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Abstract

In this thesis the ruin probabilities in some controlled discrete-time risk processes with a

Markov chain interest are studied. To reduce the risk of ruin there is a possibility to reinsure

a part or the whole reserve. Recursive and integral equations for ruin probabilities are given.

Generalized Lundberg inequalities for the ruin probabilities are derived given a constant sta-

tionary policy. The relationships between these inequalities are discussed. To illustrate these

results some numerical examples are included.

It is shown that the problems considered can be imbedded in the framework of Markov

decision problem but with some special features. We establish the dynamic programming

algorithm in finite and infinite horizon cases for a general Markov Decision Process (MDP).

Moreover, we provide conditions for the existences of measurable selectors.

Resumen

En este trabajo se estudia la probabilidad de ruina de algunos procesos de riesgo controlados

en tiempo discreto que incluyan una cadena de Markov para las tasas de interés. Para reducir el

riesgo de ruina existe la posibilidad de reasegurar parte o la totalidad del fondo de reservas. Se

facilitan formulas recursivas y ecuaciones para calcular la probabilidad de ruina. Desigualdades

generalizadas tipo Lundberg para la probabilidad de ruina son deducidas cuando consideramos

una poĺıtica estacionaria constante desde el inicio. Se analizan las relaciones entre las desigual-

dades halladas. Se incluyen algunos ejemplos numéricos para ilustrar estos resultados.

Se muestra que los problemas considerados pueden ser vistos en el marco de los problemas

de Decisión Markovianos. Se establecen algoritmos de programación dinámica para un modelo

de Decisión Markoviano general en los casos de horizonte finito e infinito. Además, se muestran

ix
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las condiciones necesarias para la existencia de selectores medibles.
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Introduction

The foundation of modern actuarial mathematics were laid only in 1903 by the Swedish ma-

thematician Filip Lundberg [40, 41], and later in the 1930’s by the famous Swedish probabilistic

Harald Cramér [10, 11]. Insurance mathematics today is considered a part of applied proba-

bility theory, however, a major portion of it is described in term of continuous time stochastic

processes.

At first view, the ruin probability is not a classical performance criterion for control pro-

blems. As is pointed out by Schäl [48] and Schmidli [54] one can write the ruin probability

as some total cost without discounting where one has to pay one unit of cost when entering a

ruin state. After this simple observation, the results from discrete-time dynamic programming

apply. Nevertheless obtaining explicit optimal solutions is a difficult task in a general setting.

An analytic method commonly used in ruin theory is to derive inequalities for ruin probabilities

(see Asmussen [2], Grandell [32], Willmot, et al. [60] and Willmot and Lin [61, 62]).

Our aim is to choose the reinsurance control strategies in order to minimize the ruin proba-

bility of a controlled risk process in discrete-time. We assume statistical dependency over time

for the interest rate process and following a realistic point of view as is suggested in Cai [6] and

in Cai and Dickson [7].

First, for this purpose we develop generalized Lundberg inequalities for the ruin probability

that depend on the decision or control strategy. Previously we derive recursive and integral

1



Introduction 2

equations for the ruin probability. Secondly, optimality over the admissible control set can be

achieved by the monotonic property of the upper bounds that we obtain∗. These results are

illustrated for the Phase-type distribution case. Especially, we show that if the distribution

function of claims is of any particular class of distribution (in the sense of stochastic order), we

can simplify the calculation of our bounds.

Finally, we also consider a surplus process in the usual formulation in Markov decision theo-

ry following González-Hernández, López-Mart́ınez and Pérez-Hernández [30], and Hernández-

Lerma and Lasserre [33, 34, 35]. Also, we use the Hinderer’s results for canonical construction

[36]. Particularly, we specified how to rewrite the minimization of the ruin probability as a MDP.

The outline of the thesis is as follows. In Chapter 1 we review the main results on the

classical Cramér-Lundberg model.

In Chapter 2 we briefly review the most relevant issues of stochastic orders related with the

ruin problem.

In Chapter 3 we give an introduction to discrete-time dynamic programming focused to

minimization of the ruin probability.

In Chapter 4 we study an insurance model where the risk process can be controlled

by proportional reinsurance. The performance criterion is to choose reinsurance control

strategies to bound the ruin probability of a discrete-time process with a Markov chain interest.

To illustrate our results we present some numerical examples that use Matlab and Maple

implementations.

In Chapter 5 we study a general Markov decision problem. Particularly, we specified how

to rewrite the minimization of the ruin probability as a MDP by applying the previous results.

Finally, we present our concluding remarks.

∗A major part of these results was published and there are available, see [13, 14].



Chapter 1

Risk theory

In this chapter we review the main results on the classical Cramér-Lundberg model. Most

of the results can also be found in [46].

The reader should be aware that the model has to be considered as a technical tool only. It

is used to measure the effect of a certain decision of the actuary on the risk. In this model the

present environment of the insurer is fixed and cannot be changed in the future. Of course, in

reality the environment does change.

The time t in the model has to be considered as operational time. On the one hand, the

insured’s exposure to risk is not constant over time. On the other hand, the number of persons

insured is not constant over time either.

The ruin probabilities defined here are therefore not the probability that the company is

ruined, even though for some claim size distribution this could be the case. Ruin means that

the capital set aside for the risk considered was not enough. The ruin probability is then a

measure for the risk. Ruin theory gives the actuary a tool to measure the risk in a simple

way. The goal is therefore not to have the realistic model but a simple model that is able to

characterise the risk connected to the business.

3



Risk theory 4

1.1 Ruin probabilities for the classical risk model

A sound mathematical basis for the stochastic modelling of insurance risk goes to the

pioneering work by Filip Lundberg [40, 41] and Harald Cramér [10, 11].

Figure 1.1: Pioneers. Left panel: Ernest Filip Oskar Lundberg (Sweden, 1876 − 1965). Right
panel: Carl Harald Cramér (Sweden, 1893− 1985).

Their collective risk model was obtained as a limit of a sum of individual risk models for an

increasing number of individual contracts. It turns out that many of the basic constructions

like adjustment coefficient, expense loading, premium structure, etc. Needed in more general

models are already present in the early model. Despite the obvious lack of reality of many in

the assumptions made, one uses the Cramér-Lundberg model as a skeleton for many recently

developed “more realistic generalisations”.

In a classical risk model the surplus of a collective contract or a large portfolio is modelled as

Xt = x + ct−
Nt∑
i=1

Yi (1.1.1)

where N is a Poisson process with rate λ, the {Yi} are i.i.d., (strictly) positive, and independent

of N , c > 0 is the premium rate, and x is the initial capital. We denote the claim occurrence

times by T1 < T2 < · · · , and for convenience we let T0 = 0. Because the process has stationary

and independent increments, the process is always in its stationary state. It does not matter

whether or not there was a claim at time zero. We denote the distribution of Yi by F (y), and

its moments by µn = E [Y n
i ]. For simplicity we let µ = µ1. This is the standard model of

an insurance company, where Nt is to be interpreted as the number of claims on the company

during the interval (0, t]. At each point of N the company has to pay out a stochastic amount
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of money, and the company receives (deterministically) c units of money per unit time.

For mathematical purposes, it is frequently more convenient to work with the claim surplus

process {St}t≥0 defined by St = x−Xt. Letting M = sup0≤t<∞ St and MT = sup0≤t≤T St.

The main object of interest in risk theory is the ruin probability. Let τ(x) = inf {t ≥ 0 : Xt < 0}
= inf {t : St > x} be the time of ruin. As usual, we let inf ∅ = ∞. The probability of

ultimate ruin is the probability that the risk process ever drop below zero or equivalently

is the probability that ruin occurs in finite time

ψ(x) = P (τ(x) < ∞) = P

(
inf
t≥0

Xt < 0|X0 = x

)
= P (M > x) . (1.1.2)

The probability of ruin before time T is

ψ(x, T ) = P (τ(x) ≤ T ) = P

(
inf

0≤t≤T
Xt < 0|X0 = x

)
= P (MT > x) . (1.1.3)

From the theory of random walks one knows that τ(x) < ∞ (a.s.) if and only if

E [c (Ti − Ti−1)− Yi] ≤ 0. That is, ψ(x) = 1 for all x if c > λµ. One therefore usually assumes

the net profit condition c > λµ. Note that E [Xt − x] = (c − λµ)t, which explain the name

“net profit condition”. Another quantity of interest is the relative safety loading ρ = c
λµ
− 1.

The ruin probability is absolutely continuous and differentiable at all points y where F (y) is

Figure 1.2: Illustration of Risk Process notation.

continuous. The density ψ
′
(x) fulfils

Proposition 1.1.1. Let Φ(x) = 1− ψ(x) the non-ruin probability. Then
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1. Φ
′
(x) = λ

c

[
Φ(x)− ∫ x

0
Φ(x− y)dF (y)

]
.

2. ψ(0) = λµ
c
.

3. ψ(x) = λ
c

[∫∞
x

(1− F (y)) dy +
∫ x

0
ψ(x− y) (1− F (y)) dy

]
.

4. cψ
′
(x) + λ

[∫ x

0
ψ(x− y)dF (y) + 1− F (x)− ψ(x)

]
= 0.

See, Section A.3 for more details about the proof of this proposition.

1.1.1 Special case: Exponentially distributed claims

Consider the simple case, when Yi is exponentially distributed. Then equation 1. in

Proposition 1.1.1 is reduced to

Φ′(x) = λ
c

[
Φ(x)− 1

µ

∫ u

0
Φ(x− y)e−y/µdy

]

= λ
c

[
Φ(x)− 1

µ

∫ u

0
Φ(y)e−(x−y)/µdy

]
.

Differentiation lead to

Φ”(x) = λ
c
Φ′(x) + 1

µ

[
λ
c
Φ(x)− Φ′(x)

]− λ
cµ

Φ(x)

=
[

λ
c
− 1

µ

]
Φ′(x) = − ρ

µ(1+ρ)
Φ′(x)

and thus

Φ(x) = C1 − C2e
− ρx

µ(1+ρ) .

For ρ > 0 we have lim
x→∞

Φ(x) = 1 and Φ(0) = 1− 1
1+ρ

, which implies

Φ(x) = 1− 1

1 + ρ
e−

ρx
µ(1+ρ) .

or

ψ(x) =
1

1 + ρ
e−

ρx
µ(1+ρ) =

λµ

c
e−x( 1

µ
−λ

c ). (1.1.4)
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1.1.2 Lundberg exponent and Cramér-Lundberg approximation

Let Θ(r) =
∫∞
0

erydF (y) − 1 with r ∈ R+. We assume that there exists r∗ > 0 such that

Θ(r) ↑ +∞ when r ↑ r∗ (we allow the possibility r∗ = ∞). It is easily seen that Θ(0) = 0 and

that Θ is increasing, convex and continuous on [0, r∗). The important part of this assumption is

that Θ(r) < ∞ for some r > 0. This means that the tail of dF decreases at least exponentially

fast∗. Further, the rather pathological case when Θ(r−∗ ) < ∞ and Θ(r) = ∞ for r > r∗ is

excluded.

Since
∫∞

0
λ
c
[1− F (y)] dy = λµ

c
< 1 the equation (A.3.4) is a defective renewal equation.

Following Feller [23] p. 376, we assume that there exists a constant R such that

λ

c

∫ ∞

0

eRy [1− F (y)] dy = 1 (1.1.5)

or equivalently,

∫ ∞

0

eRydF1(y) = 1 + ρ.† (1.1.6)

Then λ
c
eRy [1− F (y)] is the density of a proper probability distribution. Multiplication of

(A.3.4) by eRx yields

eRxψ(x) =
λ

c
eRx

∫ ∞

x

(1− F (y)) dy +
λ

c

∫ x

0

eR(x−y)ψ(x− y)eRy (1− F (y)) dy. (1.1.7)

which is a proper renewal equation. From the renewal theorem‡, it then follows that

lim
x→∞

eRxψ(x) =
C1

C2

, (1.1.8)

where

C1 =
λ

c

∫ ∞

0

eRx

∫ ∞

x

(1− F (y)) dydx (1.1.9)

∗For example the Lognormal and the Pareto distributions are not allowed.
†Where F1(y) is the equilibrium distribution of F , see equation (2.1.4).
‡See Feller [23] p. 363.
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and

C2 =
λ

c

∫ ∞

0

yeRy (1− F (y)) dy (1.1.10)

provided R, C1 and C2 exist in (0,∞). We get from 1.1.5,

c

λ
=

∫ ∞

0

eRy [1− F (y)] dy =
1

R

[∫ ∞

0

eRydF (y)− 1

]
=

Θ(R)

R

and thus R is the positive solution of

Θ(r) =
cr

λ
, (1.1.11)

where R is called the Lundberg exponent.

Moreover, we have,

C1 =
1

R

ρ

1 + ρ

and

C2 =
1

µR(1 + ρ)

(
Θ′(R)− c

λ

)
.

Thus, we obtain

lim
x→∞

eRxψ(x) =
ρµ

Θ′(R)− c
λ

, (1.1.12)

which is called the Cramér-Lundberg approximation§.

We shall now consider a completely different approach, due to Gerber [26], which uses

martingales. Before considering his approach, we shall need some basic facts about martingales.

1.2 Basic Martingale theory

The definitions and results to be given here are standard issues on martingales theory, see

for instance, Elliott [18].

We shall, for future purposes, be somewhat more general than is really needed for the moment.

Therefore the probability space (Ω,F , P ) may carry more objects than the risk process.

§For more details, see [32] p. 7.
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Definition 1.2.1. A filtration F = {Fn}n≥0 is a non-decreasing family of sub-σ-algebras of F .

Definition 1.2.2. Let for any process Y = {Yn}n≥0, the filtration FY =
{FY

n

}
n≥0

be defined
by

FY
n = σ {Ys : 0 ≤ s ≤ n} .

Thus FY
n is the σ-algebra generated by Y up to time n, and represents the history of Y up to

time n. Y is adapted to F, i.e., Y is Fn-measurable for all n ≥ 0, if and only if FY
n ⊆ Fn for

all n ≥ 0.

