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A second-virial Onsager theory, based on Parsons-Lee rescaling and suitably extended to deal with
multicomponent systems and smectic phases, has been used to calculate the phase diagram of a
collection of binary mixtures of thin and thick hard spherocylinders. In particular, two types of
phase diagrams are investigated. First, a number of binary mixtures where the two components have
the same total length have been considered; in addition, the phase diagram of a binary mixture
where the two components have the same volume has been calculated. For the particles of one of
the two components, the length of the cylindrical part and the diameter have always been set equal
to 5 and 1, respectively. Spherocylinders of the same total length and different diameter tend to
demix considerably as soon as the diameter ratio deviates from unity. This happens especially at
high pressures, when at least the phase richer in the thicker component is smectic. In the case where
the two components have equal volumes, demixing is further increased due to the disparity not only
in particle diameter but also in particle lengths. The incorporation of inhomogeneous layered phases
is seen to alter significantly the phase diagrams calculated if only homogeneous phases are allowed,
since transitions to a smectic phase often preempt those to a nematic or an isotropic phase. The
apparent versatility of the recent experimental techniques suggests that the phase diagram features

predicted by the theory might be also observed in real systems.

I. INTRODUCTION

Onsager theory1 is of fundamental importance for two
reasons.? First, it demonstrates that a phase transition can be
driven by entropy alone; specifically, it explains the transi-
tion from a nematic (N) to an isotropic (I) phase, undergone
by a system of very long and thin, freely rotating, hard rods,
as a balance between ideal and packing entropies. Second, it
is a density functional theory (DFT) ante litteram, which
provides the exact free energy expression for this particular
system.?

The idea that shape anisotropy is the sole ingredient nec-
essary for the appearance of liquid-crystalline phases was
confirmed by later theoretical calculations*® and computer
simulations.® These studies showed not only that a nematic
phase can be thermodynamically stable even in systems of
hard body particles of moderate aspect ratio (), but also that
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partially positionally ordered phases, such as smectic (S) and
columnar phases, can be generated in such systems.

The numerical results reviewed in Ref. 6 stimulated the
search for a generalization of the Onsager theory able to
account for them. In the case of pure hard body systems, for
which unambiguously accurate phase boundaries have been
traced out by computer simulation techniques, the approach
due to Parsons’ and applied to hard spherocylinders (HSCs)
by Lee,® henceforth called PL theory, has emerged among a
number of proposals as the most effective in providing suf-
ficiently precise 1-N phase coexistence data for a variety of
particle sizes and shapes,>™ and also for systems with dif-
ferent dimensionalities.? In addition, PL theory and a more
elaborate extension to nonuniform phases proposed by So-
moza and Tarazona™** are able to give a faithful represen-
tation of the thermodynamics of the I-S and N-S phase tran-
sitions in pure and binary HSC systems.*>®

Massive difficulties have precluded so far the accurate
calculation by computer simulation techniques of the entire
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phase diagram of hard body particle mixtures. There is, any-
way, an indication that PL theory might give reliable data
also in the delicate case of a rod-plate binary mixture.'®

Mixtures constitute the next natural extension of the On-
sager theory; as already pointed out in Ref. 1, they are ex-
pected to exhibit an interesting phenomenology. The numer-
ous theoretical studies performed on binary, ternary, and
polydisperse mixtures, employing Onsager and PL theories,
have confirmed Onsager’s conjectures. In fact, strong frac-
tionation, reentrance phenomena, and various demixing
phase transitions, sometimes with associated critical points,
have been observed. This body of literature has been par-
tially reviewed in Ref. 20. In most of these studies only | and
N phases are considered. However, a number of the afore-
mentioned interesting phenomena are seen to occur at such
high densities that more ordered phases should be also
present. In a first attempt to tackle the complications accom-
panying the treatment of partially positionally ordered
phases, an extension of PL theory to multicomponent layered
phases has been formulated and applied to the calculation of
the phase diagram of a few HSC mixtures with length
bidispersity.*"®

This work is the continuation of those presented in Refs.
17 and 18, and deals with binary mixtures of thin and thick
freely rotating HSCs. The motivation of this work is twofold.
It is of interest to address the question of how permitting the
existence of S phases alters the phase diagram features ob-
served when only homogeneous or perfectly orientationally
ordered phases are allowed.”**" In addition, this type of bi-
nary mixture is particularly interesting because its phase be-
havior might be mimicked by real experimental systems
whose construction has been recently reported.*® The phase
diagram topology of mixtures of particles whose interactions
are of hard-body type is expected to crucially depend on
geometric details of the molecules since only entropic con-
siderations come into play in this case. Thus, the depletion
effects that explain the observed phenomenology in mixtures
of particles of the same diameter and different lengths can be
significantly different when particles have different diam-
eters but the same length. Therefore, a complete study of
different types of mixtures is important in order to find rel-
evant phenomenology that can be then explored from the
experimental point of view.

