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Abstract-The paper deals with imperfect financial markets and provides new methods to over-
come many inefficiencies caused by frictions. Transaction costs are quite general and far from linear 
or convexo The concepts of pseudoarbitrage and efficiency are introduced and deeply analyzed by 
means of both scalar and vector optimization problems. Their optimality conditions and solutions 
yield strategies to invest and hedging portfolios, as well as bid-ask spread improvements. They also 
point out the role of coalitions when dealing with these markets. Several sensitivity results will permit 
us to show that a significant transaction costs reduction is very often feasible in practice, as well as to 
measure its effect on the general efficiency of the market. AII these findings may be especially impor-
tant for many emerging and still illiquid spot or derivative markets (electricity markets, com odity 
markets, markets related to weather, infiation-linked or insurance-linked derivatives, etc.). 

 

Keywords-Global optimization, Pseudoarbitrage, Spread reduction, Balance point, Sensitivity. 

1. INTRODUCTION 
Applications of mathematical programming in finance are becoming more and more usual in the 
literature. Since the seminal contribution of Markowitz, many authors started addressing port-
folio choice problems by using optimization methods. As time was going back several alternative 
financial topics were sequentially treated, and currently many financial market linked problems 
are the focus of interesting optimization articles. For instance, [1] and [2] deal with pricing is-
sues in incomplete markets and [3] or [4] focus on the risk measurement. The present paper 
applÚ3s optimization procedures and addresses pricing and hedging issues in imperfect markets 
with significant transaction costs. 

Imperfect financial markets are becoming very treated too, with special attention on several 
arbitrage linked issues. For instance, [5-7] or [8] focus on several classical characterizations ofthe 
absence of arbitrage in perfect markets, and they extend the results. The first paper and the last 
one yield a martingale-like property, while the second and the third ones focus on static (or one 
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period) imperfect models and represent some arbitrage-free pricing rules by means of Choquet 
integrals. 

Illiquid markets are a special kind of imperfect markets. Along with high transaction costs 
and bid-ask spreads, illiquid markets usually reflect large difficulties for trading due to the lack 
of available quotes. Many important emerging markets are still illiquid. For instance, electricity 
markets, commodity markets, some inflation-linked markets, weather-linked derivative markets, 
etc. In these markets it is very difficult to apply those pricing methods based on dynamic 
replications (see [9] or [10]). 

Illiquid markets have also deserved the interest of several authors. So, for instance, [11] provides 
new pricing and portfolio choice models, and [12] introduces new arbitrage-linked methods for 
pricing and hedging catastrophe-linked derivatives that were available at the Chicago Board of 
Trade and reflected scarce activity. 

The approach of [12] draws on real bid or ask quotes and empirically tests the possibility of 
outperforming some of these quotes without assuming any sort of risk. This is possible if we can 
hedge with an arbitrage. To prevent illiquidity effects and the impossibility of any continuous 
trading, static arbitrage was only tested. One year later, the same method was tested in liquid 
markets in [13]. Both empirical papers present clear evidence justifying the interest of this 
technique to increase liquidity and to reduce in practice transaction costs and bid-ask spreads. 

Both papers aboye empirically analyzed the financial markets behavior by drawing on some 
scalar and linear optimization problems. Their theoretical framework, as well as the possible 
scope of future empirical applications, has been significantly extended in [14]. This article con-
siders multiple combinations of securities, which lead to multiobjective optimization problems. 
However, it follows the approach of [5] and imperfections are represented by the bid-ask spread. 
Consequently, transaction costs are linear and so are all of the optimization problems proposed 
in the study. 

Many real imperfections are nonlinear and nonconvex (commissions paid to brokers that depend 
on the traded volume, special prices obtained when purchasing many units of some asset, surplus 
to be paid when dealing with severallevels of bid/ask prices, etc.). Thus, it seems interesting to 
focus on them and develop classic issues like arbitrage, hedging, and efficiency. This is the major 
object of this paper that will enlarge the empirical and practical interest of these techniques. 

The article outline is as follows. Section 2 will be devoted to introduce basic assumptions, 
notations, and the general framework. The major concepts of arbitrage, strong-pseudoarbitrage, 
weak-pseudoarbitrage, and efficiency will be introduced in Section 3. Theorem 1, the most 
important finding in the section, provides a characterization of the arbitrage absence by means 
of the existence of stochastíc discount factors. For nonconvex frictions this seems to be the first 
result .of this type appearing in the literature. 

Section 4 will focus on strong-pseudoarbitrage portfolios and will characterize their existence, 
as well as those methods that will permit us to compute these strategies in practice (if available). 
We will also show how to use them in order to improve (outperform) the real market quotes and 
reduce transaction costs. 

The concept of strong-pseudoarbitrage is the theoretical representation of the empirical method 
proposed in [12], though we consider nonconvex imperfections as well. By means of SE)veral scalar 
optimization problems this concept will allow us to define the so-called "shadow bid-ask spread" 
and its associated hedging portfolios. Shadow spreads will be a powerful tool for practitioners who 
can use them in order to improve liquidity and earnings. The shadow spread major properties will 
be provided in Theorems 4 and 6. These results also point out the existence of critical differences 
with respect to the case of linear frictions proposed in [14]. 

Section 5 is devoted to the so-called ''weak pseudoarbitrage strategies". They involve complex 
combinations of securities which lead to vector optimization problems frequently containing a 
significant number of objectives. We will address these multiobjective problems by drawing on 
the "balance space approach" as introduced and developed in [15J and [16]. Once again we will 
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provide several results that could be interesting to both researchers and practitioners. Indeed, 
on the one hand the presence of weak-pseudoarbitrage will be characterized and used to improve 
liquidity and transaction cost levels, and several methods to measure the sensitivity of the market 
efficiency with respect to friction improvements will be given too. On the other hand investors 
and brokers will have a new method allowing them to establish coalitions and to obtain additional 
riskless profits. Once more we will reveal many significant differences with regard to [14]. They 
are caused by the nonconvex imperfections. 

