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Abstract. We investigate an automatic method of determining a local bandwidth for
non-parametric kernel spectral density estimates at a single frequency. This procedure is
a modi®cation of a cross-validation technique for global bandwidth choices, avoiding
the computation of any pilot estimate based on initial bandwidths or on approximate
parametric models. Only local conditions on the spectral density around the frequency
of interest are assumed. We illustrate with a Monte Carlo study the performance in
®nite samples of the bandwidth estimates proposed.
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1. INTRODUCTION

Smoothed estimation of the spectral density of stationary time series, like many
non parametric methods of inference, relies on the choice of a bandwidth or lag
number depending on the sample size. The properties of the estimates depend
crucially on the value of this number. Asymptotic theory prescribes a rate for the
lag number M with respect to the sample size N as this tends to in®nity, but
gives no practical guidance for the choice of M in ®nite samples. Different
techniques have been proposed in the literature to that end. The usual criterion is
the minimization of some estimate of the asymptotic mean square error of the
estimator. This can be implemented by plug in or cross validation methods.
Also, global and local choices are possible, depending on whether we are
interested in the behaviour of the spectral density for the whole range of
frequencies or at a speci®c point or small interval.

The plug in method consists of substituting the unknowns of the leading term
in the asymptotic expression for the mean square error by consistent estimates,
generally non parametric, but parametric estimates based on approximate
models can also be used. Cross validation procedures avoid the use of initial
estimates and approximate the mean square error indirectly. They are based on
estimates that do not use the information contained in the sample about the
function of interest at the particular point at which the estimate is being
evaluated (at each Fourier frequency in the case of spectral estimation).

Beltrao and Bloom®eld (1987) (BB hereafter) considered bandwidth choice
for discrete periodogram average type spectral estimates. They justi®ed a
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method based on a cross validated form of Whittle's frequency domain
approximation to the likelihood function of a stationary Gaussian process (see
also Hurvich, 1985). Robinson (1991) extended their results under more general
conditions for a wider class of models, including spectral estimation for the
construction of ef®cient regression estimates, and proved the consistency of the
estimate of M . This cross validated method selects a global bandwidth for all
the range of frequencies [ ð, ð] or for a ®xed subset of it. Here we propose a
modi®ed version of cross validation to justify a local bandwidth choice for a
single frequency, following some ideas suggested by Robinson (1991, p. 1346),
related also with the work of Hurvich and Beltrao (1994) in a different context.
For this single frequency choice, we only use local smoothness properties of
the spectral density of the time series around this frequency, allowing for a
broader range of dependence models. This local adaptation could also lead to
ef®ciency gains when estimation of the spectrum for the whole range of
frequencies [ ð, ð] is in mind.

The method we analyse here can be seen as the cross validation alternative to
BuÈhlmann's (1996) iterative local plug in procedure for lag window spectral
estimates, proposed by Brockmann et al. (1993) in the context of kernel
regression estimators (see also Herrmann, 1997), or to the related proposal of
Newey and West (1994) for covariance matrix estimation. Local adaptation is
also studied by Fan and Kreutzberger (1998), who used the variable bandwidth
selector of Fan and Gijbels (1995) for a local polynomial maximum likelihood
®t of the spectral density, and by Lepskii et al. (1997) for kernel estimates of a
regression model with inhomogeneous smoothness.

Alternatively, Wahba (1980) considered automatic smoothing methods for the
log periodogram and Pawitan and O'Sullivan (1994) and Kooperberg et al.
(1995) extended Wahba's (1980) idea using a penalized Whittle likelihood.
These methods, like Efromovich's (1998) ef®cient data driven kernel procedure
for uniformly smooth spectral densities, make a global choice of the smoothing
parameter, while in many cases we are interested in obtaining optimal local
bandwidths for the original scale.

The next section is devoted to the assumptions used in the paper, together
with a brief introduction to the main cross validation concepts for non
parametric spectrum estimation and a detailed analysis of the mean square error
for the spectral estimate at a ®xed frequency under local smoothness
assumptions. Section 3 introduces the local cross validation criterion and the
main result of the paper. Then in Section 4 we carry out a Monte Carlo
analysis of the ®nite sample behaviour of the techniques proposed. All the
proofs and some technical lemmas required are given in the Appendix.

2. ASSUMPTIONS AND DEFINITIONS

In this section we introduce some assumptions and de®nitions, together with
some intuitions about cross validation and BB's results. Given the observed data
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X t, t � 1, 2, . . ., N , the periodogram at the frequency ëj � 2ð j=N, j integer, is
equal to

I(ëj) �def 1

2ðN

����XN

t 1

X t exp(itëj)

����2:
The averaged periodogram spectral estimate with lag number M � MN � hÿ1

N ,
where hN is the bandwidth of the estimate in BB's notation, and kernel or
spectral window K (this function was denoted W in BB, but we use this notation
later for another analogous function) is

f̂M (ëj) �def
óÿ1

M

X
k

K(Mëk)I(ëj ëk)

where the summation runs for all values of k in the support of K, but not
including indices k with ëk ëj � 2ðr for r 2 N (to account for mean
correction), and óM gives the exact sum of the weights used,

óM �def
X

k

K(Mëk):

Here óÿ1
M could be replaced by the approximate value 2ðM=N , using the fact

that K integrates to 1, but this simplifes some arguments. We stress the
dependence of f̂M on M in the notation, since this is the parameter of interest.

We now give BB's regularity conditions to compare later with our local
Assumptions 1 4 below. BB (cf. their Theorem 3.1) considered a zero mean
stationary Gaussian process fXtg with autocovariance function ã(r) � E(X 0 Xr)
satisfying X1

1

rjã(r)j,1 (1)

and spectral density f (ë) � (2ð)ÿ1
P1
ÿ1ã(r)expfirëg everywhere positive. The

kernel function K for non parametric estimation was non negative, even,
bounded, with �1

ÿ1
K(x) dx � 1 w2 �def

�1
ÿ1

x2 K(x) dx ,1: (2)

They also wrote K(x) � � w(y)exp(ixy) dy, where w is of compact support.
Finally, the bandwidth hN used by BB satis®ed hÿ1

N � O(Nr), for some r, 2=5
and hN � o(1).

The `leave two out version' of the estimator f̂M (we leave only two
frequencies out if K is actually compactly supported inside [ ð, ð], as we
assume later on, or if we have de®ned its periodic version in that interval) is

f̂
j
M (ëj) �def

óÿ1
j,M

X
k

9K(Mëk)I(ëj ëk) (3)
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where
P

9k runs for the same values as before except in the set of indices
k 2 f2 j, 2 j� N , . . .g (by the de®nition of

P
k this means k =2 f0, �N , . . .g

[ f2 j, . . .g). Also, the normalizing number ó j,M is equal to

ó j,M �def
X

k

9K(Mëk):

Introduce the pseudo log likelihood type criterion

L( f ) �def
XNÿ1

j 1

log f (ëj)� I(ëj)

f (ëj)

( )
(4)

which is Whittle's approximation for the likelihood of a Gaussian sequence in
the frequency domain. BB showed under the previous conditions that

L( f̂M) L( f ) � N

2
IMSE(M)

plus a term of smaller order in probability, where IMSE(M) is the discrete
approximation to the relative integrated mean squared error of f̂M , weighted by
f ÿ1:

IMSE(M) �def
Nÿ1

XNÿ1

j 1

E
f̂M (ëj) f (ëj)

f (ëj)

( )2

:

Then minimizing L( f̂M) and IMSE�M� should be approximately equivalent, and
this is the basis for the estimation of the M that minimizes the IMSE�M� of
f̂ M(ë) for in [ ð, ð].

If we are interested in non parametric spectral estimation at a single
frequency (of special interest is the zero frequency; see BuÈhlmann's (1996)
examples, together with covariance matrix estimation in econometrics, as in
Den Haan and Levin (1997) and the references therein) or we want to achieve
possible ef®ciency gains using different bandwidths for each frequency, we
need a rule to choose a local bandwidth. The relative mean square error at a
frequency í

MSE(í, M) �def
E

f̂M (í) f (í)

f (í)

( )2

is the usual criterion employed to assess non parametric spectral estimates at a
single frequency.

We use the following assumptions.

Assumption 1. Xt, t � 1, 2, . . ., is a Gaussian stationary time series.

Assumption 2. The spectral density f (ë) of X t has three uniformly bounded
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derivatives in an interval around the ®xed frequency ë, with f (ë) . 0 for ë in
that interval and f 2 Lp[ ð, ð] for some p . 5=3.

Assumption 3. K is non negative, even, bounded, zero outside [ ð, ð], of
bounded variation and satis®es (2).

Assumption 4. K has Fourier transform w(x) � (2ð)ÿ1
�1
ÿ1 K(ë)

exp(iëx) dë satisfying

jw(x)j � O(jxjÿá) as jxj ! 1
for some á. 5=4.

Assumption 1 was used also in BB, but we do not need to assume zero mean
since we avoid the zero frequency periodogram ordinate in the de®nition of our
estimates. Assumption 2 only requires smoothness properties of f around the
frequency of interest, allowing for a wide class of spectral densities, including
ones with zeros and poles outside a neighbourhood of í, which are ruled out by
(1). The only requirement outside this band is an integrability condition to
ensure ergodicity (with respect to second moments) of the series (see Lemma 7
in the Appendix).

