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Abstract 

Exponential models of autoregressive conditional heteroscedasticity (ARCH) are attractive in 

empirical analysis because they guarantee the non-negativity of volatility, and because they 

enable richer autoregressive dynamics. However, the currently available models exhibit stability 

only for a limited number of conditional densities, and the available estimation and inference 

methods in the case where the conditional density is unknown hold only under very specific 

and restrictive assumptions. Here, we provide results and simple methods that readily enables 

consistent estimation and inference of univariate and multivariate power log-GARCH models 

under very general and non-restrictive assumptions when the power is fixed, via vector ARMA 

representations. Additionally, stability conditions are obtained under weak assumptions, and 

the power log-GARCH model can be viewed as nesting certain classes of stochastic volatility 

models, including the common ASV(1) specification. Finally, our simulations and empirical 

applications suggest the model class is very useful in practice. 
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1 Introduction

The Autoregressive Conditional Heteroscedasticity (ARCH) class of models due to
Engle (1982) is widely used to model the clustering of large (in absolute value) fi-
nancial returns. Within this class of models a type that is of special interest is
exponential ARCH models, because their fitted values of volatility are guaranteed
to be non-negative in empirical practice (this is not the case for ordinary ARCH
models), and because they enable richer autoregressive volatility dynamics. For ex-
ample, as an extreme case, all parameters can be negative while volatility is ensured
positive. In contrast with ordinary ARCH models, however, in exponential ARCH
models stability conditions in general and the existence of unconditional moments
in particular depend to a greater extent on the conditional density. For example,
the most common exponential ARCH model, Nelson’s (1991) EGARCH, is gener-
ally not stable for t-distributed errors, see Nelson (1991, p. 365). This is a serious
shortcoming since the t-distribution is the preferred choice by practitioners among
the densities that are more fat-tailed than the normal, and it has prompted specific
work on EGARCH models with t-distributed conditional densities, see for exam-
ple Harvey and Chakravarty (2010). Furthermore, in contrast to ordinary ARCH
models, fewer theoretical results exist that enable consistent estimation and valid
asymptotic inference in exponential ARCH models when the density of the condi-
tional density is unknown. For example, Straumann and Mikosch (2006, p. 2452)
proves consistency of the Quasi Maximum Likelihood (QML) estimator for Nelson’s
(1991) univariate EGARCH(1,1). However, the result of Straumann and Mikosch is
limited in that it does not apply to higher order EGARCH models, nor to models
where the power differs from 2, nor to multivariate versions. Furthermore, their
result does not enable ordinary inference strategies: “At the moment we cannot
provide a proof of the asymptotic normality of the QMLE in the general EGARCH
model..” (same place, p. 2490). Zaffaroni (2009) proves consistency and asymptotic
normality of the Whittle estimator for Nelson’s (1991) univariate EGARCH(P,Q)
model of general orders P and Q. However, a number of restrictive regularity re-
strictions must be satisfied, including that the conditional density depends on a
single parameter only (this is implied by assumption E; see the discussion on pp.
193-194). This effectively rules out skewed distributions like the skewed t and the
skewed Generalised Error Distribution (GED), which depend on two parameters, one
for shape and one for skewness. Again, this is a severe limitation in practice because
the standardised errors of financial returns are often found to be skewed. Dahl and
Iglesias (2008) prove consistency and asymptotic normality of QML for a univari-
ate exponential GARCH(1,1) structure that nests the 2nd. power log-GARCH(1,1)
with (non-logarithmic) asymmetry, but not the EGARCH of Nelson (1991). Again,
their result is limited in the same way as Mikosch and Straumann’s in that it does
not apply to higher order models, nor to models where the power differs from 2, nor
to multivariate versions. Also, many stability properties of their model is unknown.
Finally, Kawakatsu (2006) has proposed a multivariate exponential ARCH model,
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the matrix exponential GARCH, which contains a multivariate version of Nelson’s
1991 model. However, general conditions for the existence of its unconditional mo-
ments are not available, and a general estimation and inference theory for the case
where the conditional density is unknown has yet to be provided.

In this paper we provide a result and methods that enables consistent estimation
and ordinary inference methods for a general class of univariate and multivariate
exponential ARCH models that we term the power log-GARCH model, via vector
autoregressive moving average (VARMA) representations. This class of exponential
ARCH models is stable for a much larger class of densities than the EGARCH
of Nelson (1991), including the t-distribution. The univariate second power log-
GARCH model can be viewed as a dynamic version of Harvey’s (1976) multiplicative
heteroscedasticity model, and the univariate second power log-GARCH model was
first proposed by Pantula (1986), Geweke (1986) and Milhøj (1987). The main
motivation was that it ensured non-negative variances. However, it does so at the
cost of possibly applying the log-operator on zero-values of the squared residuals of
the mean specification, which occurs whenever the residual is equal to zero. If the
residuals are rarely equal to zero, then this is not a serious shortcoming in practice
since an adequately small positive number may replace the zero value.1 Nevertheless,
this problem is not present in the EGARCH model of Nelson (1991), which might
explain why so little work has been devoted to the log-GARCH model compared
with the EGARCH model. Some theoretical results apply to structures that nest
specific cases of the log-GARCH model, for example some of the results in He et al.
(2002), Carrasco and Chen (2002), and Dahl and Iglesias (2008). But these works
do not have the log-GARCH model as their main focus.

Another strand of literature that is of relevance for log-GARCH models is the
stochastic volatility (SV) literature, since the power log-GARCH can be viewed as
nesting certain classes of SV models, including the common autoregressive SV (ASV)
model. Viewed in this way, it is well-known that all the coefficients apart from the
volatility constant in a univariate second power log-GARCH specification can be
estimated consistently (under suitable assumptions) via its autoregressive moving
average (ARMA) representation, see for example Psaradakis and Tzavalis (1999),
and Francq and Zaköıan (2006). However, the estimate of the volatility constant
will generally be biased and the bias depends on the distribution of the standardised
error. This is another reason that explains in part the hitherto unattractiveness of
the log-GARCH model in empirical finance, since ad hoc assumptions and possibly
tedious estimation procedures would be needed in order to obtain a valid estimate

1What “adequately small” is depends on the data. Financial prices are discrete in the sense
that they are recorded with a finite number of digits, typically between 0 and 6. Accordingly, if the
positive number is too small then this will induce a negative outlier (when applying the logarithm)
that is likely to affect estimation and inference results. Another practical issue to contend with is
that the discreteness of a price series can be time-varying. With these two considerations in mind,
we use the following simple rule throughout. If {ε̂t} denote the residuals of the mean, then the
zero-adjusting value is set equal to the 10% sample quantile of {ε̂2t}.
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of the constant. For example, in the context of an SV model, Harvey et al. (1994,
section 6) propose a method that can be adapted to the log-GARCH model. Specifi-
cally, they propose a way of estimating the bias under the assumption of Student’s t
distributed standardised errors. By contrast, the result we provide enables a consis-
tent estimate of the bias by means of simple formulas made up of the residuals from
the ARMA regression, without having to specify the density of any of the errors
(only weak moment assumptions are needed). So a consistent estimate of the vari-
ance constant is readily available under very general assumptions on the errors, for
any (fixed) power—integer or non-integer—greater than zero.2 Moreover, when in-
terpreted as an SV model, consistent estimation of the coefficients of the log-GARCH
terms can be undertaken with unknown distribution on the SV term under very gen-
eral assumptions. Our result also holds under very general assumptions when the
mean specification differs from zero, and the generalisation to a flexible multivariate
version of the power log-GARCH model is straightforward, since consistent estima-
tion can be undertaken via the vector-ARMA (VARMA) representation. Finally,
our simulations and our empirical applications suggest our results and methods are
very useful for empirical practice.

The rest of the paper is organised as follows. The next section, section 2, presents
the univariate power log-GARCH model. The key theoretical result of this paper,
proposition 1 and its proof, is contained in subsection 2.2. Section 3 presents the
multivariate power log-GARCH. Section 4 contains three empirical applications.
Section 5 concludes, whereas the subsequent appendix contains various supporting
information. Tables and figures are located at the end.

2 The univariate power log-GARCH model

2.1 Notation and specification

For each t the univariate δth. power log-GARCH(P, Q) model is given by

rt = µ(φ, xt) + εt, E(rt|It) = µ(φ, xt), (1)

εt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, σt > 0, (2)

log σδ
t = h(γ, wt)

= α0 +
P∑

p=1

αp log |εt−p|δ +

Q∑
q=1

βq log σδ
t−q, δ > 0, (3)

where µ(φ, xt) = E(rt|It) is the expectation of rt conditional on the information set
It, V ar(rt|It) = σ2

t is the conditional variance of rt, δ is the power, P is the ARCH

2Our estimation methods assumes the power is fixed and known. However, in practice, grid
search methods may readily be implemented to search for the power.
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order, Q is the GARCH order, φ and γ are parameter vectors, and xt and wt are
the vectors of variables at t in the mean and variance specifications, respectively.
The mean µ(φ, xt) allows for a large class of possible specifications, linear or non-
linear, and it may contain autoregressive (AR) and moving average (MA) terms.
However, it cannot contain functions of σt, for example GARCH-in-mean terms,3

since our methods essentially assume the mean error εt is determined by rt−µ(φ, xt)
only. But information in wt may of course appear in xt, that is, we allow for
xt ∩ wt 6= ∅. Finally, denoting P ∗ = max{P,Q}, if the roots of the lag polynomial
1−(α1 +β1)L−· · ·−(αP ∗+βP ∗)L

P ∗ are all greater than 1 in modulus, then {log σδ
t }

is covariance stationary. For common densities like the GED with shape parameter
greater than 1, and the Student’s t with degrees of freedom greater than 2, {εt} will
in general be covariance stationary, see subsections 2.3 and 3.1.