The last section summarizes and concludes the papero 

2. PRELIMINARIES AND NOTATIONS 
This section is devoted to present sorne basic notations and the general framework. 
Consider n arbitrary securities Bj, j = 1,2, ... , n, available in the market, and denote by 

P = (Pl,P2, ... ,Pn) and q = (ql, q2, .. . , qn), Pj ~ qj, j = 1,2, ... , n, the vectors of current bid 
and ask prices, respectively. The portfolio composed of Xj units of Bj in long position (bought 
assets) and Yj units of Bj in short position (sold assets), Xj, Yj ~ O, j = 1,2, ... , n, will be 
represented by (x,y) = (Xl,X2, ... ,Xn,Yl,Y2, ... ,Yn) E ]R2n. 

Along with the transaction cost generated by the bid-ask spread q - P, agents have to pay an 
additional friction that depends on the portfolio (x, y) E ]R2n. A discussion below will justify 
this assumption. Thus, we will consider a real-valued function r.p such that the current price of 
(x, y) E ]R2n is given byl 

n 

Ao(x,y) = ¿(qjXj - PjYj) + r.p(x,y). 
j=l 

(1) 

Suppose that T is a future date and consider the set K providing us with the states of nature 
that may occur at T. Assume that K is endowed with an appropriate topology and becomes a 
Hausdorff and compact space. If Vj (k) is the payoff of Bj , j = 1,2, ... ,n, at T if k E K occurs, 
and Wj(k) ~ Vj(k) represents the liability associated with a short Bj , j = 1,2, ... , n, k E K, 
then the real-valued function AT : ]R2n X K ---+ ]R given by 

n 
AT(X,y, k) = ¿ (xjVj(k) - yjWj(k)) (2) 

j=l 

yields the payoff AT(x, y, k) of (x, y) at T under the state k. Expression (2) clearly shows that the 
function AT is linear in the (x, y) variable. Moreover Vj, W j : K ---+ ]R, j = 1,2, ... , n, will be 
assumed to be continuous and, therefore, it trivially follows from (2) that AT(X, y, -) : K ---+ ]R 

will be ruso continuous in the k variable. 
The classical one period approach of financial economics usually considers that states of the 

world are given by probability spaces rather than Hausdorff and compact spaces and, therefore, 
future prices are given by square-integrable functions rather than continuous ones. This fact 
implies sorne advantages since compactness is not required and the space of square-integrable 
functions makes it possible to apply those properties only associated with Hilbert spaces (orthog-
onality properties, for instance). Instead, the set of states of the world must be endowed with 
an initial probability measure, and this is the reason why we have decided to modify the general 
setting. The theory allows for applications on very different types of market and it would be quite 
difficult in practice to provide the corresponding states of nature with realistic probabilities. On 
the other hand, both approaches are often quite closely related and most of the results may be 
easily translated from one framework to other. 

Regarding the function r.p, we will assume that it incorporates those costs that are not refiected 
by the spread q - p. So for instance, if investors have to pay to brokers an additional commission 

lWe will assume that 'P does not depend on the investor. 
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per traded asset, then <p should eontain a term of the form L;7=1(CjXj + SYj). If there is a 
eonstant fixed commission <Po then <p must add this parameter. If there are limit orders and 
the ask price of Bj increases from qj to qj > qj whenever Xj overcomes the limit Cl'.j, then <p 
could contain the term (qj - qj)(Xj - Cl'.j)+.2 Obviously, <p can also reflect special discounts for 
significant traded volumes and many other situations. 

Actually, in practice <p will be only given for isolated values of (x, y). For instance, we often 
know the transaction costs whenever (x, y) is composed of integers. However, it is easy to 
interpolate the function <p in such a way that it verifies several properties. Thus, in what follows 
we will impose some assumptions that are meaningful from the economic viewpoint. 

ASSUMPTION 1. 
(la) 
(lb) 
(le) 

<p is continuously differentiable on an open set containing tbe nonnegative cone oflR2n . 

<p(0, O) = 3?lex,y)=eo,O) = -te-y.l(x,y)=(O,O) = O, j = 1,2, ... , n. 
] ] 

<p is increasing, i.e., 
<p(X, y) ~ <p(x',y') 

wbenever O ~ x ~ x' and O ~ Y ~ y' . 

(3) 

• 
It might be worthwhile to point out that some assertions related to the differentiability of <p 

might be relaxed without significantly affecting the remainder of the paper. In such a case 
optimality and sensitivity results for nondifferentiable optimization problems (see [17J for a recent 
contribution) could be used. 

3. ARBITRAGE 
This section is devoted to introduce those key concepts that will often apply throughout the 

paper. 
We will deal with arbitrage portfolios ofthe second type, in the sense of [9J. Arbitrage portfolios 

of the first type might be also considered but they are beyond the scope of this article. 

DEFINITION 1. (x, y) is said to be an arbitrage portiolio ii Ao(x, y) < O and AT(x, y, k) :2: O for 
every k E K. • 

Next we will introduce a crucial concept for this papero 

DEFINITION 2. Let J11 h, and J3 be disjoint sets sucb that {1, 2, ... ,n} = JI U J2 U J3 . Let 
Z = (Zj)jE]¡ UJ2 be a family of real numbers such that Zj :2: 1, j E JI U J2 . Portiolio (x,y) = 
((zJ

" 
O, xJ.)(O, zh, YJ,)) is said to be a pseudoarbitrage (ps-arbitrage) portfolio associated with 

