
© 2010 ACM

 DOI: 10.1145/1868521.1868587

Ins t i tu t ional Repos i tory

This document is published in:

Proceedings of the 13th ACM international conference on Modeling, analysis, and

simulation of wireless and mobile systems (2010) pp. 393-402

http://dx.doi.org/10.1145/1868521.1868587
http://e-archivo.uc3m.es/

Dynamic Random Replication for Data Centric Storage

Ángel Cuevas
Department of Telematic

Engineering
Universidad Carlos III

Madrid, Spain
acrumin@it.uc3m.es

Manuel Urueña
Department of Telematic

Engineering
Universidad Carlos III

Madrid, Spain
muruenya@it.uc3m.es

Gustavo de Veciana
Department of Electrical and

Computer Engineering
University of Texas at Austin

Texas, US
gustavo@ece.utexas.edu

ABSTRACT
This paper presents a novel framework for Data Centric Storage in a wireless sensor and actor network that enables the use of a
randomly-selected set of data replication nodes which also change over the time. This allows reducing the average network
traffic and energy consumption by adapt-ing the number of replicas to applications’ traffic, while bal-ancing energy burdens by
varying their location. To that end we propose and validate a simple model to determine the optimal number of replicas, in
terms of minimizing av-erage traffic/energy consumption, from the measured ap-plications’ production/consumption traffic.
Simple proto-cols/mechanisms are proposed to decide when the current set of replication nodes should be changed, to enable
new applications and sensor nodes to efficiently bootstrap into a working sensor network, to recover from failing nodes, and to
adapt to changing conditions. Extensive simulations demon-strate that our approach can extend a sensor network’s life-time
by at least a 60%, and up to a factor of 10x depending on the lifetime criterion being considered.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication, Distributed networks

General Terms
Performance

Keywords
Wireless Sensor and Actor Network (WSAN), Data-Centric
Storage (DCS), Random Replication, Epoch, Optimization.

1. INTRODUCTION
In this paper we consider a simple framework to build

a distributed information delivery service for one or more
applications running over a Wireless Sensor and Actor Net-
work (WSAN). Each application is modeled as a (randomly)
distributed set of producer and consumer nodes, e.g., sen-
sors or actuators that can exchange information by relaying
packets across neighboring nodes. We assume that producer
and consumer nodes do not have explicit knowledge of each
other, but are aware of the name(s) of the application(s) in
which they are participating. This makes possible to build
a highly scalable distributed information service involving
large numbers of producers/consumers.

Data-Centric Storage (DCS) [15, 14, 13] is an elegant solu-
tion to this problem. The key idea is to identify one node in
the network which serves as a rendezvous point between pro-
ducers and consumers associated with an application. The
node is determined by generating a spatial location based on
applying a hash function to the application’s name, and then
finding the node in the network which is closest to it. Thus
producers and consumers, which have knowledge of the hash
function and application’s name, are able to determine and
route to a common rendezvous point without any additional
information. A producer pushes new information to the ren-
dezvous node, which, in turn, is responsible for storing (and
possibly aging) data. Consumers are able to subsequently
pull information from the same rendezvous point.

In this paper we consider a Data-Centric Storage frame-
work where application’s data is pushed, stored and/or repli-
cated across a set of rendezvous points. This permits con-
sumers to pull information from rendezvous points that are
closer, possibly reducing traffic, energy overheads and re-
ducing response time, while also improving fault-tolerance
in the case where nodes fail or run out of energy. Addi-
tionally, in order to balance energy expenditures over time,
we study an approach to vary the set of replication nodes
over time. Specifically, we consider the case where nodes can
determine the current set of Nr replicas associated with a
given application by generating Nr random spatial locations
with a hash function hash(app ⊕ epoch ⊕ i) ∀i ∈ [0, Nr − 1],
where app is the application’s name and epoch is a shared
time identifier employed to change replicas over the time.
Network nodes that are the closest ones to these hashed spa-
tial locations serve as rendezvous (or replication) nodes for
the application. In this setting a producer and/or consumer,
which is aware of the application’s name, the current time
epoch and Nr , can independently determine the location of
the ’nearest’ replication node by determining the minimum
distance between itself and all spatial locations generated by
the hash function.

1

As mentioned earlier, closeness between consumers and
replication nodes is beneficial from the point of view of re-
ducing traffic to consumers, energy expenditures and delay
to access the data. However, if a large number of repli-
cation nodes is employed, the production costs, including
the cost to transport and store information across multiple
rendezvous nodes can be high. Thus a key trade-off in our
framework is to decide how many rendezvous nodes should
be used. For the case where the hash function results in
roughly random spatial locations, we show precisely how
this tradeoff can, and should, be optimized so as to mini-
mize the total network traffic, in bits-m/sec, and thus, to
first order, also minimize the overall energy consumption
of a given application. The optimal number of rendezvous
nodes depends on the ratio of the production intensity to
that of consumption, i.e., is critically dependent on the traf-
fic associated with the application.

In the case where the consumption intensity dominates
production, data is replicated across all replication nodes,
whereas in the opposite case producers store the data solely
at the closest rendezvous node, and so consumers query all
the rendezvous nodes for possible data. The proposed model
provides the optimal number of replicas to minimize the
overall network traffic in both cases.

A node that serves as a rendezvous (replication) point, will
experience a higher traffic load associated with supporting
consumption and production, and thus its energy reserves
will be depleted at a higher rate. This is also the case for
nodes that serve to transport information among replication
points. Thus, it is desirable to balance such roles among the
network’s nodes. To this end, application’s timeline is sub-
divided into epochs. During each epoch a new set of repli-
cation nodes is randomly selected. Moreover, in each epoch
one can, not only choose a new set of replication points,
but also adapt the number of replicas to match changes in
an application’s production and consumption traffic. The
proposed framework is thus highly flexible, yet also presents
challenges towards optimizing its adaptation to application’s
traffic.