Definition 1.2.3. An F-martingale (respectively F-submartingale, F-supermartingale)

M = {Mn}n≥0

is a real valued process such that:

1. Mn is Fn-measurable for n ≥ 0.

2. E [|Mn|] < ∞ for n ≥ 0.

3. EFs [Mn] = E [Mn|Fs] = (≥ ¶,≤ ♣) Ms P - a.s. for n ≥ s.

Definition 1.2.4. An F-martingale or an F-supermartingale M is called right continuous if

1. the trajectories Mn are right continuous;

2. the filtration F is right continuous, i.e.,

Fn =
⋂
s>n

Fs for n ≥ 0.

Definition 1.2.5. A random variable T : Ω → [0,∞], is an F-stopping time if {T ≤ n} ∈ Fn

for each n ≥ 0.

This means that, knowing the history up to time n, one can decide if T ≤ n or not. Note

that outcome T = ∞ is allowed. If T is a stopping time, so is n ∧ T = min{n, T} for each n.

The following simplified version of the Optional Stopping Theorem is essential for our

applications.

Theorem 1.2.1. Let T be a bounded stopping time, i.e., T ≤ t0 < ∞, and M a right continuous
F-martingale (F-supermartingale). Then

EF0 [MT ] = (≤ ♣) M0 P − a.s. (1.2.1)

¶Respectively F-submartingale.
♣Respectively F-supermartingale.
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Now we consider the martingale approach.

Theorem 1.2.2. Let Yn be right continuous process such that:

1. Y0 = 0 P -a.s..

2. Y has stationary and independent increments.

3. E [Yn] = β · n, where β > 0.

4. E [exp (−rYn)] < ∞ for some r > 0.

Then

E [exp (−rYn)] = en·g(r) for some function g(·).

Remark 1.2.1. If Y is a classical risk process with positive safety loading we have β = c− λµ.
Further, we have

E [exp (−rYt)] = e−rct
∑∞

k=0
(λt)k

k!
e−λt (Θ(r) + 1)k

= e−rct+λt(Θ(r)+1)−λt = et(λΘ(r)−rc)

and thus g(r) = λΘ(r)− rc.

1.2.1 Lundberg inequality

In this subsection we will obtain the called Cramér-Lundberg inequality for ruin in infinite

time.

Let Tx be the time of ruin, i.e.,

Tx = inf {n ≥ 0 : x + Yn < 0} .

Obviously Tx is a FY -stopping time and note that ψ(x) = P (Tx < ∞). Put

Mx
n =

e−r(x+Yn)

eng(r)
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Mx is an FY -martingale, since

EFY
s [Mx

n ] = EFY
s

[
e−r(x+Yn)

eng(r)

]

= EFY
s

[
e−r(x+Ys)

esg(r) · e−r(Yn−Ys)

e(n−s)g(r)

]

= Mx
s · EFY

s

[
e−r(Yn−Ys)

e(n−s)g(r)

]

= Mx
s .

Choose t0 < ∞ and consider t0 ∧ Tx which is a bounded FY -stopping time. Since FY
0 is trivial

and since Mx is positive, it follows from Theorem 1.2.1 that

e−rx = Mx
0 = E

[
Mx

t0∧Tx

]

= E
[
Mx

t0∧Tx
|Tx ≤ t0

]
P (Tx ≤ t0) + E

[
Mx

t0∧Tx
|Tx > t0

]
P (Tx > t0)

≥ E
[
Mx

t0∧Tx
|Tx ≤ t0

]
P (Tx ≤ t0)

= E
[
Mx

Tx
|Tx ≤ t0

]
P (Tx ≤ t0)

and thus, since x + YTx ≤ 0 on {Tx < ∞},
P (Tx ≤ t0) ≤ e−rx

E[Mx
Tx
|Tx≤t0]

≤ e−rx

E[e−Txg(r)|Tx≤t0]

≤ e−rx sup
t≥0

etg(r).

In order to get this inequality as good as possible, we shall choose r as large as possible under

the restriction supt≥0 etg(r) < ∞. Let R denote that value. Obviously this means that

R = sup {r : g(r) ≤ 0} .

In the classical risk process case this gives R as the positive solution of Θ(r) = cr/λ, i.e., R is

the Lundberg exponent. Thus we have

ψ(x) ≤ e−Rx (1.2.2)

which is called the Lundberg inequality. Comparing with (1.1.12) and (1.2.2) it is seen that

R actually is the best possible exponent.
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1.2.2 Cramér-Lundberg asymptotics

Under the condition (1.1.6), the Cramér-Lundberg asymptotic formula states that if

∫ ∞

0

yeRydF1(y) < ∞,

then

ψ(x) ∼ ρµ

R
∫∞
0

yeRyF (y)dy
e−Rx as x →∞. (1.2.3)

If

∫ ∞

0

yeRydF1(y) = ∞, (1.2.4)

then

ψ(x) = o(e−Rx) as x →∞. (1.2.5)

and meanwhile, the Lundberg inequality states that

ψ(x) ≤ e−Rx, x ≥ 0, (1.2.6)

where C1(x) ∼ C2(x) as x →∞ means lim
x→∞

C1(x)/C2(x) = 1.

The asymptotic formula (1.2.3) provides an exponential asymptotic estimate for the ruin

probability as x →∞, while the Lundberg inequality (1.2.6) gives an exponential upper bound

for the ruin probability for all x ≥ 0. These two results constitute the well-known Cramér-

Lundberg approximations for the ruin probability in the classical risk model.

When the claim sizes are exponentially distributed, that is, F (y) = e−y/µ, y ≥ 0, the ruin

probability has an explicit expression given by (1.1.4).

Thus, the Cramér-Lundberg asymptotic formula is exact when the claim sizes are exponentially

distributed. Further, the Lundberg upper bound can be improved so that the improved

Lundberg upper bound is also exact when the claim sizes are exponentially distributed. Indeed,

it can be proved under the Cramér-Lundberg condition (e.g. [8, 37, 39, 62]) that

ψ(x) ≤ βe−Rx, x ≥ 0, (1.2.7)
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where β is a constant, given by

β−1 = inf
0≤t<∞

∫∞
t

eRydF1(y)

eRtF 1(t)
, (1.2.8)

where 0 < β ≤ 1.

This improved Lundberg upper bound (1.2.7) equals the ruin probability when the claim

sizes are exponentially distributed. In fact, the constant β in (1.2.7) has an explicit expression

of β = 1/(1 + ρ) if the distribution F has a decreasing failure rate (DFR)♦.

The Cramér-Lundberg approximations provide an exponential description of the ruin

probability in the classical risk model. They have become two standard results on ruin

probabilities in risk theory.

The original proofs of the Cramér-Lundberg approximations were based on Wiener-Hopf

methods and can be found in Cramér [10, 11] and Lundberg [40, 41]. However, these two

results can be proved in different ways now. For example, the martingale approach of Gerber

[26, 27], Wald’s identity in [47], and the induction method in [31] have been used to prove

the Lundberg inequality. Further, since the integral equation (A.3.4) can be rewritten as the

following defective renewal equation

ψ(x) =
1

1 + ρ

(
F 1(x) +

∫ x

0

ψ(x− y)dF1(y)

)
, x ≥ 0, (1.2.9)

the Cramér-Lundberg asymptotic formula can be obtained simply from the key renewal theorem

for the solution of a defective renewal equation, see, for instance [23]. All these methods are

much simpler than the Wiener-Hopf methods used by Cramér and Lundberg and have been

used extensively in risk theory and other disciplines. In particular, the martingale approach is a

powerful tool for deriving exponential inequalities for ruin probabilities. See, for example [12],

for a review on this topic. In addition, the induction method is very effective for one to improve

and generalize the Lundberg inequality. The applications of the method for the generalizations

and improvements of the Lundberg inequality can be found in [9, 58, 59, 61, 62].

Further, the key renewal theorem has become a standard method for deriving exponential

♦See, Section 2.1 or [62] for more details.
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asymptotic formulae for ruin probabilities and related ruin quantities, such as the distributions

of the surplus just before ruin, the deficit at ruin, and the amount of claim causing ruin; see,

for example [29, 62].

Moreover, the Cramér-Lundberg asymptotic formula is also available for the solution to

defective renewal equation, see, for example [25, 53] for details. Also, a generalized Lundberg

inequality for the solution to defective renewal equation can be found in [60].

On the other hand, the solution to the defective renewal equation (1.2.9) can be expressed

as the tail of a compound geometric distribution, namely,

ψ(x) =
ρ

1 + ρ

∞∑
n=1

(
1

1 + ρ

)n

F
(n)
1 (x), x ≥ 0, (1.2.10)

where F
(n)
1 (x) is the n-fold convolution of the distribution function (df) F1(x). This expression

is known as Beekman’s convolution series.

Thus, the ruin probability in the classical risk model can be characterized as the tail of a

compound geometric distribution. Indeed, the Cramér-Lundberg asymptotic formula and the

Lundberg inequality can be stated generally for the tail of a compound geometric distribution.

The tail of a compound geometric distribution is a very useful probability model arising in

many applied probability fields such as risk theory, queueing, and reliability. More applications

of a compound geometric distribution in risk theory can be found in [38, 62], among others.

It is clear that the Cramér-Lundberg condition plays a critical role in the Cramér-Lundberg

approximations. However, there are many interesting claim size distributions that do not

satisfy the Cramér-Lundberg condition. For example, when the moment generating function of

a distribution does not exist or a distribution is heavy-tailed such as Pareto and lognormal

distributions, the Cramér-Lundberg condition is not valid. Further, even if the moment

generating function of a distribution exists, the Cramér-Lundberg condition may still fail.

In fact, there exist some claim size distributions, including certain inverse Gaussian and

generalized inverse Gaussian distributions, so that for any r > 0 with
∫∞
0

erxdF1(x) < ∞,

∫ ∞

0

erxdF1(x) < 1 + ρ.
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Such distributions are said to be medium tailed; see, for example, [19] for details.

For these medium- and heavy-tailed claim size distributions, the Cramér-Lundberg

approximations are not applicable. Indeed, the asymptotic behavior of the ruin probability

in these cases are totally different from those when the Cramér-Lundberg condition holds. For

instance, if F is a subexponential distribution, which means

lim
x→∞

F (2)(x)

F (x)
= 2, (1.2.11)

where F (2) means the two-fold convolution, i.e.,

F (2)(x) =

∫ ∞

−∞
F (x− y) dF (y),

then the ruin probability ψ(x) has the following asymptotic form

ψ(x) ∼ 1

ρ
F 1(x) as x →∞, (1.2.12)

which implies that ruin is asymptotically determined by a large claim. A review of

the asymptotic behavior of the ruin probability with medium- and heavy-tailed claim size

distributions can be found in [21, 22].

However, the Cramér-Lundberg condition can be generalized so that a generalized Lundberg

inequality holds for more general claim size distributions. In doing so, we recall from the

theory of stochastic orderings that a distribution B supported on [0,∞) is said to be new

worse than used (NWU) if for any x ≥ 0 and y ≥ 0,

B(x + y) ≥ B(x)B(y). (1.2.13)

In particular, an exponential distribution is an example of an NWU distribution when the

equality holds in (1.2.13).

Willmot [58] used an NWU distribution function to replace the exponential function in the

Lundberg equation (1.1.6) and assumed that there exists an NWU distribution B so that

∫ ∞

0

(B(x))−1dF1(x) = 1 + ρ. (1.2.14)
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Under the condition (1.2.14), Willmot [58] derived a generalized Lundberg upper bound for the

ruin probability, which states that

ψ(x) ≤ B(x). (1.2.15)

The condition (1.2.14) can be satisfied by some medium and heavy-tailed claim size

distributions. See, [8, 58, 59, 62] for more discussions on this aspect. However, the condition

(1.2.14) still fails for some claim size distributions; see, for example, [8] for the explanation of

this case.

Dickson [16] adopted a truncated Lundberg condition and assumed that for any x > 0 there

exists a constant rx > 0 so that

∫ x

0

erxydF1(y) = 1 + ρ. (1.2.16)

Under the truncated condition (1.2.16), Dickson [16] derived an upper bound for the ruin

probability, and further Cai and Garrido [9] gave an improved upper bound and a lower bound

for the ruin probability, which state that

ρe−2rxx + F 1(x)

ρF 1(x)
≤ ψ(x) ≤ ρe−rxx + F 1(x)

ρF 1(x)
, x ≥ 0. (1.2.17)

The truncated condition (1.2.16) applies to any positive claim size distribution with a finite

mean. In addition, even when the Cramér-Lundberg condition holds, the upper bound in

(1.2.17) may be tighter than the Lundberg upper bound; see [9] for details.

1.2.3 More general risk models

The Cramér-Lundberg approximations are also available for ruin probabilities in some more

general risk models. For instance, if the claim number process Nt in the classical risk model is

assumed to be a renewal process, the resulting risk model is called the compound renewal risk

model or the Sparre Andersen risk model. In this risk model, interclaim times {T1, T2, . . .}
form a sequence of independent and identically distributed positive random variables with

common distribution function G(t) and common mean
∫∞
0

G(t)dt = (1/λ) > 0. The ruin
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probability in the Sparre Andersen risk model, denoted by ψ0(x), satisfies the same defective

renewal equation as (1.2.9) for ψ(x) and is thus the tail of a compound geometric distribution.

However, the underlying distribution in the defective renewal equation in this case is unknown

in general; see, for example, [20, 32] for details.

Suppose that there exists a constant r0 so that

E
[
er0(Y1−cT1)

]
= 1. (1.2.18)

Thus, under the condition (1.2.18), by the key renewal theorem, we have

ψ0(x) ∼ C0e
−rxx as x →∞; (1.2.19)

where C0 > 0 is a constant. Unfortunately, the constant C0 > 0 is unknown since it depends

on the unknown underlying distribution. However, the Lundberg inequality holds for the ruin

probability ψ0(x), which states that

ψ0(x) ≤ e−rxx, x →∞; (1.2.20)

see, for example, [32] for the proofs of these results.

Further, if the claim number process Nt in the classical risk model is assumed to be a

stationary renewal process, the resulting risk model is called the compound stationary

renewal risk model. In this risk model, interclaim times {T1, T2, . . .} form a sequence of

independent positive random variables; {T2, T3, . . .} have a common distribution function G(t)

as that in the compound renewal risk model; and T1 has an equilibrium distribution function

of Ge(t) = λ
∫ t

0
G(s)ds. The ruin probability in this risk model, denoted by ψe(x), can be

expressed as the function of ψ0(x), namely

ψe(x) =
λµ

c

(
F1(x) +

∫ x

0

ψ0(x− y)dF1(y)

)
, (1.2.21)

which follows from conditioning on the size and time of the first claim ?.

