodes of class C1 which have a multi-core processor with 4
cores.

For the experiments consisting of 4, 8, and 16 processes we used 4, 8, and 16
nodes respectively with one process per node. For the experiments with 32 processes
we used 16 nodes with two processes per node; for those with 64 processes we used
16 nodes with 4 processes per node. This allows us to measure the performance
of collective operations for both inter-node and intra-node scenarios. Figures 6.9,
6.10, 6.11 and 6.12 show that the estimated time (using Hockney model) is a
good approximation for the measured time, for each of the MPI operations that we
evaluated: MPI_Send and MPI_Recv, MPI_Bcast, MPI_Gather, and MPI_Allreduce.
These results demonstrate the capabilities of the CPM to predict the performance
of MPI operations in a FLEX-MPI application.

Once we have validated the network performance estimation of the CPM, we val-
idate its functionalities to predict the execution time of a parallel application for all
its execution phases: computation, communication, process reconfiguring overheads,
and data redistribution overheads. To validate the CPM we execute a modified Ja-
cobi code in which the reconfiguring actions are predefined to occur at a particular
iteration. Then we validate the model by comparing predicted times—computed by
the CPM—and real times—measured in the program.
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Figure 6.9: Comparison between predicted and measured times for MPI Send and
Recv (MPI_Send/MPI_Recv).
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Figure 6.10: Comparison between predicted and measured times for MPI Broadcast
(MPI_Bcast).
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Figure 6.11: Comparison between predicted and measured times for MPI Gather
(MPI_Gather).

MPI_Allreduce
0,1 1
0,08
%
$ 0,06
@ \\\\\
G290,04 1
'_
0,02 \
0 - N \ N X N | N N \
800000 1200000 1600000
Data size (Bytes)

¥ Estimated time (4 procs.) Real time (4 procs.)
¥ Estimated time (8 procs.) Real time (8 procs.)
¥ Estimated time (16 procs.) Real time (16 procs.)
B Estimated time (32 procs.) U Real time (32 procs.)
B Estimated time (64 procs.) Real time (64 procs.)

Figure 6.12: Comparison between predicted and measured times for MPI All reduce
(MPI_Allreduce).
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Figure 6.13: Comparison between average predicted and real times for different dy-
namic reconfiguring actions carried out for Jacobi benchmark running on (a) 8, (b)
16, (c) 32, and (d) 64 processes.

Table 6.8: Average relative error and relative standard deviation for CPM estima-
tions.

Phase Relative Error (%) Relative Standard
Deviation (%)

Computation 1.47% 0,62%
Communication 4.61% 1,31%
Process reconfiguring 2.23% 0,94%
Data redistribution 5.60% 1,63%
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Figure 6.13 shows a comparison between the average predicted and real times
for executions starting from (a) 8, (b) 16, (c) 32, and (c) 64 initial processes when
adding and removing different numbers of dynamic processes. Real times correspond
to the times measured during the sampling interval following the sampling interval
in which the reconfiguring action is carried out.

Table 6.8 summarizes the average relative error (RE) and the average relative
standard deviation (RSD) of the CPM to predict: (1) the computation times, (2)
communication times, (3) process reconfiguring overheads, and (4) data redistribu-
tion overheads.

These results demonstrate that the computational prediction model can predict
with great accuracy the performance of parallel applications prior to a reconfiguring
action, either to spawn new processes or to remove currently allocated processes,
ranging from 8 to 64 processes at runtime. The average values computed for RE and
RSD show that the number of processes involved in the reconfiguring action does
not have such a big impact on the accuracy of the prediction computed by the CPM.

The most accurate estimations correspond to those of computation and process
reconfiguring times, since the benchmark considered exhibits a regular computation
pattern and we feed the CPM with the overhead of process creation and termination
obtained in Section 6.3.1.1. On the other hand, the estimated times for communi-
cation and data redistribution phases exhibit a slightly higher relative error due to
the usual fluctuations on the network performance during runtime. These results en-
able the performance-aware malleability policies to reconfigure the application to the
number of processes that better satisfies the goals of the policy with great accuracy.
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6.4 Performance evaluation of malleable MPI parallel
applications

This section summarizes the experimental evaluation results of the malleability
policies: Strict Malleability Policy (SMP), High Performance Malleability Policy
(HPMP), and Adaptive Malleability Policy (AMP). We focus our analysis on two
main topics: the library overhead and the capabilities of the malleability policies to
perform dynamic reconfiguring actions in order to achieve their performance goals.
We conducted an exhaustive number of experiments in the cluster ARCOS for both
homogeneous and heterogeneous configurations for the three considered benchmarks.
The following sections describe our observations on the experiments and the results
obtained.