Related work. We have presented in [8] a detailed sur-
vey that discusses the main works on Data-Centric Storage
(DCS) covering different aspects. Due to the lack of space
we only mention in this section those works that are closely
related to the contributions of this paper.

The key ideas underlying DCS were first presented in
[15] where the authors introduced a Geographic Hash Table
(GHT) as the first DCS system. In this proposal a single
replication node is used.

Approaches using multiple rendezvous (replication) nodes
have been previously proposed [14, 13, 8, 10, 1], yet these
studies place replicas in a structured, i.e., on grids or uniform
manner, as opposed to our approach based on selecting ran-
dom locations. For instance, the authors of GHT proposed
to create a grid-structured replication mechanism [14, 13]
(GHT with multiple replicas), in which the number of cells
in the grid follows a geometric formula 4d, where d is the
so-called network depth. Thus the number of replicas grows
exponentially as 1, 4, 16, 64, etc., which can lead to poor
performance due to the coarse granularity of changes in d.
Moreover, these works do not discuss anything regarding the
appropriate number of replicas to be used.

Tug-of-War(ToW) [10] follows the same grid-structured
replication mechanism proposed by GHT with multiple repli-
cation nodes. However they provide two main contributions:
(i) a mathematical model to calculate the optimal network
depth, d, based on the application consumption and produc-
tion traffic; (ii) the so-called, combing routing, that takes
advantage of the grid replication fashion to provide a more
efficient routing to allow replication nodes to communicate
to each other.

In [8] we have presented a Quadratic Adaptive Replication
(QAR) system that is more adaptive than ToW and GHT
with multiple replication nodes. It is also a grid-based repli-
cation scheme, but it calculates the number of replicas as,
Nr = d2, which allows the number of replicas to grow in a
quadratic fashion as 1, 4 , 9, 16, 25, 36, etc. We also provide
a mathematical model that leads to the optimal number of
rendezvous nodes to be used based on the consumption and
production traffic. We demonstrate that QAR outperforms
ToW and by extension GHT with multiple replicas due to
its greater adaptivity,.

In [1] the authors present a theoretical framework that de-
fines the Scaling Laws for DCS in terms of energy burdens
and storage. They also provide a mathematical model that
calculates the optimal number of uniformly deployed repli-
cation nodes to be used in the sensornet. However, they do
not validate that theoretical model and as we will demon-
strate in section 4, using the number of replicas suggested
by this paper leads to a much worse performance than ToW,
QAR and random replication.

Most of the abovementioned works assume a square sensor
field. If the sensor field is not square, e.g. rectangular or
some other irregular shape, the approaches in [14, 13, 8, 10],
could become much less efficient. By contrast, our approach
using random replication is easily adapted to any sensor field
shape, as long as the shape is known a priori by network’s
nodes. Specifically random locations can be generated until
the right number lie inside the region of interest

Therefore, random replication is not only simpler and
more flexible than previously proposed approaches, but, also,
as will be demonstrated in the sequel, enables an effective
reduction of network traffic relative to previous work.

The idea of changing the DCS rendezvous point over the
time has been mentioned in [17, 12, 2]. However, it is just
mentioned, these works do not analyze which are the cost
and implications of such a change and how it affects the net-
work performance.

Contributions. To the best of our knowledge, this pa-
per makes several novel contributions to the study of Data-
Centric Storage for Wireless Sensor and Actuators Networks
(WSAN). First, we propose a generic replication framework
using sets of randomly located replicas that can change over
the time. Second, we propose and validate a simple model
to determine the optimum number of randomly-placed repli-
cas, in terms of minimizing the overall traffic and associated
transmission energy, given the measured intensities for pro-
duction and consumption of an application. Third, we pro-
pose a simple mechanism to equalize the energy burdens
across the network and to adapt the degree of replication to
an application’s (possibly changing) traffic and the energy
burdens on the network. We achieve this by changing repli-
cas over the time. An analysis of the implications of chang-
ing replication nodes is also presented in this paper. More-

2

Figure 1: Example of Data-Centric Storage with 5
randomly-placed replicas.

over, we demonstrate that changing the set of randomly lo-
cated rendezvous nodes extends the WSAN lifetime at least
by 60% when compared to previous proposals in the litera-
ture. This enhancement is shown to reach factors of 10x un-
der some conditions. Finally we propose various mechanisms
to implement the above information delivery framework. In
particular we propose the use of a Meta-Information Service
in a WSAN supporting multiple applications. This service
enables efficient bootstrapping of new sensor nodes and new
applications, while addressing key fault-tolerance requisites
for such networks.

Paper Organization. The remainder of this paper is
structured as follows: Section 2 describes our assumptions
and explains in more detail the basic framework operation.
The analytical model employed to analyze and optimize re-
source utilization is presented in Section 3. In Section 4
we compare the performance of random replication versus
previous proposals in the literature and analyze the benefits
and performance of changing replicas over the time. Sec-
tion 5 focuses on advanced protocol design considerations to
efficiently realize the proposed replication framework. Fi-
nally, Section 6 offers concluding remarks and discusses the
promise of the proposed approach.

2. BASIC SYSTEM OPERATIONS
We begin by summarizing the main assumptions made in

this paper. The focus is on distributed applications operat-
ing autonomously over a sensor and actor network without
external intervention or communication. The name of an ap-
plication is known by all the consumer/producer nodes that
are part of the application. The production events and con-
sumption interest associated with a given application will
be assumed to be roughly spatially homogeneous. We con-
sider a static wireless sensor and actor network that involves
a large number of homogeneously distributed nodes, which
transport information by relaying packets across neighbor-
ing nodes. Nodes are assumed to know their spatial location
within the operational area as well as the network dimen-
sions and realize a geographic routing service (e.g. [11]) that
is able to unambiguously route packets to the closest node
to a given spatial location.