(h J2 , z) if 

<p((ZJl ,0,XJ3 )(0, ZJ2,YJ3 )) + LPjZj- LqjZj+ L(qjXj-PjYj) <O (4) 
jEJ, jEJ2 JE J3 

and 
L zjVj(k) - L zjWj(k) + L xjVj(k) - LyjWj(k) :2: O (5) 
jEJ, jEJ2 JEJ3 JEJ3 

ior every k E K. In addition, ii JI = {jo} is a singleton and h isempty then (x,y) will be 
called bid-pseudoarbitrage (bps-arbitrage) associated with (jo, Zjo)' ji J2 = {jo} is. a singleton 
and JI is empty then (x, y) is said to be an ask-pseudoarbitrage (aps-arbitrage) associated with 
(jo, Zjo)' Every bps-arbitrage or aps-arbitrage will be called a strong-pseudoarbitrage portfolio 
(sps-arbitrage). Otherwise we will merely say weak-pseudoarbitrage portfolio (wps-arbitragep • 

Let us interpret the concepts aboye from the economic point of view. If (x, y) is a ps-arbitrage 
associated with (hJ2 , z), then bid prices are "too cheap" for those securities related to JI and 

2 As usual, (3+ = Sup{(3, O} and (3- = Sup{ -(3, O} for every real number (3. 
3Condition Zj :2: 1 for j E hu h could be relaxed to Zj > O for j E JI U J2, and the results would not be affected 
at al!. Nevertheless, owing to nonlinear or convex frictions we preferred to follow the economic intuition and to 
impose that. at least one security must be traded when implementing ps-arbitrage. 
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ask prices are "too expensive" for the securities of J2 . Indeed, any trader can improve the quotes 
((Pj )jEJ17 (qj )jEJ2 ) by bidding (Zj )j01 and simultaneously asking (Zj )jE J2 for a better (bigger) 
price than 

L PjZj - L qjZj. (6) 
jEJ1 jEJ2 

This trader can totally hedge her Ihis position if a new investor accepts her Ihis proposal. It is 
sufficient to add the strategy ((Xj)jEJ3 , (Yj)jEh). 

Following the strategy aboye competition among traders trying to obtain arbitrage profits could 
lead to significant bid-ask spread reductions in a nonps-arbitrage free market. This could make 
this concept very appropriate in order to increase the level of efficiency of imperfect markets. 
Dealing with sorne concrete sps-arbitrage portfolios, the empirical papers [12] and [13] have 
illustrated sorne possibilities of these methods. Note that when sorne trader tries to improve real 
quotes by applying the previous procedure he/she will have to deal with the securities of JI U J2, 
which suggests that sps-arbitrage portfolios, if available, will be more interesting to traders than 
wps-arbitrage portfolios. 

Our last definition is related to the concept of "nondominated" or "efficient" strategy. Since 
the word "efficiency" has many nonequivalent meanings in both vector optimization and finance, 
it is worthwhile to indicate that we will follow the idea of the pioneering book of Pareto (see [18]). 
DEFINITION 3. Portfolio (x,y) is said to be efficient iftbere are no portfolios (x', y') verifying 

(a) Ao(x', y') ::; Ao(x,y). 
(b) AT(x', y', k) ;::: AT(x, y, k) for every k E K. 
(c) Ao(x',y') < Ao(x,y) or tbere exists k E K sucb tbat 

AT(x', y', k) > AT(x, y, k). (7) • 

EXAMPLE 1. Let us consider a simple example illustrating the concepts aboye. It will also show 
that the converse of the obvious implication 

ps-arbitrage absence ==} sps-arbitrage absence ==} arbitrage absence 

fails in general, Le., one can find ps-arbitrage and sps-arbitrage portfolios in arbitrage free markets 
(see Assumption 3 below). 

Suppose that n = 4, K is a finite set composed of three states of nature, BI is a bond whose 
final payoff is (1,1,1), B 2 is an arbitrary stock with payoff (0,1,2), and B3 and B4 are call and 
put options on B 2 , with strike 1 and final payoff (0,0,1) and (1,0,0), respectively. 

Suppose that the vector of bid prices equals P = (1,0.7,0.1,0.1), while the vector of ask prices 
equals q = (1,0.9,0.3,0.5). There are no more transaction costs so any liability and any payoff 
are identical and cp == O. Theorem 1 below will show that the market is arbitrage free. On the 
other hand, it may be easily checked that x = (0,1,0,1) and y = (1,0,1, O) provide a sps-portfolio 
associated with JI = {4}, Z4 = 1, and J2 = 0, Le., (x,y) is an arbitrage if B4 may be purchased 
by paying its bid price. 

Let us consider a new bid price P = (1,0.7,0.1,0.3). Then, Theorem 4 below will show that 
the market is sps-arbitrage free. However, it is easy to check that the portfolio aboye provides a 
wps-arbitrage associated with the partition J¡ = {2,4}, zJ1 = {1, 1}, and J2 = 0, Le., (x,y) is an 
arbitrage as long as B 2 and B4 may be purchased by paying their bid prices. 

Finally, notice that the purchase of B2 + B4 is not efficient since the current price 1.4 is 
bigger than the current price 1.3 of Bl + B 3 , although both portfolios generate the same payoff 
(1,1,2). • 

Theorem 1 below will provide a characterization of the absence of arbitrage. It is in the line 
of other results concerning imperfect markets [5,8,14], but this seems to be the first extension of 
the classical theory for perfect markets ([9,10], etc.) that involves nonconvex frictions. 
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As usual, C(K) will denote the Banach space of real-valued and continuous functions on K 
endowed with the supremum norm. The Riesz representation theorem establishes that M(K) is 
the dual space of C(K), M(K) being the Banach space of regular a-additive me asures on the 
Borel a-algebra B of K endowed with the variation norm. The set of nonnegative measures 

(8) 

and the set of probability measures 

P(K) = {~E M(K)j ~ ~ 0, ~(K) = 1} (9) 

are especially important subsets of M(K) (see [19] for further details). 
Even for perfect markets, many characterizations of the absence of arbitrage are proved based 

on the existence of some numeraire, i.e., a security whose price and payoff are always positive. 
We will also impose a condition of this type. 

ASSUMPTION 2. Let us assume bencefortb tbat V1(k) > ° for every k E K.4 • 
REMARK 1. Consider a continuous function f E C(K). We are interested in the minimum cost 
portfolio whose payoff at T is at least f. This portfolio must solve the optimization problem 

n 

minAo(x,y) = 2)QjXj - pjYj) + cp(X, y), 
j=l 

n n 

AT(X,y,k) = I>jVj(k) - LyjWj(k) ~ f(k), 
j=l j=l 

j = 1,2, ... ,n. 