Thus, applying (1.2.19) and (1.2.20) to (1.2.21), we have

ψe(x) ∼ Cee
−r0x as x →∞, (1.2.22)

?See, for example, (40) on page 69 of [32].
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and

ψe(x) ≤ λ

cr0

(
MY (r0)− 1

)
e−r0x, x ≥ 0, (1.2.23)

where Ce = λ
cr0 (MY (r0)− 1) C0 and MY (t) is the moment generating function of the claim

size distribution F . Like the case in the Sparre Andersen risk model, the constant Ce in the

asymptotic formula (1.2.22) is also unknown. Further, the constant λ
cr0 (MY (r0)− 1) in the

Lundberg upper bound (1.2.23) may be greater than one.

The Cramér-Lundberg approximations to the ruin probability in a risk model when the claim

number process is a Cox process can be found in [4, 32, 52]. For the Lundberg inequality for

the ruin probability in the Poisson shot noise delayed-claims risk model, see [5]. Moreover,

the Cramér-Lundberg approximations to ruin probabilities in dependent risk models can be

found in [28, 42, 44].

In addition, the ruin probability in the perturbed compound Poisson risk model with

diffusion also admits the Cramér-Lundberg approximations. In this risk model, the surplus

process Xt satisfies

Xt = x + ct−
Nt∑
i=1

Yi + Wt, t ≥ 0, (1.2.24)

where {Wt}t≥0 is a Wiener process, independent of the Poisson process {Nt}t≥0 and the claim

sizes {Y1, Y2, . . .}, with infinitesimal drift 0 and infinitesimal variance 2D > 0.

Denote the ruin probability in the perturbed risk model by ψp(x) and assume that there

exists a constant Rp > 0 so

λ

∫ ∞

0

eRpydF (y) + DR2
p = λ + cRp. (1.2.25)

Then Dufresne and Gerber [17] derived the following Cramér-Lundberg asymptotic formula

ψe(x) ∼ Cpe
−Rpx as x →∞, (1.2.26)

and the following Lundberg upper bound

ψe(x) ≤ e−Rpx, x ≥ 0, (1.2.27)
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where Cp > 0 is a known constant. For the Cramér-Lundberg approximations to ruin

probabilities in more general perturbed risk models, see [24, 51]. A review of perturbed risk

models and the Cramér-Lundberg approximations to ruin probabilities in these models can be

found in [50].

We point out that the Lundberg inequality is also available for ruin probabilities in risk

models with interest. For example, Sundt and Teugels [57] derived the Lundberg upper bound

for the ruin probability in the classical risk model with a constant force of interest; Cai and

Dickson [7] gave exponential upper bounds for the ruin probability in the Sparre Andersen

risk model with a constant force of interest; Yang [63] obtained exponential upper bounds for

the ruin probability in a discrete time risk model with a constant rate of interest; and Cai [6]

derived exponential upper bounds for ruin probabilities in generalized discrete time risk models

with dependent rates of interest. A review of risk models with interest and investment and ruin

probabilities in these models can be found in [43]. For more topics on the Cramér-Lundberg

approximations to ruin probabilities, we refer to [2, 21, 27, 32, 46, 62], and references therein.

To sum up, the Cramér-Lundberg approximations provide an exponential asymptotic

formula and an exponential upper bound for the ruin probability in the classical risk model or

for the tail of a compound geometric distribution. These approximations are also available for

ruin probabilities in other risk models and appear in many other applied probability models.

1.3 Premium calculation principles

In this section we study the rules how to fix an adequate price, called a premium, for a family

of risks R to be insured. The investigation of such rules is an essential element of actuarial

science. Clearly, premiums cannot be too low because this would result in unacceptably large

losses for the insurer. On the other hand, premium cannot be too high either because of

competition between insurers. A premium calculation principle is a rule that determines the

premium as a functional, assigning a value C(R) ∈ R (we denote by R the set R ∪ {±∞}) to

the risk distribution FR. Typically, the premium C(R) dependes on certain characteristics of
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FR. For easy application, a premium calculation principle should require as little as possible

information on the distribution of the risk R. For example the simplest premium principle is

the (pure) net premium principle C(R) = E[R]. The difference C(R) − E[R] is called the

safety loading. Any reasonable premium C should consist of the net premium E[R] and some

security loading, i.e., C > E[R]. For completeness we review here some of the most popular

premium calculation principles.

• Expected value principle: the premium is calculated by C = (1 + θ)E[R] for some safety

loading θ > 0.

• Variance principle: the premium is C = E[R] + αV ar[R] for some α > 0.

• Modified variance principle: the premium is C = E[R] + αV ar[R]/E[R] for some α > 0.

• Standard deviation principle: the premium is C = E[R] + α
√

V ar[R] for some α > 0.

• Exponential principle: The premium is C = 1
α

log E[exp(αR)] for some α > 0.

• Zero utility principle: let u(x) be some strictly concave function. The zero utility premium

is the unique solution to the equation u(w) = E[u(w + C −R)]. Here w is considered as

the insurer’s initial wealth. One then compares the utility of the initial wealth (no risk

is taken over) with the expected utility of the wealth after the risk is taken over. The

exponential premium principle is a special case with u(x) = −exp(−αx).

• Adjusted risk principle: denote by F (x) the distribution function of the risk R and we

assume that R ≥ 0. The premium is calculated as C =
∫∞
0

(1− F (x))θ dx for some

θ ∈ (0, 1). Note that θ = 1 would give the net premium.

Unfortunately, the disadvantage of the premium calculation given before is that they are not

monotone with respect to stochastic ordering.
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1.4 Some aspects of reinsurance

If a risk R is too dangerous (for instance if R has large variance), the insurer may want to

transfer part of the risk R to another insurer. This risk transfer from a first insurer to another

insurance company is called reinsurance. The first insurer that transfers (part of) his risk is

called a cedant (or cedent). The supervising authority will then ask for large investment from

the shareholdersג, i.e., a large initial capital. If several cedent constituted a pool, the portfolio♠

would become large. And with it also the capital requirements would become smaller for each

of the participating companies.

We will review here some basic reinsurance forms.

1.4.1 Reinsurance acting on individual claims

For each claim Y the part of the claim left to the insurer is 0 ≤ h(Y ) ≤ Y . The reinsurer pays

Y − h(Y ). The function ∗∗ h(Y ) is called the self-insurance function or retention function.

• Full reinsurance: The self-insurance function is h(Y ) = 0, i.e., the reinsurer pays all the

claim. This form is not used in practice. But it is a popular form of a contract between

cedent and policyholder††.

• Proportional reinsurance: The self-insurance function is h(Y ) = bY for a retention level

b ∈ (0, 1). The reinsurer pays (1− b)Y .

• Excess of loss reinsurance: The self-insurance function is h(Y ) = min {Y, b} for some

deductible b ∈ (0,∞). The reinsurer pays (Y − b)+.

• First risk deductible: The reinsurer pays min {Y, b} for some deductible b ∈ (0,∞). Thus,

the self-insurance function is h(Y ) = (Y − b)+.

Aג mutual shareholder or stockholder is an individual or company (including a corporation) that legally
owns one or more shares of stock in a joint stock company. A company’s shareholders collectively own that
company. Thus, the typical goal of such companies is to enhance shareholder value.
♠A collection of investments held by an institution or a private individual.
∗∗Sometimes, we denote the retention function by h(Y, b) where b represent the retention level.
††The owner of an insurance policy; usually, but not always, the insured.
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• Proportional reinsurance a layer: The self-insurance function is h(Y ) = min {Y, a} +

(Y − b− γ)+ + b min
{
(Y − a)+ , γ

}
for some a, γ > 0 and b ∈ (0, 1).

1.4.2 Reinsurance acting on the aggregate claim

For the aggregate sum of claims S =
∑N

i=1 Yi, the insurer pays the amount h(S) with

0 ≤ h(S) ≤ S. The reinsurer pays S − h(S).

• Proportional reinsurance: The self-insurance function is h(S) = bS for a retention level

b ∈ (0, 1). This is the same as proportional reinsurance acting on individual claims.

• Stop-loss reinsurance: The self-insurance function is h(S) = min {S, b} for some

deductible b ∈ (0,∞).

• First risk deductible: The self-insurance function is h(S) = (S − b)+ for some deductible

b ∈ (0,∞).



Chapter 2

Stochastic orders

In this chapter we briefly review the most relevant issues of stochastic orders related with

the ruin problem. Stochastic orderings have found a wide field of application in probability,

statistics, and statistical theory, see Shaked and Shanthikumar [49], Lin and Willmot [62], as

comprehensive references. In probability theory, they are useful in deducing probability in-

equalities, comparing stochastic models, establishing bounds and inequalities in reliability and

queueing theory, in statistics for example in hypothesis testing, simultaneous comparisons, mul-

tiple decision problems, and in economics in decisions under risk, particularly in multi-attribute

utility theory. The stochastic orderings are associated with inequalities between expectations

of functions with respect to the corresponding distributions or random variables.

Consider a positive random variable Y with distribution function (df) F (y) = P (Y ≤ y), y ≥ 0.

The random variable Y may represent the time-until-death of an individual, or in the present

context the amount of the insurance loss. It is of importance to quantify and analyze the

thickness of the right tail for valuation purposes. In order to do so we use some notions from

theory of reliability.

Let X and Y be two random variables such that

P (X > x) ≤ P (Y > x) for all x ∈ R. (2.0.1)

Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ).

Roughly speaking, (2.0.1) says that X is less likely than Y to take on large values, where large

23
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means any value greater than x, and that this is the case for all x′s.

It is easy to verify (by noting that every closed interval is an infinite intersection of open

intervals) that X ≤st Y if, and only if,

P (X ≥ x) ≤ P (Y ≥ x) for all x ∈ R. (2.0.2)

In fact, we can recast (2.0.1) and (2.0.2) in a seemingly more general, but actually an equivalent,

way as follows ∗

P (X ∈ A) ≤ P (Y ∈ A) for all upper sets A ⊂ R. (2.0.3)

Another way of rewriting (2.0.3) is the following

E [1A(X)] ≤ E [1A(Y )] for all upper sets A ⊆ R, (2.0.4)

where 1A denotes the indicator function of A. From (2.0.3) it follows that if X ≤st Y then

E

[
m∑

i=1

ai1Ai
(X)

]
− b ≤ E

[
m∑

i=1

ai1Ai
(Y )

]
− b for all upper sets A ⊆ R, (2.0.5)

for all ai ≥ 0, i = 1, 2, . . . ,m, b ∈ R and m ≥ 0. Given an increasing function φ, it is posible,

for each m, to define a sequence of A′
is, a sequence of a′is, and a b (all of which may depend on

m), such that as m →∞ then (2.0.5) converges to

E [φ(X)] ≤ E [φ(Y )] , (2.0.6)

provided the expectations exist. It follows that X ≤st Y if, and only if, (2.0.6) holds for all

increasing function φ for which the expectations exist.

An important characterization of the usual stochastic order is the following theorem (here =st

denotes equality in law).

Theorem 2.0.1. Two random variables X and Y satisfy X ≤st Y if, and only if, there exist
two random variables X̂ and Ŷ , defined on the same probability space, such that

∗In the univariate case, that is on the real line, a set A is an upper set if, and only if, it is an open or closed
right half line.
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X̂ =st X, (2.0.7)

Ŷ =st Y, (2.0.8)

and

P
(
X̂ ≤ Ŷ

)
= 1. (2.0.9)

Proof. Obviously (2.0.7), (2.0.8), and (2.0.9) imply that X ≤st Y . In order to prove the
necessity part of the Theorem 2.0.1, let F and G be, respectively, the distribution of X
and Y and let F−1 and G−1 be the corresponding right continuous inverses, defined by
F−1(z) = sup {x : F (x) ≤ z} and G−1(z) = sup {x : G(x) ≤ z}, z ∈ [0, 1]. Define X̂ = F−1(V )

and Ŷ = G−1(V ) where V is a uniform [0, 1] random variable. Then it is easy to see that X̂

and Ŷ satisfy (2.0.7) and (2.0.8). From (2.0.2) it is seen that (2.0.9) also holds.

Clearly, if X ≤st Y then E[X] ≤ E[Y ]. However, as the following result shows, if two

random variables are ordered in the usual stochastic order and have the same expected values,

they must have the same distribution.

Theorem 2.0.2. 1. If X ≤st Y and E[X] = E[Y ], then X =st Y .

2. If X ≤st Y and if E [h(X)] = E [h(Y )] for some strictly increasing function h, then
X =st Y .

Proof. Let X̂ and Ŷ be as the Theorem 2.0.1. If P
(
X̂ < Ŷ

)
> 0 then E [X] = E

[
X̂

]
<

E
[
Ŷ

]
= E [Y ], a contradiction to the assumption in 1. Therefore X =st X̂ =st Ŷ =st Y .

The proof of 2 is similar: Observe that if X ≤st Y and h is as in 2 then h(X) ≤st h(Y ) and
therefore from Part 1 we have that h(X) =st h(Y ). But the strict monotonicity of h now gives
that X =st Y .

2.1 A property in reliability theory

If Y is a nonnegative random variable with an absolutely continuous distribution function

F , then the hazard rate, failure rate, or force of mortality of Y at y ≥ 0 are defined by

r(y) =
d

dy

(− ln
(
F (y)

))
= lim

h→0

1− P (Y > y + h|Y > y)

h
=

f(y)

F (y)
(2.1.1)

where F (y) = 1 − F (y) is the survival function and f(y) = d
dy

(F (y)) is the corresponding

density function.
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In many situations of practical interest, the failure rate r(y) is strictly monotone nonincreasing

(nondecreasing) in y, and this is associated with the situation where the distribution has thick

(thin) right tail.

The distribution function F (y) is said to be decreasing failure rate (DFR) if F (x+ y)/F (x)

is nondecreasing in y for fixed x ≥ 0, i.e. if F (y) is log-convex. It is evident from (2.1.1) that

if F (y) is absolutely continuous, then to have a decreasing failure rate is equivalent to r(y)

nonincreasing in y.

From (2.1.1),

∫ y

0

r(x)dx = − ln
(
F (y)

)

in other words

F (y) = e
R y
0 r(x)dx, y ≥ 0,

and so r(y) uniquely determines the distribution of Y .