Below we shall introduce basic functionalities required in
our proposed framework for the case where consumption
dominates production traffic, see e.g., Fig. 1. Let’s con-
sider that the application’s name is APP, the current epoch
is e and, based on the current ratio of consumption to pro-
duction demand (λc/λp) and the network dimensions, the
optimal number of replication nodes is Nr (this will be dis-
cussed in Section 3). To simplify the description, we start
assuming that this info is known by every application’s node.

Producers and consumers functionality. Suppose
a producer or consumer node generates an event or queries
some data (respectively) related to APP. It then determines
the closest replication point by computing the Euclidean dis-
tance between its spatial location and that of all replication
points obtained from the hash operation: hash(APP ⊕ e ⊕
i), i={0, 1, ..., Nr − 1}. Once the producer/consumer node
determines the closest rendezvous point, it forwards a mes-
sage/query to that location, i.e., to the node n0 closest to
the location. In case of consumption, the rendezvous node
just responds with suitable data to the query. This replica-
tion location will be used for some time, so the producers
and consumers may cache the replication point coordinates
avoiding recomputation for every single message1.

Creating a tree to replicate data over rendezvous
nodes. The next step is creating a minimum spanning tree
rooted at n0 over which data replication takes place. Each
replication node needs to determine the set of nodes (if any)
to which it should forward new data. Since all rendezvous
nodes know the hashed locations, we will consider without
loss of generality, the construction of the replication tree
from the point of view of any given rendezvous node, e.g.,
the root node. The root node, n0, manages three sets of
replication nodes:

• C : the set of rendezvous nodes already covered by the
replication tree, where initially C = {n0}.

• R : the set of rendezvous nodes to be reached, which
initially contains all the rendezvous nodes except the
root node: R = {n1, n2,, Nr−1}.

• F : the set of rendezvous nodes to which the current
rendezvous node should forward the event, which is
initially empty: F = ∅

The algorithm proceeds as follows. The root node com-
putes which rendezvous node in R is closest to n0. Sup-
pose it is n1, then n1 is removed from R and included in
both C and F ., i.e., C = {n0, n1}, R = {n2,, nr−1}, and
F = {n1}). Next, it computes the rendezvous node in R
which is closest to anyone in C. If the closest distance is be-
tween the root n0 and n2, then n2 is removed from R and
included in C and F . However, if the closest distance is the
one between n1 and n2, n2 is also removed from R, but only
included in C. The process is repeated until R is empty, at
which point F contains all the forwarding rendezvous nodes

1In this section we will equivocate the rendezvous nodes with
the associated hashed locations. There are several ways of
finding the closest node to a given location, but they are
energy consuming. Thus, we consider that the first time a
rendezvous node is contacted by other node, it notifies to
that node its actual location, so from that moment the con-
tacting node can directly communicate with the rendezvous
node avoiding the energy expenditures of finding the closest
node to a given location for each message.

3

of n0. Assuming each node knows who the root is, each
one can similarly compute the associated forwarding sets
F . Note that if the above distributed mechanism is used,
there will be one replication tree per rendezvous node, which
serves as its root. The routing table of a replication node
associated with a given application would have one entry per
replication node acting as root node for production events,
with the associated forwarding nodes F obtained after run-
ning the algorithm. Alternatively only one of these trees
could be shared among all replicas.

Changing the set of rendezvous nodes. We define an
epoch as the time between two consecutive changes in the
set of replication nodes. In addition, we consider two events
that could trigger epoch changes: (i) when a node serving
as a replication node exceeds a threshold in the number of
messages sent and received since the epoch started; and, (ii)
just before one such node runs out of battery. Whichever
happens first triggers a change of epoch.

At the beginning of each epoch, a rendezvous node gath-
ers local traffic statistics (number of messages sent and re-
ceived, traffic intensity in bits/sec, etc) during a predefined
time interval Δt. After that time, each rendezvous node
broadcasts over its replication tree (using piggybacking in
data packets or dedicated control messages) its local pro-
duction/consumption traffic measurements and its estimate
for the residual time for the epoch, to the remaining replicas.
In turn, based on the exchanged estimates, each replication
node computes the minimum estimate for the epoch’s resid-
ual time, along with the number of rendezvous nodes that
should be used in the next epoch, based on the overall mea-
sured traffic.

When the estimated epoch deadline arrives, current ren-
dezvous nodes know the locations of the current set, and
can compute the locations of the (possibly different) num-
ber of nodes in the set for the next epoch using the epoch-
dependent hash function. Now each current rendezvous node,
need only to determine if it is the closest node to one of the
nodes in the subsequent set. If so, such nodes can directly
transfer in parallel their stored data to the new locations.

Consistent notification of epoch changes to produc-
ers and consumers. Once the current set of rendezvous
nodes decides on the next epoch change, consumers and pro-
ducers need to be notified when it will be initiated and the
number of replicas to be used. This can be achieved as
follows. At the beginning of an epoch, active consumers
and producers set a flag in their messages. This flag indi-
cates to the replication node that this particular consumer
or producer does not yet know the current epoch duration
nor the number of replicas for the next epoch. After Δt
when the current replication nodes have estimated both val-
ues, they send a message or piggyback this information back
to producers and consumers, respectively. Consumers and
producers receiving the information can then cancel the flag
until the start of the next epoch. This simple and robust
mechanism does not require rendezvous nodes to know who
the producers and consumers are, thus saving memory and
enabling scalability. By proactively predicting and sharing
information about epoch changes it enables consumers and
producers to experience a smooth epoch transition.

3. SYSTEM MODEL
In this section we propose a simple stochastic geometric

model for the network that permits optimization of the large

scale system’s parameters, i.e., intensity of replication nodes.
The approach follows the seminal work of [5, 4] and our
own work in applying this methodology to ad hoc wireless
networks, e.g., [7, 6].