6.4.1 Strict malleability policy

This section analyses the performance of the SMP policy (Section 5.4.1) to adjust
the number of processes to the availability of system resources. The SMP policy auto-
matically extends and shrinks the number of processes of the application depending
on the current number of available processing elements in every sampling interval.
The SMP does not focus on improving the performance of the application but en-
ables the parallel program to use a variable number of processes to take advantage
of idle resources at runtime without user intervention. If the number of processes is
large enough, it may degrade the performance of the application due to fine-grained
granularity which increases the synchronization overheads.

EClassC8 E(ClassC6 E(ClassC7 H(ClassC1 #Available
Z

0 500 1000 1500 2000 2500
Number of iteration

Figure 6.14: Number of processes and type of processors scheduled for Jacobi and
total number processing elements available in the system.

Figure 6.14 illustrates the number and type of resources scheduled for Jacobi
when running on a subgroup of the cluster ARCOS which consists of two C1 nodes,
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one C7 node, one C6 node, and one C8 node. Initially, the application runs on 8
processes which corresponds to the number of PEs available in the system—2 PEs
per class—and we limit the maximum number of processes to 18 processes. We can
observe that, as the number of available PEs increases gradually from 8 to 12, SMP
spawns new processes to take advantage of these resources. At iteration 600, 8 new
PEs become available. However, the SMP policy does not schedule more than 18
processes because that is the limitation that we imposed to the policy.

These results demonstrate the capabilities of FLEX-MPI to change the number
of processes and redistribute the workload at runtime, while the SMP policy reacts to
changes in the dynamic execution environment by adjusting the number of processes
of the application to the available resources.

Then we evaluate the performance of the SMP policy using predefined process
scheduling. This feature allows the user to control over the process scheduling via a
configuration file that describes the number of processes, the type of involved proces-
sors, and the iteration number in which the reconfiguring action must be triggered.
Figure 6.15 illustrates the performance of EpiGraph when running on a fixed number
of processes (left Y axis) and simulating the spread of influenza in a population of
size 2M for 60 days. We can observe that the execution time per sampling interval
(in black, right Y axis) increases as the epidemic spreads on the population and the
number of infected people reaches its highest point at 30 days (43200 iterations).
From that point on the number of infected people decreases until the end of the sim-
ulation. This test demonstrates that irregular applications such as EpiGraph make
an inefficient use of resources when using static scheduling because they can be un-
derutilized in some phases of the execution—when the workload is very low—while
more resources would be welcome in those phases of highest workload.
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Figure 6.15: Performance evaluation of EpiGraph that illustrates the number of pro-
cesses (left Y axis) and execution time (right Y axis) per sampling interval when
using static scheduling without FLEX-MPI support.
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Otherwise, when both the application’s computation pattern and the system’s
performance are well known, a predefined scheduling can significantly improve the
performance of the application and the efficiency usage of system resources. Fig-
ure 6.16 illustrates the performance of EpiGraph when using the SMP policy with
a predefined scheduling. The number of processes scheduled (left Y axis) increases
for the compute-intensive phases of the application, then the additional processes
are removed when they are not required anymore. This behavior leads to an efficient
usage of the resources that increases the performance of the application by reducing
the execution time per sampling interval (right Y axis).
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Figure 6.16: Performance evaluation of EpiGraph that illustrates the number of pro-
cesses (left Y axis) and execution time (right Y axis) per sampling interval when
using predefined dynamic scheduling (b).

These results demonstrate that the SMP policy can significantly improve the
performance of the application using predefined scheduling via simple configuration
file. However, we have to note that a limitation of this policy is that it requires prior
knowledge of the application’s computation pattern and the underlying hardware,
which is not always feasible. The SMP policy is not performance-aware so the user
has to provide FLEX-MPI information about the specific systems resources to use
during the program execution.

6.4.2 High performance malleability policy

This section evaluates the performance of FLEX-MPI applications executing the
performance-aware HPMP policy (Section 5.4.2) to efficiently adjust the number
of processes to the availability of system resources. The goal of this section is to
demonstrate the capabilities of the HPMP policy to adjust the number of processes
to the processor configuration that provides the highest application performance in
terms of completion time.
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Figure 6.17: Performance analysis of Jacobi (a) and Conjugated Gradient (b) that
shows speedup (left Y axis) and efficiency (right Y axis).

We evaluate the performance of the HPMP policy on a subgroup of the cluster
ARCOS which consists of 8 compute nodes of the C1 class—that is, 32 PEs. First we
analyze the performance of our considered benchmarks when running on the evalu-
ation platform. Figure 6.17 illustrates the speedup and parallel efficiency of Jacobi
(a) and Conjugate Gradient (b). The test case for Jacobi computes the problem size
B for 2,500 iterations, while the test case for CG computes the problem size B for
20,000 iterations. We can observe that for both applications the speedup increases
as the number of processes grows. However, the parallel efficiency gets degraded as
the number of processes increases—which means that neither Jacobi nor CG scale
well for a fixed problem size. The performance analysis shows that Jacobi is more
efficient and scalable than CG.
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Figure 6.18: Number of processes allocated by HPMP, number of PE available (left
Y axis) and execution time per iteration (right Y axis) for Jacobi.

