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Abstract
Collective behavior and, more specifically, flocking are phenomena observed in living systems, 
from bacterial colonies and spermatozoa, to larger systems such as insects and birds. These 
organizations exhibit changes from disordered to coherent behavior, which are examples of 
spontaneous symmetry-breaking out of equilibrium. Collective migrations in these systems 
can be predicted by simple models such as the Vicsek model (VM) or its variants, in which 
particles tend to align their velocities to an average of their neighbours’. The change from a 
disordered state to an ordered state can occur continuously or discontinuously and a variety 
of resulting patterns are possible. The study of mathematical models of these systems may 
reveal these changes to be bifurcations in their governing equations.

We consider a system of particles moving within a two dimensional box with periodic 
boundary conditions. In Chapter 2, and following Ihle’s approach, we derive a kinetic equation 
for a one-particle distribution function in the limit of infinitely many particles by assuming 
molecular chaos. The kinetic equation is discrete in time and space and it always has a 
simple uniform solution that corresponds to the disordered state of the system. We have 
carried out a linear stability analysis of this state and studied the possible bifurcations issuing 
from it. In the usual case, particles align their velocities to their average velocity with any 
other particles within a circle of influence p lus s ome a ngular n oise, which h as a  uniform 
probability density. The spectrum of the linearized equation has always one multiplier on 
the unit circumference and there is another one that moves from inside to outside the unit 
circle as a control parameter crosses a critical value. We use bifurcation methods to derive 
amplitude equations that describe solutions issuing from the disordered state. The amplitude 
equations comprise a conservation law for a density disturbance coupled to a two 
dimensional vector equation for a current density. Analysis and numerical simulations of 
these equations show that their solutions exhibit an interplay between parabolic and 
hyperbolic behavior in two different time scales when the distance to the critical value of the 
bifurcation control parameter goes to zero. In this limit, there appear oscillation frequencies 
that give rise to resonance phenomena if the alignment rule contains a periodic function of 
time. Direct simulation of the VM confirms the existence of these resonances.

In Chapter 3, we use the same methodology to study the effect of modifying the probability 
density of the noise in the alignment rule by which VM particles change their velocities. The 
mechanism of velocity synchronization consists of: active particles may be conformist and 
align their velocities to the average velocity of their neighbors, or be contrarian and move 
opposite to the average angle. Depending on the weights of conformist and contrarian or 
almost contrarian rules, we study the ordered state solutions of the amplitude equations 
corresponding to period-doubling, Hopf, or pitchfork bifurcations of the disordered state.

In Chapter 4, we consider the collective migration of epithelial cell monolayers moving on 
a surface. This phenomenon is crucial for many relevant processes including wound healing,
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viii Abstract

morphogenesis, and cancer-cell invasion during metastasis. There are many experiments
on confluent cellular motion and different mathematical and computational models in the
literature. A convenient model based on the physics of foams considers the cells as
non-overlapping two dimensional convex polygons. In the active vertex model we study,
the cell centers are in a Delaunay triangulation and are subject to forces that constrain them
to have target areas and perimeter length, other forces that try to align their velocities to
neighboring cells (as in the VM), friction with the substrate, inertia, and stochastic forces. We
have simulated numerically this model in two different cases related to wound healing and to
invasion of one cell collective by another one: (i) a cellular monolayer spreading on empty
space, and (ii) the collision of two different cell populations in an antagonistic migration assay.
For (i), we discuss how inertia is necessary to explain the larger size of cells in the boundary
with respect to those in the interior of the layer. For (ii), we discuss which parameters of the
model produce results that agree with experiments by P. Silberzan’s group. In both cases,
the interfaces that separate cells from empty space or cells belonging to different populations
are quite rough and may shed and absorb islands as time elapses. To analyze both images
from experiments and results of numerical simulations, we use topological data analyses of
the interfaces.
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Chapter 1
Introduction

The term activematter describes diverse systems across scales, frombacteria colonies [1, 2, 3]
and spermatozoa [4] to larger scales as insects [5, 6] or birds [7, 8]. Active matter comprises
a novel class of non-equilibrium living and non-living systems that are characterized by (i)
having a large number of self driven units (active particles) and (ii) each agent conforming
the system is capable of transform free energy into systematic motion. A recent review is [9].

Anyone to have observed the dynamics of the coordinatedmotion of a group of starlings, or
the synchronous motion of a school of fish swimming together, can understand the motivation
for the study of active matter; individual units that move in group or flock and generate
large-scale complex dynamical motions. The rules governing the principles of physics that
define the behavior of each individual, the mathematical models describing those behaviors
and the exhibition of novel phases (i.e., stable configurations of the flocks) and phase transitions
different from those in thermal equilibrium are topics which deserve to be studied.

1.1 Flocking phenomena

The interaction between active particles produces collective motion, i.e., individual particles
move coherently forming patterns and shapes, a phenomenon called flocking. As it has been
detailed above, there is a myriad of examples in living systems that seem similar at different
scales. Flocking has been a lively subject of investigation since the mid 1980s. One of the
first studies in the field is the pioneering work of [10], which studies the motion of birds
by analyzing a recorded movie. He concluded that any unit can initiate a collective motion,
which is propagated along the system as a wave. Typically entities in a flock have a nonzero
polarization (the arithmetic mean of the orientation of their velocities). In a more recent
experiment [11], their authors have concluded that starling flocks have scale-free correlations
(they have a correlation length that scales with the flock size) that decay as a power law with
a surprisingly small exponent. As the interaction range between birds is of the order of a
few bird sizes, the interaction range may be much smaller than the correlation length, which
scales as the flock size [11].

In nature, motion usually arises collectively because its effectiveness. For example,
colonies or groups are stronger against a predator or are more efficient to obtain food. The
collective behavior is a consequence of the interaction between the units conforming the
system, which can be simple or more complex as combination of simple interactions. As
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4 Introduction

a result, a wide range of generic behaviors arise, including non-equilibrium order-disorder
transitions, characteristic instabilities or pattern formation.

The main challenge when developing a study describing the observations of a collective
motion, is to obtain the best definition of the individual trajectories of the entities. This work
can be hard due to the large number of particles and the dimension of the space where they
move. Accordingly, there exists a wide range of mechanisms to study collective motions.
For example, in a well-defined area, the optical technique called Particle Image Velocimetry
(PIV) obtains the velocity field of a fluid or cells using averages. Another technique is that of
[12] who study experimentally a school of fish inside a shallow box, thereby approximating
their motion to a two-dimensional configuration.

Figure 1.1: Collective organizations arising in nature. (A,B) Individual and collective swimming of a fish and a
school of fish respectively. (C,D) Individual fly and flocking migration. (E,F) Individual and cooperative behavior of
ants. (G,H) Single epithelial cell on a substrate and amonolayer of epithelial cells conforming a frog skin. (A)Adapted
from (https://thefishsite.com/articles/how-climate-change-is-effecting-top-marine-predators). (B) Adapted from
(http://simontucket.com/_Portfolio/PortPages_Hi/Il_FishSchool.html). (C) Adapted from (https://www.jjharrison.
com.au/). (D) Adapted from (https://pixabay.com/photos/flock-of-birds-migratory-birds-sky-2150470/). (E) Image
from [13]. (F) Adapted image from (https://commons.wikimedia.org/wiki/File:Ant_and_honey4.jpg). (G) Image
from [14]. (H) Image from https://www.uwlax.edu/biology/zoo-lab/lab-2--microscopy-and-the-study-of-tissues/.

To understand flocking, it is convenient to pose and study mathematical models with
minimal ingredients, yet capturing the essence of the phenomena. One of the earliest is the
Vicsek model (VM) [15], which takes ideas from statistical mechanics into a non-equilibrium
context. The VM comprises a set of self-propelling particles moving with unit speed so
that each particle adapts its velocity to the average of the direction of neighboring particle
velocities except for some alignment noise. The particle motion does not depend on the
environment, which seems to be the case for birds within visual contact but not for fish or
bacteria swimming in water. The VM is an example of “dry active matter” [9].

The analysis of active matter borrows many ideas and methods from equilibrium systems.
For example, the formation of a flock from a disordered state is similar to the ferromagnetic
transition in equilibrium statistical mechanics. We can define an order parameter, the
polarization, that plays the same role as the magnetization. In the disordered state of a
system of infinitely many particles, there is no flock and the mean orientation of the particle
velocities is zero. Depending on the interaction range and parameters characterizing the
particles behavior, the polarization may become positive, which characterizes the formation

https://thefishsite.com/articles/how-climate-change-is-effecting-top-marine-predators
http://simontucket.com/_Portfolio/PortPages_Hi/Il_FishSchool.html
https://www.jjharrison.com.au/
https://www.jjharrison.com.au/
https://pixabay.com/photos/flock-of-birds-migratory-birds-sky-2150470/
https://commons.wikimedia.org/wiki/File:Ant_and_honey4.jpg
https://www.uwlax.edu/biology/zoo-lab/lab-2--microscopy-and-the-study-of-tissues/
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of a flock. It is also possible to define correlations and correlation lengths that probe deeper into
flocking [11]. In Section 1.3, we discuss several models of flocking phenomena [9, 16, 17, 18].

1.2 Tissue-cell migration

The discipline of active matter studies systems across scales, ranging from sub-cellular
processes to the dynamics of tissues and organs. Concerning tissue cells, interesting dynamics
occurs when an epithelial cell aggregate advances through an empty space, as in the case
of wound healing, or it collides and encroaches a different tissue, as in cancer invasion.
Advancing cellular fronts may displaywave phenomena [20, 21], finger formation [22, 23, 24],
or the interpenetration between oppositely moving fronts [25, 26]. Additionally, collective
cell migration possesses challenging fundamental questions within the fields of soft and
active matter, namely the characterization of fluid, solid or glass-like behavior associated with
flocking and jamming-unjamming transitions [9, 27, 28, 29, 30, 31, 32, 33, 34]. The behavior
of these systems is dictated by processes occurring at the individual cell level and also by
collective phenomena arising in a group of cells.

Figure 1.2: Individual and
collective migration. a) Single cell
on a 2D substrate. b) Collective cell
migration. Figure from [42].

On a smaller scale, cell motility has been widely
investigated. The individual motion of one cell is a
well-known phenomenon studied in vivo, as for example
the migration of an individual dissociated cancer cell
presented in [35]. However, there are some differences
between single-cell motion and that of a group of cells
migrating. During the migration of a single cell, its
membrane is retractile. In contrast, for an epithelium,
cells maintain their junctions and the retraction of the
individual cell is no longer possible. Thus, themechanisms
are completely different during collective-cell migration,
where the cell-cell contact must be conserved maintaining the integrity of the layer to get
their purpose. Indeed, during a collective migration, there also exist relative displacements
within the tissue and a reorganization between the cells. For illustration, Fig. 1.2.a shows
the individual motion of a single cell. In Fig. 1.2.b the motion of cell 1 depends on its own
activity and on the behavior of cells 2 and 3.

In particular, the dynamics, the morphogenic response and the collective strategies of
eukaryotic cells are crucial in processes like morphogenesis [35, 36], tissue repair [37, 38],
development [39] and embryogenesis [40]. Such living systems move in response of external
signals to accomplish their functions. These stimuli are sent in the form of chemical gradients
or notch signaling among others. While directional migration is dictated by these external
influences, cell motility is also restricted by physical constraints. Cells, tissues or embryos
need to study the environment to make their way squeezing through gaps, obstacles or to
propel in a rheologically complex external matrix, with the main goal of finding the most
efficient route. Processes as metastasis, branching morphogenesis [36] or embryogenesis
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[40] are examples where living systems can deform their shape or anticipate their motion
to facilitate their migration. In fact, it has been recently shown using experiments in vivo,
that cancer cells have the capacity to distinguish between different trajectories [41] and use
channels that guide the cells towards the best decision point.

Cell polarity is also another process which has raised attraction among researchers for
many years. Several experiments explain the existence of leader cells who guide the rest of
the cells, which are located at the back and called followers. Its only purpose is to follow
the preferred direction guided by the leader cells. Indeed, followers are more compact than
leader cells and instabilities processes may occur, giving rise to the formation of fingers in the
front. Fig. 1.3 shows different types of cell migrations. Depending on the context, epithelial

Figure 1.3: Collectivemigration. a) Cells on a 2D substrate. b),c),d),e) and f), collective cell migration
in 3D in different configurations and biological processes. Figure from [42].

cells can migrate in a single-layered epithelium 2D as in Fig. 1.3.a or by multi-cellular groups
in a 3D configurations as in Fig. 1.3.b-f. Multicellular filaments in 3D can distinct between
an external monolayer of cells and an internal cavity called lumen which is going to be an
internal tube structure in the future. This organization is also possible during angiogenesis
Fig. 1.3.c. Cells can also migrate in a finger shape with a poorly organized structure Fig. 1.3.d,
move independently in clusters as in Fig. 1.2.e or penetrate a tissue as in Fig. 1.3.f.

Different aspects of these phenomena have been studied by models ranging from
macroscopic continuum mechanics to detailed sub-cellular agent-based models [9, 22, 43,
44, 45]. In particular, the relevant processes of wound healing and confluent migration assay
are explained in detail in Subsection 1.2.1 and Subsection 1.2.2 to introduce the protocols
carried out in the experiments.
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1.2.1 Wound Healing

Once one epithelium is formed, tissue cells remain in a continuum monolayer which is not
motile unless the monolayer suffers a defect on it, namely a scratch or wound. Due to that,
motion starts and cells try to fix the lesion keeping the junctions between them together. One
of the experiments to study the phenomenon in vivo, is the so-called scratch experience. It
consists of growing a culture epithelium on a petri dish and create a scratch using a pipette or
scalpel.

Figure 1.4: Experimental setup based on a stencil removal. Figure from [38].

In particular, in Chapter 4, we study the migration of a monolayer based on an slightly
different experiment explained briefly below. The experimental setup consist of a stencil
made by micro-fabrication which limits the grow of the cell culture equally distributed. Once
the cell culture is ready, the stencil is removed. The advantages of this experimental protocol
unlike the other experiment are, (i) cells are not damaged and (ii) the edge of the monolayer
has no defects. Fig. 1.4 illustrates the experimental configuration and the steps involved in
the experimental protocol.

The physical features of collective migrating cells under this experimental study are, (i) the
instabilities appearing at the border of the monolayer, (ii) the velocity field inside the bulk and
(iii) the different behaviors of themonolayer during themigration. Fig. 1.5 shows a sequence of
images using the experimental protocol explained above. Following the processes developed

Figure 1.5: Snapshots showing the progression of seven monolayers of cells with different widths at
different times, a) t = 90 min, b) t = 13 h, c) t = 25h and d) t = 37h from [38].

in Fig. 1.5 from [38] they observe, after one hour of the stencil removal, the apparition of
leader cells. These special cells are born at the edge of the monolayer, and they have a different
shape and size and loose their epithelial morphology. In particular, they never loose their
contact within the follower cells and are characterized by having a very high directionality
and velocity. All these features produces structures called fingers. The remaining cells in the
monolayer do not spread out independently, and their growth and proliferation help to close
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the injury quickly. This experimental setup is going to be reproduced and analyzed by means
of numerical simulations of the active vertex model in Chapter 4.

1.2.2 Confluent migration assay

Figure 1.6: a) Experimental setup
carried out in [26]. b) Side view of
the AMAwhere purple population (Ras
cells) invades green population (wild
type).

Cells are always competing for their space to ensure
the resources and tissue cohesion. In general, tissue
configuration is stable. However there are some specific
situations where tissue becomes unstable as in cancer
invasion. For example, recent studies have observed
that precancerous cells can become highly competitive
and try to kill healthy cells [46]. There is another recent
experiment that has connected metastasis in colorectal
cancer to wound healing and tumor invasion of tissue
using molecular markers [47]. Recently, Moitrier
et al. have reported confrontation assays between
antagonistically migrating cell sheets [26]. In their
experiment, each cell population grows into one of the
compartments separated by a cell-free gap (Fig. 1.6.a).
Once the culture insert is removed, the two confluent
cellular monolayers advance toward the intermediate
empty space, collide and Ras cells population displaces
the wild type one (see Fig. 1.6.b). In particular, in these
experiments, the invasive population behaves fluid-like
and the invaded monolayer behaves solid-like.

Thus, our description of spreading of cellular tissue
and antagonistic migration assays using a modified active vertex model might be relevant for
metastatic cancer and will be studied in Chapter 4. In particular, we study the role of cellular
junction tensions in cell invasion, agglomeration and segregation. Understanding precise
biochemical mechanisms influencing cell-cell contact and confluent cellular tissue may help
develop therapies for metastatic cancers.

1.3 Physical Models of Collective Migration

To understand some of the principles involved in the dynamical organization and motion of
living systems, together with the quantification of some specific observables, a large variety of
theoretical and numerical models have been derived. Specifically, we describe three different
types of models, namely the discrete models usually referred to as agent-based models, the
continuum hydrodynamic-like models, and the so-called active vertex model that studies the
mechanics of confluent epithelial tissues. Below we give a brief review and description of the
three approaches.
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1.3.1 Agent-based models

The first studies that gave a minimal framework to explain the flocking behavior of living
systems were the agent-based models; see Refs. [9, 16]. In particular, the 2D VM, describes
the overdamped dynamics of # particles having the same constant speed, an alignment rule
for their velocities, and moving on a box with periodic boundary conditions. As the particles
have a given speed, the VM and its variants lie within the so called self-propelled particle
models (SPP). The velocity of each entity adopts the average direction of its close neighbors
plus a perturbation considered as a stochastic factor which affects directly to the motion of
the individuals [15, 16].

In the literature, it is possible to find a wide range of variations of the VM along three
specific pathways, namely, the variation in the polarity of the particles, the interaction between
them (repulsion or attraction forces) and the external medium where they move. The direction
of motion originally proposed by the VM depends on the average direction of the particles
considered in the neighborhood defined as follows

\ 9 (C + g) = Arg

∑
〈 9 ,;〉

48 \; (C)
+ b 9 (C), (1.1)

where b 9 (C) is a random number chosen inside an interval [−[c, [c], and the noise strength
[ has a maximum value of 1. This particular way to update the direction of each particle is
called angular noise.

A different way to define the orientation dynamics presented in [48] is the so-called
vectorial noise. The noise is not defined as an external factor as in Eq. (1.1), it arises from the
interaction between the particles and their neighbors. Thus, instead of Eq. (1.1), the direction
of each particle is updated as

\ 9 (C + g) = Arg

∑
〈 9 ,;〉

48 \; (C) + = 948 b 9 (C)
 , (1.2)

where =8 is the number of neighbors of the particle 9 .

Regarding the equation for the particle position, the original updating scheme proposed
by Vicsek et al. defines the speed as a backward difference (BU). However, several authors
have implemented a slightly different version of the VM, using a forward difference (FU) as
the presented in Eq. (1.3)

x 9 (C + g) = x 9 (C) + gv 9 (C + g). (1.3)

Although there should not bemajor changes in the behavior of the systemwith these variations,
recent studies have found different phase transitions [48, 49, 50]. In particular, the VM
describes a non-equilibrium phase transition from disorder to order: particles move randomly
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at low densities and high noise, and move ordered at high density and low noise. This phase
transition will be detailed in Chapters 2 and 3.

There exist more intricate SPP models as the studied in Ref. [51]. In this work, instead
of applying an averaging rule, the self-propelled particles adjust their direction towards the
direction of the net-force acting on them. It is important to emphasize that the VM alignment
rule is not able to maintain all the particles together in an open space without extra forces.
However, there exists a generalized point particle model proposed by Sepúlveda et al. [24],
which describes the collective motion of cells in an epithelium. In this model, cells are
actively motile point particles with inertia, Vicsek-like alignment “forces”, inter-particle and
random “forces”. The acceleration is a consequence of the collective motion of cells and the
interaction with the environment. The inertia in this model is a consequence of the interaction
of the cells with the medium and it is not given by the mass of a single cell. Particles are not
self-propelled, so that they can stop their motion and start moving again if there are missing
cells in their neighborhood and the active force is zero. The noise that drives the particles is
taken to be an Ornstein-Uhlenbeck process. In particular, we will use this cellular dynamics
within an active vertex model to describe collective cell migration in Chapter 4, where it is
explained in depth.

1.3.2 Hydrodynamic equations

As we have highlighted throughout the introduction, SPP consume energy and dissipate
it when they move, producing collective motions at large scales. In particular, another
promising framework to describe theoretically the macroscopic properties and dynamics of
active matter, is the so-called generalized hydrodynamic approach. It consists of developing a
set of continuum equations that describe active matter systems as fluids or liquid crystals. The
use of hydrodynamic fields allows us to give a macroscopic description of the non-equilibrium
large-scale physics that epitomize the complex behavior of active matter. This framework does
not takes into account the discrete features of these active systems, and thus the microscopic
details and interaction are not explicitly considered.

One pioneering hydrodynamic theory is that of Toner and Tu [52, 53]. They consider
the same fields appearing in the Navier-Stokes equations, namely the density and the velocity
fields, d(®A, C) and ®E(®A, C), respectively. The density obeys the usual continuity equation because
the total number of particles is constant. Then they added to the Navier-Stokes equation for
the velocity a source term containing linear and cubic terms in the velocity (so that there is a
solution with constant speed |®E(®A, C) |), a constitutive law for the pressure as a power series in
the density disturbance (d(®A, C) − d0), and terms that are at most quadratic in gradients and
cubic in the velocity field. The velocity equation also contains awhite noise force term. Higher
order terms are excluded because they are irrelevant in the sense of the renormalization group
[52]. The terms added to the velocity equation should be invariant with respect to translations
and rotations. With the extra terms included in the Navier-Stokes equations, the Toner-Tu
equations are sufficiently general to account for many patterns observed in direct simulations
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of the VM and in experiments with flocks of animals [54].

Many works have derived different forms of the Toner-Tu equations from kinetic theories 
inspired in the VM; see e.g., the reviews [9, 16]. Among them, Ihle derived directly from 
the VM a Enskog type kinetic equation that is discrete in time and space. This equation 
for the one-particle distribution function comes directly from the #-particle distribution of 
the VM by assuming molecular chaos [17, 18, 19]. Coarse-graining the kinetic equation 
produces hydrodynamic equations similar to Toner-Tu’s [18]. In our work, we study the linear 
stability of the uniform solution of the kinetic equation (constant one-particle distribution, 
corresponding to the disordered state of the flock) and obtain amplitude equations for the 
phases bifurcating from it. The amplitude equations are forms of the Toner-Tu equations 
but its coefficients have been obtained from the kinetic equation. Having understood linear 
stability and bifurcation theory for the kinetic equation of the VM, we have been able to 
propose modifications t hat y ield exotic r otating wave a nd p eriod d oubling p hases. These 
features are explained in Chapters 2 and 3.

1.3.3 Active vertex model

The first theoretical and numerical studies of epithelial t issues had relied on self propelled 
particle models [15, 24]. However, this approach is not enough to understand tissue dynamics, 
because these models does not take into account cell-cell junctions, which have an extreme 
importance in the behavior of tissue migrations. Indeed, these junctions allow the cells within 
epithelial tissues to remain together, but also permit the tissue to change its collective behavior 
from fluid-like to solid-like. For instance, during many biological processes, cells can organize 
and move together as in wound healing or move more fluid-like as in embryonic development. 
Hence, another alternative to study such mechanisms and properties of epithelial tissues is 
the usually referred to as active-vertex model, which has been proven to be a better alternative 
since it considers cell-cell junctions. In particular, this framework combines the vertex model 
and the dynamics of punctual particles described in Section 1.3.1.

The origins of the vertex model dates back to the physics of foams in 1970s [55]. 
Nonetheless, the vertex model considered within the active framework contains some 
simplifications i n c omparison t o o riginal m odels o f f oams. S uch v ertex m odel assumes 
that neighboring cells only share one single and straight edge. Therefore, the tissue is a 
polygonal mesh with polygons considered as cells, edges as cell junctions, and the vertices of 
the polygons as those points where two or more cells meet. Additionally, the vertex model is 
a quasi-static model that tries to maintain the sheet in mechanical equilibrium. Within the 
vertex model the system is characterized by means of an energy called �+ " , to be minimized. 
In particular, the �+ " relates the area, perimeter and junction of each polygon or cell. Hence, 
the relationship between the center of the cells and the edges of the polygons is established 
directly by computing the negative gradient of the energy. Indeed, it is necessary to introduce 
the dynamics of the AVM for the position and velocity of each cell which is computed in the 
center of each polygon.
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Similarly to the agent-based models, recent studies have found that tissues exhibit phase
transitions [34]. They have found that the way to quantify the fluid-solid transition depends
on the cell shape index ?0: the ratio of the cell perimeter to the square root of the cell area.
The value ?∗0 = 3.812, which corresponds to pentagons, separates solid-like and fluid-like
behavior of the tissue. For ?0 < ?∗0, cortical tension is prevalent over cell-cell adhesion, cells
do not exchange neighbors and the monolayer is solid-like. For ?0 > ?∗0, cell-cell adhesion
dominates, neighbor exchanges occur, and the cellular tissue behaves like a fluid, see Fig. 1.7
to illustrate. The detailed description of the active vertexmodel considering one of the particle

Figure 1.7: (a) Phase diagram showing the velocity vs cell shape. (b) Cell trajectories for fluid and
solid-like behavior. Figure from [34].

dynamics presented briefly in Section 1.3.1 will be explained in Chapter 4.

1.4 Active Matter concepts

To characterize active systems, we need concepts such as phases, phase transitions and order
parameters that arose in the study of equilibrium systems. As usual, a phase is a stable
configuration of the system and a phase transition is the change from one phase to another
as some control parameter goes through a critical point. The order parameter measures the
transition from a symmetric phase (where it is zero) to a symmetry broken phase (where it
is not zero). In equilibrium statistical mechanics, stable configurations or phases minimize
the free energy. In active matter and in non-equilibrium systems, stable means resilient to
disturbances, as in the well known theories of dynamical systems [56].

Familiar examples of phases in everyday life are the gaseous, liquid and solid phases
(see Fig. 1.8). The particle configuration is quite different for each of those states. In the
solid phase, particles are placed in a regular lattice. The liquid phase is a homogeneous state
of the particles, but the particle density is high and there are short range correlations that
decay at longer distances. In the gas phase, the density is lower and the particles may travel
longer distances without experiencing interactions with each other. Typically, the temperature
is a control parameter that induces changes from solid to liquid and from liquid to gas in
substances such as water, as it increases past appropriate critical values.
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Figure 1.8: Particles in a solid, liquid and gaseous material.