The locations of nodes in the Wireless Sensor and Ac-
tor Network are assumed to be fixed, and modeled by a
homogeneous spatial Poisson Point Process Πn, i.e., a ‘ran-
dom’ set of points on the plane, with intensity λn locations
per unit area [16]. A fraction of those nodes are randomly,
independently sampled to serve as replication nodes. Un-
der these conditions the replication nodes also follow a ho-
mogeneous spatial Poisson Point Process Πr, with intensity
λr < λn. Production and consumption events, generated by
some networks nodes, are in turn modeled by independent
homogeneous spatio-temporal Poisson Point Processes Πp

and Πc each with intensities λp and λc events per unit time
and unit area respectively. To avoid unnecessary complica-
tions, we shall assume that spatial process Πr and spatial
temporal point processes Πp and Πc are mutually indepen-
dent. Note this is not the case in reality, since they are
connected through the locations of the nodes Πn in the net-
work. However if λn is high, the impact on our model is
minimal– we shall verify this via simulation in the sequel.
Although the model corresponds to one on an infinite plane
we shall restrict attention to a fixed region A ⊂ R

2 modeled
as a convex set with area A = |A|, and optimize operation
on A roughly ignoring edge effects. On average there are
Nr = λrA replication nodes in A.

3.1 Evaluating overall network traffic and en-
ergy costs.

Let us first consider the overall network traffic generated
by consumption and production events inside the network.
The overall metric here is the total traffic load, measured in
bits-m/sec that need to be supported by the network, i.e. in
region A. Recall that in an ad hoc wireless network traffic
load can not simply be measured in terms of bits/sec, but
must also account for the distance packets must travel, since
this involves relaying, and thus resources along the path.
Measuring network load in terms of bits-m/sec captures the
amount of traffic and the distance that must be traveled.
In turn, we assume the power expenditures for transport-
ing traffic to be roughly proportional to the overall network
traffic measured in bits-m/sec.

Case 1: Consumption dominates production (λc > λp)
We assume consumers retrieve data from the closest repli-
cation node. Thus consumption events can be partitioned
based on the Voronoi tessellation [4] induced by the repli-
cation nodes. The average size of such cells is 1/λr, the
mean number of consumption events in such a region per
unit time is λc/λr. Meanwhile the typical distance from a
consumer to its nearest replication node can be shown to be

1
2
√

λr
[5]. Thus the total consumption traffic, Tc(λr), for the

region A is proportional to the number of replication nodes
λrA, times the number of consumers per replication node
cell λc/λr, further multiplied by the mean distance between
consumers and replication nodes 1

2
√

λr
, i.e.,

Tc(λr) = αλrA
λc

λr

1

2
√

λr

= αA
λc

2
√

λr

bits-m/sec,

where α is a proportionality constant corresponding to the
average number of bits per consumption event that are ex-

4

(a) λc=50 ∗ 10−6;λp=10 ∗ 10−6;N∗
r =7.07 (b) λc=500 ∗ 10−6;λp=100 ∗ 10−6;N∗

r =7.07 (c) λc=500 ∗ 10−6;λp=40 ∗ 10−6;N∗
r =17.67

Figure 2: Consumption, production and overall traffic generated by using different number of replication
nodes (A=1000x1000, N=5000, α=200 bits, β=100 bits).

changed between the consumer and its nearest replication
node (i.e. query and reply messages).

Next, we consider the replication cost when new data is
produced. Again new data is produced on our network at a
rate λpA events per unit time. We shall assume that data
associated with each new event is distributed to the repli-
cation points in the network along a radial spanning tree [3]
which includes all the replication nodes. The total length
per unit area for radial spanning trees over a homogeneous
Poisson Point Process can be computed and is indeed very
close to that of a minimum cost spanning tree. In particu-
lar for a large disc of radius x, the total length for a radial

spanning tree centered at the origin grows as πx2√λr√
2

, so the

average length of the tree per unit area is given by
p

λr/2
[3]. The total production traffic generated, Tp(λr), is thus
given by β bits per event, times the rate of production events
λpA in the network, times the length of the associated radial
spanning tree:

Tp(λr) = βλpA

r
λr

2
A = βA2λp

r
λr

2
bits-m/sec.

Note that we have assumed for simplicity that the radial
spanning tree is rooted at the location where the event is pro-
duced. Alternatively one could assume that the new event
is first transported to the nearest replication node that then
employs a radial spanning tree to reach the remaining repli-
cas. The replication cost in this second case has a similar
scaling.

The total network traffic, T (λr), is thus given by:

T (λr) = αAλc
1

2
√

λr

+ βA2λp

r
λr

2
bits-m/sec.

We can optimize this to obtain an optimal spatial intensity
for replicas λ∗

r given by:

λ∗
r =

αλc√
2βAλp

replicas/m2,

and the associated minimum overall network traffic is given
by:

T (λ∗
r) = 21/4

√
A

p
(αλcA)(βλpA) bits-m/sec.

Remark 1. Scaling characteristics. Roughly speaking
the optimal average number of replicas for the network cov-
ering an area A is given by:

N∗
r = λ∗

rA =
αλc√
2βλp

. (1)

Surprisingly, this only depends on the ratio of the intensity
of consumption to production. Thus if one were to double
the intensity of consumption and production for a fixed area,
the same number of replicas would be optimal. If however
one stretches the area by a factor of two, this would decrease
the intensity of production and consumption by 2, maintain-
ing the same ratio, yet the optimal intensity λ∗

r per unit area
would also have to decrease by a factor of 2. Furthermore
we note that the overall network load, in bits-m/sec scales as√

A times the geometric mean of the total rate of consump-
tion, αλcA in bits/sec and the rate of production βλpA in
bits/sec. This gives a sense of the growth of overall traffic
with network size.

