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WEAK CONVERGENCE IN CREDIT RISK

JESUS PEREZ COLINO

(WORKING PAPER)

ABSTRACT. In the present paper, we study both the approximation of a continuous-time model by a
sequence of discrete-time price models driven by semimartingales with credit risk, and the convergence of
these price processes (in terms of the triplets) under a framework that allows the practitioner a multiple
set of models (semimartingale) and credit conditions (migration and default).

1. INTRODUCTION

In order to implement certain models and pricing rules, continuous-time models are often too complex
to handle. Therefore it is convenient to both discretize time and space and show that the discretization
is 'good’ in the sense that the discretized models and pricing rules converge to the continuous-time model
as the discretization steps tend to zero. The main subject of this paper treats this aspect of mathematical
finance when credit risk and incompleteness appears. We study both the approximation of a continuous-
time model by a sequence of discrete-time models and the convergence of price processes for corporate
bonds with credit migration.

Some authors have presented different discrete-time solutions to model defaultable or corporate bonds
(Jarrow and Turnbull (1995), Jarrow, Turnbull and Lando (1997) or Schénbucher (2002) among
others) as a mixture of trees, one for the risk-free interest rates, and a second one for the credit risk
factor (untradeable). However, though different authors propose a useful methodology to price credit
derivatives, they do not talk about the conditions of weak convergence when both factors are mixed
using discrete frameworks. In fact, there is no guarantee that these compositions between random factors
converge in a measure in continuous time, and all the usual tools from stochastic analysis in continuous
time can be applied.

On the other hand, at least in the case of the interest-rates derivatives market, the market quotes
caps/floors and swaptions (plain vanilla interest-rates derivatives) using the well-known Black-76 model.
It basically implies that any alternative model written or developed to price exotic options has to guaran-
tee that, at least, it will recover the prices of the plain-vanilla options priced by Black-76. In other words,
our model has to converge in distribution to the implied distribution given by the market through the
quoted volatilities. Therefore, any new interest rate model has to prove that when it goes to continuous
time, it is able to recover the implied distribution in the Black-76 model, which is driven by the usual
Brownian motion (continuous process). Therefore we have to prove that our LIBOR additive process
(semimartingale) is able to converge weakly to the implied probability given by the market. However,
our problem is more complex if we add the reactive or credit risk part to our usual stochastic differential
equation.
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In this paper, we turn our attention to the Reaction-Additive system which can be defined as a
system of stochastic differential equations (SDEs) where the first of these SDEs is based on the bond
price process B as a tradeable risky asset which is modelled using semimartingales (Colino 2008).
On the other hand, the second SDE models the non-tradeable factor of uncertainty (credit migration)
which is represented by a finite-state process C' driven by a multivariate point process. The present
paper has as main goal to study the weak convergence conditions in this kind of stochastic systems. Ba-
sically we present a set of new limit theorems for semimartingales with stochastic triplet, that specifically
are well suited to explain the behaviour of corporate bonds with random evolution of their credit risk.

In order to achive the mentioned goal, we have structured this paper in the following two sections:

- The next section in this paper (section 2), is devoted to present the mentioned system of stochastic
equations. Basically, we review some basics stochastic features for the mentioned set to equations,
such as the markovian property or the belonging to Skorohod space.

- The section 3 is focused in the weak convergence conditions of this financial corporate bond model
in incomplete markets. Here, we show the conditions of relative compacteness, weak convergence
and we translate this conditions in terms of moduli of continuity to conditions in terms of the
semimartinagale triplet.

2. CORPORATE-BOND VALUATION IN A REACTION-ADDITIVE SYSTEM

The present section is mainly devoted to show how due to this system of stochastic equations we can
obtain a realistic sample-path for corporate bond prices, driven by the composition of these two processes.
In order to achieve this goal, we proceed in three different steps:

- First, we introduce some ideas and references where the reader can find the proof of existence
and uniqueness of solutions for such SDEs systems.

- In the second subsection, we face the question of markovianity and uniqueness of the sample
paths generated by the composition of these two processes.

- Finally, in the third subsection, we prove that these sample paths are 'cadlag’ or equivalently,
they ’live’ in a Skorohod space.

In order to clarify the framework, let us briefly summarize some assumptions and results that we have
developed in Colino (2008). Let us define B (¢, T;, C}) as the price of a zero-coupon corporate bond,
valued in ¢t € [0,T;] for any fixed maturity T; < T*, with credit rating C; € K for every ¢t € [0,T;].
Additionally we assume that the corporate bond is modelled with a fractional recovery of market
value in case of default. Notice that B (¢, T;, C;) is a strictly positive and F-adapted process, defined on
a sufficiently rich’ stochastic basis (Q,F,P) endowed with the filtration F = (F}),¢(o ] generated by
a d-dimensional LIBOR additive process GG and the credit migration process C, or in other words
Fi=0{Gs,Cs;0 < s < t}.

Let us fix the following elements: first, fix m € N, such that I = {O Lo, 1— %, 1}, second fix the

Y m?
time horizon T; € [0, T*], as the maturity of the corporate bond; and finally, a domain, that in our case
will be RY. Given any starting point (¢, By,, Cy,) € [0, T;] x R? x K we have the following system of SDEs,
where (B, C) is a solution, under risk-neutral probability, with values in R? x K :

dB(t,T;,Ct)

sy = (re +1-Aey_ 1) dt+ by, (¢, T3, Co )AWy + [pa h (8,2, T;) 1(jzj<1y ,15;* (dt, dx)

T(t) t)

(2.1)
acy= Y (b—a)l (. —a) (Cy_) ANy (t)

a,beK
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where r; = f (¢,t,0) is the usual risk-free ’short-rate’, [ is the rate of losses in case of a default, such that
L €[0,1], by, is the coefficient of diffusion such that by, : [0,T;] x R? x K —R? is C! with respect to
(t,B) € [0,T;] x R? for any t < T} with ¢, T; € [0,T*].

(t)

Notice that we have three sources of randomness,

- first, W = (Wi)izl...d

- second, [LS(‘J is the compensated random measure, for a given credit rate C;_, that satisfy
the usual integrability conditions for any ¢ < T; with ¢, T; € [0, T*]

- and finally, N = (Nap), pex is a F-adapted multivariate point process such that (Ngp (¢)) has
(P, G)-intensity A\ (¢, B) for a,b € K = {o,L,..,1—2L1}.

‘m?

is the usual R%-valued (P, G)-Brownian motion;

This model is a non-standard SDE system because of its dependence structure. The coefficients in
the SDE (2.1) for corporate bond dynamic contain the credit risk rating and, on the other hand, the
intensities in the multivariate point process N that drive the credit migration process, depend in turn on
the credit rate of the corporate bond.

2.1. Classical and Viscosity solutions for reaction-additive systems under local regularity.
In this section we mention different methodologies to derive existence and uniqueness results for classical
and viscosity solutions of interacting systems of partial integro-differential equations (PIDEs). Such
systems will be called reaction-additive equations and play a key role in subsequent sections. These
methodologies and results have been studied previously by different authors, such that Bensoussan and
Lions (1982), Crandall and Lions (1983), Barles, Buckdahn and Pardoux (1997), or Pardoux,
Pradeilles and Rao (1997). We mention here , very briefly, some of the main results, in order to show
the existence of solutions to the reaction-additive system.

We consider the system of integral-partial differential equations (PIDEs) of parabolic type for
c € K\{1},4 =0,1,...,n and boundary conditions at terminal time 7. Denote by USC (respectively LSC)
the class of upper semicontinuous (respectively, lower semicontinuous) functions u : (0,7] x £ x R? — R
and, on the other hand, let us define by C’;‘ ((O,T | x K x Rd;R) the set of measurable functions on
[0, T] x K x R? with polynomial growth of the degree p at +oo, Lipschitz and bounded on [0, 7] x K x R~
such that
e e CF((0,T] x KX R) <= 3K,p> 0, (t,z)] < K (1+ |z]" L{z50})

Consider the following system of backward integral-partial differential equation of parabolic
type (initial-boundary value problem) on (0,7] x K x R for all j =0,1,...,n
— B (t,x,¢) — Luj (t,x,¢) — fj (t,@,c,uy, (Vu;b$) (t,2,¢), Buj (t,x,¢)) =0
(2.2)
u; (T, z,c) = gj(z, ¢
where the second-order integral-differential operator £ for any ¢ € K\ {1} on sufficiently smooth
functions has the form
L=A+T
with
2,

d d
du; 1 0 us
Auj (t,z,c) = ;an(t) (t,T,c) —8; (t,z,c) + 3 Z by (t, T, c) W@Jx] (t,z,c)

7,j=1

+ Z >\b,c (t) [U‘j (LE, L, C) Uy (xa L, b)]

ceK

Tustn,) = [ oy ot = g ot0) = g gyicn] 5 (d)
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and B is an integral operator defined as

Buy (,0) = [y @ +3:.6) = s o2, 0] 5 ()

Existence and uniqueness of classical solutions for the PIDEs considered above in Sobolev-Holder
spaces have been studied in Bensoussan and Lions (1982) and Garroni and Menaldi (2002) in the
case where the diffusion component is not degenerated (basically with o, (¢, T, c) > 0 for every ¢ € [0, T

and c € £\ {1}).

However, as we have already mentioned Colino (2008), many of the examples of the LIBOR additive
process can be pure-jump processes (with o, (¢t,T,c) > 0 for every ¢t € [0,7] and ¢ € K\ {1}) for
which such results are not available. A notion of solution that yields existence and uniqueness for such
equations without requiring nondegeneracy of coefficients or a prior knowledge of smoothness of solutions
is the notion of viscosity solution introduced by Crandall and Lions (1983) for PDEs, and extended
for integro-differential equations of the type considered here in Alvarez and Tourin (1996), Barles,
Buckdahn and Pardoux (1997), or Pardoux, Pradeilles and Rao (1997).

For such a system, we introduce the notion of a viscosity solution

Definition 1. We say that u € Cp®% ((0,T] x K x R4 R) s

(i) a viscosity subsolution of (2.2) if
uj (T, z,¢) < gj (z,¢) with z € R?
and if for all c € K, all j = 0,...,n, and p; € C;’Q’*‘ ((O,T] x K x Rd;R) , such that (t,z) € [0,T] x R?

is a global minimum point of uj — ¢;, we have

0 '
_&% (t7.'17,C) _“4(10] (t,.’E,C) _\7 (U’j7@]) (t,.’I],C) - fj (t,.’lﬁ,’u]‘ (t,.’E7C), (V(p]b;) (tamac) chSDj (t7mvc)) > 0

(it) a viscosity supersolution of (2.2) if
uj (T, z,¢) > g; (z,¢) with z € R?
and if for all c € K, all j = 0,...,n, and p; € C;’Q’*‘ ((O,T] x K x Rd;R) , such that (t,z) € [0,T] x R?

is a global maximum point of uj — ¢;,

_&(plj (t7.'17,C) _-/4903' (t,.’B,C) -J (’U'jv@j) (t,.’II,C) - f] (tvxvuj (t?$7C)7 (V(p]bj) (tamac) ch<pj (t,x,c)) <0

(ii1) a viscosity solution of (2.2) if it is both a sub and a supersolution of (2.2)

Note that existence and uniqueness of viscosity solutions for such parabolic integro-differential equa-
tions in R? are discussed in Alvarez and Tourin (1996) in the case where v is a finite measure, and in
Barles, Buckdahn and Pardoux (1997) or Pham (1998).

