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Abstract. A new LM specification procedure to choose between Logistic and
Exponential Smooth Transition Autoregressive (STAR) models is introduced.
The new decision rule has better properties than those previously available in
the literature when the model is ESTAR and similar properties when the model
is LSTAR. A simple natural extension of the usual LM-test for linearity is intro-
duced and evaluated in terms of power. Monte-Carlo simulations and empirical
evidence are provided in support of our claims.
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1 Introduction

This paper introduces a simple decision rule for selecting between alternative
Smooth Transition Autoregressive (STAR) models which improves the one sug-
gested by Ter̈asvirta (1994). STAR models are a general class of state-dependent
non-linear time-series models in which the transition between states is endoge-
nously generated.1 Together with Hamilton’s (1989) regime-switching model,
where the transition between states is exogenously determined by a Markov
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1 In addition, STAR models encompass other popular families of non-linear time-series models
such as the Threshold Autoregressive (TAR) and the Exponential Autoregressive (EAR). See Haggan
and Ozaki (1981), Tong (1983), Tsay (1989) and Granger and Teräsvirta(1993).
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Chain, state-dependent models are “reduced-form” models that allow for differ-
ent dynamic responses that depend on the “state.” Consequently, these models are
particularly well suited to accommodate the asymmetric behavior of economic
fluctuations recently documented in a variety of studies.2

By relying on a Taylor series approximation of the transition function (be-
tween states) around the scale parameter,3we introduce a new specification strat-
egy to choose between logistic and exponential STAR models. This alterna-
tive strategy is simpler and more successful in selecting the correct ESTAR
model while avoiding the pitfalls (detailed below) of the procedure proposed
in Ter̈asvirta (1994). Additional results concern the power of the nonlinearity
tests discussed in Teräsvirta (1994) for which we offer some comments and
alternatives.4 All the claims will be supported by Monte Carlo evidence and by
a well known empirical example based on Teräsvirta and Anderson (1992).

The paper is organized as follows: Sect. 2 briefly reviews STAR models and
nonlinearity testing. Section 3 discusses the decision rule proposed by Teräsvirta
(1994) and introduces the alternative procedure suggested in this paper. Section
4 reports on the small sample properties of the alternative test procedures using
Monte-Carlo techniques. Section 5 presents an empirical application, and Sect. 6
concludes.

2 STAR models and nonlinearity testing

2.1 Overview

Consider the following STAR model:

yt = π′xt + F
(
zt−d , γ, c

)
Θ′xt + ut (1)

where yt is a scalar;xt =
(
1,yt−1, ..., yt−p

)′
= (1, x̃′

t )
′; π′ =

(
π0, π1, ..., πp

)
=(

π0, π̃
′) ; Θ′ =

(
Θ0, Θ1, ..., Θp

)
=

(
Θ0, Θ̃

′)
and 1� d � p. zt−d is usually

chosen to beyt−d , although it could be any other predetermined or exogenous
variable. ut is a martingale difference sequence with constant variance.5It is
common practice to assume that the process in (1) is stationary and ergodic, see
Granger and Teräsvirta (1993) and Teräsvirta (1998). Gallant (1987) gives con-
ditions to obtain the consistency and asymptotic normality of least mean distance
estimators. Alternatively, Mira and Escribano (2000) give explicit conditions on
the nonlinear function F(.) foryt to be near epoch dependent (NED) and also
to obtain consistent and asymptotically normal nonlinear least squares parameter
estimates.

2 See Neftçi (1984), Rothman (1991), and Teräsvirta and Anderson (1992) for example.
3 Luukkonen et al. (1988a), based on Davies (1977), introduced this solution for STAR models.
4 Note: this alternative is an assumption imposed by the practitioner that permits narrowing down

general nonlinearity into a workable family of non-linear models, namely STAR models.
5 This assumption is usually introduced to simplify the derivation of the asymptotic distribution

of the LM test, see White (1984).
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In what follows we assume that the functionF
(
zt−d , γ, c

)
is at least fourth

order continuously differentiable with respect to the scale parameterγ. The ex-
ponential STAR model6 (ESTAR)has a transition functionF , defined by

F
(
zt−d , γ, c

)
=

[
1 − exp

{
−γ

(
zt−d − c

)2
}]

. (2)

The logistic STAR model7 (LSTAR) has as transition function:

F
(
zt−d , γ, c

)
=

[{
1 + exp

(−γ
(
zt−d − c

))}−1 − 1
2

]
. (3)

Testing linearity against STAR-type nonlinearity implies testing the null hy-
pothesis,H0 : Θ′ = 0 in (1). However, under the null, the parametersγ and c
are not identified. Alternatively, we could chooseH