Suppose now that the mean E [Y ] of Y exists, i.e. E [Y ] =
∫∞

0
ydF (y) < ∞. Then integration

by parts yields

∫∞
0

ydF (y) = −yF (y)|∞0 +
∫∞
0

F (y)dy

= − limy→∞ yF (y) +
∫∞

0
F (y)dy.

But,

0 ≤ yF (y) = y

∫ ∞

y

dF (x) ≤
∫ ∞

y

xdF (x),

and since E [Y ] < ∞, it follow that

0 ≤ lim
y→∞

yF (y) ≤ lim
y→∞

∫ ∞

y

xdF (x) = 0,

i.e. limy→∞ yF (y) = 0. Thus,

E [Y ] =

∫ ∞

0

F (y)dy. (2.1.2)
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From (2.1.1) and (2.1.2), therefore, we have

E [Y ] =

∫ ∞

0

F (y)dy =

∫ ∞

0

f(y)

r(y)
dy = E [1/r(y)] . (2.1.3)

Equation (2.1.3) is in agreement with our intuition that small values of r(y) are associated with

large values of Y .

In many situations of practical interest, the failure rate r(y) is strictly monotone nonincreasing

(nondecreasing) in y, and this is associated with the situation where the distribution has a

thick (thin) right tail.

The distribution function F (y) is said to be decreasing failure rate (DFR) if F (x + y)/F (y)

is nondecreasing in y for fixed x ≥ 0, i.e. if F (y) is log-convex. It is evident from (2.1.1) that

if F (y) is absolutely continuous, then DFR is equivalent to r(y) nonincreasing in y.

2.1.1 Equilibrium distributions

Equation (2.1.2) may be divided by E [Y ] to given
∫∞

0
F (y)
E[Y ]

dy = 1, which implies that

f1(y) = F (y)
E[Y ]

is a probability distribution function (even if F (y) is not absolutely continuous).

The corresponding distribution function is given by

F1(y) = 1− F 1(y) =

∫ y

0

F (x)

E [Y ]
dx, y ≥ 0, (2.1.4)

is called the equilibrium distribution function of F (y). The n-th moment is, by integration

by parts,
∫∞
0

yn F (y)
E[Y ]

dy = yn+1F (y)
(n+1)E[Y ]

|∞0 +
∫∞
0

yn+1dF (y)
(n+1)E[Y ]

= limy→∞
yn+1F (y)
(n+1)E[Y ]

+
∫∞

0
yn+1dF (y)
(n+1)E[Y ]

Now,

0 ≤ yn+1F (y) = yn+1

∫ ∞

y

dF (x) ≤
∫ ∞

y

xn+1dF (x).

Thus, if E [Y n+1] =
∫∞
0

xn+1dF (x) < ∞,

0 ≤ lim
y→∞

yn+1F (y) ≤ lim
y→∞

∫ ∞

y

xn+1dF (x)) = 0,
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implying that limy→∞ yn+1F (y) = 0, and so for n ≥ 0

∫ ∞

0

yndF1(y) =
E [Y n+1]

(n + 1)E [Y ]
. (2.1.5)

For n = 1, we have the equilibrium mean

∫ ∞

0

ydF1(y) =
E [Y 2]

2E [Y ]
. (2.1.6)

There is a useful identity involving F (y) and F1(y). Integration by parts yields, for y ≥ 0,

∫ ∞

y

xdF (x) = −xF (x)|∞y +

∫ ∞

y

F (x)dx.

As show in the last section, E [Y ] < ∞ implies that limy→∞ yF (y) = 0. Thus,

∫ ∞

y

xdF (x) = −yF (y)|+ E [Y ] F 1(y), y ≥ 0. (2.1.7)

It is sometimes convenient to solve (2.1.7) for F 1(y), yielding

F 1(y) =

∫∞
y

(x− y)dF (x)

E [Y ]
, y ≥ 0. (2.1.8)

2.1.2 The residual lifetime distribution and its mean

Consider the residual lifetime random variable Ty =





Y − y|Y > y for Y > y,

undefined otherwise

.

Then, for y ≥ 0

P (Ty > t) = P (Y − y|Y > y) = F (y+t)

F (y)

P (Ty > t) = 1− P (Ty ≤ t)

P (Ty ≤ t) = 1− F (y+t)

F (y)
,

where F (y) = 1− F (y) and F (y) = P (Y ≤ y).

The expected value of Ty, termed the mean residual lifetime (MRL), is given by

r(y) = E [Ty] =

∫∞
y

(t− y)dF (t)

F (y)
, y ≥ 0. (2.1.9)
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Either from integration by parts or from (2.1.2),

r(y) =

∫ ∞

0

P (Ty > t) dt =

∫ ∞

0

F (y + t)

F (y)
dt.

Equations (2.1.8) and (2.1.9) yield

r(y) =

∫∞
y

F (x)dx

F (y)
=

E [Y ] F 1(y)

F (y)

using (2.1.4). Obviously, r(0) = E [Y ]. The mean residual lifetime is closely related to the

failure rate r(y) where the latter exists, but does not require absolute continuity for its existence.

It is very useful for analysis of tail thickness, and large values of r(y) are associated with a

thick tail.

We have from (2.1.4) that

− d

dy

(
ln

(
F 1(y)

))
=

F (y)/E [Y ]

F 1(y)
=

1

r(y)
, (2.1.10)

which implies that the reciprocal 1/r(y) of the mean residual lifetime r(y) is the failure rate

associated with the equilibrium distribution function F 1(y), and from (2.1.2)

F 1(y) = e
R y
0 (1/r(x))dx, y ≥ 0. (2.1.11)

Equation (2.1.11), together with F
′
1 = F (y)/r(0), shows that F (y) is uniquely determined by

r(y).

The df F (y) is said to be increasing mean residual lifetime (IMRL) if r(y) is nondecreasing

in y.

2.1.3 Other classes of distributions

In the last two subsection, we have introduced the notion of failure rate and mean

residual lifetime, and classifications based on these notions. There are many other classes

of distributions, some of which are of interest for the present application. These distributions

are classified in terms of their survival function or the survival function of their equilibrium

distributions.
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• The decreasing failure rate (DFR) class is defined by F (x+y)

F (x)
nondecreasing in y for

fixed x ≥ 0.

• The distribution function F (y) is said to be increasing mean residual lifetime (IMRL)

if r(y) is nondecreasing in y.

• The distribution function F (x) is said to be new worse than used (NWU) if F (x+y) ≥
F (x)F (y) for all x ≥ 0 and y ≥ 0.

The name has its origin in the fact that the inequality is a restatement of P (Ty > x) ≥
P (Y > x), i.e. the residual lifetime is stochastically larger than the original lifetime Y .

• The distribution function F (y) is said to be 2-NWU if its equilibrium distribution

function F1(y) is NWU, i.e if F 1(x + y) ≥ F 1(x)F 1(y) for all x ≥ 0 and y ≥ 0.

• Another class is the new worse than used in convex ordering (NWUC) class. A

distribution F concentrated on (0,∞) is said to be NWUC if

F 1(x + y) ≥ F 1(y)F (x) for all x ≥ 0, y ≥ 0. (2.1.12)

In other words,

∫ ∞

y

F (x)dx ≤
∫ ∞

y

F (x + z)

F (z)
dx ⇔

∫ ∞

y

P (Y > x) dx ≤
∫ ∞

y

P (Ty > x) dx. (2.1.13)

That is, the residual lifetime of the equilibrium distribution function F 1(y) is

stochastically larger than Y .

Table 2.1 shows the relations between the class of distributions discussed.

The next proposition give us an important advantage of the distribution class (distributional

DRF ⇒ NWU
⇓ ⇓

IMRL ⇒ 2-NWU ⇒ NWUC

Table 2.1: The relation between the class of distributions.

properties) to be considered in order to derive a better bound for the ruin probability.
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Proposition 2.1.1. Suppose t > 0, x ≥ 0, and
∫∞
0

etydF (y) < ∞. Then if F (y) is NWUC

inf
0≤z≤x,F (z)>0

∫∞
z

etydF (y)

etzF (z)
=

∫ ∞

0

etydF (y) (2.1.14)

Proof. Let

P (TZ ≤ y) = 1− F (y + z)

F (z)
,

and thus
∫∞

z
etydF (y)

etzF (z)
=

∫ ∞

0

etydP (TZ ≤ y) = E
[
etTZ

]

If F (y) is NWUC,
∫ ∞

y

P (Y > x) dx ≤
∫ ∞

y

P (Ty > x) dx. (2.1.15)

Since ety is convex, it follow from Shaked and Shanthikumar [49], that E
(
etTZ

) ≥ E
(
etY

)
.

Thus,

inf
0≤z≤x,F (z)>0

E
(
etTZ

) ≥ E
(
etY

)
.

But when z = 0, TZ and Y have the same distribution function F (y) and thus

inf
0≤z≤x,F (z)>0

E
(
etTZ

)
= E

(
etY

)
.

Hence (2.1.14) hold.

2.2 Phase-type distribution

A phase-type distribution is a probability distribution that results from a system of

one or more inter-related Poisson processes occurring in sequence, or phases. The sequence

in which each of the phases occur may itself be a stochastic process. The distribution can be

represented by a random variable describing the time until absorption of a Markov process with

one absorbing state. Each of the states of the Markov process represents one of the phases.

It has a discrete time equivalent the discrete phase-type distribution.

The set of phase-type distributions is dense in the field of all positive-valued distributions,

that is, it can be used to approximate any positive valued distribution (in the sense that for
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any non-negative distribution function F (·) a sequence of phase-type distributions can be found

which pointwise converges at the points of continuity of F (·)). The denseness of this class makes

them very useful as a practical modelling tool. A proof of the denseness can be found in [55, 56].

Definition 2.2.1. Consider a continuous-time Markov process with m+1 states, where m ≥ 1,
such that the states 1, . . . , m are transient states and state m+1 is an absorbing state. Further,
let the process have an initial probability of starting in any of the m+1 phases given by the
probability vector (α, αm+1).

The continuous phase-type distribution is the distribution of time from the above process’s
starting until absorption in the absorbing state.

This process can be written in the form of a transition rate matrix,

Q =

[
S S0

0 0

]
,

where S is an m×m matrix and S0 = −S × 1. Here 1 represents an m× 1 vector with every
element being 1.

The interpretation of the column vector S0 is as the exit rate vector, i.e. the ith component
s0
i gives the intensity in state i for leaving 1, . . . , m and going to the absorbing state m + 1.

A convenient graphical representation is the phase diagram in term of the entrance probabilities
αi, the exit rates s0

i and the transition rates (intensities) sij:

Figure 2.1: Phase diagram of a phase-type distribution with 3 phases {i, j, k}.

The basic analytical properties of phase-type distributions are given by the following result
(a proof of these result can be found in [2]). Recall that the matrix-exponential eK is defined
by the standard series expansion

∑∞
n=0 Kn/n!.
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2.2.1 Characterization

The distribution of time X until the process reaches the absorbing state is said to be phase-

type distributed and is denoted PH(α, S).

The distribution function of X is given by,

F (x) = 1−α exp(Sx)1,

and the density function,

f(x) = α exp(Sx)S0,

for all x > 0, where exp(·) is the matrix exponential. It is usually assumed the probability of

process starting in the absorbing state is zero. The moments of the distribution function are

given by

E[Xn] =

∫ ∞

0

xnF (dx) = (−1)nn!αS−n1.

The moment-generating function is given by

MX(t) =

∫ ∞

0

etxF (dx) = α(−tI − S)−1S0.

2.2.2 Special cases

The following probability distributions are all considered special cases of a continuous phase-

type distribution:

• Degenerate distribution, point mass at zero or the empty phase-type distribution - 0

phases.

• Exponential distribution - 1 phase.

• Erlang distribution - 2 or more identical phases in sequence.

• Deterministic distribution (or constant) - The limiting case of an Erlang distribution, as

the number of phases become infinite, while the time in each state becomes zero.
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• Coxian distribution - 2 or more (not necessarily identical) phases in sequence, with a

probability of transitioning to the terminating/absorbing state after each phase.

• Hyper-exponential distribution (also called a mixture of exponential) - 2 or more non-

identical phases, that each have a probability of occurring in a mutually exclusive, or

parallel, manner. (Note: The exponential distribution is the degenerate situation when

all the parallel phases are identical.)

• Hypoexponential distribution - 2 or more phases in sequence, can be non-identical or a

mixture of identical and non-identical phases, generalises the Erlang.

As the phase-type distribution is dense in the field of all positive-valued distributions, we

can represent any positive valued distribution. However, the phase-type is a light-tailed or

platikurtic distribution. So the representation of heavy-tailed or leptokurtic distribution by

phase type is an approximation, even if the precision of the approximation can be as good as

we want.

2.2.3 Examples

In all the following examples it is assumed that there is no probability mass at zero, that is

αm+1 = 0.

1. Exponential distribution:

The simplest non-trivial example of a phase-type distribution is the exponential

distribution of parameter λ. The phase-type distribution is the lifetime of a particle

with constant failure rate λ, the parameter of the phase-type distribution are : S = −λ

and α = 1.

2. Hyper-exponential or mixture of exponential distribution:

The hyper-exponential distribution Hk with k parallel channels is defined as a mixture

of k exponential distributions with parameters (λ1, λ2, . . . , λk) can be represented as a
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phase type distribution:

α = (α1, α2, . . . , αk),

and

S =




−λ1 0 · · · 0

0 −λ2 · · · 0
...

...
. . .

...

0 0 · · · −λk




,

where (α1, α2, . . . , αk) is the initial vector (such that
∑

αi = 1 and αi > 0 for all i). The

mixture of exponential can be characterized through its density

f(x) =
k∑

i=1

αiλie
−λix

or its distribution function

F (x) = 1−
k∑

i=1

αie
−λix.

This mixture of k exponential distributions have the following phase diagram with k + 1

states

Figure 2.2: Phase diagram for the hyper-exponential distribution.

3. Erlang distribution:

The Erlang distribution has two parameters, the shape an integer k > 0 (phases) and the
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rate λ > 0. This is sometimes denoted E(k, λ). The Erlang distribution with k phases is

defines the Gamma distribution with integer parameter k and density

λk xk−1

k!
e−λx.

Since this corresponds to a convolution of k exponential densities with the same rate λ.

