
Abstract A new reconstruction strategy is proposed for 3D 
images acquired with rotating PET scanners. This method is 
based on the decomposition of the System Response Matrix 
(SRM) into a projection and a rotation components that are 
inverted independently. We present the rationale of the new 
reconstruction procedure as well as some examples to compare 
with analytical 3D reconstruction (3DRP) and 3D statistical 
reconstruction (3D-OSEM).

Index Terms  Statistical image reconstruction, Positron 
Emisssion Tomography, Small animal imaging.

I. INTRODUCTION

ome architectures of high resolution small animal PET 
scanners are based on a determined number of opposite 

rotating detectors, that acquire the annihilations events emitted 
by the sample. 

The reconstruction problem in PET is to determine the map 
of annihilations given the data gathered by pairs of the 
detectors. The image reconstruction process for PET imaging 
can be formulated in matrix notation as: 

E m, (1)

where E  is a matrix (nd x np; nd number of lines of response 
and np number of pixels) that represents the system response 
matrix (SRM), where each element of ( )E i, j  is defined as the 
probability of detecting an annihilation event emitted from 
pixel j by a line of response i.  is a (1 x np) column vector 
that contains all the pixels of the image and m  is another (1 x 
nd) column vector that represents the whole acquired data set. 
 For a conventional PET acquisition, where there are 
thousand of lines of response, the size of the SRM makes 
impossible a direct solution of (1), requiring iterative 
algorithms as EM [1] or OSEM [2] to obtain the reconstructed 
image. One of the main drawbacks of these iterative methods 
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is their computational burden. To solve this problem some 
authors have proposed to pre-calculate the singular value 
decomposition (SVD) of the whole SRM [3, 4], obtaining a 
reconstructed image in a computation time comparable to that 
of the FBP algorithm [4]. The problem of these methods is the 
size of the matrix to invert, which makes it difficult to apply to 
3D reconstruction. 

Figure 1: Diagram of a rotating PET scanner . 

II. THEORY

The SRM for scanner based on opposite gamma radiation 
detectors (Fig. 1) can be decomposed into two different 
components: the projection of the lines of response at a fixed 
gantry position and the gantry rotation. From a mathematical 
point of view, the SRM can be expressed as: 
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where the P is a matrix (nc x np; nc is the number of lines of 
response between opposite detectors) that represents the 
projection process for all possible lines of response for a given 
gantry position; R( )i  is a (np x np) matrix that represents the 
rotation of the gantry an i  angle, I  is a (n  x n ; n  number 
of rotating angles) identity matrix and  represents the direct 
product of matrices.

The SVD solution of a conventional 3D PET experiment 
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taking into account all possible lines of response and n  angles 
implies to obtain the SVD of a matrix of a size of n ncxn nc
elements. For a conventional study, the matrix to be inverted 
has thus a huge dimension. However, a faster inversion of 
equation (2) could be achieved as:
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where P† represent the pseudo-inverse of the P  matrix [5] for 
under-determined systems, obtained as: 

T TP P PP
†† . (4)

The inverse of the PPT can be estimated by singular value 
decomposition

† † ,P P =U UT T (5)

where † is a diagonal matrix with diagonal element given by 
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where i are the singular values of the PPT  and  is a 
regularization parameter to control noise amplification in the 
reconstructed image.

The second expression in the right side of equation (3) 
implies to calculate the inversion of the rotation component. 
This inverse matrix can be obtained concatenating all the 
rotation matrices in a row format with a rotation angle equal to 
minus i .

Equation (3) represents a possible inverse of equation (2) 
although it does not ensure the minimum-norm solution of (1) 
as the problem is analyzed independently. However, this 
solution implies the inversion of each component (projection 
and rotation) independently, reducing noticeably the size of 
the matrices to invert and the computation requirements.

The new reconstruction strategy can be summarized in three 
steps (Fig. 2): 

1. Data for each angle are multiplied by the pseudo-
inverse of the projection matrix, obtaining an 
estimated image of the object.

2. Each estimated image is rotated an angle - i, where i
represents the different gantry positions during the 
acquisition (second column of Fig. 2). 

3. All the estimated images obtained in the step 2 are 
added to obtain the final reconstructed image (third 
column of Fig. 2). 

Steps 1 and 
2 Step 3 

=0º

=30º

=90º

Figure 2: Results of the proposed procedure for 
step 1, 2 and 3 at three different instance of the 
image reconstruction. 