It is easy to see that the Kuhn-Tucker conditions become 

XjVj = 0, 
yji/j = 0, 

L (t,XjV,(k) - t,.jWj(k) - f(k)) d"(k) ~ 0, 

x,y,~,v,i/ ~ 0, 

x,y E lRn
, ~ E M(K), v,i/ E lRn

. 

kEK, (10) 

j = 1,2, ... ,n, 

j = 1,2, ... ,n, 
j = 1,2, ... ,n, 
j = 1,2, ... ,n, (11) 

Recall that the Kuhn-Tucker conditions are only necessary optimality conditions if problem (10) 
verifies some kind of qualification, so let us prove that Assumption 2 provides the qualification 
we need. Indeed, according to the Fritz-John theorem (see [20]), if a portfolio (x, y) solves (10) 
then there exist T E lR, v',i/' E lRn , and a regular measure~' on K such that (X,y,T,v',i/',~') 

4Notice that Assumption 2 is weak and easily fulfilled in practice. For instance, it trivially holds if Bl is a riskless 
asset. 
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T{){)<P + Tqj - r Vj(k) dIJ/(k) - vj = O, 
Xj JK 

T{){)<P - TPj + r Wj(k) d¡./(k) - vj = O, 
Yj JK 

Xjvj = 0, -, ° YjVj = , 

L (t. x; V; (k) - t. y; W;(k) - f(k)) d"'(k) ~ 0, 

x,y,T,¡.l,v',v' 2: 0, 
(T,¡/,V',v') =1- (0,0,0,0). 

Suppose that T = O. Then the first equation leads to 

L V1(k) dJi.'(k) ~ ° 

j=1,2, ... ,n, 

j = 1,2, ... ,n, 
j=1,2, ... ,n, 
j = 1,2, ... ,n, (12) 

(13) 

and therefore Ji.' = ° (see Assumption 2). Hence, the first and second equation generate v', v' = ° 
and we have a contradiction with the last expression of (12). Consequently T =1- ° and (11) 
trivially follows if one takes Ji. = Ji.' /T, V = v' /T, and v = v' /T. • 

THEOREM 1. Tbe following assertions are equivalent. 
(a) The market is arbitrage free. 
(b) Ji f == ° then problem (10) attains a global optimal value at (x, y) = (0,0).5 
(e) There is a stochastic discount factor (also called state price, see [9]) of tbe market, Le., 

there exists Ji. E M+(K) sucb tbat 

and (14) 

j = 1,2, ... ,no 

PROOF. 

(a) ===> (b) Suppose that the market is arbitrage free. Then according to Definition 1, 
Ao(x,y) 2: ° holds for every (10)-feasible (x,y) E ]R2n. Hence, (b) trivially follows from 
Ao(O, O) = O. 

(b) ===> (e) If (O, O) solves (10) then it must be a solution of system (11) with f = o. Taking 
x = 0, 'y = O, and bearing in mind Assumption 1 and the multípliers sign we get (14). 

(e) ===> (a) Assume (e) and suppose that AT(X, y, k) 2: ° for every k E K. We have that 
n n 

Ao(x,y) 2: LXjqj - LYjPj. (15) 
j=1 j=1 

Since Xj 2: O and Yj 2: 0, j = 1,2, ... , n, (14) implies that 

Therefore, the market is arbitrage free. • 

ASSUMPTION 3. As usual in finance, hereafter we will assume that tbe market is arbitrage free. • 

5Throughout this paper we will not consider local solutions of optimization problems. On the contrary, our 
solutions will be always global, although uniqueness wÍll never be assumed or imposed. Accordingly, Statement (b) 
above means that (O, O) belongs to the set of global solutions of (10) though this set could be more than a singleton. 
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4. SHADOW PRICES AND STRONG-PS-ARBITRAGE 
This section will yield several characterizations of the absence of sps-arbitrage, as well as those 

methods that will permit us to compute sps-arbitrage portfolios (if available) and to improve the 
real market quotes. 

Let (J1,J2,J3) be a partition of {1,2, ... ,n} and {Zj; j E JI U J2} a set of positive real 
numbers. Take (7rj)jEJ1' (Pj)jE J2' (Xj)jEJa' and (Yj)jE J3 as decision variables and consider the 
optimization problem 

L zjVj(k) - L zjWj(k) + L xjVj(k) - L yjWj(k);::: O, 
jEJ1 jEJ2 JEJ3 JEJ3 

k EK, 
(17) 

(¡? «zJ1' O, xJ3) (O, ZJ., yJJ) + L 7rjZj - L PjZj + L (qjXj - PjYj) ~ O, 
jEJ1 jEJ2 JEJ3 

Xj ;::: O, Yj;::: O, 

LEMMA 2. Let (JI, J2, J3) be a partition of {1, 2, ... , n} and {Zj; j E JI U J 2} a set of strictly 
positive real numbers. Define 

A~ (]¡,J2,Z) 

as a maximum between tbe supremum of (17) and 

L ZjPj - L Zjqj. 
jEJ1 jE J 2 

Tben, 
(a) L ZjPj - L Zjqj ~ Aü (JI, J2, z) ~ L (Zjqj) - L (ZjPj)· 

jEJ1 jEJ2 jEJ1 jE J2 

(18) 

(19) 

(b) rf Zj ;::: 1, j E JI U J2, tben tbere are ps-arbitrage portfolios associated witb (JI, J2, z) if 
and only if 

A~(Jl,J2,Z» L(ZjPj)- L(Zjqj). (20) 
jEJl jEJ2 

PROOF. 