∗
0 : γ = 0 as our null hy-

pothesis in which case neitherc nor Θ′ would be identified. Davies (1977) first
showed that conventional maximum likelihood theory is not directly applicable
to this problem. A solution proposed in Luukkonen et al. (1988a) and adopted
in Ter̈asvirta (1994) is to replaceF

(
zt−d , γ, c

)
with a suitable Taylor series ap-

proximation. Under the null of linearity, the LM test is shown to possess the
usualχ2 distribution asymptotically.8

In practice, the score test is performed by constructing the following auxiliary
regression:

yt = π′xt + Fγ

(
zt−d , γ = 0, c

)
Θ′xtγ + v1t (4)

whereFγ(.) indicates the first derivative ofF (zt−d , γ = 0, c) with respect toγ.
Substituting the expression forFγ(.) into (4) gives:

yt = δ0 + δ′
1x̃t + β′

1x̃t zt−d + β′
2x̃t z

2
t−d + v1t (5)

where the null hypothesis of linearity becomesH ′
0 : β′

1 = β′
2 = 0. Call this test

NL2. In the special case whereF (.) is the logistic functionβ′
2 = 0. The process

in (5) can be explosive and generally it is not a meaningful time series model9

(see Granger and Andersen 1978). Luukkonen et al. (1988a) realized that this test

could have low power against alternatives whereΘ̃
′

is “small” andΘ0 is “large”
in absolute value if the model is LSTAR. Consider a case where the nonlinearity
is active due to the parameterΘ0 exclusively. In this case since the parameter
vector β′

1 is independent ofΘ0 the NL2 test has no power. To overcome this
difficulty, they proposed to include up to third order powers in the auxiliary
regression since for the LSTAR model the parameter vectorβ′

3 depends onΘ0.
The final version of their test therefore becomes:

yt = δ0 + δ′
1x̃t + β′

1x̃t zt−d + β′
2x̃t z

2
t−d + β′

3x̃t z
3
t−d + v3t (6)

6 The exponential autoregressive (EAR) model of Haggan and Ozaki (1981) is a particular case
of ESTAR whenθ0 = c = 0 andzt−d = yt−d .

7 The term 1
2 is added here merely for convenience and does not affect the results.

8 The delay parameterd is usually unknown. Based on Tsay (1989), Teräsvirta (1994) proposes
choosing thed that minimizes the p-value of the nonlinearity test.

9 Also note that the alternative hypothesis will include models other than the STAR.
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where the null hypothesis isH ′′
0 : β′

1 = β′
2 = β′

3 = 0. The LM test based on the
auxiliary regression (6) is the test adopted by Saikkonen and Luukkonen (1988),
Ter̈asvirta et al. (1994), and Teräsvirta (1994). Their test-statistic is computed
by the following procedure: First, estimate (6) under the null hypothesisH ′′

0
by OLS and calculate the sum of squared residuals, SSR0. Second, using the
residuals from the previous step, estimate a model that contains the regressors
of (6) to compute the sum of squared residuals SSR1. Then, the statisticT(SSR0-
SSR1)/SSR0 will have an asymptoticχ2 distribution with degrees of freedom
given by the number of parameter restrictions underH ′′

0 . Those interested in
checking the conditions under which these testing results hold can read chapter
6 of Granger and Teräsvirta (1993). In what follows, we refer to this test-statistic
as NL3 and make it the focus of our analysis. In practice, the use of the ap-
proximation given by the F-distribution is recommended because it has better
size and power properties in small samples. An alternative approach is to use the
Wald test of Hansen (1996). This procedure approximates the unknown limiting
distribution by generating p-values based on simulation methods.10

2.2 Properties of the Taylor series approximation

The success of the nonlinearity tests and the selection procedures advocated by
Ter̈asvirta (1994) are critically related to the precision of the Taylor series ap-
proximation to the transition function. Parsimony requires that this approximation
be as economical as possible so as to prevent loss of power of the tests in small
samples. However, accuracy of the approximation is paramount to guarantee the
consistency of the procedures. Consequently, it is useful to detail the properties
of the Taylor series expansion to understand how to best strike a reasonable
balance.

Figure 1 illustrates the shapes that the logistic and the exponential transition
functions take as a function of the dependent variable, along with the Taylor
series approximations to each function. The logistic transition function has a
single inflection point and is therefore accurately approximated by a third order
series expansion. On the other hand, the exponential transition function has two
inflection points. Third order polynomials can only display one inflection point
and as Fig. 1 illustrates, the approximation is similar to what one could get
with a second order polynomial. A fourth order approximation is also displayed
on the bottom right graph of Fig. 1 to illustrate the improvement in accuracy.
This additional power allows the approximation to display two inflection points,
significantly improving the fit. For the particular example displayed in Fig. 1,
the additional fourth order term adds a 30% improvement in the approximation
using the least squares deviations metric.