Table 1 contains the autocorrelations of {ε2
t} for the 1st. and 2nd. power log-

GARCH(1,1) specifications for empirically relevant parameter values similar to those
of section 4.1. When α0 is exactly equal to zero, then the autocorrelations of {ε2

t}
do not depend on the power. This explains presumably why there is virtually no
difference between the autocorrelations in the simulations of the 1st. and 2nd.
power specifications. In contrast to the GARCH(1,1) model the autocorrelations
of the power log-GARCH(1,1) models depends on the distribution of zt: The more
fat-tailed, the weaker correlations. Nevertheless, the power log-GARCH(1,1) is ca-
pable of generating stronger autocorrelations than the GARCH(1,1), although not
as persistent—or at least not for the parameter values used in the table (this is
consistent with the findings of He et al. (2002)). This might suggest that the log-
GARCH(1,1), as Nelson’s (1991) EGARCH(1,1), may not be appropriate for some
types of financial series, in particular high frequency versions.

2.2 ARMA representations

The error εt can be written as σtzt = σ∗t z
∗
t , where

σ∗t = σt(E|zt|δ)1/δ, z∗t =
zt

(E|zt|δ)1/δ
, E(|z∗t |δ) = 1. (4)

This decomposition is useful because it enables an ARMA representation of the
power log-GARCH specification that is readily estimable by means of common es-
timation methods. For example, the δth. power log-ARCH(1) specification is given
by log σδ

t = α0 + α1 log |εt−1|δ. Adding log E|zt|δ + log |z∗t |δ to each side and then
adding E(log |zt|δ) − E(log |zt|δ) to the right-hand side, yields the AR(1) represen-
tation log |εt|δ = α∗0 + α1 log |εt−1|δ + u∗t , where α∗0 = α0 + log E|zt|δ + E(log |z∗t |δ),
and where u∗t = log |z∗t |δ − E(log |z∗t |δ) is a zero-mean IID process. In other words,
the power log-ARCH(1) model admits an AR(1) representation. For a given power

3This is not a serious drawback since proxies for financial price variability (say, functions of
past squared returns, bid-ask spreads, functions of high-low values, etc.) are readily available and
can be included as regressors instead.
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δ > 0, the parameters α∗0 and α1 can thus be estimated consistently by means
of ordinary estimation methods subject to usual assumptions. However, in order
to recover α0 we need estimates of log E|zt|δ and E(log |z∗t |δ), and the proposition
we state below provides simple formulas for consistent estimation of log E|zt|δ and
E(log |z∗t |δ) under very general assumptions. A useful aspect to point out in that
regard is that we will in the process also obtain an estimate of E(log |zt|δ), since
E(log |zt|δ) = log E|zt|δ + E(log |z∗t |δ).

More generally the power log-GARCH(P,Q) model with P ≥ Q admits the
ARMA(P, Q) representation

log |εt|δ = α∗0 +
P∑

p=1

α∗p log |εt−p|δ +

Q∑
q=1

β∗qu
∗
t−q + u∗t (5)

with probability 1, where

α∗0 = α0 + (1−
Q∑

q=1

βq) ·
[
log E|zt|δ + E(log |z∗t |δ)

]

α∗1 = α1 + β1

...

α∗P = αP + βP

β∗1 = −β1

...

β∗Q = −βQ,

and where u∗t = log |z∗t |δ − E(log |z∗t |δ) = log |zt|δ − E(log |zt|δ) as earlier. When
P > Q, then βQ+1 = · · · = βP = 0 by assumption. Also, it should be noted
that the equations are not affected by the (linear) inclusion of other variables in
the log-variance specification (3). The consequence of all this is that consistent es-
timates of all the ARMA parameters—and hence all the log-GARCH parameters
except α0—can readily be obtained by means of common estimation procedures
(least squares, QML in the errors {u∗t}, etc.) subject to usual assumptions,4 as
long as the power δ is given, and as long as P ≥ Q. If P < Q, then the ARMA
representation may contain common factors. To see this consider for example a
δth. power log-GARCH(0,1) specification whose ARMA representation is log |εt|δ =
α∗0+β1 log |εt−1|δ−β1u

∗
t−1+u∗t . That is, the AR parameter is equal to the negative of

the MA parameter. It is also worth noting the ease with which some non-stationary
specifications can be formulated and estimated. For example, an integrated power
log-GARCH(1,1) with specification log σδ

t = α0 + (1 − β1) log |εt−1|δ + β1 log σδ
t−1

4For example, in the case of estimating an AR(P ) representation by means of OLS, the most
important assumptions for the current purposes are that the roots of (1− α1c− · · · − αP cP ) = 0
are outside the unit circle, that E(u∗2t ) < ∞ and that E(u∗4t ) < ∞.
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can be written as the MA(1) representation ∆ log |εt|δ = α∗0 + β∗1u
∗
t−1 + u∗t . More

generally, if log |εt|δ is I(1), then the estimates of the stationary AR(P ) represen-
tation ∆ log |εt|δ = α∗0 +

∑P
p=1 αp∆ log |εt−p|δ + u∗t can in many cases be used to

obtain estimates of the non-stationary representation, or at least as a reasonable
approximation.

In order to recover α0 we need estimates of log E(|zt|δ) and E(log |z∗t |δ), and
the following proposition gives very general conditions under which they can be
estimated consistently after estimation of the ARMA-representation (5).

Proposition 1. Suppose the power δ is known and that a consistent estimation
procedure of the ARMA representation (5) of the power log-GARCH specification

(3) exhibits the property û∗t
P−→ u∗t for each t, where {û∗t} are estimates of {u∗t}. If

0 < E|zt|δ < ∞ and if |E(log |zt|)| < ∞, then

a) − log

[
1

T

T∑
t=1

exp(û∗t )

]
P−→ E(log |z∗t |δ), (6)

and

b) −δ

2
log

[
1

T

T∑
t=1

ẑ∗2t

]
P−→ log E(|zt|δ), (7)

where {ẑ∗t } = {εt/
δ
√

σ̂∗δt }, log σ̂∗δt = ̂log |εt|δ − ̂E(log |z∗t |δ), and where ̂log |εt|δ is the
fitted value of the ARMA representation (5).

Proof. In proving a), we first show that log E[exp(u∗t )] = −E(log |z∗t |δ), then that
1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )]. Since u∗t = log |z∗t |δ − E(log |z∗t |δ) straightforward
algebra yields

log E[exp(u∗t )] = log E{exp[log |z∗t |δ − E(log |z∗t |δ)]}
= log E

{ |z∗t |δ
exp[E(log |z∗t |δ)]

}

= log

{
E|z∗t |δ

exp[E(log |z∗t |δ)]
}

= log E|z∗t |δ − E(log |z∗t |δ)
= −E(log |z∗t |δ),

since E|z∗t |δ = 1 and since |E(log |z∗t |δ)| < ∞. The latter follows from the assump-
tions 0 < E|zt|δ < ∞ and |E(log |zt|)| < ∞. Accordingly, (−1) · log E[exp(u∗t )] =

E(log |z∗t |δ). We now turn to the proof of 1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )]. We have

that 1
T

∑T
t=1 exp(u∗t )

P−→ E[exp(u∗t )] due to Khinshine’s theorem (see for example
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Davidson 1994, theorem 23.5) since {u∗t} is IID, and the properties E|z∗t |δ = 1
and |E(log |z∗t |δ)| < ∞ ensure that E[exp(u∗t )] exists. Consider 1

T

∑T
t=1 exp(û∗t ) −

1
T

∑T
t=1 exp(u∗t ), which can be rewritten as 1

T

∑T
t=1[exp(û∗t )− exp(u∗t )]. Since û∗t

P−→
u∗t for each t, we have that exp(û∗t )

P−→ exp(u∗t ) for each t due to the conti-
nuity of the exp(·) function. Accordingly, 1

T

∑T
t=1 exp(û∗t ) → 1

T

∑T
t=1 exp(u∗t ) as

T → ∞, and since 1
T

∑T
t=1 exp(u∗t ) → E[exp(u∗t )] as T → ∞ it follows that

1
T

∑T
t=1 exp(û∗t )

P−→ E[exp(u∗t )].
We now prove b). Due to the continuity of the exp(·) operator, the assump-

tion of consistent estimation of the ARMA representation ensures that the fitted
values {σ̂∗δt } are consistent estimates of their true counterparts. Next, taking the

δth. square root and dividing each εt by means of δ
√

σ̂∗δt implies that the {ẑ∗t }
are consistent estimates of their true counterparts {z∗t }. Finally, using a simi-

lar argument to the proof of a) yields that 1
T

∑
t=1 ẑ∗2t

P−→ 1/E(|zt|δ)2/δ, and so

− δ
2
log( 1

T

∑T
t=1 ẑ∗2t )

P−→ log E|zt|δ. ¥

When the power δ is equal to 2, then log E|zt|δ = 0 and so the second correction b) is
not needed. The a) can thus be viewed as a correction due to the application of the
logarithm operator, and b) can be viewed as a “power correction”. In the process
we obtain estimates of E(log |zt|δ) and E|zt|δ, which are sometimes usefulness in
practical applications.5 Another feature of practical interest is that the corrections
constitute a standardisation of the errors. In other words, the sample variance of

the {ẑt} will always be equal to or close to 1. The property û∗t
P−→ u∗t is essentially a

consequence of consistent estimation of the ARMA representation (5). For the two
most common powers, δ = 1 and δ = 2, the proposition holds under very general
assumptions. Specifically, the conditions 0 < E|zt|δ < ∞ and |E(log |zt|)| < ∞
are satisfied for the most commonly used densities in finance: The Normal, the
Generalised Error Distribution (GED) and the Student’s t for appropriate number
of degrees of freedom. It should also be noted that the proposition is likely to hold
in many cases if the {εt} are estimated in a previous step, as long as the estimation

procedure exhibits ε̂t
P−→ εt for each t. In words, in sufficiently large samples the

estimated residuals are distributed as the true errors, and so are the {log |ε̂t|δ} with
probability 1 due to continuity. An important example is the case where one fits a
power log-ARCH(P ) specification to log |ε̂t|δ by means of OLS.