A compact support kernel in Assumption 3 is then the complement of
Assumption 2 in order to guarantee that only information in an interval around
í is used. The rest of the conditions on K are standard, Assumption 4 being
necessary to approximate f̂M by a weighted autocovariance type estimate in
Lemma 5. From this lemma, both estimates have the same asymptotic
distribution and mean square error, so the bandwidth choice techniques for one
are valid for the other. This condition is satis®ed by the Bartlett Priestley and
quadratic spectral kernel (with á � 2), but not by the Daniell or uniform
spectral window.

With Assumption 3, the summation in k in the de®nition of f̂M takes values
in f j N � 1, . . ., j 1g f jg due to the compact support kernel, and in
f j N � 1, . . ., j 1g f j, 2 j, 2 j Ng for f̂

j
M (ëj).

We now present a result concerning the mean square error of the estimate f̂M

at Fourier frequencies ëj, which is used to analyse a local version of the
likelihood (4). We use in the proof two lemmas given in the Appendix about
the discrete Fourier transform and periodogram of the observed sequence,
extending and correcting some of the results of BB, assuming only local
smoothness for the spectral density. We have to distinguish between estimates
for Fourier frequencies ëj close to the origin and estimates at remote
frequences. De®ne kKk2

2 �
�

K2(x) dx and let c be a ®nite positive constant,
not necessarily always the same.

Lemma 1. Under Assumptions 1, 2 and 3, if M � cN 1=5, for frequencies
ëj � 2ð j=N such that jí ëjj < cmÿ1 for some positive sequence m � mN

such that 1=m� m=M ! 0 as N !1, then uniformly in j, for í. 0
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MSE(ëj, M) � M

N
2ðkKk2

2 f (ëj)
2 � Mÿ4 w2

2
f (2)(ëj)

� �2

� O
M2

N2
� Nÿ1

� �
,

where f (2) is the second derivative of f, and for í � 0

MSE(ëj, M) � M

N
2ðkKk2

2 f (ëj)
2f1� äM ( j)g

� Mÿ4 w2

2
f (2)(ëj)

� �2

�O
M2

N2
� Nÿ1

� �
where w2 is de®ned in (2) and

äM ( j) � kKkÿ2
2

�1
ÿ1

K(ë)K(ë� 2Mëj) dë: (5)

Note that all the bounds are uniform in j and that äM ( j) measures the degree
of overlapping between different kernels K at a distance 2Mëj apart when
ëj ! 0 as N !1, with 0 < äM ( j) < 1. For j � 0, äM ( j) � 1 8M, and for
ëj . 2ð=M , äM ( j) � 0.

For í. 0, ®xed, this is the standard result for globally smooth spectral
densities (see, for example, Brillinger, 1975, Corollaries 5.6.1 and 5.6.2).
However, in a degenerating band around the origin (small ëj), the non
parametric spectral estimates have variance depending on the overlapping of
two kernel functions K centred at frequencies ëj and ëj respectively,
measured by the quantity äM ( j).

To make the bias and the variance of the same order of magnitude we would
take M � ôN1=5, for some 0 , ô,1, and then MSE is of order
Mÿ4 � cM=N . From the previous lemma, the optimal constant ô�(í) that
minimizes the leading term of the mean square error of f̂M (í) is

ô�(í) � w2 f (2)(í)2

2ðkKk2
2 f (í)2

( )1=5

(6)

if í 6� 0 and with 4ð instead of 2ð for í � 0. Now it is possible to estimate the
value of ô�(í) using initial, pilot estimates of the spectral density and its second
derivative at í. This is the approach of several authors, including Andrews
(1991), Newey and West (1994) and BuÈhlmann (1996), to give some recent
contributions. In the following section we adopt instead an indirect approach
using a cross validation argument.

3. LOCAL CROSS-VALIDATION

Consider for some positive sequence m � mN such that 1=m� m=M ! 0 as
N ! 0, one form of local integrated mean square error
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IMSEm(í, M) �def 2ð

N

XNÿ1

j 1

Wm(ëj í)E
f̂M (ëj) f (ëj)

f (ëj)

( )2

where Wm(ë) � m
P

jWfm(ë� 2ð j)g for some appropriate kernel function W
satisfying Assumption 3. For the uniform kernel W � (2ð)ÿ1 I [ÿð,ð] and m � 1,
we have IMSEm(í, M) � IMSE(M) for all í.

Then, from Lemma 1 and for í. 0 we can obtain under the same regularity
conditions

IMSEm(í, M) � M

N
2ðkKk2

2 � Mÿ4 w2

2

f (2)(í)

f (í)

( )2

� O
M2

N2
� 1

N
� M

N

m

N
� 1

m

� �� �
� MSE(í, M)� ofMSE(í, M)g

where the errors in m arise from the continuous approximation to the sum in
IMSEm and we use that the ratio f (2)(í)= f (í) has bounded derivative. Therefore
IMSEm(í, M) approximates MSE(í, M) when í. 0 as m!1 and m=M ! 0.

When í � 0, we can see that

IMSEm(0, M) � 2ð

N

XNÿ1

j 1

Wm(ëj)
M

N
2ðkKk2

2f1� äM ( j)g
� �

(7)

� Mÿ4 w2

2

f (2)(0)

f (0)

( )2

� O
M2

N 2
� Nÿ1 � M

N

m

N
� mÿ1

� �( )
Now in the summation in (7) we consider only the values of ëj smaller than
2ð=M in absolute value, because jäM ( j)j � 0 if jëjj. 2ð=M (i.e. j jj. N=M).
Then, using that jäM ( j)j < 1 8 j, supm, jjWm(ëj)j � O(m) and m=M ! 0,

2ð

N

X
j

Wm(ëj)
M

N
2ðkKk2

2f1� äM ( j)g
� �

� M

N
2ðkKk2

2

2ð

N

X
j

Wm(ëj)� M

N
2ðkKk2

2

2ð

N

X
j jj<N=M

Wm(ëj)äM ( j) (8)

� M

N
2ðkKk2

2 � O
M

N

m

N

� �
� O

m

N

� �

� 1

2
varf f̂M (0)g � o

M

N

� �
: (9)
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Therefore, when í � 0, IMSEm(0, M) only estimates half of the asymptotic
variance in MSE(0, M), because the kernel Wm includes estimates f̂M (ëj)
too far away from the origin and then with much smaller variance than f̂M (0).
However, the second term in (8) of magnitude m=N , corresponding to the
overlapping factor äM ( j) in Lemma 1, contributes to IMSEm(0, M) in ®nite
samples and could help to approximate the true variance. A possible approach to
obtaining a consistent estimate of the optimal local bandwidth which minimizes
MSE(í, M), M� � ô�(í)N1=5, is to minimize an estimate of MSE(í, M) or of
IMSEm(í, M), which approaches the former as m increases. Some adjustments
might be necessary in the case í � 0 due to the problem described in the
previous paragraph. The presence of two related bandwidth parameters, m and
M , seems to imply a circular argument like that present in a plug in method,
where pilot estimates of the spectral density and its derivatives are used,
depending on other bandwidths or parametric assumptions. To circumvent this
problem we describe some procedures in the next section showing that the
choice of m might not be too decisive.

The logical cross validation argument in this case would be the minimization
with respect to M of the function (recalling the de®nition of the `leave two out'
spectral estimate in (3))

CVLLm(í, M) �def
2ð
XNÿ1

j 1

Wm(ëj í) log f̂
j
M (ëj)� I(ëj)

f̂
j
M (ëj)

( )
which is a likelihood that tends to use only the information around í as m!1.
Since W has compact support [ ð, ð], about N=m frequencies around í are
used. It is likely that this procedure leads to more variability than the global
procedure, since we are not using all information of the sample (see BuÈhlmann
1996, Section 3.1) or Brockmann et al. (1993) for a related problem in non
parametric regression).

To justify the above ideas we have the following proposition, proved in the
Appendix.

Proposition 1. Under Assumptions 1, 2, 3 and 4, with W satisfying
Assumption 3, M � cN 1=5 and 1=m� m=M ! 0 as N !1,

CVLLm(í, M) � 2ð
XNÿ1

j 1

Wm(ëj í) log f (ëj)� I(ëj)

f (ëj)

( )

� N

2
IMSEm(í, M)� oPfN IMSEm(M)g:

where 0 , IMSEm(í, M)=IMSE(M) ,1 as N !1, and the ®rst term on the
right hand side depends only on m (but not on M).

Then, under regularity conditions, CVLLm(í, M) is a consistent estimator of
IMSEm(í, M) up to a constant not depending on M . From there, minimization
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of CVLLm should be approximately equal to minimization of IMSEm. Since the
latter approximates MSE(í) under similar conditions on m, we can expect to
obtain reasonable estimates of the local optimal M using the local cross
validation criterion with M̂(í) � arg minM CVLLm(í, M).

BB did not require to estimate explicitly IMSE or its asymptotic rate of
convergence, but in our case we need to do so because we estimate a local
MSE from an IMSE calculated from estimates around the frequency of interest.
To this end, additional stronger conditions are required for the spectrum at that
frequency, but we do not need to make global assumptions for the spectral
density or for the autocovariance sequence, allowing for the presence of peaks
at remote frequencies due to persistent or cyclic behaviours.

4. MONTE CARLO WORK

In this section we assess whether all the asymptotic arguments given in the
previous sections are good approximations for reasonable ®nite sample sizes and
whether the cross validation leads to sensible bandwidth estimations. We
concentrated ®rst on the special case of the estimation of the bandwidth for
non parametric spectral estimates at the origin (í � 0), and then on the
estimation of the spectral density for all ë 2 [ ð, ð], following BuÈhlmann
(1996, Section 3).