Then we evaluate the performance of parallel applications when running with
the support of the HPMP policy. Figure 6.18 illustrates performance of Jacobi when
running with the support of HPMP for malleability. The figure shows the number of
processing elements available and the number of processes allocated by the HPMP
policy for the application (left Y axis) and the execution time per iteration (right
Y axis). Initially the parallel program runs on 8 processes available in the system.
At iteration 500 10 additional PEs became available. The HPMP analyzes the per-
formance of the application and decides to allocate 9 of those PEs for the program.
We have to take into account that, although one additional process may provide
an improved performance, the malleability policy also computes the overhead of re-
configuration to make decisions. This overhead—which is computed in the figure as
part of the execution time of the application—can have a significant impact on the
performance of the application that leads to a larger completion time. At iteration
2000 14 additional PEs become available. In that case, the HPMP policy allocates
12 of them for the application. As in the prior malleable action, we observe a trade-
off between the reconfiguration overhead and the application performance. In this
example the overhead of reconfiguration has a significant impact on the application
because, although three additional processes can enhance the performance of the
program, a larger number of processes implies larger reconfiguration overheads that
may degrade the overall performance of the application.

Figure 6.19 illustrates the results of the performance evaluation of CG when
running with the support of the HPMP policy. We can observe that, at iteration
10,000 the malleability policy allocates a number of processes (3) that is by far smaller
than the available (10). That is because the parallel efficiency of CG degrades for
a large number of processes. In this case the HPMP considers that allocating more
processes can have a negative impact on the performance of the program due to
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Figure 6.19: Number of processes allocated by HPMP, number of PE available (left
Y axis) and execution time per iteration (right Y axis) for Conjugate Gradient.

its poor scalability and the overhead of reconfiguration. At iteration 16,000 we can
observe that HPMP removes processes from the application when the RMS requests
resources on behalf of another application with highest priority.

These results have demonstrated the capabilities of the HPMP policy to analyze
the performance of the application and adjust the number of processes to a proces-
sor configuration that improves its performance, both for scalable and inefficient
parallel applications. We have observed that the HPMP computes the overhead of
processes creation and termination and data redistribution to make decisions about
performance-guided reconfiguring actions. In any case, every reconfiguring action
performed by the HPMP policy means a performance improvement for the parallel
program in terms of completion time.

6.4.3 Adaptive malleability policy

This section evaluates the performance of FLEX-MPI applications executing the
performance-aware AMP policy (Section 5.4.3) to efficiently adjust the number
of processes to satisfy the user-defined performance objective under performance
constraints.

This section is organized as follows: first, we present the test cases we considered
to evaluate the functionalities of the AMP policy. Second, we present an elaborated
performance analysis of the AMP policy for some of the test cases described in the
previous subsection. Finally, we summarize the results of the performance evaluation
of the AMP policy for our considered test cases.
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6.4.3.1 AMP test cases

We evaluate the performance of the AMP policy for our considered benchmarks
(Jacobi, CG, and EpiGraph) using a wide number of test cases by using different
input matrices and initial processor configurations. Table 6.9 summarizes the test
cases that we considered and the number of initial processes and types of processors
for each one of them.

Table 6.9: Number of processes initially scheduled (Np) and their mapping to the
available class nodes for each test case.

Process mapping

Test case Benchmark Problem class Np C1 C7 C6 C8

J.A8 Jacobi A 8§ 2 2 2 2
J.B.8 Jacobi B 8§ 2 2 2 2
J.C.8 Jacobi C 8 2 2 2 2
J.C.24 Jacobi C 24 6 6 6 6
CG.A.4  Conjugate Gradient A 4 1 1 1 1
CG.B.4 Conjugate Gradient B 4 1 1 1 1
CG.C.4 Conjugate Gradient C 4 1 1 1 1
CG.C.8 Conjugate Gradient C 8§ 2 2 2 2
E.A.8 EpiGraph A 8§ 2 2 2 2
E.B.8 EpiGraph B 8§ 2 2 2 2
E.C.8 EpiGraph C 8 2 2 2 2

In our experiments the performance objective is to reduce the completion time
of the malleable applications by 25%, 30%, and 35% compared to the completion
time for static scheduling—the completion time of the application using Np pro-
cesses with a static processor allocation. For each of these objectives we evaluate the
execution under both constraint types—efficiency and cost. The maximum number
of processors available for each benchmark application corresponds to the number of
resources of the cluster ARCOS as shown in Table 6.1, and we use the cost model
as described in Table 6.4.