2.3 On stability

A serious shortcoming in Nelson’s (1991) EGARCH model is that its unconditional
variance (and other, higher order integer moments) may not exist for many com-

5The estimate of E|zt|δ is obtained by first noting that E(log |z∗t |δ) = E(log |zt|δ)− log E(|zt|δ),
and then by setting E(|zt|δ) = exp[E(log |zt|δ) − E(log |z∗t |δ)] replacing the population values by
the corresponding estimates.
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mon distributions of the standardised errors zt. For example, if zt
IID∼ tν in an

EGARCH(1,1) with log-variance specification equal to

log σ2
t = α0 + α1[|zt−1| − E|zt−1|] + θzt−1 + β1 log σ2

t−1,

and if the degrees of freedom ν > 2, then the theoretically and empirically un-
reasonable assumption α1 < 0 is a necessary condition for the existence of the
unconditional variance, see condition (A1.6) and the subsequent discussion in Nel-
son (1991, p. 365). Moreover, if θ 6= 0, then α1 has to be even more negative for
the unconditional variance to exist. These are the shortcomings that prompted the
work by Harvey and Chakravarty (2010) on the Beta-t-EGARCH model.

In the δth. power log-GARCH(1,1) with tν distributed standardised errors, the
unconditional variance will generally exist for ν > 2, regardless of the signs of the
parameters α1 and β1. The following proposition is a special case of proposition 4
in section 3, and provides a set of exact sufficient conditions.

Proposition 2. Consider a univariate δth. power log-GARCH(1,1) specification

with either zt
IID∼ GED(τ), τ > 1 or zt

IID∼ t(ν), ν > 2. If |α1 + β1| < 1 and if
2α1(α1 + β1)

i−1 ∈ (−1, 2] for each i = 1, 2, . . ., then E(ε2
t ) < ∞ and is given by

equation (22) (see appendix) with s = 2.

Proof. From equation (22) in the appendix with s = 2, it follows that

E
(
|zt−i|2α1(α1+β1)i−1

)
must be finite for each i = 1, 2, . . . for the expression E(ε2

t ) to

exist. For zt ∼ GED(τ), τ > 1, then E(|zt|c) < ∞ for c > −1, see Zhu and Zinde-
Walsh (2009, p. 94). For zt ∼ t(ν), ν > 2, then E(|zt|c) < ∞ for −1 < c < ν, see
Harvey and Shephard (1996, p. 434). So if |α1+β1| < 1 and 2α1(α1+β1)

i−1 ∈ (−1, 2]

for all i, then E
(
|zt−i|2α1(α1+β1)i−1

)
< ∞ for each i = 1, 2, . . . Finally, due to propo-

sition 4, the infinite product converges and so E(ε2
t ) < ∞. ¥

In practice, the restrictions of proposition 2 are very weak and will generally be
satisfied, since the typical estimates of α1 and β1 are about 0.05 and 0.90, respectively
(see the empirical section). In particular, if |α1 + β1| < 1 and if both α1 and β1

are equal to or greater than zero, then 2α1(α1 + β1)
i−1 takes values in [0, 2] for

all i = 1, 2, . . . Finally, a set of stability conditions for more general univariate δth.
power log-GARCH specifications is provided in the following corollary, which follows
from proposition 4 in section 3.

Corollary 1. Consider a univariate δth. power log-GARCH(P, Q) model with P ≥
Q. Suppose the roots of 1 − (α1 + β1)c − · · · − (αP + βP )cP are all greater than
1 in modulus, such that log σδ

t admits the representation α0/[1− (α1 + β1)− · · · −
(αP + βP )] +

∑∞
i=1 ψi log |zt−i|δ, where

∑∞
i=1 |ψi| < ∞. Then the sth. unconditional

moment E(εs
t), s ∈ {1, 2, . . .}, exists if |E(zs

t )| < ∞ and if E|zt−i|sψi < ∞ for each
i = 1, 2, . . .
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Proof. Set M = 1 in proposition 4 in section 4. ¥

The conditions of proposition 1 provides a set of relatively mild restrictions for
the sth. unconditional moment to exist. For example, for E(εs

t) to exist when
zt ∼ t(ν), ν > 2, we need that s < ν and −1 < sψi < ν for each i = 1, 2, . . . For
zt ∼ GED(τ), τ > 1, E(εs

t) will exist as long as sψi > −1 for each i = 1, 2, . . .

2.4 On estimation efficiency

It is well known that GARCH models may be consistently estimated via ARMA
representations. However, it is also well-known that such estimation methods do not
have very good properties. By contrast, estimation of power log-GARCH models
via ARMA representations has much better properties for several reasons. First,
the error term in GARCH regressions is heteroscedastic. By contrast, the error
term in power log-GARCH regressions is IID. Second, the distribution of the error
term in the ARCH regression has an exponential-like shape, and takes on values
in [−1,∞). In power log-GARCH regressions, by contrast, it is almost symmetric
with the left-tail usually being “longer”, and the error takes on values in (−∞,∞).
This means estimators and test-statistics in the power log-GARCH case are likely
to correspond much closer to their asymptotic approximations in finite samples
than in the GARCH case, since the convergence to their asymptotic counterparts
will be much faster. Also, coefficient tests will exhibit greater power under the
alternative, since the error is “smaller” due to the log-transformation. Finally, power
log-GARCH regressions impose much weaker restrictions on the parameter space due
to the exponential variance specification. In ARCH regressions, by contrast, strong
parameter restrictions might be needed in order to ensure positive variance. For
these reasons estimation of power log-GARCH models via ARMA representations
is likely to work much better than for ordinary ARCH models.

Table 2 contains some simulations that shed light on the finite sample accuracy
of some common estimation methods for selected specifications. The finite sample
biases are acceptable for many purposes, and estimating the errors {εt} in a previ-
ous step does not seem to affect the estimation precision of α0 and α1 substantially
in the second step, or at least not when the persistence in the mean specification
is small. Tables 3 and 4 compare least squares estimation via ARMA representa-
tions with Gaussian QML estimation (in the standardised errors zt). In table 3
the simulations suggest OLS compares favourably to QML in the estimation of a
log-ARCH(1) model, when the standardised errors are more fat-tailed than the nor-
mal. When this is the case, then OLS exhibits smaller finite-sample estimation bias
of the parameters, and the estimation variances are comparable to or smaller than
those of QML. In table 4 the simulations suggest NLS compares well with QML in
the estimation of a log-GARCH(1,1) model, when the standardised errors are more
fat-tailed than the normal. In this case NLS is more efficient and generally the bias
is smaller. The only exception is when T = 200. So all in all our simulations suggest
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NLS via the ARMA representation compares well with QML in finite samples.6

2.5 Inference

In many practical finance applications the mean is either equal to zero or adequately
treated as if equal to zero. Or, alternatively, the residuals from the mean specifica-
tion are treated as if observable. When this is the case, and when the logarithmic
variance specification does not contain log-GARCH terms, then inference regarding
the parameters α—apart from the first element α0—can be undertaken by means of
the usual ordinary least squares theory. When log-GARCH terms enter the power
log-variance specification, then a different approach is needed for both the log-ARCH
and log-GARCH terms.

Suppose no log-GARCH terms enter the log-variance specification (3), which
means (5) reduces to an AR(P ) specification with α∗p = αp. In this case, if W is the
matrix of observations on the regressors, that is, the first column consists of ones
and each row of W is denoted by wt, then the usual test statistic

α̂p

se(α̂p)
(8)

is approximately N(0, 1) in large samples for p = 1, . . . , P under the null of αp = 0,
where α̂p is the OLS estimate of the pth. coefficient, and where se(α̂p) is the pth.
element of the diagonal of the ordinary covariance matrix estimate σ̂2

u∗t
(W′W)−1.

The σ̂2
u∗t

is the standard error of u∗t and equal to 1
T−K

∑T
t=1 û∗t . In order to conduct

asymptotic inference regarding α0, we may proceed by means of a Wald parameter
restriction test. In the case when the power δ = 2 for example, OLS estimation
provides us with the estimate α̂∗0. Next, we may test α = 0 by testing whether α̂∗0 is
equal to − log Ê[exp(û∗t )] = − log[ 1

T

∑T
t=1 exp(û∗t )], since α∗0 = E(log z2

t ) under the
null of α0 = 0. The Wald-statistic under the null of α = 0 then becomes

{α̂∗0 + log Ê[exp(û∗t )]}2

V̂ ar(α̂∗0)

asy.∼ χ2(1),

where V̂ ar(α̂∗0) is the ordinary coefficient variance estimate of α∗0.
Table 5 contains the simulated finite sample size for two-sided tests of α0 = 0

and α1 = 0 using a nominal size of 5%, and when the power δ = 2. The simu-
lations suggest least squares inference is appropriately sized in finite samples for
α1, since the simulated rejection frequencies range between 4.4% and 5.4% across
density shapes. For the test of α0 = 0, the simulations suggest the Wald test is un-
dersized, since the simulated rejection frequencies are close to 0%. Deviations from

6Our simulations results depend of course on the exact structure of the numerical algorithms
we use. Surely both the NLS and ML algorithms can be improved, so further exploration is needed
for a more accurate comparison.
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the normal brings the size closer to the nominal, but the discrepancy is nevertheless
still notable although acceptable in many practical applications. The undersizedness
might suggest that the test lacks power under reasonable departures from the null of
α0 = 0. However, additional simulations (not reported) suggest this is not the case.
Even though the Wald test is undersized under the null, the test carries reasonable
power even when the departure from the null is small.