We simulated Gaussian sequences following ®ve different models and three
sample sizes, N � 120, 256 and 480. The models considered are the following
AR processes:

Xt �
Xp

j 1

áj X tÿ j � Ej Et � iidN(0, 1)

with parameters

MODEL 1 AR(3): á1 � 0:6, á2 � 0:6, á3 � 0:3

MODEL 2 AR(2): á1 � 0:6, á2 � 0:9

MODEL 3 AR(1): á1 � 0:8

MODEL 4 AR(2): á1 � 1:372, á2 � 0:677

MODEL 5 AR(5): á1 � 0:9, á2 � 0:4, á3 � 0:3, á4 � 0:5, á5 � 0:3:

The last three parameter sets were used also by BuÈhlmann (1996). These models
are convenient because of their simplicity and the different spectra they
represent. From Figure 1, Model 1's spectral density exhibits a small peak at the
origin and a larger one at ë � 1:5. Model 2 is ¯at at the origin but with a very
sharp peak at frequency ë � 1:3. The AR(1) Model 3 has the typical spectral
density of an AR(1) series with positive autocorrelation and a maximum at zero
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Figure 1. Spectral densities for Models 1 5: (a) Model 1, AR(3), á1 � 0:6, á2 � 0:6 á3 � 0:3;
(b) Model 2, AR(2), á1 � 0:6, á2 � 0:9; (c) Model 3, AR(1), á1 � 0 8; (d) Model 4, AR(2),
á1 � 1:372, á2 � 0:677; (e) Model 5, AR(5), á1 � 0:9, á2 � 0:4, á3 � 0:3, á4 � 0:5,

á5 � 0:3.
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frequency. The AR(2) spectrum of Model 4 is similar to the ®rst one but with a
minimum at the origin and a closer peak, whereas Model 5's spectrum shows
several peaks, including one at the origin.

With these processes we hope to gauge the performance of our approxima
tions in situations where global bandwidths might not be very appropriate due
to the presence of special features in the spectral density at the frequency of
interest or at remote frequencies which could distort global procedures. We did
not normalize the time series to have equal variance or the same spectral
density at the origin, since this would only imply multiplying the periodogram
of the observed time series by a ®xed constant and does not affect any of the
methods used.

For the local choice at ë � 0, we employ the Bartlett Priestley kernel (for
both K and W ), with spectral window

K(ë) � (3=4ð)f1 (ë=ð)2g jëj < ð
0 jëj > ð

�
and lag window

w(x) � 3

(ðx)2

sinðx

ðx
cosðx

� �
:

The uniform kernel was also tried for K, with much less smooth results as a
consequence of the non continuity in the boundaries of its support and a lag
window with tails slowly decreasing to zero. For the choice at all frequencies
ëj 2 [ ð, ð] we report the results for W equal to the uniform kernel, this case
not being very different from those with the Bartlett Priestley window.

4.1. Spectral estimation at the origin

From Equation (9) we know that, for the frequency í � 0 in particular,
IMSEm(0, M) does not approach MSE(0, M) asymptotically due to the different
variance of the spectral density estimates around the origin. Nevertheless, from
Lemma 1, the transition from the variance of f̂M (0) to the variance of an
estimate at a frequency apart from the origin (one half of the previous one) is
smooth, depending on the shape of the kernel used (see the de®nition of äM ( j)).
Then we can expect that the approximation behaves moderately well also for this
case.

We used the following equivalent version of the cross validated log
likelihood, given the periodicity and symmetry of Wm, f and I,

CVLLm(0, M) � 2ð
X[N=2]

j ÿ[N=2]

Wm(ëj) log f̂
j
M (ëj)� I(ëj)

f̂
j
M (ëj)

( )
dropping the frequency ëj � 0 (since due to mean correction I(0) � 0 and
f̂M (0) � f̂ 0

M (0)) and we calculated IMSEm accordingly.
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We ®rst estimate the function CVLLm(0, M) for a grid of values of m and
M and then we report in Table I the bias (with respect to the minimizer
M�(0) � ô�(0)N1=5 of the asymptotic MSE(0, M) given by (6)), standard
deviation (sd) and mean square error (mse) across replications of the M̂
estimated by the minimization of CVLLm (1000 replications and sample size
N � 256). The number of different Fourier frequencies around ë0 over which
the kernel Wm averages for each value of m is `band' � N=(2m). We cover all
the values of `band' from 1 to 115 with increments of size 6, which correspond
to values of m from 128 to 1.11. We also report the ®nite sample optimal
M̂�(0) which minimizes the sample MSE across replications. This value turned
out to be quite close to M�(0) for Models 2 and 4, but much smaller than the
asymptotic value for Models 1, 3 and 5. The results are also summarized in the
bi and tri dimensional plots of Figures 2 6, where we can only give some of
the CVLLm lines because of the very different scales. In the bi dimensional
graphs each line corresponds to the plot of CVLLm(0, M) against M for a
particular m.

The lag number M estimated by CVLLm shows relatively stable standard
deviations for all values of m between 1 and 5, though increasing slightly with
m as expected. This bias displays a different behaviour for each of the models
used. In the case of Model 2, higher values of M̂ are estimated than the
asymptotic optimal (M�(0) � 7:13), and a similar observation holds in inverse
direction for Model 3, where much smaller values than M�(0) � 20:34 are
found. In general, for moderate values of m only Models 4 and 5 have small
bias with respect to the asymptotic M�(0), while for Models 1 and 2 there is a
large positive bias and for Model 3 a negative one.

Focusing on M̂�(0) instead, we can observe that, for most values of m
between 5.12 and 9.85 and for all models, CVLLm is correcting the estimations
of M substantially in the direction of the ®nite sample minimizer of
MSE(0, M). These large values of m correspond to the use of local
information for the estimation of M�(0), but due to the use of a small
number of spectral estimates this leads to quite imprecise estimates (high
standard deviations) in many cases. Nevertheles, occasionally these estimates of
M based on CVLLm with high m have smaller mse calculated with respect to
M�(0), and this reduction of the mse would extend to all cases if we consider
the empirical M̂�(0).

Summarizing, we ®nd that CVLLm re¯ects the different characteristics of the
spectral density for a range of values of m and can be useful for studying local
properties of the spectral density in order to make a choice for M. The
variability of the estimates is relatively high, as in most bandwidth choice
methods (characterized by slow rates of convergence) and as in any non
parametric method this variance tends to increase in general with the value of
m (which is proportional to the inverse of the actual bandwidth of the kernel
Wm).

From a theoretical point of view, the choice of m does not have a de®nitive
answer, though it might not be too decisive for approximating M̂�(í). In

12



TABLE I

M̂ Minimizing CVLLm(0, M)

Model 1 Model 2 Model 3 Model 4 Model 5
M�(0): 7.158 M�(0): 7.131 M�(0): 20.340 M�(0): 11.076 M�(0): 11.969
M̂�(0): 1.829 M̂�(0): 6.481 M̂�(0): 11.130 M̂�(0): 8.983 M̂�(0): 2.943

m band bias sd mse bias sd mse bias sd mse bias sd mse bias sd mse

1.11 115 3.42 4.20 29.35 9.54 4.54 111.52 10.98 4.08 137.08 0.49 3.72 14.10 0.13 3.70 13.74
1.17 109 3.47 4.22 29.82 9.76 4.59 116.36 10.85 4.24 135.62 0.45 3.68 13.76 0.04 3.85 14.81
1.24 103 3.49 4.19 29.74 9.96 4.57 120.13 10.74 4.32 134.08 0.28 3.88 15.11 0.01 3.94 15.54
1.32 97 3.52 4.27 30.64 10.11 4.67 124.04 10.74 4.27 133.53 0.13 4.00 15.98 0.05 3.85 14.84
1.41 91 3.68 4.38 32.69 10.54 4.85 134.69 10.55 4.37 130.44 0.03 3.99 15.94 0.06 3.89 15.15
1.51 85 3.80 4.36 33.48 11.01 5.04 146.66 10.41 4.46 128.19 0.12 4.11 16.90 0.30 4.05 16.52
1.62 79 3.83 4.36 33.69 11.55 5.52 163.94 10.34 4.27 125.14 0.32 4.12 17.11 0.18 4.15 17.22
1.75 73 3.91 4.45 35.09 11.88 5.56 172.01 10.22 4.38 126.63 0.47 4.09 16.98 0.00 4.44 19.72
1.91 67 3.92 4.63 36.79 12.33 5.67 184.10 10.05 4.54 121.58 0.74 4.45 20.39 0.01 4.55 20.71
2.10 61 3.61 5.05 38.56 12.80 6.12 201.33 9.90 4.52 118.52 0.95 4.53 21.42 0.02 4.76 22.70
2.33 55 3.08 5.62 41.13 13.08 6.55 213.86 9.73 4.62 116.11 1.19 4.87 25.15 0.11 5.10 26.06
2.61 49 2.80 6.18 46.00 10.83 5.93 152.52 9.41 4.94 112.97 1.28 4.89 25.49 0.12 5.37 28.83
2.98 43 2.85 6.13 45.74 9.95 5.31 127.17 9.17 5.08 109.82 1.52 5.09 28.21 0.42 5.68 32.46
3.46 37 2.98 6.23 47.65 6.26 4.64 60.72 8.66 5.53 105.52 1.91 5.87 38.12 0.81 6.18 38.88
4.13 31 2.92 6.27 47.85 4.32 4.48 38.69 8.58 5.57 104.62 2.12 5.68 36.79 0.27 6.60 43.68
5.12 25 3.02 6.83 55.78 2.97 5.16 35.43 7.84 6.10 98.70 1.86 6.20 41.91 1.45 7.11 52.70
6.74 19 3.58 3.44 24.66 0.87 4.12 17.70 8.26 6.05 104.87 4.50 5.25 47.76 8.14 2.90 74.61
9.85 13 2.18 3.82 19.32 0.14 4.01 16.08 6.64 7.10 94.61 2.95 6.04 45.25 7.54 3.04 66.15