Each benchmark application was executed for a different number of iterations.
We executed Jacobi for 2,500 iterations, CG for 20,000 iterations, and EpiGraph for
86,400 iterations (which corresponds to 60 days of simulation). We used a sampling
interval of 100 iterations for Jacobi and CG, and of 8,640 iterations for EpiGraph
(which corresponds to 1 day of simulation). To provide a fair comparison we apply
load balance in both static and dynamic scenarios. For Jacobi and CG benchmarks
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the CPM estimates at runtime the computation times for each sampling interval; for
EpiGraph we profiled a previous execution of the application to collect the number
of FLOP performed by the application, which results are shown in Figure 6.1.

6.4.3.2 Performance analysis of AMP

This section presents an elaborated performance analysis of the AMP policy for J.B.8
test case in order to better understand the behavior of the malleability policy. We
profiled the performance of the benchmark application at runtime to analyze the
dynamic reconfiguring actions performed by the AMP policy.

Figure 6.20 shows a comparison between the behavior of the reconfiguring policy
module under efficiency (a) and cost (b) constraints when executing J.B.8 with a
performance improvement objective of 35%. The statically scheduled application
takes 923.453 seconds and 1,535 cost units to complete on eight processors.

When we impose the efficiency constraint—Figure 6.20 (a)—FLEX-MPI triggers
two reconfiguring actions at iterations 300 and 2,200 to increase the computing power
of the application. FLEX-MPI optimizes resource provisioning by minimizing the
number of dynamically spawned processes. The maximum number of simultaneously
executing processes using the efficiency constraint is 13 with a total operational cost
of 1,928 units. Dynamic processes execute on the least cost-efficient yet most powerful
processors—of class C8.

When we impose the cost constraint—Figure 6.20 (b)—FLEX-MPI schedules
new processes on the most cost-efficient processors of our cluster—nodes of class C1.
FLEX-MPI triggers several reconfiguring actions to satisfy the performance objective
and the cost constraint guided by the performance-aware reconfiguring policy. We
can see that in iteration 1,100 the reconfiguring policy concludes that the current
performance is below what is needed to reach the objective. As a result it increases
the computing power by adding three additional processors. In iteration 1,300 the
same module concludes that these processors lead to a performance above what is
needed and eliminates two of them.
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Figure 6.20: Number of processes and type of processors scheduled by the AMP

policy for

the execution of J.B.8 under the efficiency (a) and cost (b) constraints.
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Figure 6.21: Application workload (in blue, left y-axis) and computing power (in
red, right y-axis) for the execution of J.B.8 under the efficiency (a) and cost (b)

constraints.
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The maximum number of simultaneously executing processes using the cost con-
straint is 20 with a total operational cost of 1,543 units. The dynamic application
running under the efficiency constraint takes 597 seconds to execute—which is 35.33%
faster than static scheduling. The dynamic application with the cost constraint takes
601 seconds— 34.89% faster than static scheduling. Both dynamic executions satisfy
the performance objective as the AMP policy dictates. These results show the behav-
ior of the AMP policy algorithm to reconfigure the application at runtime in order
to satisfy the performance objective and constraints.

In order to take a deeper look at the runtime performance of the benchmark,
we profiled the application to collect the number of GFLOP of J.B.8 under efficiency
and cost constraints. Figure 6.21 shows the workload (in GF'LOP) of Jacobi in every
iteration and the computing power (in GFLOPS) of the processor configuration in
every sampling interval for J.B.8 under the efficiency (a) and cost (b) constraints.
The workload stays by and large constant in both cases, regardless of the number of
simultaneously executing processes. However, we observe that the computing power
varies with the number and type of processes that are added or removed in every
sampling interval. This affects the execution time per iteration and therefore the
completion time of the application. These results demonstrate that reconfiguring
actions effectively change the performance of the application but not the application
workload.

6.4.3.3 Performance evaluation of AMP

This section summarizes the results of the performance evaluation of the test cases
for our considered benchmarks using the AMP policy. The performance evaluation
focus on analyze the completion time, number of processes, and operational cost of
each test case in Table 6.9.

Figure 6.22 summarizes the performance improvement of dynamic reconfigura-
tion compared with static scheduling for our test cases and performance objectives
of 25%, 30%, and 35% performance improvement with both efficiency and cost con-
straints. We set these performance objectives in order to prove the capabilities of the
AMP policy to accurately adjust the performance of parallel applications to differ-
ent requirements. For each test case, the AMP policy allocates the computing power
necessary to satisfy the performance objective, while the number of processes and
type of processors depend on the user-given performance constraint. The average rel-
ative error ranges in [-1.154%, 2.436%]| with a relative standard deviation in [0.981%,
1.671%]|. These results reflect the accuracy of AMP to allocate the number of FLOPs
necessary to satisfy the performance objective for each test case.