The Erlang distribution can be written in the form of a phase-type distribution by making

S a k × k matrix with diagonal elements −λ and super-diagonal elements λ, with the

probability of starting in state 1 equal to 1. For example E(k, λ),

α = (1, 0, . . . , 0),

and

S =




−λ λ 0 · · · 0 0

0 −λ λ · · · 0 0
...

...
. . .

...

0 0 0 · · · −λ λ

0 0 0 · · · 0 −λ




.

The hypoexponential distribution is a generalisation of the Erlang distribution by having

different rates for each transition (the non-homogeneous case).

The Erlang distribution may be represented by the phase diagram with k phases:

Figure 2.3: Phase diagram for the Erlang distribution.

4. Mixture of Erlang distribution:

The mixture of two Erlang distribution with parameter E(3, λ1), E(3, λ2) and (α1, α2)

(such that λ1 + λ2 = 1 and for each i, αi ≥ 0) can be represented as a phase type

distribution with

α = (α1, 0, 0, α2, 0, 0),
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and

S =




−λ1 λ1 0 0 0 0

0 −λ1 λ1 0 0 0

0 0 −λ1 0 0 0

0 0 0 −λ2 λ2 0

0 0 0 0 −λ2 λ2

0 0 0 0 0 −λ2




.

The mixture of Erlang distribution may be represented by the diagram in Figure 2.4.

Figure 2.4: Phase diagram for the mixture of Erlang distribution.

5. Coxian distribution:

The Coxian distribution is a generalisation of the hypoexponential. Instead of only being

able to enter the absorbing state from state k it can be reached from any phase. The

phase-type representation is given by,

S =




−λ1 p1λ1 0 . . . 0 0

0 −λ2 p2λ2
. . . 0 0

...
. . . . . . . . . . . .

...

0 0
. . . −λk−2 pk−2λk−2 0

0 0 . . . 0 −λk−1 pk−1λk−1

0 0 . . . 0 0 −λk




and

α = (1, 0, . . . , 0),
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where 0 < p1, . . . , pk−1 ≤ 1. In the case where all pi = 1 we have the hypoexponential

distribution. The Coxian distribution is extremely important as any acyclic phase-type

distribution has an equivalent Coxian representation.

The generalised Coxian distribution relaxes the condition that requires starting in the

first phase. This class of distribution is defined as the class of phase-type distributions

with a phase diagram of the following form:

Figure 2.5: Phase diagram for the Coxian distribution.

The Erlang distribution is a special case of a Coxian distribution.

2.3 Stochastic orders and phase-type distributions

Let F (y) phase-type distribution with parameters (α, S), we want to see under what

condition the phase-type belongs to each class of distribution in the sense of stochastic orders.

Remark 2.3.1. If F (x) is a phase-type distribution with parameter (α, S), always S−1

exist. Moreover, E[Y ] =
∫∞
0

F (y)dy = −αS−11, F1(y) =

∫ y

0
F (x)dx

E[Y ]
=

∫ y

0
αeSx1dx

−αS−11
=

αS−1{eSy − I}1
−αS−11

and F 1(y) =
αS−1eSy1

αS−11
with y ≥ 0.

• The df F is DFR (decreasing failure rate): if F (x+y)

F (y)
is nondecreasing in y for fixed x ≥ 0,

that is equivalent to satisface that ∂
∂y

F (x+y)

F (y)
is non-negative in y for fixed x ≥ 0.

In this case F (x+y)

F (y)
= αeS(x+y)1

αeSy1
, then

∂

∂y

F (x + y)

F (y)
= † αSeS(x+y)α̂eSy1− αeS(x+y)α̂SeSy1

(αeSy1)2

=
α{SeS(x+y)α̂− eS(x+y)α̂S}eSy1

(αeSy1)2

=
α{SA− AS}eSy1

(αeSy1)2
≥ 0;

(2.3.1)
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where A = eS(x+y)α̂ and α̂ = 1×α. Therefore, (2.3.1) is non-negative, if, and only if, the

numerator is non-negative, i.e, that is only posible if SA − AS is non-negative definite.

The equality is when S commute with A = eS(x+y)eα.

So that, The phase-type distribution is DFR if only if SA−AS is non-negative definite.

Remark 2.3.2. Particularly, the exponential df F (y) = 1− e−µy, y ≥ 0 is both decreasing
and increasing failure rate since r(y) = µ for all y.

• The df F is IMRL (increasing mean residual life): the phase-type distribution is IMRL if

r(y) is non-decreasing in y for fixed x ≥ 0 (see, (2.1.9)), i.e.,

r(y) = E[Ty] =

∫∞
y

(t− y)dF (t)

F (y)
dt

=
E(Y )F 1(y)

F (y)

=
−αS−1eSy1

αeSy1
is increasing;

or equivalently, if
∂

∂y
r(y) =

α(−eSyα̂ + S−1eSyα̂S)eSy1

(αeSy1)2
is non-negative, i.e, F (y) is IMRL

iff −B + S−1BS is non-negative definite with B = eSyα̂.

• The df F is NWU (new worse than used): if

F (x + y)− F (y) · F (x) = αeSx(I − 1α)eSy1 ≥ 0 ∀y ≥ 0 and x fixed ; (2.3.2)

i.e, the phase-type distribution is NWU iff I − α̂ is non-negative definite.

• The df F is 2-NWU (second new worse than used): we say that F is 2-NWU iff

F 1(x + y)− F 1(y) · F 1(x) =
αS−1(eαS−1eSy − eSyeαS−1)eSx1

(αS−11)2
≥ 0.

The phase-type distribution is 2-NWU iff S−1(BeSy − eSyB) is non-negative definite,

where B = α̂S−1.

†Here, we use that
∂

∂t
eBt = BeBt = eBtB.
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• The df F is NWUC (new worse than used in convex ordering): if

F 1(x + y)− F 1(y) · F (x) =
αS−1eSy(I − 1α)eSx1

αS−11
≥ 0, ∀x ≥ 0, ∀y ≥ 0. (2.3.3)

Then, The phase-type distribution is NWUC iff S−1 and S−1eSy(I−1α) are non-negative

or non-positive definite both simultaneously.



Chapter 3

Stochastic control and dynamic
programming

In this chapter we give an introduction to discrete-time dynamic programming focused to

the minimization of the ruin probability. There are many textbooks where we can found a

more general introduction to this topic∗. Stochastic control is one of methods being used to

find optimal decision-making strategies in fields as operation research, actuarial science and

mathematical finance.

We include in this chapter some results in of Schmidli’s textbook [54] in order to introduce

some important definitions, notations and basic notions.

We will consider processes in discrete time, i.e., the set of possible time points is N. We

will work on some Polish measurable space space (X,X ), with X denoting the Borel-σ-algebra

on X. The Borel-σ-algebra is the smallest σ-algebra† containing all the open sets (a reader not

familiar with metric spaces can just replace X by Nd, Zd, or Rd endowed with the Euclidean

distance). By N we denote the strictly positive integers.

∗See, [3, 33, 34, 45] for more details.
†See, Section A.2 for more details.
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3.1 Dynamic programming

3.1.1 Introduction

Let {Yn}n∈N be an independent and identically distributed (i.i.d.) sequence of random vari-

ables on some Polish space (Y,Y). These random variables model the stochastic changes over

time. We work with the natural filtration {Fn} =
{FY

n

}
. At each time point n ∈ Z+ a decision

is made.

Definition 3.1.1. A decision function is a measurable function a : X → B. A plan (policy,
strategy) is a sequence π = {an}n≥0.

Then an(Xn) will represent the action chosen at the beginning of period n + 1. We model

this decision as a variable an from some space B (which is endowed with some topology we do

not mention explicitly here). The stochastic process π = {an}n∈Z+ must be adapted, because

the decision can only be based on the present and not on future information. We therefore only

allow controls π that are adapted. We may make some restriction to the possible strategies π.

Let Π denote the set of admissible strategies, i.e., the adapted strategies π = {an} that are

allowed.

The controlled stochastic process is now constructed in the following way. Let (X,X ) be a

Polish space, the state space of the stochastic process, and x ∈ X be the initial state. We let

X0 = 0 be the starting value of the process. Note that the initial value is not stochastic. The

process at time n + 1 is

Xn+1 = f (Xn, an, Yn)

where f : X × B × Y → X is a measurable function. The interpretation is the following. The

next state of the process X only depends on the present state and the present decision. The

decisions made at earlier times and the path up to the present state do not matter. The process

X is a Markov process, because the decision an depends on Xn only.
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At each time point there is a reward, r (Xn, an). A negative value of r (Xn, an) can be

regarded as a cost. The value connected to some strategy π is then

V π
T (x) = E

[
T∑

n=0

r (Xn, an) e−αn

]
. (3.1.1)

The time horizon T can be finite or infinite. The parameter α ≥ 0 is a discounting parameter.

If T = ∞, we often will have to assume that α > 0 in order for V π
∞(x) to be finite for all π ∈ Π.

Our goal will be to maximise V π
T (x). We therefore define the value function

VT (x) = sup
π∈Π

V π
T (x).

In the case T = ∞, we just write V (x) and V π(x) instead of V∞(x) and V π
∞(x), respectively.

We now assume that VT (x) ∈ R for all x. It is clear that if there is a strategy π such that

V π
T (x) ∈ R, then VT (x) > −∞. The property VT (x) < ∞ has to be proved for every problem

separately. Another (technical) problem is to be shown that VT (x) is a measurable function.

In many problem it can be shown that VT (x) is increasing or continuous, and hence measurable.

It is not feasible to find V (x) by calculating the value function V π
T (x) for each possible

strategy π, particularly not if X and T are infinite. One therefore has to find a different way

to characterise the value function VT (x). In our setup it turns out that the problem can be

simplified. We next prove the dynamic programming principle, also called Bellman’s equation.

We allow all controls {an} that are adapted. With Vt(x) and V π
t (x) we denote the remaining

value if t time units are left. For instance, Vt−1(x) is the value if we stand at time 1 and X1.

We let V−1(x) = 0.

Lemma 3.1.1. Suppose that VT (x) is finite. The function VT (x) fulfils the dynamic
programming principle

VT (x) = sup
π∈Π

{
r(x, a) + e−αE [VT−1 (f (x, a, Y ))]

}
, (3.1.2)

where Y is a generic random variable with the same distribution as Yn. If T = ∞, the dynamic
programming principle becomes

V (x) = sup
π∈Π

{
r(x, a) + e−αE [V (f (x, a, Y ))]

}
. (3.1.3)



Stochastic Control in Discrete Time 44

Proof. Let π be an arbitrary strategy. Then X1 = f (x, a0, Y1) and

V π
T (x) = E [r(x, a0)] + e−αE

[
T−1∑
n=0

r(Xn+1, an+1)e
−αn

]
.

Condition on X1, a0 (we allow random decision) and let X̃n = Xn+1, ãn = an+1 and Ỹn = Yn+1.
Then

X̃n+1 = f
(
X̃x, ãn, Ỹn

)

and

E

[
T−1∑
n=0

r(Xn+1, an+1)e
−αn|X1, a0

]
= E

[
T−1∑
n=0

r(X̃n, ãn)e−αn|X1, a0

]
≤ V eπ

T−1(X1) ≤ VT−1(X1).

Thus,

V π
T (x) ≤ E [r(x, a0) + e−αVT−1(X1)]

= E [r(x, a0) + e−αVT−1(f (x, a0, Y1))]

≤ sup
π∈Π

{r(x, a) + e−αE [VT−1 (f (x, a, Y ))]} .

Because π is arbitrary, this shows that

VT (x) ≤ sup
π∈Π

{
r(x, a) + e−αE [VT−1 (f (x, a, Y ))]

}
.

Fix ε > 0 and a ∈ B. Let us now consider a strategy π̃ such that, conditioned on
X1 = f (x, a, Y1), VT−1(X1) < V eπ

T−1(X1)+ε. Here, we do not address the problem of whether we
can do that in a measurable way because this point usually is clear in the examples, particularly
the examples treated in [3, 33, 34, 35, 54]. Let a0 = a and an = ãn−1. Then

r(x, a) + e−αE [VT−1 (f (x, a, Y1))] < r(x, a) + e−αE
[
V eπ

T−1 (X1)
]
+ ε

= V π
T (x) ≤ VT (x) + ε.

Because ε is arbitrary, the result follows.

The proof does not explicitly use the finiteness of T . Thus, we can replace T and T − 1 by
∞, and (3.1.3) is proved in the same way.

The result says that we have to maximise the present reward plus the value of the future

rewards. If we do that at each time point, we end up with the optimal value. Equation (3.1.2)

can be solved recursively. Moreover, equation (3.1.3) can be solve numerically.
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3.1.2 The optimal strategy

We next characterise the optimal strategy.

Corollary 3.1.2. Suppose that T < ∞, VT (x) is finite, and that for any t ≤ T there exists
ϕt(x) such that ϕt(x) = a is maximising the right-hand side of (3.1.2) for T = t. We assume
that ϕt : X→ B is measurable for each t. Let an = ϕT−n (Xn). Then

VT (x) = V π
T (x).

Proof. Clearly, V π
T (x) ≤ VT (x). If T = 0, then for any strategy π′ = a′0

V π′
0 (x) = E [r (x, a′0)] ≤ r (x, ϕ0(x)) = V π

0 (x),

and V0(x) ≤ V π
0 (x) follows. We prove the assertion for T < ∞ by induction. Suppose that the

assertion is proved for T = n. Let π′ be an arbitrary strategy for T = n + 1, and use the tilde
sign as in the proof of Lemma 3.1.1. Then

V π′
n+1(x) = E

[
r (x, a′0) + e−αE

[
V eπ′

n (f (x, a′0, Y1)) |a′0
]]

≤ E [r (x, a′0) + e−αE [Vn (f (x, a′0, Y1)) |a′0]]

≤ r (x, ϕn+1(x)) + e−αE [Vn (f (x, ϕn+1(x), Y1))]

= r (x, ϕn+1(x)) + e−αE
[
V eπ

n (f (x, ϕn+1(x), Y1))
]

= V π
n+1(x).

This proves that Vn+1(x) ≤ V π
n+1(x).

We can easily see from that if an does not maximise the Bellman equation, then it cannot

be optimal. In particular, if ϕn(x) does not exist for all n ≤ T , then an optimal strategy cannot

exist.