18.29 7 0.38 4.65 21.76 0.06 5.51 30.40 6.85 8.29 115.77 1.34 6.21 40.33 4.58 5.31 49.24
128.0 1 9.15 10.39 191.59 4.00 9.41 104.49 3.97 9.78 111.51 5.54 10.11 132.95 4.24 10.08 119.50
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practical applications a simple possibility is a selection criterion depending only
on a ®xed m, possibly a function of N . For any sample size this would imply
the use of about N=m Fourier frequencies in CVLLm. In Table II VI we tried
the following choices for sample sizes N � 120, 256, 480 and Models 1 5:

Method GLOBAL (a) (b) (c) (d) (e) LOCAL
m 1 N0:05 N0:1 N0:2 N0:3 N0:4 N=6

These cover all reasonable values for the three sample sizes in the light of the
behaviour of CVLLm. GLOBAL is the same as BB's global procedure, with the
use of a kernel W , not necessarily the uniform one. Procedures (a) and (b)
satisfy the conditions of Proposition 1 since M � cN0:2, but options (d) and (e)
do not, (c) being on the borderline. For comparison purposes the LOCAL
method selects a quite local choice for all sample sizes. We employed 1000
replications.

Following BuÈhlmann (1995), for each case we report the bias, standard
deviation and two relative mean squared errors for the simulated M̂ Rmse,
relative to the asymptotic M�(0), and Rmsey, relative to the empirical M̂�(0),

Rmse � Ey[fM̂(0) M�(0)g2]

M�(0)2
Rmsey � Ey[fM̂(0) M̂�(0)g2]

M̂�(0)2

where Ey denotes expectation with respect to the simulated samples, and
similarly for f̂ M̂ (0) (with bias and Rmse relative to the true value f (0)).
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Figure 6. CVLLm(M , 0) for Model 5. Cross-validated likelihood, AR(5), á1 � 0:9, á2 � 0:4,
á3 � 0:3, á4 � 0:5, á5 � 0:3.
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TABLE II

Model 1: AR(3), á [0:60 0:60, 0:30]

Method bias sd Rmse Rmsey bias sd Rmse (sd) MSE ratio MSEy ratio

N 120 M�(0): 6:1516, M̂(0): 7:5 f (0): 0:3248

GLOBAL 0.3584 2.1217 0.1224 0.0975 0.0177 0.1263 0.1542 (0.0641) 1.2357 1.2438
(a) 0.1579 2.2988 0.1403 0.1191 0.0199 0.1235 0.1482 (0.0627) 1.1880 1.1958
(b) 0.2734 2.3369 0.1463 0.1438 0.0204 0.1191 0.1385 (0.0606) 1.1100 1.1173
(c) 2.8218 1.8509 0.3009 0.3701 0.0334 0.0872 0.0826 (0.0449) 0.6618 0.6661
(d) 2.7554 1.8015 0.2864 0.3571 0.0366 0.0896 0.0887 (0.0459) 0.7110 0.7156
(e) 2.8278 1.8884 0.3055 0.3734 0.0406 0.0930 0.0977 (0.0476) 0.7827 0.7878

LOCAL 2.5814 2.2423 0.3090 0.3639 0.0364 0.1028 0.1127 (0.0516) 0.0835 0.9094

N 256 M�(0): 7:1582, M̂�(0): 1:8286 f (0): 0:3248

GLOBAL 1.2755 2.4679 0.1506 13.9681 0.0151 0.0938 0.0856 (0.0482) 1.3106 0.3310
(a) 1.0319 2.5011 0.1429 13.12307 0.0154 0.0933 0.0848 (0.0480) 1.2985 1.3187
(b) 0.0500 2.5712 0.1291 9.9707 0.0180 0.0877 0.0760 (0.0451) 1.1637 1.1818
(c) 3.6088 2.1191 0.3418 2.0748 0.0313 0.0604 0.0438 (0.0312) 0.6712 0.6816
(d) 3.9257 1.7523 0.3607 1.3975 0.0384 0.0598 0.0479 (0.0309) 0.7336 0.7450
(e) 4.0488 1.8927 0.3898 1.4523 0.0383 0.0625 0.0510 (0.0322) 0.7805 0.7927

LOCAL 3.7970 1.8768 0.3501 1.6301 0.0357 0.0612 0.0476 (0.0316) 0.7290 0.7403

N 480 M�(0): 8:1171, M̂�(0): 1:875 f (0): 0:3248

GLOBAL 1.8742 2.6173 0.1573 20.6865 0.0101 0.0755 0.0551 (0.0390) 1.3783 1.4137
(a) 1.7283 2.7263 0.1581 20.1843 0.0102 0.0751 0.0544 (0.0388) 1.3630 1.3980
(b) 0.4309 2.7659 0.1189 14.8423 0.0126 0.0704 0.0485 (0.0364) 1.2140 1.2452
(c) 4.2859 2.3343 0.3615 2.6384 0.0263 0.0440 0.0249 (0.0228) 0.6238 0.6398
(d) 5.0850 1.5266 0.4278 1.0437 0.0349 0.0423 0.0285 (0.0219) 0.7136 0.7319
(e) 5.2591 1.4893 0.4534 0.9058 0.0333 0.0429 0.0280 (0.0222) 0.6998 0.7178

LOCAL 4.8497 1.7325 0.4025 1.4053 0.0302 0.0416 0.0251 (0.0216) 0.6282 0.6443
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TABLE III

Model 2: AR(2), á [0:60 0:90]

Method bias sd Rmse Rmsey bias sd Rmse (sd) MSE ratio MSEy ratio

N 120 M�(0): 5:1285, M̂(0): 7:5 f (0): 0:0942

GLOBAL 4.9919 1.3243 0.7102 0.2642 0.0144 0.0580 0.4027 (0.3572) 1.4147 1.4192
(a) 5.0614 1.3056 0.7275 0.2724 0.0144 0.0582 0.4060 (0.3587) 1.4263 1.4307
(b) 5.0557 1.3236 0.7272 0.2724 0.0146 0.0582 0.4063 (0.3472) 1.4275 1.4320
(c) 4.0417 1.7333 0.5149 0.1802 0.0157 0.0563 0.3858 (0.3295) 1.3555 1.3598
(d) 2.2451 1.8955 0.2299 0.0774 0.0180 0.0534 0.3583 (0.3190) 1.2589 1.2628
(e) 0.8858 2.2370 0.1541 0.0932 0.0179 0.0517 0.3378 (0.3185) 1.1867 1.1904

LOCAL 0.1706 2.7554 0.2029 0.1606 0.0187 0.0516 0.3394 (0.0134) 1.1924 1.1961

N 256 M�(0): 7:1313, M̂�(0): 6:4810 f (0): 0:0942

GLOBAL 8.4895 2.3973 1.5302 4.7419 0.0061 0.0392 0.1779 (0.2420) 1.7397 1.7562
(a) 8.5908 2.3850 1.5631 4.8261 0.0061 0.0394 0.1797 (0.2432) 1.7573 1.7739
(b) 8.3915 2.4307 1.5008 4.6654 0.0063 0.0395 0.1802 (0.2435) 1.7627 1.7795
(c) 4.9506 2.5475 0.6095 2.2657 0.0072 0.0358 0.1504 (0.2209) 1.4708 1.4848
(d) 1.3965 2.6261 0.1740 0.7736 0.0109 0.0332 0.1378 (0.2048) 1.3476 1.3604
(e) 0.0054 2.7176 0.1452 0.4762 0.0079 0.0302 0.1102 (0.1866) 1.0782 1.0884

LOCAL 0.6787 2.8666 0.1706 0.4131 0.0143 0.0341 0.1544 (0.2105) 1.5098 1.5242

N 480 M�(0): 8:0866, M̂�(0): 5:0 f (0): 0:0942

GLOBAL 12.6852 3.6600 2.6656 10.4858 0.0029 0.0332 0.1249 (0.2046) 2.3300 2.3743
(a) 12.9979 3.7590 2.7996 10.9137 0.0029 0.0335 0.1276 (0.2068) 2.3806 2.4259
(b) 12.2446 3.7141 2.5037 9.9536 0.0029 0.0330 0.1241 (0.2038) 2.3140 2.3580
(c) 4.6116 2.8291 0.4476 2.6907 0.0045 0.0268 0.0830 (0.1651) 1.5481 1.5775
(d) 1.0187 2.8068 0.1363 0.9893 0.0070 0.0242 0.0718 (0.1496) 1.3400 1.3654
(e) 0.2205 3.1503 0.1525 0.7256 0.0049 0.0229 0.0618 (0.1413) 1.1529 1.1748

LOCAL 0.9393 3.3423 0.1843 0.6313 0.0128 0.0290 0.1135 (0.1791) 2.1159 2.1561
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TABLE IV

Model 3: AR(1), á [0:8]