When the logarithmic variance specification contains log-GARCH terms, then
one might consider using the usual theory for inference regarding the parameters of
the ARMA representation. However, it is doubtful that this theory will be of value
in practice, since the AR and MA coefficient estimates will typically be strongly
correlated (recall: α∗p = αp + βp and β∗q = −βq). An alternative approach is to
conduct inference by means of Wald parameter restriction tests. For example, in log-
GARCH(1,1) specifications, one may test whether α1 = 0 by testing its implication,
namely that α∗t = (−1) · β∗1 , and so on. Another possibility is to use the property
that a {log σδ

t } stationary power log-GARCH specification is (in general) invertible
in the ARMA specification. One may then approximate the log-GARCH part by
means of a (possibly long) log-ARCH specification, and next conduct inference on
each of the lags. A third approach is to use an information criterion to select between
alternative specifications. Finally, one may include a regressor that acts as a local
approximation to log σδ

t−1, a “volatility proxy”, and subsequently undertake ordinary
inference on the associated parameter.

2.6 Stochastic volatility

The simplicity of the estimation and inference methods described hitherto are not
affected by “stochastic volatility” terms in the power log-variance specification. To
see this define

log σδ
t = α0 + h(γ, wt) + (log κδ)yt, κ > 0, yt /∈ xt, (9)

where h(γ, wt) is an abbreviation for the sum of the log-ARCH and log-GARCH
terms, that is, h(γ, wt) =

∑P
p=1 αp log |εt−p|δ +

∑Q
q=1 βq log σδ

t−q, {yt} is IID and
independent with {zt}, and where the requirement yt /∈ xt means yt does not enter
the mean equation. It should be noted that, without affecting our argument, yt

can be replaced by yt−1. Indeed, this is needed for {log σδ
t } to be a Martingale

difference sequence.7 The specification (9) nests many types of stochastic volatility
models, including the autoregressive stochastic volatility (ASV) model of order 1,
or ASV(1). Now, denote the information set that does not contain yt for Isv

t , and
denote the information set that includes yt for It. If we condition on It, then
consistent estimation via the ARMA representation identifies all the parameters,
that is, α0, γ and κ. By contrast, if we condition on Isv

t , then σt or volatility is
stochastic. In this case consistent estimation via the ARMA representation does

7We are grateful to Andrew Harvey for pointing this out to us.
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not identify two parameters, namely α0 and κ, but the others (γ in the example)
are identified. Moreover, the estimate of the conditional variance V ar(rt|Isv

t ) will
be consistent. To see this recall that

εt = σtzt

= exp[α0 + h(γ, wt)]
1
δ κytzt

V ar(rt|It) = σ2
t

V ar(rt|Isv
t ) = exp[α0 + h(γ, wt)]

2
δ E(κ2yt),

assuming the variances exist. Now, the last term can be rewritten as V ar(rt|Isv
t ) =

exp[α̃0 + h(γ, wt)]
2
δ , where α̃0 = α0 + log E(κ2yt). In other words, the estimation

procedures described above can be used to estimate α̃0 and γ, while the standardised
error will now be equal to z̃t = κytzt

E(κ2yt )
1
2

instead of zt.

2.7 Extensions

Several extensions of the power log-GARCH model suggest themselves. One is the
multivariate extension that will be explored in the next section. Another exten-
sion, which we do not pursue here, is to specify log σδ

t as a Fractionally Integrated
EGARCH process (FIEGARCH) along the lines of Bollerslev and Mikkelsen (1996).
A third type of extension consists simply of adding variables linearly to the log σδ

t

specification. This can in many case be done straightforwardly without compro-
mising the applicability of the simple estimation and inference methods we have
outlined above.

One type of variables that can be added linearly are asymmetry-terms, and in
the current context we consider three different types. The first and simplest is of
the indicator type I{zt−1<0}, which are equal to 1 when zt−1 < 0 and 0 otherwise.8

In practice this type of asymmetry terms can in general be approximated by means
of Iεt−1<0, which means the log-GARCH model augmented with such asymmetry
terms can be estimated via an ARMA-X representation. As for stability, the fol-
lowing proposition provides quite general sufficient conditions for the existence of
the unconditional variance when the standardised errors are either distributed as a
student t or as a GED.

Proposition 3. Consider the asymmetric δth. power log-GARCH(1,1) specification

log σδ
t = α0 + α1 log |εt−1|δ + β1 log σδ

t−1 + (log λδ)I{zt−1<0}, 0 < λ < ∞
8The original economic justification for asymmetry variables is to capture socalled “leverage”

effects in stock markets, see Nelson (1991). So the impact of the regressor is expected to be
negative. In some markets, however, for example exchange rate markets, the impact may be either
negative or positive depending on which currency is in the denominator of the exchange rate. So
we prefer the more general term asymmetry rather than leverage.
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with either zt
IID∼ GED(τ), τ > 1 or zt

IID∼ t(ν), ν > 2. If |α1 + β1| < 1 and if
2α1(α1 + β1)

i−1 ∈ (−1, 2] for each i = 1, 2, . . ., then E(ε2
t ) < ∞.

Proof. The assumption |α1 +β1| < 1 means logδ
t admits the representation α0/(1−

α1 − β1) +
∑∞

i=1(α1 + β1)
i−1 · [α1 log |zt−i|δ + (log λδ)I{zt−i<0}]. This implies that

(σδ
t )

2/δ = σ2
t = exp[α0δ

−1/(1− α1 − β1)] ·
∏∞

i=1(|zt−i|α1λI{zt−i<0})2(α1+β1)i−1
, and that

E(ε2
t ) = exp[α0δ

−1/(1−α1−β1)]·
∏∞

i=1 ai, where ai = E[(|zt−i|α1λI{zt−i<0})2(α1+β1)i−1
].

When λ2(α1+β1)i−1 ∈ (0, 1), then λ2(α1+β1)i−1
E[|zt−i|2α1(α1+β1)i−1

] ≤ ai ≤ λ2(α1+β1)i−1

E(|zt−i|2α1(α1+β1)i−1
), and when λ2(α1+β1)i−1

> 1, then E[|zt−i|2α1(α1+β1)i−1
] ≤ ai ≤

λ2(α1+β1)i−1
E(|zt−i|2α1(α1+β1)i−1

). So each ai will exist |α1 + β1| < 1 and if 2α1(α1 +
β1)

i−1 ∈ (−1, 2]. Finally, since both the two upper bounds and the two lower bounds
will tend to 1 as i →∞, then ai → 1 and so E(ε2

t ) < ∞ by means of the same type
of reasoning as in the proof of proposition 2. ¥

Another type of asymmetry-term that can also straightforwardly be included and es-
timated via an ARMA-X representation, are asymmetry terms analogous to those of
Glosten et al. (1993). In this case the specification of a δth. power log-GARCH(1,1)
takes the form

log σδ
t = α0 + α1 log |εt−1|δ + β1 log σδ

t−1 + λ log |εt−1|δI{zt−1<0}.

The exact stability conditions for this specifications are more difficult to derive.
Nevertheless, in the case where α1, β1 ≥ 0 and λ ∈ (−1, 0), then it follows straight-
forwardly from the results above that α1+β1 < 1 is a sufficient condition for stability.
In particular, the 2nd. moment will exist for student’s tν , ν > 2 and GED(τ), τ > 1
distributions. The third type of asymmetry-term that can also straightforwardly be
included are analogous to those of Nelson (1991). In this case the specification of a
δth. power log-GARCH(1,1) takes the form

log σδ
t = α0 + α1 log |εt−1|δ + β1 log σδ

t−1 + λεt−1.

However, the stability conditions for this type of specification has not been studied
(but see Dahl and Iglesias (2008) where {εt} is assumed strictly stationary and
ergodic). Also, it is not clear that the results and methods above are applicable,
since least squares and maximum likelihood methods may not provide consistent
estimates of an ARMA-X representation.

A second type of variables of special interest that can be added linearly are
volatility proxies. For example, if V δ

t is a volatility proxy in the δth. power, then
a diagnostic tool of the volatility proxy that naturally suggests itself is a logarith-
mic version of Mincer and Zarnowitz (1969) regressions. In logarithmic versions of
Mincer-Zarnowitz regressions the log-variance log σδ

t is equal to γ0 + γ1 log V δ
t , and

the joint test γ0 = 0 and γ1 = 1 is a test of whether V δ
t is an “unbiased” estimate

of σδ
t . Moreover, adding variables to the Mincer-Zarnowitz specification readily per-

mits encompassing tests of V δ
t . For example, suppose one would like to investigate
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whether V δ
t parsimoniously encompasses the other candidate variables (log-ARCH

terms, log-GARCH terms, volume variables, etc.). Then this can simply be done in
terms of a joint hypothesis test framework of a general specification that nest the
variables. A volatility proxy of particular interest is the lag of the equally weighted
moving average (EWMA) of past squared errors (EWMAt−1). The EWMA is very
simple to compute and is always available since it does not require the acquisition
of high-frequency data like (say) realised volatility (RV).9 Also, the EWMA often
performs well in practice when compared with many of its technically more sophis-
ticated competitors.

3 A multivariate power log-GARCH model

Financial markets tend to move together, and the extent to which they do so varies
over time. This is the main motivation behind multivariate ARCH models, and
the implications for asset pricing was the original context in which Bollerslev, En-
gle and Wooldridge (1988) first proposed a multivariate ARCH moel, see Bauwens
et al. (2006) for a recent surveys. For the power log-GARCH class of models, there
exists a straightforward multivariate generalisation of the univariate class that can
be estimated by means of common methods via its vector ARMA (VARMA) repre-
sentation. This multivariate version is not simply a collection of univariate power
log-GARCH models. Indeed, the model is truly multivariate in that P log-ARCH
terms of each of the M variables enter each of the M equations, and in that Q
log-GARCH terms enter in each of the M equations.