PL theory is shortly reviewed in Sec. I1. Its most obvious
extension to inhomogeneous systems will be applied to the
calculation of the phase diagram of HSC binary mixtures,
whose components have either the same total length or the
same volume. These results will be presented and discussed
in Sec. I1l. The conclusions drawn from them are collected in
Sec. 1V, which also contains a few comments on possible
future work.

II. RELEVANT THEORETICAL EXPRESSIONS
AND COMPUTATIONAL DETAILS

In the extended PL theory, the configurational part of the
free energy density, f, of a bidisperse mixture of particles
forming, in the most general case, smectic A and smectic A,
phases® reads
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where the single-particle density distribution function of
each component p;(z,)) has already been decomposed, as
usual, into a positional part p;(z) and an orientational func-
tion f;(z,€Q). Here z is the position of a particle along the
director (this is the only spatial dependence expected given
the symmetry of the phases to be studied), and the orienta-
tional variables are collected by the symbol . Also in the
above expression, the first sum is the ideal contribution to the
free energy density, while the following double sum is the
approximate excess contribution to f. In Eq. (1) the variables
B and & stand for the inverse thermal energy (kgT)™* and
smectic period, and the function W(¢) is the Carnahan-
Starling factor, which is a function of the average packing
fraction ¢. The orientational distribution function f;(z, () en-
ters the definition of the orientational entropy, S/ and the
quantity a;j, which is

aij(Z,g;[fi, fj]) = J J deQ,fl(Z,Q)fJ(Z

+§,Q’)deMij(R,§,Q,Q’), (2)

with Mj; (R,£,Q,€Q") being minus the Mayer function of
particles i and j and R the set of coordinates perpendicular
to z.

In principle, the minimization of Eq. (1) can be carried
out by a number of different numerical methodologies.
Among these, we mention the variational method based on
parametrization of the single-particle densities, as in Ref. 1;
direct minimization of the functional using some numerical
minimization algorithm; numerical solution of the associated
Euler-Lagrange equations, as in Ref. 33; and Monte Carlo
simulated annealing techniques, as in Ref. 34. The first, al-
though certainly not the most accurate, appears the only
practicable route in the present case. It involves a judicious
selection among the eligible parametrizations of the single-
particle densities. The choice made here is the same adopted
previously in Refs. 17 and 18, where it is amply described. It
transforms f into a function of pg, the total number density;
N\, and \,, the two parameters which, together with &, enter
the functional form adopted for p;(z) and p,(z), and which
are related to the smectic order parameters 7, and 7,, respec-
tively; and #, and 7, the two nematic order parameters. It
rests upon two major approximations, which are, to a certain
degree, intertwined.

First, positional and orientational variables are assumed
to be always decoupled, i.e., fi(z,Q)=1;(Q), V,. For a lay-
ered phase, this is not generally true, but it becomes a
progressively good approximation as the particle shape
becomes rodlike and uniaxial and the particle aspect ratio
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k;i=(L;+D;)/D; (where L; is the particle’s length and D; its
diameter) is sufficiently far from unity.>>*® The meeting of
these two conditions validates also the other major approxi-
mation made, namely,

+ +
aij(g: 771!772) = aij(&%l%)l (3)
which amounts to evaluating only the “diagonal” terms for
all values of £. The fulfillment of these conditions makes the
population of particles located in the interlayer regions,
which have a tendency to be aligned perpendicularly to the
director, quite exiguous. Their contribution to the free energy
density is therefore negligible.
In the case of mixtures, it is more convenient to use the
Gibbs free energy density g related to f as follows:
+
g="". @
Po
For any binary mixture investigated, this function is mini-
mized with respect to the set of above-mentioned parameters
for a large number of values of x, the mole fraction, and P,
the pressure. For every value of P considered, chemical po-
tentials are then evaluated and properly equated to search for
phase coexistence.