The first classification of the transitions between phases of matter was proposed by Paul
Ehrenfest in 1933. He recognized that some derivative of the free energy (with respect
to temperature, volume, . . . ) becomes discontinuous at the critical value of the control
parameter (e.g., the temperature) of the phase transition. Landau [57] introduced a theory of
phase transitions based upon the notion of order parameter and on the smoothness of the free
energy with respect to the order parameter and the control parameter of the phase transition.
The order parameter is zero at the symmetric phase and nonzero at the less symmetric phases.
Landau expanded the free energy in powers of the order parameter and considered that the
coefficients in the expansion to be smooth functions of the control parameter. The condition
that the derivative of the free energy with respect to the order parameter be zero yields the
stable phase. If the free energy is invariant under sign change of the order parameter, then it
is an even function thereof. The derivative of the free energy contains linear, cubic, quintic,
. . . , powers of the order parameter. At the critical control parameter, the coefficient of the
linear term vanishes, and therefore, by a Taylor expansion, this coefficient is a linear function
of the difference of the control parameter to its critical value, say |[−[2 |. Keeping up to cubic
terms in the order parameter in the equation for the derivative of the free energy, the order
parameters of the less symmetric phases are proportional to the square root of the absolute
value of the difference of the control parameter to its critical value. Clearly, the nonzero order
parameter exists only for control parameters above ([ > [2) or below ([ < [2) the critical
point, whereas the symmetric phase with zero order parameter exists for any value of the
control parameter. If the less symmetric phase exists for control parameter value for which
the symmetric phase is unstable, then the phase transition is continuous. Otherwise, the less
symmetric phase given by the vanishing of the free energy derivative is unstable, more terms
in the order parameter expansion of the free energy needs to be kept and the phase transition
is discontinuous [57]. Thus, depending on how is the change of the order parameter, we can
distinguish between two different phase transitions,

- First-order or discontinuous phase transition, the order parameter changes
discontinuously from zero to a non-zero value at a critical point.

- Second-order or continuous phase transition, the order parameter changes
continuously from zero to a non-zero value (proportional to |[ − [2 |1/2) at the critical
point. Close to the critical point, the behavior of the quantities describing the system
are characterized by the so called critical exponents (for example 1/2 in the previous
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expression).

The Landau theory is very general and it can be extended to spatially dependent order
parameters. In later years, it became clear that the assumptions about smoothness of the free
energy near the critical point are not correct. By considering fluctuations [58], Ginzburg gave a
criterion that establishes when the assumption that the coefficient of the free energy derivative
is linear in ([−[2) fails. Then the Landau theory needs to be changed at a close neighborhood
of the critical point and a renormalization group theory of phase transitions developed by K.
G. Wilson and others replaces it [59]. However, the Landau theory gives a convenient frame
of reference for ideas about equilibrium and non-equilibrium phase transitions. What kind of
phase transitions and order parameters can be involved in active matter?

In many active systems, individuals move coordinately, which means that particles and
their neighborhoods move with the same direction. This behavior arises when the agents
after an interaction, align their velocities. The order parameter that measures the presence of
swarming in these systems is the polarization

+ =
1
#E0

����� #∑
8=1
®E8

�����, (1.4)

where # is the number of particles, E0 is the common speed of the particles and ®E8 the velocity
of each particle. The polarization approximately equals zero when the particle velocities
have no preferred orientation, and it is positive when a flock is formed. Thus, it is an order
parameter in the sense of the Landau theory. If the particles move coherently in the same
direction, + is going to be close to one. Possible control parameters of the flocking transition
are the alignment noise (the larger the noise is, the greater the trend towards disorder) and the
particle density (greater density favors particle polarization).

In the ordered state, particles are strongly correlated. The velocity between them is
strongly correlated and behaviors as leader and follower can arise. It consist of the motion of
the leader unit anticipating the motion of the follower unit. This behavior can be measured
using a correlation function

28 9 = 〈®E8 (C) · ®E 9 (C + g)〉, (1.5)

where g is the time delay of leader with respect to the motion of the follower, and the average
is over the initial time. To characterize correlations after a sufficient time to form a flock, we
can introduce the correlation function of the fluctuations [11]:

� (A) =
∑
8 9 ,8≠ 9 ®D8 · ®D 9X(A − A8 9 )
20

∑
8 9 ,8≠ 9 X(A − A8 9 )

, ®D8 = ®E8 −
1
#

#∑
9=1
®E 9 , (1.6)

A8 9 = | ®G8−®G 9 |, such that� (0) = 1. The correlation functionmeasures the average inner product
of the velocity fluctuations of particles at distance A. A large value of � (A) implies that the
fluctuations are nearly parallel and thus strongly correlated. Conversely, the correlation
function is negative if the fluctuations are anti-parallel. � (A) = 0 if the particles are
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uncorrelated: � (b) = 0 defines the correlation distance b. For starling flocks, Cavagna
et al. [11] have shown that � (A) = A−W 5 (A/!), where ! is the flock size and W ≈ 0.19 is a
critical exponent. More precise definitions can be found in [60].

The previously defined parameters can be used to characterize flocking phenomena, and
to compare theory, numerical simulations and experiments.

1.5 Linear stability and bifurcation analysis

The property of stability is necessary to understand the phase changes in complex
systems. Typically, these systems have a simple basic state, which satisfies steady-state
or time-dependent equations. The basic state is stable when sufficiently small disturbances
decay with time, thereby leaving the system in the basic state. If any disturbance decays with
time, the basic state is globally stable. The basic state is unstable when the amplitude of such
disturbances grows with time, subsequently driving the system to a qualitatively different new
state. Instabilities are responsible for many pattern formation processes in condensed and
active matter systems that appear in nature and in complex media.

1.5.1 Some basic notions

Linear stability analysis allows as to measure quantitatively the stability of a system obtained
by linearizing its governing equations about a fixed point, as it is now briefly explained.
Let us consider a general =-dimensional dynamical system which evolves under the equation
¤®G(C) = ®� (®G(C)). Fixed points or equilibrium solutions ®G∗ satisfy ®� (®G∗) = ®0. To figure
out whether a disturbance about a fixed point decays or grows, we linearize the equation
¤®G(C) = ®� (®G(C)) about ®G∗. The disturbance of Y®G = ®G − ®G∗ near the critical point evolves as

3

3C
YG8 (C) =

3∑
9=0

!8 9YG 9 (C) (1.7)

If all the eigenvalues of the Jacobian matrix !8 9 = m�8/mG 9 (calculated at ®G∗) have negative
real part, the fixed point ®G∗ is linearly stable, and Y®G(C) decays to zero exponentially fast. The
fixed point is unstable if there are eigenvalues with positive real part. Let us assume now that
®� (®G, U) depends on a control parameter U and that all eigenvalues of !8 9 have negative real
parts for U < U2 , whereas one or more eigenvalues have zero real part for U = U2 and acquire
positive real part for U > U2 . Then the fixed point ®G∗ loses stability at U = U2 . Depending on
the type of instability at U = U2 , other solutions of the dynamical system may issue from the
fixed point there. We say that these solutions bifurcate from ®G∗ [61]. There are techniques that
provide simpler equations for the amplitude of the bifurcating solutions, e.g., normal form
theory [62]. Simple examples of bifurcation occur when a single real eigenvalue becomes
zero at U2 . They include the saddle-node bifurcation in which two branches of stationary
solutions that exist for U < U2 merge at the critical value of the parameter and disappear
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for U > U2 . If ®G∗ exists for all values of U and the linearized dynamical system has a zero
eigenvalue at U2 , the normal form of the resulting pitchfork bifurcation is the scalar equation
[61]

3G

3C
= 0G − 1G3, 0 = 2(U − U2). (1.8)

Here the zero solution corresponds to the fixed point ®G∗, and there are two other constant
solutions G∗ = ±

√
0/1 for 01 > 0. Let us assume 2 > 0 so that the zero solution becomes

linearly unstable for U > U2 . The extra solutions bifurcate from G∗ = 0 either for U > U2

(if 1 > 0) or for U < U2 (21 < 0). If 1 > 0 the extra solutions are stable (supercritical
bifurcation), whereas they are unstable if 1 < 0 (subcritical bifurcation). Figure 1.9 depicts
a supercritical pitchfork bifurcation for the one-dimensional dynamical system ¤G = 0G − G3.
We can represent the supercritical normal form (1 = 1) in terms of a potential

Figure 1.9: Shows ¤G for different values of 0 and 1 = 1.

3G

3C
= − 3

3G
* (G) (1.9)

where U(x) is the potential. The local minimum of the potential is corresponded to the fixed
stable point. In this case, the potential is

* (G) = −0G
2

2
+ G

4

4
. (1.10)

Note that this potential (See Fig 1.10) is the same as the free energy in the Landau theory
for a second-order phase transition. From the structure of the potential, one immediately
realises that for 0 < 0, * (G) reaches its minimum at G = 0 (the symmetric phase). However,
this state becomes unstable when 0 > 0 and two new minima appear at non-zero values of G
symmetrically around G = 0 line. As soon as the system reaches one of this states, the G −→ −G
symmetry gets broken. This is the symmetry broken phase. Other simple bifurcations occur
when two complex conjugate eigenvalues of the linearized equation about the fixed point
acquire positive real parts for U > U2 . In this case, it is possible that time periodic solutions
of the dynamical system bifurcate from the fixed point, which is called a Hopf bifurcation
[61]. It turns out that the disordered state of a modified two-dimensional (2D) Vicsek model
forms time-periodic flocks through a Hopf bifurcation. See Chapters 2 (pitchfork bifurcation)
and 3 (Hopf bifurcation) for the analysis of a kinetic equation formulation of the VM.
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Figure 1.10: Bifurcation diagram, (supercritical pitchfork) and the potential for different values of a.

1.6 Thesis outline

The results obtained during the thesis will be organized in the body of the text divided as
follows,

We will begin by studying in Chapter 2 the flocking in the two dimensional Vicsek model
[15] by means of stability and bifurcation analysis of its kinetic equation [19]. The uniform
distribution function corresponding to a disordered flock loses stability at a critical value of
the control parameter (e.g., the alignment noise). At the critical value, one eigenvalue crosses
from negative to positive values whereas there is always a zero eigenvalue corresponding to
conservation of the total number of particles. There is a pitchfork bifurcation with one real and
one complex mode. Our bifurcation study shows that the amplitude equations describing the
flocking states consist of a scalar equation for the density disturbance, and a vector equation for
the particle current density. The equation for the density disturbance is a continuity equation
whereas the equation for the current density contains two different scalings: (i) a hyperbolic
scaling in which both time and space scale in the same way; and (ii) a parabolic scaling in
which time scales as space squared. In the hyperbolic time scale, the equations exhibit time
dependent oscillations about a state of zero density disturbance and constant current density.
These frequencies give rise to resonance phenomena that appear in direct simulations of the
VM for values of the control parameter sufficiently close to the critical one.

Following the same research direction, in Chapter 3 we will study a two-dimensional
modified Vicsek model and its corresponding kinetic equation. The mechanism of
synchronization will consists of active particles being conformist when they align their
velocities to the average velocity of their neighbors, or being contrarian when they move
opposite to the average angle. Depending on the weights of conformist and contrarian or
almost contrarian rules, the ordered states will appear as period-doubling, Hopf or pitchfork
bifurcations.

The study of collective behavior in particles, allowed us to lead our research direction
to the collective dynamics of tissue cells from a theoretical and experimental point of view.
This phenomenon is known to be crucial in many relevant processes as wound healing,
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morphogenesis or even the cancer cell invasion developing the metastasis. Within the context
of epithelial cells, in Chapter 4, we will shed light on some fundamental aspects of tissue
cell migration. In particular, we will describe the active vertex model and the different
configurations analyzed: (i) A monolayer spreading on an empty space, and (ii) the collision
of two different cell populations in an antagonistic migration assay. Indeed, we will apply
topological data analysis on the images obtained from the experiments and simulations to
study the defects flourished during these processes.
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2.1 Introduction

Collective motion, or flocking, is a phenomenon observed in active systems with a large
number of constituents such as bacteria colonies [1, 2, 3], spermatozoa [4], or larger-scale
systems as insects [5, 6], birds [7, 8, 9, 10], animals [11], or even interacting robots [12].
These systems exhibit interesting changes in their behavior depending on internal or external
influences. Such collective migrations can be predicted by simple models as the Vicsek model
(VM) [13] or its variants [14, 15, 16, 17, 18], where particles move with equal speed and
tend to align their velocities to an average of their neighbors. These organizations display
phase transitions from disordered to coherent behavior depending on the parameters of the
model. In particular, for the VM, when the alignment noise is sufficiently small or the particle
density is high enough, particles move coherently as a swarm. Below a critical size of the
box, flocking occurs as a continuous bifurcation from a disordered state, with uniform particle
density, to an ordered state. For a box size larger than critical, the bifurcation is discontinuous
and a variety of patterns are possible [20, 21].

As the VM is straightforward to simulate numerically, many variations thereof have
contributed to our understanding of flocking [6, 14, 15, 18]. To delve deeper into flock
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formation, many authors have derived continuum equations from the VM and its variants,
often creating new models in the process (cf. the review papers Refs. [6, 14, 15, 18]). In
most cases these active systems have many degrees of freedom, thereby complicating their
theoretical and numerical analysis. In particular, the general form of themacroscopic transport
equations is usually obtained taking advantage from the symmetries of the system. This means
that the corresponding coefficients of the equations, have not explicit expressions and it can
produce models with many free parameters that are difficult to obtain numerically. In addition,
the complexity of some systems does not allow to obtain trivial symmetries.

Several authors have proposed kinetic theory equations based on the VM and then derived
continuum equations from them. In a remarkable formulation, T. Ihle has derived several
discrete-time kinetic equations that keepmany features of theVM[16, 17, 19]. He then derived
coupled continuum equations for the particle density and the momentum (or particle current)
density by means of a Chapman-Enskog procedure valid near the transition to flocking [19].
These continuum equations contain terms that appear in the Toner-Tu macroscopic theory [7],
and their coefficients have explicit expressions. However, Ihle’s derivation introduces scaling
a posteriori and it is not a systematic derivation based in bifurcation theory.

In this Chapter, we analyze flocking in the two-dimensional (2D) VM following Ihle’s
work [16] to derive a kinetic equation for a one-particle distribution function in the limit of
infinitely many particles by assuming molecular chaos. The kinetic equation is discrete in
space and time and it always has a simple uniform solution that corresponds to the disordered
state of the system. We carry out a linear stability analysis of this state and study the possible
bifurcations issuing from it. Direct numerical simulations confirm the theoretical studies.

2.2 The Vicsek Model

To set up a quantitative description of the behavior of flocking, VM appeared as a one of the
pioneer models to display an explanation to order transitions. In nature, flocking are subjected
to perturbations such as the weather or chemical concentrations, due to that, in the VM these
perturbations are included in the direction of motion as a natural consequence of external or
internal factors in the system.

The two dimensional VM model describes the dynamics of # particles represented by
points and characterized by their position x 9 and the direction of motion \ 9 . Here, 9 is the
particle index and C = 0, g, 2g, . . . is the time. All the particles move with the same constant
speed (E0) and tend to align locally their velocities to an average of those of their neighbors.
The particles undergo discrete dynamics so that their positions are forwardly updated 1

x 9 (C + g) = x 9 (C) + gv 9 (C + g), (2.1)

the velocity of a particle v 9 = E0 (cos \ 9 , sin \ 9 ) is constructed to have an absolute value E0

1Note that the scheme proposed by Vicsek et al. in [13] defines the speed as a backward difference, in contrast
we use a forward difference.
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and a direction of motion given by the angle \ 9 . Particles align their direction of motion
depending on their neighbors which are considered as all particles inside a circle of radius '0
centered at particle x 9 (which is included), see Fig. 2.1. In two dimensions, the angle of the
direction of motion \ 9 at time C + g, is obtained according to

\ 9 (C + g) = Arg©­«
∑

|x;−x 9 |<'0

48 \; (C)
ª®¬+ b 9 (C), (2.2)

where we sum over all particles that, at time C, are inside a circle of radius '0 centered

Figure 2.1: Sketch of the Vicsek dynamics. The particle in red aligns its direction towards the average
direction of the local neighbors. Blue arrow is the new direction for the red particle.

at x 9 (the circle of influence or interaction circle). b 9 (C) is a random number chosen with
probability density 6(b). Typically, 6(b) is uniform inside an interval (−[/2, [/2)

6(b) =
{

1
[
, |b | < [

2 ,

0, otherwise,
(2.3)

where 0 ≤ [ ≤ 2c. To study the model, we choose a convenient nondimensionalization
according to Table 2.1 and we set the velocity and time units as E0 = g = 1. This consideration
leads thatmodel only depends on the (i) the density d0 which establishes a relationship between
the box size ! and the number of particles # , d0 = #/!2, (ii) the noise strength [ and (iii)
the average number of particles inside the region of influence, " = c'2

0d0 that remains an
unchanged dimensionless parameter.

x, '0, ! v C \, b
E0g E0 g –

Table 2.1: Units for nondimensionalizing the equations of the model.
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2.2.1 Measuring the order

VM exhibits interesting changes in the behavior of the particles depending on internal
(neighbouring interaction) or external influences. Eq. (2.2) contains two different alignment
rules which affect directly on the particle’s motion. The first term of the equation is an explicit
polar term and just in the case that it overcomes the strength of the noisy rule, the system
undergoes to an ordered state and the system has a coherent behavior. The way to measure
these collective consensus is quantified by the complex order parameter

/ = , 48Υ =
1
#

#∑
9=1
48 \ 9 , (2.4)

whose amplitude 0 < , < 1 (polarization) measures macroscopic coherence of the particles
and Υ is their average phase.

For the VM, increasing the average number of particles inside the region of influence,
" = #c'2

0/!
2, favors flocking as more and more particles try to move together. Instead,

increasing the alignment noise [ tends to destroy flocks, as it dilutes the efficacy of the
alignment rule. Then there are a critical value of " above which the polarization is , > 0
and below which , = 0 (in the limit as # → ∞). The alignment noise also has a critical
value, but now it has , > 0 below and , = 0 above threshold. Fig. 2.4 represents the
polarization given by the modulus of the complex parameter Eq.(2.4). We observe that the
values obtained by direct simulations of the VM tend to the predicted solution as we increase
the density d0 from 5 to 10 and when the noise amplitude increases, the system undergoes a
phase transition from an ordered state, in which the particles move with the same direction, to
an disordered state, in which the particles move randomly. At zero noise, particles move in

(a) (b) (c) (d)

Figure 2.2: Four snapshots showing the different phases in the VM for different densities and noises.
(a) Ordered motion for " = 7, d0 = 5, ? = [ = 0.8. (b) Pattern formation for " = 7, d0 = 10, [ = 0.3.
(c) Disordered motion " = 7, d0 = 5, [ = 1.4. (d) Random motion " = 7, d0 = 5, [ = 3.7.

an ordered way whereas, at maximum noise, particles move randomly, Fig. 2.2 can be helpful
to visualize the order-disorder transition. It shows the velocity fields of the VM for # = 1000
particles and periodic boundary conditions. Varying the main parameters of the model, the
different behaviors of the system flourished, (a) for small densities and noise, particles move
in an ordered motion and in an unique cluster, (b) for box size higher than the critical, a
variety of patterns are possible, for example, in this case the system moves in bands. In (c)-(d)
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particles move randomly for higher densities.

2.3 Kinetic equation

In the limit of many particles, it is possible to derive a kinetic equation for the VMby assuming
molecular chaos [16, 17, 19]. The kinetic approach presented in this Section assumes that all
particles are independent and identically distributed before undergoing a collision described
by Eqs. (2.1)-(2.2). This allows the definition of the N-particle probability density evolution
equation

%(\ (# ), x(# )+ v(# ), C + 1) =∫
[−c,c ]#

∫
[−c,c ]#

%(\̃ (# ), x(# ), C) × ©­«
#∏
9=1

X̂(\ 9 − b 9 −Φ 9 (\̃ (# ), x(# ), C)) 3b 9 3\ 9
ª®¬. (2.5)

Here, the notation \ (# ) = \1, . . . , \# means the angles of the # particles and the same
expressions are going to be used for the variables \̃ (# ) , b (# ) , x(# ) and v(# ) . The mean
angle Φ 9 =Arg(

∑
|x;−x 9 |<'0 4

8 \̃; ) is defined in Eq. (2.2) and depends on the precollisional
angles (\̃ (# ) ) of these particles that are inside the interaction circle '0 centered in particle 9 .
X̂(G) = ∑∞

;=−∞ X(G + 2c;) is a periodized delta function that incorporates the “collision rule”
defined in Eq. (2.2), and the integrals over b 9 and \ 9 average over the noises and directions
respectively and go from −c to c.

Assuming that all particles are independent and identically distributed before undergoing
a collision described by Eqs. (2.1) and (2.2) the probability distribution %(\ (# ), x(# ), C)
just before the collision step it can be approximated by a product of identical one-particle
probability distributions. Then the #-particle probability density is product of # one-particle
probability densities 5 (x 9 , \ 9 , C)/# , 9 = 1, . . . , # , being 5 (x 9 , \ 9 , C) the one-particle
distribution function

%(x1, \1, . . . , x# , \# , C) =
#∏
9=1

5 (x 9, \ 9, C)
#

, (2.6)

Eq. (2.6) is the molecular chaos assumption first introduced by Boltzmann when deriving
his transport equation [25]. Eq. (2.6) is appropriate for a time discrete model with unit time
step if A∗ � 1 in our non-dimensional units. For the VM, A∗ = 0, and the molecular chaos
assumption is very reasonable. Eq. (2.6) produces the formula

5 (\, x, C) =
∫
[−c,c ]#

∫
[0,! ]2#

#∑
9=1
X(\ − \ 9 )X(x − x 9 ) %# (\ (# ) , x(# ) , C)

#∏
8=1
(3\83x8), (2.7)

where the x 9 are integrated on the box [0, !] × [0, !].
∑#
9=1 X(\−\ 9 )X(x−x 9 ) describes those
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quantities depending on one position and time, and %# (\ (# ) , x(# ) , C)
∏#
8=1 3\8 3x8 gives the

section of those particles of the system within particle 1 is in the phase space element 3\1 3x1
around position x1 and angle \1 and at the same time particle 2 is in the phase space element
3\2 3x2 and so on. Once the one-particle distribution function has been calculated, the
procedure to derive a kinetic equation for that function is to multiply the equation resulting
from Eqs. (2.5) and (2.6) by

∑#
9=1 X(\ − \ 9 )X(x − x 9 ) (the microscopic one particle-density)

and to integrate over all angles and positions. The result is [19]

5 (x + v, \, C + 1) = � [ 5 ] (\, x, C), v = (cos \, sin \), (2.8)

� [ 5 ]=
∫ c

−c
3b 6(b)

#∑
==1

(
# − 1
= − 1

) ∫
X̂(\ − b −Φ1 (\̃1, . . . , \̃=)) 5 (x, \̃1, C)(

1 − "' (x, C)
#

)#−=
×

=∏
8=2

[∫
|x8−x |<'0

5 (x8 , \̃8 , C)
#

3\̃83x8
]
3\̃1, (2.9)

Φ1 (\̃1, . . . , \̃=) = Arg ©­«
=∑
9=1
48 \̃ 9

ª®¬. (2.10)

Now, let us explain in detail the terms in Eqs. (2.8), (2.9) and (2.10). = is the number
of particles inside the interaction circle of radius '0 about particle 1 (the latter included).
"' (x, C) defines the average number of particles inside an interaction circle about position x,
# is the total number of particles and d is the density respectively,

"' (x, C) =
∫
|x′−x |<'0

d(x′, C) 3x′, d(x, C) =
∫ c

−c
5 (x, \, C) 3\,

∫
d(x, C)3x = #.

(2.11)
The combinatorial factor in Eq. (2.9) counts the number of possible selections of neighbors
excluding the latter (= − 1) out of the # − 1 other particles. The factor (1 − "'/#)#−=
in Eq. (2.9) gives the probability that the particles = + 1, . . . , # are not within interaction
distance of particle 1 and the factor

∏=
8=1

∫
|x8−x |<'0

5 (x8 , \8 , C)3x8 is the probability that
particles 2, . . . , = be within interaction distance of particle 1 times their angular distribution,
given that they are within the interaction distance. When we integrate Eq. (2.9) over \, we
find that the particle density immediately after collisions equals that before:∫

� [ 5 ] (\, x, C) 3\ = d(x, C). (2.12)

We may adopt two opposite approximations of the collision operator (2.9). For very diluted
particle ensembles having small average density, d0 = #/!2, terms with = ≥ 2 in Eq. (2.9)
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provide negligible contributions. Then we get a binary collision operator

�� [ 5 ] =
∫ c

−c
3b

6(b)
1 + "'

[∫ c

−c
X̂(\ − b − \̃1) 5 (x, \̃1, C)3\̃1 (2.13)

+
∫ c

−c

∫ c

−c
X̂(\ − b −Φ1 (\̃1, \̃2)) 5 (x, \̃1, C) ×

(∫
|x2−x |<'0

5 (x2, \̃2, C)3x2

)
3\̃23\̃1

]
,

with "' = "' (x, C), which has been normalized so that
∫ c

−c�� [ 5 ]3\ = d(x, C). Secondly,
for larger densities and =/# � 1 as # →∞, the combinatorial factor times (1−"'/#)#−=
becomes

(# − 1)!
(= − 1)!(# − =)!

(
1 − "'

#

)#−=
∼ #=−1

(= − 1)! 4
−"' ,

and (2.9) produces an Enskog-type collision operator [19]

�� [ 5 ]=
∫ c

−c
3b 6(b)4−"' (x,C)

∞∑
==1

∫
[−c,c ]=

X̂(\ − b −Φ1 (\̃1, . . . , \̃=))
(= − 1)! (2.14)

× 5 (x, \̃1, C)
=∏
8=2

[∫
|x8−x |<'0

5 (x8 , \̃8 , C)3\̃83x8
]
3\̃1.

For active particles in a disordered state, the density d(x, C) equals the constant average
density, d0 = #/!2, and the uniform distribution function, 50 = d0/(2c), is a fixed point of
the collision operators:

� [ 50] = 50, �� [ 50] = 50, �� [ 50] = 50. (2.15)

Henceforth, we shall use the Enskog collision operator defined in Eq. (2.14).

2.4 Linear stability analysis

In this Section, we study the linear stability of the disordered solution having time-independent
uniform particle density. Disorder is unstable if at least one eigenvalue has modulus larger
than one. As a consequence of conservation of the number of particles, one is always
an eigenvalue corresponding to a constant eigenfunction. To study the linear stability of
the uniform distribution function, we insert 5 = 50 + n 5̃ (\, x, C), n � 1 into the kinetic
equation and ignore quadratic terms, thereby obtaining Eq. (2.16). Here Φ1 (\̃1, . . . , \̃=) and
" = d0c'

2
0 have been defined in Eqs. (2.10) and (2.11) respectively. The separation of

variables ansatz 5̃ (x, \, C) = �̃ (x, \) ℎ(C) produces a discrete equation ℎ(C + 1)/ℎ(C) = &,
where & is the separation constant. Thus ℎ(C) = &C . The equation for �̃ is an eigenvalue
problem that yields &. Moreover, �̃ is a periodic function of space and it can be written as a
Fourier series expansion in plane waves, 48K·x, in which the components of the wave vectors
are integer multiples of 2c/!. In the limit as ! →∞, the wave vectors K are real valued and
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the Fourier series becomes a Fourier integral.

5̃ (\, x + v, C + 1) =
∞∑
==1

4−"

(= − 1)!

(
"

2c

)=−1∫ c

−c
3b 6(b)

∫
\̃

X̂(\ − b −Φ1)

×
[
5̃ (x, \̃1, C) +

= − 1
c'2

0

∫
|x′−x |<'0

5̃ (x′, \̃1, C)3x′
]
×

=∏
;=1

3\̃;

− "

2c
1
c'2

0

∫
|x′−x |<'0

∫ c

−c
5̃ (\ ′, x′, C)3x′3\ ′. (2.16)

Setting �̃ = 48K·xi(\; K), we are led to the separation of variables ansatz 5̃ = &C48K·xi(\),
where & and i(\) are both functions of K. This procedure of separation of variables
is typically used in discussions of the Fourier-von Neumann stability of finite difference
numerical methods for linear partial differential equations; see Ref. [26]. From Eq. (2.16),
the integration of the plane wave on the disk of radius '0 yields the eigenvalue problem for
i(\)

&48K·vi − � (1) [i] = 0, (2.17)

� (1) [i]= 2�1 ( |K|'0)
|K|'0

[ ∞∑
==1

4−"

(= − 1)!