(a) Suppose that «7rj)jEJ1 , (Pj)jEJo, (Xj)jEJ3' (Yj)jEJ3) is (17)-feasible. The first constraint 
. of (17) leads to 

L zjVj(k) - L zWj(k);::: LyjWj(k) - L xjVj(k). (21) 
jEJ1 jEJ2 JEJ3 JEJ3 

Theorem 1 and Assumption 3 guarantee the existence of ¡L, state price of the market. 
Thus, computing the integral of expression aboye, we get 

L Zjqj - L ZjPj ;::: L YjPj - L Xjqj. (22) 
jEJ1 jEJ2 JEJ3 JEJ3 

Besides, the second constraint of (17) and (¡?;::: ° (see Assumption 1) imply that 

L YjPj - L Xjqj ;::: L 7rjZj - L PjZj 
JEJ3 JEJ3 jEJ1 jEJ2 

and the conclusion trivially follows. 
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(b) Suppose that there are ps-arbitrage portfolios. Then there exists a (17)-feasible solution 
((Pj)jEJ1,(qj)jEJ" (Xj)jEJ" (Yj)jEJ3)· Moreover, the second constraint holds in terms 
of strict inequality and therefore (pj)jEJ1 (respectively, (qj)jEJ2) may slightly increase 
(decrease) without making the restrictions fail. 

Conversely, if ((7rj )jEJl' (Pj )jEJ2' (Xj )jEJ" (Yj )jEJa) is (17)-feasible and such that 

jEJ1 
then it is obvious that 

((ZJl' O, (Xj)jEJ3) (O, zJ2> (Yj)jE J3)) 

is a ps-arbitrage portfolio. 

(23) 

• 
Problem (17) becomes easier if we deal with sps-arbitrage portfolios. So, fix jo E J and 

Zjo > O, take 'Trjo (respectively, Pjo) (Xj kho and (Yj )j#jo as decision variables, and consider the 
nonnecessarily convex problems 

and 
minpjo 

Zjo Vjo(k) + ¿ Xj Vj(k) - ¿ Yj Wj(k) ~ O, 
ii-jo ii-jo 

<P (( Zjo' (Xj)ii-jo) (O, (Yj)ii-jo)) + Zjo 7rjo + ¿ (qjXj - PjYj) :s; O, 
ii-jo 

Xj ~ O, Yj ~ O, 

-ZjoWjo(k) + ¿ xjVj(k) - ¿ yjWj(k) ~ O, 
ii-jo ii-jo 

<P ((O, (Xj)ii-jo) (Zjo, (Yj)ii-jo)) - ZjoPjo + ¿ (qjXj - PjYj) :s; O, 
j#jo 

Xj ~ O, Yj ~ O, 

kEK, 

(24) 

j #jo, 

kEK, 

(25) 

j # jo. 

LEMMA 3. Fix jo E {1, 2, ... ,n}. Given Zjo > O, define Plo (Zjo) (respectively, q"h (Zjo)) as a 
maximum (respectively, minimum) between tbe supremum (respectively, infimum) of (24) (re-
spectively, (25)) and Pjo (respectively, qjo). Tben 

(26) 

balds far every Zjo' zjo > O. 
PROOF. The result trivially follaws from Lemma 2 if (24) or (25) is infeasible, so let us assume 
that they are feasible. Lemma 2 also shows that Pjo :s; plo(Zjo) :s; qjo and Pjo :s; q"h(zjo) :s; qjo' so 
let us prove 

(27) 

It is clearly sufficient to see that 
(28) 

whenever (7rjo, (Xj)ii-jo, (Yj)ii-jo) is (24)-feasible and (Pjo' (xj)ii-jo, (yj)ii-jo) is (25)-feasible.6 

Theorem 1 and Assumption 3 point out that the set of state prices verifying (14) is nonempty. 
Thus, take the state price J.-l and computing integrals on the first constraint of (24) one has 

Zjo ¡ VJo dJ.-l + ¿ qjXj - ¿ PjYj ~ O. 
k ii-jo ii-jo 

(29) 

6Note that Zjo must be substituted by zJo in (25). 
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Besides, the second constraint of (24) implies that 

(30) 

Therefore Jk VJo d¡.t ~ 'Trjo' Analogously Jk Wjo d¡.t :::; Pjo and the proof is complete. • 
Let us introduce another basic concept in order to study the existence of sps-arbitrage portfo-

lioso 

DEFINITION 4. The shadow bid price oE Bj is denned by 

(31) 

j = 1,2, ... , n. Analogously, shadow ask prices are given by 

(32) 

j = 1,2, ... ,n. • 
Lemma 3 points out that Pj :::; pj :::; qj :::; qj hold for j = 1,2, ... , n. Moreover if we take the 

ideal assumptions <p == O and W j == VJ, j = 1,2, ... , n, and compute the ideal shadow prices p* 
and q* we clearly have 

P3" < p+ < p~ < q* < q+ < q3" -3-3-3-3- (33) 

for j = 1,2, ... , n. As will be pointed out in Remark 2, inequalities aboye provide useful upper 
and lower bounds for those price improvements linked to sps-arbitrage strategies. 

THEOREM 4. The Eollowing statements are equivalent: 
(a) the market is bps-arbitrage free, 
(b) the equality Pj = pj(Zj) holds Eor j = 1,2, ... , n and Eor every Zj ~ 1, 
(c) the equality Pj = pj holds Eor j = 1,2, ... , n. 

Analogously one has the equivalence amongst: 
(d) the market is asp-arbitrage free, 
(e) The equality qj = qj(Zj) holds Eor j = 1,2, ... , n and Eor every Zj ~ 1, 
(f) the equality qj = qj holds Eor j = 1,2, ... , n. 

PROOF. It trivially follows from Lemmas 2 and 3. • 
Shadow prices may be understood as those prices attainable by means of sps-arbitrage methods. 

A natural question arises if some investor improves a real quote from Pj (or qj) to Pj E (Pj, pi) (or 
to íiJ E (qj,qj)). Indeed, does the improvement modify (improve) the value of any other shadow 
price? The remainder of this section is devoted to provide an appropriate answer (see Theorem 6 
and Remark 2 below), as well as some complementary properties related to the sps-arbitrage. 