If the time horizon is infinite, the proof of the existence of an optimal strategy is slightly

more complicated. But the optimal strategy does not explicitly depend on time and is therefore

simpler.

Corollary 3.1.3. Suppose that T = ∞, V (x) < ∞, and that for every x there is a ϕ(x)
maximising the right-hand side of (3.1.3). Suppose further that ϕ(x) is measurable and that

lim
n→∞

sup
π′∈Π

E

[ ∞∑

k=n

|r (X ′
k, a

′
k) |e−αk

]
= 0, (3.1.4)

where X ′
n+1 = f (X ′

n, a′n, Yn+1). Let an = ϕ (Xn). Then V π(x) = V (x).
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Proof. We first show that for any strategy π′ with a value a′0 that does not maximise the right-
hand side of (3.1.3) there exists a strategy π” with a”

0 = ϕ(x) that yields a large value. Choose
ε > 0. For each initial value x̃ there exists a strategy π̃” such that V (x̃) ≤ V eπ”

(x̃)+ε. Also here
we refrain from the technical problem of showing that π̃” can be chosen in a measurable way,
because it is simpler to address this problem for the specific examples. Let π” be the strategy
with a′0 = ϕ(x) and a′n+1 = ã′n, where the initial capital is x̃ = f (x, ϕ(x), Y1). Thus,

V π′(x) = E
[
r (x, a′0) + e−αE

[
V eπ′ (f (x, a′0, Y1)) |a′0

]]

≤ E [r (x, a′0) + e−αE [V (f (x, a′0, Y1)) |a′0]]

< r (x, ϕ(x)) + e−αE [V (f (x, ϕ(x), Y1))] = V (x)

≤ r (x, ϕ(x)) + e−αE [V (f (x, ϕ(x), Y1))] + ε = V (x) + ε.

If ε < V (x)− V π′(x), we have that V π′(x) < V π”
(x).

Let Πn be the set of all strategies π′ with a′k = ϕ(Xk) for 0 ≤ k ≤ n. We just have shown
that V (x) = supπ′∈Π0

V π′(x). Suppose that V (x) = supπ′∈Πn
V π′(x). Let π′ be a strategy such

that a′k = ϕ(Xk) for k ≤ n and π′n+1 does not maximise the right-hand side of (3.1.3) for
x = Xn+1. Let ã′k = a′n+1+k. Then by the argument used for n = 0, there is a strategy π̃” with

ã”
0 = ϕ (Xn+1) such that V eπ”

(Xn+1) > V eπ′ (Xn+1). Let π” be the strategy with a”
k = a′k and

a”
n+1+k = ã”

k. Because

V π′(x) = E

[
n∑

k=0

r (Xk, ϕ (Xk)) e−αk + e−α(n+1)V eπ′ (Xn+1)

]

< E

[
n∑

k=0

r (Xk, ϕ (Xk)) e−αk + e−α(n+1)V eπ”
(Xn+1)

]
,

we get V (x) = supπ′∈Πn+1
V π′(x).

Because for all n we have that V (x) = supπ′∈Πn
V π′(x), we are now able to prove that an =

ϕ (Xn) is optimal. Let ε > 0. There exists n ∈ Z+ such that E
[∑∞

k=n+1 |r (X ′
k, a

′
k) |e−αk

]
< ε

for any strategy π′. Let π′ be a strategy in Πn such that V (x)− V π′(x) < ε. Then

V (x) < V π′(x) + ε = E
[∑∞

k=0 r (X ′
k, a

′
k) e−αk

]
+ ε

< E
[∑n

k=0 r (X ′
k, a

′
k) e−αk

]
+ 2ε

= E
[∑n

k=0 r (Xk, ak) e−αk
]
+ 2ε ≤ V π(x) + 3ε.

Because ε is arbitrary, it follows that V (x) ≤ V π(x).

Remark 3.1.1. The technical condition (3.1.4) is always fulfilled if the reward function r(x, ϕ) is
bounded and α > 0. Alternatively, if one knows the value function V (x), one could just prove
that V π(x) = V (x). Then condition (3.1.4) is not needed.
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3.2 Minimizing ruin probability and optimal reinsurance

We now consider the discrete-time surplus process connected to some insurance portfolio.

The insurer earns some premium. With the surplus, reinsurance is bought, and a premium

has to be paid. The insurer can control how much reinsurance is bought. Our goal will be to

maximize the survival probability, or, equivalently, to minimize the ruin probability. In order

for the problem not to become trivial, we will have to assume that the cedent (first insurer)

would have to pay more for full reinsurance than the premium he receives.

Let Yi ≥ 0 be the aggregate claim in period i and let F (y) denote its distribution function.

The sequence is assumed to be iid. We work again with filtration
{FY

t

}
. The insurer can at

each time i choose the reinsurance for the next period. The set of possible reinsurance treaties

is a compact connected subset B ⊂ Rd. If the reinsurance treaty b ∈ B is chosen, the insurer has

to pay h(b, Yi) for the aggregate claim Yi in the ith period, and the rest is paid by the reinsurer.

Here h : (0,∞)× B → [0,∞) is some function with properties we will assume below. We only

allow reinsurance treaties with 0 ≤ h(b, y) ≤ y, i.e, the reinsurer pays at most the whole claim

size. For this protection the insurer has to pay a reinsurance premium. Let C(b) ∈ R denote

the premium left for the insurer if reinsurance b is chosen, i.e, the original premium minus

the reinsurance premium. The reinsurer can at any time change the reinsurance for the next

period, i.e., he chooses an adapted strategy {bn}. The income for the next period is then C(b)‡.

We assume that more reinsurance is more expensive ( h(b, y) ≥ h(b′, y) for all y implies that

C(b) ≥ C(b′) ) and that full reinsurance leads to a strictly negative income (C(br) < 0). We

also assume that C(b) and h(b, y) are continuous in b. The income in case of no reinsurance is

denoted by c. We then have that C(b) ≤ c. We also assume that h(b, y) is increasing in y. In

this case the generalised inverse ρ(z, b) given by

ρ(z, b) := sup {y : h(b, y) ≤ z} (3.2.1)

‡For popular reinsurance forms, see Section 1.4.
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is well defined. Note that ρ(z, b) is increasing and right-continuous in z. We also assume that

P (h(b, Y ) > C(b)) > 0 for all b ∈ B. Otherwise, ruin can be prevented by reinsurance and the

problem considered in this section becomes trivial. We also assume the net profit condition

E [C(b)− h(b, Y )] > 0 for some b. Otherwise, ruin cannot be prevented because the surplus

would be decreasing in time for all reinsurance treaties.

Let the initial capital x. Then the surplus process is X0 = x and

Xn+1 = Xn + C(b)− h (bn, Yn+1) , (3.2.2)

as long as Xn ≥ 0. If b ∈ B is now a reinsurance treaty fulfilling the net profit condition

E [C(b)− h(b, Y )] > 0, then by the law of large numbers, n−1
∑n

k=1 C(b) − h (b, Yk+1) →
E [C(b)− h(b, Y )]. This implies that for the constant strategy bn = b the process Xn

tends to infinity. In particular, infn Xn > −∞. Hence, there is an initial capital x0 such

that P (infn Xn ≥ 0|X0 = x0) > 0. Because there is a strictly positive probability that

from initial capital zero the set [x0,∞) is reached before the set (−∞, 0), we get also that

P (infn Xn ≥ 0|X0 = 0) > 0. Hence, we have a strategy such that ruin is not certain.

We introduce a cemetary state κ. If Xn < 0 or Xn = κ. This allows us to formulate the

problem related with (3.1.1). We let Xn+1 = κ, α = 0 and choose the reward function

r(Xn, bn) =





0, if Xn ≥ 0 or Xn = κ,

−1, if Xn < 0.

(3.2.3)

In this way the cost is paid at most once. The value of a reinsurance strategy is V b(x) =

−P (Xn = κ for some n), and the value function is V (x) = supb V b(x), where we take the

supremum over all adapted reinsurance strategies b. Clearly, V (x) ∈ (−1, 0); hence, V : R+ →
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(−1, 0). Equation (3.1.3) then reads for x ≥ 0

V (x) = sup
b∈B

∫ ∞

0

V (x + C(b)− h(b, y)) dF (y)

= sup
b∈B

∫ ρ(x+C(b),b)

0

V (x + C(b)− h(b, y)) dF (y)− (1− F (ρ(x + C(b), b))) ,

where we used that V (x) = −1 for x < 0.

The difficulty with solving the equation is that it does not have a unique solution within

the set of real function. We have to pick the solution with limx→∞ V (x) = 0. It turns out to

be simpler to consider the survival function δ(x) = 1 + V (x). Then

δ(x) = sup
b∈B

∫ ρ(x+C(b),b)

0

δ (x + C(b)− h(b, y)) dF (y).

Any multiple of δ(x) also solves the equation. Let us therefore consider

f(x) = sup
b∈B

∫ ∞

0

f (x + C(b)− h(b, y)) dF (y). (3.2.4)

with f(0) = 1, imposing f(x) = 0 for x < 0.

For the following results we will need that either τ < ∞ or Xn →∞. For a proof we need the

following lemma, taken from [54] p.22.

Lemma 3.2.1. Let Sn =
∑n

k=1 Wk − Zk with 0 ≤ Wk ≤ w for some w < ∞ and Zk ≥ 0. If
{Sn} is a submartingale, then

P

( ∞∑

k=1

Zk = ∞,

∞∑

k=1

Wk < ∞
)

= 0.

Proof. Let ξ ∈ (0,∞) and N = inf {n : Sn > ξ}. Then {Sn∧N} is a submartingale that is
bounded from above by ξ + w. Thus, Sn∧N converges to an integrable random variable SN . In
particular, if supn Sn < ξ, then infn Sn > −∞. Because this holds for all ξ > 0, we have that
supn Sn ≤ ξ, then infn Sn > −∞. If supn Sn = ∞, then

∑∞
k=1 Wk = ∞. If supn Sn < ∞, then∑∞

k=1 Zk = ∞, then, because infn Sn > −∞, we also have
∑∞

k=1 Wk = ∞.

Lemma 3.2.2. For any strategy either ruin occurs or the capital tends to infinity.
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Proof. The function b 7→ P (h(b, Y ) > C(b)) is lower semi-continuous. Thus, there is b0 where
the infimum is taken. By our assumption we have P (h(b, Y ) > C(b)) ≥ 2δ for some δ > 0 For
each b let

ε(b) = sup {ε : P (h(b, Y ) > C(b) + ε) ≥ δ} .

By continuity and compactness we have that ε(b) is bounded away from zero. Thus, there is
ε > 0 such that P (h(b, Y ) > C(b) + ε) ≥ δ for all b.

Choose ξ > 0. Let Wn = 1{Xn≤ξ,h(bn,Yn+1)>C(bn)+ε} and Zn = δ1{Xn≤ξ}. Then Sn =∑n
k=1 Wk − Zk fulfils the assumptions of Lemma 3.2.1. Thus, Xn ≤ ξ infinitely often implies

that Xn+1 ≤ ξ − ε infinitely often. Therefore, if lim inf Xn ≤ ξ, then Xn ≤ ξ − ε/2. By
induction, lim inf Xn ≤ −ξ/2, so ruin occurs almost surely if lim inf Xn < ∞.

Clearly, the solution we are looking for is increasing. If we use the same strategy for initial

capital x and initial capital x + h, then ruin cannot occur for initial capital x + h unless it

occurs for initial capital x. We can say something about the uniqueness of the solution if we

restrict to increasing functions.

Theorem 3.2.3. Suppose that f(x) is an increasing solution to (3.2.4) with f(0) = 1. Then
f(x) is bounded and f(x) = δ(x)/δ(0).

Proof. Denote by f(∞) = limx→∞ f(x) ∈ [1,∞]. Let {bn} be an arbitrary strategy. We prove
that {f (Xτ∧n)} is a supermertingale. We have

E [f (Xτ∧n+1) |Fn] =

∫ ∞

0

f (Xn + C(bn)− h(bn, y)) dF (y)1{τ>n}

≤ sup
b∈B

∫ ∞

0

f (Xn + C(bn)− h(bn, y)) dF (y)1{τ>n}

= f (Xn)1{τ>n} = f (Xτ∧n)

where we used (3.2.4). Then {f (Xτ∧n)} is a positive supermatingale and limn→∞ f (Xτ∧n)
exists by the martingale convergence theorem. This limit must be f(∞) or zero by Lemma
3.2.2. For an arbitrary strategy {bt} we let δb(x) be the survival probability that ruin does not
occur. Because it is possible to choose a strategy such that δb(x) > 0 and limn→∞ f (Xτ∧n)
must be integrable, we have that f(∞) < ∞. By bounded convergence, f(x) ≥ f(∞)δb(x).
Choose ε > 0. We now choose a strategy {bn} such that

f (Xn) <

∫ ∞

0

f (Xn + C(bn)− h(bn, y)) dF (y) +
ε

(n + 1)2
.

Then
{

f (Xτ∧n) +
∑n−1

k=0
ε

(k+1)2

}
is bounded submartingale. Letting n → ∞ shows that

f(x) < δ(x)f(∞) +
∑n−1

k=0
ε

(n+1)2
. Thus, f(x) = δ(x)f(∞).
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We next show how the solution can be calculated. Let f0(x) = 1{x≥0} and define recursively

fn+1 (x) =

(
sup
b∈B

∫ ∞

0

fn (x + C(b)− h(b, y)) dF (y)

)
1{x≥0}.

Then the following proposition holds.

Proposition 3.2.4. The functions fn(x) converge to δ(x).

Proof. By induction it follows that 0 ≤ fn(x) ≤ 1. We next show by induction that the
functions fn(x) are increasing in x. Let κ > 0 and b ∈ B be arbitrary. Then because fn(x) is
increasing,

∫ ∞

0

fn (x + C(b)− h(b, y)) dF (y) ≤
∫ ∞

0

fn (x + κ + C(b)− h(b, y)) dF (y) ≤ fn+1(x + κ).

Taking the supremum over all b gives fn+1(x) ≤ fn+1(x + κ). We show that {fn(x)}n∈Z+ is
monotone in n. Clearly, f0(x) = 1 ≥ f1(x). Suppose that fn−1(x) ≥ fn(x) for all x. Let ε > 0
and fix x. Denote by b an argument such that

∫ ∞

0

fn (x + C(b)− h(b, y)) dF (y) > fn+1(x)− ε.