The rationale for this behavior can be formally explained by computing the
derivatives of each type of transition function with respect to the scale parameter.
The MacLaurin approximation aroundγ to the transition function defined in (1)

10 See Pesaran and Potter (1997) for an application of this technique.
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Fig. 1. Smooth transition functions and Taylor series approximations.Notes ESTAR model plot
calculated with 100 points ranging from 0 to 1,γ = 50, c = 0.5. LSTAR model plot calculated with
γ = 10, c = 0.5. The approximations are computed with OLS regressions. The Taylor approximation
of order 3 uses linear, quadratic and cubic terms with the approximation of order 4 in addition
includes fourth order powers

is,

F (zt−d , γ, c) = F (zt−d , γ = 0, c) + Fγ(zt−d , γ = 0, c)γ +

+Fγγ(zt−d , γ = 0, c)
γ2

2!
+ ...

and in particular for the exponential function of Eq. (2) becomes,

F (zt−d , γ, c) = γ(zt−d − c)2 +
γ2

2!
(zt−d − c)4 + ... + (7)

γn

n!
(zt−d − c)2n + ...

When c = 0, the MacLaurin polynomial reduces toF (zt−d , γ, 0) = a2z 2
t−d +

a4z 4
t−d + ... where for convenience, theaj represent the appropriate functionals

of the original parametersγ andc. It is clear now why a third order MacLaurin
polynomial does not yield a better approximation whenF is exponential and
symmetrical aroundc (as in Fig. 1): The cumulative effect of the termsa3z 3

t−d ,

a5z 5
t−d , ..., a(2n−1)z

2n−1
t−d , ... is in general close to zero (exactly zero whenc = 0).
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The MacLaurin approximation to the logistic function defined in (3) can be
similarly expressed as

F (zt−d , γ, c) = b1(zt−d − c) + b3(zt−d − c)3 + ... + (8)

b2n−1(zt−d − c)2n−1 + ...

with the bj representing the corresponding functionals of the parametersγ and
c. Contrary to the exponential function (2), whenc = 0, the approximation
only involves the termsz 2n−1

t−d . It is therefore natural to exploit these distinctive
properties in designing tests and decision rules that aim at discriminating between
LSTAR and ESTAR models. The next section discusses the manner in which this
can be accomplished.

3 Choosing between LSTAR or ESTAR

This section exploits an attractive feature of Taylor series approximations to
the transition function of a STAR model. We begin by presenting Teräsvirta’s
(1994) specification procedure and detailing its deficiencies. In response to these
concerns, we propose an alternative procedure.

Upon rejecting the null hypothesis of linearity one might consider using a
STAR model as a useful non-linear alternative. Teräsvirta (1994) suggests a model
selection procedure (which we will denominateTP for short) based on Equation
(6). Ter̈asvirta motivates his procedure by observing the following sequence of
nested F-tests:

1. Test the null:H03 : β′
3 = 0 with an F-test (F3). Ter̈asvirta notes that in princi-

ple, rejection of this null would imply rejection of the ESTAR specification
since cubic powers ofzt−d in a first order approximation ofF (zt−d , γ, c) are
0 whenc = 0.

2. Test the null:H02 : β′
2 = 0|β′

3 = 0 with an F-test (F2). Ter̈asvirta’s reasoning
is that thez 2

t−d terms of a first order Taylor series approximation to a logistic
function are zero whenc = Θ0 = 0, see (1). However, these terms will

be nonzero in the ESTAR case (except in the unlikely case whenΘ̃
′

= 0).
Failure to reject this null is taken as evidence in favor of a LSTAR model.
Nevertheless, rejection ofH02 is not very informative one way or the other.

3. Test the null:H01 : β′
1 = 0|β′

2 = β′
3 = 0 with an F-test (F1). Following

Ter̈asvirta, failing to rejectH01 after rejectingH02 points to an ESTAR model.
On the other hand, rejectingH01 after failing to rejectH02 supports the choice
of LSTAR.

Based on these tests, Teräsvirta’s rule consists on noting which hypotheses
are rejected and then comparing the relative strengths of the rejections. If the
model is LSTAR, typicallyH01 and H03 are rejected more strongly thanH02.
Therefore, Ter̈asvirta proposed to select an ESTAR specification if the p-value
of F2 is the smallest ofF1, F2, F3, otherwise the LSTAR alternative is preferred.
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Ter̈asvirta recognizes that this procedure might cause problems. For example,
even if the model is ESTAR,H03 might be rejected sinceβ′

3 = 0 only if c =
Θ0 = 0 in (1). These concerns and others are best illustrated by analyzing the
terms of the Taylor series expansion for each non-linear state in (1):

Θ′x̃t

[
1 − exp

{
−γ

(
zt−d − c

)2
}]