3.1 Notation and specification

Suppose {εt} is a sequence of (M × 1) vectors of mean errors. Then the M -
dimensional power log-GARCH(P, Q) model is given by

εt = diag(σt)zt, zt|It ∼ IID(0, Cov(zt)), V ar(zt|It) = IM , (10)

where σt is the (M × 1) vector of conditional standard deviations, diag(σt) is an
(M × M) diagonal matrix with σt on the diagonal and zeros elsewhere, zt is the
(M × 1) vector of standardised errors, Cov(zt) is the variance-covariance matrix of
{zt}, and It is the conditioning set in question. Here, It = {zt−1, zt−2, . . .}. At this
point it is worth noting that we do not impose any restrictions on the off-diagonal
entries of Cov(zt). In other words, the covariances of zt may not be positive definite
(we will return to this issue below in subection 3.3). The M -dimensional log-variance

9The P period EWMAt−1 is equivalent to an integrated ARCH(P ) model with the variance
constant α0 being equal to zero, and the ARCH parameters α1 = · · · = αP all equal to 1

P .
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specification is given by

log σδ
t = α0 +

P∑
p=1

αp log |εt−p|δ +

Q∑
q=1

βq log σδ
t−q, P ≥ Q, (11)

where

log σδ
t =




log σδ
1,t

...
log σδ

m,t
...

log σδ
M,t




, α0 =




α1,0
...

αm,0
...

αM,0




, αp =




α11.p · · · α1m.p · · · α1M.p
...

. . .
...

...
αm1.p · · · αmm.p · · · αmM.p

...
...

. . .
...

α11.p · · · α1m.p · · · α1M.p




,

log |εt−p|δ =




log |ε1,t−p|δ
...

log |εm,t−p|δ
...

log |εM,t−p|δ




, βq =




β11.q · · · β1m.q · · · β1M.q
...

. . .
...

...
βm1.q · · · βmm.q · · · βmM.q

...
...

. . .
...

βM1.q · · · βMm.q · · · βMM.q




.

For example, the specification of a two-dimensional δth. power log-ARCH(1) model
is

log σδ
1,t = α1,0 + α11.1 log |ε1,t−1|δ + α12.1 log |ε2,t−1|δ

log σδ
2,t = α2,0 + α21.1 log |ε1,t−1|δ + α22.1 log |ε2,t−1|δ,

whereas the specification of a two-dimensional δth. power log-GARCH(2,1) is

log σδ
1,t = α1,0 + α11.1 log |ε1,t−1|δ + α12.1 log |ε2,t−1|δ + α11.2 log |ε2,t−2|δ

+α12.2 log |ε2,t−2|δ + β11,1 log σδ
1,t−1 + β12,1 log σδ

2,t−1

log σδ
2,t = α2,0 + α21.1 log |ε1,t−1|δ + α22.1 log |ε2,t−1|δ + α21.2 log |ε2,t−2|δ

+α22.2 log |ε2,t−1|δ + β21,1 log σδ
1,t−1 + β22,1 log σδ

2,t−1,

and so on.
The following proposition provides a general set of non-restrictive sufficient con-

ditions for the existence of the unconditional moments.

Proposition 4. Consider an M -dimensional δth. power log-GARCH(P, Q) model
with P ≥ Q that admits the representation log σδ

t = Ψ0 +
∑∞

i=1 Ψi log |zt−i|δ with
{Ψi} being an absolutely summable sequence of (M ×M) matrices. Then the sth.
unconditional moment E(εs

m,t) = exp(sδ−1ψm,0) ·
∏∞

i=1 E
[|z1,t−i|sψi,m1|z2,t−i|sψi,m2 · · ·

|zM,t−i|sψi,mM
]
, s ∈ {1, 2, . . .}, of variable m ∈ {1, . . . , M} exists if E

[|z1,t−i|sψi,m1

|z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM
]

< ∞ for each i
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Proof. By definition, absolute summability of the matrix sequence {Ψi} means∑∞
i=1 |ψi,mn| < ∞ for each m,n ∈ {1, 2, . . . , M}. Next, a sufficient condition

for an infinite product
∏∞

i=1 ai to converge to a finite, nonzero number is that
the series

∑∞
i=1 |ai − 1| converges (Gradshteyn and Ryzhik (2007, section 0.25)).

Since E
[|z1,t−i|sψi,m1|z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM

] → 1 as i → ∞ due to abso-
lute summability, it follows that |ai − 1| → 0 as i → ∞. Accordingly, if ai =
E

[|z1,t−i|sψi,m1|z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM
]

< ∞ for each i, it follows that E(εs
mt)

exists. ¥

In practice, the natural condition to check is whether all the eigenvalues of the
(M ×M) matrix

∑P ∗
p=1(αp + βp) are smaller than 1 in modulus. If this is the case,

then {Ψi} is absolutely summable. Whether the second condition is satisfied or not,
that is, E

[|z1,t−i|sψi,m1|z2,t−i|sψi,m2 · · · |zM,t−i|sψi,mM
]

< ∞ for each i, will depend on
the distribution of zt.

3.2 VAR and VARMA representations

The parameters of the power log-GARCH(P, Q) model can be consistently estimated
by means of common methods via its VARMA representation subject to appropriate
assumptions. Specifically, the VAR(P ) representation of an M -dimensional power
log-ARCH(P ) model is given by

log |εt|δ = α∗0 +
P∑

p=1

αp log |εt−p|δ + u∗t , (12)

where αp is defined as above, and where

log |εt|δ =




log |ε1,t|δ
...

log |εm,t|δ
...

log |εM,t|δ




, α∗0 =




α1,0 + log E|z1,t|δ + E(log |z∗1,t|δ)
...

αm,0 + log E|zm,t|δ + E(log |z∗m,t|δ)
...

αM,0 + log E|zM,t|δ + E(log |z∗M,t|δ)




u∗t =




log |z∗1,t|δ − E(log |z∗1,t|δ)
...

log |z∗m,t|δ − E(log |z∗m,t|δ)
...

log |z∗M,t|δ − E(log |z∗M,t|δ)




.

In other words, {u∗t} is now a vector zero-mean IID process. The VARMA(P,Q)
representation of an M -dimensional power log-GARCH(P, Q) model is given by

log |εt|δ = α∗0 +
P∑

p=1

α∗p log |εt−p|δ +

Q∑
q=1

β∗qu
∗
t−q + u∗t , (13)
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where

α∗p = αp+βp, β∗q = −βq, α∗0 = α0+(IM−
Q∑

q=1

diag(βq))[log E|zt|δ+E(log |z∗t |δ)],

α0 =




α1,0
...

αm,0
...

αM,0




, log E|zt|δ + E(log |z∗t |δ) =




log E|z1,t|δ + E(log |z∗1,t|δ)
...

log E|zm,t|δ + E(log |z∗m,t|δ)
...

log E|zM,t|δ + E(log |z∗M,t|δ)




.

As in the univariate case, if P > Q then βQ+1 = · · · = βP = 0 by assumption, and
the formulas in proposition 1 can be used to estimate log E|zt|δ and E(log |z∗t |δ) once
the VARMA representation has been estimated.

In theory, multivariate δth. power log-GARCH models can be consistently esti-
mated by means of common estimation methods (say, least squares or QML) via its
VARMA representation. However, it is well known that, in practice, VARMA mod-
els may not be readily estimated due to numerical issues. The question of how well
the available estimation estimation algorithms actually work for the multivariate
log-GARCH we leave for future research.

3.3 Modelling conditional covariances

A key motivation for multivariate GARCH models is that they can be used in
the computation of portfolio variances. However, unless restrictions are imposed
on the off-diagonals of the covariance matrix Ht = Cov(εt), then one cannot be
ensured that such portfolio variances will be positive. This is the motivation for the
socalled positive definiteness requirement of Ht. In the power log-GARCH model
this amounts to positive definiteness of Cov(zt). The methods we have outlined so
far do not rely on any specific property on the covariance-matrix of {zt}. Indeed,
the only assumption we rely upon is that V ar(zt) = IM . Our estimation methods
are thus compatible with Cov(zt) being positive definite or not.

4 Empirical applications

One type of problems that specifications in the power log-GARCH class of models
might be particularly suited for are those that involves many explanatory variables.
Indeed, specifications contained in the 2nd. power log-GARCH-X class have proved
useful in explanatory exchange rate modelling and forecasting, in stock price volatil-
ity proxy evaluation, and in value-at-risk portfolio forecasting, see Bauwens et al.
(2006), Rime and Sucarrat (2007), Bauwens and Sucarrat (2008), and Sucarrat and
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Escribano (2009). Here we explore further the usefulness of power log-GARCH mod-
els in three empirical applications. The first two are devoted to the univariate and
multivariate analysis of stock market variability. This choice is motivated by the
fact that the modelling and forecasting of stock market variability is one of the more
frequent use of GARCH models. The third empirical application applies the power
log-GARCH model to the complex problem of modelling daily electricity prices. The
relative change in daily electricity prices differ from most other financial returns in
that they exhibit strong and complex patterns of autoregressive persistence and
periodicity, both in the mean and volatility specifications.

4.1 Log-ARCH models vs. the GARCH(1,1)

In the ARCH class of models introduced by Engle (1982), the GARCH(1,1) specifica-
tion of Bollerslev (1986) is possibly the most common model of financial variability.
In this subsection we therefore compare the GARCH(1,1) with four simple models
of the power log-ARCH class in modelling SP500 variability both in-sample and
out-of-sample. We choose the SP500 stock market index because it is widely used
for the purpose of comparison.