Then

fn(x)− fn+1(x) ≥
∫ ∞

0

(fn−1 (x + C(b)− h(b, y))− fn (x + C(b)− h(b, y))) dF (y)− ε.

By our assumption fn(x) − fn+1(x) > −ε. Because ε was arbitrary, we get that {fn(x)} is
a decreasing sequence in n. In particular, it converges point-wise to a function f(x). By
monotone convergence the limit has to fulfil (3.2.4). Moreover, f(x) is increasing because fn(x)
is increasing for each n. By Theorem 3.2.3 we have f(x) = δ(x)f(∞). In order to show
that f(∞) = 1, we show that fn(x) ≥ δ(x) because δ(x) solves (3.2.4). Thus, we also have
f(x) ≥ δ(x). Because 1 ≥ f(∞) ≥ δ(∞) = 1, the result is proved.

Remark 3.2.1. Schäl [48] introduced a similar model that considered optimal reinsurance and
investment. The existence of an optimal strategy is proved from general results on dynamic
programming in infinite time. In particular, the case of exponentially distributed claim size is
discussed.



Chapter 4

Inequalities for the ruin probability

The preceding chapters have briefly reviewed the most relevant theoretic tools used in this

chapter.

We concentrate now ourselves in the analysis of an insurance model, for which risk theory,

stochastic orders and stochastic control theory become necessary issues. Previous versions of

the results obtained in this chapter have appeared in [13] and [14].

4.1 Introduction

This Chapter studies an insurance model where the risk process can be controlled by

proportional reinsurance. The performance criterion is to choose reinsurance control strategies

to bound the ruin probability of a discrete-time process with a Markov chain interest.

Controlling a risk process is a very active area of research, particularly in the last decade;

see [33, 34, 48, 54], for instance. Nevertheless obtaining explicit optimal solutions is a difficult

task in a general setting. Hence, an alternative method commonly used in ruin theory is to

derive inequalities for ruin probabilities (see Asmussen [2], Grandell [32], Schmidli [54], and

Willmot and Lin [62]). Following Cai [6] and Cai and Dickson [7], we model the interest rate

process as a denumerable state Markov chain. This model can be in fact a discrete counterpart

of the most frequently occurring effect observed in continuous interest rate process, e.g., mean-

reverting effect. Stochastic inequalities for the ruin probabilities are derived by martingales and

inductive techniques (see Section 1.2). The inequalities can be used to obtain upper bounds for

52
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the ruin probabilities. For the sake of simplicity, we restrict ourselves to use stationary control

policies. Explicit condition are obtained for the optimality of employing no reinsurance.

4.2 Deterministic length of periods and aggregate claims

The outline of this section is as follows. In Subsection 4.2.1 the risk model is formulated.

Some important special cases of this model are briefly discussed. In Subsection 4.2.2 we derive

recursive equations for finite-horizon ruin probabilities, and integral equations for the ultimate

ruin probability. In Subsection 4.2.3 we obtain upper bounds for the ultimate probability of

ruin. An analysis of the new bounds and a comparison with Lundberg’s inequality is also

included (see Subsection 1.2.1). Finally, in Subsection 4.2.4 we illustrate our results on the ruin

probability in a risk process with a heavy tail claims distribution under proportional reinsurance

and a Markov interest rate process.

4.2.1 The model

We consider a discrete-time insurance risk process in which the surplus Xn varies according

to the equation

Xn = Xn−1 (1 + In) + C(bn−1)− h(bn−1, Yn), for n ≥ 1 (4.2.1)

with X0 = x ≥ 0. Following Schmidli [54] p. 21, we introduce an absorbing (cemetery) state

κ, such that if Xn < 0 or Xn = κ, then Xn+1 = κ. We denote the state space by X = R ∪ κ.

Let Yn be the total claims during the n-th period (from time n-1 to time n), which we assume

to form a sequence of i.i.d. random variables with common probability distribution function

(p.d.f.) F . The process can be controlled by reinsurance, that is, by choosing the retention

level (or proportionality factor or risk exposure) b ∈ B of a reinsurance contract for one period,

where B := [bmin, 1], and bmin ∈ (0, 1] will be introduced below. Let {In}n≥0 be the interest rate

process ; we suppose that In evolves as a Markov chain with a denumerable (possibly finite)

state space I consisting of nonnegative integers.
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The function h(b, y) with values in [0, y] specifies the fraction of the claim y paid by the

insurer, and it also depends on the retention level b at the beginning of the period. Hence

y − h(b, y) is the part paid by the reinsurer. The retention level b = 1 stands for the control

action no reinsurance (see Section 1.4). In this section, we consider the case of proportional

reinsurance, which means that

h(b, y) := b · y, with retention level b ∈ B. (4.2.2)

The premium (income) rate c is fixed. Since the insurer pays to the reinsurer a premium rate,

which depends on the retention level b, we denote by C(b) the premium left for the insurer if

the retention level b is chosen, where

0 ≤ C(b) ≤ c, b ∈ B.

We define bmin := min{b ∈ (0, 1]|C(b) ≥ 0}. Moreover, C(b) is an increasing function that we

will calculate according to the expected value principle with added safety loading θ from the

reinsurer:

C(b) = c− (1 + θ) · (1− b)E[Y ], (4.2.3)

where Y is a generic random variable with p.d.f. F .

We consider Markovian control policies π = {an}n≥1, which at each time n depend only on

the current state, that is, an(Xn) := bn for n ≥ 0. Abusing notation, we will identify functions

a : X → B with stationary strategies, where B = [bmin, 1], the decision space (see Section 3.1).

Consider an arbitrary initial state X0 = x ≥ 0 (note that the initial value is not stochastic) and

a control policy π = {an}n≥1. Then, by iteration of (4.2.1), and assuming (4.2.2) and (4.2.3),

it follows that for n ≥ 1, Xn satisfies

Xn = x

n∏

l=1

(1 + Il) +
n∑

l=1

(
C(bl−1)− bl−1 · Yl

n∏

m=l+1

(1 + Im)

)
. (4.2.4)

Let (pij) be the matrix of transition probabilities of {In}, i.e.,

pij := P (In+1 = j|In = i) , (4.2.5)



Inequalities for the ruin probability 55

where pij ≥ 0 and
∑

j pij = 1 for all i, j ∈ I. The ruin probability when using the policy π,

given the initial surplus x, and the initial interest rate I0 = i is defined as

ψπ(x, i) := P π

( ∞⋃

k=1

{Xk < 0} |X0 = x, I0 = i

)
, (4.2.6)

which we can also express as

ψπ(x, i) = P π (Xk < 0 for some k ≥ 1|X0 = x, I0 = i) . (4.2.7)

Similarly, the ruin probabilities in the finite horizon case are given by

ψπ
n(x, i) := P π

(
n⋃

k=1

{Xk < 0} |X0 = x, I0 = i

)
. (4.2.8)

Thus,

ψπ
1 (x, i) ≤ ψπ

2 (x, i) ≤ · · · ≤ ψπ
n(x, i) ≤ · · · ,

and

lim
n→∞

ψπ
n(x, i) = ψπ(x, i).

The following Lemma is used below to simplify some calculations.

Lemma 4.2.1. For any given policy π, there is a function ψπ(x) such that

ψπ(x, i) ≤ ψπ(x)

for every initial state x > 0 and initial interest rate I0 = i.

Proof. By (4.2.1) and (4.2.2), the risk model is given by

Xn = Xn−1 (1 + In) + C(bn−1)− bn−1Yn.

Since In ≥ 0, we have

Xn = Xn−1 (1 + In) + C(bn−1)− bn−1Yn ≥ Xn−1 + C(bn−1)− bn−1Yn. (4.2.9)

Define recursively

X̃n := X̃n−1 + C(bn−1)− bn−1Yn, (4.2.10)

with X0 = X̃0 = x. Hence, Xn ≥ X̃n for all n ∈ N. Clearly, if Xn < 0, then X̃n < 0.
Let

E1 :=

{
ω ∈ Ω|

∞⋃
n=1

{Xn(ω) < 0}
}

and E2 :=

{
ω ∈ Ω|

∞⋃
n=1

{
X̃n(ω) < 0

}}
,
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and note that E1 ⊂ E2. Therefore,

P π

( ∞⋃
n=1

{Xn < 0} |I0 = i

)
≤ P π

( ∞⋃
n=1

{
X̃n < 0

}
|I0 = i

)
,

and since the X̃n do not depend on In, we obtain from (4.2.7)

ψπ(x, i) = P π

( ∞⋃
n=1

{Xn < 0} |I0 = i

)
≤ P π

( ∞⋃
n=1

{
X̃n < 0

})
=: ψπ(x). ¤

We denote by Π the policy space. A control policy π∗ is said to be optimal if for any initial

values (X0, I0) = (x, i), we have

ψπ∗(x, i) ≤ ψπ(x, i)

For all π ∈ Π. Schmidli [54] and Schäl [48] show that existence of an optimal control policy for

some special cases of the model risk (4.2.1). However, even in these special cases it is extremely

difficult to obtain closed expressions for ψπ∗(x, i). We are thus led to consider bounds for the

ruin probabilities, which we do in Subsection 4.2.2, 4.2.3, and 4.2.4, below. First, we note that

(4.2.1) includes some interesting ruin models.

Special cases. To conclude this subsection we note the following subcases of the risk

model (4.2.1).

• If In = 0 and bn = 1 for all n ≥ 1, then (4.2.1) reduces to the classical discrete-time risk

model without investment and reinsurance:

Xk = x−
k∑

t=1

(Yt − c).

This is the well-known Cramér-Lundberg model, for which there are several bounds for

the ruin probability, see Section 1.1 and [2, 32, 62].

• If In = 0 and bn ∈ B for n ≥ 1, then the risk model reduces to the discrete-time risk

model with proportional reinsurance:

Xk = x−
k∑

t=1

(bt−1Yt − C(bt−1)). (4.2.11)
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Let ψπ(x) := P π (
⋃∞

k=1 {Xk < 0} |X0 = x) be the corresponding ruin probability. More

explicitly, by (4.2.11),

ψπ(x) = P π
(⋃∞

k=1

{∑k
t=1 [bt−1Yt − C(bt−1)] > x

}
|X0 = x

)

If we assume constant stationary strategies, say bn = b0 for all n ≥ 1, and in addition

E[b0Y ] < C(b0), then there exists a constant R0 > 0 satisfying

e−R0C(b0) · E[eR0(b0Y )] = 1. (4.2.12)

Therefore, by the classical Lundberg inequality for ruin probabilities (see Subsection 1.2.1

and [2, 32, 62])

ψπ(x) ≤ e−R0x, for x ≥ 0. (4.2.13)

• Let dn be the constant, short-term dividend rate in the n− th period (the dividends are

payments made by a corporation to its shareholder members). Then the discrete-time

risk model with stochastic interest rate and dividends is given by

Xn = Xn−1 (1 + In) + C(bn−1)− h(bn−1, Yn)− dnXn,

with h(b, y) as in (4.2.2). Thus, rearranging terms,

Xn = Xn−1

(
1 + In

1 + dn

)
+
C(bn−1)

(1 + dn)
− h(bn−1, Yn)

(1 + dn)
.

Let Y ′
n := Yn

(1+dn)
and In

′ := In−dn

(1+dn)
. Since {In} and {Yn} are independent, then so are

{In
′} and {Y ′

n}. Let C ′(bn−1) := C(bn−1)
(1+dn)

. Then the model becomes

Xn = Xn−1 (1 + In
′) + C ′(bn−1)− h(bn−1, Y

′
n),

which from a statistical viewpoint is essentially the same as the model without dividends

(4.2.1) and can be analyzed in a similar way.

• As an extension of the latter case, some companies have dividend reinvestment plans

(or DRIPs). These plans allow shareholders to use dividends to systematically buy small
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amounts of stock. Let d̃n be the short term dividend reinvestment rate in the n-th period,

d̃n ∈ [0, 1). Then, the discrete-time risk model with stochastic interest rate and dividends

reinvestment is given by

Xn = Xn−1 (1 + In) + C(bn−1)− h(bn−1, Yn) + d̃nXn.

Hence, rearranging terms, we obtain

Xn = Xn−1

(
1 + In

1− d̃n

)
+
C(bn−1)

(1− d̃n)
− h(bn−1, Yn)

(1− d̃n)
.

Let Y ”
n := Yn

(1−edn)
, In

” := In−edn

(1−edn)
, and C”(bn−1) := C(bn−1)

(1−edn)
. It follows that

Xn = Xn−1

(
1 + In

”
)

+ C”(bn−1)− h(bn−1, Y
”
n ),

which, again, is essentially the same as the model (4.2.1).

Let us go back to the original risk model (4.2.1). Since determining ruin probabilities is

essentially an infinite-horizon problem, it suffices to consider stationary strategies [54]. In

the next subsection, we will derive recursive equations for the ruin probabilities and integral

equations for the ultimate ruin probability associated to the model (4.2.1).

Remark 4.2.1. Given a p.d.f. G, we denote the tail of G by G, that is, G(x) := 1−G(x).

4.2.2 Recursive and integral equations for ruin probabilities

In this subsection, we first derive a recursive equation for ψπ
n(x, i). Secondly, we give an integral

equation for ψπ(x, i). Finally, we obtain an equation for the ruin probability with horizon n = 1

given I0 = i, X0 = x and a stationary policy π. These results, which are valid for any initial

interest rate, are summarized in the following Lemma.

Lemma 4.2.2. Let u(y) := b0y − C(b0), where b0 is the initial retention level. Let τj :=
(x(1 + j) + C(b0)) /b0, X0 = x ≥ 0, and pij as in (4.2.5). Then

ψπ
1 (x, i) =

∑

j∈I
pijF (τj), (4.2.14)

and for n = 1, 2, . . .

ψπ
n+1(x, i) =

∑

j∈I
pij

τj∫

0

ψπ
n(x(1 + j)− u(y), j)dF (y) +

∑

j∈I
pijF (τj). (4.2.15)
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Moreover,

ψπ(x, i) =
∑

j∈I
pij

τj∫

0

ψπ(x(1 + j)− u(y), j)dF (y) +
∑

j∈I
pijF (τj). (4.2.16)

Proof. Let Uk := u(Yk) = b0Yk − C(b0). Given Y1 = y, the control strategy π, and I1 = j, from
(4.2.4) we have U1 = u(y). Therefore,

X1 = x(1 + I1)− U1 = h1 − u(y), where h1 = x(1 + j)

Thus, if u(y) > h1 then

P π (X1 < 0|Y1 = y, I1 = j, X0 = x, I0 = i) = 1.