(
"

2c

)=−1(
= − 1 + |K|'0

2�1 ( |K|'0)

)
∫ c

−c
3b 6(b)

∫
\̃

X̂(\ − b −Φ1)i(\̃1)
=∏
;=1

3\̃; −
"

2c

∫ c

−c
i(\̃)3\̃

]
. (2.18)

We have � (1) [1] = 1, and therefore the uniform distribution 50 = d0/(2c) solves Eq. (2.17)
with |K| = 0 and & = 1. We now seek non-constant solutions of Eq. (2.17) by inserting the
Fourier expansion i(\) = ∑∞

9=−∞ i 94
8 9 \ . We find

∞∑
9=−∞

[
&(48K· (cos \,sin \) ) 9 − � (1) [i] 9

]
48 9 \ = 0, (2.19)

from which we obtain the eigenvalue problem:

∞∑
;=−∞
{� (1) [48 9 \ ] 9X 9; −&(48K· (cos \,sin \)+8 9 \ );}i; = 0. (2.20)

Here the subscripts 9 and ; indicate that 5 (\) 9 and 5 (\); are the coefficients of the respective
harmonics in the Fourier series of the function 5 (\), and we have used � (1) [48; \ ] 9 = 0 for
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9 ≠ ; [19]. Equivalently, 1/& are the eigenvalues of a matrixM 9;:

M 9; =
(48K· (cos \,sin \)+8 9 \ );

� (1) [48 9 \ ] 9
, (48K· (cos \,sin \)+8 9 \ ) 9 = (48K· (cos \,sin \) )0 = �0 ( |K|).

� (1) [48 9 \ ] 9 =
(∫ c

−c
4−8 9 b6(b) 3b

) ∞∑
==1

"=−14−"

(= − 1)!

[
(= − 1) 2�1 ( |K|'0)

|K|'0
+ 1

]
×

∫
[−c,c ]=

48 9 ( \̃1−Φ1)
=∏
;=1

3\̃;

2c
. (2.21)

If K =  (0, 1), the off-diagonal matrix elements are �;− 9 ( )/� (1) [48 9 \ ] 9 .

2.4.1 Space independent eigenfunctions

In this Section, we study solutions that bifurcate from disorder with zero wave number, which
correspond to bifurcations for box sizes below critical. For |K| = 0, Eq. (2.20) produces the
following eigenvalues and eigenfunctions:

& 9 = �
(1) [48 9 \ ] 9 , i 9 (\) = 48 9 \ , (i 9 ); = X; 9 , (2.22)

with 9 , ; = 1, 2, . . .. The disordered state is stable when |& 9 | ≤ 1 for all 9 , and unstable if
|& 9 | > 1 for some 9 . i0 = 1 is one eigenfunction corresponding to eigenvalue &0 = 1. The
eigenvalue with largest modulus for 9 ≠ 0 is &1, which, for large " , becomes [19]

&1 ∼
√
c"

2

∫ c

−c
4−8 b6(b)3b =

√
c"

[
sin

[

2
. (2.23)

Other eigenvalues have moduli smaller than 1 in the limit as " →∞, as shown in Appendix
2.A.

2.4.2 Perturbation of eigenvalues for small off-diagonal elements

We do not know how to find the eigenvalues of the matrixM 9; , given by Eq. (2.21), for general
nonzero K. However, the diagonal entriesM 9 9 are proportional to �0 ( |K|) = 1 +$ ( |K|) (as
|K| → 0), whereas the off-diagonal elements ofM 9; with 9 ≠ ; vanish for zero wave vector.
Thus, for small |K|, the off-diagonal elements of the matrix M;, 9 of Eq. (2.21) are small
compared to the diagonal elements. Assuming that the matrix M 9; is equal to the matrix
of its diagonal elements plus a small perturbation, we can use regular perturbation theory
to calculate its eigenvalues. The situation is analogous to the usual perturbation theory of
eigenvalues in non-relativistic Quantum Mechanics as explained in Ref [27]. The first order
correction to the eigenvalues of M 9; is given by the diagonal elements of the perturbation
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matrix. However, this perturbation matrix is M �� minus its diagonal, and therefore it has
zero diagonal elements. Thus, we need to calculate the eigenvalues by using second-order
perturbation theory for a perturbation matrix comprising the off-diagonal elements of M �� .
We obtain [cf. Eq. (38.10) of Ref [27]]:

1
� �

=
�0 ( |K|)

� (1) [�� � � ] �
−
∑
�≠ �

M�, �M � ,�

�0 ( |K |)
� (1) [�� � � ]�

− �0 ( |K |)
� (1) [�� � � ] �

, (2.24)

which holds for 0 ≤ |K| < �1,0 [�1,0 ≈ 2.4048 is the first zero of the Bessel function �0 (�)].

Figure 2.3: (a) Critical wave vector � = |K| versus � for � = 7, �0 = 5. This curve is obtained by
solving |�1 (�, �) | = 1, where �1 (�, �) is given by Eq. (2.26). (b) At zero wave number, critical noise
versus M is plotted.

We are interested in the eigenvalue close to 1/�1, because �1 has the largest modulus for
|K| = 0. It is approximately given by

1
�1

≈ �0 ( |K|)
� (1) [�� � ]1

−
M2,1M1,2

�0 ( |K |)
� (1) [��2� ]2

− �0 ( |K |)
� (1) [��� ]1

, (2.25)

in which we have ignored higher order terms having |� − 1| > 1. For K = � (0, 1), these
terms are proportional to [��−1 (�)]2 = � ( |K|2(�−1) ) (with � > 2). Thus, compared with the
last term in Eq. (2.25), which is � ( |K|2), they can be ignored in the limit as |K| → 0. This
also occurs for general K. We have (��K· (cos �,sin �) )0 = �0 ( |K|), and (��K· (cos �,sin �)+� � )0 =
((cos � + � sin �) (��K· (cos �,sin �) )0 produces

M2,1 = − 1
� (1) [��2� ]2

(� 



��

− 



��

)�0 ( |K|) = −
��� − ��

|K|� (1) [��2� ]2
�1 ( |K|) =⇒

M1,2M2,1 = − [�1 ( |K|)]2

� (1) [�� � ]1� (1) [��2� ]2
.
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Thus, Eq. (2.25) becomes

&1 ≈
� (1) [48 \ ]1

�0 ( |K|) + [�1 ( |K |) ]2� (1) [48\ ]1
�0 ( |K |) (� (1) [48\ ]1−� (1) [482\ ]2)

. (2.26)

According to Eqs. (2.21) and (2.26), &1 = &1 ([, |K|). Then the equation &1 = 1 may have
different solution branches [( |K|) for nonzero wave number, depending on the parameters "
and d0. Fig. 2.3 (a) show the solution curve of |&1 ( |K|, [) | = 1 for d0 = 5. In this case, the
uniform distribution becomes first unstable for the noise corresponding to zero wave number.
Within our approximations, this justifies that the largest value of the multiplier &1 is attained
at zero wave number. The case of critical eigenvalue |&1 ( |K|, [) | = 1 for zero wave number,
is shown in Fig. 2.3 (b) where the critical noise versus M is plotted.

2.5 Bifurcation theory

In this Section, we analyze flocking in the two-dimensional (2D) VM by using systematically
bifurcation theory for its Enskog kinetic equation. As justified in Section 2.4, the largest
multiplier is &1 = 1 corresponding to K = 0. The solution of the linearized equation

L 5 (1)≡ 5 (1) (\, C + 1,X, ))−� (1) [ 5 (1) ] (\, C,X, ))=0, (2.27)

is

5 (1) (\, C,X, ), n)= A (X, ) ; n)
2c

+�(X, ) ; n)48 \+cc, (2.28)

X = nx, ) = nC. (2.29)

Here cc means the complex conjugate of the preceding term. We do not need to include
more terms in (2.28) because the other modes decay rapidly in the fast time scale C. The
first term in Eq. (2.28) is a space dependent disturbance of the uniform density, whereas the
complex amplitude of the second term corresponds to a vector current density, as we will
show below in Eqs. (2.41)-(2.43). We anticipate crossover scalings and therefore we shall use
the Chapman-Enskog method [22, 23, 24, 28]. The Chapman-Enskog ansatz is [22, 23, 24],

5 (\, x, C; n) = 50 + n 5 (1) +
∞∑
9=2
n 9 5 ( 9) (\, C; A, �, �), (2.30)

mA

m)
= R (0) (A, �, �) + nR (1) (A, �, �) +$ (n2), (2.31)

m�

m)
= A (0) (A, �, �) + nA (1) (A, �, �) +$ (n2). (2.32)
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where � is the complex conjugate of �. We select a scaling [ = [2+n2[2, which is appropriate
for the case of the pitchfork bifurcation that occurs for space independent solutions. We will
explain later what happens for a different choice of scaling. Inserting Eqs. (2.30)-(2.32) into
Eqs. (2.8) and (2.14), we obtain the following hierarchy of equations

L 5 (2) = � (2) [ 5 (1) , 5 (1) ] − v·∇- 5 (1) −
R (0)
2c
− A (0)48 (\+ΩC+Ω) + cc, (2.33)

L 5 (3) = � (3) [ 5 (1) , 5 (1) , 5 (1) ] + 2� (2) [ 5 (1) , 5 (2) ] − v·∇- 5 (2) −
R (1)
2c

− A (1)48 (\+ΩC+Ω) + cc − 1
2

(
m

m)
+ v·∇-

)2
5 (1) + [2

m

m[
� (1) [ 5 (1) ] . (2.34)

etc. In these equations, we have the following terms

� (2) [i, i] =
c'2

0
2

[ ∞∑
==2

=4−"

(= − 2)!

(
"

2c

)=−2∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)

=∏
;=1

3\̃;

− 2
(∫ c

−c
i(\1)3\1

) ∞∑
==1

=4−"

(= − 1)!

(
"

2c

)=−1∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)

=∏
;=1

3\̃;

+ "
2c

(∫ c

−c
i(\1)3\1

)2
, (2.35)

� (3) [i, i, i] =
c2'4

0
6

[ ∞∑
==3

=4−"

(= − 3)!

(
"

2c

)=−3∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)i(\̃3)

=∏
;=1

3\̃;

− 3
(∫ c

−c
i(\3)3\3

) ∞∑
==2

=4−"

(= − 2)!

(
"

2c

)=−2∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)

=∏
;=1

3\̃;

+ 3
(∫ c

−c
i(\2)3\2

)2 ∞∑
==1

=4−"

(= − 1)!

(
"

2c

)=−1∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)

=∏
;=1

3\̃;

− "

2c

(∫ c

−c
i(\1)3\1

)3
]
. (2.36)

and so on. Note that�� [ 50 + n d̃] = 50 + n d̃ and� (1) [ d̃] = d̃ for constant d̃ imply� (2) [1, 1] =
� (3) [1, 1, 1] = 0, which can be checked from Eqs. (2.35)-(2.36). The solvability conditions
for non-homogeneous equations of the hierarchy is that their right hand sides be orthogonal
to the solutions of the homogeneous equation Li = 0, namely 1 and 48 \ , using the scalar
product

〈 5 (\), 6(\)〉 =
∫ c

−c
5 (\)6(\) 3\. (2.37)
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We now proceed to derive the amplitude equations. We insert Eq. (2.28) into Eq. (2.33) and
impose that its right hand side be orthogonal to 1 and to 48 \ , thereby obtaining

R (0) = −2cRe
[(
m

m-
+ 8 m
m.

)
�

]
,

A (0) = 1
c
� (2) [1, 48 \ ]1A � −

1
4c

(
m

m-
− 8 m
m.

)
A. (2.38)

Then Eq. (2.33) has the solution

5 (2) (\, C,X, )) =
[
�2� (2) [48 \ , 48 \ ]2
1 − � (1) [482\ ]2

−

(
m
m-
− 8 m

m.

)
�

2(1 − � (1) [482\ ]2)

4
82\ +cc. (2.39)

We now insert Eqs. (2.28) and (2.39) into Eq. (2.34), and impose the solvability conditions to
the resulting equation. The solvability conditions for this equation produce:

R (1) = −Re
[
� (2) [1, 48 \ ]1

(
m

m-
+ 8 m
m.

)
A �

]
,

A (1) = [Γ(A) − ` |�|2]� + XΔ- � + W1

(
m

m-
+ 8 m
m.

)
�2 + W2�

(
m

m-
− 8 m
m.

)
�

+ W3�

(
m

m-
− 8 m
m.

)
� + W3

8c2

(
m

m-
− 8 m
m.

)
A2. (2.40)

In terms of the mean current density w defined as

� =
FG − 8FH

2c
, w = (FG , FH), (2.41)

Eqs. (2.31), (2.32), (2.38) and (2.40) can be written as

mA

m)
+ ∇- ·

[(
1 + nW3A

2c

)
w
]
= 0, (2.42)

mw
m)
=−1

2
∇-

[(
1 − nW3

4c
A

)
A + n (2W1 − W2 − W3)

2c
|w|2

]
+n 2W1 + W2 − W3

2c
(w · ∇- )w+

n
2W1 − W2 + W3

2c
w(∇- · w) + nX∇2

-w+
[
W3A

c
+ n

(
Γ(A)− ` |w|

2

4c2

)]
w. (2.43)

The coefficients in Eqs. (2.42) and (2.43) are calculated in Appendix 2.B.

In particular, for n = 0, Eq. (2.42) is the continuity equation for a density variable A and
a current density w, which explains the name of the latter variable. The overall density of
particles equals the average density #/!2, which implies the following constraint for A (X, )):∫

A (X, )) 3X = 0. (2.44)
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Remark 1. All the parameters in Eqs. (2.42)-(2.43) are real numbers. For A = 0 and W3 = 0,
these equations are exactly equivalent to the amplitude equation (132) of Ref. [19].

Remark 2. For A ≠ 0, Eqs. (2.42)-(2.43) are not equivalent to those in [19]. The differences are
due to two inconsistencies in Ihle’s approach [19]. Firstly, Ihle did not expand the eigenvalue
&1 = �

(1) [48 \ ]1 in powers of n . Instead, he introduced (&1 − 1)w as a linear term in the
amplitude equation forw [cf. Eq. (2.43)]. This is equivalent to setting W3 = 0 and Γ(A) = &1−1
in Eq. (2.43). Thus, Ihle’s equations do not contain the quadratic term proportional to Aw
appearing in Eq. (2.43). Secondly, we have used a consistent perturbation scheme in the
parameter n whereas the Chapman-Enskog procedure of Ref. [19] mixes different orders in
n . For instance, the tensors 
1 and l3 defined in Eqs. (117)-(119) and (121) of Ref. [19] are
$ (n2) whereas
 9 = $ (n3) for 9 = 2, 4, 5. However, all these tensors enter in the equation for
the current density, Eq. (130) of Ref. [19], with equal footing. On the other hand, for uniform
time-independent density, all terms in Ihle’s Eq. (132) are of order n3 provided m/mC = $ (n2),
∇ = $ (n), _ − 1 = $ (n2) and w = $ (n).

Remark 3. The equations of motion for the average velocity in bird flocking proposed by
Toner and Tu do not contain the quadratic term Aw in Eq. (2.43) [7, 8].

Remark 4. What happens if the noise scales differently with n? We have chosen a parabolic
scaling, [ = [2 + n2[2. The only case that affects differently the outcome in Eqs. (2.42)-(2.43)
is [ = [2 + n[1. ThenA (0) has to include an additional term [1&[ in Eq. (2.38). This means
we have to write A∗ = A+c[1&[/� (2) [1, 48 \ ]1 instead of A in Eqs. (2.42)-(2.43). In Eq. (2.43),
we also have to replace the term &[[[

2
1/2 (where &[[ = m2&1/m[2 |[=[2 ) instead of &[[2

in Γ(A). The resulting Γ(A∗) is negative (at least for the numerical values " = 7, d0 = 5 used
in our simulations). We will not obtain a consistent stationary space independent solution of
Eqs. (2.42)-(2.43) unless A∗ = $ (n), which will take us back to the parabolic scaling of the
noise.

2.6 Space-independent amplitude equation

For space independent � and A = 0, Eq. (2.32) is the typical pitchfork amplitude equation

m�

m (n2C)
= ([2&[ − ` |�|2)�. (2.45)

Note that time scales as the square of space (diffusive scaling). As ` > 0 and &[ < 0, the
stationary solution

� =

√
[2&[

`
48Υ, Υ ∈ R, (2.46)

is stable and it exists for [ < [2 . In this region, the uniform distribution 50 is unstable because
&1 > 1. Thus the transition from incoherence to order is a supercritical pitchfork bifurcation,
as depicted in Fig. 2.4. It represents the polarization given by the modulus of the complex
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Figure 2.4: (a) Polarization, versus [ for " = 7, # = 1000, and d0 = 10 (blue squares) or d0 = 5
(red asterisks). Dashed and solid lines correspond to (2.48) and (2.49), respectively. (b) Same graph
with the critical noise shifted according to Eq. (2.66) with 0 = (n/d0)

√
〈Ã2〉/6 = 0.3.

parameter (2.4). According to Eq. (2.28), the order parameter is

/ =
1
#

#∑
9=1
48 \ 9 =

1
d0!2

∫
48 \ 5 (\, x, C) 3\3x ∼ 2cn

d0n2!2

∫
�(X, )) 3X. (2.47)

For the uniform solution given by Eq. (2.46), the order parameter is

/0 ∼
2c
d0

√
([ − [2)&[

`
4−8Υ. (2.48)

Near [2 , we have &1 ∼ 1 + &[ ([ − [2). Then we can replace &[ ([ − [2) by &1 − 1 in
Eq. (2.48), thereby getting a formula that holds for larger values of |[ − [2 | (cf. Fig. 2.4):

/0 ∼
2c
d0

√
&1 − 1
`

4−8Υ. (2.49)

We observe that the values obtained by direct simulations of the VM tend to the predicted
solution as we increase the density d0 from 5 to 10 in Fig. 2.4(a). The change in convexity
of the curve near [2 is due to finite size effects. Moreover, Fig. 2.4(b) shows that the critical
noise found in the simulations of the VM is shifted to [2 − 02 with 0 = 0.3 for d0 = 10.

2.7 Space-dependent amplitude equations

For nonzero A and space dependent �, we need to consider the space-dependent
Eqs. (2.42)-(2.43). The leading order equations for n = 0 are

mA

m)
+ ∇- ·w = 0, (2.50)

mw
m)

= −1
2
∇-A +

W3
c
Aw. (2.51)
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In these equations, space and time scale in the same way as X = nx and ) = nC (hyperbolic
or convective scaling). The order parameter (2.47) can now be used to define a vector order
parameter, Z =(Re/ ,Im/):

Z ∼ n

d0!2

∫
w(X, )) 3G 3H, (2.52)

because �(X, )) = [FG (X, )) + 8FH (X, ))]/(2c), according to Eq. (2.41). Ignoring the
nonlinear term in Eq. (2.51) (small initial data), we eliminate the current density and obtain
the linear wave equation with velocity 1/

√
2. Then ∇- ·w obeys the same wave equation and

∇- ×w is independent of time. The overall constraint (2.44) holds for all time provided it
does so initially. Space independent solutions of this system produce a current density that
increases with time if A > 0 and decreases if A < 0. It seems that shock waves may form after
a finite time.

2.7.1 Linearized 2D equations for convective scaling

Figs. 2.4 shows that, for the long times employed in direct simulations of the VM, there is
agreement between the simulations and the uniform solution (2.46) of Eqs. (2.42)-(2.43),

A0= 0, w0= 2c

√
[2&[

`
eΥ, eΥ= (cosΥ,− sinΥ). (2.53)

However, very close to [2 , the separation between the hyperbolic and parabolic time scales
has appreciable effects. To uncover them, we linearize Eqs. (2.50)-(2.51) about Eq. (2.53),
thereby obtaining

mÃ

m)
+ ∇- ·w̃ = 0, (2.54)

mw̃
m)

= −1
2
∇- Ã +

W3
c

w0Ã . (2.55)

By differentiating Eq. (2.54) and eliminating w̃ by means of Eq. (2.55), we find the wave
equation:

m2Ã

m)2 =
1
2
∇2
- Ã −

W3
c

w0 · ∇- Ã . (2.56)

For periodic boundary conditions, we can solve this equation by writing Ã (X, )) as a Fourier
series on the square box of size !. Then we can find w̃(X, )) from Eq. (2.55). However,
the gradient term produces a combination of factors exponentially increasing with time and
factors exponentially decreasing with time. It is then hard to predict the long time behavior
of the solutions. We can obtain an equivalent formulation by using the change of variable

Ã = 4W3w0 ·X/c', (2.57)
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to eliminate the gradient term in Eq. (2.56), thereby producing the Klein-Gordon equation:

m2'

m)2 =
1
2
∇2
-' −

W2
3 |w0 |2

2c2 '. (2.58)

For periodic boundary conditions, '(X, )) = ∑
=,< '=,< ())48k=,< ·X, and the coefficients

'=,< ()) solve the equation of a linear oscillator with frequency

l=,< =

√
1
2
|k=,< |2 +

W2
3 |w0 |2

2c2 , k=,< =
2c
n!
(=, <). (2.59)

Note that the frequency l=,< mixes frequencies corresponding to the acoustic velocity
1/
√

2 [cf. |w0 | = 0 in Eq. (2.59)] with the fundamental mode of frequency W3 |w0 |/(
√

2c)
corresponding to = = < = 0. We now solve the equation for '=,< ()) and then reconstruct
Ã (X, )) and w̃(X, )) from Eqs (2.50)-(2.51) and (2.57). The results are

Ã (X, )) =
∞∑

==−∞

∞∑
<=−∞

[
'=,< (0) cos(l=,<)) +

¤'=,< (0)
l=,<

sin(l=,<))
]
4 (8k=,<+

W3w0
c
) ·X, (2.60)

w̃(X, )) = 1
2

∞∑
==−∞

∞∑
<=−∞

(
8k=,< −

W3w0
c

) 4 (8k=,<+
W3w0
c
) ·X

l=,<

×
[
'=,< (0) sin(l=,<)) −

¤'=,< (0)
l=,<

cos(l=,<))
]
+
∞∑

==−∞

∞∑
<=−∞

C<,= 48k=,< ·X,

(2.61)

'=,< (0)=
1

n2!2

∫ n !

0

∫ n !

0
4−(8k=,<+

W3w0
c
) ·X Ã (X, 0) 3X=

∞∑
;=−∞

∞∑
9=−∞

Ã;, 9 (0) (4
n W3F0G!

c − 1) (4
n W3F0H!

c − 1)[
n W3F0G!

c
+ 82c(; − =)

][
n W3F0H!

c
+ 82c( 9 − <)

], (2.62)

¤'=,< (0) = −
1

n2!2

∫ n !

0

∫ n !

0
4−(8k=,<+

W3w0
c
) ·X

(
8k=,< +

W3w0
c

)
· w̃(X, 0) 3- 3., (2.63)

C=,< = w̃=,< (0) +
1
2

∞∑
;=−∞

∞∑
9=−∞

(
8k;, 9 −

W3w0
c

) 4
n W3F0G!

c − 1
n W3F0G!

c
+ 82c(; − =)

× 4
n W3F0H!

c − 1
n W3F0H!

c
+ 82c( 9 − <)

¤';, 9 (0)
l2
;, 9

. (2.64)
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For w(X, )) = w0 + w̃(X, )), the order parameter (2.52) becomes

Z ∼ n

d0
w0 +

n

d0n2!2

∫ n !

0

∫ n !

0
w̃(X, )) 3- 3.

=
n

d0
w0 +

n

d0
w̃0,0 ()). (2.65)

2.7.2 Shift in the critical noise

The oscillating density disturbance Ã (X, )) will produce a nonzero value of the average of
A2 = Ã2. Averaging Eq. (2.43) over space and time, and assuming that the average of a
product is the product of averages, we have 〈Aw〉 ≈ 〈A〉 〈w〉 = 0 and 〈A2w〉 ≈ 〈A2〉 〈w〉. Then
the time-independent and space-averaged part of the term A2 in Γ(A) gives a contribution to
|w0 | = 2c

√
Γ(A)/`, which yields the first term in Eq. (2.65):

nw0
d0

∼ 2c
d0

√√√
&[ ([ − [2) − n 2 〈Ã2 (X,) ) 〉

6d2
0

`
eΥ

∼ 2c
d0

√√√
&1 − 1 − n 2 〈Ã2 (X,) ) 〉

6d2
0

`
eΥ. (2.66)

Here Ã is given by Eq. (2.60) and, inserted into the average over time and space in Eq. (2.66),
contributes to shift the bifurcation point to a smaller noise value [∗2 . Fig. 2.4 shows that
simulation data are consistent with n

√
〈Ã2 (X, ))〉/6 = 0d0, with 0 ≈ 0.3. Then [∗2 ≈ 3.95.

One first correction consists of using a more accurate formula instead of Eq. (2.23) for finite
values of " . Using the same procedure as explained in Ref. [19] but keeping more terms in
the expansions, the critical condition &1 = 1 for the noise becomes

√
c"

[

(
1 − 1

8"
− 7

128"2 −
5

128"3

)
sin

[

2
= 1. (2.67)

See Appendix 2.C. For " = 7, we obtain [2 = 4.09 (0 = 0.26) instead of the theoretical value
[2 = 4.13, as in Fig. 2.4(a). Taking into account that the second term in Eq. (2.65) is obtained
from linearization about the first term (and is therefore assumed to be small compared with
it), the polarization becomes |Z| ∼ (n/d0) |w0+w̃0,0 | ∼ (n/d0) ( |w0 | + w0 · w̃0,0/|w0 |), i.e.,

|Z| ∼ 2c
d0

√√√
&1 − 1 − n 2 〈Ã2 (X,) ) 〉

6d2
0

`
+ n

d0
eΥ ·w̃0,0 ()). (2.68)

In Appendix 2.D, we estimate a value for the shift after some uncontrolled approximations
that take advantage of the linearized equations (2.54)-(2.56). The result 0 ≈ 0.01 is a small
improvement that agrees better with the numerically estimated shift of the bifurcation value.
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Better agreement should be achieved by numerically solving the full nonlinear equations
(2.42)-(2.43) and finding a more precise value of the time and space average 〈A2〉 in the
formula for |w0 |. The shift in critical noise was noticed earlier in Ref. [29] but no explanation
thereof was given there.

2.7.3 Oscillatory correction to the polarization: resonances in theVicsek
model
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Figure 2.5: Discrete Fourier transform of the polarization , (C) obtained from single simulations
of the VM (without ensemble averaging) for: (a), (b) and (c) Vicsek alignment rule of Eq. (2.2); (d)
alignment rule of Eq. (2.71), which includes harmonic forcing of frequency l = Ω/ ≈ 0.05 with ℎ = 5.
Parameter values are " = 7, # = 1000, d0 = 5, and (a)-(b) [ = 0.8, (c)-(d) [ = 3.7. Panel (b) is the
same as Panel (a) in logarithmic scale. The inset of Panel (a) shows that, for this single simulation, the
amplitude of the zero-frequency mode coincides with the ensemble averaged value of, in Fig. 2.4. In
Panel (d), filled circles indicate the zero (black dot) and resonant (red dot) frequencies, both peaks are
highlighted in the Inset.