Ill. RESULTS AND DISCUSSION

Three quantities are needed to specify the state of a bi-
nary mixture of HSCs. Once we have set D,=1, i.e., the
diameter of the second component is taken as the unit of
length, it remains to specify L,, the length of the cylindrical
part of the second component, and the two ratios I=L,/L,
and d=D;/D,. Every HSC binary mixture can be identified
by the notation (d,I,L,). In all binary mixtures considered in
the present work, the cylindrical length of the second, refer-
ence component has always been taken to have the paradig-
matic value L,=5.

In a first series of calculations, the first component
possesses the same total length of the second, i.e., the
binary mixtures investigated belong to the subclass
(d,(6-d)/5,5). Several values of d have been examined.

Figure 1 shows the phase diagram of the binary mixtures
with dzg. The first component has L1:13—4 and Dlzg, ie., its
aspect ratio is k=3.5. Pure systems of HSCs with this aspect
ratio undergo a transition from an isotropic phase directly
into a smectic phase. The addition of HSCs with L,=5 and
D,=1 slightly destabilizes the S phase with respect to the |
phase. The most noteworthy feature of the phase diagram of
the mixture (,12,5) occurs at the other side of the mole
fraction x axis. The addition of the thicker component 1 to
the thinner component 2, which in pure form exhibits the
sequence of phases I-N-S, destabilizes the N phase with re-
spect to the | and S phases. This fact is analogous to what is
frequently observed in hard spherocylinder-hard spheres
mixtures.>° The I-N and N-S phase boundaries then meet
at a S-1-N triple point located at P*=8PD3=1.25 and xg
=xXn=X=0.2.

The region of stability of a S phase by adding compo-
nent 1 to component 2 gradually diminishes as D, decreases
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FIG. 1. Phase diagram of the binary mixture with L1=1—34, D1=%, L,=5, and
D,=1. The inset shows details on the smectic-isotropic-nematic triple point.

while keeping L;+D; =6, until it naturally vanishes when the
ideal binary mixture (1,1,5) is reached. Further thinning of
the diameter of component 1 leads to the opposite effect, as
exemplified in Fig. 2(a), where the phase diagram of the
binary mixture (0.75, 1.05, 5) is plotted. Parts (b) and (c) of
the same figure show the phase diagram of the mixtures (0.5,
1.1, 5) and (0.4, 1.12, 5), respectively. As d diminishes, the
I-N phase boundaries naturally move toward higher pres-
sures at the left side of the phase diagram, corresponding to
compositions for which the thinner rods are more abundant;
at the same time, the 1-N coexistence region gently enlarges.
Similar effects pertain also to the N-S phase transition but, in
this case, the effect is quite rapid, with Py ¢ for the pure
component 1 being larger than 4 for d<0.5, while the N-S
coexistence region broadens considerably. When the aspect
ratio «; of the first component is larger than 3.5, the I-S
transition disappears and is replaced by the I-N transition
and, as a result, the I-N-S triple point also disappears. Fur-
ther increase of «; results in a broader region of N stability at
low concentration [Figs. 2(a) and 2(b)] but, for smaller val-
ues of Dy, N-S demixing has the opposite effect of decreas-
ing N stability.

Further decreases of d accentuate the phase diagram
characteristics described above, as it can be appreciated in
Figs. 3 and 4, where the phase diagram of the bidisperse
mixtures (0.3, 1.14, 5) and (0.25, 1.15, 5), respectively, are
plotted. Apart from the reentrant behavior of the I-N phase
transition appearing at d=0.25, a rather common phenom-
enon if the two components have sufficiently different sizes,
there are two additional features worth to be noticed, namely,
the I-1 and N-N demixing lines. They are nonetheless meta-
stable: for these values of d, I-I demixing is already unstable
with respect to nematic ordering, while N-N demixing is pre-
empted by the transition to the smectic phase.
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FIG. 2. (a) Phase diagram of the binary mixture with L,=5.25, D,=0.75,
L,=5, and D,=1. (b) Phase diagram of the binary mixture with L;=5.5,
D;=0.5, L,=5, and D,=1. (c) Phase diagram of the binary mixture with
L,=5.6, D;=0.4, L,=5, and D,=1.
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FIG. 3. Phase diagram of the binary mixture with L,=5.7, D;=0.3, L,=5,
and D,=1. The letters | indicate the metastable isotropic-isotropic demixing
line.