It is important to note that the performance results are very accurate to sat-
isfy the different performance requirements regardless of the execution pattern of by
each benchmark. The AMP policy is able to adjust the performance of either regular
(Jacobi and CG) or irregular (EpiGraph) benchmarks. Besides the computation and
communication performance, the ability of the CPM to estimate the overheads of
reconfiguring actions necessary to modify the application performance is very no-
ticeable in the evaluation.
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Figure 6.22: Performance evaluation of the benchmarks with the support of AMP
for satisfying the performance objective.

Once we have concluded the capabilities of AMP to satisfy the performance
objective, we analyze its capabilities to schedule the number of processes and type
of processors necessary to satisfy the performance constraint. Figure 6.23 shows the
maximum number of simultaneously executing processes for each performance ob-
jective, for each test case. The number of processes is always bigger when imposing
the cost, rather than the efficiency, constraint. This is because the most cost-efficient
nodes are the less powerful and FLEX-MPI requires a greater number of them to
increase the performance of the application to the point where the applications com-
plete their execution within the required time interval.

The effect of the type of processes allocated by the AMP policy to satisfy the cost
constraint can be seen in Figure 6.24, which shows the normalized operational cost
of each test case relative to static scheduling. We can observe that the operational
cost when imposing the cost constraint is always smaller than that obtained for the
efficiency constraint.

We emphasize the ability of the AMP policy to take into account the wide variety
of number and characteristics of the class nodes available in the cluster ARCOS
when reconfiguring the application to the most appropriate processor configuration
that satisfies the performance requirements. For instance in the J.C.24 test case, the
AMP policy reconfigures the application from the initial one which uses 6 processes
of each node class to a processor configuration that allocates 14 processes of class
C1, 14 nodes of class C6, 6 nodes of class C7 and 12 nodes of class C8 under the
efficiency constraint, and 34 processes of class C1, 6 nodes of class C6, 6 nodes of
clagss C7 and 8 nodes of class C8 under the cost constraint.
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Figure 6.23: Number of processes scheduled by AMP for satisfying the performance

objective for the benchmarks.

Figure 6.24: Cost analysis of the benchmarks with AMP support for satisfying the
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These results reflect that using FLEX-MPI to run MPI applications under the
efficiency constraint permits to enhance the overall throughput of the system by
allowing other applications to use available resources without affecting the perfor-
mance of our application. On the other hand, MPI applications can benefit from the
capabilities of the AMP policy to minimize the operational cost of the application
with no performance penalty. This makes FLEX-MPI very interesting for scenarios
in which we have a large number of available resources to run our application or
we need to reduce the cost incurred by the application. Minimizing the operational
cost has become a critical factor in recent years due to the large amount of energetic
and economic cost associated to the execution of scientific applications in HPC sys-
tems. We emphasize that in some of the test cases (i.e. J.C.8, CG.C.4, and CG.C.8)
the AMP policy satisfies the performance objective with an operational cost that is
lower than the cost of running the application with static scheduling. It is impor-
tant to note that, in the best cases, the performance of the benchmarks using static
scheduling in 25% lower than the application running with the AMP policy.

We can conclude that the AMP policy offers several benefits for the execution
of scientific parallel application that run on HPC systems. This policy allows to
make an efficient usage of the resources both from the point of view of the overall
throughput and the operational cost.

6.5 Overhead analysis

This section evaluates the overhead of the FLEX-MPI library when comparing to the
execution of an MPI application running with the MPICH library, and its impact
on the application performance. One of the goals of the library implementation is
to minimize its overhead on the execution time. Though reconfiguring actions have
a significant impact on the overhead, the FLEX-MPI library takes this into account
when performing a process reconfiguration.

In order to evaluate the FLEX-MPI overhead we compare the execution times
for Jacobi, initially running on 8 processes (each process pair is mapped to a node
class C1, C7, C6, and C8), executed to compute matrix B (Table 6.2) for 2,500
iterations—J.B.8 test case—for the following cases:

1. The benchmark executes legacy MPI code (compiled with MPICH v3.0.4) with
static process allocation.

2. The benchmark executes FLEX-MPI code with static scheduling.

3. The benchmark executes FLEX-MPI code with dynamic reconfiguration using
the Adaptive malleability policy (AMP) under the efficiency constraint.