Theorem 1. Under the conditions that u belongs to the set of measurable functions on [0,T] x K x R?
with polynomial growth of the degree p at +o0o, Lipschitz and bounded on [0, T] x I xR ™, then the function
u is a viscosity solution of the system of backward PIDEs (2.2).

Proof. cf. Barles, Buckdahn and Pardoux (1997) Theorem 3.4. or Pardoux, Pradeilles and Rao
(1997) Theorem 4.1. O



WEAK CONVERGENCE IN CREDIT RISK 5
2.2. Markov property and uniqueness. A standard way to show the Markov property is to prove
uniqueness of a corresponding (time-inhomogeneous) martingale problem. We expose here a direct

argument in the mentioned way.

Consider the mentioned reaction-additive system of SDE under risk neutral probability

dB(t,T;,Cy ~Cy—
B(tiTi,Ct,)) - (Tt +i )\Ct*’1> dt + bn(t) (t’ T, th)th + f]Rd h (t7 z, Tz) 1{\z|§1} Ng(t) (dt7 dm)

dCy= Y (b—a)l (c: —a} (Cy_) ANy (t)
a,be K

Let h (B, Ct) be a Borel-measurable function, where B; means B (t,T;,C;). Define the function
u(t,B,C) € Cy (R;R x K), for any t € [0,T;], that satisfies the following PIDE system

0 = %(t’Bt,@)
+(re+1-Ac, 1) B agg) (t, B;, Cy)
b"(” 2 Z’ o) t- a;lg;t) (t, B, Ct)
+ /R , [un(w (t,Bi_e”,Ci_) —uy,, (t,Bi_,Ci_) — By (€" — 1)} vy (dz)
+%(t, By, Cy) Q%K [unm(t, By, a) — un(t)(t,Bt,b)} 1{62_ o) (C) A% (2.3)

for a,b € K, x € R% and terminal condition
UU(T) (Tv B, C) = h(BTv CT)

Proposition 1. For Up,,, gwen as above, the process Un,, (t, By, Cy) with t € [0,T;] is a martingale.

Proof. Applying Ité6 formula to Upy,, (t, B, C) yields

ou
duy,, (t, B, Cy) = aigtt)(tBt,Ct)dBt
au"] t 1 2 (92u
+ ( at( ) (t, Bt, Ct) + §b] (t7T, C) TBE(L Bt, Ct)> dt

x z Ci_
+/Rd [u,,,(t) (t,Bi_e",Cy_) — Un., (t,B;_,Cy_) — B;_ (e" — 1)} Un, (dz)
7 Juny (6 B sa) = (6 Be )| 1y, iy (Co) ang®

a,beK

where substituting the Doob-Meyer decomposition, dN® = dM® + \!*dt and using PIDE (2.2)
yields that the drift term vanishes on [0,7]. From this we obtain

Ouy,,
duy,, (t, By, Cy) = Btfﬁ(t,Bt,Ct)bnm(t,E,CL)th
t
ou
+B, n(”(t,Bt,Ct)/ h(t, @, T;) Lyjej<ay A (dt, da)
OB, Rd

+ 37 [t (8 Be @) = (6. Be )] 16, yy (Co) db®
a,beK
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Therefore the process u;(t, By, Ct), t € [0,T;] is a martingale. O

Notice that the last theorem is equivalent to the following fact: for any continuous function f (t, G¢ )
on [0,7T] x [Rd X IC] with compact support that is of class C? in g, the process

f(t,G?)—f(o,GOC)—/O Lsf (5,GY)ds

is a martingale, with the operator L4 being given by

af *f
Lof( sGC Z ZB,,H ) W(t’Gf)
=1 1,j=1
b,ce R?

Proposition 2. G{ with t € [0,7}] is a (time-inhomogeneous) Markov process with respect to P and
F. Its distribution is uniquely determined by the SDE system.

Proof. For any h € C (Rd x IC, R) there is a unique viscosity solution u to the PIDE (2.2). By Barles,
Buckdahn and Pardoux (1997) Theorem 3.4 or Pardoux, Pradeilles and Rao (1997) Theorem 4.1
we have

E[h(Gr,Cr)| Fi] = E[uw(T, Gr,Cr)| Fi] = u(t, Gy, Ct)
for 0 <t <T < T*, and this establishes the Markov property of (G, C) (by Theorem 38.i7).

To show uniqueness of the finite-dimensional distributions by induction, let hq, ..., Ay—1, by be arbi-
trary continuous bounded functions. For any times tg < ... < t,,_1 < t,,, conditioning on F,,_1

m m—1

117G, C)| Fona | =B || T] 1i(Ge,. Co,)| Frna U,

/7”71) (thzfl ? Ctrnfl)
§=0 =0

where u,, (t5) denotes the solution to the PIDE (2.2) in ¢;. Since the right-hand side of the last equation
is determined by the n-dimensional distributions, the claims follow. O

2.3. Sample-paths in the Skorohod space Dy 1+ (Rd,IC). Let us recall that the main "engine"
that moves our system of stochastic differential equation is a LIBOR additive process with credit
transitions G¢ such that G¢ : (w,t) — (G, Cy) = (Gtc)ceic for every t € [0,7*] and C € K™ =
{0, e L= %, 1} with a fixed m € N;. The main goal of this subsection is to specify the necessary and
sufficient conditions for G¢ € Dio, 1+ (Rd, }C), or in other words, G¢ has sample paths in the Skorohod
space or the space of real functions G (¢) on [0, T*] x R x (™) that are ’cadlag’ (right-continuous with
left-limits).

Notice that if we consider C fixed with value ¢ € K with K €[0,1] N Q, then G° € Dy 1+) (R%, K)
by direct application of Theorem 11.1 in Sato (1999), or roughly speaking, if G¢ is a stochastically
continuous and Markov process then it has a version in the Skorohod space D 7+] (Rd, IC) . Properties of
such processes and spaces are very well-known and perfectly reflected in Lipster and Shiryaev (1989)
or Jacod and Shiryaev (1999). Our aim in this subsection is to extend these results when G is a
semimartingale that depends directly on the process C.

There exist different ways to prove that G¢ has sample-functions in the Skorohod space Do+ (Rd, /C) .
In our case, we will follow the most generic manner, closely related to Billingsley (1999), Carmona,
Kesten and Walsh (1986), Jacod and Shiryaev (1987), Liptser and Shiryaev (1989), and Vostrikova
(1988).
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Let us begin with the following definitions:

o Let H((;") be the partition {0 =1ty <t; < ... <t, <T* <1} of the time interval [0,7*], where
n € N, satisfying the condition ming<j<n—1 (¢; —¢;-1) > 6 on the "normalized" interval [0, 1]
e And let K™ be the set of credit-ratings {0=Cy<Cy <..<Cp =1} where m € N,

Let us define the following moduli of continuity in Dy 7+ (]Rd, IC)

L((;”VL) (G) = lnf max sup sup ‘Gi - Gﬂ (24)
t.7'+1116tj >6 0STSMs i€ty ) cekctm
LY (G) = sup  sup  |GE —GE s
0<t<1 o7 cek ™)
|c'-0|<s

with n,m € Ny, T* € Ry and § € R;.

Additionally, let us define an additional modulus of continuity in Do 7+ (Rd, IC)
LS (G)= inf max  sup |G§ - fo (2.6)

Iy 0SJ<ngieft; tir1)

Theorem 2. G¢ belongs to Do, (Rd,IC) if and only, if for every n,m € N, T* € Ry the following
conditions hold:
lim LS (G) =0 (2.7)

and

lim LLY™ (G) =0 (2.8)

In order to prove this theorem, we need three additional results: The first result (Lemma 1) came
directly from Billingsley (1999), and jointly with the second one (Lemma 2), both give us the basic
condition or criteria to establish when G belongs to Djo 7+ (R?, K) . The third result (Lemma 3) develops
a basic tool to be used in the proof of Theorem 75.

Lemma 1. For each G€ in Do, 1+ (Rd,lC) with m € Ny and € > 0, there exists n € Ny such that
0:t0<t1<...<tn§T*§1

and
C C
max sup sup |Gy —Gy|<e
0<j<n S,te[tj,tj_'_l) Cng’m) ‘ # K ’
Proof. cf. Billingsley (1999) Lemma 1 p.122. O

Lemma 1 is equivalent to the following assertion.

Lemma 2. G belongs to Do, 74 (Rd, IC) if and only if for every n,m € Ny, T* € Ry and § € Ry, the
following conditions hold:
lim L (@) =0

Proof. Fixed a T™ < 1, we defined Djg 1+ (Rd, IC) as the Skorohod space of functions in [0,7*] with
values in (™ which are right-continuous at any point in [0, 7*] and left-limits at any point in [0, T*] for
every m € N. It is clear that G¢ belongs to Do 1+ (Rd, IC) if it belongs toD|g 1 (Rd) for any T* € [0, 1]
and for any m € Ny, and it is not difficult to see that Billingsley’s proof of Lemma 26 for Dy i (Rd)
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can be extended for Djg 7+ (Rd, IC) changing the absolute value | | of R with the expression supgexm) | |
for any m € N;. O

Before we came to the next lemma, let us introduce the following notation: fix any m € N and 5>0,
then (™) can be covered by a finite union of open-balls with radius 6. Therefore there are Cy, ..., C i)

in K™ such that B (Ck,d) with k =1,...,7(d)
K™ € B (C1,8) U...UB (Cy5),0)
Lemma 3. For anyn,m € N, § >0 and § > 0, the following conditions hold:

(1)

(2) There is a dg, 0 < dg < J such that
L™ (G) <2 max_L§* (G) +2LLY™ (G)
0 1<k<r(8)

Proof. The inequality (1) follows from taking into account that

|G —GY | < sup |GY-GY.
CeKim)

Therefore
inf  max sup ‘GSC — Gtc| < inf max sup sup ’GS — Gtc‘
H(n) 0<j<n S,te[tj,tj+1) Hg") 0<j<n s,te[tj,tj+1)ce)(:(m)
tig1—t;>8 tjy1—t;>8

and this proves inequality (1).

In order to prove the inequality (2), notice that for any k = 1,...,7(9), we can write

GE - G6f| < |69 - 6| + |6 - 6|+ |og - 6f |
Therefore
sp |6¢ - G¢) < 2Ll (@) + ‘Gfk _ GG
CeB(Cy,8)NK(m)
Notice that we can easily establish
sup |GY — GtC’ = max sup |GS — G?! < ZLJL((—Sm) (G)+ max_ ‘Gg’“ — G
cek(m) 1<k<r(3) CEB(Cy,3)nK(m) 1<k<r(9)

and for any 6’ > 0 we have

]L((;n) (G) < 2L]L%m) (G)+  inf max  sup max ‘GSC" — GY
n{”  OSISPsielt ) 1<k<r(3)
(tj+1—t5)>6
< QILL((—Sm) (G)+  inf max  max sup G — GO
(™ 1<k<r(3) 0SIS s teft) 1)

(tj41—15)>6
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To achieve the inequality (2) in our Lemma 3, we just need to prove the existence of a dp, 0 < dp < ¢
such that

inf max  max sup G — G| < 2 max inf max sup Qo — G
;) 1<k<r(8) OSSP s telts 1) 1<k<r(8)  m{ 0SSN et ti40)
(tj+1—1t;)>d0 (tj41—t;)>6
= 2 max L$*(G)
1<k<r(3)

Notice that by definition of infimum, for every k = 1,...,7(d) there exists a subpartition on [0, 7]
{tk>j}0§j§nk+l such that ¢y j41 —tr,; > 0 forany 7 =0,...,n; — 1 and

Ch C,
GskiGt

max sup
0<J<nk s te(tn j b 1)

< 2LS* (G)

Define {t,},_,;,, as the subpartition of the interval [0,7™] built with the set of different ¢ ; with

j=0,..,ntg+1, k=1,..,7(). Finally let us define as §p the minimum distance between two points of
the given partition. Therefore we have 0 < §g < § and

max max sup

=\ 0<p<l G =G
0<k<r(8) 0SP=ls tefty, tpy1)

<2 max L$*(G)
1<k<r(3)

so that we finally obtain

inf max  max sup G — G| <2 max Léc’“ (@)
ng) 1<k<r(8) 0SIST s teft; t511) 1<k<r(5)
tj+1—tj>(50

Finally, we can prove the Theorem 2, using the last three results:

Proof. (Theorem 2) Here we attempt to show if the condition that appear in Lemma 2 is equivalent to
conditions (1) and (2) in Theorem 2.