Method bias sd Rmse Rmsey bias sd Rmse (sd) MSE ratio MSEy ratio

N 120 M�(0): 17:4803, M̂(0): 10:0 f (0): 3:9789

GLOBAL 10.6166 2.0697 0.3829 0.1412 1.4311 1.4412 0.2609 (0.0126) 0.7774 0.7793
(a) 10.2789 2.1244 0.3606 0.1235 1.3654 1.4838 0.2568 (0.0134) 0.7651 0.7671
(b) 10.0005 2.1871 0.3430 0.1114 1.3178 1.5076 0.2533 (0.0134) 0.7545 0.7564
(c) 9.5028 2.2363 0.3119 0.0909 1.2429 1.5800 0.2553 (0.0150) 0.7605 0.7624
(d) 9.0186 2.2093 0.2822 0.0725 1.1664 1.6004 0.2477 (0.0148) 0.7380 0.7398
(e) 8.8514 2.2607 0.2731 0.0699 1.1201 1.6132 0.2436 (0.0157) 0.7258 0.7276

LOCAL 9.4723 3.1568 0.3263 0.1393 1.1735 1.7293 0.2759 (0.0173) 0.8219 0.8240

N 256 M�(0): 20:3404, M̂�(0): 11:1304 f (0): 3:9789

GLOBAL 11.4808 2.4632 0.3332 0.0737 1.1175 1.1254 0.1589 (0.0053) 0.8988 0.9035
(a) 11.0161 2.6134 0.3098 0.0729 1.0485 1.1778 0.1571 (0.0058) 0.8885 0.8931
(b) 10.5917 2.7507 0.2894 0.0763 0.9975 1.1979 0.1535 (0.0059) 0.8683 0.8728
(c) 9.9272 2.9508 0.2592 0.0888 0.9171 1.2465 0.1513 (0.0068) 0.8557 0.8601
(d) 9.3162 3.0514 0.2323 0.1036 0.8459 1.2867 0.1498 (0.0075) 0.8472 0.8516
(e) 8.7241 3.3655 0.2113 0.1394 0.7494 1.3510 0.1508 (0.0083) 0.8529 0.8573

LOCAL 10.2942 4.8292 0.3125 0.2332 1.0102 1.4883 0.2044 (0.0101) 1.1562 1.1621

N 480 M�(0): 23:0653, M̂�(0): 10:0 f (0): 3:9789

GLOBAL 12.7966 2.6874 0.3214 0.0729 0.9144 0.9351 0.1080 (0.0027) 0.8936 0.8998
(a) 12.3139 2.8446 0.3002 0.0866 0.8623 0.9629 0.1055 (0.0031) 0.8729 0.8789
(b) 11.8107 2.9736 0.2788 0.1042 0.8132 0.9883 0.1035 (0.0035) 0.8557 0.8617
(c) 10.8172 3.2750 0.2401 0.1578 0.7182 1.0589 0.1034 (0.0043) 0.8553 0.8612
(d) 10.0015 3.5333 0.2115 0.2187 0.6310 1.1233 0.1049 (0.0054) 0.8672 0.8733
(e) 9.3773 3.9248 0.1942 0.2901 0.5397 1.2028 0.1098 (0.0075) 0.9080 0.9143

LOCAL 11.9401 6.2338 0.3410 0.4013 0.9859 1.3978 0.1848 (0.0095) 1.5286 1.5393
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TABLE V

Model 4: AR(2), á [1:37, 0:68]

Method bias sd Rmse Rmsey bias sd Rmse (sd) MSE ratio MSEy ratio

N 120 M�(0): 9:5192, M̂(0): 7:5 f (0): 1:7109

GLOBAL 1.4440 2.0943 0.0717 0.0835 0.3530 0.8505 0.3091 (0.0109) 1.1074 1.1111
(a) 1.1884 2.1111 0.0650 0.0909 0.3302 0.8543 0.3058 (0.0114) 1.0956 1.0992
(b) 1.0308 2.1656 0.0638 0.1000 0.3237 0.8588 0.3071 (0.0114) 1.1001 1.1038
(c) 1.0011 2.4197 0.0760 0.1218 0.3040 0.8474 0.2955 (0.0086) 1.0586 1.0621
(d) 1.6060 2.8498 0.1186 0.1471 0.3724 0.8277 0.3003 (0.0079) 1.0758 1.0794
(e) 6.4426 1.6444 0.4900 0.3991 0.8878 0.7203 0.4765 (0.0038) 1.7071 1.7128

LOCAL 6.8877 1.3974 0.5474 0.4596 0.6785 0.6920 0.3425 (0.0071) 1.2268 1.2309

N 256 M�(0): 11:0767, M̂�(0): 8:9825 f (0): 1:7109

GLOBAL 0.2179 2.4914 0.0512 5.0210 0.1639 0.5955 0.1391 (0.0074) 1.0957 1.1000
(a) 0.1269 2.6163 0.0562 5.5056 0.1551 0.6038 0.1417 (0.0074) 1.1164 1.1207
(b) 0.3525 2.7296 0.0620 5.8491 0.1465 0.6048 0.1412 (0.0075) 1.1121 1.1164
(c) 0.0168 3.0867 0.0780 5.5884 0.1550 0.6107 0.1447 (0.0075) 1.1402 1.1446
(d) 6.3663 3.2311 0.4172 0.9901 0.7953 0.5603 0.3451 (0.0077) 2.7184 2.7289
(e) 8.5984 1.0056 0.6134 0.1695 0.7132 0.4724 0.2668 (0.0076) 2.1020 2.1101

LOCAL 8.4884 1.3887 0.6055 0.2282 0.5717 0.4763 0.2019 (0.0072) 1.5905 1.5966

N 480 M�(0): 12:5607, M̂�(0): 3:47 f (0): 1:7109

GLOBAL 0.2129 2.7044 0.0468 7.7550 0.1249 0.4623 0.0836 (0.0073) 1.1181 1.1304
(a) 0.8005 2.9814 0.0607 8.8200 0.1144 0.4706 0.0855 (0.0074) 1.1436 1.1562
(b) 1.2263 3.0934 0.0705 9.5891 0.1048 0.4832 0.0891 (0.0074) 1.1921 1.2052
(c) 0.8642 3.3531 0.0763 9.1201 0.1149 0.4900 0.0923 (0.0075) 1.2351 1.2486
(d) 9.7083 1.4355 0.6130 0.2056 0.8746 0.3612 0.3264 (0.0064) 4.3659 4.4138
(e) 10.3231 0.6459 0.6810 0.1663 0.6596 0.3589 0.2056 (0.0064) 2.7498 2.7800

LOCAL 10.0340 1.3202 0.6519 0.2229 0.5770 0.3824 0.1747 (0.0064) 2.3362 2.3618

20



TABLE VI

Model 5: AR(5), á [0:90, 0:40, 0:30, 0:50, 0:30]

Method bias sd Rmse Rmsey bias sd Rmse (sd) MSE ratio MSEy ratio

N 120 M�(0): 10:2862, M̂(0): 7:5 f (0): 0:9947

GLOBAL 3.1082 2.4496 0.1480 0.1085 0.1328 0.3708 0.15687 (0.0157) 0.7418 0.7446
(a) 3.2427 2.3976 0.1537 0.1059 0.1335 0.3588 0.1481 (0.0157) 0.7007 0.7034
(b) 3.5374 2.3912 0.1723 0.1117 0.1463 0.3372 0.1366 (0.0154) 0.6462 0.6486
(c) 4.3022 2.2374 0.2222 0.1299 0.1631 0.3219 0.1316 (0.0142) 0.6228 0.6252
(d) 5.5814 2.1982 0.3401 0.2248 0.1255 0.3125 0.1146 (0.0134) 0.5424 0.5444
(e) 6.5136 1.9262 0.4361 0.3130 0.0979 0.3082 0.1057 (0.0132) 0.5001 0.5020

LOCAL 6.6726 2.2301 0.4678 0.3569 0.1334 0.3445 0.1379 (0.0113) 0.6528 0.6552

N 256 M�(0): 11:9693, M̂�(0): 2:9425 f (0): 0:9947

GLOBAL 1.4509 2.6378 0.0633 0.1217 0.0858 0.3052 0.1015 (0.0152) 0.9496 0.9582
(a) 1.9759 2.8375 0.0834 0.1173 0.0910 0.2925 0.0948 (0.0147) 0.8865 0.8946
(b) 2.6567 3.2062 0.1210 0.1324 0.1031 0.2777 0.0887 (0.0140) 0.8295 0.8370
(c) 5.0893 2.9881 0.2431 0.1641 0.1474 0.2251 0.0732 (0.0116) 0.6843 0.6904
(d) 7.7401 2.0833 0.4485 0.3297 0.1166 0.2169 0.0613 (0.0103) 0.5731 0.5783
(e) 7.9489 2.2450 0.4762 0.3638 0.1107 0.2382 0.0697 (0.0110) 0.6522 0.6581

LOCAL 8.3001 2.4839 0.5239 0.4229 0.1616 0.2419 0.0855 (0.0110) 0.7997 0.8069

N 480 M�(0): 13:5727, M̂�(0): 8:889 f (0): 0:9947

GLOBAL 1.1108 2.7918 0.0490 0.2602 0.0557 0.2492 0.0659 (0.0130) 0.9673 0.9809
(a) 1.5008 2.9584 0.0597 0.2390 0.0575 0.2481 0.0655 (0.0129) 0.9620 0.9756
(b) 2.1549 3.2538 0.0827 0.2149 0.0657 0.2418 0.0634 (0.0126) 0.9314 0.9446
(c) 6.3322 3.0869 0.2694 0.1550 0.1295 0.1715 0.0467 (0.0091) 0.6854 0.6951
(d) 9.5034 1.8473 0.5088 0.3372 0.1121 0.1473 0.0346 (0.0078) 0.5082 0.5154
(e) 9.5768 2.0590 0.5209 0.3567 0.1166 0.1626 0.0404 (0.0085) 0.5936 0.6020

LOCAL 10.0044 2.6047 0.5801 0.4441 0.1702 0.1802 0.0621 (0.0088) 0.9115 0.9244
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We also give the ratio of the mse of f̂M̂ (0) with respect to the mse of
f̂ M�(0)(0) calculated using the asymptotically optimal choice M�(0) (the MSE
ratio) and the same ratio with respect to f̂M̂�(0)(0), using the ®nite sample
minimizer M̂�(0) calculated across simulations (the MSEy ratio). In both cases
a value less than one would indicate a better performance than that obtained
using the (usually unknown) optimal values for the bandwidth. Since we are
interested ®nally in estimating f (0), our remarks concentrate more on the
diagnostics for f̂M̂ (0) than on those for M̂.