4. The benchmark executes FLEX-MPI code with dynamic reconfiguration using
the AMP policy under the cost constraint.

The completion time for static scheduling is the sum of computation and com-
munication times. Dynamic reconfiguration incurs overheads of process creation and
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termination, in addition to load balance and data redistribution overheads associated
with the reconfiguring actions. Figure 6.25 reflects the time allocated to the different
phases—computation, communication, process reconfiguring, data operations, and
other—for each of these four cases. The completion time for the application using
static scheduling (8 processes) and legacy MPI code is 922.489 seconds and 1,512 cost
units—considering the values of the cost model described in Table 6.4. The statically
scheduled application using FLEX-MPI takes 923.453 seconds to complete and 1,535
cost units. These results show that the overhead when using the FLEX-MPI library
with the adaptability functionalities turned off is negligible for the application per-
formance.

1000 1

800 H

600 1

Time (Secs.)

400 A

200 1

Static scheduling Static scheduling Dynamic reconfiguration Dynamic reconfiguration
(MPI) (Flex-MPI) (efficiency constraint) (cost constraint)

BComputation ~ ®Communication ~ ®Process reconfiguring ~ ®Data operations ~ BOther

Figure 6.25: Performance overhead for legacy MPI with static scheduling and FLEX-
MPI with static static scheduling and dynamic reconfiguration.

On the other hand, the performance objective in (3, 4) is to reduce the com-
pletion time of the application by 35% compared to the completion time of the
application with static scheduling (1, 2). Therefore, the goal of the AMP policy is
to improve the performance of the application using dynamic reconfiguration such
the application completes its execution in 600 seconds. Scenario 3 uses the efficiency
constraint to minimize the number of processes allocated to satisfy the user-defined
performance objective, while scenario 4 uses the cost constraint to minimize the
operational cost of the execution to satisfy the performance objective.

FLEX-MPI effectively reconfigures the application in scenarios 3 and 4 to com-
plete its execution respectively in 597.456 seconds and 601.387 seconds, with an
operational cost of 1,928 cost units for scenario 3 and 1,543 cost units for scenario 4.
The application requires 13 processes to satisfy the performance objective under the
efficiency constraint. On the other hand, the application uses 20 processes to satisfy
the objective under the cost constraint.
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For scenarios (1) and (2) the data operations time accounts for the time it
takes to read the matrix data from disk; for scenarios (3) and (4) it additionally
accounts for the data redistribution time. For scenario (1) other summarizes the
overhead of the MPICH library; for scenarios (2), (3), and (4) it summarizes the
overhead of FLEX-MPI library initialization, monitoring, communication profiling,
and evaluation of load balancing and reconfiguration algorithms.

When comparing the results for (1) and (2) we see that the FLEX-MPI over-
head is negligible and has no impact on the final application performance. On the
other hand, the results for dynamic reconfiguration (3, 4) show that the FLEX-MPI
overhead (including process reconfiguring, data operations, and other) takes up to
13.81% of the execution time of the dynamic application. However, this overhead
is countered by the performance improvement exhibited by the application when
using dynamic reconfiguration, and the application completes its execution in the
user-defined time interval. These results reflect the trade off between performance
improvement and the overhead of the FLEX-MPI library.

6.6 Summary

This chapter summarizes the results obtained in the execution of the experiments
that we have conducted in order to validate the functionalities of FLEX-MPI and
analyze the performance of parallel applications running on top of the runtime sys-
tem. These experiments have been grouped into three categories: the first group
of experiments analyzes the performance of the dynamic load balancing algorithm,
the second one validates the computational prediction model, and the third group
analyzes the performance of the malleability policies introduced by FLEX-MPI.

e Section 6.2 has demonstrated the significant improvement in terms of per-
formance and scalability of FLEX-MPI applications using the dynamic load
balancing algorithm, even for irregular applications that run on heterogeneous
systems. Additionally, these results reflect the capabilities of the algorithm to
adapt the application workload to the dynamic execution environment such
as load balancing actions are carried out depending on the magnitude of the
interferences of external applications that compete for the underlying resources.

e Section 6.3 has evaluated the capabilities of the computational prediction model
integrated into FLEX-MPI to predict the performance of parallel applications,
therefore allowing the reconfiguring policies to provision a number and type of
processors that satisfies the performance criteria of each policy. This section
shows a detailed analysis of the model validation considering each phase of
the program execution: computation, communication and overhead of dynamic
operations (creation and termination of processes and data redistribution).

e Section 6.4 has evaluated the performance of the malleability policies integrated
into FLEX-MPI: SMP, HPMP and AMP policies. The SMP policy allows the
application to change the number of processes to cope with the availability of
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resources in the system. The HPMP policy enables the application to reconfig-
ure the number of processes to the processor configuration that provides the
maximum performance to the application. The AMP policy allows the user
to define a performance goal and constraint, which can be either efficiency
or cost, so that the application finalizes its execution in a user-defined time
interval while maximizes the efficiency or minimizes the operational cost of
the execution. These results have demonstrated that FLEX-MPI can meet the
goals of the policy for several benchmarks that exhibit dynamic characteristics
such as irregular computation and communication patterns and sparse data
structures.