Eq. (2.68) contains a bounded oscillatory function of ) [cf. Eq. (2.61)]. Thus the
polarization is a function of the time C whose lowest angular frequency is Ω/ :

Ω/ ∼ 2W3

√√√
&1 − 1 − n 2 〈Ã2 (X,) ) 〉

6d2
0

2`
∼ ,

2
√

2
. (2.69)
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Here, is given by Eq. (2.66). The other frequencies given by Eq. (2.59) are now

n l=,< ∼
√
Ω2
/
+ 2c2

!2 (=
2 + <2) . (2.70)

How can we confirm the existence of these oscillation frequencies? One possibility is to
modify the alignment rule from Eq. (2.2) to

\8 (C + g)=Arg
©­«

∑
|x 9−x8 |<'0

48 \ 9 (C)
ª®¬+b8 (C)+ℎ cos(lC), (2.71)

move the forcing frequency until it resonates with one of the frequencies of Eq. (2.70), and
simulate the resulting forced VM. However, we need to explore a region of [ sufficiently close
to [2 . Otherwise, the parameter n =

√
([ − [2)/[2 is so large that there is no separation

between the hyperbolic and parabolic scalings. In this later case, say for [ = 0.8, the discrete
Fourier transform of the polarization , (C), shown in Fig. 2.5(a), has a single peak at zero
frequency and a small, seemingly flat, background [the amplitudes of the transform at nonzero
frequency are all smaller than 0.001, cf. Fig. 2.5(b)]. For the transform depicted in Figs. 2.5(a)
and 2.5(b), the peak height at zero frequency coincides with the value displayed in Fig. 2.4,
which has been obtained as an ensemble average over many realizations of the stochastic
process given by the VM. As [ increases towards [2 , one simulation of the VM shows that
, (C) still has a large peak at zero frequency, but there is a small mound about it [cf. Fig. 2.5(c)].
If we repeat the simulations of the VM with the modified rule Eq. (2.71), Fig. 2.5(d) shows
that the mound is higher and that there is a small resonant peak at l = Ω/ . This effect is very
small because, for [ close to [2 , the polarization and, consequently, the frequency given by
Eq. (2.69), are very small, and the alignment noise is large.
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Figure 2.6: Same as Fig. 2.5 but with the forcing frequency of Eq. (2.70) with = = < = 2 and ℎ = 5.

We can also excite higher frequencies by setting the forcing frequency to be one of
those in Eq. (2.70). For instance, if we set l in Eq. (2.71) equal to the frequency given by
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Eq. (2.70) with = = < = 2, the nonlinearity of the amplitude equations excites several nearby
frequencies. Thus, the peaks appearing in Fig. 2.6 are close to frequencies of the modes (i)
(=, <) = (1, 0), (0, 1), (ii) (1, 1), (iii) (2, 0), (0, 2), (iv) (2, 2), and (v) (3, 0), (0, 3), given by
Eq. (2.70).

2.8 Conclusions

We have studied flocking in the standard Vicsek model by analyzing the bifurcation of the
uniform distribution function to solutions of the associated kinetic equation that have nonzero
polarization. Our linear stability analysis of the uniform distribution is limited to small wave
numbers. Within this constraint, linear instability first occurs at a real eigenvalue with zero
wave number. The picture of flocking that emerges from the bifurcation analysis is intricate.

We have shown that the amplitude equations for the bifurcating modes near the critical
value [2 of the noise [ are equivalent to coupled equations for a disturbance of the number
density and a current density. The equation for the density disturbance is a continuity equation
whereas the equation for the current density contains two different scalings: (i) a hyperbolic
scaling in which both time and space scale as |[−[2 |−1/2; and (ii) a parabolic scaling in which
time scales as |[ − [2 |−1, therefore, as space squared.

Space-independent solutions of the amplitude equations obey the usual equation for a
supercritical pitchfork bifurcation on the longer parabolic time scale. Stable stationary
solutions of this equation produce a polarization proportional to |[ − [2 |1/2 as [ → [2 ,
which is depicted in Fig. 2.4. Compared to direct simulations of the VM, ensemble averages
of the polarization are similar to the bifurcation predictions, except for a shift of the critical
noise to smaller values and a round off very close to [2 .

Space-dependent patterns near the flocking bifurcation satisfy the full amplitude equations.
On the longer parabolic time scale, the solutions of the latter should be close to the
space-independent stationary solutions. Then we can study the linearization of the amplitude
equations about such solutions. The leading order approximation of the linearized equations
on the hyperbolic scaling is equivalent to a Klein-Gordon equation whose solutions for
periodic boundary conditions contain infinitely many frequencies of oscillation. Thus, the
emerging picture of the flocking bifurcation in theVM is that of an almost uniform polarization
with small superimposedKlein-Gordon oscillations that occur on the faster hyperbolic scaling.
These oscillations produce a nonzero average of the square of the density disturbance resulting
in a shift in the critical noise, which may explain the observed one in direct simulations of the
VM.

To confirm this picture of flocking, we have modified the Vicsek alignment rule by adding
a harmonic forcing term to the average alignment direction and to the noise. We have then
simulated the resultingmodel looking for resonances between the forcing frequency and one of
the Klein-Gordon frequencies. The discrete Fourier transform of the resulting time-dependent
polarization shows a large peak at zero frequency (with amplitude equal to that of the stable
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stationary solution) and much smaller peaks at other frequencies. For large |[ − [2 |, the
parabolic and hyperbolic scalings are no longer separated and dissipation effects move the
polarization to its stationary value. Close to the critical noise, both scalings are separated and
the resonant peak emerges from the background in the discrete Fourier transform obtained
from a single direct simulation of the VM. This effect is masked by the large size of the noise
near its critical value but it is clearly observable in single simulations of the VM, as shown in
Fig. 2.5(d).

One caveat should be indicated here. If the box size is sufficiently large, the flocking
transition is discontinuous and band-like patterns have been observed in numerical simulations
of the VM [20]. Our for a mode with zero wave number is not applicable to these large box
sizes. However, a future extension of our linear stability analysis of the uniform distribution
to larger wave numbers may describe the resulting flocking transition, at least near the critical
box size at which flocking becomes a discontinuous bifurcation.

Appendix 2.A Eigenvalues for |K| = 0 in the limit as =→∞

The eigenvalues & 9 for zero wave number are given by Eqs. (2.21)-(2.22). To find them, we
need to calculate integrals of the form

J (=, 9) =
∫
[−c,c ]=

48 9 (\1−Φ1)
=∏
;=1

3\;

2c
, (2.72)

in the limit as =→∞. We have

48 9 (\1−Φ1) =

(
1 + !48 (\1−V)√

(1 + !48 (\1−V) ) (1 + !48 (V−\1) )

) 9
=

(
1 + !48 (\1−V)

1 + !48 (V−\1)

) 9/2
, (2.73)

where

!48V =

∑=
;=2 4

8 \;

|∑=
;=2 4

8 \; | . (2.74)

In the limit as = → ∞, the central limit theorem implies that we can replace = − 1 integrals
(with = − 1 ∼ =) in J (=, 9) by [19]

J (=, 9) = 1
2c

∫ ∞
0

∫ c

−c

∫ c

−c
!4−!

2/=

c=

(
1+!48 (\1−V)

1+!48 (V−\1 )

) 9/2
3! 3\13V

=
∫ ∞
0

∫ c

−c
!4−!

2/=

c=

(
1+!48\
1+!4−8\

) 9/2
3! 3\. (2.75)

We find different approximations for odd and even 9 . For odd 9 , we split the !-integral in
sub-integrals over (0,Λ) and (Λ,∞), with Λ � 1 fixed in the limit as = → ∞. We can
approximate 1/= = 0 in the first sub-integral and expand the fraction in powers of 1/! in the
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second sub-integral. The result is

J (=, 9) = 1
=

∫ Λ

0

∫ c

−c

!

c

(
1 + !48 \
1 + !4−8 \

) 9/2
3! 3\

+
∫ ∞

Λ

∫ c

−c

!48 9 \−!
2/=

c=

{
1 − 8 9

!
sin \ + 9

2!2 [4
82\ − 1

−( 9 − 2) sin2 \] + 9

2!3

[
48 \ − 483\ − 9 − 2

2
(48 \ − 4−8 \ )

×
(
482\ − 1 + 9 − 4

12
(48 \ − 4−8 \ )2

)]}
3! 3\. (2.76)

For 9 = 3, the first integral is −3 ln c/(2c=) and the second integral is
√
c=−3/2/8. For 9 = 1,

the second integral yields =−1
∫ ∞
Λ
4−!

2/=3! = (1/2)
√
c/=. Thus, for odd 9 ,

J (=, 9) = 1
2

√
c

=
X 91 −

3 ln c
2c=

X 93 +$ (=−1), (2.77)

as = → ∞. For even 9 , the integrals over \ can be transformed into integrals over the unit
circle on the complex plane and calculated by the residue theorem.∫ c

−c

(
1 + !48 \
1 + !4−8 \

) 9/2
3\

c
=

∫
|I |=1

I
9

2−1
(
! + 1 − !2

I + !

) 9/2
3I

8c
.

For 9 = 2, the residue theorem yields∫ c

−c

1 + !48 \
1 + !4−8 \

3\

c
= 2(1 − !2) Θ(1 − !2),

because the pole I = −! is outside the unit circle if |! | > 1. Here Θ(G) is the Heaviside unit
step function. Then, as =→∞, we get

J (=, 2) = 2
=

∫ 1

0
(1 − !2)!4−!2/=3! =

1
2=
+$ ( 1

=2 ). (2.78)

Similarly, for 9 = 4, the residue theorem yields∫ c

−c

(
1 + !48 \
1 + !4−8 \

)2
3\

c
= 2(1 − !2) (1 − 3!2) Θ(1 − !2).

Then, as =→∞, we get

J (=, 4) =
2
=

∫ 1

0
(1 − !2) (1 − 3!2)!4−!2/=3!

=
1

12=2 +$ (
1
=3 ). (2.79)
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According to Eq. (2.21),

� (1) [48 9 \ ] 9 =

(∫ c

−c
4−8 9 b6(b) 3b

)
4−"

∞∑
==1

"=−1

(= − 1)!

×
[
(= − 1) 2�1 ( |K|'0)

|K|'0
+ 1

]
J (=, 9). (2.80)

For large " , we expand (= − 1)J (=, 9) and J (=, 9) about " in this expression, thereby
getting

� (1) [48 9 \ ] 9 ∼
(∫ c

−c
4−8 9 b6(b) 3b

)[
(" − 1) 2�1 ( |K|'0)

|K|'0
+ 1

]
J (", 9). (2.81)

Then the functions J (=, 9) produce Eqs. (2.23) and

&2 = �
(2) [482\ ]2 ∼

1
2

∫ c

−c
4−82b6(b)3b,

&3 = �
(2) [483\ ]3 ∼ −

3 ln c
2c

∫ c

−c
4−83b6(b)3b,

&4 = �
(2) [484\ ]4 ∼

1
12"

∫ c

−c
4−84b6(b)3b. (2.82)

Other eigenvalues tend to zero as " → ∞. As |
∫ c

−c 4
−8 9 b6(b)3b | ≤

∫ c

−c 6(b)3b = 1, the
multipliers & 9 with 9 > 1 have moduli smaller than 1 in the limit as " � 1.

Appendix 2.B Coefficients in the amplitude equations

We calculate the coefficients in the amplitude equations by identifying them with others
computed in [19]. Using Ihle’s notation, we obtain � (1) [482\ ]2 = &2 = ?, � (2) [48 \ , 48 \ ]2 =
2c@, � (2) [4−8 \ , 482\ ]1 = c(, � (3) [48 \, 48 \, 4−8 \ ]1 = 4c2Γ, [19]. In the limit as as " � 1,
these identifications allow us to obtain the coefficients in (2.42)-(2.43):

&[ ∼ −
√
c"

2[2

(
2
√
c"
− cos

[2

2

)
, (2.83)

X ∼ 2W0 − 1
8

, W0 =
1

1 − 1√
c"

cos [22
, (2.84)

` ∼
c4'4

0/"
1 − 1√

c"
cos [22

, W2 ∼
W0c

2'2
0

4"
. (2.85)
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To calculate the other coefficients appearing in the amplitude equations, we note that, as
" � 1,

� (2) [1, 48 \ ]1 =
c"

d0

m� (1) [48 \ ]1
m"

∼ c�
(1) [48 \ ]1
2d0

=
c

2d0
, (2.86)

� (3) [1, 1, 48 \ ]1 =
2c4'4

0
3

m2� (1) [48 \ ]1
m"2 ∼−c

2� (1) [48 \ ]1
6d2

0
= − c

2

6d2
0
. (2.87)

We have calculated these coefficients at the critical noise [2 , where� (1) [48 \ ]1 = 1. Eqs. (2.86)
and (2.87) yield the remaining coefficients:

Γ(A) ∼ [2&[ −
A2

6d2
0
, W3 ∼

c2'2
0

2"
(2.88)

W1 ∼ c2'2
0

(
1 + 1

8"
− W0

)
. (2.89)

Appendix 2.C Fourier coefficients '=,< (0)

Herewe give examples of initial conditions used to calculate the solutions of Eqs. (2.54)-(2.55).
A simple initial condition is to set w̃(X, 0) = 0. Then Eqs. (2.63) and (2.64) yield

¤'=,< (0) = 0, C=,< = 0, (2.90)

whereas Eq. (2.61) gives

nw̃0,0 ()) = (4
n W3F0G!

c − 1) (4
n W3F0H!

c − 1)
∞∑

==−∞

∞∑
<=−∞

(
8 2c
!
(=, <) − n W3w0

c

)
'=,< (0)sin(l=,<))

l=,<

(
n W3F0G!

c
+ 82c=

)(
n W3F0H!

c
+ 82c<

). (2.91)

We now have to calculate '=,< (0). One possibility is to have a function Ã (X, 0) with finitely
many harmonics. For example, harmonics (±1, 0) and (0,±1). We obtain

'=,< (0) = 2(4
n W3F0G!

c − 1) (4
n W3F0H!

c − 1)


(nW3F0G! − 82c2=)ReÃ1,0 (0) + 2c2ImÃ1,0 (0)[(
n W3F0G!

c
− 82c=

)2
+ 4c2

]
(nF0H! − 82c2<)

+
(nW3F0H! − 82c2<)ReÃ0,1 (0) + 2c2ImÃ0,1 (0)[(
n W3F0H!

c
− 82c<

)2
+ 4c2

]
(nW3F0G! − 82c2=)

. (2.92)
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Another simple possibility is the initial condition Ã=,< (0) = (−1)=+< (1 − X=0X<0). Then
Eq. (2.62) yields

'=,< (0) = (−1)=+<4
n W3F0G!

2c 4
n W3F0H!

2c

+ 4
n W3F0G!

c − 1
2=c + 8 n W3F0G!

c

4
n W3F0H!

c − 1
2<c + 8 n W3F0H!

c

. (2.93)

Appendix 2.D Calculation of the shift in the critical noise

According to Eq. (42) of Ref. [19], we have to approximate better the sum

((") = 4−"
∞∑
==0

"=

=!
ℎ(=), (2.94)

where ℎ(=) has a maximum at = = " . Expanding this function about its maximum and
keeping four terms in the expansion, we obtain

((") ∼ ℎ(") + "
2
ℎ′′(") + "

6
ℎ′′′(") + (1 + 3")"

24
ℎ (4) ("), (2.95)

in which we have summed the corresponding series. To write Eq. (2.23), we took into account
only the first term of Eq. (2.95) with ℎ(=) =

√
=. For this function, we get

((") ∼
√
"

(
1 − 1

8"
+ 1

16"2 −
5(1 + 3")

128"3

)
, (2.96)

which produces Eq. (2.67). For " = 7, keeping more term in the expansion of ℎ(=) does not
change appreciably the numerical value of [2 . Other corrections could come from calculating
the term of order =−3/2 in Eq. (2.77) because ℎ(=) is proportional to =J (=, 1). We now
calculate 〈A2 (X, ))〉. We can use the Parseval equality and Eq. (2.60) to get

〈Ã2 (X, ))〉= lim
T→∞

1
T

∫ T

0

∑
=,<

|Ã=,< ()) |23) =
1
2

∑
=,<

[
|'=,< (0) |2 +

| ¤'=,< (0) |2

l2
=,<

]
6(w0),(2.97)

6(w0) = Xw0 ,0 + XF0G ,0 (1 − XF0H ,0)
1 + 4

W3
c
F0H n !

2 W3
c
F0Hn!

+ XF0H ,0 (1 − XF0G ,0)
1 + 4

W3
c
F0G n !

2 W3
c
F0Gn!

+1
4
(1 − XF0G ,0) × (1 − XF0H ,0)

(1 + 4
W3
c
F0H n !) (1 + 4

W3
c
F0G n !)( W3

c
n!

)2
F0GF0H

. (2.98)

To get these expressions, we have used that: (i) the averages of cos2 (l=,<)) and of
sin2 (l=,<)) are both 1/2, that the average of cos(l=,<)) cos(l;, 9)) is zero unless = = ;,
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< = 9 , etc.; (ii) the integrals

1
n2!2

∫ n !

0

∫ n !

0
4 (

W2
c

w0−8k=−;,<− 9 ) ·X3X

=
(4

W2
c
F0G n ! − 1) (4

W2
c
F0H n ! − 1)

[ W3
c
F0Gn! − 82c(= − ;)] [ W3

c
F0Hn! − 82c(< − 9)]

, (2.99)

(iii) the sums

∞∑
==−∞

1
W2

3
c2F

2
0Gn

2!2 + 4c2 (= − ;)2
=
ccoth W3F0G n !

2c
2W3F0Gn!

. (2.100)

In Eq. (2.97), we can use again the Parseval equality and then the Schwarz inequality to obtain∑
=,<

|'=,< (0) |2=
1

n2!2

∫ n !

0

∫ n !

0
Ã2 (X, 0)4−2W3

c
w0 ·X3X

≤

√
〈Ã (X, 0)4〉 1

n2!2

∫ n !

0

∫ n !

0
4−4W3

c
w0 ·X3X. (2.101)

We can calculate A4 = n4〈Ã4〉 by means of the grand canonical ensemble as [25]:

〈(# − 〈#〉)4〉 =
(
I
m

mI

)4
lnQ(E, V) + 3〈(# − 〈#〉)2〉2

=
1
V4

m4

m`4 lnQ(E, V) + 3〈(# − 〈#〉)2〉2, (2.102)

where I = 4V` is the fugacity, and E = 1/d0 = +/# (+ = !2), V and ` are the specific area,
the reciprocal of temperature in enegy units and the chemical potential, respectively. In the
grand canonical ensemble, lnQ(E, V) = V+%, where %(E) is the pressure,

Q(E, V) =
∞∑
#=0

I#&# (E, V), (2.103)

and &# (E, V) is the partition function of the canonical ensemble. The average number of
particles in a volume + is the density of particles and 〈(# − 〈#〉)2〉 is the fluctuation of the
density. In terms of the grand partition function, they are

〈#〉 =
∑∞
#=0 #I

#&# (E, V)∑∞
#=0 I

#&# (E, V)
=

(
I
m

mI

)
lnQ(E, V), (2.104)

〈(# − 〈#〉)2〉 =
(
I
m

mI

)2
lnQ(E, V). (2.105)
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Following Ref. [25], we now define pressure and chemical potential in terms of the free energy
per particle 0(E) (we ignore the temperature dependence):

�(#,+,)) = # 0(E), % = −m0(E)
mE

,

` = 0(E) + %E. (2.106)

Using Eq. (2.106), Eq. (2.104) becomes

〈#〉 =
(
I
m

mI

)
lnQ(E, V) = 1

V

m

m`
lnQ(E, V)

= +
m%

m`
= +

m%
mE

m`

mE

= +

m%
mE

m0 (E)
mE
+ % + E m%

mE

=
+

E
, (2.107)

which is indeed the average number of particles. Then 1/E = 〈#〉/+ = d0. Similarly,
Eq. (2.105) yields

〈(# − 〈#〉)2〉 = +
V

m

m`

1
E
= − +

E2V

1
m`

mE

=
〈#〉
−VE2 m%

mE

. (2.108)

This is Eq. (7.43) of Ref. [25]. The particles can be thought of as belonging to an ideal gas at
the initial time, therefore % = d0/V and −E2m%/mE = m%/md0 = 1/V. Eq. (2.108) becomes
〈(# − 〈#〉)2〉 = 〈#〉, and therefore

〈A2〉 = d0
+
=
d2

0
#
=⇒

√
〈A2〉 = d0√

#
, (2.109)

where now # is the total number of particles in the box.

Using Eq. (2.108) and the ideal gas assumption in Eq. (2.108), Eq. (2.102) becomes

〈(# − 〈#〉)4〉 = 〈#〉 + 3〈#〉2 =⇒

〈A4〉 =
3d4

0
#2

(
1 + 1

3#

)
. (2.110)

Then, near the bifurcation point where w0n! � 1, Eq. (2.101) produces

n2
∑
=,<

|'=,< (0) |2 ≤
d2

0
√

3
#

√
1 + 1

3#
. (2.111)

Let us assume that Eq. (2.111) is an equality and that ¤'=,< (0) = 0, which is the case if the
initial current density is zero. Then Eq. (2.97) gives

〈A2 (X, ))〉 ≈
√

3
2#

d2
0

√
1 + 1

3#
, (2.112)
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and the shift in Eq. (2.66) is

02 =
〈A2 (X, ))〉

6d2
0

≈
√

3
12#

√
1 + 1

3#
. (2.113)

This produces 0 = 0.01 which is about a factor 30 smaller than the shift in the critical noise
measured from direct numerical simulations of the VM.
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3.1 Introduction

The ability to convert free energy into systematic motion characterizes active matter [1, 2, 3,
4, 5]. Thus collective behavior of active particles is a central aspect of subject. As we have
presented in Chapter 2 collective motion of active particles can be predicted by simple models
as the Vicsek model (VM) [6] or its variants [1, 2, 3, 7, 8, 9, 10, 11]. There are examples
of more complex individual behavior in active particles. For example, instead of moving
linearly, E. coli bacteria swim clockwise in circular trajectories near walls [12, 13]. Simpler
artificial micro-swimmers can also be induced to move circularly about solid surfaces [14] and
autonomous motion of active colloids is reviewed in Ref. [15]. Recently, Liebchen and Levis
have proposed a model of chiral active matter to explain this motion [16]. In two dimensions,
each particle 8 moves with constant speed E and is parallel to its polarization vector. The
angular velocity of the latter is the sum of three terms: a constant rotation, a white noise,
and a Kuramoto coupling between the angles of particles inside the circle of influence of the
particle 8 [16]. This model exhibits a flocking transition to one or several clusters comprising
particles rotating in synchrony (microflocking) and a variety of patterns.
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56 Contrarian compulsions in the Vicsek model

Traditionally, collective motion is considered to be a profitable state for the entities of
the system. It gives them an easier way to look for food and their internal communication
allows them a bigger protection against a predator. However, recently studies show that there
exist more intricate individual interests between the entities inside the organization remaining
them together but not with a collective purpose. For instance in some insect species, the
cannibalism is a nutritional behavior that makes them to move in a coordinated migration. In
Ref. [17] study the mechanisms involved in the behavior of desert locusts. When these insects
are in a swarm, they try to bite each other but with the risk to be bitten and although this
behavior should makes them to be separated, it produces a collective migration. In particular,
Ref. [18] proposes a self propelled particle model that characterizes the behavior of a system
with switches in their motion observed in locusts and starlings.

Following the approach presented above, in this Chapter we explore a different mechanism
to attain synchronous rotation in small clusters. We consider a two-dimensional (2D)modified
VM with forward update. Active particles may be conformist and align their velocities to the
average velocity of their neighbors with probability 1− ?, or be contrarian and move opposite
to the average angle with probability ? ∈ [0, 1]. This choice makes the VM similar to a
Kuramoto model of phase synchronization [19, 20] with conformist and contrarian oscillators
[21]. In opinion formation models [22, 23], our VMmay mimic the conflict between reaching
consensus with others and keeping a contrarian opinion. Experiments on imitative behavior
in emergency escape of human crowds have shown that sometimes avoiding the majority is
the best survival strategy [24]. Our VM is a step towards exploring this kind of behavior.

3.2 The modified Vicsek model

In this Section, we are going to present a modified Vicsek model in which active particles may
align their velocity with the local average direction of motion or with the (almost) opposite
direction. Flocking behavior is going to depend on the probability ? of (almost) contrarian
compulsions compared with that of conformist alignment according to the Vicsek rule.

In two spatial dimensions, the angle of a particle 9 is updated according to a modified
angular noise rule and the particles undergo discrete dynamics so that their positions are
forwardly updated

\ 9 (C + g) = Arg©­«
∑

|x;−x 9 |<'0

48 \; (C)
ª®¬+ b 9 (C), (3.1)

x 9 (C + g) = x 9 (C) + gv 9 (C + g). (3.2)

Here, the direction of motion is defined with v 9 = E0 (cos \ 9 , sin \ 9 ), 9 = 1, . . . , # . In
Eq. (3.1), neighbors are all particles inside a circle of radius '0 centered at particle x 9 which
is included in the sum. At each time, b 9 (C) are independent identically distributed (i.i.d.)
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random alignment noises, selected with probability density

�(�) = 
 	(� − �0) +
1 − 


�
�[−�/2,�/2] (�), 0 ≤ 
 ≤ 1. (3.3)

Here �0 ∈ (−�/2, �], and �[−�/2,�/2] (�) is 1 for −�/2 < � < �/2 and 0 otherwise, see
Fig. 3.1. The parameter � measures the width of the alignment noise being, a tolerance to
failure in the alignment rule. In particular, we distinct two cases,

- If �0 = �, particles experience contrarian compulsions with probability 
, and
conformist compulsions toward the average angle of their neighbors with probability
(1 − 
).

- If−�/2 < �0 < �, particles experience a large deflection instead of a perfectly contrarian
alignment. We speak of almost contrarian compulsions because the ordered phases are
similar rotating wave phases for all angles of deflection in (−�/2, �). The numerical
method used to implement Eq. (3.3) is described in Appendix 3.A.

Figure 3.1: Sketch of the Standard VM vs. Modified VM. The particle in red can align its direction
towards the average direction of their local neighbors plus a noise chosen between −�/2 < � < �/2 or
experience a contrarian compulsion and � = �0.