The conclusions for M̂ can be substantialy different depending on which
criteria we use, Rmse or Rmsey. While for Models 2 and 5 both give similar
ranking of procedures, because the asymptotic value M�(0) is usually not very
far from the ®nite sample minimizer M̂�(0), for Models 1, 3 and 4 (and the
two larger sample sizes) the best results under the two criteria are obtained for
values of m in very different ranges. Thus for Models 1 and 4 the largest ms
are preferred by Rmsey but the smallest by Rmse, whereas the opposite holds
for Model 3.

Attending to the spectral estimation, the bias and standard deviation show the
customary trade off with respect to the choice of the smoothing parameter, but
with reversed pattern in most cases: small values of m lead to small biases and
moderate or large values of m minimize the standard deviation. Surprisingly,
GLOBAL is not the more stable method and LOCAL choice leads to large
biases in f̂M̂ (0). Model 3 is the exception, probably because it has the most
complicated spectral density at the origin but is smooth otherwise.

The smallest values of Rmse for f̂M̂ (0) can be achieved or approximated
closely by the best choices of m for estimating M̂�(0) (focusing on Rmsey) for
all models and sample sizes. Here the exception is Model 4 and N � 256 and
480.

For Models 1, 2 and 5, and for the three sample sizes, almost all local
choices (rows (a) to LOCAL) perform better than BB's method (GLOBAL), so
they appear to adapt to the local properties of the function being estimated (the
exception being (a) for Model 2). The best procedures seem to be (c) and (d)
for Models 1 and 2, and (d) and (e) for Model 5, though in some cases
LOCAL outperforms them by a narrow margin.

On the other hand, in the case of Model 3 all choices of m but LOCAL lead
to similar results for the estimation of f (0), GLOBAL never being too far from
the smallest Rmse and (d) giving the best performance or being very close to
it. Here LOCAL seems to work substantially worse than any other choice of m.
For Model 4 BB's GLOBAL method seems to be the best alternative, while
(a) (c) give very similar results to it and procedures (d) and (e) break down.

For Model 2 the small choices of m . 1 (rows (a) and (b)) do not improve
over the GLOBAL procedure, since for those ms we are still considering the
peak of the spectrum in CVLLm, while large values of m induce some
improvements in the behaviour of f̂M̂ (0). However, for Model 4, which has a
similar spectrum but with the peak closer to the origin, the improvement is
only observed for N � 120.
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In terms of MSE ratios, the differences are not signi®cant looking at the
MSE ratio or MSEy ratio columns. For Models 1, 3 and 5 there is room to
improve over (unfeasible) optimal choices of M with local cross validation:
methods (c) (e) for ®xing m produce substantial reductions of the MSE of f̂M̂ ,
while for Model 2 there can be some ef®ciency losses, especially accentuated
for Model 4, if too large a value of m is selected.

We now compare with the BuÈhlmann (1996) results for sample sizes
N � 120 and 480 (cf. his Table I), although he uses a different class of non
parametric estimates (lag window or continuously weighted periodogram
estimates) with different weight functions. For our Model 3 (BuÈhlmann's
Model 1) and N � 120 all our methods work slightly better (including BB's
global choice but not LOCAL), both in terms of Rmse and MSE ratio of f̂M̂ (0).
For N � 480 the Rmse results are very similar for the two procedures, but the
MSE ratios are always better for the local cross validation (except with the
LOCAL choice).

In the case of Model 4 and N � 120 and 480, the methods GLOBAL to (c)
always worked better in terms of MSE ratio, but for the smaller sample size
they gave larger Rmse than BuÈhlmann's best estimates for his Model 2. With
Model 5, the cross validated methods (c) (e) always worked better than any of
BuÈhlmann's alternatives (for his Model 3) in terms of MSE ratio and also in
terms of Rmse for N � 480. For N � 120 only the choice (e) of m can
approximate the Rmse results of BuÈhlmann's (1996) adaptive method.

In general, it seems that the asymptotic result for the optimal choice of M
for a single frequency is not especially accurate for periodogram based
estimates, so local cross validation can improve even with respect to the
knowledge of it. Also, cross validation never behaves much worse than the
iterative plug in procedure, both having a comparable performance if a sensible
choice of m is made. From a practical point of view the recommended choice
of m for the construction of the local cross validation criterion is (c),
m � N 0:2, the same as the asymptotic optimal rate for M. This choice works
uniformly well for all models and sample sizes tried, and while (d) and (e) may
be preferable in some cases, they are very inef®cient in other situations.

4.2. Estimation of the whole spectrum

Finally we tried local cross validation for estimation of the optimal bandwidth at
all Fourier frequencies ëj, j � 0, . . ., N 1, for the same models and sample
sizes as before. Here the computation costs are much greater, so we only
implemented 200, 100 and 50 simulations for sample sizes 120, 256 and 480,
respectively. Given the conclusions of the previous section, we tried the
GLOBAL procedure of BB (m � 1) and the three initial choices of m � 2, 3, 4,
which adapt to the roughness of f at each point (and correspond approximately
to options (b), (c) and (d) for N � 256). We give in Table VII the sample mean
of the relative IMSE estimated with the simulations
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1

N

XNÿ1

j 0

f̂M̂ (ëj) f (ëj)

f (ëj)

( )2

and its sample standard deviation.
Almost uniformly the local cross validation procedures beat the global one

(m � 1), in some situations by a wide margin; in the worst cases (Models 1
and 5) they perform roughly in the same way. The improvement with repsect to
the global choice is generally greater the smaller the sample size and, against
intuition, in many cases the more local choices also lead to less variable
procedures. There are no signi®cative dissimilarities for the three different
values of m . 1, but m � 3 and m � 4 seem to do slightly better, in agreement
with the estimation at a single point.

Comparing with BuÈhlmann's Table II, for N � 120 and 480 all the local
cross validation IMSEs (and in many cases also BB's global choice) are equal
to or lower than that of the best plug in alternative, though they have
apparently greater variability, at least in our simulations.

TABLE VII

f̂ (ë), ë 2 [ ð, ð]

N � 120 N � 256 N � 480

Model m IMSE sd IMSE sd IMSE sd

1 1 0.13646 (0.0983) 0.06545 (0.0322) 0.03805 (0.0153)
2 0.15758 (0.1187) 0.07140 (0.0412) 0.03659 (0.0157)
3 0.13433 (0.0971) 0.06390 (0.0324) 0.03528 (0.0148)
4 0.13528 (0.0938) 0.06436 (0.0313) 0.03503 (0.0154)

2 1 0.74030 (0.7346) 0.25241 (0.1734) 0.11225 (0.0446)
2 0.60013 (0.5815) 0.23447 (0.1472) 0.11188 (0.0415)
3 0.66356 (0.6146) 0.23208 (0.1565) 0.09898 (0.0394)
4 0.66240 (0.6101) 0.22940 (0.1591) 0.09612 (0.0382)

3 1 0.20289 (0.1684) 0.09384 (0.0846) 0.04196 (0.0224)
2 0.14133 (0.0935) 0.05981 (0.0330) 0.03116 (0.0140)
3 0.12857 (0.0831) 0.05855 (0.0320) 0.03082 (0.0140)
4 0.13006 (0.0840) 0.06068 (0.0352) 0.03085 (0.0141)

4 1 0.47824 (0.7407) 0.14747 (0.2198) 0.06533 (0.0534)
2 0.31678 (0.3897) 0.13110 (0.0990) 0.06334 (0.0489)
3 0.29050 (0.3906) 0.12113 (0.0919) 0.05858 (0.0462)
4 0.28964 (0.3977) 0.14747 (0.2198) 0.05835 (0.0472)

5 1 0.13666 (0.0951) 0.09814 (0.0857) 0.04842 (0.0187)
2 0.15576 (0.1115) 0.10457 (0.0517) 0.05267 (0.0219)
3 0.13401 (0.0933) 0.09938 (0.0494) 0.05180 (0.0194)
4 0.13444 (0.0917) 0.09809 (0.0480) 0.04991 (0.0198)
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5. FINAL REMARKS

In this paper we justify a local bandwidth choice procedure for non parametric
spectral estimation and show its performance in ®nite sample sizes. We assumed
Guassianity throughout, but this does not seem essential, except perhaps in the
proof for the supremum of the periodogram in Lemma 4. We conjecture that this
condition can be avoided using Robinson's (1991) techniques and assuming
summability conditions on higher order cumulants as in Brillinger (1975), except
for the second order ones (autocovariances), imposing here only local conditions
on the (second order) spectral density.