In order to validate this model we have simulated random
realizations of the network and obtained the consumption
(Tc), production (Tp) and total network cost (T) for differ-
ent numbers of replicas. Unless otherwise stated, all results
correspond to at least 50 simulations of different network
realizations where N = 5000 nodes are randomly placed in
a 1000 × 1000 region. We set β=100 bits, assuming that
producers periodically send the information to the closest
replica without any acknowledgment. We set α=200 bits
since we assume that a consumer first sends a query mes-
sage to its closest replica and then receives a reply from it.
We show 90% confidence intervals on all graphs unless they
are so small that they cannot be distinguished.

Figure 2 exhibits the overall consumption, production and
total traffic measured in bits-m/sec obtained by the model
and by simulation for three different (λc,λp) pairs: (50 ∗
10−6,10 ∗ 10−6), (500 ∗ 10−6,100 ∗ 10−6) and (500 ∗ 10−6,40 ∗
10−6) bits

sec∗m2 . The number of replicas employed varies from
1 to 40. Thus, the optimal average number of replicas for
these cases is 7.07, 7.07 and 17.67 respectively. Figures 2(a)
and 2(b) illustrate the scaling properties of the framework
versus the ratio of consumer to producer intensities. Note
that both scenarios have exactly the same optimal number
of replicas, even though the latter’s application generates

5

Figure 3: Optimal number of replicas that minimizes
the overall number of messages (A=1000x1000,
N=5000, Tx=50 m)

ten times more production and consumption events than
the former. It is worth noting that for applications with
a high λc/λp ratio (see Figure 2(c)), there are several val-
ues around the optimal number of replicas that could be
employed instead, because they generate a similar overall
traffic.

It must be highlighted that this simple model establishes
traffic metrics assuming routes follow straight lines. How-
ever, WSANs which are the focus of this paper are multi-
hop networks where routes unlikely follow straight paths.
To that end we have verified that for networks that have
a sufficiently high density of nodes, the optimal number of
replicas obtained by our idealized model reflects the actual
optimal number of replicas on a given network. For this pur-
pose we have simulated a sensor network employing greedy
forwarding [11] and a transmission range Tx = 50 m. We
considered a setup where the ratio λc/λp varied from 1 to
25. Figure 3 shows the number of replicas that minimizes
the overall simulated traffic based on the actual number of
hops of all messages versus the optimal number of replicas
suggested by our model. As it can be seen, when there is a
low number of replicas, the model and the simulations are
a good match. A small discrepancy occurs for high λc/λp

ratios. However, as mentioned earlier, in the case this ratio
is high, the overall cost is not very sensitive to the precise
optimal value for the number of replicas.

Case 2: Production dominates consumption (λc < λp)
If the intensity of consumption is low relative to that of
production it may be preferable not to copy data across all
replication points. Instead producers can store data solely at
the closest replication node. Subsequently consumers should
contact all replication points to gather the full information.
This could be done in several ways2 although we will con-

2
A symmetric model to that presented in the case of con-

sumption dominating production could be also proposed.
However, that model would assume that both, queries and
replies, are sent through the replication tree once per branch.
This can only be achieved if replies are aggregated and such
aggregation has implications that are out of the scope of this
paper.

sider the simplest one where consumers contact all the repli-
cation points directly.

In this case the overall production traffic is:

Tp(λr) = βA
λp

2
√

λr

bits-m/sec.

The consumption cost can be modeled using the average
distance between any two nodes of the network

√
A/2, as the

distance from a consumer to each replica, times the number
of consumers and replicas. Thus the overall consumption
traffic is given by:

Tc(λr) = α(λcA)(λrA)

√
A

2
bits-m/sec.

The total network traffic is then given by:

T (λr) = αλcλrA
2

√
A

2
+ βA

λp

2
√

λr

bits-m/sec.

One can again find the optimal replication λ∗
r for this case,

which is given by:

λ∗
r =

1

A

„
βλp

2αλc

«2/3

replicas/m2.

The associated minimum overall network cost is:

T (λ∗
r) = (βλp)2/3 (2αλc)

1/3 3A
√

A

4
bits-m/sec.

Note that in this regime the optimal intensity for replicas is
a more ‘complex’ function, i.e., cubic of the ratio of produc-
tion to consumption intensities, yet, in principle, still easily
computable by sensors in the field. This model has been also
validated via simulation. However due to space limitations
we can not include the validation graphs, which are similar
to the ones of the previous section.

3.2 Cost of changing the replication nodes set
to balance network loads.

We have argued that it would be worthwhile to periodi-
cally change the set of nodes where data is replicated. The
cost of moving from one set of replica nodes to another
should be relatively low since this is a highly-parallel dis-
tributed process. In particular, suppose the current inten-
sity of replicas is λc

r and we wish to move to a new set of
randomly-located replicas with intensity λn

r . Note that the
new set of replicas need not to have the same intensity as
the current one. Also suppose each replica node currently
holds an average amount of data d.

A rough estimate of the energy cost associated with mov-
ing data from the current set of replication nodes to the new
one Tr(λ

c
r, λ

n
r), can be evaluated as follows. Each old replica

would contact one of the new nodes. Given that the distance
to a new randomly located replica from one of the current
nodes is 1

2
√

λn
r

the total cost in a network of area A would

be roughly:

Tr(λ
c
r, λ

n
r) =

d

2

λc
rA√
λn

r

. bits-m

So if λn
r = λc

r the cost is Tr = d
2

√
λr bits-m. If the set of

replication nodes changes infrequently, then the contribution
to the overall network traffic and energy consumption of
changing the set of replicas would be fairly small. However
this does depend on λr and the frequency of such updates.
We shall consider this in more detail in the next section.

6

Figure 4: Improvement of overall traffic when us-
ing Random vs. ToW, QAR, Scaling-Laws, GHT
and GHT with multiple replicas (A=1000x1000,
N=5000, Tx=50 m, α=200 bits, β=100 bits)

.