Collective consensus is quantified by the same complex order parameter defined in Eq. (2.4).
As we have been explained, for the standard VM (
 = 0), increasing the average number
of particles � , favors flocking as more and more particles try to move together. Instead,
increasing the alignment noise � tends to destroy flocks, as it dilutes the efficacy of the
alignment rule. Then there is a critical value of � and � above which the polarization is
� > 0 and below which� = 0 (in the limit as � → ∞). For 
 closer to 1, increasing � also
favors flocking because more and more particles interact and get to move together. However,
we shall see that the alignment noise � may favor flocking because it dilutes the strength of
the conformist rule and it allows the contrarian or almost contrarian rule to form clusters of
particles moving synchronously. We could replace a similar density �[−�̃/2, �̃/2] (� − �0)/�̃
instead of 	(� − �0) in Eq. (3.3), thus adding a more realistic tolerance �̃ to the choice of
deflection angle �0. However, the results would be qualitatively similar to those reported here.
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3.3 Kinetic equation and Linear stability

In this Section, we present the macroscopic evolution equation derived from the microscopic
rules of the modified VM following the procedure derived in Section 2.3. The Enskog-type
collision operator equation for the modified VM is going to be build following the same
assumptions presented in Chapter 2 but with the new alignment rule. Thus, 6(b) is going to
be considered as the modified alignment rule defined in Eq. (3.3). To remember the equation,
the Enskog-type collision operator is

�� [ 5 ]=
∫ c

−c
3b 6(b)4−"' (x,C)

∞∑
==1

∫
[−c,c ]=

X̂(\ − b −Φ1 (\̃1, . . . , \̃=))
(= − 1)! (3.4)

× 5 (x, \̃1, C)
=∏
8=2

[∫
|x8−x |<'0

5 (x8 , \̃8 , C)3\̃83x8
]
3\̃1.

which we shall use henceforth. For active particles in a disordered state, the density d(x, C)
equals the constant average density, d0 = #/!2, and the uniform distribution function,
50 = d0/(2c), is a fixed point of the collision operators:

� [ 50] = 50, �� [ 50] = 50. (3.5)

3.3.1 Eigenvalue problem

To study the linear stability of the uniform distribution, let us consider the same study carried
out in Section 2.3 except for the probability density 6(b) defined in Eq. (3.3). We have
not succeeded in finding the eigenvalues of the matrix M 9; (&) for arbitrary K. However,
for small |K|, the off-diagonal elements of the matrix are small compared to its diagonal
elements. Then we can use second-order perturbation theory to derive the following formula
(cf. Appendix 3.A):

&1 ( |K|, [) ≈
� (1) [48 \ ]1
�0 ( |K|)

[
1− [�1 ( |K|)/�0 ( |K|)]2

1 − � (1) [482\ ]2/� (1) [48 \ ]1

]
, (3.6)

in which � (1) [48 9 \ ] 9 are given by

� (1) [48 9 \ ] 9 =
(∫ c

−c
4−8 9 b6(b) 3b

) ∞∑
==1

"=−14−"

(= − 1)!

[
(= − 1) 2�1 ( |K|'0)

|K|'0
+ 1

]
∫
[−c,c ]=

48 9 (\1−Φ1)
=∏
;=1

3\;

2c
. (3.7)

The uniform distribution becomes unstable when one eigenvalue & moves outside the unit
circle in the complex plane. It turns out that &1 has the largest modulus for small |K|, as we
argue below. Depending on the parameters " and d0, the equation |&1 ( |K|, [) | = 1 may have
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different solution branches [( |K|) for |K| > 1. However, for these branches, the off-diagonal
elements of the matrixM 9; (&) are no longer small compared to its diagonal elements, the
regular perturbation theory is no longer valid, and we ignore them. In all cases, the uniform

Figure 3.2: Critical wave vector  = |K| versus [ for " = 7, ? = 0.1, b0 = 3c/4, d0 = 10.

distribution becomes first unstable for the noise corresponding to zero wave number. Fig. 3.2
shows the solution curve of |&1 ( |K|, [) | = 1 for ? = 0.1, b0 = 3c/4 and d0 = 10. A similar
curve is found for the contrarian case, b0 = c. In all cases, the uniform distribution becomes
first unstable for the noise corresponding to zero wave number. Within our approximations,
this justifies that the largest value of the multiplier &1 is attained at zero wave number. For
|K| = 0, in the limit as " � 1, we have the eigenvalues

&1 ∼
√
c"

2

∫ c

−c
4−8 b6(b)3b =

√
c"

2

(
? 4−8 b0 + 2(1 − ?)

[
sin

[

2

)
, (3.8)

&2 ∼
1
2

∫ c

−c
4−82b6(b)3b, (3.9)

&3 ∼ −3 ln c
2c

∫ c

−c
4−83b6(b)3b, (3.10)

&4 ∼
1

12"

∫ c

−c
4−84b6(b)3b, (3.11)

and so on, with eigenfunctions i 9 (\) = 48 9 \ (cf. Ref. [9] for &1 and &2 and the standard
VM). As |

∫ c

−c 4
−8 9 b6(b)3b | ≤

∫ c

−c 6(b)3b = 1, |& 9 | ≤ 1 for 9 > 1 in the limit as " � 1.
For |K| = 0, the eigenvalue with largest modulus is therefore &1, which is the only one that
can exit the unit circle in the complex plane. The other modes have |& 9 | < 1 and decay as
C →∞.

3.3.2 Phase diagrams

This Section discusses the phase diagrams depending on the parameters of the system. Phase
diagrams give a variety of details among the phases as well as quantitative information on
phase distribution in a specific system. Indeed, it is important to understand the behavior of
phase transformations as well as phase relations and their stability.
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3.3.2.1 Noises 
 vs �

Fig. 3.3 depicts the stability regions of the disordered state in the parameter space (
, �) at
zero wave number.

In particular, the eigenvalue �1 given by Eq. (3.8) is real if �(�) is even. For 
 > 0 and

Figure 3.3: Phase diagram of 
 versus � obtained from kinetic theory. Stable phases at each
region are: I (incoherent), II (stationary), III (rotating wave), IV (period 2). Parameter values are
� = ��2

0�/�
2 = 7, and: (a) �0 = 3�/4 (solid line) and � = 9�/10 (dashed line); (b) �0 = �. For 
 = 0,

the lines separating Regions I and III and I and II in the lower half of these panels intersect at the same
point, �� ≈ 4.13, which is the critical noise of the standard VM. Increasing the noise decreases order
when � crosses the lower critical lines and increases it when � crosses the upper critical lines. There is
a narrow interval of 
 values where phase I is stable for any �. This interval disappears for large enough
� .

0 < �0 < � (Fig. 3.3(a)), the noise density is no longer even, the eigenvalue�1 is complex, and
the order-disorder phase transition occurs with |�1 | = 1. In this case, the eigenfunction is a
rotating wave, �̃ (�, �) = �� (�+Ω�) , Ω = Arg �1 and at the critical lines separating the Regions
I and III in Fig.3.3(a) there are supercritical Hopf bifurcations. For �0 = � (Fig. 3.3(b)),
there are supercritical pitchfork bifurcations at the critical line I-II (�1 = 1) and supercritical
period doubling bifurcations at the critical line I-IV (�1 = −1). Note that increasing the
angle �0 makes Region I larger. Fig. 3.3(a) shows the critical lines separating Region I (stable
incoherent motion) from rotating wave phases (RWPs) in Region III, namely as �0 approaches
the value �, the lower critical line moves down toward the line separating Regions I and II
in and Ω = Arg�1 approaches zero. Meanwhile, the upper critical line in Fig. 3.3(a) moves
up towards the line separating Regions I and IV in Fig. 3.3(b) and Ω approaches −1. As the
phase diagrams and numerical simulations of the VM are similar for �/2 < �0 < �, we have
selected �0 = 3�/4 to present our results for RWPs. By an abuse of language, we will call this
the case of almost contrarian compulsions (even though �0 = 3�/4 is not close to contrarian
compulsions with �0 = �).

Fig. 3.4 depicts the frequency Ω as a function of alignment noise on the line �(
) that
separates Regions I and III in the lower part of Fig. 3.3(a) (for �0 = 3�/4). Note that Ω = 0 at
the critical value �� of the standard VM corresponding to 
 = 0.
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Figure 3.4: Frequency Ω = Arg�1 versus alignment noise � along the critical line 
(�). Parameter
values are �0 = 3�/4 and � = 7.

3.3.2.2 Average number of neighbors � vs 


The other parameter appearing in Eq. (3.8) is the average number of neighboring particles,
� = �0��

2
0. This parameter changes with the radius of the influence region or the average

number density. Fig. 3.5 shows the phase diagram of 
 versus � for a typical value of
alignment noise, � = �/3. Increasing the average number of particles inside the circle of
influence favors swarming phases, and therefore Regions II, III and IV (polarized phases)
grow at the expense of Region I (zero polarization). For �0 = 3�/4, Fig. 3.5(a) shows that
Region I disappears for � larger than a critical value of about 9. When the average number
of neighbors is larger than this critical value, �∗(�0), particles are always polarized. �∗(�0)
increases with the angle �0 for a fixed value of the noise strength � and numerical simulations
suggest that �∗(�) = +∞.

Figure 3.5: Phase diagram of 
 versus � obtained from kinetic theory. Stable phases at each region
are: I (incoherent), II (stationary), III (rotating wave), IV (period 2). Parameter values are � = �/3, and:
(a) �0 = 3�/4 (solid line) and (b) �0 = �. The value � = 7 used in Fig. 3.4 is marked by a star.
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3.4 Bifurcation theory

The case of critical eigenvalue&1 = 1 (pitchfork bifurcation) has been discussed in Chapter 2.
Here we shall use the same method to analyze the bifurcations at zero wave number when the
critical eigenvalues are &1 = −1 (period doubling bifurcation) and complex &1 = 4

8Ω (Hopf
bifurcation). We shall use the alignment noise [ as a bifurcation parameter and comment on
the change in our results had the average particle density been used instead. The solution of
the linearized equation

L 5 (1)≡ 5 (1) (\, C + 1,X, ))−� (1) [ 5 (1) ] (\, C,X, ))=0, (3.12)

is

5 (1) (\, C,X, ), n)= A (X, ) ; n)
2c

+�(X, ) ; n)48 (\+ΩC)+cc, (3.13)

Ω = Arg &1, X = nx, ) = nC. (3.14)

Here cc means the complex conjugate of the preceding term. We do not need to include
more terms in Eq. (3.13) because the other modes decay rapidly in the fast time scale C.
The argument of the eigenvalue &1 is Ω = 0, (pitchfork bifurcation), Ω = c (period doubling
bifurcation) andΩ ∈ (− c2 , 0) (Hopf bifurcation). The two latter cases forΩ ≠ 0 can be treated
together. Bifurcation theory is quite different in the cases of uniform and space dependent
density. In particular, the case of uniform density can be treated by using multiple scales for
all bifurcation types: pitchfork (I-II), Hopf (transition I-III) and period doubling (I-IV); see
Appendix 3.A. Here we consider space dependent density. We anticipate crossover scalings
and therefore we shall use the Chapman-Enskog method [25]. In all three bifurcation cases,
the hierarchy of equations resulting from the Chapman-Enskog ansatz [20, 25, 26],

5 (\, x, C; n) = 50 + n 5 (1) +
∞∑
9=2
n 9 5 ( 9) (\, C; A, �, �), (3.15)

mA

m)
= R (0) (A, �, �) + nR (1) (A, �, �) +$ (n2), (3.16)

m�

m)
= A (0) (A, �, �) + nA (1) (A, �, �) +$ (n2), (3.17)

with [ = [2 + n2[2 and � the complex conjugate of �, is

L 5 (2) = � (2) [ 5 (1) , 5 (1) ] − v·∇- 5 (1) |C+1 −
R (0)
2c
− A (0)48 (\+ΩC+Ω) + cc, (3.18)

L 5 (3) = � (3) [ 5 (1) , 5 (1) , 5 (1) ] + 2� (2) [ 5 (1) , 5 (2) ] −
(
m

m)
+ v·∇-

)
5 (2) |C+1

− R
(1)

2c
− A (1)48 (\+ΩC+Ω) + cc− 1

2

(
m

m)
+v·∇-

)2
5 (1) |C+1+ [2

m

m[
� (1) [ 5 (1) ], (3.19)
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etc. In these equations, � (1) [i] is given by Eq. (2.18) with K = 0, and we have

� (2) [i, i] =
c'2

0
2

[ ∞∑
==2

=4−"

(= − 2)!

(
"

2c

)=−2∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)

=∏
;=1

3\̃;

− 2
(∫ c

−c
i(\1)3\1

) ∞∑
==1

=4−"

(= − 1)!

(
"

2c

)=−1∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)

=∏
;=1

3\̃;

+ "
2c

(∫ c

−c
i(\1)3\1

)2
, (3.20)

� (3) [i, i, i] =
c2'4

0
6

[ ∞∑
==3

=4−"

(= − 3)!

(
"

2c

)=−3∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)i(\̃3)

=∏
;=1

3\̃;

− 3
(∫ c

−c
i(\3)3\3

) ∞∑
==2

=4−"

(= − 2)!

(
"

2c

)=−2∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)i(\̃2)

=∏
;=1

3\̃;

+ 3
(∫ c

−c
i(\2)3\2

)2 ∞∑
==1

=4−"

(= − 1)!

(
"

2c

)=−1∫ c

−c
3b6(b)

∫
X̂(\ − b −Φ1)i(\̃1)

=∏
;=1

3\̃;

− "

2c

(∫ c

−c
i(\1)3\1

)3
]
. (3.21)

and so on. Note that�� [ 50 + n d̃] = 50 + n d̃ and� (1) [ d̃] = d̃ for constant d̃ imply� (2) [1, 1] =
� (3) [1, 1, 1] = 0, which can be checked from Eqs. (3.20)-(3.21). The solvability conditions
for non-homogeneous equations of the hierarchy is that their right hand sides be orthogonal
to the solutions of the homogeneous equation Li = 0, namely 1 and 48 (\+ΩC) , using the scalar
product

〈 5 (\, C), 6(\, C)〉 = lim
(→∞

1
(

(∑
C=0

∫ c

−c
5 (\, C)6(\, C) 3\. (3.22)

In the next two Sections, we consider separately the three bifurcation types.

3.5 Hopf and period doubling bifurcations

For 0 < ? ≤ 1 and 0 < b0 < c, we have&1 = 4
8Ω, with −c/2 ≤ Ω < 0 in Eq. (3.14) at critical

noise value [2 located on either the upper or the lower critical lines separating Regions III from
Region I in Fig. 3.3(a). Similarly, for b0 = c, ? > ?0 ≈ 2/

√
c" [?0 corresponds to [2 = 2c,

&1 = −1 in Eq. (3.8) for b0 = c], we have Ω = c at the critical noise [2 separating Regions
I and IV in Fig. 3.3(b). Setting a nonzero Ω, we can treat these two cases simultaneously.
The solvability conditions for Eq. (3.18) are that its right hand side should be orthogonal to
the solutions of the homogeneous equation Li(\) = 0, which are 1 and 48 (\+ΩC) . Using the
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scalar product (3.22), these conditions yield

R (0) = 0, A (0) = �
(2) [1, 48 \ ]1

c
A�4−8Ω ∼ A �

2d0
. (3.23)

Eq. (3.18) has the solution

5 (2) (\, C,X, ))=
[
�2482(\+ΩC)� (2) [48 \ , 48 \ ]2

482Ω − � (1) [482\ ]2
−
48 (2\+ΩC)

(
m
m-
8 m
m.

)
�

2(48Ω − � (1) [482\ ]2)

−
48Ω(C+1)

(
m
m-
+ 8 m

m.

)
�

2(48Ω − 1)
+
48 \

(
m
m-
− 8 m

m.

)
A

2(48Ω − 1)

+cc. (3.24)

Inserting Eqs. (3.13) and (3.24) in Eq. (3.19) and using the solvability conditions, we find
R (1) = 0 and A (1) . Then, up to terms of order n2, the amplitude equations are

mA

m)
= 0, (3.25)

m�

m)
=

[
A

2d0
+ n

(
[2&[ −

A2482Ω

8d2
0
− ` |�|2

)]
� + nX∇2

- �, (3.26)

in the limit as " � 1. In the same limit we also have

&[ =
m

m[

(
ln� (1) [48 \ ]1

) ��
[2
∼
√
c"

[2
2

(1 − ?)4−8Ω
([2

2
cos

[2

2
− sin

[2

2

)
, (3.27)

and we prove in Appendix 3.B that X and ` both have positive real parts. According to
Eq. (3.25), A is independent of ) . Conservation of the number of particles implies∫

A (X) 3X = 0. (3.28)

3.5.1 Complex Ginzburg-Landau equation for rescaled r

For n = 0, the solution of Eq. (3.26) yields an |�| that increases in time for A (X) > 0 and
it decreases for A (X) < 0. This indicates that a dominant balance occurs only if we assume
A (X) = $ (n). Then Eq. (3.26) becomes a modified complex Ginzburg-Landau equation
(CGLE) with a diffusive scaling for the time:

m�

m (n2C)
= X ∇2

- � +
[
[2&[ +

A (X)
2d0

− ` |�|2
]
�. (3.29)
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If the density is kept uniform, A = 0, Eq. (3.29) is the usual CGLE. In this case, it has the
rotating wave solution

�(n2C) =

√
[2Re&[
Re`

48[2in
2 (C−C0) , (3.30)

i = Im&[ − Im`
Re&[
Re`

. (3.31)

As proven in Appendix 3.B, Re` > 0, and therefore the phases issuing forth from Hopf
and period doubling bifurcations are both supercritical: they exist only for [ < [2 (where
the uniform distribution is unstable) and are linearly stable against space-independent
disturbances. The polarization corresponding to the bifurcating solutions given by
Eqs. (3.30)-(3.31) is the modulus of the complex parameter,

/ =
1
#

#∑
9=1
48 \ 9 =

1
#

∫
48 \ 5 (\, x, C)3\3x ∼ 2c

d0

√
([ − [2)Re&[

Re`
48 \0−8 [Ω+([−[2)i ]C . (3.32)

Near [2 , we have &1 ∼ 48Ω [1 + &[ ([ − [2)]. Then we can replace 4−8Ω&1 − 1 instead of
&[ ([ − [2) in Eq. (3.32), thereby obtaining a formula that holds for larger values of |[ − [2 |,

/ ∼ 2c
d0

√
Re(4−8Ω&1) − 1

Re`
48 \0−8 (Ω+k)C , (3.33)

k = Im(4−8Ω&1) −
Re(4−8Ω&1) − 1

Re`
Im`. (3.34)

The bifurcating solutions given byEqs. (3.30)-(3.31) are uniform in space. However, Eq. (3.26)
is a nonlinear reaction-diffusion equationwith a diffusion coefficient whose real part is positive
according to Eq. (3.68). For a nonuniform particle density, Eq. (3.28) (conservation of the
number of particles) strongly suggests the formation of ordered clusters. Let us imagine that
A (X) = B2d0sign(- − !/2), B2 > [2Re&[ . Then, = 0 for - > !/2, whereas for - < !/2
we have, > 0, given approximately by Eq. (3.30) with [2Re&[ + B2 instead of [2Re&[ . The
phase of the complex order parameter satisfies the integrated form of the Burgers equation
[27]

mΥ

mf
= ^∇2

-Υ −
1
2
|∇-Υ|2, (3.35)

Υ = 2
(
ImX
ReX
− Im`
Re`

)
Arg(�), (3.36)

f = n2ReX C, ^ = 1 + ImX Im`
ReXRe`

. (3.37)
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Near the bifurcation line I-III in Fig. 3.3(a), ^ > 0. For the geometry we are considering, Υ
depends only on the coordinate - and on f. Then : = mΥ/m- satisfies the Burgers equation
proper. Assuming that ! � 1, : ∼ :2 > 0 at - = 0 and : = 0 at - = !/2, : is the shock
wave solution given by Eq. (4.23) of Ref. [28]:

mΥ

m-
=

:2

1 + exp
[
:2
2^ (- −

:2
2 f − -0)

] . (3.38)

This solution represents a planar wave front moving to the right with velocity :2/2. The front
encroaches an unpolarized region with zero wave number and leaves a polarized region with
wave number :2 on its wake. The region behind the wave front is a cluster rotating with
angular velocityΩ and local wave number proportional to :2. This simple example illustrates
how a non-constant density may produce inhomogeneous ordered clusters of the RWP.

Eq. (3.30) and related plane wave solutions of the CGLE for A (X) = 0 become unstable
provided ^ < 0 in Eq. (3.35). Equivalently, 13 < 11, 11 = ImX/ReX and 13 = −Re`/Im`
(Newell’s criterion). Close to the line 11 = 13, one can derive the Kuramoto-Sivashinsky
equation, [29, 30, 31]. Phase turbulence consisting of disordered cellular structures is then
possible. Solutions of the CGLE with periodic boundary conditions also include spiral waves
and other defects (having , = 0 at one point in their cores), as well as phases of defect
turbulence in which defects are created and annihilated in pairs [29]. For the period 2
solution, Eq. (3.13) with Ω = c, X and ` are real. Then Eq. (3.29) has vortex solutions with
nonzero rotation number and a vortex gas evolves as indicated in Refs. [29, 30, 31, 32, 33].

3.5.2 Complex Ginzburg-Landau equation for random density
disturbances

Let us assume now that d(X) − d0 = nA (X) is a zero-mean random Gaussian process with
standard deviation fA = nf̃A . Then the average value 〈A �〉 ≈ 〈A〉〈�〉 = 0, and the mean
amplitude, �̃ = 〈�〉, satisfies the approximate equation:

m �̃

m (n2C)
= X ∇2

- �̃ +
[
[2&[ −

f̃2
A

8d2
0
− ` | �̃|2

]
�̃. (3.39)

Here we have made 〈A2�〉 ≈ f̃2
A �̃, 〈|�|2�〉 ≈ | �̃|2 �̃. Now the uniform solution is Eq. (3.30)

in which [2Re&[ is replaced by [[2Re&[ − f̃2
A /(8d2

0)]. Then Re(4−8Ω&1) − 1 in Eq. (3.33)
for the order parameter is replaced by [Re(4−8Ω&1) − 1 − f2

A /(8d2
0)], with the result

, = |/ | ∼ 2c
d0

√√√
Re(4−8Ω&1) − 1 − f2

A

8d2
0

Re`
. (3.40)
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Equating to zero this last quantity, we find the critical value of the noise, [2 , which gets shifted
to a smaller value. How large is f2

A = 〈A2〉? We know that the particles are randomly placed
in the box at the initial time. The fluctuation of the density is

〈(d − d0)2〉 =
d2

0
#

:�)

−E2 m%
mE

=
d2

0
#
, (3.41)

where :�, ) , %, and E = 1/d0 are the Boltzmann constant, temperature, pressure and specific
volume, respectively [cf. Eq. (7.43) in Ref. [34]]. The particles can be thought of as belonging
to an ideal gas at the initial time, therefore % = d0:�) and −E2m%/mE = m%/md0 = :�) .
Then we have 〈(d − d0)2〉 = d2

0/# , as written in Eq. (3.41), and Eq. (3.40) becomes

, = |/ | ∼ 2c
d0

√
Re(4−8Ω&1) − 1 − 1

8#
Re`

. (3.42)

The shift in the bifurcation point indicated by Eq. (3.42) vanishes in the limit as # →∞.

3.5.3 Average particle density as bifurcation parameter

What happens if we select the average particle density d0 as bifurcation parameter instead of
the alignment noise [?

Firstly, we have to replace d0 = d02 +n2d2 instead of [ = [2 +n2[2 and 5 (2) + d2 instead of
5 (2) in Eq. (3.15). Then a term d2c'

2
0m�

(1) [ 5 (1) ]/m" replaces the last term in the right hand
side of Eq. (3.19), to which we have to add a term 2d2�

(2) [1, 5 (1) ]. For all bifurcation types,
d2&d replaces [2&[ in the amplitude equations. &d is defined as the derivative with respect
to d0 instead of the derivative with respect to [ in the first line of Eq. (3.27). Secondly, for
Hopf or period doubling bifurcations, we replace A (X) + 2cd2 instead of A (X) in Eqs. (3.28)
and (3.29). The remaining considerations are the same provided we make these replacements.
One obvious change is that Re&d > 0 (cf. Fig 3.5), whereas Re&[ < 0 on the lower critical
lines of Fig 3.3, and Re&[ > 0 on the upper critical lines of the same figure. Thus, the
disordered phase is stable for d0 < d02 and unstable for d0 > d02 , whereas the situation is the
opposite for the polarized random wave and stationary phases on the lower sectors of Fig 3.3
if we use the alignment noise as a bifurcation parameter.

3.6 Pitchfork bifurcation

For ? = 0 (standard VM) or ? > 0 and b0 = c, corresponding to the lower sector of the phase
diagram in Fig. 3.3(b), the critical condition is &1 = 1, and therefore Ω = 0 in Eq. (3.14).
The corresponding bifurcation has been analyzed in Chapter 2 for the case ? = 0. The same
procedure based on the solvability conditions for Eqs. (3.18) and (3.19) produces nonzero
' (0) and ' (1) and the density disturbance is no longer time independent. The amplitude
equations are equivalent to the following system for the density disturbance and a current
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density w = 2c(Re�,−Im�):

mA

m)
+ ∇- ·

[(
1 + nW3A

2c

)
w
]
= 0, (3.43)

mw
m)

=−1
2
∇-

[(
1 − nW3

4c
A

)
A + n (2W1 − W2 − W3)

2c
|w|2

]
+ n 2W1 − W2 + W3

2c
w(∇- · w)

+n 2W1 + W2 − W3
2c

(w · ∇- )w + nX∇2
-w +

[
W3A

c
+ n

(
[2&[ −

A2

6d2
0
− ` |w|

2

4c2

)]
w. (3.44)

The coefficients appearing in these equations are all real valued and listed in Appendix 3.B.
For A = 0 and W3 = 0, these equations are exactly equivalent to the amplitude equation (132)
of Ref. [9]. As in the case of Eq. (3.26), X and ` are both positive. For n = 0, Eq. (3.43) is the
continuity equation for a density variable A and a current density w, which explains the name
of the latter variable. The overall density of particles is #/!2, which implies the following
constraint for A (X, )): ∫

A (X, )) 3X = 0. (3.45)

3.6.1 Space independent A and r=0: diffusive scaling

For space independent �, A = 0, and Eq. (3.44) is the typical pitchfork amplitude equation
with diffusive scaling. It has a stationary solution with modulus

|w0 | = 2c

√
[2&[

`
, (3.46)

which is stable, and it exists for [ < [2 , ` > 0, and &[ < 0. For [ < [2 , the uniform
distribution 50 is unstable as &1 > 1 there. Thus the transition from incoherence to order is a
supercritical pitchfork bifurcation. The polarization corresponding to this solution is

,0 ∼
2c
d0

√
([ − [2)&[

`
. (3.47)

Near [2 , we have &1 ∼ 1 + &[ ([ − [2). Then we can replace &1 − 1 instead of &[ ([ − [2)
in Eq. (3.47), thereby obtaining a formula that holds for larger values of |[ − [2 |:

,0 ∼
2c
d0

√
&1 − 1
`

. (3.48)

3.7 Results of simulations of the modified VM

We have performed numerical simulations of our modified VM in the different regions of
Fig. 3.3 indicated by the linear stability analysis of the kinetic equation given in Section 3.3.
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These regions and the predictions of bifurcation theory in Sections 3.5 and 3.6 are as follows:

(I) Incoherent motion with polarization, = 0.

(II) Stationary coherent motion with, > 0 for b0 = c and small ?.

(III) Rotating wave phase with coherent motion (swarm rotation [40]), such that in Eq. (2.4),
, > 0, Υ = ΩC + Υ0 for b0 < c: the order parameter / (C) describes a circle about the
origin at constant angular velocity as in Fig. 3.8(a); see also Fig. 3.9(a).

(IV) Coherent period 2 motion as in Figs. 3.8(b) and Fig. 3.9(b).