� Ψ ′
2x̃t (zt−d − c)2 + Ψ ′

4x̃t (zt−d − c)4 (9)

for the first four terms of the MacLaurin polynomial of the exponential function,
where we have used the result that the terms (zt−d − c)2n−1 in said polynomial
vanish. Similarly,

Θ′x̃t

[{
1 + exp

(−γ
(
zt−d − c

))}−1 − 1
2

]
� Ψ ′

1x̃t (zt−d − c) + Ψ ′
3x̃t (zt−d − c)3

(10)
using also the first four terms of the MacLaurin polynomial of the logistic func-
tion. In this case we use the result that the terms (zt−d −c)2n vanish. The shorthand
notationΨ ′

i for i = 1, 2,3,4 collects the parameters associated with each of the
terms rather than expressing complicated formulas of parameters that can not be
identified in a regression model.

Ter̈asvirta’s concerns can now be easily understood by inspecting (9). When-
ever c, π0 and/orθ0 are non-zero, expansion of̃xt (zt−d − c)4 yields non-zero
x̃t z 3

t−d terms. In addition, when the variance of the error term is “large” the
distribution of the data into each state around the thresholdc tends to be asym-
metric. As a result, the null hypothesisH02 : β′

2 = 0|β′
3 = 0 does not discriminate

between a LSTAR withc /= 0 and an ESTAR in general.
An additional source of complications lies in the design of the rule itself. For

example, if the true model is LSTAR, it is unclear that by conditioning on the
cubic terms to be zero (that is, restrictingβ′

3 = 0 in (1)), the joint significance
of the square terms,̃xt z 2

t−d (from (10), these are non-zero sincec /= 0) will be
also zero. These terms are now left to approximate the transition function – an
approximation that the cubic terms presumably were successfully capturing.

Inspection of Eqs. (9) and (10) provides clues on how to correct the defi-
ciencies of TP. Consider the following example. Supposec = 0. Based on (10),
it is clear that if the model is LSTAR, the terms̃xt z

j
t−d for j = 2, 4, are zero

(i.e. β′
2 = β′

4 = 0 in (12) below). Alternatively, if the model is ESTAR, based
on (9), the terms̃xt z

j
t−d for j = 1, 3, are zero (i.e.β′

1 = β′
3 = 0 in (12) below).

Therefore, the behavior of the MacLaurin polynomial for the transition function
suggests that the regression (6) could be modified by adding an additional term
as follows,

yt = π0 + π′
1x̃t + Ψ ′

1x̃t (zt−d − c) + Ψ ′
2x̃t (zt−d − c)2 +

Ψ ′
3x̃t (zt−d − c)3 + Ψ ′

4x̃t (zt−d − c)4 + v4t

or, more specifically, in terms of observable parameters,

yt = δ0 + δ′
1x̃t + β′

1x̃t zt−d + β′
2x̃t z

2
t−d + β′

3x̃t z
3
t−d + β′

4x̃t z
4
t−d + v4t (11)
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This would require augmenting the nonlinearity test (6) with the additional terms
captured inβ′

4x̃t z 4
t−d . We delay the discussion of this alternative nonlinearity test

which we denominate NL4 for future reference. Here we concentrate on how to
use the additional information to select the appropriate nonlinear STAR model.

We propose the following alternative selection procedure, which we denom-
inate EJP (Escribano-Jordá):

1. Test for nonlinearity and if linearity is rejected, then
2. test the null:H0L : β′

2 = β′
4 = 0 with an F-test (FL) and

3. test the null:H0E : β′
1 = β′

3 = 0 with an F-test (FE ).
4. If the minimum p-value corresponds toFE , select LSTAR, otherwise select

ESTAR.

This 4-step selection procedure is clearly consistent whenc = 0 following
the motivation in our example.However, whenc /= 0, EJP is still effective since
we are comparing the joint significance of linear and cubic terms relative to the
joint significance of quadratic and fourth order terms,without conditioning on
other parameters being zero.

Aside from its simplicity and effectiveness, EJP could be transformed to
provide information about non-zero thresholds,c. Remember that linear and cubic
terms are exactly zero whenc = 0 and the model is ESTAR while quadratic and
fourth order terms are exactly zero whenc = 0 and the model is LSTAR.

The procedure to select c is called thec-procedure and works as follows:

1. Test for nonlinearity and if linearity is rejected, then
2. rejectingH0E with FE and failing to rejectH0L with FL suggests an LSTAR

model withc = 0
3. rejectingH0L with FL and failing to rejectH0E with FE suggests a ESTAR

model withc = 0.

This simple c-procedure is useful to setc = 0 as a good starting value in
the parametric nonlinear estimation when linearity was clearly rejected. In other
borderline cases the results of the c-procedure could be informative but care must
be taken interpreting the results as will become clear later on in the Monte Carlo
simulation experiments.