First, let us assume the conditions in Theorem 2 in the following sense: given a € > 0 there exists a

01 > 0 with 6 < §; such that
€

L 6)< 5
and related with condition (1) in Theorem 2, there exist a d > 0 with § < 05 such that, for every
k= 1, ...,7“((51)

L§* (G) <

=] m

Notice that the condition (2) in Lemma 3 guarantees the existence of §g such that 0 < §y < d5 and

]L G < 2 max ]L k G + 2]:[41[4* G .
60 ( ) — 1<k?<’l“(g) 5 ( ) ) ( )

It is easy to see that ]L((Sm) (G) is an increasing function of 0, therefore we have that for every § < dg

L™ (G) <e.

This proves the condition of Lemma 2.
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Second, notice that if we assume the condition that appears in Lemma 2 and using the first assertion
in Lemma 3, then the first condition in Theorem 2 is proved for every C' € K™ . On the other hand,
to establish the condition (2) in Theorem 2, let us consider a ¢ > 0, and assuming the condition that
appears in Lemma 3, then there exists Ag > 0 and a partition 0 =ty < ¢t; < ... <, = 1 on [0, 1] such
that t; —¢;_1 > Ag for any j =1,...,n and

€
max sup sup |GSC - Gtc| < -.
0<J<n g teft; t 1) Cekim) 3

Notice that for any j = 1,...,n the mapping Gy, : Cy, — Gg from [0, 1] to R? is a continuous function
over the compact (™). Hence it is uniformly continuous. Additionally for any j = 1,...,n there is a
d; > 0 such that for any ¢ € [0, d;]

sup ‘Gtcj/ —Gtcj‘ <
c’,cext™
|c'—c|<s

<
3

Let us define §* = min (A, do, ..., d,,). Then for any ¢ € [0,7*], and choosing ¢; under the condition
that t € [t;_1,t;), we have for any § > 0

!
sup ’G? e
c’,cex™
|c'—c|<s

< sup ‘Gtc — Gtc
J
Cek(m)

’ ’
+ sup ’Gtc - G¢
crecem b7

!
4+  sup ‘Gg—Gg .
c’,cextm™ ’

|c’'—c|<s

Using the inequalities shown before, for any 0 < § < §*, we conclude the condition (2) of Theorem 2
from
sup sup )Gtcl —-GY <¢
0<t<T* C’,CGIC("”
|c’'—c|<s

3. UNIFORM WEAK CONVERGENCE IN THE REACTION-ADDITIVE SYSTEM

This current section 3 is concerned with the approximation of a financial corporate bond model in
incomplete markets, where the corporate bond dynamics is driven by a LIBOR additive process
(tradeable) conditioned to a multivariate point process (non-tradeable).

According to the previous section, we have seen that our reaction-additive system has sample-paths in
the Skorohod space. Therefore, in order to study the weak convergence of this system in such spaces, we
have structured this section in the following parts:

- The first subsection is basically devoted to give a quick review of the basics related with weak
convergence in the Skorohod space.

- The second one is devoted to show the conditions of relative compactness of a subset in the
Skorohod space. Basically, in this subsection, we expose an equivalent result to the well-known
Arzela-Ascoli Theorem for the Skorohod space.

- In the third subsection our efforts are mainly focused to find the basic conditions in order to
obtain the mentioned convergence in law, in the space Dy 7+ (Rd, IC) .
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- However these conditions would be too theoretical to have any practical application in finance,
and in the fourth subsection, we translate these conditions in terms of the characteristic triplets,
which are the basic parameters for any derivative pricing.

3.1. Introduction to Weak Convergence. Let us first introduce a preliminary section in order to give
a brief introduction to weak convergence of stochastic processes and semimartingales. Inclusion of this
material is justified not only because of the complexity of the subject but also because it is necessary to
establish some basic framework, notation and theorems that will be used later.

Therefore, this preliminary section is an attempt to gather some basic and typical results to describe
several main concepts and theorems that will give us the main directions of this chapter. Again, here
it is not intended to give a systematic presentation of the most important results or to explain how to
prove them; for this purposes one would need more pages. A more comprehensive picture of the present
state of the art can be obtained from Billingsley (1968), Lipster and Shiryaev (1989) or Jacod and
Shiryaev (1999).

3.1.1. Weak Convergence, Continuous Mapping and Skorohod Embedding. In this preliminary subsection
we recall some results concerning tightness and convergence of sequences of semimartingales. As we
are concerned with the weak convergence (in distribution), we suppose that for a sequence (G"), oy
of processes, G™ is defined on a stochastic basis (2", G",P™). Additionally, a process G is defined on
some (2,G,P), and we denote weak convergence of G to G i.e. p" = L(G"|p.) — = L(Glp), by
G" — G if there is no ambiguity about P™ and P.

Following Jacod and Shiryaev (1999), let us consider a Polish space (E,d) (that is a complete and
separable metric space) with its Borel o-field £ = By, and consider the space P (E) of all probability
measures on (E, ). The set P (F) is endowed with the weak topology which is the coarsest topology
for which the mapping g — p(f) = |  fdp is continuous, for all bounded continuous functions f on E.
P (E) is itself a Polish space for this topology.

Definition 2. The sequence (u™), cyy converges weakly to p if, for every bounded continuous function
fonE, (u" (f)),en converges to pu(f).

The weak convergence of random variables is defined through the weak convergence of probabilities
measures: let G be an E-valued random variable on some probability space (£, G,P) The image of P
under G is denoted by p = Pg. It is called the law or distribution of G.

Definition 3. (G"), .y converges in law (or in distribution) if (u"), oy converges weakly to pi in
P(E).

This is equivalent to saying that Ep_ [f (G™)] — Ep [f (G)] when n — oo, for all bounded continuous
functions f on E.

Notice that we can not use other standard modes of convergence on F such as convergence almost surely
or convergence in probability because the random variables G™ may be defined on different probability
spaces.

Now, let us recall two well-known results concerning weak convergence, namely the continuous map-
ping theorem and the Skorohod embedding theorem.

Theorem 3. (Continuous Mapping Theorem) Let (E,d) and (E’,d') be two metric spaces, endowed
with the Borel-o-algebras Br and Bg: respectively, and let p, (u™), oy be probability measures on (E, Bg) .
Let furthermore ©",p : E — E’ be a sequence of measurable functions and denote by D the set of all
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g € E such that there exist a sequence ("), cy with g" — g but @™ (g™) = @ (g) . If E' is separable, then
1

D € Bg/ and in this case the assumptions pu™ — p and p (D) =0 imply p" (gp")_l —u(e) .
Proof. cf. Billingsley (1968) Theorem 5.5. O

Remark 1. Notice that if ©™ = ¢ for all n € NT, Theorem 3 reduces to the usual continuous mapping
theorem, in the sense that if ¢ is p-a.e. continuous, then p™ — p implies p™ (¢) ™" — p(p)~".

Theorem 4. (Skorohod Embedding Theorem) Let (E,d) be a separable metric space endowed with
the Borel-o-algebra By, and let i, (™), oy be probability measures on (E, Bg) with u™ — p. Then there
exist a probability space (2, G,P) and E-valued random variables G and G™, all defined on (2, G, P) with
distributions p and p™ respectively, and such that G™ — G P-a.s.

Proof. cf. Ethier and Kurtz (1986), Theorem 3.1.8. O

3.1.2. Tightness of Sequence of cadlag Processes. Let us consider the Polish space (E, &) with its Borel
o-field £. Consider the space P (E) of all probability measures on (F, £) with the weak topology.

Definition 4. A subset A of P (FE) is called uniformly tight in E if for every e there exists a compact
subset K in E such that p(E — K) < e for all p € A.

Then, the Prohorov Theorem reads as follows

Theorem 5. (Prohorov) A subset A of P (E) is relatively compact (for the weak topology) if and
only if it is uniformly tight.

Proof. cf. Billingsley (1968) Theorem 5.1. O

In this subsection we consider only R%-valued cadlag processes. Let G be such a process, defined on
a triple (2, G,P). Then it may be considered as a random variable taking its values in the Polish space
D (R%). Consequently its law = £(G) is an element of P (D (R?)).

Definition 5. A sequence (G™),, oy is said to be uniformly tight if for every ¢ > 0 there exists a compact
set K in E such that P[G" ¢ K] <¢e for alln € N

Remark 2. Notice that using Prohorov’s theorem, we can conclude that the sequence {L(G™)} is

relatively compact in P (]D) (Rd)) if and only if the sequence (G"),, cy 18 uniformly tight.

The next result is concerned with tightness of sequences of cadlag processes. Recall that in the
Skorohod space we have the following modulus of continuity. Let us fix 7% > 0 such that I =
[0,T*] C R,. Let us assume a time partition 0 =t <t; < ... <t, =T*,§ >0and G € D (Rd) we define

i<n

]L(S,tn (G) = inf {maX]L(G; [ti—hti)) ne N+,0 =g <...<t,= T*7 lilf (ti — ti_1) > (5}
i<n

where L (G; I) = supg ;¢ |G (s) — G (t)] for an interval I = [0,7*] C R,.

Theorem 6. Let (G"), oy be a sequence of cadlag processes. Then (L(G"|Py)), cy is tight if and only
if the following two conditions hold:

(1): for all T* € Ry, € > 0 there exist ng € Ny, K > 0 such that for all n > ng

P, [sup |G™| > K] <e

t<t,
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(ii): for allT* € Ry, € >0, § > 0 there exist ng € Ny, 0 > 0 such that for all n > ny
P, [L:, (G™,0)>4d]<e

Proof. cf. Jacod and Shiryaev (1987) Theorem VI.3.21. O

3.1.3. Convergence Results for Sequences of Semimartingale. Concerning limit theorems for stochastic
processes, it is necessary to introduce characteristics of semimartingales, a concept heavily used later in
the following theorems. The idea is to associate to a semimartingale a triplet of predictable processes
which describe drift, volatility and jumps, in analogy to the concept of characteristic triplet of infinitely
divisible distributions, which in turn describes drift, volatility and jumps of the associated Lévy process.
The reader should notice that any theorem related with weak convergence of stochastic processes will be
necessarily related with semimartingales theory. In fact, in the following sections, we show that if the
characteristics triplet of a sequence of the LIBOR additive processes (semimartingales) are known, one
can show convergence in distribution via convergence of the characteristics.