Our estimation sample is 1 January 2001 - 31 December 2005 (1305 observations),
whereas our out-of-sample evaluation period is 1 January 2006 - 30 October 2009
(997 observations).10 The ARCH models are all fitted to the “demeaned” log-returns
in percent (see figure 1), where the mean is an OLS estimated AR(1) specification
equal to rt = φ0 + φ1rt−1 + εt. The same mean specification is used out-of-sample
to demean the returns. The estimation results of the GARCH(1,1) specification, a
2nd. power log-GARCH(1,1) specification, a 1st. power log-GARCH(1,1) specifica-
tion, a 2nd. power log-ARCH(1) specification augmented with the log of a 20-day11

equally weighted moving average (EWMA(20)t−1) of past squared residuals as re-
gressor, that is, a volatility proxy, and a 2nd. power log-ARCH(0) specification with
log EWMA(20)t−1 as only regressor, are12

σ̂2
t = 0.006 + 0.061ε̂2

t−1 + 0.934σ̂2
t−1 (14)

10The source of the raw series is Reuters-EcoWin Pro, and the series identifier is ew:usa15510200.
1120 trading days corresponds in general to 4 weeks or approximately one calendar month.
12AR1 is the 1st. order serial correlation of {ẑt}, whereas ARCH1, ARCH2 and ARCH5 are

the 1th., 2nd. and 5th. order serial correlations of {ẑ2
t }. The values in square brackets are p-values

from Ljung and Box (1979) tests of no serial correlation up to the lag order in question. JB is
the Jarque and Bera (1980) test statistic with the associated p-value in square brackets. V ar is
the sample variance of the standardised residuals {ẑt}. The GARCH(1,1) model is estimated by
means of QML using the garch() function in the tseries R package, see Trapletti and Hornik
(2009). The log-GARCH(1,1) model is estimated by means of NLS via the ARMA representation
using the arma() function, which is also part of the tseries R package. The volatility proxy model
is estimated by means of OLS.
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AR1 ARCH1 ARCH2 ARCH5 JB V ar
{ẑt} in-sample: −0.04

[0.17]
−0.04
[0.12]

0.02
[0.21]

0.02
[0.30]

23
[0.00]

1.00

{ẑt} out-of-sample: −0.10
[0.00]

−0.04
[0.16]

−0.01
[0.35]

0.02
[0.73]

355
[0.00]

1.10

log σ̂2
t = 0.091 + 0.0533 log ε̂2

t−1 + 0.9242 log σ̂2
t−1 (15)

AR1 ARCH1 ARCH2 ARCH5 JB V ar
{ẑt} in-sample: 0.00

[0.99]
0.01
[0.68]

0.06
[0.05]

0.12
[0.00]

8K
[0.00]

0.99

{ẑt} out-of-sample: −0.11
[0.00]

−0.01
[0.84]

0.04
[0.42]

0.10
[0.01]

237
[0.00]

1.17

log σ̂t = 0.045 + 0.0532 log |ε̂t−1|+ 0.9243 log σ̂t−1 (16)

AR1 ARCH1 ARCH2 ARCH5 JB V ar
{ẑt} in-sample: 0.00

[0.99]
0.01
[0.68]

0.07
[0.05]

0.12
[0.00]

8K
[0.00]

0.99

{ẑt} out-of-sample: −0.11
[0.00]

−0.01
[0.84]

0.04
[0.42]

0.10
[0.01]

237
[0.00]

1.17

log σ̂2
t = 0.100 + 0.005 log ε̂2

t−1 + 0.901 log ̂EWMA(20)t−1 (17)

AR1 ARCH1 ARCH2 ARCH5 JB V ar
{ẑt} in-sample: −0.04

[0.14]
−0.04
[0.12]

0.03
[0.20]

0.02
[0.20]

18
[0.00]

1.00

{ẑt} out-of-sample: −0.10
[0.00]

−0.04
[0.23]

−0.02
[0.44]

0.01
[0.84]

430
[0.00]

1.12

log σ̂2
t = 0.089 + 0.906 log ̂EWMA(20)t−1 (18)

AR1 ARCH1 ARCH2 ARCH5 JB V ar
{ẑt} in-sample: −0.04

[0.13]
−0.04
[0.18]

0.03
[0.25]

0.02
[0.21]

15
[0.00]

1.00

{ẑt} out-of-sample: −0.10
[0.00]

−0.04
[0.26]

−0.02
[0.47]

0.01
[0.86]

425
[0.00]

1.12

Figure 1 graphs the demeaned residuals, whereas figures 2-3 contain graphs of the
associated in-sample and out-of-sample standard deviations and standardised resid-
uals, respectively. It should be noted that the standard deviations and the standard-
ised residuals of the 1st. and 2nd. power log-GARCH(1,1) models are indistinguish-
able from each other graphically, and similarly for the 4th. and 5th. models. The
reason why the 1st. and 2nd. power log-GARCH(1,1) models’ are so similar is pre-
sumably that the variance constant α0 in both log-GARCH(1,1) specifications are
close to zero. When α0 is exactly equal to zero, then all δth. power log-GARCH(1,1)
models are equivalent. This can be seen by studying the effect of changing δ in the
ARMA representation (5), and in the autocorrelation structure of {ε2

t} (see the ap-
pendix). The similarity between the 4th. and 5th. models suggest the log-ARCH(1)
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term explain very little of the time-varying volatility compared with the volatility
proxy.

Additionally, there are at least five more features worth noticing from the es-
timation results of equations (14)-(18), and from the figures. First, the estimates
α̂0, α̂1 and β̂1 of the log-GARCH(1,1) specifications are relatively similar to those of
the GARCH(1,1), and the sum α̂1 + β̂1 is close to (but below) 1 in all three cases.
Second, from the figures it is clear that the fitted conditional standard deviations
are relatively similar. The greatest difference is that the two log-GARCH(1,1) spec-
ifications (standard deviations in red) seem to generate lower standard deviations
in high variability periods (towards the end of 2008). A third feature of interest
is that the estimation results above suggest all the models appear to be relatively
(parameter) stable across the two periods. This interpretation is due to the sample
variances V ar(ẑt) being relatively close to 1 out-of-sample. Fourth, the JB-statistics
in the results above, and the figure with the standardised residuals, suggest the log-
GARCH(1,1) specifications generate standardised residuals that are more fat-tailed
than those of the first and last two models. Finally, the ARCH diagnostic tests
in the results above do not suggest the log-GARCH(1,1) specifications depict the
ARCH in SP500 variability as well as the other models both in and out-of-sample.

4.2 Multivariate ARCH models

In this subsection we compare four joint models of the daily S&P500 and the FTSE
Euro 100 (EUR100) stock market index returns from 1 January 2001 to 30 October
2009.13 The S&P500 return series is the same demeaned series as in the previous
subsection, and we use the same approach in demeaning the EUR100 returns. Both
demeaned series are displayed in figure 1. Also, we repeat the exercise of using the
data up to and including 2005 in estimating the models, and then generating out-
of-sample conditional variances, standardised residuals, etc., from the beginning of
2006 until 30 October 2009.

The first of the three models we fit is a diagonal BEKK(1,1,1) model estimated by
means of multivariate Gaussian ML.14 The second model is a two dimensional 2nd.
power log-GARCH(1,1) model, which we estimate by means of two-stage equation-
by-equation OLS via the VARMA representation. (In the first OLS step we set the
common lag-length in the VAR representation as equal to the natural logarithm of
the sample size, see Kascha (2007) for a comparison of various VARMA estimation
methods, including ours.) The third is a four dimensional 2nd. power log-ARCH(1)
model augmented with volatility proxy dynamics (we use the same method as in the

13The source of the EUR100 series is also Reuters-EcoWin Pro, and its series identifier is
ew:emu15555.

14This model we estimate with the OxMetrics package G@RCH 5.1, see Laurent (2007). We
only report the estimation results of the diagonal of the covariance matrix Ht, and the estimates
are reported in their GARCH(1,1) form. For example, in the first equation, the estimate 0.01 is
equal to c2

11, 0.06 is equal to a2
11, and so on.
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previous subsection in generating a volatility proxy), which we estimate equation-
by-equation by means of OLS. Finally, the fourth model is a parsimonious version
of the third model. The estimation results and diagnostics of the models are:15

(
σ̂2

1t

σ̂2
2t

)
=

(
0.01
0.01

)
+

(
0.06 0
0 0.09

)
·
(

ε̂2
1t−1

ε̂2
2t−1

)
+

(
0.93 0
0 0.90

)
·
(

σ̂2
1t−1

σ̂2
2t−1

)

AR1 ARCH1 ARCH2 ARCH5 JB V ar Corr
In-sample {ẑ1t}: −0.05

[0.07]
−0.00
[0.88]

0.03
[0.51]

0.01
[0.26]

90
[0.00]

1.02 0.00

{ẑ2t}: −0.06
[0.03]

−0.04
[0.14]

0.01
[0.31]

−0.00
[0.02]

62
[0.00]

1.00 0.00

Out-of-sample {ẑ1t}: −0.01
[0.68]

−0.05
[0.09]

0.01
[0.24]

0.03
[0.43]

243
[0.00]

1.08 0.61

{ẑ2t}: −0.00
[0.93]

−0.02
[0.46]

0.02
[0.61]

−0.01
[0.04]

210
[0.00]

1.10 0.61

(
log σ̂2

1t

log σ̂2
2t

)
=

( −0.06
0.40

)
+

(
0.05 0.02
0.11 0.02

)
·
(

log ε̂2
1t−1

log ε̂2
2t−1

)
+

(
0.32 0.35
0.32 0.62

)
·
(

log σ̂2
1t−1

log σ̂2
2t−1

)

AR eigenvalues: 0.92, 0.08 MA eigenvalues: -0.84, -0.10

AR1 ARCH1 ARCH2 ARCH5 JB V ar Corr
In-sample {ẑ1t}: 0.08

[0.01]
0.01
[0.66]

0.06
[0.07]

0.06
[0.00]

1107
[0.00]

1.00 0.51

{ẑ2t}: −0.02
[0.43]

0.06
[0.02]

0.02
[0.06]

0.03
[0.00]

12840
[0.00]

1.00 0.51

AR1 ARCH1 ARCH2 ARCH5 JB V ar Corr
Out-of-sample {ẑ1t}: −0.03

[0.35]
0.02
[0.56]

0.11
[0.00]

0.17
[0.00]

50617
[0.00]

1.30 0.60

{ẑ2t}: −0.01
[0.84]

0.01
[0.67]

0.04
[0.46]

−0.01
[0.06]

66
[0.00]

0.76 0.60




log σ̂2
1t

log σ̂2
2t

log ̂EWMA1t

log ̂EWMA2t


 =




0.04
0.33
−0.01∗

0.01∗


+




0.01 −0.01 0.77 0.12
0.08 −0.01 0.20 0.73
−0.00 0.00 0.97 0.02
0.00 −0.00 0.03 0.97