e Finally, Section 6.5 has analyzed the overhead of FLEX-MPI when comparing
to the execution of legacy MPI applications. These results have demonstrated
that the overhead of FLEX-MPI without dynamic reconfiguration is negligi-
ble when comparing to the execution of the native MPI code. On the other
hand, the small overhead measured when executing FLEX-MPI with dynamic
reconfiguration reflects the trade off between the performance gains and recon-
figuring actions.
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Chapter 7

Conclusions

This thesis proposes a set of optimization techniques for enhancing the performance
of MPI applications. These techniques are embedded in FLEX-MPI, a runtime system
that confers adaptability to MPI applications. FLEX-MPI includes both low-level
and high-level functionalities to support dynamic load balancing and performance-
aware dynamic reconfiguration in MPI programs. We have shown that MPI applica-
tions exhibit a significant improvement in performance and scalability, and make an
efficient usage of the resources of the platform when using these adaptability tech-
niques. FLEX-MPI introduces a dynamic execution model that allows MPI programs
to execute efficiently in dynamic execution environments.

This chapter presents a detailed review of the main contributions of this work
following the objectives of the thesis. This chapter also provides the list of journal
and international conference publications related to this thesis, and concludes with
the directions for future work arising from this work.

7.1 Main contributions

Following the results achieved in this work, we can conclude that the objectives
of this thesis have been successfully accomplished. This section discusses the main
contributions of this thesis, that can be classified into four main categories.

e Dynamic load balancing algorithm. Our novel dynamic load balancing al-
gorithm for iterative MPI applications uses performance metrics collected at
runtime to make decisions with respect to the workload distribution. The al-
gorithm considers both homogeneous and heterogeneous platforms, dense and
sparse data structures, regular and irregular parallel applications, and dedi-
cated and non-dedicated systems. The algorithm optimizes the application to
adapt to changes in the execution of the application at runtime (e.g. variable
performance of the processing elements or variable computation pattern of the
application). One of the main advantages of our approach is that the dynamic
load balancing technique does not require prior knowledge of the underlying
hardware.
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The experimental results (Section 6.2) have demonstrated that our novel dy-
namic load balancing algorithm can significantly improve the performance and
scalability of parallel applications running on homogeneous and heterogeneous
systems, which can be either dedicated or non-dedicated.

Computational prediction model. The novel computational prediction
model uses performance metrics collected at runtime to predict the perfor-
mance of parallel applications. Our model effectively computes the execution
time of a parallel application in each phase: computation and computation,
and additionally predicts the overheads of data redistribution and process re-
configuring actions. The network performance model uses the MPICH’s cost
functions that are based on the Hockney model to predict the performance of
parallel communications in MPI applications.

The experimental results (Section 6.4) demonstrate that the computational
prediction model can estimate with high accuracy the performance of parallel
applications for each of the considered execution phases under different execu-
tion scenarios.

Performance-aware dynamic reconfiguration policies. This thesis intro-
duces three novel performance-aware dynamic reconfiguring policies that allow
to automatically change the number of processes of the application at runtime
to satisfy performance criteria. This functionality is high-level because recon-
figuring actions are performed according to the malleability policy without user
intervention. FLEX-MPI features three high-level malleability policies: Strict
malleability policy (SMP), High performance malleability policy (HPMP), and
Adaptive malleability policy (AMP).

The SMP policy allows a FLEX-MPI program to automatically change the
number of processes at runtime depending on the availability of resources in
the system. HPMP and AMP are performance-aware because, in addition to
the availability of resources, they take into account the performance of the ap-
plication to guide the process reconfiguring actions. HPMP automatically re-
configures the application to run on the processor configuration which provides
the highest performance to the application. The AMP policy uses a user-given
performance objective and constraints to guide reconfiguring actions such the
application completes within a specified time interval.

The experimental results (Section 6.3) have demonstrated that using these
policies the parallel application achieves a significant improvement on its overall
performance and throughput, and improves the efficiency of the resources of
the system.

FLEX-MPI. This thesis presents a novel system architecture, FLEX-MPI,
that implements the adaptability techniques described in this work for dynamic
load balancing and performance-aware dynamic reconfiguration. Furthermore,
FLEX-MPI features a set of low-level components that offer basic mechanisms
to collect runtime performance metrics of the MPI program, change the number
of processes of the application, expand and shrink the MPI communicator,
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schedule dynamic MPI processes, and move data between processes as a result
of workload redistributions. The high-level components include the adaptability
techniques and the computational prediction model.