First of all, let us assume a time partition ¢y < t; < ... < ¢, of [0,7*] and let us denote with G™ a d-
dimensional semimartingale with independent increments (PII). On the other hand, G is a d-dimensional
PIT without fixed time of discontinuity. Then the distribution of the process G is characterized by a
triplet of characteristics (v, A, v) relative to some fixed truncation function h, or in other words, let G be
a semimartingale and h a truncation function and define the process G(h) by

G(h)t = Gt - Z (AGS —h (AGS))

s<t

Note that > ., (AGs — h (AGs)) = fot (g — h(g)) u%(ds) where € is the random measure associated
with the jumps of G, and since AGs — h(AGs) # 0 only for finitely many s, this sum converges.
Furthermore AG;—h (AGs) is bounded so G (h) is a special semimartingale with canonical decomposition

G(h) = Go+ M (h) +~(h)

where M (h) is a local P-martingale and + (h) is a predictable process with finite variation. Therefore,
the triplet (v, A,v) with

vy=~(h from the canonical decomposition

A= (<C~1'1, C~1‘]>> where G is the continuous part of G
1<,j<d

v=uovl is the P-compensator of u&

is called the triplet of P-characteristics of G relative to the truncation function h or simply characteristics
if there is no ambiguity about the measure and the truncation function involved. Sometimes -~y is called
the first, A the second, and v the third characteristic of X.

Obviously only the first and the modified second characteristic depend on the choice of the truncation
function. In the sequel we fix one truncation function and sometimes do not mention the dependence of
the characteristics on this truncation function.

Concerning limit theorems for stochastic processes, it is necessary to define the modified second char-
acteristic of G, A™ which is cadlag and increasing in the set of all d x d symmetric nonnegative matrices
for their natural order, by

Ay = (M (R)', M (k)

where M (h) is the martingale part in the usual decomposition of a semimartingale'.

ISee Jacod and Shiryaev (1987) Proposition 11.2.17
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Recall that we have mentioned that G has no fixed time of discontinuity, it means that p ({t} x R?) =0

and /1, 4™(t) and ¢ - v are continuous functions, then we can state the following theorem?

Theorem 7. Let G™, G be R¥-valued processes with independent increments and characteristics (y"(t), A", v"™)
and (A,v,~(t)) respectively. Let A™ and A be the modified second characteristics of G™ and G respec-

tively, and let D be a dense subset of Ry. Then G™ e if and only if the following three conditions
hold:

(1): sup,<; [v"(s) —(s)| = 0 for all t >0
(ii): ‘fl? — flt‘ — 0 forallt e D
(iii): [pa @ - Vi'dg — [pa - vidg for allt € D, € C (RY)

where

C (Rd) = {f € Gy (Rd) ;de>0VgeU:(0) f(g9)=0and lim f(g) em’sts}

lgl—o0

and Cy (Rd) is the class of all continuous and bounded functions f : R* — R.
Proof. cf. Jacod and Shiryaev (1987) Theorem VII.3.4. O

3.1.4. Convergence of Stochastic Integrals and Stochastic Differential Equations. In many cases the semi-
martingales under consideration are stochastic integrals or solutions of stochastic differential equations
driven by a converging sequence of semimartingales. Then one is faced with the question whether the
convergence carries over to these new processes. The discussion of this issue dates back to Wong and
Zakai (1965) and has received growing interest for obvious reasons. Slominski (1989), Jakubowski,
Mémin and Pagés (1989) and Kurtz and Protter (1991) established sufficient conditions for the
convergence of stochastic integrals and solutions of stochastic differential equations in terms of uniform
tightness of the converging processes, which have the drawback that they are not easy to formulate and
sometimes hard to verify. Duffie and Protter (1992) introduce the notion of goodness of a sequence of
semimartingales and state simple (but not very general) sufficient conditions. See Kurtz and Protter
(1996) for more general results.

For a sequence (Q",F",P"), let (G"), oy and (H"), .y be sequences of cadlag processes where each

G"™ is an Revalued (F", P")-semimartingale and H" is F"-adapted and takes values in RY %4, Recall that
the total variation process of a process A of finite variation is denoted by Var(A) = [ |dA].

Definition 6. A sequence (G"), oy of semimartingales is called good (with respect to (P"), _y and IP)
w

if for any sequence (H™), .y the convergence of L(G", H"|p.) — L (G, H|;) implies convergence of
L(G" H", [H"dG"|,.) = L (G, H, [ H_dG|,).

Proposition 3. Let (G™)
also good.

nen be good and suppose £(G", H"|p,) = L (G, H|p). Then ([ H®dG™) is

Proof. cf. Duffie and Protter (1992) Theorem 4.1. O

We next provide a sufficient condition for the convergence of solutions of stochastic differential equa-
tions.

Theorem 8. Let (G"), oy be good, let G be a semimartingale, and let f : Ry x RY — R xd satisfy

2This Theorem can be relaxed to a wider class of functions, however it will be sufficient for our purposes.



WEAK CONVERGENCE IN CREDIT RISK 15

(i): y — f(t,y) is Lipschitz, uniformly in t
(ii): t — f(t,y) is left-continuous with right-limits, for all y

Furthermore let Y™ and Y be the (unique) solutions of
ayy = f (t,Y)dGy, Y e RY
dY; = f (t,Yi-)dG;, Y, € RY

IfG" 5 G, then (Y™,G") 5 (Y,G).
Proof. cf. Duffie and Protter (1992) Theorem 4.4. O

3.2. Relative compactness in the space Dy 7+ (R% K). This section is devoted to study the con-
ditions for relative compactness of a subset in Djg 1+ (Rd, IC) . Basically, we look for a result equivalent
to Theorem 6 or the Arzela-Ascoli Theorem for the Skorohod space Djy 1+ (Rd, IC). In the sequel,
we consider for any n > 1, a semimartingale G™¢ that depends on a process C,and defined on the sto-

chastic bases (Q™,F™ P™). The main aim of this subsection is to find conditions such that (G”’C)neN are

relatively compact in D 7+ (Rd, IC) .

Let us begin recalling some definitions:
o Let H((;n) be the partition of time {0 =ty < t; < ... < t, <T* < 1} where n € N, satisfying the
condition ming<;<n—1 (t; —tj—1) > ¢ on the "normalized" interval [0, 1]

e And let £(™) be the set of credit-ratings {0 = Cy < C; < ... < C,,, = 1} where m € N,.

Let us define the following moduli of continuity in Dy 7+ (]R{d, IC)

]I,f;m) (G) = inf  max  sup sup |GS — GY|
n{m 0TIt tipn) ceKim)
tj+1—tj>5
]LIL((Sm) (G) = sup sup ‘Gtc e
0<t<1 C’,CG’C(m)
|c’—c|<é

with n,m € N, 7" € Ry and § € Ry.

Additionally, let us define another modulus of continuity in Djg 7+ (Rd, IC)

LY (G) = inf  max sup |G§ - Gtcl
(™ OSIST s telt; ti41)
tjip1—t;>0

Basically, for the most part, we are concerned with the relative compactness of sequences {P, }; this
means that every subsequence {P,,} contains a further subsequence {IP )} such that Py, =~ —m Q for
some probability measure.

Ni(m

Theorem 9. Let us assume C € K™ n,m € Ny, and a,e > 0. Additionally, assume that the following
conditions hold

1)

lim limP,| sup sup

G?’C‘ >a| =0
a— 400 n—00 0<t<T* Cekclm)
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lim lim P, (L§ (G™¢) >¢) =0

§—0n—oo

lim sup P, (L ]L((Sm) (G")>¢e)=0

6=0p>1

Then the processes G™C with n > 1 have sample-paths in the Skorohod space Do 1+ (Rd, IC) , and
conditions 1), 2) and 3) hold if and only if the set of processes (G"’C), are relatively compact in

n>1
D[O,T*} (Rd7 ]C) .

In order to prove the Theorem 9, it will be useful to prove the following result.

Proposition 4. Assuming condition 3) in Theorem 9, then the condition 2) in Theorem 9 is satisfied if
and only if the following expression

lim lim P, | sup L§ (G™Y)>¢| = (3.1)

is true for every m € N.

Proof. Tt is obvious that (3.1) implies the condition 2) in Theorem 9. Conversely, assuming that conditions
2) and 3) in Theorem 9 are true, let us prove that both implies (3.1).

Fix a n > 0. Using directly condition 3) in Theorem 9, there is a 6’ > 0 such that
sup P, (LLS™ (Gm) > £y < 2 (3.2)
n>1 4 2

Following the same notation that in Lemma 3, fix any m € N, then K("™) can be covered by a finite
union of open-balls with radius ¢’. Therefore there are C1, ..., Cry in K™ such that B (C’k, 6/) with
k=1,..r(5)

K™ € B(C1,8")U...UB (Cpyr), ')

On the other hand, assuming that the condition 2) in Theorem 9 is satisfied, there is a 6" > 0 such
that for every k =1, ...,7(d")

[ i € n
i P, (L§k (G") > 5) < .
Jn b (Lt (€ 3) < 55 o
Using directly Lemma 3, there exists a 6° such that 0 < 6° < ¢§” and

sup LS (G") <2 max LSk (G™) +2LLYY (G™)
cekm) 1<k<r(§")

notice that ]Lg (G"’C) is an increasing function of &, therefore we have for every § < §°

r(8")
n n (m) n €
P, (Czl)é[()m}]_,c @ g> < ZP (L5k (™) 4) +P, (LL§Y (G™) > 1) (3.4)

Finally taking into account the expressions (3.2), (3.3) and (3.4) we obtain for every § < §°

lim P, | sup ]ng (G"’C) >e| <n
n—r--00 cektm
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which implies (3.1) and the proof is complete. O

Proof. (Theorem 9) Let us first prove that if conditions 1), 2) and 3) hold then G™¢ have sample-paths
in the Skorohod space Dy 7+ (Rd, /C) .

We know that the process G™, defined in (Q",F",P™), has sample-paths in Djg 7+ (R?, K) if and
only if
P, ({w € Q",G" (w) € Dy r+) (RLK)}) =1
or, equivalently
P, ({w e Q",G" (w) ¢ Djor+) (RLK)}) =0
and, using directly Theorem 2, we have that

{we ", ¢" () ¢ Dy (R, K)}

we N 3C €K, ImLS (G") >0} Uw e Q% 3m € N, lim LL{™ (G™) > 0
5—0 d—0 8

N

we N ImeN, lim sup LS (G")>0pU {w € Q" 3m e N, lim LL{™ (G") > o}
5—0 ceKim) §—0

Therefore, our goal is to prove that

P, [{we Q" lim sup LY (G")>0p]=0 (3.5)
=0 cexim)
and
P, ({w €, ;ir%}L]Lgm) (G™) > o}) =0 (3.6)

Let us begin with (3.5). Notice that (3.5) can be proved using the following equivalence

1
P, [ {weQ" lim sup L§(G") >0 = lim P, [{weQ” lim sup L§ (G") >~
({ §—0 CEICI()T”) 8 ( ) }) k— o0 <{ §—0 CEICI(:)M) g ( ) k })

and noting that L§ (G™) is an increasing function of § therefore we have

. n o1 C n 1 . . n C m 1

lim P, ({we ™ lim sup Ly (G")> — < lim lmP, [JweQ” sup Ly (G")>—-,|.
k—+o00 0—=0 cexc(m) k k—+o00 6—0 cercim) k

Notice that for every n > 1 and for every C' € K™ the process G™¢ is a semimartingale and it has
sample-paths in the Skorohod space Dy 7+ (Rd, IC). Therefore we have, for every k € Ny (cf. Liptser
and Shiryayev (1986) Theorem 6.1.6).