·




log ε̂2
1t−1

log ε̂2
2t−1

log ̂EWMA1t−1

log ̂EWMA2t−1




AR eigenvalues: 0.996+0i, 0.95+0i, -0.00+0i, -0.00+0i

AR1 ARCH1 ARCH2 ARCH5 JB V ar Corr
In-sample {ẑ1t}: 0.05

[0.07]
−0.04
[0.19]

0.03
[0.28]

0.01
[0.33]

19
[0.00]

1.00 0.52

{ẑ2t}: 0.00
[0.97]

−0.03
[0.35]

0.00
[0.64]

0.00
[0.00]

73
[0.00]

1.00 0.52

Out-of-sample {ẑ1t}: −0.02
[0.61]

−0.02
[0.45]

−0.01
[0.68]

0.02
[0.84]

399
[0.00]

1.16 0.61

{ẑ2t}: 0.01
[0.68]

0.09
[0.00]

0.04
[0.01]

−0.02
[0.00]

207
[0.00]

1.03 0.61

15Diagnostic tests are univariate and the values in square brackets are p-values. The AR eigen-
values are of the α1 + β1 matrix, whereas the MA eigenvalues are of the −β1 matrix.
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(
log σ̂2

1t

log σ̂2
2t

)
=

(
0.04
0.23

)
+

(
0.78 0.11
0.32 0.69

)
·
(

log ̂EWMA1t−1

log ̂EWMA2t−1

)

AR1 ARCH1 ARCH2 ARCH5 JB V ar Corr
In-sample {ẑ1t}: 0.05

[0.07]
−0.03
[0.27]

0.03
[0.34]

0.01
[0.38]

15
[0.00]

1.00 0.52

{ẑ2t}: 0.02
[0.57]

−0.02
[0.39]

0.04
[0.27]

0.01
[0.20]

41
[0.00]

1.00 0.52

Out-of-sample {ẑ1t}: 0.02
[0.61]

−0.02
[0.44]

−0.01
[0.70]

0.02
[0.86]

412
[0.00]

1.16 0.61

{ẑ2t}: 0.01
[0.72]

0.08
[0.01]

0.04
[0.02]

−0.02
[0.00]

207
[0.00]

1.03 0.61

It should be noted that the variance constants with an asterisk “*” in the log-
ARCH(1) model with volatility dynamics (the third model) are not adjusted by
means of the formulas in proposition 1.

Several of the features from the previous subsection are reproduced in the mul-
tivariate exercise: The diagnostic tests above suggest the log-GARCH(1,1) is not
capable of depicting ARCH variability (for neither series) as well as the other models,
and from figures 4 and 5 it is clear that the fitted conditional standard deviations are
relatively similar across models, and that the log-GARCH(1,1) yields standardised
residuals that are more fat-tailed than those of the two other models. A prop-
erty that was less apparent in the previous subsection is the instability of the log-
GARCH(1,1). This is suggested by the fact that the out-of-sample variances of its
standardised residuals in the results above are much further away from 1. Finally,
the two models with volatility proxy dynamics suggest that SP500 and EUR100
volatility can be parsimoniously modelled by means of the volatility proxies. The
results of the firs model with volatility proxy dynamics suggests the log-ARCH(1)
terms have little or no impact, and that the volatility proxies are endogenously
determined. The fourth model, which do not contain the log-ARCH(1) terms nor
equations for volatility proxy dynamics, yields parameters estimates similar to the
third model, and diagnostics that are almost identical. Indeed, graphically the both
the conditional standard deviations and the standardised residuals are indistinguish-
able, so only those of the first model with volatility proxy dynamics are contained
in figures 4 and 5.

4.3 Modelling daily electricity prices

Daily electricity prices are often characterised by strong autoregressive persistence
and ARCH, and by day-of-the week and seasonal effects in both the mean and
variance specifications, see for example Escribano et al. (2009), and Koopman et al.
(2007). The power log-GARCH model augmented with explanatory variables (the
“power log-GARCH-X” model) permits a flexible and rich characterisation of all
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these effects in a single model that can readily be estimated by means of OLS. As
an illustration we revisit the Spanish daily electricity price data in Escribano et al.
(2009), which spans the period 1 January 1998 to 31 December 2003 (T = 2191
observations), see the upper two graphs of figure 6.

If rt = ∆ log St denotes the return of the daily Spanish electricity price St, then
we start from the general model

rt = φ0 +
∑
m∈M

φmrt−m +
34∑

n=1

ηnxnt + εt,

εt = σtzt, zt ∼ IID(0, 1), P rob(zt = 0) = 0, σt > 0,

log σ2
t = α0 +

∑
p∈P

αp log ε2
t−p +

∑
p∈P

λp log ε2
t−pIεt−p<0 + ω0 log EWMA(7)t−1

+
33∑

d=1

ωdydt,

where M = {1, . . . , 14, 21, 28, 35}, and where the 34 xnt variables comprise 12 vari-
ables Irt>0, . . . , Irt−7>0, Irt−14>0, Irt−21>0, Irt−28>0, Irt−35>0 intended to capture asym-
metries in the constant, a GARCH-in-mean proxy (r2

t−1 − 1), 4 threshold variables
Irt−1<−0.5, Irt−1>0.5, Irt−2<−0.5, Irt−2>0.5 that seek to capture the (possibly differing)
impact of large negative and large positive price changes, respectively, 6 day-of-
the-week dummies (Tuesday to Sunday) and 11 month-of-the-year dummies (Febru-
ary to December). This means the general unrestricted mean specification con-
tains a total of 51 deletable regressors, and one regressor (the constant) that is
restricted from deletion in the specification search. In the log-variance specification
P = {1, . . . , 7, 14, 21, 28, 35}, EWMA(7)t−1 is a rolling average of ε2

t−1, . . . , ε
2
t−7, and

the 33 ydt variables are the same as the 34 xnt variables except for the GARCH-in-
mean proxy which is not included among the ydt variables. This means the general
unrestricted log-variance specification contains a total of 56 deletable regressors,
and one regressor (the constant) that is restricted from deletion in the specification
search. Automated General-to-Specific (GETS) multi-path model selection with Au-
toSEARCH (Sucarrat 2010) yields a parsimonious model, which we further simplify
by imposing economically meaningful parameter restrictions among the regressors.
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The end result is (|t|-statistics in parentheses and p-values in square brackets)

r̂t = 0.114
(4.28)

− 0.045
(22.70)

· (8rt−1 + 4rt−2 + 3rt−3 + 2rt−4 + 2rt−5 + 2rt−6)

+0.056
(15.42)

· (2rt−7 + 2rt−14 + rt−21 + rt−28 + rt−35) + 0.186
(7.05)

(r2
t−1 − 1)

+0.018
(32.05)

· (10Irt>0 + Irt−1>0 + Irt−6>0)− 0.016
(3.68)

· (Irt−7>0 + Irt−14>0)

−0.040
(9.00)

(Satt + 2Sunt)− 0.023
(2.72)

Dect + 0.062
(2.16)

Irt−2<−0.5 (19)

log σ̂2
t = −2.517− 0.054

(2.40)
log ε̂2

t−3 + 0.393
(6.67)

log EWMA(7)t−1 − 0.247
(3.60)

(Irt>0 + Irt−1>0)

−0.329
(3.47)

(Wedt + Frit + Satt)− 0.392
(3.09)

(Aprt + Jult) + 1.218
(2.19)

Irt−1<−0.5 (20)

ẑt ∼ SGED(τ̂shape = 1.31, τ̂skew = 0.82) (21)

AR1 AR6 AR7 AR14 ARCH1 ARCH6 ARCH7 ARCH14 R2

−0.00
[0.95]

0.01
[0.98]

−0.00
[0.99]

−0.02
[0.21]

0.02
[0.48]

−0.02
[0.58]

0.03
[0.47]

0.03
[0.77]

0.70

The model is well-specified in the sense that the AR and ARCH tests exhibit little or
no signs of autocorrelation in the standardised residuals (see also the bottom graph
of figure 6), and in the squared standardised residuals. In the mean specification,
the lag structure suggests a negative but declining effect of the previous 6 days,
whereas the effect of lag-multiples of 7—a day-of-the-week effect—is positive albeit
also declining. The GARCH-in-mean proxy (r2

t−1− 1), is positive which means that
very large returns in absolute value (of 100% or more) has a positive impact of about
0.19 on next day’s returns. The next two terms suggests there is a asymmetry in the
size of return, and that the effect depends on the day-of-the-week. The retention
of the Saturday and Sunday dummies suggests prices tend to fall in the weekends
compared with the price level of the rest of the week (the effect is the double for
Sunday compared with Saturday), and similarly the effect of December is negative.
Finally, the last term suggests there is a large positive effect—a “return-reversal”
effect—from large falls of more than 0.5 in the log-price on the previous day.