At the critical lines separating the regions of Figs. 3.3(a) and 3.3(b), we have found the
following supercritical bifurcations from incoherent motion with uniform particle density:
pitchfork (I to II), Hopf (I-III), and period doubling (I-IV).

Pitchfork bifurcation. Figs. 2.4 presented in Chapter 2 and 3.6(a) compare the polarization
obtained fromdirect numerical simulations of theVMwith the theoretical curves of Eqs. (3.47)
and (3.48) for ? = 0 and ? = 0.1 (transition I-II in Fig. 3.3), respectively. The polarization
shown in these figures is an ensemble average over 10 replicas of the stochastic process. In
Fig. 2.4, we observe that the results of numerical simulations tend to the uniform solution
predicted by bifurcation theory as we increase the density d0. This indicates that the
simulations produce solutions that are closer to be independent of space. However in
Fig. 3.6(a), the results of simulations depart appreciably from the theoretical prediction,
which indicates that flocking is not homogeneous. Although in both cases the bifurcation
is pitchfork, there is a striking difference between the polarization curves for the standard
and modified VM. For the standard VM, the maximum polarization (, = 1) is reached
for zero alignment noise [ = 0. However, for ? = 0.1 [transition I-II in Fig. 3.3(b)], the
polarization shown in Fig. 3.6(a) is maximal for a nonzero value of [. A similar behavior
also occurs for RWPs, as explained later in this Section. Fig. 3.7 shows three snapshots of
1000 particles for the VM with contrarian compulsions for " = 7, d0 = 3, ? = [ = 0.1.
The insets show the location of all the particles in three time instants. We observe that there
are small clusters that move and persist in time, with dynamics as shown in Fig. 3.7. Had
different realizations of the stochastic process shown one large cluster and a number of freely
moving particles, the result of ensemble averaging would be close to that of Eq. (3.48) for
homogeneous flocking. Ensemble averages of heterogeneous flocking such as that depicted
in Fig. 3.7 give a polarization that differs markedly from Eq. (3.48), as shown in Fig. 3.6(a).

Hopf bifurcation. Figs. 3.8(a) and 3.9(a) show that the complex order parameter of the
RWP in the lower region III of Fig. 3.3(a) is close to the uniform values of Eqs. (3.32)-(3.33)
predicted by bifurcation theory. The agreement between simulations of the VM and uniform
solutions predicted by bifurcation theory is not as good for the period 2 phase, as shown in
Figs. 3.8(b) and 3.9(b).
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Figure 3.6: Polarization � versus � for �0 = �, � = 7, �0 = 10, � = 1000, and (a) lower sector in
Fig. 3.3(b) (
 = 0.1); (b) upper sector in Fig. 3.3(b) (
 = 0.7). Circles are numerical simulation data
whereas solid and dashed lines correspond to kinetic theory approximations of Eqs. (3.48) or (3.47),
respectively. In (b), flocking is heterogeneous for any � and results from simulations are quite different
from theoretical lines corresponding to the uniform amplitude.

Figure 3.7: Three snapshots (a), (b) and (c) showing heterogeneous clustering for particles with
contrarian compulsions. The insets show the position of the red circle on the complete box. A cluster
of particles leaves the red circle, joins another set of particles and forms an elongated cluster after some
time. Close-by particles may have one direction and its contrary, as the marked particles in panel (b).
Parameter values are �0 = �, � = 7, �0 = 3, 
 = � = 0.1, � = 1000.

Fig. 3.10 describes the transition I-III in the lower sector of Fig. 3.3(a) for almost
contrarian compulsions. Solid and dashed lines correspond to spatially uniform coherent
phases calculated from kinetic theory. Departure of simulation data from these lines indicates
heterogeneous RWPs. Observe the dispersion of simulation data in Fig. 3.8(a). As the
average density �0 = �/�2 increases, the phases become more uniform and simulation data
approach theoretical predictions. It is interesting to note that simulations of the VM with
backward update produce polarizations closest to the theoretical curves except very close to
the bifurcation point (which is due to finite size effects).

Fig. 3.11(a) shows that, for small values of 
 and �, forward update with almost contrarian
compulsions produces small clusters and many seemingly free particles. Compared with the
same VM and parameters but with backward update, Fig. 3.11(b) shows one large cluster



3.7. Results of simulations of the modified VM 71
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Figure 3.8: Complex flocking order parameter / (C) for " = 7, d0 = 10, # = 1000, and: (a)
b0 = 3c/4, ? = 0.1, [ = 2.5, marked by an arrow in Fig. 3.10(a). The order parameter for the RWP
traces a circle (theory: solid line), implying a nonzero angular velocity. (b) b0 = c, ? = 0.7, [ = 5.9.
The order parameter alternates between points with a phase difference of c, marking abrupt oscillations
in flocking (theory: two opposite points on the circle). Sampling time is 1 and transients have been
eliminated.
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Figure 3.9: Real part of / (C) corresponding to: (a) Fig. 3.8(a); and (b) Fig. 3.8(b). Numerical
simulations (circles) are compared to spatially uniform phases from kinetic theory (solid lines) given by
Eq. (3.33) with k = 0.

and a small number of free particles. When averaging over many replicas of the stochastic
process, backward update produces a polarization consistent with the homogeneous flocking
prediction of Eq. (3.33). However, the persistence of several clusters in the case of forward
update produces a polarization that does not correspond to homogeneous flocking.

For the VM of Eqs. (3.1)-(3.3) with forward update, there is an appreciable shift of
the simulation data to smaller values of the noise [ near the bifurcation point. This shift
decreases as the average density d0 increases but it does not disappear, as the comparison
between Figs. 3.10(a) and 3.10(b) indicates. The same shift also occurs in the standard VM:
Even for an average density as large as d0 = 20.4, the critical noise [2 is different in direct
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Figure 3.10: Polarization, versus [ for the lower sector III of Fig. 3.3(a). Simulation data obtained
by ensemble averages over 10 replicas of the VM for b0 = 3c/4, ? = 0.1, " = 7, and (a) d0 = 10,
# = 1000; (b) d0 = 3, # = 1000 (filled circles) and # = 5000 (blue circles). Empty red triangles arise
from simulating the VM with backward update instead of Eq. (3.2). Solid and dashed lines correspond
to kinetic theory approximations of Eqs. (3.33) and (3.32), respectively. As d0 increases, simulation data
approach the line of the spatially uniformRWPwith order parameter given by Eq. (3.33). Departure from
this line indicates a nonuniform RWP. Near [2 , simulation data depart from the theoretical curve due to
finite size effects. Panel (b) shows that the transition I-III becomes discontinuous for Eqs. (3.1)-(3.2) at
larger box sizes (! =

√
#/d0).

(a) (b)

Figure 3.11: Two snapshots showing clustering for particles with almost contrarian compulsions for
(a) forward, and (b) backward update. With forward update, clustering is heterogeneous, whereas with
backward update, nonzero polarization is attained by one large cluster and a gas of particles outside it.
Parameter values are b0 = 3c/4, " = 7, d0 = 3, ? = [ = 0.1, # = 1000. Values of the polarization,
are: (a) 0.57, (b) 0.78.

simulations and theory, as noted in the different rescaling in Fig. 3 of Ref. [7]. Fig. 3.10(b)
shows that , departs the solid line and the bifurcation becomes discontinuous for box size
beyond a critical value. This change also occurs in the standard VM, except that the phase
transition is from incoherence to flocking with nonzero average velocity [35, 36, 37, 41].
Fig. 10 of Ref. [36] shows that the critical length decreases as the average particle density



3.8. Conclusions 73

increases for the standard VM. The density d0 = 3 considered in Fig. 3.10(b) is three times
larger than the largest one in Fig. 10 of Ref. [36] (d0 = 1 in our nondimensional units), which
is why we observe a discontinuous transition for a length as small as ! =

√
5000/3 = 40.8.

Period doubling bifurcation. Strikingly, when the probability of contrarian movement is
sufficiently high, increasing the alignment noise favors time periodic, spatially heterogeneous,
flocking. Increasing [ (tolerance to failure in particle alignment) in the upper part of Region
I in Fig. 3.3 favors forming clusters. For ? > ?0 ≈ 2/

√
c" [cf. Eq. (3.8)] and small [,

preponderance of contrarian over conformist motion ensures incoherence of motion. The
upper lines in Fig. 3.3 suggest transition from incoherent motion to a degree of flocking as
[ surpasses a critical value. Figs. 3.6(b) and 3.8(b) for contrarian compulsions show that
the polarization , calculated from simulations departs markedly from the theoretical line
corresponding to uniform density. Figs. 3.8(b) and 3.9(b) illustrate that the complex order
parameter alternates between numbers with arguments differing by c. Thus, the ordered phase
is periodic in time with period 2 although, as shown in Figs. 3.8(b) and 3.9(b), the amplitude
of the oscillation has an envelope that wanders in a certain region of the complex plane. The
dispersion of points in Fig. 3.8(b) is due to the formation of clusters with varying size that
change in time and produce a nonuniform density. The persistence of heterogeneous clustering
yields ensemble averaged polarizations that differ from the prediction of Eq. (3.33) withΩ = c
for spatially homogeneous flocking. Sufficient tolerance to failures in the alignment of the
conformist particles keeps nonuniform flocking at the expense of back and forth motion of
the flocks between opposite average phases of the order parameter. Active particles in exotic
phases perform rotations and oscillations, not just translations as in the standard VM.

Optimal noise. Figs. 3.6(a) and 3.10 indicate that the polarization , increases with
alignment noise until it reaches a maximum: To attain maximum flocking we need an optimum
degree of alignment noise, for both Hopf and pitchfork bifurcations in the lower sectors of
Figs. 3.3(a) and 3.3(b). For larger noise,, decreases and the values obtained from simulations
approach the theoretical curve for uniform particle density. With low probability of contrarian
motion and small [, particle clusters form, move coherently and change size (heterogeneous
flocking), as shown in Figs. 3.7 and 3.11(a).

3.8 Conclusions

We have proposed a modified Vicsek model in which active particles may align their velocity
with the local average direction of motion or with the (almost) opposite direction. Flocking
behavior depends on the probability ? of (almost) contrarian compulsions compared with
that of conformist alignment according to the Vicsek rule. Besides disordered and ordered
phases with almost zero and finite stationary polarization, respectively, numerical simulations
have shown that our VM exhibits novel exotic phases (stable solutions) with time periodic
polarization order parameter. In the ordered phases, flocking is heterogeneous in space
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and reminiscent of micro-flocking in Ref. [16]. Strikingly, in the presence of contrarian
compulsions, increasing the Vicsek alignment noise may favor order in two ways. For small
?, there is a nonzero optimal noise value for which polarization is maximal and reflects
a trend to homogeneous flocking. When contrarian compulsions are prevalent (? closer
to 1), increasing the alignment noise may transform incoherent particle motion to a phase
displaying time periodic polarization with period 2. If we relax the contrarian rule so that
particles may select deflection by some fixed large angle b0 (c/2 < b0 < c) measured
counterclockwise from the average direction, the flocking order parameter may oscillate
periodically in time (with period different from 2, which occurs for b0 = c). Active particles
perform rotations or oscillations besides the collective translation characterizing the ordered
phase of the standard VM. Rotation allows active particles to explore larger regions of space
and may be advantageous in emergency escape of a crowd from a confined region with several
exits [24].

To interpret and understand the results of our numerical simulations, we have analyze near
the transition to flocking a kinetic theory proposed by T. Ihle for the standard VM [11]. The
exotic phases appear as Hopf and period doubling bifurcations from the uniform distribution
function at a critical value of the noise. Our bifurcation calculations follow those we have
developed for the standard VM [26]. We find that the equation for the complex amplitude
of the bifurcating solution is a modified complex Ginzburg-Landau equation (CGLE). This
equation has a uniform rotating wave solution whose polarization has critical exponent 1/2 at
the bifurcation point. Deviation of the numerically obtained polarization from this theoretical
curve indicates heterogeneous flocking.

Stable phases with time dependent order parameter may have appeared in earlier work.
For example, Chaté et al. introduced a Vicsek-like model for apolar nematic active particles
can move with equal probability along their orientation \8 or along the contrarian orientation
\8 + c [42]. At one time step later, the orientation is chosen as the first eigenvector of a tensor
order parameter plus disorder noise. They observed a continuous transition similar to the
Kosterlitz-Thouless transition, characterized by large spatial fluctuations of the time-averaged
order parameter [42]. This is different from the discontinuous transition observed for the
standard (polar) VM if the box size is sufficiently large [35]. In the case of our modified
VM with contrarian or almost contrarian compulsions, the continuous bifurcation becomes
discontinuous for sufficiently large box sizes. Clustering in our VM with almost contrarian
compulsions is reminiscent of microflocking in Ref. [16]. In our case, the probability of
deflecting a large angle from the conformist mean direction is responsible for the rotation
inside heterogeneous flocks, and we do not need to impose an external common angular
velocity to achieve rotating clusters. Menzel [43] studied a similar model to that in Ref. [16]
for two different populations of particles, that had Kuramoto coupling but without the constant
rotation. He found a variety of behaviors including clustering and stripe patterns, but not
clusters of synchronously rotating particles. Lastly, Chepizhko et al. considered a similar
model without constant rotation and for a single particle species, which interacts with obstacles
that could be fixed or diffusing in space, [44]. For this quite different system, they observed
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that the time-averaged order parameter exhibited a maximum for an optimal noise strength, a
phenomenon similar to that presented in our Figs. 3.6(a) and 3.10.

Appendix 3.A Methods

Numerical methods. At each time step, we have updated the position and velocity of #
active particles using Eqs. (3.1)-(3.2). To select the values b8 , we first choose a number
between 0 and 1 randomly with uniform probability. If this number is ? or smaller, we set
b = b0. Otherwise, b is selected randomly in the interval (−[/2, [/2).

Regular perturbation theory for the eigenvalues ofM8 9 . Assume that thematrixM(&) =
D(&) + YN(&), where YN8 9 (&) are the off-diagonal terms of M(&) and Y � 1. The
eigenvalues, _(Y) = ∑∞

9=0 _
( 9)Y 9 , and eigenfunctions k(Y) = ∑∞

9=0 k
( 9)Y 9 ofM(&) can be

expanded in powers of the scaling parameter Y and inserted in the eigenvalue equation for
M(&). As Y → 0, we obtain the hierarchy of linear equations

(D − _ (0)I)k (0) = 0, (3.49)
(D − _ (0)I)k (1) = (_ (1)I − N)k (0) , (3.50)
(D − _ (0)I)k (2) = (_ (1)I − N)k (1) + _ (2)k (0) , (3.51)

etc. The first equation says that _ (0) are the diagonal elements of M, _ (0)
9
= &�0 ( |K|) −

� (1) [48 9 \ ] 9 ( 9 = 1, . . .). For the other non-homogeneous linear equations to have solutions,
their right hand sides have to be orthogonal to the eigenvectors k (0) . The 9 th eigenvector
has components X; 9 . The orthogonality condition for Eq. (3.49) produces _ (1)

9
= N9 9 = 0.

Eq. (3.50) becomes

(_ (0)
8
− _ (0)

9
)k (1)
8
= −N8 9 =⇒ k

(1)
8
=

N8 9
_
(0)
9
− _ (0)

8

, (3.52)

for 8 ≠ 9 and k (1)
9
= 0. We now insert Eq. (3.52) into Eq. (3.51) and use the orthogonality

condition to obtain

Y2_
(2)
9
= Y2

∑
;,;≠ 9

N9;N; 9
_
(0)
9
− _ (0)

;

= −&2
∑
;,;≠ 9

(48K·v+8 ( 9−;) \ )0 (48K·v+8 (;− 9) \ )0
� (1) [48 9 \ ] 9 − � (1) [48; \ ];

, (3.53)

with v = (cos \, sin \). In this expression, we have factors:

(48K·v+8=\ )0 =
1

2c

∫ c

−c
48 |K | cos(\−ArgK)+8=\3\

48=(ArgK+c/2)

2c

∫ c

−c
48 |K | sin Z−8=Z 3Z

= 48=(ArgK+c/2) �= ( |K|), (3.54)
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where we have changed variable \ =ArgK+ c/2− Z , shifted the limits of integration and used
the integral representation for the Bessel function �= (G) in Ref. [45]. Inserting Eq. (3.54) in
Eq. (3.53) and using �−= ( |K|) = (−1)=�= ( |K|), we get the eigenvalues

_ 9 = &�0 ( |K|) − � (1) [48 9 \ ] 9 −&2
∑
;,;≠ 9

(−1);− 9 [�;− 9 ( |K|)]2

� (1) [48 9 \ ] 9 − � (1) [48; \ ];
, (3.55)

up to terms of order Y3. The last term on the right hand side of Eq. (3.55) is smaller than the
other two and we can solve the equation _ 9 = 0 by iteration, thereby finding the approximate
solution

& 9 =
� (1) [48 9 \ ] 9
�0 ( |K|)

1 +
∑
;,;≠ 9

(−1);− 9
[
�;− 9 ( |K |)
�0 ( |K |)

]2

1 − � (1) [48;\ ];
� (1) [48 9 \ ] 9

 . (3.56)

For 9 = 1, the largest term in this sum has index ; = 2 and is of order |K|2, whereas all other
terms are $ ( |K|4) and smaller as |K| → 0. Ignoring them, Eq. (3.56) yields

&1 =
� (1) [48 \ ]1
�0 ( |K|)

1 −
[
�1 ( |K |)
�0 ( |K |)

]2

1 − � (1) [482\ ]2
� (1) [48\ ]1

 , (3.57)

which is Eq. (3.6). For small |K|, this equation is equivalent to

&1 ≈
� (1) [48 \ ]1

�0 ( |K|) + [�1 ( |K |) ]2� (1) [48\ ]1
�0 ( |K |) (� (1) [48\ ]1−� (1) [482\ ]2)

, (3.58)

which is Eq. (26) of Ref. [26].

Bifurcation theory using multiple scales. For Hopf and period doubling bifurcations, the
scaling of space and time is diffusive and we can use the multiple scales ansatz [25, 46]

5 (\, x, C; n) = 50 +
∞∑
9=1
n 9 5 ( 9) (\, C,X, )), (3.59)

with X = nx, ) = n2C, [ = [2 + n2[2, d = d0 + n2A (X). Inserting this ansatz into Eq. (4.8), we
get a hierarchy of linear equations that have to be solved recursively:

L 5 (1) ≡ 5 (1) (\, C + 1) − � (1) [ 5 (1) ] (\, C) = 0, (3.60)

L 5 (2) = −v·∇- 5 (1) (\, C + 1) + � (2) [ 5 (1) , 5 (1) ] (\, C), (3.61)
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L 5 (3) = −
(
m

m)
+ 1

2
(v·∇- )2

)
5 (1) (\, C + 1) − v·∇- 5 (2) (\, C + 1) + [2

m� (1) [ 5 (1) (\, C)]
m[

��
[2

+ A m�
(1) [ 5 (1) (\, C)]

md

��
[2
+ 2� (2) [ 5 (1) , 5 (2) ] (\, C) + � (3) [ 5 (1) , 5 (1) , 5 (1) ] (\, C), (3.62)

etc. In these equations, we have omitted that the 5 ( 9) also depend on X and ) . � (2) [ 5 , 6] and
� (3) [ 5 , 6, ℎ] are quadratic and cubic functionals, respectively, resulting from the expansion of
�� [ 50+n 5̃ ] in powers of n ; cf. Eqs. (3.20)-(3.21). The solution of Eq. (3.60) is Eq. (3.13) with
) = n2C. Eq. (3.61) has the solution (3.23). Inserting Eqs. (3.13) and (3.24) into Eq. (3.62)
and using the solvability condition, we obtain the CGLE (3.29). Its uniform solution with
A = 0 is Eq. (3.30).

Appendix 3.B Coefficients of the amplitude equations

3.B.1 Hopf and period doubling bifurcations

The coefficients X and ` of the amplitude equation, Eq. (3.26), as obtained from the solvability
condition for Eq. (3.21), are:

X =
1
8

(
1 + 4−8Ω� (1) [482\ ]2
1 − 4−8Ω� (1) [482\ ]2

− 8 cot
Ω

2

)
, (3.63)

` = −2� (2) [48 \, 48 \ ]2� (2) [482\, 4−8 \ ]1
48Ω{482Ω−� (1) [482\ ]2}

− �
(3) [48 \, 48 \, 4−8 \ ]1

48Ω
∼

c4'4
0/"

1 − 4−82Ω� (1) [482\ ]2

=
c3'2

0/d0

1 − 4−82Ω� (1) [482\ ]2
. (3.64)

Here � (1) [482\ ]2 = &2 is given by Eq. (3.9), and

� (2) [48 \, 48 \ ]2 = 8c2'2
04
−"

#∑
==2

="=−2

(= − 2)! 
11
22 (=)
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−c
4−82b6(b)3b
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0

∫ c

−c
4−82b6(b)3b, (3.65)
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1
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0

8
√
"

∫ c

−c
4−8 b6(b)3b, (3.66)
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2
√
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−c
4−8 b6(b)3b, (3.67)

in the limit as " � 1 (cf. Section 5 of Ref. [26]). In this limit, |� (1) [482\ ]2 | =
|
∫ c

−c 4
−82b6(b)3b |/2 ≤ 1/2, and therefore

Re X =
1 − |� (1) [482\ ]2 |2

8|1 − 4−8Ω� (1) [482\ ]2 |2
=⇒ Re X ≥ 3

32
1

(1 + |� (1) [482\ ]2 |)2
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> 0.(3.68)

Re ` =
c4'4

0
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3.B.2 Pitchfork bifurcation

In this case, all the coefficients in the amplitude equations are real. The coefficients X and `
are given by the real part of Eq. (3.63) with Ω = 0 and by Eq. (3.64) with Ω = 0, respectively.
Thus, both X and ` are positive in the limit as " � 1. The other coefficients appearing in
Eqs. (3.43)-(3.44) are

&[ =
m

m[

(
ln� (1) [48 \ ]1

) ��
[2
, X =

1 + � (1) [482\ ]2
8(1 − � (1) [482\ ]2)

,
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1
4
� (2) [1, 48 \ ]1 −

� (2) [48 \ , 48 \ ]2
2(1 − � (1) [482\ ]2)

,

W2 = −
� (2) [4−8 \ , 482\ ]1
1 − � (1) [482\ ]2

, W3 =
� (2) [1, 48 \ ]1

2
, (3.70)

In the limit as " � 1, we can use Eqs. (3.65)-(3.67) together with

� (2) [1, 48 \ ]1 =
c"

d0

m� (1) [48 \ ]1
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(1) [48 \ ]1
2d0
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2
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0
, (3.71)
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to calculate these coefficients. Recall that � (1) [48 \ ]1 = 1 at [2 . We obtain:
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4c2 ∼ − 1
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. (3.72)

To find W0 in the limit as " � 1, we have used its definition, W−1
0 = 1 − � (1) [482\ ]2, and the

linear stability condition, &1 = 1 (for b0 = c):
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, (3.73)

which, inserted in Eq. (3.9) for � (1) [482\ ]2, yields
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4.1 Introduction

Confluent motion of epithelial cell monolayers [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24] is crucial in many biological processes, such as morphogenesis
[3], tissue repair [6, 17, 18], development [4], and tumor invasion and metastasis [1, 2, 3, 24].
It serves as a relatively simple paradigm for collective motion of cells that retain their cell-cell
junctions as they move on a two dimensional (2D) substrate. Collective cell migration also
poses challenging questions in soft and active matter physics, as it may exhibit fluid, solid
or glass behavior with interesting flocking and jamming/unjamming transitions [12, 19, 25,
26, 27, 28, 29, 30, 31]. Interesting dynamics occurs as an epithelial cell aggregate advances
through an empty space, as in wound healing, or it collides and encroaches a different tissue,
as in cancer invasion. Moreover, advancing cellular fronts may display wave phenomena
[15, 32], grow fingers [16, 33, 34], or breakdown and interpenetration against an oppositely
moving front [20, 23].

In this Chapter, we explain the combination of particle dynamics [16] with the active vertex
model (AVM) [35] to provide a cellular dynamics perspective (i) on monolayers spreading
over an empty space [11, 16, 33, 34] and (ii) monolayers colliding in antagonistic migration
assays (AMA) [20, 23]. The resulting model describes the collective migration dynamics
of a large number of cells and implements exchanges of neighboring cells automatically (T1
transitions) [35]. It incorporates internal dissipation of cells through a friction parameter, a
Vicsek-like velocity alignment of neighboring cells [26, 37, 38], noise and and active forces
that may include cell polarity. Particles are not self-propelled and have the ability to start the
migration or stop in absence of noise.

83
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In AMA with Human Embryonic Kidney (HEC) cell assemblies, precancerous Ras
modified cells displace normal cells [23]. These latter experiments have been interpreted using
continuum mechanics in a simple biophysical model through phenomenological couplings
[34], without recourse to biochemical signaling mechanisms but without clear relations to
cellular processes. In this Chapter, we consider wild type (wt) HEC cells to be solid-like
whereas invading Ras cells are fluid-like and push the former backward. As time elapses,
there are cell exchanges and islands of one cell type form inside the tissue of the other cells,
which characterizes a flocking liquid state [28, 30, 36]. However, in AMA with Madin-Darby
Canine Kidney (MDCK) cells, the roles are inverted: Ras cells are solid-like and wt cells
are fluid-like. The precise form of the separating interface among monolayers of different
cell type depends on cell parameters governing segregation vs aggregation of these cells.
We characterize it by topological data analysis (TDA). A measure of cellular diversity in the
junction tensions produces islands of one type of cells inside the monolayer of the other cells,
which is reflected in TDA of simulations and experiments. Cell cohesion given by the AVM,
the cell alignment rule and the active noise force produce fingers in interfaces during assays
of cell invasions of empty spaces rendering unnecessary to assume a different phenotype for
lead cells [16].

Recent experiments have connected metastasis in colorectal cancer to wound healing and
tumor invasion of tissue using appropriate molecular markers [24]. Thus, our description
of spreading of cellular tissue and antagonistic migration assays using our modified active
vertex model might be relevant for metastatic cancer. In particular, we shall show the role
of cellular junction tensions in cell invasion, agglomeration and segregation. Understanding
precise biochemical mechanisms influencing cell-cell contact and confluent cellular tissue
may help develop therapies for metastatic cancers.

Chapter 4 is organized as follows. In Section 4.2 we are going to describe the models we
simulate and discuss the numerical values we use to reproduce in (i) an aggregate spreading
to an empty space and (ii) the collision of two different cellular monolayers in antagonistic
migration assays. The results of the numerical simulations are detailed in Section 4.3 and in
Section 4.4 we study the formation of islands in the AMA using TDA.

4.2 Model

Particles based-models have been useful to understand and capture specific aspects of
migrating cells [16]. However, to model and reproduce properly the migration of an epithelial
monolayer, it is more appropriate to use the Vertex Model. It started with the study of physics
of foams in the 1970’s and it has been used in a wide variety of dynamic systems.

In our numerical simulations, we use an active vertex model AVM [35] and simulate it
by adapting the SAMoS software [39]. The AVM combines the Vertex Model for confluent
epithelial tissues [25, 40] with active matter dynamics [35]. Let us describe first the Vertex
model, then the AVM and our modification of its dynamics.
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4.2.1 The Vertex Model

Figure 4.1: Each cell in the Vertex
model is represented as a polygon
with n sides and it is going to be
defined by three parameters, the area
�8 , the perimeter %8 and the junction
connection between the vertices `
and a.