3.1 Modifying the nonlinearity test

The power of the nonlinearity test NL3 depends crucially on the quality of
the Taylor series approximation to the transition function. We have seen that
the MacLaurin polynomials of the transition function indicate that when this
transition function is exponential, one would require terms of the formx̃t z 4

t−d
to capture the two inflection points discussed above. Additionally, we have seen
that these terms can be exploited to improve on the selection procedure. The key
question that needs to be answered is whether the additional terms add sufficient

8



Fig. 2. Assymmetric ESTAR model: Third and fourth order Taylor serie approximations.Notes
ESTAR model constructed with 100 points between 0 and 1,γ = 50, c = 0.1. The approximations
are computed with OLS regressions. The Taylor approximation of order 3 uses linear, quadratic and
cubic terms while the approximation of order 4 in addition includes fourth order powers

precision in the approximation to justify augmenting the nonlinearity test based
on (6) with these additional regressors.

This is a matter that can only be answered empirically, on a case by case
basis. In the example depicted in Fig. 1 these additional regressors cause the SIC
to drop from 0.094662 to -0.875749 (in a simple OLS regression of the data gen-
erated with the exponential transformation on the levels, squares, third and fourth
powers of the data), a remarkable change. However, as Fig. 2 shows, asymmetric
ESTAR models maybe properly approximated with third order expansions (the
improvement in SIC is now only from -1.267067 to -1.598299). In any case, the
selection procedure EJP introduced above, requires that the auxiliary regression
be specified as,

yt = δ0 + δ′
1x̃t + β′

1x̃t zt−d + β′
2x̃t z

2
t−d + β′

3x̃t z
3
t−d + β′

4x̃t z
4
t−d + v4t (12)

where the null hypothesis of linearity now becomesH ′′′
0 : β′

1 = β′
2 = β′

3 = β′
4 = 0.

The LM test-statistic of this joint hypothesis is called NL4.11Compared to NL3,
NL4 requiresp extra regressors in the auxiliary regression. Testing nonlinearity

11 Whenzt−d = yt−d , this test is similar in spirit to a high order RESET test, see Ramsey (1969).
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in practice involves several important steps such as choice of lag length of the AR
model and choice of delay parameterd . These are well documented in Teräsvirta
(1994).

In situations where lack of parsimony is of concern, a simplified version
of NL4 based on the results in Luukkonen et al. (1988a) could be considered.
Parallel to their augmented first order procedure, the auxiliary regression in the
STAR case becomes:

yt = δ0 + δ′
1x̃t + β′

1x̃t zt−d + β∗
2 z 3

t−d + β∗
3 z 4

t−d + β∗
4 z 5

t−d + v∗
4t. (13)

The corresponding null hypothesis of linearity isH IV
0 : β′

1 = 0; β∗
2 = β∗

3 =
β∗

4 = 0. We term this test simplified-NL test. Care should be taken in using this
simplification since in several cases of ESTAR models certain parameters are
zero.

4 Monte Carlo experiments

This section provides Monte Carlo evidence in support of our recommended
decision procedure, EJP relative to the selection procedures TP and GTP – which
stands for “generalized” TP and is designed to take advantage of the fact that the
nonlinearity auxiliary regression contains extra terms.12 Additional evidence is
provided to compare the nonlinearity tests NL3, and NL4. The models simulated
in this study are taken from Luukkonen et al. (1988a,b) and Teräsvirta (1994).
Each experiment is replicated 1,000 times. The first 100 observations of each
series are disregarded to avoid initialization problems.13

4.1 Selection frequencies of the EJP selection procedure

Tables 1 and 2 summarize the simulation results with ESTAR and LSTAR data
generating processes and compare the accuracy of EJP and TP in selecting the
correct model. The correct selection rate is reported as a percentage of those
replications for which linearity was first rejected at the conventional 95% confi-
dence level. We explore the robustness of the selection procedures by considering
additional examples with non zero thresholds (i.e.c /= 0) that make the model
asymmetric (as in Fig. 2) and misspecification of the lag structure.

The first panel of Table 1 illustrates that, when the DGP is ESTAR, EJP
uniformly outperforms TP, particularly when the threshold is zero. Higher values
of the threshold make the model more asymmetric.. This has the effect of making
the ESTAR and LSTAR specifications observationally similar and in some cases,
it makes the model appear linear with a few outliers. This may explain the poor
performance of TP in the selecting ESTAR in the extreme casec = 1.5.

12 The steps involved require the sequential tests,H0 : β′
4 = 0, H0 : β′

3 = 0|β′
4 = 0, H0 : β′

2 =
0|β′

3 = β′
4 = 0, andH0 : β′

1 = 0|β′
4 = β′

3 = β′
2 = 0.