This description of the reconstruction procedure resembles 
a filtered backprojection reconstruction, where the filter is 
obtained from the problem analytical. In our case the pseudo-
inverse of the projection matrix can be seen as a filter that can 
include the prior knowledge of the system.

III. MATERIAL AND METHODS

A. P  matrix estimation 
The  matrix P  was estimated by Monte Carlo simulation 

from the LORs corresponding to three crystals in the Z 
direction and 30 crystals in the Y direction (Fig 1), thus 
yielding (3*30)=8100 LORs per detectors pair. These LOR 
comprise a volume of 115x115x6 pixels in X, Y and Z 
direction, respectively. To reconstruct the whole volume, the 
matrix P†  was multiplied by the data that correspond to each 
group of three crystals along the Z direction, covering a whole 
volume of 115x115x70 pixels.

To get a good estimation of pixels probabilities across the 
field of view, the Monte Carlo simulation took into account 
the properties of the scintillator crystals as well as Compton 
and positron range effects. 

B. Acquired data 
To evaluate the new reconstruction procedure we used data 

from a hot Derenzo-like phantom, acquired in an rPET 
scanner (Suinsa Medical Systems Inc, Madrid, Spain) (Fig. 3).

During the experiment, more than 1.5E8 events were 
collected to achieve a good signal to noise ratio. The data were 
acquired in list mode during the continuous rotation of the 
gantry. The events were organized as histograms of LOR with 
and angular binning of one degree. The data were corrected 
from decay, energy, crystals sensitivities and angular 
exposition.

To assess the new reconstruction method, the same data set 
was also reconstructed with 3D-OSEM (3 iterations and 25 
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subsets) and 3DRP (Colsher filter and Z maximum axial 
difference of 17 crystals). These two reconstruction methods 
use the data organized as a sinogram to reduce the number of 
equations in the reconstruction process. The sinogram was 
created from the list mode with a dimension of ( , , Z1, Z2)
(59, 180, 35, 35). 

Figure 3: Diagram of hot Derenzo-like phantom acquired with 
rPET scanner and the dimensions of each segment. 

The computation time for the 3DRP (with a maximum axial 
difference of 17) was 5 min, for 3D-OSEM (3 iterations, 25 
subsets) was 60 min and for the new reconstruction procedure 
was 25 min. Our procedure needs about half the reconstruction 
time than 3D-OSEM, independently of the regularization 
parameter .

V. DISCUSSION AND CONCLUSIONS

This work proposes a new reconstruction procedure for 3D-
PET studies from rotating scanners. The proposed 
reconstruction exploits the modularity of the SRM to reduce 
the reconstruction complexity.

Our results with a hot Derenzo-like phantom showed that 
the proposed procedure produces similar results to those 
obtained with 3D-OSEM in terms of resolution, while 
reducing the  computation burden by a factor of two. 

3DRP
Colsher filter, 17 axial dif,

3D-OSEM
3 Iterations, 25 subsets

Quasi pseudo-inverse 
1E 4

Quasi pseudo-inverse 
1E 5

Sum of all 
the slices 

in Z 
direction

Figure 4: Reconstruction results of the proposed method and 3DRP and 3D-OSEM reconstruction methods. 

IV. RESULTS

Images in Fig 4 show the result yielded by the three 
reconstruction methods. All of them show similar images, 
although 3D-OSEM and our reconstruction method produced 
better results than 3DRP, probably due to the prior 
information included in the reconstruction process.

The result of 3D-OSEM and our reconstruction method 
with =1E-4 provide equivalent results. However, our 
reconstruction with =1E-5 can resolve the smallest points of 
the phantom (red arrows, Fig. 4). This difference can derive 
from the fact that the 3D-OSEM method uses data organized 
as sinograms to reduce the size of the SRM. The inclusion of 
data from different crystals in the same LOR of the sinogram 
spreads the probabilities along the FOV, masking the smallest 
points of the phantom. 
Smaller values of the parameter  increase the noise in the 
final reconstructed image (blue arrows in Fig. 4). This effect is 
explained by the fact that smaller values of , following 
equation (6), imply to use smaller singular values which play a 
more important role in the reconstruction process. The 
inclusion of these singular values generates a better 
representation of the data, albeit producing noise amplification 

A drawback of the proposed procedure is that SVD 
inversion of the TP P  matrix assumes that data are corrupted 
by Gaussian noise, which does not necessarily holds in our 
case. This problem deserves further analysis to determine the 
effect of using a different distribution in the statistical 
approach.
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