Throughout the rest of this section we will impose the following. 

ASSUMPTION 4. lnequality V2 (k) > O holds Eor every k E K.7 • 

LEMMA 5. Suppose that jo E {1, 2, ... , n} and Zjo > O. lE problem (25) (respectively, (24)) 
is solvable then it verifies the Kuhn-Tucker conditions, and the multiplier associated with the 
second constraint is >. = l/zjo' 
PROOF. Both proofs are similar so let us deal with problem (25). According to the Fritz-John 
theorem (see [20]) there exists a nonnull and nonnegative 

(7, >.', ¡.t', v', v') E]R x]R x M(K) x]Rn x]Rn 
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such that 
7 - A'Zjo = O, 

-i Vj(k) d¡l(k) +)..' :~ + A'qj - vj = O, j -1 jo, (34) 

i Wj(k) d¡i(k) + A' :~ - A'Pj - vj = O, j -1 jo, 

along with the complementary slackness conditions. If 7 = O the first equation gives N = O, 
whence the second equation leads to IK Vj(k) d¡l(k) :::; O if j -1 jo. Thus, if jo -1 1 we have 
IK V1(k)d¡.1/(k):::; O and, otherwise, IK V2(k)d/1/(k):::; O. In both cases ¡.1/ = O. Now the systern 
aboye gives v' = v = O and we have the contradiction (7, N, p,', 1.1', v') = O. Since 7 -1 O the lemma 
trivially follows if one takes (A, p" v, v) = (1/7)(N, p,', 1.1', v'). • 

THEOREM 6. Let l¡, 12 e J be such that Pj < pj if j E l¡ and qj > qj ii j E h Consider 
Pj E [pj,Pj) whenever j E l¡ and íÜ E (qj,qj] whenever j E h Fix jo 1. l¡ U h Zjo ~ 1, 
and suppose that (25) (respectively, (24)) achieves its optimal value at (Q, (Xj)j'¡'jo, (Yj)j.¡.jo) 
(respectively, (P, (xj)j'¡'jo' (Yj)jho)) when the bid price oi Bj is Pj ior j E l¡ and its ask price 
is íÜ ior j E h Then, 

8Q x' 8P x', 
_=_J = __ J 

8íjj 
, 

8íjj Zjo Zjo 
(35) 

if j E 12 , and 
8Q - Yj 8P yj 
8pj Zjo 8pj Zjo 

(36) 

ifj El1' 

PROOF. Both P and Q are similar so let us analyze the partial derivatives of Q. The latter lemma 
guarantees that the envelope theorem applies (see for instance [21] or [22]' where the result is 
also called "envolvent theorem"). Accordingly, g~ = ~, j E l¡, and g~ = ~,j E 12, where 

.c2 (PjO' (Xj)j.¡.jo' (Yj)j'¡'jo,p"A, (Vj)j'¡'jo' (Vj)j.¡.jo) 

= Pjo + 1 Wjo(k) dp,(k) - I:Xj r Vj(k) dp,(k) + ¿ Yj 1 Wj(k) dp,(k) 
K j.¡.jo JK j.¡.jo K 

+A (t.p - ZjoPjo + ¿ (íjjXj - PjYj)) - ¿ VjXj - ¿ VjYj 
j.¡.jo j.¡.jo j.¡.jo 

is the Lagrangian function of (25). Hence the latter lemma implies that ~~ = AXj = Xj/Zjo for 
j E 12 and ~ = -AYj = -Yj/Zjo for j E 11 . • 

REMARK 2. Theorem 6 reflects that the partial derivatives of P and Q have the adequate sign, 
in the sense that improvements on market quotes will never have a neg¡¡,tive influence on the rest 
of shadow prices. The importance of this effect increases as so does the absolute value of the 
derivatives. In particular, if they do not vanish then improvements on market quotes will also 
imply improvements on shadow prices. This is a very important difference with respect to those 
situations for which frictions are linear. Indeed, a result in [14) proves that improvements on real 
quotes do not modify the remainder shadow prices if t.p == O and the final transaction costs also 
vanish (Wj - Vj == O, j = 1,2, ... ,n). 

Ideas of the paragraph aboye provoke a new question. In fact,shadow prices provide those 
quotes that may be achieved by sps-arbitrage methods in the first step but, once a given quote 
has been improved, which are the new shadow prices? Do they remain constant? Are they 
significantly better? Of course the value of the derivatives of Theorem 6 yields an important 
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answer, though it is not complete. Anyway, we can obtain additional and useful (incomplete) 
information by computing the initial shadow prices p* and q* of the market under the ideal 
assumptions <p == O and W j == Vj, j = 1,2, ... , n. According to [14] p* and q* remain constant 
after improvements and therefore they provide bounds for those shadow prices that may be 
reached after several steps and correspond to the real <p and Wj , j = 1,2, ... ,n (see (33)). • 

5. EFFICIENCY, WEAK-PS-ARBITRAGE AND COALITIONS 
Weak-ps-arbitrage strategies may be also an appropriate tool in order to outperform real market 

quotes, though in this case several assets are simultaneously involved in the new offer. So, the 
purpose of this section is to analyze the absence or presence of wps-arbitrage portfolios and those 
methods permitting us to compute them in practice. 

First of all it is worth pointing out the close relationship between the existence of inefficient 
portfolios (see Definition 3) and the existence of ps-arbitrage. Furthermore we can provide a 
necessary condition (see Statement (d) below) for a portfolio to be efficient. 

THEOREM 7. Let (JI, J2, J3) be a partition oi {1, 2, ... , n} and Z = (Zj)jEJ1 UJ2 a iamily oi 
strictly positive real numbers. Consider tbe portiolio (x, y) E ]R2n given by 

xJ, = XJ3 = O, 
xJo=zJo, 

fú, = zJ" 
YJ2 = YJ3 = O. 