FLEX-MPI communicates at runtime with the PMPI interface, the PAPI li-
brary, the resource management system and the MPI application, and is im-
plemented as a library on top of MPICH implementation. This makes any MPI
program compatible with FLEX-MPI.

e EpiGraph. EpiGraph is an epidemic simulation tool that has been designed
and implemented as a scalable, fully distributed application based on MPI.
EpiGraph was designed as a deterministic, scalable tool which simulates the
propagation of influenza in scenarios that cover extended geographic areas. It
consists of three main components: the social model, the epidemic model, and
the transportation model.

Though the context of EpiGraph is out of scope of this work, it definitely had a
significant impact on FLEX-MPI motivation and approach. The irregular data
structures, computation, and communication patterns of EpiGraph became
challenging to the efficient execution of simulations on parallel architectures.

The experimental results (Section 6.3) have demonstrated the capabilities of
FLEX-MPI to efficiently execute irregular applications such as EpiGraph that
run on dynamic execution environments.

7.2 Publications related to this thesis

The main contributions of this thesis have been published in several papers in inter-
national conferences and journals.

e Journals

— Gonzalo Martin, David E. Singh, Maria-Cristina Marinescu and Jesus
Carretero. Enhancing the performance of malleable MPI applications by
using performance-aware dynamic reconfiguration. Parallel Computing,
2015. Impact Factor: 1.890. [MSMC15al

— Gongzalo Martin, David E. Singh, Maria-Cristina Marinescu and Jesus
Carretero. Towards efficient large scale epidemiological simulations in Epi-
Graph. Parallel Computing, 2015. Impact Factor: 1.890. [MSMC15b|

— Gongzalo Martin, Maria-Cristina Marinescu, David E. Singh and Jesus
Carretero. Leveraging social networks for understanding the evolution of
epidemics. BMC Systems Biology, 2011. Impact Factor: 3.148. [MMSC11b)|
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e International conferences

— Gonzalo Martin, Maria-Cristina Marinescu, David E. Singh and Jesis
Carretero. FLEX-MPI: An MPI Extension for Supporting Dynamic Load
Balancing on Heterogeneous Non-dedicated Systems. Furo-Par, 2013.
Core A. [MMSC13]

— Gonzalo Martin, Maria-Cristina Marinescu, David E. Singh and Jesis
Carretero. Parallel algorithm for simulating the spatial transmission of
influenza in EpiGraph. EuroMPI, 2013. Core C. [MSMC13]

— Gonzalo Martin, Maria-Cristina Marinescu, David E. Singh and Jesis
Carretero. EpiGraph: A scalable simulation tool for epidemiological stud-

ies. BIOCOMP, 2011. Core C. [MMSC11a]
e National conferences

— Manuel Rodriguez-Gonzalo, Gonzalo Martin, David E. Singh, Maria-
Cristina Marinescu, Javier Garcia Blas and Jestas Carretero. Flex-MPI:
una biblioteca para proporcionar maleabilidad dindmica en aplicaciones
MPI. XXVI Jornadas de Paralelismo, 2015. [RGMS'15]

e Posters

— Gonzalo Martin, David E. Singh, Maria-Cristina Marinescu and Jesis
Carretero. Runtime Support for Adaptive Resource Provisioning in MPI
Applications. EuroMPI, 2012. [MSMC12]

7.3 Future work

This thesis has opened several interesting research directions for future work:

e Extending the execution model of FLEX-MPI to consider parallel applications
developed following the principles of the task-based parallelism. We aim to
design a new malleability policy that can take advantage of this parallelization
approach to guide reconfiguring actions based on the number of tasks and the
availability of resources, then adjusting the granularity of the application.

e Extending the AMP policy to model the power consumption of the computer
as a new performance metric and add it as a performance objective to FLEX-
MPI. In recent years, power consumption has become a topic which attracts
much interest due to its importance on the economic costs associated to HPC.
We aim to develop new techniques that can reduce the energy footprint of
large-scale MPI applications.

e Improving the functionalities of the network performance component of the
CPM to predict the performance of different categories of network topologies.
Additionally, extending the model to support applications with asynchronous
communications, which may overlap communication and computation.
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e Extending the optimization techniques for adaptability of FLEX-MPI applica-
tions to Grid and Cloud environments. This involves extending the capabilities
of monitoring and dynamic process management components of FLEX-MPI to
take into account the overhead of virtualization and the variable performance
of the interconnection network between instances, consider the topology and
physical location to make decisions about task scheduling, and evaluate their
impact on the performance of HPC applications.

e Making dynamic the number of iterations of the sampling interval instead of
being a user-defined parameter.

e Extending the integration of FLEX-MPI with the resource management sys-
tem, including a execution priority system for MPI applications and a global
batch scheduler for FLEX-MPI jobs, so the RMS can consider multiple mal-
leable applications together to optimize overall system performance.
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