Figure 5: Number of replicas used for the different
proposals: ToW, QAR, Scaling-Laws and Random
(A=1000x1000, N=5000, Tx=50 m, α=200 bits,
β=100 bits)

.

4. PERFORMANCE EVALUATION
In this section we consider two questions: (1) how se-

lecting rendezvous nodes’ locations at random compares to
previous grid-based and uniform-based proposals; and (2),
whether it is worthwhile to change the set of rendezvous
nodes over time considering the associated overheads. We
have developed a custom simulator that provides more scala-
bility than standard ones, since it does not simulate wireless
communications (i.e. PHY and MAC) other than transmis-
sion range.

4.1 Random vs. grid-based and uniform repli-
cation node allocation

We have compared our work with those that are similar
in spirit: ToW [10], QAR [8], Scaling Laws [1], the original
GHT proposal [15] that uses a single replication node and
GHT with multiple replication nodes [14, 13]. For the last
case, since the authors do not propose any way to obtain the
number of replicas to be used, we select the same number
used in ToW since both works are grid-based approaches and

use the same 4d geometric formula to compute the number
of rendezvous nodes.

In order to compare these approaches, we have run simu-
lations for a large WSAN with the following characteristics:
an area A = 1000x1000 m2, N = 5000 sensors, transmis-
sion range Tx = 50 m and λc/λp ranging from 1 to 40. For
each λc/λp ratio we have simulated 50 scenarios to estimate
the mean network cost realized by the different replication
approaches. In order to get meaningful results, we use the
number of hops traversed as the measure of the overall traffic
cost.

Figure 4 shows the network traffic improvement achieved
using random replication compared to all the other solutions
and Figure 5 depicts the number of replicas used by each
approach for each particular λc/λp ratio.

Random replication reduced the overall traffic by an av-
erage of 137% compared to GHT, 39% compared to Scal-
ing Laws, 21% compared to GHT with multiple replication
nodes, 4% compared to ToW and 1.5% compared to our pre-
vious QAR proposal. Moreover, this improvement reaches
peaks around a 50% when compared to Scaling Laws and
GHT with multiple replicas, 15% to ToW and 7% to QAR.

The main reason our solution achieves a better perfor-
mance, is that random replication allows a much smoother
range over which to adapt its evolution. That is, the optimal
number of replicas grows linearly, whereas ToW and GHT
with multiple replicas employ a 4d geometric growth and
QAR a quadratic one (see Figure 5). For instance, in some
cases ToW must choose between 16 or 64 replicas, where
none of them is a good fit for the scenario of interest.

Therefore, random replication is demonstrated to be the
one minimizing the overall network traffic improving all pre-
vious approaches in the literature that use grid-structured
or uniform replication. Moreover, processing the random
locations for the rendezvous nodes is easier to be adapted
for different sensornet shapes than those using structured
replication. Hence, random replication is simpler and more
cost-effective.

4.2 Changing Replicas over the time
Sensors selected as rendezvous nodes (and those close to

them) will naturally expend more energy than other nodes.
Thus, if the responsibilities of nodes do not change, those
nodes are most likely to run out of energy reserves. In
[15, 14, 13, 8, 10], when this happens, an alternate sen-
sor close to the previous replication point is selected as the
new rendezvous node, until its battery expires, and so on.
After some time, routing (and sensing) holes will be cre-
ated around the original replication coordinates, affecting
the routing of the network.

On the other hand, if replication points change over time,
the extra energy expenditures associated with rendezvous
nodes can be balanced across all the nodes in the network,
thus extending the network’s lifetime, and avoiding the cre-
ation of routing holes. In addition, although moving replica-
tion points has an associated overhead, this does not mean
that network energy expenditures become higher than keep-
ing rendezvous nodes static. Indeed, when replication nodes
are kept static, longer paths will be required for commu-
nication, which in turn will consume more energy. In this
section we demonstrate that routing holes can have more
impact on the overall network energy expenditures than the
cost of changing the set rendezvous nodes.

7

(a) ToW-Static after 30K cycles (b) Random-Epochs after 30K
cycles

(c) ToW-Static after 50K cycles (d) Random-Epochs after 50K
cycles

Figure 6: Energy map of the number of messages sent and received by all sensors of the network (A=300x300,
N=900, Tx=30, Np=100, Nc=300, L=10).

(a) ToW-Static after 30K cycles (b) Random-Epochs after 30K
cycles

(c) ToW-Static after 50K cycles (d) Random-Epochs after 50K
cycles

Figure 7: Distribution of the number of messages per sensor (A=300x300, N=900, Tx=30, Np=100, Nc=300,
L=10).

In order to verify the abovementioned points, we ran sim-
ulations comparing ToW [10] using static replicas with ran-
dom replication where the set of replication nodes change
over the time. We use a grid-based node deployment (which
makes energy maps generation easier) with N = 900 sen-
sors, over a square of area A = 300x300 m2. Each sensor
has a transmission range Tx = 30 m. In addition, due to
space constrains, we only show the case where consumption
dominates production (λc > λp). We use the number of
messages in the network as a first order proxy for consumed
energy. A sensor node’s energy is depleted once it sends
and/or receives one million messages. Finally, the threshold
that determines the end of an epoch, Eth, is set to 300000
messages (30% of battery) 3.

For these simulations we have used geographical routing
based on greedy forwarding. When greedy forwarding fails,
i.e. due to routing holes, we use the optimal path from the
node where the greedy forwarding stopped to the destination
node.