A multivariate version of the method will be very useful in practical work,
but if we want to stress the speci®c characteristics of each univariate time
series it could be better to apply the method to each of them separately or to a
®xed linear combination of the series, as in Newey and West (1994).

Further investigation seems necessary on automatic selection of m and on the
design of (possibly iterative) algorithms that, linking m and M, reduce the
variability inherent to bandwidth choice procedures. Then additional ®nite
sample evidence should be investigated for other models and distributions.

APPENDIX

Proof of Lemma 1. An equivalent lemma is evidently valid for more general choices
of M , but we are especially interested in this particular case. We can take an E. 0 as
small as we want, in such a way that in the interval Ií [í E, í� E] the conditions of
Assumption 2 are satis®ed. Then for m big enough we have that jí ëjj < cmÿ1 implies
ëj 2 Ií. Therefore when í. 0 we have that, for N big enough, 0 , ëj � í, so
(ëj)

ÿ1 O(1), where a � b means a=b! 1 as N !1. We study ®rst the bias and the
variance.

Bias. Similarly to Theorem 5.6.1 of Brillinger (1975, p. 147) and using now Lemma 2
with á 1, we get

Ef f̂M (ëj)g
�ð
ÿð

K(ë) f ëj

â

M

� �
dâ� O

M

N

� �

f (ëj)� w2

2
f (2)(ëj)Mÿ2 � O

M

N
� Mÿ3

� �
:

The bounded variation condition on K and the differentiability of f are used to
approximate the discrete average of K and f by an integral with error O(M=N ), since by
Assumption 2 and for M big enough we are only averaging inside Ií, thanks to the
compact support of K.

Variance. First, it is more convenient to write the spectral estimate using only N
frequencies in this way:

f̂M (ëj)
óÿ1

M

M

XNÿ1

k 1

KM (ëk ëj)I(ëk)
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where KM (ë)
P

j MK(M[ë� 2ð j]) is the periodic extension of MK(Më). Then we
have

varf f̂M (ëj)g óÿ2
M

M2

X
k

KM (ëk ëj)
2 varfI(ëk)g (10)

� óÿ2
M

M2

X
k

X
i 6 k

KM (ëk ëj)KM (ëi ëj) covfI(ëk), I(ëi)g: (11)

Then, from Lemma 3 we get varfI(ëk)g f (ëk)2 � O(Nÿ1 log N ) and, for k 6 i,

covfI(ëk), I(ëi)g f (ëk)2 � O(Nÿ1 log N ) if k N i

O(Nÿ1 log N ) otherwise:

�
Also we have that óM N=(2ðM)� O(1). Then (10) is

(2ð)2

N 2

X
k

KM (ëk ëj)
2 f (ëk)2 � O

M

N2
log N

� �
2ðM

N

�ð
ÿð

MK(Më)2 f (ëj � ë)2 dë� O
M2

N2

� �
2ðM

N
f (ëj)

2

�ð
ÿð

K(ë)2 dë� O
M

N

M

N
� Mÿ2

� �� �
:

In (11) we only have to consider the situation where k N i, since for the other
frequencies we have a bound of O(Nÿ1 log N ) for the covariance from Lemma 3. Then, if
í 0 and ëj 0, (11) is similar to (10). In general, if í 0 and jëjj < 2ð=M then the
two kernels in (11) overlap in some interval for all M . Taking into account only the
frequencies i N k, for which the leading term of the covariance is also f (ëk), we
have that (11) is equal to, using the periodicity of KM ,

óÿ2
M

M2

X
k

KM (ëk ëj)KM (ëk � ëj)f f (ëk)2 � O(Nÿ1 log N )g

2ð

N

�ð
ÿð

KM (ë)KM (ë� 2ëj) f (ë ëj)
2 dë� O

M

N

� �2

� M

N 2

� �
log N

( )

äM ( j) f (ëj)
2 2ðM

N

�ð
ÿð

K(ë)2 dë� O MNÿ1 M

N
� Mÿ2

� �� �
(12)

for 0 , äM ( j) < 1. If jëjj. 2ð=M then the two kernels in (12) do not overlap at all and
the covariance terms do not contribute to the leading term in the variance of f̂M , and the
lemma follows. j

Lemma 2. Under Assumption 1, if f satis®es a uniform Lipschitz condition of order
0 ,á < 1 in an interval around a ®xed frequency í, then for Fourier frequencies such
that supë ljí ëlj < cmÿ1, l 2 f j, kg, for some positive sequence m such that
1=m� m=n! 0, uniformly in j and k ( j, k 6 0),

Efdx(ëj)dx(ëk)g äjk2ðNf (ëj) O(N1ÿá log N )

where dx(ëj) is the discrete Fourier transform of the series Xt,
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dx(ëj)
XN

t 1

X t exp( iëj t):

Proof. This lemma is a restatement of, for example, the Lemma on p. 835 of
Hannan and Nicholls (1977), assuming only local conditions on f . As in the proof of
Lemma 1 we can ®x one E. 0 such that, if Ií [í E, í� E], ëj, ëk 2 Ií for N big
enough. De®ning the Dirichlet kernel jN (ë)

jN (ë)
XN

j 1

exp(ië j)

we have that for j 6 k, mod(N ),�ð
ÿð
jN (ëj ë)jN (ë ëk) dë 0:

Then, if j 6 k, mod(N ),

Efdx(ëj)dx(ëk)g
�ð
ÿð
jN (ëj ë)jN (ë ëk)f f (ë) f (ëj)g dë: (13)

Now we divide the range of integration in (13) into the following intervals. First,�����ë j�N 1

ë jÿN 1

jN (ë; ë)jN (ë ëk)f f (ë) f (ëj)g dë

���� < cN

�ë j�N 1

ë jÿN 1

jë ëjjáÿ1 dë

< cN 1ÿá

using supë2 Ií j f (ë) f (ëj)j < cjë ëjjá in the interval considered, and

jjN (ë)j < min(2jëjÿ1, N ):

Next, �����ë k�N 1

ë kÿN 1

jN (ëj ë)jN (ë ëk)f f (ë) f (ëj)g dë

����
< cNÿ1 sup

jëÿë k j<N 1

jj(ë ëk)j sup
jëÿë k j<N 1

jë ëjjáÿ1 < cN1ÿá

since the range of integration was of order Nÿ1. De®ne the set Ií(k, j) as the interval Ií
except for previous two neighbourhoods of radius Nÿ1 around ëk and ëj. Then�����

Ií(k, j)

jN (ëj ë)jN (ë ëk)f f (ë) f (ëj)g dë

����
< c sup

Ií(k, j)

jë ëjjáÿ1

�ð
ÿð
jjN (ë ëk)j dë

< cN1ÿá log N

using
� ð
ÿð jjN (ë)j dë < c log N . Finally in the complementary set of Ií,
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�����
I c
í

jN (ëj ë)jN (ë ëk)f f (ë) f (ëj)g dë

����
< c sup

I c
í

jjN (ëj ë)jN (ë ëk)j f (ëj)�
�ð
ÿð

f (ë) dë

� �
< c

and the lemma follows in the case j 6 k because any of the bounds depends on j or k. If
j k then we can use the same methods as before together with�ð

ÿð
jjN (ë)j2 dë 2ðN

to get the desired result j

Lemma 3. Under Assumption 1, if f satis®es a uniform Lipschitz condition of order
0 ,á < 1 in an interval around a ®xed frequency í and if sup ë j r

jí ë j r
j < cmÿ1,

r 1, . . ., q, for some positive sequence m such that 1=m� m=N ! 0, then, uniformly
in jr 6 0, with jr 6 jr9, r 6 r9,

E
Yq

r 1

I(ë j r
) pr

( ) Yq

r 1

pr! f (ë j r
) pr � O(Nÿá log N ) (14)

and

E
Yq

r 1

I(ë j r
) f (ë j r

)

f (ë j r
)

( )" #
O(Nÿá log N ): (15)

Proof. The proof is immediate in the light of the propositon on p. 31 of BB and our
Lemma 2, as by the Gaussianity of Xt only cumulants of order 2 of the discrete Fourier
transform of X t have to be considered. Here the bound in (15) is only O(Nÿá log N ) and
not this bound to the power of q as in BB. The problem with their proof is the
following. At the beginning of their p. 33, for k 2 í2 in their notation, cumfdx(ëk1),
dx(ëk2)gNÿ1 O(1) at most, because we can have ëk1 ëk2 for all elements in one of
the possible partitions. Then, the second bound in the third full paragraph formula of the
same page is only O(1) and the ®rst one is O(Nÿá log N ) (actually O(Nÿ1) under their
conditions), since we have #í1 < 1. j

We now give some lemmas needed for the proof of Proposition 1.

Lemma 4. Under Assumption 1, if f satis®es a uniform Lipschitz condition of order
0 ,á < 1 in an interval around a ®xed frequency í, Ií [í E, í� E] for some E. 0,
then for frequencies ë j 2ð j=N, j 6 0, such that supë j

jí ë jj < cmÿ1, for some
positive sequence m such that 1=m� m=N ! 0, uniformly in j 6 0,

lim
N!1

sup
ë j

I(ëj) < 2 log N sup
ë2 Ií

f (ë)

with probability 1.