The inclusion of smectic phases naturally modifies the
phase diagram of HSC mixtures to a significant extent. One
of the most representative examples is provided by the bi-
nary system (0.2, 1.16, 5), whose liquid-crystalline phase
behavior is shown in Fig. 5. The N-N coexistence region,
which would have existed at higher pressures, is replaced by
a wider N-S coexistence region; in place of an I-N-N triple
point, an I-N-S triple point emerges at Pf1:2.9 and x,=0,
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FIG. 4. Phase diagram of the binary mixture with L,=5.75, D;=0.25, L,

=5, and D,=1. The letters | and N indicate, respectively, the metastable
isotropic-isotropic and nematic-nematic demixing lines.
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FIG. 5. Phase diagram of the binary mixture with L,=5.8, D;=0.2, L,=5,
and D,=1. The letters | indicate the metastable isotropic-isotropic demixing
line; the letters i and n indicate the metastable isotropic-nematic boundary
line; the letters N indicate the metastable nematic-nematic demixing line.

Xy~ 0.0, and x5=0.85. As the pressure is further reduced, an
isotropic phase, formed essentially by thin HSC particles
only, coexists with a smectic phase of composition x=0.8,
instead of coexisting with a nematic phase of composition
x=0.6. At P;,=1.9, a second I-N-S triple point occurs with
compositions x;,=0.02, x5y=0.65, and xg=0.75. At pres-
sures lower than Py, the I-N coexistence region is unaltered
when layered phases are taken into account, since the N-S
phase transition takes place at larger values of x. It is of
interest to note that the metastable I-1 demixing line is al-
most in contact with the line delimiting the I-N coexistence
region at the isotropic side. It is therefore expected that a
further decrease in d would make a stable I-1 coexistence
region to appear.

This is in fact the case, as can be observed in Figs. 6(a)
and 6(b), where the phase diagram of the binary mixtures
(0.15, 1.17, 5) and (0.1, 1.18, 5), respectively, are plotted.
The composition at which the I-I critical point is located is
roughly the same for the two systems, x,=0.2. The pressure
instead decreases monotonically with d. The I-1 coexistence
region ends in an I-1-N triple point. By further raising the
pressure an isotropic phase, in which the thin HSCs are by
far the majority component, is in equilibrium with a nematic
phase composed prevalently by thick HSCs. The I-N coex-
istence region is bounded above by an I-N-S triple point. At
pressures higher than this triple point, a quasipure isotropic
phase of component 1 undergoes a transition to a smectic
phase formed predominantly by component 2. The phase dia-
grams of Fig. 6 are equivalent to each other, with the excep-
tions that the coexistence regions are wider for the system
(0.1, 1.18, 5), and that a reduced pressure of ca. 3.6 is
enough for a HSC sample with D;=0.15 and L;=5.85 to
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FIG. 6. (a) Phase diagram of the binary mixture with L;=5.85, D;=0.15,
L,=5, and D,=1. (b) Phase diagram of the binary mixture with L;=5.9,
D,=0.1, L,=5, and D,=1.

undergo a transition from an isotropic to a nematic phase,
whereas at P*=4 a HSC sample with L;=5.9 and D;=0.1 is
still in an isotropic phase.

In the phase diagrams presented so far, the range of pres-
sures shown is [0,4] in reduced units. This is motivated by
the fact that it is known from Monte Carlo computer
simulations® that the reference component with D,=1 and
L,=5 possesses a smectic-crystalline phase transition at P
=2.343. It is therefore expected that at higher pressures crys-
talline phases come into the picture, at least for the highest
value of x. Neglecting them should lead to spurious phase
diagrams. It is nevertheless of interest to explore the highest
pressure part of the phase diagram, where the thinner com-
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FIG. 7. Phase diagram of the binary mixture with L,;=5.6, D;=0.4, L,=5,
and D,=1 in the reduced pressure interval [0;8].

ponent 1 approaches and enters a smectic region. The binary
system (0.4, 1.12, 5) has been chosen to illustrate the evolu-
tion of a phase diagram at very high pressures. The corre-
sponding phase diagram with P” in the interval [0,8] is
shown in Fig. 7. The competition among N-S coexistence, S
ordering, and S-S demixing resembles that among I-N coex-
istence, N ordering, and N-N demixing observed for mixtures
bidisperse in diameter, with diameter ratio sufficiently far
from unity. A reentrant behavior is seen across P*=4.5,
while a N-S-S triple point sets in at P*=6, with composi-
tions x5y =0, xg=0.07, and x5=0.43. The value of the triple-
point pressure is slightly below that at which a pure system
of HSCs with D;=0.4 and L;=5.6 undergoes a N-S phase
transition. This means that in the vicinity of this phase tran-
sition, the addition of thicker, equally long HSCs induces a S
phase from a N phase of thin HSCs. The width of the S-S
coexistence region is smaller than that between N and S
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FIG. 8. Phase diagram of the binary mixture with Lﬁ%, D1=§, L,=5, and

D,=1.

phases, presumably because of the reduction in the differ-
ence between positional entropies of the two coexisting
phases.