P, ({w e Q" LS (G™) > ;}) =0 (3.7)

Notice that following the same reasoning than in Proposition 4 we can show that the equality (3.7)
and the condition 3) in Theorem 9 implies for every k € Ny

P, w e N, sup L(;C (G™) > 1 —
cexim k

and notice that when k£ — +oo we obtain (3.5).
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Similarly, we can prove (3.6) following a similar reasoning, noting also that LLgm) (G™) is an increasing
function of 4,

1
Pn <{w € Q" lim LL{™ (G") > o}) < lim limP, ({w € " LLY™ (G") > })
6—0 k—+o00 6—0 k

where
, 1
lim P, Q" LL{™ (G > — t ) =
lim ({w e Q" LL;" (G") > . }) 0
and finally, we conclude that the process G" has sample-paths in the space Do 1+ (Rd, IC) .

In the second part, we have to show that these three conditions in Theorem 9 are necessary and

sufficient conditions to have relative compactness of (G"vc)n>1 in Do, 7+ (Rd, IC) .

According to Theorem V/.1.14 in Jacod and Shiryaev (1989), a subset A of Djg 7+ (Rd,IC) is
relatively compact for the Skorohod topology for every m € N and for a fixed T* if and only if

1) sup sup sup |Gtc| < +00
GeA0<t<T* ceKk(m)

2) lim sup ]Lgm) (G)=0
—0GeA
Notice that using a similar reasoning as in Theorem 2, condition 2) can be split into these two equivalent
conditions

1) limsup sup L§ (G)=0
=0 GeA cex(m)

2) lim sup ]L]L((;m) (G)=0
0—0Gea

Therefore we can show that a subset A of Dy 7+ (Rd,IC) is relatively compact for the Skorohod
topology for every m € N and for a fixed T™ if and only if

1) sup sup sup |Gtc| < 400
GeA0Lt<T* cex(m)

2) limsup sup LS (G)=0
) 5H0Geaceicr()m> 5 (G) (3-8)

3) lim sup LL{™ (G) =0
6—0Gea

Now we prove that conditions 1), 2) and 3) in Theorem 9 are necessary and sufficient to guarantee
than (G"), -, is relatively compact in Djg 7+ (Rd, IC) .

Notice that using Prohorov Theorem (Theorem 5), if the subset A is relatively compact, then it
is tight. Let us assume that the set (G"), -, is relatively compact and let us give a € > 0. Therefore,
according to Prohorov Theorem, there exist a compact Ac in Dy 7+ (Rd,IC) such that if A, is the
complement of A, then we have for any n > 1

P, (A.) <¢

where P, is the law of G™ in the space Do 7+ (Rd,IC) . Then, using the set of conditions (3.8), and
replacing A by A. we have that for any C' € K(™) with m € N, with a fixed T*, and any 5 > 0 there
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exist am, 7+, Om, 7+ € R such that

1) A.C {GC € Dio,r+) (Rd,IC) , sup  sup ‘GtC’ < am,T*}
0<t<T* Cekm)

*.n

2) A. C{GY € Dpre (RLK), sup LY .
cek(m) ™

(G) < 77}

3) A {G¢€ Dy (RLK),LLEY, | (G) <}

67‘!L‘T*,’n

and for any C' € K™, with a fixed T* and any 1 > 0, we finally obtain conditions 1), 2) and 3) in
Theorem 9

1) supP, | sup sup
n>1 0<t<T* Ceklm)

G?,C‘ S am,,T*) S €

2) supP, ( sup ]L(;Cm . (Gm < 77) <e
n>1 cekim) o

3) suwpP, (LL{™ . (G") <n)<e

LI
n>1 Im

Conversely, in order to prove the ’only if” part of this theorem, let us assume the conditions 1), 2) and
3) holds, for any C' € K™ with a fixed T* and any n > 0, and for any n > 1. Let P,, be the law of G"
in Do+ (Rd, IC) . Notice that using condition 1) we can obtain some results about tightness, or more
specifically, there is an a,, 7~ large enough such that

A= {GC € Dio,r+) (Rd,IC) , sup  sup ‘Gﬂ < amT*}
0<t<T™* Ccek(m)

therefore, we have
lim P, (A> >1-

n—-+4oo

W ™

And similarly, using conditions 2) and 3) we can assume that exists a 0,, 7+ » small enough such that

1
Am,T*,k’ = {GC (S D[O,T*] (Rd,lc) , Sup ]L(;m,T*,k (G) S k}
cekK

and )
B g = {Gc € Dy (R?, ), LL{™ | (G) < k}

such that .
liim IEDn (Am,T*,k:) > 1—-~-
n—-+oo 3
and .
himpn(BmT*k)Zlff
n—-+oo ’ ’ 3

Let us define now the set K in Do 1+ (Rd, IC) as the set K = AN Ay, p+ kN By 1+ i, therefore K is a
compact set in the space Do 1+ (Rd, IC) , and verify that

lim P, (K)>1—-°-_5_¢ >1-
Jm Po(K)21-3-3-3=1-¢

and it shows directly that (G™),~, is tight in Dy 1+ (Rd,IC), and relatively compact, according to
the Prohorov theorem. B O
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3.3. Weak Convergence in Dy 7+ (Rd,IC). As in the last subsection, let us consider, for any n > 1,
the semimartingale G™¢ with C € K, defined on ’sufficiently rich’ stochastic bases (2", G",P") endowed
with the filtration G" = (gtn)te[O,T*] , and additionally let us define the stochastic process G¢ with C € K,

also in a ‘sufficiently rich’ stochastic basis (€2, G,P) endowed with the filtration G = (G¢),¢(o 7+ - This

subsection is mainly devoted to find the basic conditions in order to obtain a G™¢ with sample-paths in
Do+ (R4, K) , and convergence in law to G, in the space D)y r+] (R%, K).

Theorem 10. We assume that the finite-dimensional distributions of G converge weakly to the finite-
dimensional distributions of G€. Let us assume C € K™ n,m € N,, and €,a > 0. Additionally, assume
that the following conditions hold

1)

111;1_1 lim P, sup  sup ‘G?’C‘ >al|l =0
a—+00 N—00 O<t<T* (m)
<t<T* cek

2)
lim lim P, (L§ (G™) >¢) =0

S—0n—oo

3)
lim sup P, (]L]L((;m) (G")>e)=0

6—0 n>1

Then the processes G™C with n > 1 have sample-paths in the Skorohod space Do+ (Rd,lC) , and

the weak convergence of G™¢ wikn) G© in the Skorohod space Dig, 1+ (Rd,/C) takes place.

Proof. First, we have to prove that the process G™® has sample paths in the Skorohod space
Do, 1+ (Rd, IC) , and that (G"’C)n>1 is relatively compact. In order to show that, it is enough to see that
the conditions in Theorem 10 are the same as the conditions in Theorem 2 and Theorem 9.

Second, we have to prove the weak convergence of the sequence (G"’C)n>1 . Let us define Q™ as the

law of G™ in Do 7+ (R%, K) . Also let us consider two subsequences (Q™) and (Q™”), from the sequence
(Q"),,>1 » that converge to the probabilities Q' and Q" in the measurable space Do+ (Rd, IC) . According
to Theorem 2.8 in Billingsley (1968) in order to prove weak convergence, it is enough to prove that Q'
and Q" are the same.

For 0 < t; < .. <t <1 with & € N, let us define the natural projection from D (R>) to R* by
t, (G) = (Gyy, ..., Gy,) , such that for A € R™ we can denote

s (A) ={(Gu,, ... Gy,) € A}
and notice that II;,  ,, is continuous for all i =1,....k, t; € A(G) = {t > 0,AG, = 0} U{0}.

.....

Stk

Now, let us define
Ay {t>0:Q (G € Dy (R,K),AG, =0) =1} U{0}
Agr = {t>0:Q" (G € Dy r+ (RLK),AG, =0) =1} U{0}

Then we can say that, for any t1, ..., tx € Ag:NAgr, the sequences (Q™ o H;lltk) and (Q™ o H;ll o)

converge weakly to (Q' o Ht_lltk) and (Q” o Ht_j...,tk) respectively.
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Now, let us fix ¢1,...,ty € Ay NAgr and 0 < Cy < ... < Cp, < 1 with C4,...,Cp, € Ry and m € N .
Additionally let us define the continuous mapping

C Cm C Cm
HC’1,~-,Cm (Gtw "'7Gtk) = (thla -~-;Gt1 a---aGtkl7 -~-7Gtk )

from R* to R¥™. Notice that according to the continuous mapping theorem (Theorem 3), the se-

quences (Q"’ o Hf_ll 4 O Héf,...,cm) and (Q”” o Hf_llfk o HE},...,CW> converge weakly to ((@’ o Ht_llt o 1_[511

sUk k

and (Q” oIl ! 4 © Hall Cm> respectively.

.....

Notice that, if we assume that the finite-dimensional distributions of G™¢ converge weakly to the
finite-dimensional distributions of G, then we have that

/ 1 —1 1 —1 —1
Qo Htl,...,tk o Hcl,m,cm =Q"o Htl,‘..,tk o HCI,.H,Cm (3.9)

Let us prove that, for any C,...,C,, € Ry with m € N, we have
Q/ °© H;l%uwtk = QH °© H;l%uwtk (3'10)

or in other words, if we denote Cj, as the o-field from (IC)]c , and Cj, as the o-field from (IC)]c generated by
Hg‘ll,...,c (A), with C4,...,C,, e Ry, m e Ny and A€ B (R"“'m) , then we have to prove that Ci, = Cy.

m

Notice first that, for any Ci, ..., Cy, € Ry, the application Il¢, . ¢,, such that

e, .c, G =(G,...Gy) — (Gfl,...,Gfm,...,ch’l,...,G,fm)
is continuous. Therefore C;, C Cj.

On the other hand, in order to show the inclusion in the opposite direction, it is enough to show
that any ball in (IC)]c is Cx-measurable, because K is a complete and separable space. Let us choose C
from C1, ..., Cy(s) in the compact K; such that K; C B(C1,0) U...U B (Ci(s),6) and such that r (§) is the
minimum number of balls with radius ¢ that cover ;. Therefore let us define, the following C;-measurable
application with

+o0 c c
_; SUpcer, |G¥ =Y ’
G—d(G)Y)= E 27 :
o 1+suwpee, [GY - Y

Using basic properties of measurable mappings we have that

G — sup |GC - YC|
Ccer;

for any Y € R?, is also a C;-measurable mappings, for any i € N.. Therefore for any ¢ € R,

G e RY, G -YC%l < }: GeRY |G -YY| <
{ € R, sup | | <e CDCi{ €R| | <e}

which are C;-measurable. Henceforth, (3.9) implies (3.10).

Now notice that, according to Liptser and Shiryaev (1989) we know that Ag: and Ag~ are dense in
R.. Therefore Agr N Ag~ is also dense in R, and we conclude that Q" = Q” because a probability in the
Borelian o-field of Djg 7+ (Rd, IC) is entirely determined by its finite-dimensional distributions. Therefore
the sequence (G"’C)n>1
paths in Dy 7+ (R4, K) .

weakly converges in Dijg 7+ (Rd, IC) towards a certain process GC with sample

cn)
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In order to complete the proof, we have to show the link between G€ and G€. According to Billingsley
(1999), and using the continuity property of the following mappings

Ie,,..cn G — (G, ..,Gm)
from D (R%) to D (R, K) , and
My o (GO, GO — (Gﬁl,...,Gﬁm,...,Gfkl,...,Gf;m)
from D (R%,K) to R4™™  for every t1,...,t, € Ay where

Ry ={t>0,Q' TG o (G € Dpr (R)K),AG =0) =1} U{0}

Hm

and we obtain the weak convergence in R4*™ from Q™ o Hall O © Ht_lltk towards Q' o Hall oo

s~“m

Hf_llfk We know that Q"’oﬂai__’cm OHt_l}...,tk is the law in R*¥"™ of a vector (Ggl, e GE Gtc;l, ey Gt(’;’”) .