13 Extensive Monte Carlo evidence and detailed description of the experiments is available in
Escribano and Jorda (1997).
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Table 1.Selection frequencies of the procedures

π0 = 0 π0 = 0.3

Threshold Sample TP EJP NL4 Power TP EJP NL4 Power
C = 0 50 0.686 0.859 0.156 0.523 0.788 0.193

100 0.840 0.909 0.601 0.894
200 0.937 0.985 0.678 0.971

C = 0.3 50 0.609 0.731 0.156 0.640 0.690 0.200
100 0.805 0.781 0.714 0.859
200 0.899 0.876 0.837 0.910

C = 1.5 50 0.132 0.212 0.349 0.120 0.357 0.350
100 0.057 0.170 0.097 0.301
200 0.012 0.089 0.057 0.246

Relative frequencies of correct specification of ESTAR models (as a proportion of the repli-
cations for which linearity is rejected at a 95% confidence level using NL4). Table 4, p. 172,
Luukkonen et al. (1988b).
1 = 100% accuracy selecting the correct model, 0 = 0% accuracy. DGP:

y1 = π0 + 0.3yt−1 − (0.9yt−1)
{

1 − exp
(
−(yt−1 − c)2

)}
+ εt εt ∼ N (0,0.36)

π1 = −0.5 π1 = 0.5

Sample θ1 Threshold TP EJP NL4- θ1 TP EJP NL4-
Power Power

50 −0.4 C = 0 0.793 0.683 0.082 0.5 0.914 0.797 0.187
C = 10 0.663 0.542 0.083 0.808 0.717 0.099
C = 15 0.762 0.492 0.063 0.789 0.615 0.052

0.5 C = 0 0.914 0.797 0.187 −0.5 0.823 0.735 0.113
C = 10 0.808 0.717 0.099 0.703 0.595 0.111
C = 15 0.788 0.615 0.052 0.776 0.507 0.067

1 C = 0 0.994 0.979 0.875 −1 0.898 0.931 0.305
C = 10 0.883 0.833 0.480 0.810 0.593 0.300
C = 15 0.837 0.618 0.123 0.744 0.511 0.129

1.5 C = 0 0.999 0.999 0.998 −1.4 0.547 0.981 0.464
C = 10 0.948 0.968 0.857 0.848 0.615 0.538
C = 15 0.857 0.728 0.265 0.726 0.511 0.186

100 −0.4 C = 0 0.459 0.811 0.122 0.5 0.919 0.860 0.272
0.5 0.811 0.724 0.127 −0.5 0.898 0.814 0.118
1 0.952 0.936 0.498 −1 0.941 0.935 0.491
1.5 0.963 0.978 0.883 −1.4 0.594 0.978 0.744

Relative frequencies of correct specification of LSTAR model (as a proportion of replications for
which linearity is rejected at a 95% confidence level). Fig. 2, p. 496, Luukkonen et al. (1988a).
1 = 100% accuracy selecting the correct model, 0 = 0% accuracy. DGP:

y1 = π1yt−1 − (θ1yt−1)
(

1 + exp{−0.5(yt−1 − c)}
)−1

+ ε1 ε1 ∼ N (0,25.0)
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Table 2.

Data generated from models 4.1–4.2 and 4.6, g. 210–211, in Teräsvirta (1994). DGP:

y1 = 1.8yt−1 − 1.06yt−2 + (π20 − 0.9yt−1 + 0.795yt−2)F (yt−1) + ut ; ut ∼ N (0,0.04)

F (yt−1) = (1 + exp{−γ(yt−1 − c)})−1, LSTAR;

F (yt−1) = 1 − exp{−1000(yt−1 − c)2}, ESTAR

• Size properties
Sample size = 100

Lags NL4 - Size NL3 - Size

2 0.043 0.043
3 0.042 0.052
4 0.045 0.044

• Sensitivity of Selection Frequency and Power to the lag structure
Correct lag length is p = 2, d = 1.
Model: ESTAR
Sample size = 100

Power

Lags TP GTP EJP NL4 NL3

C = 0, π20 = 0 2 0.885 0.922 0.971 0.729 0.608
3 0.849 0.901 0.956 0.615 0.507
4 0.809 0.869 0.959 0.518 0.450

C = 0, π20 = 0.02 2 0.673 0.698 0.671 0.838 0.851
3 0.692 0.717 0.666 0.769 0.780
4 0.679 0.695 0.682 0.702 0.724

C = 0.02, 2 0.488 0.569 0.350 0.606 0.574
π20 = 0.04 3 0.493 0.574 0.356 0.556 0.528

4 0.489 0.549 0.356 0.503 0.485

Model: LSTAR
Sample size = 100

Power

Lags TP GTP EJP NL4 NL3

C = 0, π20 = 0 2 0.975 0.965 0.998 0.950 0.962
3 0.970 0.962 0.999 0.915 0.937
4 0.962 0.953 0.993 0.878 0.905