Tben, statements below verify tbe implieations (a) ==* (b) and (a) ==* (e) ==* (d). 
(a) Portiolio (x, y) is efficient. 
(b) li Zj 2 1, j E JI U h, tben tbere are no ps-arbitrage portiolios (x, y) 

(JI, J2, z). 
(c) Portiolio (x,y) solves problem (10) ior f = ¿jEJo ZjVj - ¿jEJ, Zj Wj .8 

(d) Tbere exists ¡.¡, E M+(K) sueb tbat (x,y) solves tbe system 

a<p 1 .,,-- + qj = Vj(k) d¡.¡,(k) , 
uXj K 

a<p 1 .,,-- + % 2 Vj(k) d¡.¡,(k) , 
uXj K 

a<p 1 --+Pj= Wj(k) d¡.¡,(k) , 
aYj K 

j E J¡, 

a<p 1 -.,,-- + Pj :::; Wj(k) d¡.¡,(k) , 
UXj K 

PROOF. 

(a) ==* (b) Suppose that (x,y) exists. One has that 

from where 

<p(x, y) + L PjZj - L qjZj + L (qjXj - PjYj) < O, 
jEJ, jEJ2 jEJ3 

Ao(x,y) 2 L qjZj - L PjZj 
jEJ2 jEJ, 

> <p(X, y) + L(qjXj-PjYj) 
jEJ3 

2 <p(X', y') + L (qjXj - PjYj) = Ao(x', y'), 
jEJ3 

assoeiated witb 

(37) 

(38) 

(39) 

8For example, (x, ij) is a global solution of the problem, though uniqueness is not guaranteed and therefore more 
global solutions might existo 
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(x', y') being the portfolio xJ1 = XJ2 = YJ1 = YJ2 = 0, XJ3 = XJ3 and YJa = YJa. Besides, 

¿ZjVj(k)- ¿zjWj(k)+ ¿(XjVj(k)-yjWj(k» 2:0, 
jEJ1 jEJ, JEJa 

for every k E K, from where 

AT(x,y,k) = ¿ zjVj(k) - ¿ zjWj(k) 
JEJ, jEJ1 

:::; ¿ (xjVj(k) - yjWj(k» = AT(x', y', k) 
JEJ3 

for every k E K. Expressions (39) and (41) clearly contradict (a). 
(a) =? (c) It trivially follows from the definition of efficient portfolio. 
(c) =? (d) System (11) becomes 

O<p { 
OXj + qj - } K Vj(k) dp,(k) - I/j = O, j = 1,2, ... ,n, 

O<p { 
OYj - Pj + } K Wj(k) dp,(k) - Vj = 0, j = 1,2, ... ,n, 

x, y, 'T, p" 1/, V 2: 0, 

and we immediately have (d). 

(40) 

(41) 

(42) 

• 
The interest of Theorem 7 aboye seems to be clear. As shown in Example 1 there may exist 

inefficient (dominated) portfolios even for arbitrage-free and sps-arbitrage-free markets, so it is 
important to have practical rules detecting that. In this sense, system (37) gives a necessary 
condition that may be useful to traders. Besides, when testing in practice the existence of ps-
arbitrage we can also check (37) due to the implication (a) =? (b). 

Despite the comments aboye we also need new direct criteria indicating the presence of ps-
arbitrage, in the line of those ones reached in Section 4 for sps-arbitrage. Thus, let us use the 
same notations as in (17), suppose that Zj 2: 1, j E JI U J2, and consider the vector problem 

max(1I'j)jEJ1' min(pj)jEJ2' 

E ZjVj(k) - ¿ zjWj(k) + ¿ XjVj(k) - ¿yjWj(k) 2: 0, 
jEJ1 jEJ2 JEJa JEJa 

<p «ZJl' 0, XJa)(O, ZJ" YJa» + ¿ 1I'jZj - ¿ PjZj + ¿ (qjXj - PjYj) :::; 0, 

1I'j :::; qj, 

Pj 2: Pj, 
Xj 2: 0, Yj 2: 0, 

jEJ1 jEJ2 JEJa 

kEK, 

j E JI, 
j E J2 , 

j Eh 

(43) 

In order to guarantee that problem (43) is feasible it is sufficient to show that so is problem (17). 
It may be ensured if there are ps-arbitrage strategies associated with (JI, J2, z), which, according 
to Lemma 2b, will hold if henceforth we impose the following. 

ASSUMPTION 5. A'ó(J1,J2 ,Z) > ¿jEJt(ZjPj) - ¿jEJ2(Zjqj)' • 
Problem (43) will play the role played by (24) and (25) when dealing with sps-arbitrage strate-

gies. In particular, every optimal value «1I'j)jEJ1' (Pj)jEJ2) of (43) will be considered an attainable 
market quote. This is the major reason why we have added the third and fourth constraints since 
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they cannot be derived and their failure would imply that we would not be outperforming the 
whole set ofmarket prices ((qj)jEJp (Pj)jEJ2) (see Lemma 2a). Hence, if1l"j > qj for some j E J1 
(respectively, Pj < Pj for some j E J2 ) then agents trying to implement ps-arbitrage would not 
need to bid asset Bj (respectively, ask asset Bj) because they can reach a better price in the mar-
ket. Consequently they would reduce J1 (respectively, h) making it easier to apply ps-arbitrage 
in practice. 

We will address (43) by drawing on the "balance space approach" [15] and, consequently, we 
have to compute the vector of partial optimal values 

by maximizing "Trj for each j E J1 (respectively, minimizing Pj for each j E J2 ) under the 
constraints of (43). If (as usual) (44) is not an attainable objective value (i.e., if problem (43) is 
not balanced) then we choose and fix a vector of preferential deviations d = (dj hlUJ2 composed of 
strictly positive real numbers. Vector d indicates the ratio dj I dj' of "losses" in the jth-objective 
per unit lost in the j'th_one (see [15] for a further discussion). We will yield the closest to (44) 
Pareto solution of (43) proportional to d. The mentioned Pareto solution will take the form 

(45) 

for some 10 > O. In order to ensure that the Pareto solution (45) exists we will impose the 
following. 