The Vertex model assumes that all cells in the epithelium
are roughly the same height and thus the entire system
can be well approximated as a two-dimensional convex
polygons with no holes and overlaps that cover the
surface. The conformation of the tissue in the Vertex
model is computed as a configuration that simultaneously
optimizes area and perimeter of all cells. In addition,
two neighboring cells share a single edge which is a
simplification of the reality. Three junction lines typically
meet at a vertex, although vertices with a higher number
of contacts are also possible. The model tissue is therefore
a mesh consisting of polygons (i.e., cells), edges (i.e., cell
junctions), and vertices (i.e., meeting points of three or
more cells), see Fig. 4.1. Each configuration of the mesh
has the following associated energy

�VM =

#∑
8=1

[
 8

2
(�8 − �0

8 )2 +
Γ8

2
%2
8

]
+

∑
〈`,a〉

Λ`a ;`a . (4.1)

Here # is the total number of cells, �8 is the area of the cell 8, �0
8
is its reference area, and  8

is the area modulus, i.e., a constant with units of energy per area squared measuring how hard
it is to change the area of the cell. %8 is the cell perimeter and Γ8 (with units of energy per
length squared) is the perimeter modulus that determines how hard it is to change perimeter
%8 . ;`a is the length of the junction between vertices ` and a, and Λ`a is the tension of that
junction (with units of energy per length). The sum in the last term is over all pairs of vertices
that share a junction. Note that the model allows for different cells to have different area
and perimeter moduli as well as reference areas, allowing for modeling of tissues containing
different cell types. The cell area and perimeter can be written in terms of vertex coordinates.
Thus, vertex positions together with their connectivities uniquely determine the energy of the
epithelial sheet. The main assumption of the Vertex model is that the tissue will always be in a
configuration which minimizes the total energy in Eq. (4.1). To implement the Vertex model,
we determine the positions of vertices that minimize �VM for a given set of parameters  8 , Γ8 ,
and Λ`a . Cell rearrangements are modeled by introducing moves that change appropriately
the connectivity among cells.

While the moduli  8 and Γ8 are positive, Λ`a < 0. When the cell 8 shares junctions only
with others of the same type,

∑
〈`,a〉 Λ`a ;`a = Λ`a

∑
〈`,a〉 ;`a = Λ`a%8 , and this term can

be put together with the perimeter term, thereby yielding Γ8
2 (%8 − %

0
8
)2 plus an unimportant

constant, provided %0
8
= −Λ`a/Γ8 > 0. Thus the junction tension Λ`a determines the target

perimeter of a type of cell. Let us assume that there are two cell types, 1 and 2, with moduli
 9 , Γ 9 , 9 = 1, 2, Λ11, Λ22, Λ12, and target areas and perimeters �0

9
, %0

9
, 9 = 1, 2, respectively.
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We can complete squares and drop additive constants, thereby obtaining

�VM =
2∑
�=1

� �∑
� �=1

[
� �

2
(�� � − �0

� )2 +
Γ �

2
(�� � − �0

� )2
]
+ (2Λ12 − Λ11 − Λ22)

∑
〈�,�〉

��� , (4.2)

in which �1 + �2 = � .

Clearly, Λ12 < (Λ11 + Λ22)/2 implies that energy is minimized when the number of
junctions between both types of cells increases. Cells of different types therefore tend to
mix. Conversely, when Λ12 > (Λ11 + Λ22)/2 cells of different type segregate, as suppressing
junctions between cells of different type minimizes energy. There is also a competition
between the two first terms in Eq. (4.2) to minimize energy. AssumeΛ12 = (Λ11 +Λ22)/2 and
therefore the last term in Eq. (4.2) vanishes. The shape index 
0

�
= �0

�
/
√
�0
�
= |Λ � � |/(Γ �

√
�0
�
)

controls the ratio of the type � cell perimeter to its area. For the Vertex model, the value

0
∗ = 3.812 (which corresponds to pentagons) separates solidlike and fluidlike behavior of

the tissue [27]. For 
0 < 
0
∗, cortical tension is prevalent over cell-cell adhesion, cells do

not exchange neighbors and the monolayer is solidlike. For 
0 > 
0
∗, cell-cell adhesion

dominates, neighbor exchanges occur, and the cellular tissue behaves like a fluid [27].

4.2.2 Active Vertex Model

Figure 4.2: Voronoi tessellation
and Delaunay triangulation. (a)
Zoom of a monolayer showing
the vertices of polygons (r�) in
the Voronoi tessellation and the
centers (r�) of polygons that are
vertices of Delaunay triangles. (b)
Voronoi tessellation and Delaunay
triangulation.

To introduce dynamics in the Vertex model, we have
to go from polygon vertices r� to polygon centers that
represent cells, r� , considering these centers as particles
and introducing dynamics for them [35]. The core
assumption of the AVM is that the tissue configurations
that optimize the energy in Eq. (4.1) correspond to the
Voronoi tessellations of the plane with polygons as cells
and cell centers acting as Voronoi seeds. Given a Voronoi
tessellation, we consider its dual Delaunay triangulation,
comprising Voronoi seeds and the edges joining them
(triangles), which have the property that no seed is inside
the circumcircle of any triangle; see Fig. 4.2. From a
Voronoi tesselation it is straightforward to obtain the dual
Delaunay triangulation and vice versa. However, working
with Delaunay triangulations has an advantage: they
retain their nature when triangle vertices move by flipping
edges conveniently [35], whereasVoronoi tessellations do
not. The latter have to be reset after motion of polygon
vertices.

In the AVM, the area �� in Eq. (4.1) of the cell � is the
area of the associated Voronoi polygon,Ω� , given by the following discrete version of Green’s
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formula:

�8 =
1
2

∑̀
∈Ω8

(r` × r`+1) · N8 , (4.3)

where r` is the position of vertex `, and N8 is a unit vector perpendicular to the surface of the
polygon. For the 2D tissue N8 is directed along the I axis and therefore does not depend on
the position of the vertices. The sum in Eq. (4.3) is over all vertices of the Voronoi cell and
we close the loop with ` + 1 = 1 when ` equals the total number of vertices in the cell, #Ω8

.
The cell perimeter is

%8 =
1
2

∑̀
∈Ω8

|r` − r`+1 |. (4.4)

The relation between the vertices r` of the Voronoi polygons (i.e., cells) and the vertices r8
of the Delaunay triangles (seeds of the Voronoi polygons, i.e., cell centers) is

r` =
_1r8 + _2r 9 + _3r:
_1 + _2 + _3

. (4.5)

Here r8 , r 9 and r: are position vectors of the corners of the triangle and _8 , 8 = 1, 2, 3,
are the barycentric coordinates; cf. Fig. 4.2, and Ref. [35] for details. The forces F8 =
−∇r8 [�VM ++soft ( |r8 − r 9 |)] are [35]

F8 = −
#∑
:=1

 :

2

(
�: − �0

:

) ∑
a∈Ω:

[
ra+1,a−1 × N:

]) [
mra
mr8

]
−

#∑
:=1

Γ:%:

∑
a∈Ω:

(
r̂a,a−1 − r̂a+1,a

)) [
mra
mr8

]
−

#∑
:=1

∑
a∈Ω:

[
Λa−1,a r̂a,a−1 − Λa,a+1r̂a+1,a

]) [
mra
mr8

]
+ :

∑
〈 9 ,8〉
(20 − |r8 − r 9 |)

r8 − r 9
|r8 − r 9 |

Θ(20 − |r8 − r 9 |). (4.6)

Here
[
mra
mr8

]
is the 3×3 Jacobianmatrix connecting coordinates of cell centres with coordinates

of the dual Voronoi tessellation, and the non-commutative row-matrix product [·]) [·] is a
3 × 1 column vector. Θ(G) = 1 if G > 0, else Θ(G) = 0, is the Heaviside unit step function.
We have included a range repulsive force of short range 0 that avoids self intersections of
the triangulation for very obtuse triangles [35]. In the AVM, the usual dynamics for the cell
centers is a gradient flow of the energy in Eq. (4.1), that is overdamped dynamics with forces
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F� given by Eq. (4.6), plus active forces ��n� , and stochastic forces ν� [35]

� �r� = ��n� + F� + ν� , �� ��� = τ� · N� + ��� (�), (4.7)

where �r� = �r�/��, τ� is the torque acting on the polarity n� = (cos �� , sin ��), N� is the local
normal to the cell surface (the unit length vector in the  -direction), �� is the orientational
friction, and ��

�
(�) is a zero mean Gaussian white noise responsible for orientational

randomness, such that 〈��
�
(�)��

�
(� ′)〉 = 2­� 	� �	(� − � ′). Terms aligning cell velocity or

shape to polarity or terms aligning the polarity of different cells can be included in the energy
of Eq. (4.1) [35]. A particularly simple dynamics follows from �� = �0 (constant active
force), ν� = τ� = 0 [27]. The AVM describes naturally cell motion and accounts for patterns
of the confluent tissue observed on multiple scales, from cell sizes to much larger distances.
Furthermore, cell contacts are generated dynamically from the positions of cell centers.

4.2.3 Dynamics including velocity alignment and inertia.

Figure 4.3: Cells represented
in (a) and particles in (b) colored
in red are considered neighbors
of cell/particle in black. Three
forces act on the cell/particle, the
stochastic, the alignment force and
the force generated by a potential
defined in [16] for particles or the
vertex forces for cells.

In this work, we shall modify the AVM dynamics. Instead
of Eq. (4.7), we shall use the particle dynamics of Ref. [16]
but with different forces between particles. As discussed
in Ref.[41] , trajectories of motile cells can be explained
by assuming that their acceleration is a certain functional
of velocity. Despite the mass of the cell being so small
that inertia is negligible compared with typical forces
exerted on the cell, the formula for acceleration resembles
Newton’s second law [41]. In this formula, a linear
damping term represents dissipative processes coming from
friction with substrate, with other cells, or rupture of
adhesion bonds. Active memory terms, which are linear
in the velocity, may propel single cells and account for
the observed non-monotonic velocity autocorrelation [41].
When considering cellular tissue, Sepúlveda et almodel cells
as actively motile particles and replace the memory terms
by Vicsek-like alignment “forces” [37], and inter-particle
and random “forces” [16]. Thus, the acceleration in these
models is a consequence of the collective motion of cells and
the interaction with the environment and it does not follow
from Newton’s second law with a mass given by that of a
single cell. However, we will continue denoting by forces
(per unit mass) the terms comprising the acceleration [16]. In contrast to Eq. (4.7) cells in
Ref. [16] are not self-propelled, so that they can stop their motion and start moving again if
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there are missing cells in their neighborhood and the active force is zero,

¤r8 = v8 , ¤v8 = −Uv8 +
∑
〈 9 ,8〉

[
V

=8
(v 9 − v8) + f8 9

]
+ >8 + f0(8 (C), g ¤η8 = −η8 + ξ8 (C). (4.8)

Here, the sum is over the nearest neighbors of the vertex 8 of the Delaunay triangulation, =8
is the number of these neighbors, the friction coefficient U comes from internal cell friction
or adhesion to the substrate or other cells. The term containing the coefficient V tries to
synchronize the velocity of the nearest neighbor cells that of the 8th cell and it is similar to the
Vicsek model [26, 37, 38, 42]. f8 9 is the force per unit mass exerted by cell 9 on cell 8 (that
has mass <8). In our simulations we use

∑
〈 9 ,8〉 f8 9 = F8/<8 , where F8 is given by Eq. (4.6),

and not by an interparticle potential as in Ref. [16] <8 is a reference mass, for example
<8 = WW

2
A/�A . The active forces are >8 + f0(8 (C). In Ref. [16], >8 = 0 and (8 (C) is a zero

mean Ornstein-Uhlenbeck noise, representing a stochastic force with nonzero correlation time
g. ξ8 (C) is a zero-mean delta-correlated Gaussian white noise. For spreading tests, we have
used the numerical values of the parameters indicated in Table 4.1. In our combination of the
AVM with particle dynamics, our particles are at the vertices of the Delaunay triangulation
(cell centers) and they are no longer point particles as in Ref. [16]. For point particles, the
cohesive structure provided by the Delaunay triangulation is absent and has to be achieved by
convenient forces f8 9 , which are repulsive at short distances, attractive at long distances and
derive from a convenient potential [16].

U V g f0  Γ Λ

h−1 h−1 h `m
h3/2 - - -

0.534 41.36 0.56 95 1 0.1 -1

Table 4.1: Parameters for our model corresponding to the experiments with MDCK cells in Ref. [16].

4.2.4 Boundaries and Initial conditions.

To handle the limits of the sheet layer, cells at the boundary between a cellular monolayer and
the empty space, or between tissues, are special, see Fig. 4.4 to illustrate. They may form
actin cables, thereby having a line tension and a bending stiffness [35].

�;C =
1
2

∑
〈8, 9 〉

_8 9 (;8 9 − ;0)2 (4.9)

�14=3 =
1
2

∑
8

Z8 (\8 − c)2, cos(\8) =
®A 98 · ®A:8
|®A 98 | |®A:8 |

(4.10)

Here themodulus _8 9 is the line tension of the edge connecting vertices 8 and 9 , ;8 9 = |A8 9 | (A8 9 =
A8 − A 9 ) is the edge length (of preferred magnitude l0), Z8 is the bending stiffness of angle \8
at the boundary particle 8, and A 9 and A: are the positions of boundary particles to the left and
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to the right of particle �. The line tension energy of Eq. (4.9) tries to keep boundary edges at
a length l0 whereas the bending energy of Eq. (4.10) tries to keep the boundary line flat. The
sums in these formulas are over boundary particles only and we assume that each boundary
cell has exactly two boundary neighbors [35].

Figure 4.4: (a) and (b) are allowed
boundaries in te AVM, however it
is not possible to have a hole inside
a bulk (c) or split the bulk into to
different domains (c).

A random configuration of the particles comprising a
confluent cell monolayer is usually different from those
configurations observed in experiments. Thus, we have
to carry out an initialization stage until the particle
configuration is compatible with their observed velocity
distributions. For spread tests, we proceed as follows.
We set a square box of size 1 mm2 area, see Fig. 4.6,
� ≈ 4000 particles (comparable to the number of cells in
the experiments), the packing ratio and the particle mean
velocity. Then, we numerically solve Eqs. (4.1) and (4.8)
with forces �� = 0 and

∑
〈 � ,�〉 f� � = F�/�� , F� given by

Eq. (4.6), until the velocity probability density functions
(PDFs) of the experiments are fitted. The parameters
adjusted to the experimental data at early time (30min after
stencil removal) are listed in Table 4.1. We stop the initialization stage when the distribution of
mean distances between particles is close to the initial distribution as observed in experiments
and displayed in Fig. 4.5. From this simulation, we obtain the particle positions r� and initial
random directions for the particle velocities. As we can see in Fig. 4.6, the velocity field
obtained from the simulations, Fig. 4.6(b), is very similar to that measured by PIV analysis
[16], Fig. 4.5(a).

Figure 4.5: Probability distribution function (PDF) for particle velocities: (a) �� , (b) �� , (c) � = |v|;
and (d) mean distance � between neighboring particles; after the initialization procedure (red triangles)
as compared to the experimentally observed PDF (black line) [16]. Parameter values are those in Table
4.1.
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For AMA, we choose a random configuration having the same number of wt and Ras cells
separated by a vertical straight line and we set a known velocity distribution from experiments
[23]. This represents the situation of the two monolayers when they first make contact. See
details in the next Section.

1mm

(a) (b)

Figure 4.6: Velocity field obtained from (a) experiments [16], (b) simulations after the initialization
procedure. Parameter values are those in Table 4.1.

4.3 Results of numerical simulations

In this Chapter, we present the results obtained from the simulations of two different tissue
configurations, (a) a cellular monolayer spreads over an empty space, and (b) two monolayers
comprising wild type and modified cells collide. In each case, the simulations are compared
to relevant experimental observations.

4.3.1 Collective movements in a migrating epithelium

Inspired by wound healing phenomena and experiments on tissue scratching (explained
briefly in Subsection 1.2.1) and in order to clarify the mechanisms involved in a free edge
of an epithelium, we study the movement of an epithelium which encroaches on a virgin
substratewith the experimental protocol consisting ofmicro-fabricated stencils whose removal
increases the motility of the epithelium. This technique has several advantages, dimensions
are well controlled, the geometry is almost perfect and cells do not suffer an injury. During the
motion of an epithelial strip after removing the stencil, we can distinct three different phases,

First phase of motion. Minutes after the stencil removal, the first rows of the cells located
at the edge of the monolayer start their motion. Their direction of motion is perpendicular to
the edge of the band and their speed is around 25`<ℎ−1.

Second phase of motion. After two hours, the PIV recorded from the experiments reveals
the complex movements that can appear inside the bulk of the tissue, cf. Fig. 4.7. Cells do not
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move independently, their velocities are correlated and the presence of cellular flows shows
the existence of motion inside the monolayer [11]. The average speed over a whole band of
cells is equal to 8`<ℎ−1 ± 1`<ℎ−1. However, there are some areas where their speed can
reach bigger values. These areas are not only found at the edges of the monolayer but also in
the middle of the bulk.
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Figure 4.7: Cell velocity field after 2 h of stencil removal in an invasion configuration. Left panels
are obtained from experimental data adapted from Ref. [10], and right panels from simulations of the
model with the parameters of Fig. 4.8 and Table 4.1. (a) Phase contrast visualizing cells, (b) profile of
cell speed (modulus of velocity), (c) velocity field.

Third phase of motion. The fronts of advancing cells in Figs. 4.7 and 4.8 clearly show
the formation of fingers. The AVM keeps cells together while the term proportional to V in
Eq. 4.8 induces a common average direction in their motion. This effect becomes stronger the
larger V is, which promotes and enforces finger formation. Thus, unlike the particle model
of Ref. [16], we do not need a longer range attractive potential interaction between cells. A
comparison of our simulation results in Figs. 4.7 and 4.12 to the experiments reported in
Refs. [10, 43] shows that the appearance and size of the cell velocity field are reproduced
qualitatively. We find these areas without having to postulate the existence of special leader
cells.

Our numerical simulations of spreading configurations show that cells inside a finger
move faster than those at other portions of the interface. We have observed that the average
velocity of finger cells may oscillate irregularly about some average value with a short period
of about one hour. Fig. 4.9 shows the average velocity of 9 finger cells during a 7 hour time
interval. The velocity of a single cell in the finger oscillates somewhat more irregularly in
a similar fashion. For much longer time intervals, the average velocity may experience an
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Figure 4.8: Initial configuration and configuration after 20 h of stencil removal showing the formation
of fingers according to the numerical simulation of the model. (a) Full view, (b) zoom. Initial box size
is 1.6 mm2, %0 = 10, �0 = c, and shape index ?0 = 5.65. Parameter values are those in Table 4.1.

overall upward trend. The average velocity of boundary cells in flat regions also oscillates
with time but it does not show a definite behavior overlong time intervals: it may even display
a downward trend. In experiments, the velocity of cells leading inter-facial fingers has also
been observed to oscillate rapidly and irregularly with periods of about one hour or less,
which is similar to the findings based on numerical simulations of our model; see Fig. 101A
of Ref. [43]. Some models based on continuum mechanics predict longer periods of tens of
hours [43].
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Figure 4.9: Average velocity of the marked cells during finger expansion. The velocity of each cell
oscillates in a similar but somewhat more irregular manner (not shown).

In our simulations, we consider a narrow strip configuration as that in Fig. 4.8(a), which
is similar to those in Ref. [43]. We adapt the SAMoS code [39] to simulate the AVM with
dynamics given by Eqs. (4.8) and (4.6), in which >8 = 0. Parameter values are those in Table
4.1. Cells migrate on the surface maintaining their junctions with their neighbors, which is
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enforced by the term proportional to V in Eq. (4.8). During healing, noisy forcing in Eq. (4.8)
makes some cells to move faster that the others while keeping their contacts. This is the origin
of the fingers or instabilities of the interface with the cell free space, which are illustrated by
Fig. 4.8(b). In addition, cells on the interface, or close to it, may grow beyond the target area
�0 in Eq. 4.1. As they do so, each cell has a probability to divide into two daughter cells,
which equals A3 (� − �0)3C. Here 3C is the time step and A3 is the division rate. We have
normalized the target area to �0 = c, and we check whether every 10 time steps if � > �0.
With these parameters, there is some cell division near the interface of the confluent layer
and the empty space. Fig. 4.10 and Fig. 4.11 show the cell division in the simulations and
in an experiment respectively. Depending on the cell type, the general shape of the velocity

Figure 4.10: Evolution of a finger and adjacent cells for times C = 0, C = 2.8ℎ, C = 5.6 and C = 8ℎ. Red
dots indicate the initial cells and green dots indicate those cells resulting from division.

Figure 4.11: Evolution of adjacent cells for times reported in [43]. Red dots indicate the initial cells
and green dots indicate those cells resulting from division. For MDCK cells, the same neighbors and
structure remains unbroken along the time.

fields, proliferation or coordinated movements change. In particular, we have focused on the
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evolution and behavior of MDCK cells presented in Fig. 4.11. For the MDCK epithelium, the
movements are more coordinated and extend over characteristic lengths than for the (Normal
Rat Kidney) NRK. Indeed, MDCK share their neighbors along the time unlike the other type
of cells. This characteristic has been also reproduced in our simulations, see Fig. 4.10.

Having calculated numerically the velocity field, we can quantify the orientational motion
inside the epithelium. Take for example, the configuration after 35 h of stencil removal is
shown in Fig. 4.12. In addition to the velocity field and the speed (modulus of the velocity
vector) map, we have depicted a density map of the polar order parameter (pol,

(pol =
1
#

#∑
8=1

cos o8 , cos o8 =
EG (8)√

EG (8)2 + EH (8)2
. (4.11)

Here o8 is the angle that the velocity vector of the 8th cell forms with the outer normal to the
strip (the G axis in Fig. 4.8). Fig. 4.12(b) depicts the density plot of the cellular polar order
parameter, cos o8 , after 35 h of stencil removal (similar to experimental data reported in Fig.
92 of Ref. [43]). Fig. 4.13 shows that an ensemble average of the polar order parameter (over 5
realizations, smooth line) increases with time and follows the same trend as the measurements
reported in Ref. [10] (jagged line). At early times, (pol in Fig. 4.13 does not exhibit a particular
trend. The angles are distributed homogeneously and are not located in specific areas. After
a while, the cells start orient themselves perpendicular to the strip, specially at the edges of
the tissue, as shown in Fig. 4.12. This effect occurs in strips of width larger than 300 `m.
On shorter strips, their two sides are no longer independent and the appearance of a finger
changes the motion of the whole strip.
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Figure 4.12: (a) Numerically simulated cell velocity field, (b) local polar order parameter cos o8 , and
(c) speed (|v|) map after 35 h of stencil removal in an invasion configuration for a 400 `m wide strip.
Parameter values as in Fig. 4.7.

The velocity field in Fig. 4.12(a) (from simulations) and Fig. 4.14(c) (from an experiment)
exhibit swirl patterns [11]. To characterize them, we have depicted in Fig. 4.14(a) the
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Figure 4.13: Evolution of the polar order parameter (pol (C) corresponding to Fig. 4.7. Here C = 0
corresponds to 1.5 h after stencil removal [10]. An average over 5 simulations exhibits the same trend
as measurements reported in Ref. [10].

correlation function for the G-component of the velocity field:

� ( |r|, C) = 〈E∗G (r′, C) E∗G (r′ + r, C)〉r′√
〈E∗G (r′, C)2〉r′ 〈E∗G (r′ + r, C)2〉r′

, E∗G (r, C) = EG (r, C) − 〈EG (r, C)〉r. (4.12)

Here the averages are spatial averages over r′ and also ensemble averages over simulations
with different initial conditions. Fig. 4.14(b) depicts the correlation length defined by the first
zero of the correlation function and the swirl size defined by its first local minimum. Empty
and blue squares correspond to values given by different simulations. The best fits to straight

Figure 4.14: (a) Spatial correlation function � (A, C) corresponding to Fig. 4.12(a) for different times.
(b) Correlation length given by the first zero of � (A) (empty squares) and swirl size given by the first
local minimum of � (A) (blue squares). Dashed line from swirl sizes in Ref. [11]. (c) Image from [6].

lines are also shown and compared to a similar line for Angelini et al’s experimental data
[11]. Clearly correlation length and swirl size increase with time, indicating that cells feel
each other on increasingly larger regions as time elapses. This has been observed in other
experiments and simulations [10, 23]. The correlation lengths given by our simulations agree
quite well with values reported in the literature for similar observation times [10, 11, 23].
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A comparison of our simulation results in Figs. 4.7 and 4.8 to the experiments reported
in Refs. [10, 43] shows that the appearance and size of the cell velocity field are reproduced
qualitatively. Our simulations show that the area and velocity of cells both increase as their
distance to the boundary of the cellular tissue decreases. Fig. 4.15 shows that cells near the
interface in a spreading configuration have larger areas than cells far from the interface. This
is particularly noticeable in the fingers, the cells in them are faster and have a larger area than
the cells elsewhere. The cells far from the tissue border are compressed and have smaller
area than boundary ones. This prediction of the under-damped AVM with dynamics as in
Eq. (4.8) has been observed in experiments; see Fig. 4 from Ref. [44]. In experiments, they
investigate the correlation between the area of the cells and their position in the epithelium.
They conclude that the area of finger cells reaches larger values than in the simulations, which
is related to the fact that we use a fixed target. As we have discussed, the Vertex model tries
to maintain the whole sheet with cells with an area not far from the reference area, for that
reason, in our simulations, there is not so much difference between the area of the cells as we
can observe in the experiments.

13001300 00

(b)

μ	m2 μ	m2

(a)

Figure 4.15: Areas of cells during a simulation of a spreading configuration: (a) Area of cells
near the interface, (b) area of cells far from the interface. Our simulations exhibits the same trend as
measurements reported in Ref. [44]. White bar=100`<.

4.3.2 Results for the collision configuration

Recently, Moitrier et al. have reported confrontation assays between antagonistically
migrating cell sheets [23] whose procedure has been explained in Subsection. 1.2.2. In
their experiment, the two confluent cellular monolayers (wild type and modified Ras HEK
cells) advance toward an intermediate empty space, collide and the Ras monolayer displaces
the wt one. The experiment shows that the velocities of the cells decay exponentially fast
the farther they are from the advancing fronts [23]. If G = ! (C) is the position of the
monolayer front, the velocity of the cells at position G < ! is +wt exp[(G − !)/_wt] for the
wt and −+Ras exp[−(G − !)/_Ras] for the Ras cells at G > !. After the collision, these
velocity functions remain the same but now +wt and +Ras acquire a common and lower value
−+ interface. Moitrier et al interpret their experiments by comparing with simple solutions of
a 1D continuum model [23]. In our simulations, we use the SAMoS code to simulate the
AVM cellular model with dynamics given by Eq. (4.8). The invading Ras cells (magenta)
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move to the left whereas the wt cells (green) are pushed backward because they experience
aversion to mixing with Ras cells. We model this situation by adding a negative active force
�Ras
�

= �Ras exp[−[� − � (0)]/�Ras] to Ras cells in Eq. (4.8) for � > � (0) (not included in
Ref. [16]), whereas wt and Ras cells do not experience an active force if � < � (0). We use
�Ras = 410 �m, �Ras = 9 �m/h2, � (0) = 0. The active force �Ras keeps Ras cells moving
to the left and pushing wt ones. Therefore we no longer need the synchronization force
proportional to � to keep cells moving in the same direction. Fig. 4.17 shows finger formation
for the active force �Ras and for � = 13.85 h−1, which is smaller than the value in Table 4.1.
Other parameters are as indicated in Table 4.2.