Time is measured in cycles in order to scale the simula-
tions and be able to deploy a large number of sensors. A cy-
cle is a time period in which every consumer node performs
one consumption event and every producer node generates
a production event. Since energy is measured in terms of

3We also ran experiments for Eth = 100000, Eth = 500000
and Eth = 700000 and all of them clearly outperformed the
static solution.

messages, the traffic is measured in messages/cycle4. We
deploy 300 consumers (Nc), which means 300 queries and
300 replies per cycle, and 100 producers (Np) that generate
100 production events per cycle. The consumption to pro-
duction traffic ratio results in an optimal number of replicas
equal to 4 for both ToW and random replication

In order to measure the cost of an epoch change, we as-
sume that the produced data has a mean lifetime of L cy-
cles. Then, since the production intensity is λp and the
network area is A, the average data at each replication node
is d = λpAL = NpL messages. L is set to 10 cycles for these
simulations, thus the replication change is costly, because it
means that 10 messages per producer are moved from the
old replicas to the new ones. Having 100 producers, this
means a total cost of 1000 messages. .

Figure 6 shows the energy distribution map after a sim-
ulation time of 30000 and 50000 cycles. Figure 7 shows
the number of messages sent+received by each sensor at the
same cycles, as well as the mean and median values per sen-
sor and the total messages sent and received in the whole
network, that roughly captures the total energy consumed
by the network.

As seen in Figures 6(a) and 6(c), keeping static replica-
tion points creates routing holes in the network, with 93
and 247 expired sensors after 30000 and 50000 cycles re-

4The production (λp) and consumption (λc) intensities are
then measured in messages

cycle∗m2

8

Lifetime Criteria 1st dead 1% dead 10% dead 25% dead 40% dead 10% cons+prod 25% cons+prod Network disconnection
ToW-Static (cycles) 2619 7328 29086 47830 63230 31668 47984 70952

Random-Epochs (cycles) 31199 41124 66750 87968 101523 65171 79717 170950
Improvement(%) 1091% 461.2% 129.5% 83.9% 60.6% 105.8% 66.13% 140.9%

Table 1: Sensornet Lifetime ToW-Static vs Random-Epochs

Figure 8: Sensornet lifetime comparison
(A=1000x1000, N=5000, Tx=50, L=10, m=5).
X axis refers to the cycles for changing the epoch
in the fixed duration approach, or the message
threshold.

spectively. The number of depleted sensors are only 0 and
17 respectively, when replication nodes are changed over the
time. Furthermore, simulation results obtained later in time
(70959 cycles) show that the static network is eventually dis-
connected, because holes become very large and coalesce. In
addition, more sensors participate of the network operation
when epochs are used. As shown in Figure 7, all sensors ex-
cept 18 (2%) after 30000 and 15 (1.7%) after 50000 cycles,
have sent and/or received at least one message, whereas in
the case of static replication nodes more than 200 (22%)
nodes have not sent or received any message after 30000
cycles, decreasing to 160 (17.8%) nodes after 50000 cycles.
When considering the total energy consumed by the net-
work, the dynamic approach uses just 0.8% more energy
than the static one after 30000 cycles. However, a 3.3%
extra energy is required by the static approach after 50000
cycles. This shows that the cost of using longer routing
paths eventually exceeds that of changing the rendezvous
nodes over time.

In Table 1, we compare the sensor network lifetime using
both approaches: static ToW and random replication with
epochs. Since lifetime can be defined by different metrics [9]
(first sensor running out of battery, some percentage of sen-
sors running out of battery, important nodes like consumers
and/or producers running out of battery, some part of the
network disconnects and many messages are lost, etc), we
provide a broad overview of metrics to let the reader estab-
lish a fair comparison depending on the criterion used to
define the network’s lifetime. The table shows the number
of cycles spent until each lifetime criterion is reached. For
all the criteria our solution extends the network’s lifetime
by at least 60%. We note that in many cases changing repli-
cas over the time and using random replication extends the
network’s lifetime by a factor of 2x.

Finally, Figure 8 shows how using a message threshold
to trigger epoch changes compares to employing a fixed
epoch duration as proposed in [17]. We simulate a larger
(N=5000, A=1000x1000, Tx=50) multi-application sensor
network with random replication. We set up m=5 heteroge-
neous applications with (20, 40), (60, 120), (100, 200), (140,
280) and (180, 360), (production−events

cycle
, consumption−queries

cycle
)

pairs, calculating the network’s lifetime (1% of sensors ex-
pire) for both the two dynamic approaches versus using a
fixed static set of random located replicas. Again the need
of changing replicas over the time versus using static ones is
clear. In addition, as seen in the figure, our proposal to trig-
ger epoch changes based on message counts is more robust
to the precise setting of the message threshold than using a
fixed epoch duration.

5. OTHER DESIGN CONSIDERATIONS
In order to become a viable solution, our replication frame-

work has to be further developed to address several practical
issues. This section provides additional insight on develop-
ing a real-world Data Centric Storage protocol with multiple
randomly-placed replicas that change over the time. Such
a protocol should implement additional mechanisms in or-
der to: (i) provide a bootstrapping mechanism for finding
the current set of replicas if the epoch value is unknown, (ii)
provide fault tolerance in the case replication nodes fail, and
(iii) provide a mechanism to bring new applications online.

In order to solve the bootstrapping problem when a new
application node wants to participate as a producer or con-
sumer, we propose employing a Meta-Information service
where every application in the network stores its current
epoch value and the number of replication nodes currently
in use. Once a new sensor acquires this information, it can
then ask detailed information to the replicas concerning the
time at which the epoch will expire and the number of repli-
cation nodes to be used in the next epoch, by using the flag
mechanism introduced in section 2. This Meta-Information
service is just another application that itself may use the
proposed replication framework.

The question now is how a new sensor is able to know the
current epoch of the Meta-Information service. A straight-
forward solution is broadcasting to the network when a Meta-
Information epoch change happens (e.g. once per hour/day).
Since the number of changes could be arbitrarily low, the en-
ergy consumption would be negligible. Then, when a sensor
bootstraps it can simply ask any of its neighbors what is the
current Meta-Information epoch.