ASSUMPTION 6. There exists a balance point of (43) in the direction of d. I 
A possible way to detect the balance point in the direction of preferential deviations d (or the 

Pareto solution (45» is to solve (see [21] or [22] for further details) 

min, 

L zjVj(k) - ¿ zjWj(k) + L xjVj(k) - Lyj Wj (k):2: 0, kEK, 
jEJ1 jEJ2 jEJ3 jEJ3 

<p((zJl'0,xJ3) (0,ZJ2,YJ3» + ¿ "TrjZj - ¿ PjZj + ¿(qjXj -PjYj)::; 0, (46) 
jEJ1 jEJ, jEJ3 

j E J1 , 

I :2: 0, 

where I E ]R, (Xj)jEJ3' (Yj)jEJ., ("Trj)jEJp and (Pj)jEJ2 are the decision variables. Indeed, the 
solution of (46) provides the solution of (43) (i.e., the ps-arbitrage portfolio and the "optimal 
market quotes") and the value 10 oí (45). 

Notice that"Trj ::; qj, j E J1 and Pj :2: Pj, j E J2 do not have to be imposed in (46) since they 
will hold for any optimal solution. Indeed, they trivially follow from (45), 10 :2: 0, pj(z) ::; qj for 
j E J1 and qj(z) :2: Pj for j E h. 

Ideas aboye may be summarized as follows. 

THEOREM 8. Under Assumptions 5 and 6 there are ps-arbitrage strategies associated with 
(J1 , J2 , z). Furthermore, if (¡o, (1I"j )Jp (pj )J2, xJ3, YJ,) solves (46) then the following assertions 
are fulfilled. 

(a) Portfolio (x,y) = ((zJu O,xJ.)(0,ZJ21YJ3» is a ps-arbitrage strategy associated with 
(J1 , J2 , z) and (("Trj hu (Pj)J2) is an attainable market quote. 

(b) Expression (45) holds. I 
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REMARK 3. Theorems 7 and 8 point out several interesting and practical properties. 
First of alllet us remark that Example 1 illustrates how inefficient portfolios may be generated 

by adding efficient ones. Indeed, the example has presented a wps-arbitrage strategy in an sps-
arbitrage free model. As shown in [14J, under linear frictions the existence of ps-arbitrage is 
equivalent to the existence of inefficiencies (in other words, (b) '* (a) holds in Theorem 7) so the 
sps-arbitrage absence permits us to conclude that portfolios with a single security are efficient, 
while portfolio B2 + B4 is inefficient. 

The example aboye suggests the interest of possible coalitions among traders. So for instance, 
two investors interested in B2 and B4 , respectively, could accept a coalition and buy the efficient 
portfolio Bl + B3. They would pay 1.3 dollars (less than 1.4, price of B2 + B 4 ) and would 
achieve the similar payoff (1,1,2). Consequently, the coalition could assist them to outperform 
the market ask quotes 0.9 and 0.5 of B2 and B4. 

The example also illustrates how brokers can use orders of their clients to provide them with 
better prices. So, a broker with two orders to purchase B2 and B4 , respectively, could better buy 
Bl + B3 and make her/his clients improve the performance. 

In general, brokers or coalitions of traders can outperform market quotes by drawing on the 
ideas of Theorems 7 and 8. They can add several partial portfolios and use Theorem 7 or 
system (37) to check the efficiency of the whole strategy. If it were not efficient they could 
replace it by a better performing one. Moreover, if Theorem 7 reveals inefficiencies then brokers 
can use Theorem 8 with the appropriate value of z. Theorem 8 and problem (46) will show if 
ps-arbitrage strategies are available. If so, the broker can obtain additional riskless arbitrage 
earnings and simultaneously provide her Ihis clients with better quotes. 

Finally, let us remark that once again the introduction of nonlinear or convex frictions implies 
important differences with regard to the linear case of [14J. For instance, the failure of (b) '* (a) 
in Theorem 7 for nonconvex costs may merit special attention. • 

REMARK 4. As we did when dealing with sps-arbitrage strategies it will be useful to analyze the 
effects of ps-arbitrage-linked price improvements on the remainder ps-arbitrage-linked achievable 
prices. It may be done by drawing on a procedure quite parallel to that used when proving 
Theorem 6. In fact, these effects may be analyzed by sensitivities that may be measured by 
applying a general envelope (or envolvent) theorem for balance points that was established ín [22]. 
As ín the proofs of Remark 1 and Lemma 5, one has to provide condítíons guaranteeíng that 
both problem (46) and those scalar problems leadíng to the vector of partíal optíma satísfy the 
Kuhn-Tucker theorem. Then, those sensítívities we are interested in will be easily measured and 
obtained by straíghtforward applications of the results in the above-mentioned papero • 

6. CONCLUSIONS 
The paper has focused on imperfect markets with quite general nonconvex transaction costs 

and has provided new methods to overcome many inefficiencies caused by frictions. By using 
scalar optimization methods we have characterized the absence of arbitrage and sps-arbitrage 
and have yielded necessary conditions for a portfolio to be efficient. By using multiobjective 
optimization methods, with special focus on the balance space approach, we have studied the 
existence and properties of wps-arbitrage strategies. 

The presence of general frictions significantly broadens the set of possible applications. Fur-
thermore, important differences have been pointed out when compared with the more restricted 
case of linear or convex imperfections. 

We have illustrated how to use ps-arbitrage in order to outperform the revealed.market quotes. 
The improvement of prices and spreads also increases the level of the market efficiency and 
reduces illiquidity. Furthermore, the analysis could be also very interesting to practitioners since 
the proposed optimization techniques may allow them to compose hedged or efficient portfolios 
and to obtain riskless additional earnings. 
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AH these findings may be especially useful for many emerging and still illiquid spot or derivative 
markets (electricity markets, commodity markets, markets related to weather, inflation-linked or 
insurance-linked derivatives, etc.). 
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