C = 0, π20 = 0.02 2 0.932 0.909 0.907 0.636 0.660
3 0.912 0.878 0.895 0.588 0.606
4 0.923 0.887 0.893 0.533 0.567

C = 0.02, 2 0.859 0.827 0.577 0.156 0.162
π20 = 0.04 3 0.848 0.790 0.514 0.138 0.140

4 0.838 0.752 0.599 0.137 0.141

12



Table 2. (continued)

Sample size = 300

Power

Model Lags TP GTP EJP NL4 NL3

ESTAR C = 0,π20 = 0 0 983 0.989 1.000 0.999 0.983
C = 0, π20 = 0.02 0.876 0.883 0.850 1.000 1.000
C = 0.02,π20 = 0.04 0 332 0.379 0.569 0.982 0.975

LSTAR C = 0,π20 = 0 1.000 1.000 1.000 1.000 1.000
C = 0, π20 = 0.02 0 998 0.996 0.985 0.993 0.991
C = 0.02,π20 = 0.04 0 956 0.925 0.671 0.386 0.378

The second panel of Table 1 concentrates on LSTAR DGPs. Both procedures
work relatively well, with TP performing marginally better. However, EJP tends
to outperform TP when the nonlinearity is stronger (bystronger we mean the
nonlinearity test has more power) and conversely when the nonlinearity is harder
to detect. For instance, whenπ1 = 0.5 andθ1 = −1.4, and c = 0, EJP correctly
selects LSTAR 98% of the time while TP selects it only 55% of the time. When
the threshold is significantly different from 0 (in the simulations,c = 15) then
TP seems to perform better than EJP. However, withc = 15, the model becomes
linear with a few outliers (note that the power of the nonlinearity test also drops
significantly from 46% to 19%). With larger sample sizes (100 in our exercise),
both procedures do reasonably well. It is important to note that when the data is
evenly distributed between the two regimes (although possibly asymmetrically),
the results in Table 1 indicate that EJP outperforms TP. In practice, these are
likely to be the relevant situations in which to use STAR models. In certain cases
it is hard to distinguish nonlinear models from a conventional linear model with
a few outliers. This topic is beyond the scope of this paper but it is thoroughly
investigated in Escribano et al. (1998) and Van Dijk et al. (1998).

Table 2 investigates the sensitivity of the selection procedures to incorrect
lag length specification. Both ESTAR and LSTAR models are simulated with
an AR(2) model borrowed from Teräsvirta (1994). Similarly to Table 1, EJP
performs better than TP for both ESTAR and LSTAR whenc = 0 although both
do better when the data is not clustered in one of the regimes – for this exercise,
cases with eitherc and/orπ20 different from zero. In general, both the EJP and TP
rules seem rather insensitive to overparametrization of the auxiliary regressions
(e.g. including four lags when only two are needed). Table 2 (continued) also
highlights that TP can be “inconsistent” as we discussed above. In particular,
when c = 0.02 andπ20 = 0.04, note that the correct selection of the ESTAR
model drops for TP from 49% to 33% as the sample size increases from 100 to
300 observations. By contrast, EJPs selection frequency improves from 35% to
57% with the increase in sample size.
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4.2 Power and size properties of the nonlinearity tests

We provide evidence of the performance and the sensitivity of the nonlinearity
tests to incorrect specifications of the lag length for the examples in Table 2
by comparing the NL3 to the NL4 test. Other simulations are included in Es-
cribano and Jord́a (1997, 1999). The size of the tests is relatively insensitive to
overparametrization of the AR(p) lags and the power loss is in general, not very
important. The simulations indicate that with large sample sizes (in our study
300 observations), there is little difference between NL3 and NL4. Both tests
detect non-linearity adequately, with the power approximating 1 in most cases.
However, for smaller sample sizes, (in our study 100 observations), NL4 has
higher power than NL3 when the true model is ESTAR (in particular when both
c andπ20 are zero or both nonzero). When the true model is LSTAR, NL4 does
not significantly loose power with respect to NL3. These results are encouraging
for the NL4 test for two reasons: (1) when the model is LSTAR we showed that
the fourth order powers are zero in the specific casec = 0, and (2) as Fig. 2
illustrates, although asymmetric ESTAR functions (close substitutes to LSTAR)
appear well approximated by third order powers, the contribution of fourth order
powers is still significant. Compare the power of NL3 and NL4 of Table 2 for
sample sizes of 300 observations from ESTAR and LSTAR models.