The log-variance specification is a measure of the time-varying accuracy of the
mean specification: The greater log σ2

t is, the more inaccurate is the mean specifi-
cation. Only the 3rd. log-ARCH term is retained in the specification search, which
suggests that there is little ARCH and that the one there is negative (cyclical). By
contrast, the lagged impact of the log of the volatility proxy EWMA(7)t is positive
and about 0.4. The retention of the asymmetry terms suggests positive returns affect
the precision of the mean equation negatively both contemporaneously and tomor-
row, whereas the day-of-the-week and month-of-the-year dummies means there are
some periodicity and seasonality effects on the precision. By contrast, a drop in the
log-price larger than 0.5 increases the precision of the mean specification. Finally,
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the fitted Skew GED distribution of the standardised residuals suggests that they
are fat-tailed with shape parameter equal to 1.31 (τshape = 2 corresponds to the
normal and τshape ∈ (1, 2) means the tails are fatter), and that they are negatively
skewed with skewness parameter equal to 0.82 (τskew = 1 corresponds to symmetry
and τskew ∈ (0, 1) means the density is negatively skewed).16

5 Conclusions

We have provided results and generic methods that readily enables consistent esti-
mation and inference of a general class of univariate and multivariate exponential
ARCH models, even when the conditional density is not known. Specifically, con-
sistent estimation and inference of univariate and multivariate power log-GARCH
models can be undertaken subject to very weak assumptions for a given power,
via vector ARMA representations. The unconditional moments of the power log-
GARCH model exist subject to restrictions that are much weaker than for other
exponential ARCH models, say, Nelson’s (1991) EGARCH model, including when
the power log-GARCH model is augmented with asymmetry terms. Furthermore,
our simulations suggest least squares estimation and inference via ARMA repre-
sentations fares well in finite samples, and the power log-GARCH model can be
viewed as nesting certain classes of stochastic volatility models, for example the
common ASV(1) specification. In the empirical section we estimate and evaluate
several models contained in the power log-GARCH-X class. In the case of US and
Euro-zone stock market index returs, the results suggest certain specifications in
the power log-GARCH class of models compares well with more ordinary GARCH
models, both in-sample and out-of-sample. Finally, our third empirical application
shows that the complex problem of modelling daily electricity prices with rich per-
sistence and periodicity structures in both the mean and volatility specifications can
be readily resolved by means of the methods we propose.
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Appendix: E(εs
t) and E(ε2

t ε
2
t−j) for the δth. power

log-GARCH(1,1) model

For the δth. power log-GARCH(1,1) model the unconditional variance of {εt},
and the autocovariances and autocorrelations of {ε2

t}, are all made up of E(ε2
t ),

E(ε2
t ε

2
t−j) and E(ε4

t ). Assuming the terms exist and that |α1 + β1| < 1, then the
terms can readily be estimated through Bootstrapping and/or simulations if the
relevant expressions are not available in closed form. The expression for the sth.
unconditional moment E(εs

t), s ∈ {1, 2, . . .}, is

E(εs
t) = E(zs

t ) · exp

(
sα0

δ · (1− α1 − β1)

)
·
∞∏
i=1

E
(
|zt−i|sα1(α1+β1)i−1

)
, (22)
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whereas for j = 1, 2, . . . the formula of E(ε2
t ε

2
t−j) is

E(ε2
t ε

2
t−j) = exp

[
2α0

δ

(
j∑

i=1

(α1 + β1)
i−1 +

1 + (α1 + β1)
j

(1− α1 − β1)

)]

·
j∏

i=1

E
(
|zt−i−1|2α1(α1+β1)i−1+2I(i=j)

)

·
∞∏
i=1

E
(
|zt−j−i|2α1(α1+β1)i−1·[1+(α1+β1)j ]

)
, (23)

where I(i=j) is an indicator function equal to 1 when i = j and zero otherwise.
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Table 3: Finite sample precision of estimation methods: OLS vs. ML for a log-
ARCH(1)
Method f(zt) T M(α̂0) V (α̂0) M(α̂1) V (α̂1)
OLS N(0, 1) 200 -0.013 0.020 0.093 0.005

500 -0.008 0.008 0.096 0.002
1000 -0.005 0.004 0.098 0.001

GED(1.1) 200 -0.025 0.039 0.094 0.005
500 -0.012 0.017 0.097 0.002

1000 -0.001 0.008 0.099 0.001

st(4.1) 200 -0.040 0.065 0.093 0.005
500 -0.019 0.024 0.099 0.002

1000 -0.015 0.014 0.097 0.001

ML N(0, 1) 200 0.013 0.014 0.107 0.003
500 0.000 0.005 0.104 0.001

1000 0.001 0.003 0.101 0.000

GED(1.1) 200 0.038 0.039 0.114 0.004
500 0.035 0.015 0.112 0.002

1000 0.027 0.009 0.109 0.001

st(4.1) 200 0.023 0.078 0.116 0.005
500 0.035 0.039 0.115 0.002

1000 0.027 0.026 0.111 0.001

The DGP of the simulation is rt = σtzt, zt
IID∼ f(zt), log σ2

t = α0 + α1ε
2
t−1 for t = 1, . . . , T with

α0 = 0 and α1 = 0.1. N(0, 1) is short for standard normal, GED(1.1) is short for Generalised
Error Distribution with shape parameter τ = 1.1 (the standard normal is obtained when τ = 2)
and st(4.1) is short for standardised t-distribution with 4.1 degrees of freedom. ML estimation
consists of Gaussian maximum likelihood estimation with initial parameter values provided by
OLS. ML estimation is implemented as a Newton-Raphson algorithm with analytical gradient
and Hessian, unit step-size and 0.0001 as convergence criterion in the log-likelihood. M(·) and
V (·) are the sample mean and variances of the estimates, respectively. Simulations in R with 1000
replications, and a prior burn-in sample of 100 observations was discarded at each replication in
order to avoid initial value issues.
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Table 4: Finite sample precision of estimation methods: NLS vs. ML for a log-
GARCH(1,1)

Meth. f(zt) T M(α̂0) V (α̂0) M(α̂1) V (α̂1) M(β̂1) V (β̂1)
NLS N(0, 1) 200 -0.432 0.454 0.104 0.004 0.443 0.244

500 -0.103 0.059 0.105 0.001 0.705 0.041
1000 -0.030 0.009 0.102 0.001 0.771 0.008

GED(1.1) 200 -0.530 0.746 0.108 0.004 0.472 0.224
500 -0.156 0.155 0.105 0.001 0.698 0.051

1000 -0.043 0.010 0.104 0.001 0.766 0.006

st(4.1) 200 -0.568 0.803 0.106 0.005 0.455 0.225
500 -0.129 0.100 0.105 0.001 0.714 0.040

1000 -0.043 0.010 0.103 0.001 0.769 0.006

ML N(0, 1) 200 -0.290 0.739 0.092 0.004 0.592 0.512
500 -0.128 0.095 0.103 0.002 0.691 0.050

1000 -0.097 0.031 0.104 0.001 0.719 0.016

GED(1.1) 200 -0.425 2.076 0.097 0.004 0.558 0.659
500 -0.189 0.190 0.106 0.002 0.678 0.068

1000 -0.115 0.078 0.107 0.001 0.723 0.024

st(4.1) 200 -0.430 1.563 0.096 0.005 0.550 0.541
500 -0.208 0.235 0.106 0.002 0.663 0.089

1000 -0.144 0.106 0.109 0.001 0.699 0.040

The simulation DGP is rt = σtzt, zt
IID∼ f(zt), log σ2

t = α0 + α1ε
2
t−1 + β log σ2

t−1 for t = 1, . . . , T

with α0 = 0, α1 = 0.1 and β = 0.8. N(0, 1) is short for standard normal, GED(1.1) is short
for Generalised Error Distribution with shape parameter τ = 1.1 (the standard normal is
obtained when τ = 2) and st(4.1) is short for standardised t-distribution with 4.1 degrees of
freedom. NLS estimation is undertaken using the arma function in the R package tseries

(Trapletti and Hornik 2009). ML is short for Gaussian maximum likelihood estimation with
initial parameter values provided by consistent two-stage OLS. Numerically, ML is implemented
as a Newton-Raphson algorithm with analytical gradient and Hessian, unit step-size and 0.0001
as convergence criterion in the log-likelihood. M(·) and V (·) are the sample mean and variances
of the estimates, respectively. Simulations in R with 1000 replications, and a prior burn-in sample
of 100 observations was discarded at each replication in order to avoid initial value issues.
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Table 5: Finite sample size in the logarithmic variance specification, using a nominal
level of 5%
H0 H1 Fitted specification T τ = 1.1 τ = 2 τ = 3
α1 = 0 α1 6= 0 α0 + α1 log ε2t−1 10 0.054 0.049 0.047

100 0.047 0.046 0.044
1000 0.052 0.049 0.051

10000 0.048 0.049 0.048

α0 = 0 α0 6= 0 α0 10 0.070 0.044 0.027
100 0.027 0.004 0.001

1000 0.015 0.001 0.000
10000 0.020 0.001 0.002

The simulation DGP is rt = εt, εt = σtzt, zt
IID∼ GED(τ), log σ2

t = 0, for t = 1, . . . , T .
GED(τ) is short for Generalised error distribution with shape parameter τ (= 2 yields
the normal, τ ∈ (1, 2) yields distributions that are more fat-tailed compared with the
normal and τ > 2 yields distributions that are less fat-tailed) and tests are two-sided.
Simulations in R with 10 000 replications.
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Figure 1: Daily demeaned log-returns (in percent) of the SP500 and EURO100 stock
market indices 1 January 2001 - 30 October 2009 (2302 observations)
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Figure 2: In-sample (1 January 2001 - 31 December 2005) and out-of-sample (1 Jan-
uary 2006 - 30 October 2009) conditional standard deviations of univariate models.
Blue line: GARCH(1,1); Red line: 1st and 2nd power Log-GARCH(1,1); Green line:
Log-ARCH(1) and log-ARCH(0) models with volatility proxy
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Figure 3: In-sample (1 January 2001 - 31 December 2005) and out-of-sample (1 Jan-
uary 2006 - 30 October 2009) univariate standardised residuals of the GARCH(1,1)
specification (upper graph), of the 1st. and 2nd. power log-GARCH(1,1) specifica-
tions (middle graph), and of the log-ARCH(1) and log-ARCH(0) specifications with
volatility proxy (bottom graph)
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Figure 4: In-sample and out-of-sample standardised residuals of the multivariate
models. Diagonal BEKK(1,1,1): The two upper graphs; Log-GARCH(1,1): The
two middle graphs; The two models with volatility proxy dynamics: The two lower
graphs
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Figure 5: In-sample and out-of-sample conditional standard deviations of the multi-
variate models. Blue line: Log-GARCH(1,1); Red line: Log-ARCH(1) w/volatility
proxy dynamics; Green line: Diagonal BEKK(1,1,1)
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Figure 7: Empirical relative frequency distribution vs. the standard normal (red
graph) of the standardised residuals of the specific model (19)-(21)
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