Using the weak convergence of the finite-dimensional distribution we know that, for every ¢1,...,t; € Ag

,C :Cm ,C ,Cm C Cm C Cm
(Gg L GO L GRO L G )—> (thl,...,th oy GC L GY )
or
Q oIl oll; 7 , =Q oIl !
C1,...,Crn t1yeetn C1,.,Cm t1,eesth
where Qc,,....c,, is the law in D (Rd,IC) of the processes (Gcl,...,GC’"). Because a probability in
D (Rd, IC) , is entirely determined by its finite-dimensional distributions then

! -1
Q © HC],.A.,Cm = ch7---7cw1

Hence we have the link between G€ and G€ : for every m € N, and Cy,...,C,, € Ry the law in
D (Rd,lC) of the processes (Gcl,...,écm) and (GCl, ...,Gcm) coincide. O

3.4. Previsibility conditions for weak convergence of G¢ in the space Do, 1+ (]Rd,IC). This
section is devoted to develop the conditions in Theorem 10 in terms of the characteristics or triplet.
Roughly speaking, the idea that we have in mind is related with the following question: Under which
conditions, in terms of the triplet, our model will converge in distribution to the continuous time model
that the market imposes?

Let us first define the setting assuming that we are given a "sufficiently rich" stochastic bases (Q",F™ P™)
and (2, F, P) endowed with the filtrations F* = (F/"),c(o 7+ and F = (F) o 1) - Let G = (G™ (1)) g im0

and G¢ = (GC (t))CeK >0 be semimartingales depending on the process C' = (Ct)te[o,T*] with C' e K™,
defined on the spaces (Q",F",P") and (Q,F,P) respectively.

Additionally, we assume that the semimartingale G™¢ is a special® and locally square-integrable mar-
tingale, or in other words, a martingale that admits the canonical decomposition

G =Gy + M+ BC

where M/ is a local P-martingale and B{"“ is a predictable process with finite variation over each
finite interval. Let us assume that G¢ is a continuous semimartingale?, that admits also the canonical
decomposition

GY = G§ + M{ + By

3See Liptser and Shiryayev (1986) definition 2.2

41t is well-known that interest rates derivatives quotes use the Black-76 model. This model is a continuous-time model,
and it generates continuous sample-paths. However, taking into account the tenor structure, we can strip the quoted
volatilities into a set of forward volatilities with skews/smile for each tenor. It basically implies that if n = number of
tenors, G™< has to be a LIBOR additive process with jumps and G€ is a LIBOR additive process without discontinuities.
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This means that the characteristics of G™¢ and G¢ are (fy"’c, A™C, U”’C) and (fyc, AC, ’UC) , respec-
tively, with v© = 0 in the second case.

The aim of this section is to give conditions expressed in terms of the predictable characteristics
(’y"vC,A"’C,v"’C) and (’yC,AC,Uc) of the semimartingales G™¢ and G, providing the existence of
i i ¢ = c, C _ C
the modifications processes G™¢ = (G" (t))CeK,tzo and G° = (@ (t))CelC,tzo
Do, 1+ (Rd, IC) for which a weak convergence in Do 1+ (]Rd, IC) takes place. During the present subsection,
basically we follow Liptser and Shiryaev (1989) section 8.3.

with trajectories in

_ In addition to the previous definitions of G™¢ and G, and for the sake of simplicity, let us introduce
G™¢ and GY as the continuous martingale components of G™¢ and G, respectively, or in other
words,

t/\TJ_H
Gn ,C Gn ,C + Z / U C)dwn
J<n(t)
and
t/\TJJr1
GY =G5+ > / C)dW,
i<n(t)

with the usual conditions on the coefficients (Colino (2008)).

Therefore, using the assumption that G?’C is a special semimartingale, we have

GnC GnC+BnC+GnC+ Z/
J<n(t)

tAT; 41

5 (u,x) <,u;7’c — U;’C) (du, dz)

Rd
where Bf “isa process, with locally integrable variation, such that

- t/\Tj+1
B = Z / o} (u, C)du < oo
j<n(t)”Ti

Let us assume that for any C,C’ € K™\ {1} the previsible quadratic variation of W and W< is,
for every t > 0,

<WC,WC/>t = Z /MTj+1 cov; (u,WC, Wcl) du

J<n(t)

Additionally, and for the sake of simplicity in the sequel, we denote with M™¢ = (Mt" ’C) Certs the
€K,t>0

martingale part of the semimartingale G™ ¢, for every t > 0, such that

f/\TH_l
Me = Z/ " (u, C)d W”+Z/

J<n(t) J<n(t)

f/\TJ+1

(5 (u, ) <,u;-l’c — v?’c) (du, dz)

and the quadratic variation (M™¢) . is given by (according to Liptser and Shiryaev (1989) Theorem
3.5.1)

<M"’C>t = <C~¥"’C>t + Z /t./\Tj+1 g 62 (u, x) (du dzx) /MTHI/ § (u, ) "C ({u} vdx))Q

J<n(t) j<n(t)

Let us recall that our goal is to translate the conditions of Theorem 10 in terms of the previsible charac-
teristics of the semimartingales. Notice that assuming that G™¢ is a special and locally square-integrable
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martingale, and the semimartingale G is continuous with deterministic initial value, is equivalent to con-
dition 1 in Theorem 10. Therefore, in order to obtain the weak convergence, we have to establish the
following group of conditions:

Condition Group (1): in order to establish Condition (2) in Theorem 10 for every C' € K we need

P™

(1.1) ’GS’”—GS” P
Tjt1 2 n,C P"

(1.2) Ejgn ij f]R\{O} 0° (u, ) L(jz|>a) V3 (du, dz) il 0

(13)  supgcpar- |BIC = icnm Jr T 0t C, G”vc)ds) G
n ] tAT )41 n, pm

(1 4) SupOStST* <M 7C”}> - J<77(t) f M+ Uj t C G C)ds’ ”joo 0

Condition Group (2): Additionally, to obtain weak convergence in the ’fidis’, jointly with condition
group 1, for every C,C" € K™\ {1} we need

(2.1)  sup ‘<C~¥”’C,C~¥"’C/> = 2 i<nt) f;]ATj“ cov; (u,Wc,WC/) du’ o0
. <

0<t<1 n— o0

Condition Group (3): Finally, to obtain the Condition (3) in Theorem 10, assume p > 2 and a > m
such that for a bounded stopping times 7 and C,C" € K™\ {1}, C # C’ we have

(31) sup (B [yem - ¢ np/\cfc' ) < c(p)
(32) sup (E <@9m_@9 / [exed ) < c(p)
(3.3) sup (]E fo J5 (91— g92)" d/ﬂcc |C (ol ) < ¢(p)

where7:inf{0<t§ 1: sup ‘Gtc’n—GtC/’"

> ¢ and ¢(p) is a positive constant.
|C—-C|<s

Theorem 11. We suppose that the condition groups (1) to (3) are satisfied. Then, the processes GE" =
(Gor (t))CeIC >0 and G = (G°¢ (t))celc >o have paths in Dy 1+ (R%,K) such that weak convergence

GEn wE") G in Do, (Rd, IC) takes place.

Basically, the proof of Theorem 11 requires the verification of the conditions of Theorem 10 according
to the following plan:

e First, we suppose that G&" = (GOn (t))CeIC,t>0 and GY = (G¢ (t))CeIC7t>O
Do 1+ (Rd, IC) . Using the conditions of group 1 we establish a weak convergence of the process
G™ to GC with C € K™, given m € N, in Do, 1+ (Rd, IC) . In turn, this convergence implies
the condition 2) in Theorem 10.

e Second, using the conditions of group 1 and 2 we establish the convergence of the finite-dimensional
distributions

are the paths in

(Gn7CI;Gn’C27 ...7G1’L,Cm) K (GCI’Gcz’ "‘VGcm)

in the Skorohod space D 1+) (R%, K) for every m > 2.
e Third, using the conditions of group 3, the result from Valkelia and Dzaparidze (1990), we
prove that for every C,C’ € K"\ {1} and a bounded stopping time 7 :

supE" (‘an —Gon p/ |C — Cl|a> < C;
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and using specially chosen stopping times, this inequality and the lemma about the estimation
of the modulus of continuity allow us to verify the condition 2) of Theorem 10.
In order to prove the Theorem 11, we need the following results.

Proposition 5. Let G¢ be a stochastic process defined on the stochastic basis (2, P) with sample-paths
in the Skorohod space Do 1+ (Rd, IC) . Then for any € > 0 the function T defined in Q by

T(w)=inf [ t>0, sup |G (W)=—GC(w)|>e|AT
c',.cex{™
|c'—c|<s

is a F-stopping time.

Proof. According to Lipster and Shiryaev (1989) let us define the process Z as

Zy(w)= sup |Gf (w)—Gf (w)
c’,cex(™
|c'—c|<s

and notice that it is enough to prove that Z is a process with sample-paths in Do 1+ (]Rd, IC) , Fr-adapted.
Let w € Q. Then we have for every s, > 0

Zo@) = Zi@)| = sw |6V (@) -G @)~ s |G () - GF W)

c’,cexim c’,cexim
|c'—c|<s |c'—c|<s

< sw 69 (@) - 6Y (@) - 6 () + GF ()]
c’,cex{™
|c'—c|<s

< 2 sup |G (w) - GY (w)]
cr,cex(™

Notice that G has sample-paths in Dio,1+) (Rd, IC) . Therefore we have that
lim inf  max sup  |Zs (w) — Zi(w)] =0
=0 i) 0SI<nguefiy by

tit1—t; >4

This, according to Lemma 2, proves that Z is a process with sample-paths in Dy 1+ (Rd, IC) .
In order to prove that Z is a Fi;-adapted process, notice that for any w € Q, and any ¢t € Ry, the
mapping C — G¢ (w) from K to R? is continuous. Therefore we have that, for every ¢+ € R, and any

C e K™ Zis a Fi-adapted process. O

Proposition 6. The condition 3) in Theorem 4 is equivalent to

lim sup P, sup |G (w) -G (w)| >e| =0
5—0 n21 C’,CEK;”L)
|c'—c|<s

where T is the F-stopping time defined in Proposition 5.
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Proof. Let us recall that according to Proposition 5, the stopping time 7 (w) was defined as
T(w)=1inf | ¢ >0, sup

c’,cex(™
|c’—c|<é

o (w) — GC (w)] >e|laT

Hence

IP’n(]LILgm) (G™) >¢e)=P,( sup sup ‘G?’C’ - G?’C‘ >¢e) <P,( sup ’GZ’C/ — GO >¢)
0st<T* o' cex{™ c',cex{™
|c'—c|<s |c'—c|<s

Conversely, it is easy to see

Po( sup |62 =GO 2 ) < Po(LL{™ (G7) 2 )
c’,cex§™
|c'—c|<s

O

Another relevant result that we need to prove Theorem 11, is the next one, given by Dzhaparidze
and Valkeila (1990)

Lemma 4. Let M be a locally square integrable martingale with My = 0. Let T be a stopping time. If v
is the compensator of the jump measure of M, then there exist for every p > 2 constants k, and K, such

that
5 T
kB <<M>§’/ +/ / |g|pdv>
0 JRr\{0}

IN

E < sup Mt|p>
0<t<T

T
KPE<<M>$/2+ |/ |gpdv>
0 JR\{0}

Proof. cf. Dzhaparidze and Valkeila (1990) Lemma 2.1 p.108, based on the Burkholder-Gundy
inequality for martingales. U