� � � �0 � � Γ � Figure #
h−1 h−1 h �m

h3/2 - - -
0.0602 13.85 1.66 55.88 1 1 8
0.42 0.602 1.66 13.97 1 1 9, 10

Table 4.2: Two sets of parameters corresponding to the experiments with HEK cells in Ref. [23].

Figure 4.16: Sketch of the antagonistic migration assay. (a) and (b) initial configuration and invasion
from purple population respectively. (c) green cells maintain a strong cell junction between their
neighbors. In (d) purple cells have a fluid-like behavior and the cell junctions are weak. Modified figure
from [9].

Our underdamped AVM uses more features of wt and Ras cells obtained from the
experiments than kept by continuum models. The latter lose features at distances close
to the cell size. Continuum models fit friction, viscosity and strength of active forces for the
two cell populations to explain how Ras cells invade the wt monolayer [23].

The AVM allows us to study tissues that behave differently. In our simulations, 5000 cells
are split into two populations with different properties specified by the junction tensions Λ� � ,
� = 1, 2, which affect each pair of cell-cell contacts. The simulations producing Figs. 4.17,
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4.18 and 4.19 have open boundaries because we have focused on the interface between
populations. We have fixed  = Γ = 1 and −6.8 = Λ22 < Λ11 = −6.2, which produce shape
parameters ?0 of 3.50 (green cells) and 3.84 (magenta cells), below and above the transition
value ?0

0 = 3.812, respectively. Thus, Ras magenta cells are fluid-like (supercritical shape
index) and their density is smaller than that of the solid-like wt cells. This is consistent with
the observation that wt cells have larger mean traction force amplitudes than Ras cells [23],
see sketch in Fig. 4.16. Our aim is to analyze the effect of Λ12 on the AMA. Both monolayers
occupy the right and left portions of a 4.4 mm wide, 3.1 mm tall box. In Figs. 4.17-4.19,
we show a 1 mm ×2.5 mm region. In our simulations, we start from a configuration with

Figure 4.17: Simulation of the antagonistic migration assay. Junction tensions are Λ11 = −6.2,
Λ22 = −6.8, which yield shape indices 3.50 (green cells) and 3.84 (magenta cells), respectively. Other
parameters are listed in the first row of Table 4.2, and Λ12 = −7.0 < 1

2 (Λ11 + Λ22) correspond to weak
population mixing. Snapshots are taken at times 2 h, 6.5 h, 13 h, 20 h.

Figure 4.18: Simulation of the antagonistic migration assay. First and second snapshots: Λ12 =
−7.5 < 1

2 (Λ11 + Λ22) (population mixing); third and fourth snapshots: Λ12 = −6.0 > 1
2 (Λ11 + Λ22)

(population segregation). Other parameters are listed in the second row of Table 4.2 whereas times are
as in Fig. 4.17.

the cell populations separated by a straight vertical interface at ! (0) = 0. The active force >
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Figure 4.19: Simulation of the antagonistic migration assay. Parameters and times are as in Fig. 4.18,
except that one fifth of the overall population (randomly placed green andmagenta cells) haveΛ12 = −7.5
(population mixing) and the other four fifths have Λ12 = −6.0 (population segregation). The marked
region has similar size to that reported in experiments [23].

pushes Ras cells with G > !(0) to the left, whereas > = 0 for any cell to the left of G = ! (0).
The junction tension Λ12 in Fig. 4.17 (Λ12 = −7.0) and in the two left panels of Fig. 4.18
(Λ12 = −7.5) favors population mixing. Ras (magenta) cells push wt (green) cells backwards
at a velocity close to the observed + interface, meanwhile creating a rugged interface between
cell populations. As time elapses, fingers and some isolated islands (lagging wt in the Ras
assembly and advancing Ras islands in the receding wt assembly) appear. These effects are
more pronounced the smaller Λ12 is, as shown by comparison of Figs. 4.17 and 4.18. It is
possible to create some realistic mixing of the populations by changing the junction tension
Λ12 with time. The first two snapshots in Fig. 4.18 have Λ12 = −7.5 < 1

2 (Λ11 + Λ22), which
favors population mixing. Then the interface between cell populations becomes very rugged
and there appear islands of one cell type inside a layer of the other type. The third and
fourth snapshots in Fig. 4.18 have been obtained with Λ12 = −6.0 > 1

2 (Λ11 +Λ22) that favors
population segregation. The interface becomes smoother and the islands shrink and tend to
disappear.

We have also focused on the effects of cellular alignment. There are two terms in Eq. (4.8)
that try to synchronize cell velocities: the term proportional to V and the active force >, which
pushes the Ras cells to the left. Although the values of V used to draw Figs. 4.17-4.19 are
smaller than that in Table 4.1, different V still make a difference in the behavior during tissue
collision, specially in the Ras population. Fig. 4.17 exhibits global polar migration because
its V value is larger than that in Figs. 4.18 and 4.19, but types of cells are not mixed despite
having a favorable value Γ12 = −7.0. The smaller value of V in Figs. 4.18 and 4.19 creates a
weaker polar alignment than that in Fig. 4.17. The different patterns observed in these figures
illustrate that cell alignment affects importantly the shape and configuration of the interface.

While the rightmost panel of Fig. 4.18 is similar to some of the experimental data [23],
we can obtain a similar formation of islands and fingers by assuming that Λ12 is randomly
distributed among cells. In particular, we assume that one fifth ofmagenta and green cells have
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Λ12 = −7.5, which favors mixing of populations, while the remaining ones have Λ12 = −6.0
and favor population segregation. The result is depicted in Fig. 4.19, which exhibits behavior
similar to experimental observations [23]. The topological data analyses of the next Section
characterize the geometry of the interface between cell types in antagonistic migration assays.

4.4 Formation of islands and Topological Data Analysis

Experiments and numerical simulations of cell monolayers produce time series of images that
make it possible to identify the structure of interfaces and to compare their time evolution. It
is quite cumbersome to process manually these time series. Here we use Topological Data
Analysis (TDA) as a computational tool to process automatically time series of images. We
next illustrate how to use TDA for this purpose and how to interpret the obtained results. We
focus on specific parts of selected snapshots of images from experiments and then on time
series of images from numerical simulations. While we have few images of interfaces from
experiments, we can generate arbitrarily many from numerical simulations. Having many
images, the automatic TDA tool enables us to describe in detail the topological changes of the
interfaces and to implement hierarchical clustering strategies, thereby classifying the evolving
interface structures. Fig. 4.20 shows the interfaces between two colliding confluent cellular
monolayers in an AMA [23]. In this experiment, magenta Ras cells make green wild type
cells move back, cf. third and fourth snapshots in the cover of Soft Matter, vol. 15 [23].
The interface between the two cell populations is rather rough, it exhibits fingers, and there
are islands or pockets of green cells left behind by the advance of the magenta front. To
quantify these phenomena in an automatic way, we proceed as follows. Using Matlab, we
transform the images in matrices of ones (green) and zeros (magenta). Then we extract the
positions of green/magenta interfaces, represented by the point clouds shown in Fig. 4.20, and
process them using TDA. We pursue a similar strategy for images extracted from numerical
simulations of our underdamped AVM, which yields a more complete picture of the evolution
of interfaces
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Figure 4.20: Structure of the interface between colliding layers corresponding to two snapshot sof
the collision of two confluent cellular monolayers in Moitrier et al’s experiment [23]. These profiles
correspond to (a) the third and (b) the fourth panels (counting from the left) in the cover of Soft Matter
corresponding to Ref. [23]
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4.4.1 Persistent homology

Afinite set of data points may be considered a sampling from the underlying topological space.
Homology distinguishes topological spaces (e.g., annulus, sphere, torus, or more complicated
surface or manifold) by quantifying their connected components, topological circles, trapped
volumes, and so forth. Persistent homology characterizes the topological features of clouds
of point data or particles at different spatial resolutions [48]. Highly persistent features span
a wide range of spatial scales. Persistent features are more likely to represent true features
of the data/pattern under study than to constitute artifacts of sampling, noise, or parameter
choice [47]. To find the persistent homology of a cloud of point data/set of particles, we
must first view them as a simplicial complex �. Roughly speaking, a simplicial complex is
defined by a set of vertices (points or particles) and collections of :-simplices. The latter
are the convex hulls of subsets with : + 1 vertices, comprising also faces; see the Appendix
for precise definitions. Defining a distance function on the underlying space (the euclidean
distance, for instance), we can generate a filtration of the simplicial complex, which is a nested
sequence of increasingly bigger subsets. More precisely, a filtration of a simplicial complex
� is a family of sub-complexes {� (A) |A ∈ '} of � such that � (A) ⊂ � (A ′) whenever A ≤ A ′.
The filtration value of a simplex ( ∈ � is the smallest A such that ( ∈ � (A). The motivation
for studying the homology of simplicial complexes is the observation that two shapes can be
distinguished by comparing their holes. For : ∈ # , the Betti number 1: counts the number
of :-dimensional holes. A :-dimensional Betti interval [A1 , A3) represents a :-dimensional
hole that is created at the filtration value A1 , exists for A1 ≤ A < A3 and disappears at value A3 .
We are interested in Betti intervals that persist for a large filtration range, they describe how
the homology of � (A) changes with A . How do we construct a filtration? The Vietoris-Rips
filtration +'(-, A) [47, 48], which we will use here, is constructed as follows,

1. The set of vertices - is the cloud of points under study.

2. Given vertices G1 and G2, the edge [G1, G2] is included in +'(-, A) if the distance
3 (G1, G2) ≤ A .

3. If all the edges of a higher dimensional simplex are included in +'(-, A), the simplex
belongs to +'(-, A).

A default choice for the distance d to study homology of 2D particle configurations is the
Euclidean metric. Fig. 4.21 displays two simplexes of a Vietoris-Rips filtration for the point
cloud in Fig. 4.20. Notice the appearance and disappearance of holes and isolated components
as the threshold distance r to connect points increases. This filtration is governed by three
parameters,

1. The maximum dimension 3<0G . This is the maximum dimension of the simplices
to be constructed. The persistent homology (characterized by its Betti numbers) can
be computed up to dimension 3<0G − 1. In this case 3<0G = 2, we consider points
(0-simplices), edges (1-simplices), and triangles (2-simplices).
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2. The maximum filtration value A<0G and the number of divisions # . These
values define the filtered simplicial complexes to be constructed, for A ∈
{0, A<0G

#−1 ,
2A<0G

#−1 ,
(#−2)A<0G

#−1 , A<0G}.

Notice that for a set of P points, the full simplicial complex will have about 2% −1 simplices in
it. Therefore, 3<0G and A<0G are usually slowly increased to get information without reaching
computational limits. The computation is not too sensitive to the specific value of # . When
A<0G is greater than the diameter of the point cloud, all possible edges form and join all the
points in one simplex. In the next two Sections, we apply TDA to experimental and numerical

Figure 4.21: Visualization of the complexes +'(-, A) for the point cloud depicted in Fig. 4.20 when
(a) A = 6 and (b) A = 10. For large enough A all the components merge in a single one. Holes appear
and disappear as new connections are created, reflecting the overall point cloud arrangement.

images.

4.4.2 TDA for experiments

Let us consider the snapshots depicted in Fig. 4.20 and Fig. 4.21 processes the earlier snapshot
depicted in Fig. 4.20(a), in which the green and magenta monolayers have made contact and
started interpenetrating each other. Ras cells (magenta) are pushing back wt cells (green)
towards the left. As they do so, there are islands of wt cells inside the Ras monolayer. How
does TDA capture these features? After constructing the Vietoris-Rips filtration, there are
two commonly employed graphical representations that visualize the persistent homology
of a point cloud: barcodes and persistence diagrams [45]. Barcodes of a homology �:
depict Betti intervals [A1 , A3) for :-holes (: > 0) or connected components (: = 0) as
the filtration parameter A varies. The homology class �0 comprises the points forming the
green/magenta interfaces. As the size filtration parameter A increases from zero, there appear
edges joining these points, thereby forming clusters as illustrated by Fig. 4.21 for specific
values of r and indicated by the barcodes in Fig. 4.22(a) for the selected range of A . The
class �1 further distinguishes compact components of the interface that are detached from
the main part of the interface and form topological cycles, cf. the corresponding barcode in
Fig. 4.22(a). These components are islands of one cell type (phase) inside the bulk of the
other phase. Persistence diagrams represent the Betti intervals by points in a birth-death
plane. The G axis represents the filtration value A at which components/holes are created. The
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Figure 4.22: Barcodes (left) and persistence diagrams (right) for the homologies �0 (circles)
and �1 (asterisks) of the interfaces separating cell types in images from experiments and numerical
simulations. We useVietoris-Rips filtrationswith parameters# and A<0G . (a)-(b) TDA fromFig. 4.20(a)
(experiments) with # = 45, A<0G = 45; (c)-(d) TDA from Fig. 4.20(b) (experiments) with # = 45,
A<0G = 45;Points in the persistence diagrams mark the beginning (birth) and end (death) of a bar
(homology class) in the barcode. Triangles represent a component with infinite persistence. The green
line is the diagonal.
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Figure 4.23: a)-(b) Betti numbers versus filtration parameter diagrams for Fig. 4.20(a) (blue asterisks)
and 14(b) (magenta circles, later time in the AMA experiment) show that the number of clusters and
holes in the interface between aggregates increases with time. As a result of island formation and
motion, which increases with time, Panel (a) shows that the number of components decreases more
slowly with r for the later time. The additional peaks in Panel (b) near A = 40 correspond to islands that
have already penetrated further inside the other cell population in the experiment.
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H axis represents the filtration value r at which they disappear. Those points less close to the
diagonal (green) tend to mark robust underlying geometrical features. Fig. 4.22(b) depicts the
persistence diagram corresponding to Fig. 4.20(a). Red circles mark connected components of
the interface between cell monolayers and the magnitude of the filtration parameter r at which
they disappear. As the filtration parameter increases, points comprising the main front merge
rapidly in one component that absorbs neighboring clusters. They correspond to blocks of bars
in the �0 panel of Fig. 4.22(a) that start at the lowest value of A . Blue asterisks represent the
appearance (horizontal axis) and disappearance (vertical axis) of holes inside such clusters.
The first column of asterisks represents the ten bars in the �1 panel of Fig. 4.22(a) that start at
the same value of r and form four groups of bars, which end at about the same value of A . The
remaining bars and asterisks are similarly related. They represent the new holes that form as
the clusters merge, which gives an idea of the relative arrangement thereof. Relatively narrow
barcodes produce points in the persistence diagram that are close packed. Fig. 4.22(c)-(d)
display the barcodes and persistence diagram corresponding to Fig.14(b). Compared to the
earlier snapshot of Fig. 4.20(a) and its TDA in Fig. 4.22(a)-(b), there are more islands of each
phase in the bulk of the other: the invasion of Ras cells leaves pockets of wt cells inside their
midst. The main interface has become more meandering and exhibits more fingers than in
the earlier snapshot. As a consequence, the number of clusters or interface components is
larger than at the earlier time. Similarly, there are more topological cycles, which reflects the
larger number of islands of one cell type in the midst of the other cell type. Barcodes and
persistence diagram are more spread out. This is further quantified by the Betti numbers 1 9
that count the number of elements in � 9 , for 9 = 0 (clusters) and for 9 = 1 (holes), as depicted
in Fig. 4.23(a)-(b) for the snapshots shown in Fig. 4.20.

4.4.3 TDA of numerical simulations

As indicated in the previous Section, to observe island formation, we have to tune the (negative)
junction tensions when simulating antagonistic migration assays. In particular,Λ12 <

1
2 (Λ11+

Λ22) facilitates mixing of wt and modified cell populations whereas Λ12 >
1
2 (Λ11 + Λ22)

produces population segregation. In Fig. 4.18, Λ12 switches from population 2 mixing to
segregation after the two first snapshots. Then the pockets of green cells left behind by
the advance of the interface shrink and start disappearing, as shown in the third and fourth
snapshots of Fig. 4.18. If mixing is weaker, as in Fig. 4.17, the interface forms pronounced
fingers, there are less islands and we do not need to change the junction tensions with time.
In Fig. 4.19, Λ12 randomly takes on a mixing value for one fifth of Ras and wt cells and on a
segregation value for the others. The results of changing interface and island formation are
qualitatively similar to those observed in experiments.

Let us now interpret the evolution shown in the panels of Fig. 4.19 using TDA. Fig. 4.24
and Fig. 4.25 show the barcodes, persistence diagrams and Betti numbers for the marked
Sections of the leftmost and rightmost panels in Fig. 4.19. As before, we represent the
interfaces by point clouds. At A = 0, each point of the interface is a component. For
the more regular interface of the leftmost panel in Fig. 4.19, increasing r produces point
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Figure 4.24: Barcodes (left) and persistence diagrams (right) for the homologies �0 (circles) and �1
(asterisks) of the interfaces separating cell types in images from experiments and numerical simulations.
(a)-(b) TDA from the leftmost panel in Fig. 4.19 (numerical simulations) with # = 60, A<0G = 30;
(c)-(d) TDA from the rightmost panel in Fig. 4.19 (numerical simulations) with # = 30, A<0G = 30.
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Figure 4.25: (a)-(b) Same for the numerical simulations considered in Fig. 4.24 corresponding to the
leftmost and rightmost panels in Fig. 4.19. As a result of island formation and motion, which increases
with time, Panel (c) shows that the number of components decreases more slowly with r for the later
time. The peaks in Panels (a) and (b) are similar for A below 20.
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components appearing as the short �0 bars in Fig. 4.24(a). These bars end at similar filtration
values and appear as a single red circle in the persistence diagram of Fig. 4.24(b). The main
three islands correspond to the three intermediate bars in the inset of Fig. 4.24(a), which
disappear at larger filtration values. The lowest circle in Fig. 4.24(b) represents the point
components, the three intermediate ones represent the islands in the barcode and their sizes.
All clusters finally merge in the main front represented by the arrow on top of the vertical axis
in Fig. 4.24(b). Analysis of �1 confirms that the intermediate circles/bars are round islands
and not strings. Each component corresponds to a cycle represented by the three largest �1
bars in Fig. 4.24(a) and the two first asterisks in Fig. 4.24(b), one of which represents the two
bars of similar length. The two shortest bars represent holes formed as components merge
during the filtration process and correspond to the two asterisks closer to the diagonal in
Fig. 4.24(b).

Figs. 4.24(c)-(d) correspond to the more meandering interface of the rightmost panel in
Fig. 4.19. There are more points in the cloud representing the interface, whose irregularity
results in different extinction values of r for the associate �0 bars. The main seven islands
correspond to the intermediate bars in the inset of Figs. 4.24(c), and their extinction values in
the persistence diagram give an idea of the distance to the main front or to another island. The
fact that they are islands (enclosed by a boundary) is inferred from the �1 bars in Figs. 4.24(c).
They correspond to the seven bars that appeared first, which are also represented by the first
column five asterisks in Figs. 4.24(d) having smaller r. Two of the asterisks correspond to
two islands of similar size length each, which have bars of similar size. The length of the bars
in the barcode or the distance of the asterisks from the diagonal in the persistence diagram
give an idea of the island size. Additional �1 bars represent holes created during the filtration
process as components merge and give an idea of the relative arrangement of the islands or of
the fingers in the main front. They are represented ary the additional asterisks in Figs. 4.24(d).
The Betti numbers in Figs. 4.25(a)-(b) show a larger number of island and holes as time
increases from the leftmost snapshot in Figs. 4.19 to the rightmost one. Compared to the TDA
of experiments in Figs. 4.22(a)-(d), there are no gaps between bars and asterisks appearing
for large A in Figs. 4.24(a)-(d). The reason is that the distance of islands to the main front is
smaller for the simulation than for the experiment.

4.5 Conclusions

We have modeled how epithelial cell aggregates (i) advance through empty spaces (wound
healing, tissue spreading) and (ii) collisions between aggregates (tumoral invasion) using an
AVM with dynamics for cell centers that includes collective tissue forces [35], velocity
alignment and inertia [16]. The AVM implements exchanges of neighboring cells
automatically (T1 transitions). Compared with particle models with underdamped dynamics
studied in [16], our model accounts for fingering instabilities in spreading tissue without
having to distinct between type of cells.

Compared to continuum models [34], stochasticity enables our model to reproduce
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the observed fast irregular oscillation of cell velocities in fingers [43] and the spatial
auto-correlation of the velocity [11]. Indeed, our underdamped AVM predicts that cells
at the interface and the fingers have larger area than those well inside the tissue, which has
been corroborated by recent experiments [44]. We also observe in numerical simulations
of tissue spreading that the velocity of the fastest cell in a finger may oscillate with a short
period in a range between 30 minutes to about one hour. A similar short period oscillation
has been observed in experiments; cf Figure 101A in L. Petitjean’s PhD thesis [43]. Thus, for
spreading tissue, detailed comparison to experimental data provides a quantitatively accurate
description of cell motion (speed, velocity correlation function and polar order parameter).

For antagonistic migration assays, we have reproduced collisions in which one cell
population pushes back another whereas both populations mix forming different types of
interfaces. The key element to model mixing is to keep different junction parameters for the
two colliding tissues, the invading cells are liquid-like whereas the receding tissue comprises
solid-like cells. In addition, a fraction of cells favor mixing, the others segregation, and
that these cells are randomly distributed in space. Thus characterized, numerical simulations
produce outcomes similar to those observed in experiments [23].

To characterize automatically the dynamics of islands and the rugged interface between
aggregates, we have introduced topological data analyses of experiments and time series
from numerical simulations. In collisions between aggregates, the interface between wt and
Ras cell populations roughens and islands appear. The persistence diagrams of Homology
classes 0 (clusters) and 1 (cycles) spread out and the number of these classes given by the
corresponding Betti numbers increases. Using time series of data generated by numerical
simulations, we have explained how to cluster interfaces using distance matrices based on the
bottleneck distance between their persistence diagrams, which are stable to perturbations in the
process. Despite the amount of data from experiments being limited, disruptive events such
as island and cluster formation can be automatically captured by topological data analyses of
numerical simulations and contrasted with experiments. Similarly, the Wasserstein distance
between images enables us to track and classify automatically the evolving shapes of interfaces
between cell populations by using time series from experimental or numerical studies. These
techniques of topological data analysis are scalable and could be used in studies involving
large amounts of data whenever available.

Our results have allowed to extract parameter values and to determine biologically relevant
physical mechanisms for characterizing confluent motion of cellular aggregates, as described
above. In particular, (i) cells at the interface are larger, inform the aggregate motion and
are influenced by it, without needing leader cells to form fingers at the interface; and (ii) in
colliding cellular aggregates, the solid or liquid like character of the cells (as determined by
their junction parameters) decides the way the invasion goes.
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Conclusions

The three main goals presented at the beginning of this thesis are: i) the analysis of the
flocking in the two dimensional Vicsek model, carrying out a linear stability analysis of the
disordered state and studying the possible bifurcations from the kinetic equation discrete in
time and space, ii) the study of a modified Vicsek model including a different mechanism of
synchronization aiming to understand and analyze the ordered state solutions of the amplitude
equations corresponding to period-doubling, Hopf, or pitchfork bifurcations of the disordered
state and iii) the qualitative and quantitative comparison between numerical simulations
and topological data analysis, and the experiments available in the literature of epithelial
monolayers. The main conclusions of the analyses carried out in this thesis are summarized
below.

Flocking in the Vicsek Model

The standard Vicsek Model has been studied by analyzing its kinetic equation for one-particle
distribution function in the limit of infinitely many particles by assuming molecular chaos.
We have carried out a linear stability analysis of this state and studied the possible bifurcations
issuing from it. By using systematically bifurcation theory for its Enskog kinetic equation, we
have observed that the picture that flocking emerges from the bifurcation analysis is intricate.
The amplitude equations for the bifurcation nodes near the critical value of noise are two
coupled equations for a disturbance of the number density and a current density. We have
shown that their solutions exhibit an interplay between parabolic and hyperbolic behavior in
two different time scales when the distance to the critical value of the bifurcation control
parameter goes to zero. In this limit we have found that there appear oscillation frequencies
that give rise to resonance phenomena if the alignment rule contains a periodic function of
time. We have confirmed the existence of these resonances with direct simulations of the VM.

Flocking in the modified Vicsek model

We have presented a modified Vicsek model in which particles can align their velocity with
the local average direction or with the opposite direction. To understand the results, we have
uses the same methodology to study the effect of modifying the probability density of the
noise in the alignment rule by which VM particles change their velocities. The theoretical
results obtained show new exotic phases arising in the behavior of the system and the equation
for the complex amplitude of the bifurcating solution is a modified complex Ginzburg-Landau
equation.
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We have also observed how the novel exotic phases depend on the presence of contrarian
compulsions. For small contrarian compulsions, there is a nonzero optimal noise value for
which polarization is maximal and reflects a trend to homogeneous flocking as in the standard
Vicsekmodel. However, when contrarian compulsions are prevalent, increasing the alignment
noise may transform incoherent particle motion to a phase displaying period two polarization.
If we relax the contrarian rule so that particles may select deflection with a large angle, we
find that the flocking order parameter may oscillate periodically in time.

Tracking collective cell motion

The results obtained from the numerical studies of how epithelial cells aggregates, have shown
an agreement with experiments from P. Silberzan’s group. We have used a convenient model
of active vertex and a dynamics for the cell centers that includes, forces that try to align their
velocities to neighboring cells, friction with the substrate, inertia, and stochastic forces. We
have simulated numerically this model in two different cases related to wound healing and to
invasion of one cell collective by another one: (i) a cellular monolayer spreading on empty
space, and (ii) the collision of two different cell populations in an antagonistic migration assay.

For (i), we have shown that inertia yields larger cells in the boundary than in the interior
of the expanding tissue. We have also shown that fingers and cells located at the interface of
the monolayer have larger area than cells in the middle of the monolayer and that finger cells
oscillate. Both effects have been observed in experiments.

Concerning the antagonistic migration assays (ii), we have reproduced the collision of
two monolayers from different populations. We have shown that cells can form different
interfaces during the collision due to the fluid-like and solid-like behavior of the populations
of cancerous and normal cells, respectively. To characterize the dynamics of the islands
arising at the interface, we have introduced topological data analyses of experiments and
numerical simulations. The overall analysis have allowed to us to extract parameter values
that determine biologically relevant physical mechanisms for characterizing confluent motion
of cellular aggregates.

Future work

For the discrete space-time Enskog equation studied in Chapter 2, the bifurcation solutions
issuing from the disordered state depend on a small amplitude parameter that scales as the
square root of the distance of the bifurcation parameter (e.g., alignment noise) to its critical
value. The bifurcating states satisfy partial differential equations (PDEs) for slowly varying
time and space scales. They still contain the small-amplitude parameter and their character
depends on it: the bifurcation equations are hyperbolic for n = 0 and parabolic for n ≠ 0.
On short time scales, the terms proportional to can be ignored and the resulting hyperbolic
equations may exhibit solutions that have a nontrivial space dependence and oscillate in time.
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For sufficiently long times, the extra diffusive and source terms dampen the oscillations and
make the solutions approach traveling waves. These phenomena will be explored in our future
work.
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