Proof. We can proceed as in the proof of Theorems 4.5.1 and 5.3.2 of Brillinger
(1975), taking the mean of X t as zero, since we do not include the zero frequency. In
our case, since X t is a Gaussian series and j 6 0, all the cumulants of order bigger than
two are zero. From Lemma 2 we can obtain, uniformly in j, for m big enough,
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ó N � varfRe dx(ëj)g N

2
2ð f (ëj)� O(N 1ÿá log N ):

Then, for ëj 2 Ií and any è and one E as small as we want, from Gaussianity, as N !1,

E[expfèRe dx(ëj)g] < expfè22ðNf (ëj)(1� E)=4g:
Next,

E exp è sup
ë j

jRe dx(ëj)j
� �

<
X
ë j2 Ií

E expfèjRe dx(ëj)jg

<
X
ë j2 Ií

exp è22ðNf (ëj)
1� E

4

� �

< 2 exp log N � è22ðN sup
ë2 Ií

f (ë)
1� E

4

( )
:

Now de®ne, for ä. 0,

a2 2ð(1� E)(2� ä)N log N sup
ë2 Ií

f (ë):

Then

Prob sup
ë j

jRe dx(ëj)j > a
� �

< exp( èa) 2 exp log N � è22ðN sup
ë2 Ií

f (ë)
1� E

2

( )
:

Taking

è a 2ðN (1� E) sup
ë2 Ií

f (ë)
� �ÿ1

this is less than or equal to

2 exp a2 2ðN sup
ë2 Ií

f (ë)(1� E)
� �ÿ1

" #
exp(log N ) < cNÿ1ÿä:

Using this last line and the Borel Cantelli lemma, as E and ä were arbitrary, we obtain
that

lim
N!1

sup
ë j

jRe dx(ëj)j=(2ðN log N )1=2 < sup
ë2 Ií

f (ëj)
� �1=2

with probability 1. A similar result is possible for the imaginary part of dx and then the
lemma follows from

jdx(ëj)j < jRe dx(ë j)j � jIm dx(ëj)j
and I(ëj) (2ðN )ÿ1jdx(ëj)j2. j

Lemma 5. Under Assumptions 1, 2, 3 and 4, for frequencies ëj 2ð j=N such that
supë j

jí ëjj < cmÿ1, for some positive sequence m such that 1=m� m=N ! 0,
uniformly in j,

sup
ëj

���� f̂M (ëj) f (ëj)

f (ëj)

���� OP(Nÿ1 M2 � N (1ÿ p)=2 p M � Nÿ1 log N � Mÿ1) oP(1):
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Proof. De®ne the weighted autocovariance spectral estimate corresponding to the
continuous average in f̂M , when the mean of Xt is known (and assumed to be zero
without loss of generality), as

f̂ C
M (ëj)

�ð
ÿð

KM (ë)I(ëj � ë) dë
1

2ð

XNÿ1

r 1ÿN

w
r

M

� �
ã̂(r) cos rëj

where KM (:) MK(M :) periodically extended and

ã̂(k) Nÿ1
X

1< t, t�k<N

Xt Xt�k :

This estimate is unfeasible if the mean of the series is unknown, but we only need its
de®nition for the proofs. Now we have, proceeding as in the proof of Theorem 2.1 of
Robinson (1991),

sup
ëj

j f̂M (ëj) f (ëj)j < sup
ëj

j f̂M (ëj) f̂ C
M (ëj)j (16)

� sup
ëj

j f̂ C
M (ëj) Ef f̂ C

M (ëj)gj (17)

� sup
ëj

jEf f̂ C
M (ëj)g f (ëj)j: (18)

Now (16) is less than or equal to (see Robinson, 1991, p. 1353)

(2ð)ÿ1
XNÿ1

1ÿN

����w r

M

� �����jã̂(N r)j OP Nÿ1
XNÿ1

1ÿN

����w r

M

� �����jrj
( )

OP Nÿ1 Má
XN

1

jrj1ÿá � Nÿ1 M2 log N

 !

OP(N1ÿáMá � Nÿ1 M2 log N ) oP(1)

using Assumption 4 (á. 5=4) and the fact that ã̂(N r) is a sum of r terms whose mean
exists and is uniformly bounded. Next, (17) is not bigger than

(2ð)ÿ1
XNÿ1

1ÿN

����w r

M

� �����jã̂(r) Efã̂(r)gj OP

XNÿ1

1ÿN

����w r

M

� �����N (1ÿ p)=2 p

( )

OP(N (1ÿ p)=(2 p) M) oP(1)

because of Assumptions 2 and 4, and Lemma 7 below. Finally (18) is bounded by

sup
ëj

�����ðÿðKM (ëj ù)[EfI(ù) f (ù)g] dù

���� (19)

� sup
ëj

�����
R

K(ù)f f (ëj ù=M) f (ù)g dù

����: (20)

Denote by ÖN (ë) (2ðN )ÿ1jjN (ë)j2. Similarly to Lemma 2, we have that in (19) ù lies
in the interior of Ií as M !1 due to the compact support of K, and for ®xed ä. 0
small enough
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sup
ù2 Ií

jEfI(ù)g f (ù)j < sup
ù2 Ií

�����ðÿðÖN (á ù)f f (á) f (ù)g dá

����
< sup

ù2Ií

j f 9(ù)j
�
jùÿáj<ä

jÖN (á ù)ká ùj dá

� sup
ù2 Ií

�
jùÿáj. ä

jÖN (á ù)jf f (á)� f (ù)g dá

O(Nÿ1 log N )� O(Nÿ1)

O(Nÿ1 log N )

uniformly in ù 2 Ií, so (19) is O(Nÿ1 log N ) since
� jKM (á)j dá,1. Next, as M !1,

(20) is bounded by (denoting by ë� a value between ëj and ëj ù=M),

sup
ëj

�
K(ù)f f (ëj ù=M) f (ëj)g dù < sup

ëj

�
jK(ù)k f 9(ë�)j

���� ùM
���� dù O(Mÿ1),

using the compact support of K and that f 9 is bounded in Ií. j

Lemma 6. Under the assumptions of Lema 5, uniformly in j,

sup
ëj

���� f̂
j
M (ëj) f (ëj)

f (ëj)

���� OP(Nÿ1 M2 � N (1ÿ p)=(2 p) M � Nÿ1 log N � Mÿ1):

Proof. The proof is exactly the same as that of Lemma 4 of BB, using now our
Lemma 5. j

Lemma 7. Under Assumptions 1 and 2, uniformly in r, for p . 1,

varfã̂(r)g O(N (1ÿ p)= p)

where ã̂(r) is the (biased) estimate of the lag-r autocovariance ã(r) when the expectation
of Xt is known:

ã̂(r)
1

N

X
1< t, t�r<N

fXt E(X 1)gfXt�r E(X 1)g:

Proof. From, for example, Anderson (1971, p. 452), denoting as before the FejeÂr
kernel by ÖN,

N varfã̂(r)g
�ð
ÿð

�ð
ÿð
ÖN (á ù)[1� expf i(á� ù)rg] f (á) f (ù) dá dù

and now the result follows on applying the HoÈlder inequality twice, with jÖN (ù)j O(N )
uniformly in ù, j1� expf iá� ù)rgj < 2 uniformly in r and

� ð
ÿð f p ,1 by

Assumption 2. j

Proof of Proposition 1. From the proof of Theorem 3.1 in BB the proposition will
follow, using their de®nitions, if we show

Nÿ1Ti oP(IMSEm) i 1, 2

Nÿ1T3 IMSEm � oP(IMSEm):
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First we have, denoting now ó j ó j,M, from the last steps in the proofs of BB,

E(T1) 2ð
XN

j 1

Wm(ëj í)óÿ1
j

X
k

9K(Mëk)O(Nÿ1) O(1)

and, denoting as IMSE9m(í, M) the IMSEm calculated from the modi®ed spectral estimate
(3),

E(T2
1) N IMSE9m � 2ð

X
j

Wm(ëj í)2óÿ2
j

X
k

9
X

n

9K(Mëk)K(Mën)O(Nÿ1)

� 2ð
X

j

X
i6 j

Wm(ëj í)Wm(ëi í)óÿ1
j óÿ1

i

X
k

9
X

n

9K(Mëk)K(Mën)O(Nÿ2)

� 2ð
X

j

Wm(ëj í)2óÿ2
j

X
k

9
X

n

9K(Mëk)2

N IMSE9m � O(m)� O(m)� O(m N IMSEm)

O(m N IMSEm)

since supë,mjWm(l)j O(m). Then, using IMSEm O(M=N ) we can obtain

T1 OPfIMSEm(m=M)1=2g oP(IMSEm)

because m=M ! 0. Now, in a similar fashion,

E(T2) 2ð
XN

j 1

Wm(ëj í)óÿ2
j

X
k

9
X

n

9K(Mëk)K(Mën)O(Nÿ1) O(1)

and, as before,

E(T2) O(m N IMSE2
m):

(Note that in BB's expression they have Nÿ1 instead of N in the corresponding formula,
although in the statements in the main part of their paper they give the right bounds.)
Then Nÿ1T2 OPfIMSEm(m=N )1=2g oP(IMSEm). Next,

E(T3) N IMSEm � Of(N=M)ÿ1 N IMSEmg � Of(N=M)ÿ1g � Of(N=M)ÿ1 Mg

N IMSEm � Of(N=M)ÿ1 N IMSEmg
and reasoning in the same way as before

var(T3) O(m N IMSEm):

Then Nÿ1T3 IMSEm � OPfIMSEm(m=M)1=2g IMSEm � oP(IMSEm). The proof for
the remainder term in BB's expression (3.2) continues the same here, using now our
Lemmas 2, 4 and 5 instead of their references, since the bound for the third term in the
expansion still holds for the modi®ed (local) cross validation. j
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