IN

And the last useful result in our proof is the following,

Proposition 7. Let 7 be a finite stopping time and C1,...,Cp, € K and m € Ny. Additionally let define
u" the integer-valued random measure for jumps of a process (G’“Cl, e G"’C"") and v™ the compensator,
let f be a real function on R such that the following integrals has sense for any i =1,...,m

1) f()t f]R\{O} f (gz) u" (dt, dgi, ..., dgi, ..., dgm) = foT f]R\{O} f (g) d.UJn’Ci

2) f()t f]R\{O} f (gl) (,un - Un) (dta dgh (XX} dg“ (23} dgm) = fOT IR\{O} f (g) d (/’L”L’Ci - U”L’Ci)

Proof. Both results can be proved using similar ways. Let us define two local martingales M = (M;),~,
and M’ = (M/),, for any t € RT,

t
M; = / / f (gz) (ﬂ”,ci — fU’ﬂ,Ci) (dt’dgl, .., dg;, ...,dgm)
0 JR\{0}
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t
—_ / / f (g) d (Mn,Ci _ U"’Ci)
0 JR\{0}

Notice that M and M’ are purely discontinuous processes and to prove that they are indistinguishable,
it is enough to show for any t € R

and

or
AM, = /R\{ } flg:) (" {t},dgr, .., dgiy ., dgm) — 0™ ({t},dg1, ...y dGiy ooy dgm))
0

and

AM] = / £ (9)d (% ({1}, dg) — v ({t} , dg))
R\{0}

Notice that the processes
. n . n,C
(f]R\{()}f(gt) (U ({t}7d917"'adglv"'7dg7n)))t20 a‘nd (fR\{o}f(g) (U ({t}’dg)))fzo
are respectively the compensators of
) n . n,Cy
(oo £ (0 (7 ({1} o, dgisrdgn)) - amd (i oy 7 (0) (" (48 1))

and it is enough to establish the following equality for any t € R™ :
Sigoy £ (96) (0" (18} 1 dgn, s dgis s dgn)) = i g0y £ (9) (1 ({2}, d))

and in order to complete the proof we only need to see that
Sy P00 7 (8}, odgn)) = £ (5GE)
0

and

/ f(9) (Mn’ci ({t}, dg)) =f (AG?’Ci)
R\{0}

Finally, we can proceed with the proof of Theorem 11.

Proof. (Theorem 11) Let us proceed with the first part. To prove weak convergence condition according
with Theorem 10 or equivalently, to prove the weak convergence from G to G¢ with C € K™, given
m > Ny, in D s (Rd, IC) , means, according to Lipster and Shiryaev (1989) Theorem 8.3.1 (p.625),
the following conditions, for every C' € K(™), given m > N, for every a € (0,1] and 0 < ¢t < T* < 1:

1) |66 - 6§ o

Tj n,C P
2') Y i<n ij o f]R\{O} La|>aydv;™ — 0

n,C tAT, P"
3 ) Sup0<t<T* B — ZJ<7] T It n(s)(t, C, GTL’C)CZS‘ — 0

li
4') SUPg<i<T*

(MOR), =3 iy S P o (1€, G ds| T 0
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Now, we have to prove that conditions 1.1, 1.2, 1.3 and 1.4 (in the condition group 1) imply 1’, 2/, 3’
and 4’. It is clear that 1.1 implies 1’. The condition 2’ can be proved using 1.2 and the inequality, for
any € > 0,

Tjta1 Tji1 - ,
Z/ / Laiomdvj @ 2 e | <P Z/ / 0*1(af>ndvj® > ca
R\{ R\

i<n ji<n

Related with the condition 3’, we use the canonical decomposition for semimartingales and special semi-
martingales (using directly definitions in Liptser and Shiryaev (1989) 4.1.1 and Jacod and Shiryaev
(1999) 11.2.38)

nC _ mC nC  AnC A Ts+1 c n,C
B, = Gy -Gy -G 6 (u, @) Lyjzy<1y (15 — vy ) (du, dz)
J<77(t) Re

t< )/\TJ+1 c
- Z/ / (uvm)l{\x|>1}ﬂ?’ (duvdz)
J<n(t)
and

Bn,C_Gn,C GmC én,C AT 5 ) n,C (d d
t — by Tl T Ly Rdum — Yy u, dz)

J<n(t)

Therefore

c _ pncC e c
B:L’ —Bf’ = — Z/ /Rd(s(u,x)l{‘xbl}?)?’ (du,dm)

j<n(t) T
and we obtain
c -0 C J+1
P" ( sup |Bf"© — B} ‘ > 5) < Z/ / (1, )| Lgja> 130} © (du, dz) >
0<t<T* <
7+1
< 1 du,d
< ;/ /Rd (u,2))" 1y ‘>1}’U (u x) >

This shows that conditions 1.3 and 3’ are equivalent, using condition 1.2.

Related with condition 4’, let us recall

B tATj 41 c
(MmOmy - = <G"C Z/ 6 (u, ) Lz <y (du, dz)

J<n(t)

- X / 8 (uz 1{\z|<h}( “({u}, dm))2

3i<n(t) Ty <u<tATjq1
and

t/\TJ+1 2 C
<M”’C>t = <G”C / /Rdfi u,z) v (du, dz)

Ji<n(t)

-y Y [ s (5 qubdo)

_/<n(t) T <u<tATji1
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Let us simplify the notation redefining § (u, ) = §. Therefore

n,C,h n,C AT+ 2 n,C
’<M o >t_<M ' >t’ < Z /T Rd5 1{|=70\>h}vj (du,dm)
J<n) "3

>

F<n(t) Ty <u<tATs

n,C 2
JRICRORE)
i 2 c c
Z/ /61{‘$|>}L}U?7 (du,dz)+ Z Z / |(5‘ 1{|$‘>;L}U?’ ({u},d:p)
IRTOM R R

J<n(t) Ty <u<tnTy

/]Rd 01{jz)<ny (v?’C ({u},dz))Q

IN

([ 11y} ) + [ 1o ((u} o))

tAT 41
= > /T /Rd 1 o>y v (du, da) + Y > /Rd 18] 1jaj>mv ({u}, dz)

J<n(t) J<n(t) T SustATja

n,C n,C
(2 [ 11 aenr} () o) + [ 101y () )
taking into account that, using Liptser and Shiryaev (1989), for any ¢ > 0 and any w €
v (w, {t} xR) < 1

we have
C,h c tATj+1 ) o
|<Mn’ ’ >t—<Mn, >t| < Z / /d ) 1{‘$|>h}l}j’ (du, dx)
j<nt) T R4\{0}
+ Z Z 2“/ 1] 1{|gc|>h}’U?’C ({u},dx)
F<n(t) Ty <u<tATj11 R
2
n,C
+ Z Z (/ |5|1{|x\>h}Uj ({U},daj)>
J<n(t) TjSu<tnTypr R
tAT 41 , .
= Z/ /45 Lije|snyv; (du, dz)
IRTON R
Tjtr o
+2a Z / /d 6] 1{jz>nydvy
j<n(t) i R

D INEDY /Rd521{|m|>h}v§”c({u},dw)

J<n(t) Ty SutATj1
and finally, we obtain the inequality
C,t c Tjt1 ) o
sup [(M™Oh), = (M) [ <4 3 / /d5 Lja>nydvy’
T R

0<t<T* .
== J<n(t)

This means that conditions 1.4 and 4’ are equivalent.
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Therefore, all the conditions of Theorem 8.2.1 in Liptser and Shiryaev (1989) pp.608 — 609 are

satisfied and we have
GC,n E GC
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for every C' € K™, given m > N, in the Skorohod space Do, 7+ (Rd, IC) .

Second, we have to prove the convergence of the finite-dimensional distributions

(G"C,GnC, . GnOn) B (GO, G, GO)

n—oo

in the Skorohod space Dy 7+ (Rd, IC) for every m > 2.

Let us define Y" = (G”’CHG’“C?, ...,G"’C"") and Y = (GCHGCQ, ...,Gcm). Then, it is enough to
prove the weak convergence of Y to Y in Do 7+ (IRd7 IC) . Additionally, let us define

Bn(t) (Y) = (an(t) (t, Cl, GC1), ey Ol (1) (t, Cm’ Gcm))

and
Un(t)(t,Cthl) o --- 0
_ 0 :
C’r](t) (Y) =
: . . 0
0 cee 0 O’n(t)(t,cm,GCm)
such that
t/\TJ+1 _ t/\TJ+1 _
Yi=Yo+ / By (V)ds+ 3 / Coy (V) d (W, W)
J<n(t J<n(t)

According to Liptser and Shiryaev (1989) section 8.3.5 there exists a Brownian motion in R™ (Wl, e Wm)

such that the process Y satisfies the following stochastic differential equation

- tATj1
Y=Y+ Z/ 7](9) d8+ Z/

J<n(t) 7<n(t)

Doy (V)V?d (Wl, ...,Wm)

where D, ;) (Y)l/2 is the square root of the semidefinite-positive matrix D, ;) (Y) = (Dys) (V) (2, 5)) I<ij<m
given by

D'r}(t) (Y) (Za .]) = 0On(t) (ta Cia GCl) Tn(t) (ta Cj> GCj) cov (Glcla Glcj)

On the other hand, let us define u™ as the jump-measure of Y™ and let v™ be the compensator. Then
p" and v™ are random measures on R x (R™\{0}) and we can choose a version of v™ such that for

every t € Rt
o™ ({th x (R™\{0})) <1

Additionally let us denote as B} = (Bt" G B;L’Cm> , and CJ* as the m x m matrix of predictable

quadratic variation at ¢ € RT. This basically represents the continuous martingale part of Y™ such that
for any h >0

tATj 41
Mt = Cp Z/ /R 00 L ap<nyvy© (du, dx) (8.11)

J<n(t) m\{0}
- > / Olgai<nyvy ({u}, do) X/ oLy <myvy ({u}, de)
J<n(t) Ty <u<tAT;y, ¥ R™\{0} R™\{0}

where || || is the Euclidean norm in R™. Therefore, for any ¢ = 1,...,m and any j = 1,...,m we denote
M (i, 5) as the (i, j)-th value in the matrix M}"

Let us recall the conditions established in Theorem 8.3.3 in Liptser and Shiryaev (1989) in order to
prove the weak convergence of (Y"), ., toY, for any h € (0,1], any t <T € R} and any 4,5 = 1,....,m
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Pn
" |Ye =Y =0

Tjt1 P
2") Yi<n I T\ g0y Liali>mydvy — 0

n AT p"
3") supg<i<p- | BY — ngn(t) T; o Bn( ) ( )dSH —0

n, . . 1 .. P”
4") supgeyere | ME" 05) = ey Jro 7 Dage) (V) (i) ds| 55 0

In turn, according to the Cramer-Wold theorem (in Billingsley (1986) p.397), 1”) it is equivalent
to prove for any (A1, ..., A\p,) € R™ that

. P'll
> OANGHT S D T NGE
i<m i<m

which is equivalent to the condition 1 of group 1 (condition 1.1).
As to 2”), noting that for any h > 0
2 I
{z = (21,22, e Ty : ||z|]| > B} C U {x = (21,22, 0y Tpp) T > m}
gsm
we have

Tjt1 J j+1 J
11z o< "
Z/T]- A\{O} (l=lI>h) UJ Z/ \/];K\{O} T >%}Uu{z%®>%}) UJ

i<n i<n

ZZ/7+1/R\{0} x>%})dv

qg<m j<n

Therefore, according to Proposition 7

1 Tina
Lo dv? < duy
Z/ /R\ (lal>mydvy < 3 Z/ /R\{O} ({lza1>22}) "5

i<n q<m j<n

This proves that 2”) is given by the hypotheses 2 in the group of conditions 1 (condition 1.2).