5 Teräsvirta and Anderson (1992) revisited

Ter̈asvirta and Anderson (1992) analyze the dynamic properties of industrial
production indices of thirteen OECD countries and an European aggregate using
STAR models. The data is quarterly, seasonally unadjusted,14 and spans from
1960:I to 1986:IV.15 This section replicates nonlinearity testing and model selec-
tion with our alternatives, NL4 and EJP. Our goal is to compare the performance
of the new procedures in practice. Table 4 reports p-values of nonlinearity tests,
delay parameter choice, and STAR model selection for those countries in which
nonlinearities were detected either by NL3 or NL4.16

NL3 and NL4 obtain their minimum p-values for the same choice of delay
parameter,d , except in the case of the U.S.A. While the results of both tests
are similar, NL4 fails to reject linearity at the usual 5% level for 3 countries.17

With regard to EJP, the same models are selected as with TP except for Austria
and Sweden. In the case of Japan, Teräsvirta and Anderson (1992) report that
choosing between models (LSTAR or ESTAR) was hard with TP and hence
estimated both specifications. The final model they selected on the basis of fit
was an ESTAR – a choice that EJP selects unequivocally.

14 They make the series approximately stationary by fourth lag differencing (xt -xt−4).
15 Source:OECD Main Economic Indicators.
16 French and Italian indices were adjusted for strikes and other anomalies and are therefore not

considered here.
17 A sample of 104 observations and the extra regressors required by NL4 probably justify this

result.
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Table 3.Linearity testing, determining the delay parameter and selecting between LSTAR and ESTAR
models

Country Max. Lag P-value P-value Delay TP EJP
(AIC) NL3 NL4 Parameter Choice Choice

Austria 5 0.010 0.033 1 LSTAR ESTAR
Belgium 5 0.050 0.259 1 LSTAR LSTAR
Japan 5 0.000 0.000 1 ? ESTAR
Norway 8 0.031 0.200 5 LSTAR LSTAR
Sweden 5 0.015 0.040 3 LSTAR ESTAR
U.K. 8 0.047 0.192 4 ESTAR ESTAR
U.S.A. 6 0.006 0.054/0.016* 3/5* LSTAR LSTAR
EUR 9 0.015 0.043 3 ESTAR ESTAR

Note For U.S.A. NL4 minimum p-value was for d = 5.

Table 4. Summary statistics for STAR model estimation: Austria and Sweden

Austria Sweden

Summary LSTAR ESTAR Summary LSTAR ESTAR
Statistics Statistics

R-Squared 0.7079 0.6778 R-Squared 0.7251 0.7311
Adj. R2 0.6819 0.6607 Adj. R2 0.7039 0.7104
SSR 0.0503 0.0554 SSR 0.0538 0.0526
AIC −7.4036 −7.3770 AIC −7.3560 −7.3781
SIC −7.1677 −7.2207 SIC −7.1463 −7.1684
Durbin-Watson 2.3350 2.0845 Durbin-Watson 1.8476 2.0132
# of params. 9 6 # of params. 8 8

We estimated both LSTAR and ESTAR specifications for Austria and Swe-
den to determine which specification fitted best. The estimates for Austria are
harder to compare since the final models have a different number of parameters
– Schwarz’s information criterion (SIC) favors the ESTAR specification while
Akaike’s (AIC) favors the LSTAR specification. However, in the case of Sweden,
the final models have the same number of parameters. The preferred specification
is the ESTAR (which was selected by EJP but not by TP) with a better fit overall
than its LSTAR counterpart. Of course, the true model is unknown. The value
of this exercise was to check what specification seemed to work best and what
specification test led us to it.

6 Conclusion

This paper proposes a selection procedure (EJP) to choose between logistic STAR
(LSTAR) and exponential STAR (ESTAR) specifications when the alternative
hypothesis to the null of linearity is a nonlinear STAR type of model. This
new decision rule is simpler, more intuitive, and has better properties than the
usual TP rule, proposed by Teräsvirta(1994). This is particularly relevant when
the true model is ESTAR, which is the most common parameterization used in
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empirical models of the business cycles of the USA and Europe. That conclu-
sion is clearly reached from our simulations when the nonlinearity is strong and
when the threshold (c) is cero. However, we simulated other nonlinear models
(STAR with c different than 0) to check the robustness of both decision rules to
extreme asymmetries. The resulting nonlinear asymmetric models are observa-
tionally equivalent to linear models with few outliers and therefore, one should
expect that both decision rules perform badly (see Escribano et al. (1998) for
a robust analysis of those cases). Along the way, we have provided practical
guidelines regarding nonlinearity testing when the data are mainly in one of the
regimes (asymmetric ESTAR or LSTAR) and when there is uncertainty about the
lag length of the autoregressive part . In support of our claims, we conducted
Monte-Carlo simulations and applied our procedures to the industrial production
indices of thirteen OECD countries and to a European aggregate. All these hy-
pothesis testing procedures discussed here could easily be generalized to Smooth
Transition Regression models and to other multivariate models.18
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T., Tjøstheim, D., Ẅurtz, A. (eds.)Nonlinear Econometric Modelling in Time Series Analysis.
Cambridge University Press, Cambridge
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