Another aspect that should be taken into account is de-
termining how the Meta-Information service knows that a
given application is changing its epoch. The first replication
node (i=0) could be the one notifying each epoch change to
its closest Meta-Information service replication node, which
in turn replicates the new epoch to the remaining Meta-
Information replication nodes.

9

The Meta-Information service can be also employed as
a fallback mechanism in case of replication node failure or
epoch de-synchronization. If a node fails in accessing its
closest replication node for a pre-defined number of times,
it tries to contact the remaining replication nodes (sorted
by distance) from the current epoch, since these locations
can be computed locally by the sensor. In the case the sen-
sor has suffered an epoch de-synchronization, it can contact
the Meta-Information service that replies with the current
epoch and number of replication nodes being used for that
application.

Finally, we shall define how a new application can be
brought online on a sensor network. When one of the replica-
tion nodes of the Meta-Information Service receives a query
from a bootstrapping producer requesting the epoch and
number of replicas of an unknown service, it understands
that this application does not yet exist. Therefore it reg-
isters the application and assigns to that service a random
epoch number and a single replication node. After that, the
meta-information node notifies the first application’s repli-
cation node that the service needs to be started, sharing the
initial epoch number with both the replication node and the
first producer. From that moment any sensor can start using
the new application.

6. CONCLUSIONS AND FUTURE WORK
This paper demonstrates that placing multiple replication

nodes at random in a DCS system outperforms previous
works in the literature proposing a single rendezvous point,
grid-structured or uniform replication nodes deployments.
Furthermore, it has been shown that equalizing the energy
burdens across the network, by mean of changing replica-
tion nodes over the time, achieves a huge improvement in
the WSAN lifetime, always above a 60%, being under some
conditions a tenfold increment. In addition, epoch transi-
tions, far from being more energy demanding, saves energy
in front of static approaches that incurs in a higher energy
consumption due to the need of using longer communication
paths to avoid the routing holes that appear in the network
(and grow) along the time.

Our future work will be focused on networks where the
event generation is not homogeneous across the network.
This is a very interesting topic that has not been previously
studied by any DCS work.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF Award CNS-

0509355, AFOSR Award FA9550-07-1-0428, IMDEA Net-
works Madrid, the Spanish government through the T2C2
Project TIN2008-06739-C04-01 and the regional government
of Madrid through the MEDIANET project.

8. REFERENCES
[1] J. Ahn and B. Krishnamachari. Fundamental scaling

laws for energy-efficient storage and querying in
wireless sensor networks. In MobiHoc ’06, pages
334–343, New York, NY, USA, 2006. ACM.

[2] J. Ahn and B. Krishnamachari. Scaling laws for
data-centric storage and querying in wireless sensor
networks. IEEE/ACM Trans. Netw., 17(4):1242–1255,
2009.

[3] F. Baccelli and C. Bordenave. The radial spanning
tree of a poisson point process. Annals of Applied
Probability, 17:305, 2007.

[4] F. Baccelli, M. Klein, M. Lebourges, and S. Zuyev.
Stochastic geometry and architecture of
communication networks. J. Telecommunication
Systems, 7:209–227, 1997.

[5] F. Baccelli and S. Zuyev. Poisson-voronoi spanning
trees with applications to the optimization of
communication networks. Operations Research,
47:619–631, 1996.

[6] S. J. Baek and G. de Veciana. Spatial model for
energy burden balancing and data fusion in sensor
networks detecting bursty events. IEEE Trans. on
Information Theory, 53(10):3615–29, October 2007.

[7] S. J. Baek, G. de Veciana, and X. Su. Minimizing
energy consumption in large-scale sensor networks
through distributed data compression and hierarchical
aggregation. IEEE Journal on Selected Areas of
Communications, 22(6):1130–1140, August 2004.

[8] A. Cuevas, M. Urueña, R. Romeral, and D. Larrabeiti.
Data centric storage technologies: Analysis and
enhancement. Sensors, 10(4):3023–3056, 2010.

[9] I. Dietrich and F. Dressler. On the lifetime of wireless
sensor networks. ACM Trans. Sen. Netw., 5(1):1–39,
2009.

[10] Y.-J. Joung and S.-H. Huang. Tug-of-war: An
adaptive and cost-optimal data storage and query
mechanism in wireless sensor networks. In DCOSS ’08:
Proceedings of the 4th IEEE international conference
on Distributed Computing in Sensor Systems, pages
237–251, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] B. Karp and H. T. Kung. Gpsr: greedy perimeter
stateless routing for wireless networks. In MobiCom
’00, pages 243–254, New York, NY, USA, 2000. ACM.

[12] W.-H. Liao, K.-P. Shih, and W.-C. Wu. A grid-based
dynamic load balancing approach for data-centric
storage in wireless sensor networks. Comput. Electr.
Eng., 36(1):19–30, 2010.

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin,
R. Govindan, L. Yin, and F. Yu. Data-centric storage
in sensornets with ght, a geographic hash table. Mob.
Netw. Appl., 8(4):427–442, 2003.

[14] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. Ght: a geographic hash
table for data-centric storage. In WSNA ’02:
Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages
78–87, New York, NY, USA, 2002. ACM.

[15] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and
D. Estrin. Data-centric storage in sensornets.
SIGCOMM Comput. Commun. Rev., 33(1):137–142,
2003.

[16] D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic
Geometry and its Applications. J. Wiley & Sons,
Chichester, 1995.

[17] N. L. Thang, Y. Wei, B. Xiaole, and X. Dong. A
dynamic geographic hash table for data-centric storage
in sensor networks. In IEEE Wireless Communications
and Networking Conference, 2006. WCNC 2006.,
pages 2168 – 2174, New York, NY, USA, 2006. IEEE.

10

	Página en blanco