The last binary mixture examined is formed by a HSC
with L;=42 and D;=%, and a HSC of L,=5 and D,=1,
identified by the notation (2,2 5). The two constituent par-
ticles have the same volume. Figure 8 shows its phase dia-
gram. Diameter and length bidispersity play together to in-
crease the demixing tendency. In accordance with previous
studies,""*® the layered phase at larger value of x is S, with
the longer and thinner solute particles arranged parallel to the
director in the interstices between layers. Curiously, the S
coexistence line at the other extreme of mole fractions is
moderately undulating. This is probably caused by the fact
that the S phase, in which the longer and thinner rods are the
majority components, is alternately in equilibrium with a se-
quence of phases of different symmetry: nematic, isotropic,
nematic again, and smectic A,, on raising pressure and pass-
ing through two S-N-I and one S-N-S, triple points.

As can be seen from the figure, the reentrant behavior of
the I-N coexistence is inverted with respect to the other
phase diagrams. This can be explained as follows: (i) the
aspect ratio «; is large enough as to lead to a broad region of
N stability between | and S phases, and (ii) as the volumes of
the particles of the two components become similar, the pres-
sure at which the smectic phase of the first component be-
comes stable is lower than in the other cases. This gives a
more symmetrical phase diagram, as can be noticed from the
figure.

IV. CONCLUSIONS

In this work, the phase diagram of a number of binary
mixtures of thin and thick hard spherocylinders has been
computed, making use of an extension of the Parsons-Lee
theory and including in the calculations smectic phases be-
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sides the nematic and isotropic phases. Within the entire
space spanned by hard spherocylinder binary mixtures, two
particular types have been selected for investigation. The
first, a few cases of which have been examined, encompasses
systems composed of two types of particles having the same
total length and different diameters. The second, to which a
typical example has been given attention, involves two types
of particles having the same volume. In all cases, one of the
component has been chosen to have the length of the cylin-
drical part equal to 5 and the diameter equal to 1. The other
component is thus univocally determined by the diameter
ratio. The inclusion of smectic phases naturally modifies, to a
significant extent, the topology of the phase diagram of all
hard spherocylinder binary mixtures previously calculated
without taking into account positionally inhomogeneous
phases. Smectic phases do appear at sufficiently high pres-
sures. In the first series of calculations, they are always of the
A type. As the diameter ratio deviates from unity, an equilib-
rium between a nematic phase very rich in thin rods and a
smectic phase rich in thick rods is established at high yet
realistic pressures, preempting nematic-nematic demixing. In
the case of different constituent particles with the same vol-
ume, length and diameter disparities act synergically to ex-
pand the coexistence region between a smectic A phase, very
rich in thinner and longer rods, and a smectic A, phase, very
rich in thicker and shorter rods, in which the minority com-
ponent arranges parallel to the director in the interstices be-
tween layers.

Recent experimental techniques seem to have opened the
way for the realization of rodlike particle mixtures of well-
defined bidispersity.30 It would be very interesting to con-
struct real binary mixtures whose components have geo-
metrical parameters comparable to those examined in the
present work, and then confront their phase behavior with
those predicted by the present theory. Conversely, experi-
ments suggest that other binary mixtures deserve to be stud-
ied theoretically, particularly those having a longer reference
component. Comparisons between experiments and calcula-
tions employing the hard spherocylinder model imply that
the latter is admitted to be realistic. However, it is not yet
clear if this is the case. Investigations employing the hard
spherocylinder model enriched with additional features, such
as nonadditivity,*" and, most notably, employing flexible par-
ticles, are therefore very desirable. Finally, it would be nice
to confront results from the extended Parsons-Lee theory for
binary mixtures with those obtained using a fundamental-
measure-based theory for freely rotating hard spherocylin-
ders. Work along this line has been limited so far to either
homogeneous, monodisperse, freely rotating particle
systems,™ or to isotropic,*? perfectly ordered,** Zwanzig*
binary mixtures.
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