To check the condition 3”) let us recall the inequality (a + b) V2 < /2 4 p1/2 for every a,b > 0 and
taking into account this result, it is easy to see

t/\T]Jrl ~ tAT) 41
sup ||Bf — Z / n(s) (V) ds <Z sup |B,"7? — Z / an()th,G"C)

0<t<T* i<nt) g 0SI<T™ i)
Finally notice that the condition 3 in group 1 (condition 1.3) implies the equivalent condition 3") and
consequently 3").

Before proving condition 4”) we have to check the following result: for any A > 0

Z/J / 201 1 afsmydo? 0 (3.12)

i<n
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Notice that we have

J+1 J+1
Z/ /]R 2l Lpasmdvf = Y Z/ /R Tal({jz, >k AV}

i<n q<m j<n \{0}
Jj+1 9

= Z/ / L ({lall >k} {lzy 501 AV] +Z/ / 2Ll > )| <n}) AV

g<m \j<n R\{0} i<n R\{0}

2

< . Z/ / Tl ({lag >npdv} +a Y Z/ / L({jjali>n)) VT

qg<m j<n R\{0} qg<m j<n

J+1 J+1

< 2 Z/ / L (lla, [>T + mZ/ / Li{liali>np dv;

g<mj<n R\{O} j<n ]R

We have proved that condition 1.2 implies condition 2”) and therefore

Tjt1 n P"
a mz o 1<{uw|\>h}>dvj —0

i<n

On the other hand, using condition also 1.2 we have that for every ¢ =1,...,m

J+1
2 n,C, P"
Z/ /R Tal({lag>npdv; " =0

i< \{0}

This shows that (3.12) is true.

The next step is to prove condition 4”) using (3.12). According to expression (3.11), for any p,q €
{1,...,m} we have

_ ~ tATj 41
sup * <Gn,Cp7Gn,Cq>t / / acpqu{‘|m|‘<h}v (du, dz)
0<t<T F<n(t) m\{0}

- Z Z / fﬁpl{nwugh}U?’C({U}vdﬂﬁ) X/ ﬂfql{uxugh}U?’C ({u}, dz)
R™\{0} RrRm\{0}

J<n(t) Ty <u<tnTypa

AT C, C, Cp Cq P
-y Tty (b Cpy G)ry () (1 Cy GEr)eow (W, W) dis| %5 0

j<n(ty’Ti

Notice that
cov (chp,ch") 5= <WCP,WC‘1>S

Taking into account the condition group (2), it is enough to prove

~ N tAT) 41
sup |(M™r, M), — <G”’CP,G"’CG> + / / Tpt gl faf<nyv” (du, dz
0<t<T* < >t t Z R\ {0} prgt{llz||<h}Y; ( )

+ / Tply|z 'U7-717C U ,d.’IJ X/ Toliip ’UT.L’C U ,dZC KO
> > oy <Y ({u}, dz) gy M= ({u},dz)

J<n(t) Tj Su<tATjq1
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For this note that

- N t/\TJ+1

sup (M™Cr MmCay — <G”’C”,G”’C + ) / / Tp@ql |z <nyv (du, dz)

0<t<T* J<n(t) Rm\{0}
+ / Tplyjz<nyvi ({u},dz) x / Tql{jz)<nyvy ({u}, dz)

G<n(t) Ty<utATy VRO R™\{0}

t/\TJ+1 t/\T]+1
< sup / / TpTqliz)<nyvy (du, d) Z / / Tp7qv} (du, d)
0<t<T* | 20 R™\ {0} J<n(t) Rm\{0}

+ / xlm ’UY-L ’l,l,7d.’I,z X/ [L’lx Uﬂ U,d.’L’
Z Z R0} Ut <myvy ({ul dz) R\ (0} flzl<nyvy ({u} , dz)

§<n(t) T Su<tATj 41

SPONED VI A I R Ry BT D

7<n(t) T <u<tATj11

IN

]+1
Z/ /R . [epql Lgjoy>nyvf (du,da) +) /Rm\{o} |zp| 1jzy<nyvf ({u}, dz)

j<n "\ J<n Ty <u<Ty

X l/ Tlyjz)<myvy ({u},dr) —/ rvf ({u},dr)
R\ {0} R\ {0}
+ / Tol 1)z v? ({u},dx

2 2 [ Pl sy ({ukdo)

J<n Tj<u<Tjtq
X [ / Tpliz|<nyvy ({u},dr) 7/ zv} ({u},dz) ]
R™\{0} RrRm\{0}

J<nTj<u<Tjq
Notice that we have assumed that v™ ({t} x (R™\{0})) < 1. Therefore

X [/ Tplija|<nV] ({u},dm)—/ zpv} ({u}, dx)
Rm™\{0} R\ {0}
+ / Tql Lr v ({u},dx
> > Rm/\{0}| ol Lay>nyvf ({u}, dz)

tAT; 11
su <Mn,Ci Mn,Cj> _ én,Ci én,Cj it ol o7 (du dl‘)
p ) t ) pLyH{llzl| <R}V
o R™\{0}

*
0<t<T <n(t

+ / T,1 T V" ut,dx / i1 - ™ ({u ,d{L‘
2. 2 oy 2 ey Vs (udodm) o fC ailasny v (e} do)

F<n(t) T <u<tAT;41

J+1
Z/ /R [2pi| Lja >y o) (duda) +ay Y /R o |51 Lz <ny v} ({u}, dz)

j<n m\{0} J<n T <u<Tji1

+a / Tp| Lz smv ({u}, dx
> X IRm\{o}l pl Ljal>ny v} ({u}, d)

J<n T <u<Tjtq

IN

+ / ZTp| Li)z U’Pu,dx/ To| 11y o ({u}, dx
[ el ) (dda) el Lo} () do)

J<n T <u<Tjiq
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Using the inequality ab < % (a2 + b2) valid for every a,b > 0, we have

5 B t/\T]+1
sup <Mn7Cp’Mn,cq>t _ <Gn,Cp’Gn,Cq> / / Ltpqu{”z”<h}7j (du d$)
o<t<T* to R\ {0}

+ / Tplie vl u,dxx/ Tolyg)z v? ({u}, dx
> 2 ooy “ sty (udode)x g vy (u) do)

F<n(t) T; <u<tAT;i1

]+1 J+1
< = / / x21{||z“>h}v (du,dz) + / / x 1{\|z|>h}'U (du, dz)
;n R0} ];L R\ {0}
Tjt1 Tj41
+aZ/ / |xp|1{‘|x”>h}v (du, dz) +aZ/ / |xq|1{|‘x”>h}v? (du, dzx)
i<n Rm\{0} i<n ™\{0}
Z J+1 9 Z J+1 9
+= / / $)1{|‘I|‘>h}v du d:E / / T 1{||$‘|>;L}Un (du, dl’)
2 Rm\{0} 2 Rm\{0} !
Jjt+1 j+1
= 22/ / 2] 1m0 (du, d) +22/ / a||$||1{|\a:|\>h}v (du, dz)
i<n i<n ™\
< X [ el e Gl
= z {llz| >R} V5 (O, GT
- R\ {0} ’

and using the expression (3.12) we achieve the condition 4" ).

Finally, in order to complete the proof of Theorem 11 we just need to show that the conditions of
group 3) imply then condition 2) in Theorem 10. Notice that G™ and G™¢ are special semimartingales.
Therefore

GO =Gy + BrY 4+ M

and
’ / ~ ’ /
G =Gy 4+ B+ Mm©

whence
’ C Cr/ ~ ~ ’ 7
Gne — gne ‘ < ‘Gg’ e ‘ + ‘B?’C _ pne ‘ + )M;%C Vi

Let us recall the following inequality, for every a > 0, b > 0 and p > 1 we have

(a+0)" < (p+1)(aP +bP)

Therefore,

B (|eme - G:“C'}p) < @+’ [Er (jayC - e ) +mr (|Bpe - Bpe ")

p)} (3.13)

_|_En (‘Mf,c _ M:},C’

Notice that if G and G™C are special semimartingales (locally square integrable), then the local
martingales M n.C" and M™C are square integrable. Additionally, let us define 7™ as the jump
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measure of M™C — M™C" and 9™ its compensator. Therefore we can use directly Lemma 4 to prove
the following inequality for any p > 2

/P , p/2 T4
E» (‘M;L,C _ M:_L,C ‘ ) < CpEn <Mn,C _ Mn,C > / / :E';D do™ ,c,c’ (3 14)
m\{0}
J<n(t

T

and using Proposition 7 we have

c c’ Ned A+ n,C
L ¥ N el +Z/ /R € =)

3<n(®) 0y

NTj41 o
/ JRC )
J<n(t) R\{0}

G Gn C + Z //\T]+1 / d (Mn7c7c/ . Un’c7c/)
R2\ {0, 0} ! !

J<n(t)

According to Liptser and Shiryaev (1989) Theorem 3.5.1 we get

n,C n,C’ nC _ m c’ TATI )2 d (v
(M€ M) = (GmC -G +Z/ / w)?d (vp)
T i) R2\ {0, 0}

T eX e 2
- /" ' ({u} 7dx,dy)
J<n(T) R2\{0, 0}

and again, using the fact that v™ ({¢t} x (R™\{0})) <1 we have

e Y T (e L I Z( / /WO} 0 d ()

20O (LY de 2
FY Y O () ey

J<n(t) Ty SusTATj 1

<Gn,C _ Gn,C Z TATs+
R

J<n(7) MO, 0}

IN

Recall the inequality (a + b)” < (p+ 1) (a? + bP), for every a > 0, b > 0 and p > 1, and similarly as
before

o ((re-wee)) < @)oo
o [ Y /TATJ“ /RQ\{M} (m—y)Qd(v?’C’0/> (3.15)

J<n(7)

On the other hand, we have

/T/\T7+1 / mp o c c’ ) _ gr /T/\TJ+1 / |x|p n C o )
J<n R2\{0,0} J<,7 R2\{0,0}
TATj 41
2,

Jj<n(r)

n,C n,C/p
AM™C — AM! ‘
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so that

/T/\Tj+1

2.

J<n(1) T <u<tATj41

- / yC ({u}  d) + / ' ({u}, dz)
R\{0} R\{0}

vz, T

J<n(1) T <u<tATjtq1

A€ - anpe|”

[ o)~ [ (fu) o)

R\{0} R\{0}

/ (@ —y) u S ({u}, de, dy)
R2\{0,0}

)

Loy @D )

SEDIEH DN / o — yl? O ({u} , da, dy)
J<n(r) Tj Su<tAT; 4, ¥ RE\M0,0}
PSP / o =" 07 ({u}, da, dy)
J<n(r) Ty <u<rAT;y, ¥ B2\ 0,0}
TATj 11 ,
3<n(r) R2\{0, 0} ‘

Finally, insert the results (3.16), (3.15) and (3.14) in (3.13). We obtain for every p > 2 the existence
of a constant cp,, such that

E" (‘G’TL:C _ Gg,c/‘f’) < . {E (‘Gg,c _ane ‘p) g (‘B;%C e ‘p)

+E" <<G” o _gm C’>p/2>

TATj 11 , p/2
+E" / / (x — dv?’c’c
j<n(r) R0}
T/\T7+1 oo
+E" Z / / |z —y|” dv?’ '
o) #2\(0,0)

Now, the proof is complete, because it is easy to see that condition 2) of Theorem 10 follows immediately
from the group of conditions 3 in Theorem 11 and Lemma 4. (]
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