This implies that for u(y) > h1

P π

(
n+1⋃

k=1

{Xk < 0} |Y1 = y, I1 = j, X0 = x, I0 = i

)
= 1,

while if 0 ≤ u(y) ≤ h1, then

P π (X1 < 0|Y1 = y, I1 = j, X0 = x, I0 = i) = 0. (4.2.17)

Let {Ỹn}n≥1 and {Ĩn}n≥0 be independent copies∗ of {Yn}n≥1, and {In}n≥0, respectively.

Let Ũk := b0Ỹk − C(b0). Thus, (4.2.17) and (4.2.4) yield that for 0 ≤ u(y) ≤ h1,

P π

(
n+1⋃
k=1

{Xk < 0} |Y1 = y, I1 = j, X0 = x, I0 = i

)

= P π

(
n+1⋃
k=2

{Xk < 0} |Y1 = y, I1 = j, X0 = x, I0 = i

)

= P π

(
n+1⋃
k=2

{
(h1 − u(y))

k∏
l=1

(1 + Il)−
k∑

l=1

Ul

k∏
m=l+1

(1 + Im) < 0

}
|X0 = x, I1 = j

)

= P π

(
n⋃

k=1

{
(h1 − u(y))

k∏
l=1

(1 + Ĩl)−
k∑

l=1

Ũl

k∏
m=l+1

(1 + Ĩm) < 0

}
|X0 = x, Ĩ0 = j

)

= ψπ
n(h1 − u(y), j) = ψπ

n(x(1 + j)− u(y), j)

where the second equality follows from the Markov property of {In}n≥0, and the independence
of {Yn}n≥1 and {In}n≥0.

∗An independent copy of a process X is an independent process Y with the same distributional properties.
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Let us now consider the event A = {Y1 = y, I1 = j,X0 = x, I0 = i}, and recall that
F (y) = P (Y ≤ y). From (4.2.8) and (4.2.4) we obtain

ψπ
n+1(x, i) = P π

(
n+1⋃
k=1

{Xk < 0} |X0 = x, I0 = i

)

=
∑
j∈I

pij

∞∫
0

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y).

Then, recalling that τj = x(1+j)+C(b0)
b0

,

ψπ
n+1(x, i) =

∑
j∈I

pij

{ τj∫
0

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y)

+
∞∫
τj

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y)

}

=
∑
j∈I

pij

{
τj∫
0

ψπ
n(x(1 + j)− u(y), j)dF (y) +

∞∫
τj

dF (y)

}

=
∑
j∈I

pij

{ τj∫
0

ψπ
n(x(1 + j)− u(y), j)dF (y) + F (τj))

}
.

(4.2.18)

This gives (4.2.15). In particular,

ψπ
1 (x, i) =

∑

j∈I
pijF (τj).

Finally, letting n →∞ in (4.2.18) and using dominated convergence we obtain lim
n→∞

ψπ
n+1(x, i) =

ψπ(x, i), and (4.2.16) follows.

Remark 4.2.2. If we consider the risk model without reinsurance, that is, b = 1, we obtain
similar results to those in Cai and Dickson [7].

4.2.3 Bounds for ruin probabilities

We will use the results obtained in Subection 4.2.2 to find upper bounds for the ruin probabilities

with infinite horizon taking into account the information contributed by the Markov chain of

the interest rate process. We derive a functional for the ultimate ruin probability in terms of

the new worse than used in convex (NWUC) ordering (see Subsection 2.1.3. This idea was first

introduced by Willmot and Lin [62] and has been generalized by other authors.
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We will present two upper bounds for the ruin probabilities. The first bound is obtained by

an inductive approach, and the second by a martingale approach. These bounds are discussed

in Remark 4.2.3, at the end of this subsection.

4.2.3.1 Bounds obtained by the inductive approach

Theorem 4.2.3. Let R0 > 0, be the constant satisfying (4.2.12). Then, for all x ≥ 0 and i ∈ I,

ψπ(x, i) ≤ β
∑
j∈I

pijE
π[e−R0x(1+j)]

= βEπ[e−R0[x(1+I1)]|I0 = i],

(4.2.19)

where β ≡ β(b0) and is given by

β−1 = inf
t≥0

∫∞
t

eR0b0ydF (y)

eR0b0tF (t)
.

Proof. It suffices to show that the rightmost term in (4.2.19) is an upper bound for Ψπ
n(x, i),

for all n ≥ 1. We will prove this by induction. First note that

F (θ) =
(R∞

θ eR0b0ydF (y)

eR0b0θF (θ)

)−1

e−R0b0θ
∫∞

θ
eR0b0ydF (y)

≤ βe−R0b0θ
∫∞

θ
eR0b0ydF (y) ≤ βe−R0b0θEπ[eR0bY1 ]

(4.2.20)

for any θ ≥ 0. This implies that for every x ≥ 0, i ≥ 0, and b0 ∈ B, by (4.2.14) and (4.2.20) we
have

ψπ
1 (x, i) =

∑
j∈I

pijF (τj)

≤ ∑
j∈I

pij

(
βEπ[eR0bY1 ] · e−R0b0

�
x(1+j)+C(b0)

b0

�)

= βEπ[eR0bY1 ]
∑
j∈I

pije
−R0[x(1+j)+C(b0)]

= βEπ[eR0bY1 ] · Eπ[e−R0[x(1+I1)+C(b)]|I0 = i]

= βEπ[eR0bY1 ]Eπ[e−R0C(b)]Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0[C(b)−bY1]] · Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0x(1+I1)|I0 = i] (by (4.2.12)).
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This shows that the desired result holds for n = 1. To prove the result for general n ≥ 1, the
induction hypothesis is that, for some n ≥ 1, and every x ≥ 0 and i ∈ I,

ψπ
n(x, i) ≤ βEπ[e−R0x(1+I1)|I0 = i]. (4.2.21)

Now, let 0 ≤ y ≤ τj, with τj as in Lemma 4.2.2. Further, in (4.2.21) replace x and i by
x(1 + j) + C(b0)− b0y and j, respectively to obtain

ψπ
n(x(1 + j) + C(b0)− b0y, j) ≤ βEπ[e−R0[x(1+j)+C(b)−by](1+I1)|I0 = j]

≤ βe−R0[x(1+j)+C(b0)−b0y].
(4.2.22)

Therefore, replacing (4.2.22) in (4.2.15), we get

ψπ
n+1(x, i) ≤ ∑

j∈I
pij

(
βe−R0[x(1+j)+C(b0)]

∫∞
τj

eR0b0ydF (y)
)

+
∑
j∈I

pij

(
βe−R0[x(1+j)+C(b0)]

∫ τj

0
eR0b0ydF (y)

)

=
∑
j∈I

pij

(
βe−R0[x(1+j)+C(b0)]

∫∞
0

eR0b0ydF (y)
)

= βEπ[eR0bY1 ]
∑
j∈I

pije
−R0[x(1+j)+C(b0)]

= βEπ[eR0bY1 ] · Eπ[e−R0C(b)] · Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0x(1+I1)|I0 = i].

Hence, (4.2.21) holds for any n = 1, 2, . . ., and letting n →∞ in (4.2.21) we obtain (4.2.19).

As an application of Theorem 4.2.3, we next consider the special case in which the claim

distribution is in the class of NWUC distributions†.

Corollary 4.2.4. Under the hypotheses of Theorem 4.2.3, and assuming that Eπ[eR0bY1 ] < ∞
for all b ∈ B, and that, in addition, F is a NWUC distribution, we have

ψπ(x, i) ≤ (Eπ[eR0bY1 ])−1Eπ[e−R0x(1+I1)|I0 = i]. (4.2.23)

Proof. Following the proof of proposition 2.1.1, let r := R0b > 0. Therefore

β−1 := inf
t≥0

∫∞
t

erydF (y)

ertF (t)
=

∫ ∞

0

erydF (y),

that is, β−1 = Eπ[eR0bY1 ]. Finally, replacing this equality in (4.2.19), we obtain (4.2.23).

†See Subsection 2.1.3 equation (2.1.12).
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4.2.3.2 Bounds by means of the martingale approach

Another way for deriving upper bounds for ruin probabilities is the martingale approach. To

this end, let Vn := Xn

n∏
l=1

(1 + Il)
−1 with n ≥ 1, be the so-called discounted risk process. The

ruin probabilities ψπ
n in (4.2.8) associated to the process {Vn, n = 1, 2 . . .} are

ψπ
n(x, i) = P π

(
n⋃

k=1

(Vk < 0)|X0 = x, I0 = i

)

In the classical risk model, {e−R0Xn}n≥1 is a martingale. However, for our model (4.2.4),

there is no constant r > 0 such that {e−rXn}n≥1 is a martingale. Still, there exists a constant

r > 0 such that {e−rVn}n≥1 is a supermartingale, which allows us to derive probability

inequalities by the optional stopping theorem. Such a constant is defined in the following

proposition.

Proposition 4.2.5. Assume that Eπ [C(b)− bY1] > 0. In addition we suppose that for each
i ∈ I, there exists ρi > 0 satisfying that

Eπ
[
e−ρi[C(b)−bY1](1+I1)−1|I0 = i

]
= 1. (4.2.24)

Then

R1 := min
i∈I

ρi ≥ R0 (4.2.25)

and, furthermore, for all i ∈ I
Eπ

[
e−R1[C(b)−bY1](1+I1)−1|I0 = i

]
≤ 1. (4.2.26)

Proof. For each i ∈ I, let

li(r) := Eπ
[
e−r[C(b)−bY ](1+I1)−1|I0 = i

]
− 1, for r > 0.

Then the first derivative of li(r) at r = 0 is

l
′
i(0) = Eπ [−(C(b)− bY )] · Eπ

[
(1 + I1)

−1|I0 = i
]

< 0 (by independence),

and the second derivative is

l
′′
i (r) = Eπ

[(
(C(b)− bY )(1 + I1)

−1
)2 · e−r[C(b)−bY ](1+I1)−1|I0 = i

]
> 0.

This shows that li(r) is a convex function. Let ρi be the unique positive root of the equation
li(r) = 0 on (0,∞). Further, if 0 < ρ ≤ ρi, then li(ρ) ≤ 0. However,

Eπ
[
e−R0[C(b)−bY ](1+I1)−1|I0 = i

]
=

∑
j∈I

pijE
[
e−R0[C(b0)−b0Y ](1+j)−1

]

(by Jensen’s inequality) ≤ ∑
j∈I

pijE
[
e−R0[C(b0)−b0Y1]

](1+j)−1

.
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Consequently, by (4.2.12), we have that E
[
e−R0[C(b0)−b0Y1]

]
= 1. Hence, since

∑
j∈I

pij = 1,

Eπ
[
e−R0[C(b)−bY ](1+I1)−1|I0 = i

]
≤ 1.

This implies that li(R0) ≤ 0. Moreover, R0 ≤ ρi for all i, and so

R1 := min
i∈I

ρi ≥ R0.

Thus, (4.2.25) holds. In addition R1 ≤ ρi for all i ∈ I, which implies that li(R1) ≤ 0. This
yields (4.2.26).

Theorem 4.2.6. Under the hypotheses of Proposition 1, for all i ∈ I and x ≥ 0,

ψπ(x, i) ≤ e−R1x. (4.2.27)

Proof. By (4.2.4), the discounted risk process Vk := Xk

k∏
l=1

(1 + Il)
−1 satisfies that

Vk := x +
k∑

l=1

(
(C(b0)− b0Yl)

l∏
t=1

(1 + It)
−1

)
. (4.2.28)

Let Sn = e−R1Vn . Then

Sn+1 = Sne
−R1(C(b0)−b0Yn+1)

n+1Q
t=1

(1+It)−1

.

Thus, for any n ≥ 1,

Eπ[Sn+1 | Y1, . . . Yn, I1, . . . In]

= SnE

[
e
−R1(C(b0)−b0Yn+1)

n+1Q
t=1

(1+It)−1

| Y1, . . . Yn, I1, . . . In

]

= SnE

[
e
−R1(C(b0)−b0Yn+1)(1+In+1)−1

nQ
t=1

(1+It)−1

| I1, . . . In

]

≤ SnE
([

e−R1(C(b0)−b0Yn+1)(1+In+1)−1 | I1, . . . In

]) nQ
t=1

(1+It)−1

≤ Sn.

This implies that {Sn}n≥1 is a supermartingale.
Let Ti = min{n : Vn < 0 | I0 = i}, where Vn is given by (4.2.28). Then Ti is a stopping time
and n ∧ Ti := min{n, Ti} is a finite stopping time. Thus, by the optional stopping theorem for
martingales, we get

Eπ(Sn∧Ti
) ≤ Eπ(S0) = e−R1x.
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Hence,

e−R1x ≥ Eπ(Sn∧Ti
) ≥ Eπ((Sn∧Ti

)I(Ti≤n)) ≥ Eπ((STi
)I(Ti≤n))

= Eπ(e−R1VTi I(Ti≤n)) ≥ Eπ(I(Ti≤n)) = ψπ
n(x, i),

(4.2.29)

where (4.2.29) follows because VTi
< 0. Thus, by letting n → ∞ in (4.2.29) we obtain

(4.2.27).

Remark 4.2.3. Summarizing, we have three upper bounds for the ruin probabilities with infinite
horizon. First, the Lundberg bound, which only depends on R0, the Lundberg exponential in
(4.2.12), (4.2.13). Second, the inductive bound (4.2.19) which depends on R0 and also on the
interest rate process. Third, the martingale bound in (4.2.27), which depends on R1. Note that
the last two bounds are sharper than the Lundberg bound. Observe also that the number of
operations to get R1 in (4.2.27) is higher than that to get R0 in (4.2.19).

In the next subsection we present some numerical results.

4.2.4 Numerical results

To illustrate the bounds obtained in Theorems 4.2.3 and 4.2.6 we present a numerical example

that uses Matlab and Maple implementations for different values of the retention level b.

We assume that the claim amount in year k is Yk, which has a gamma density Gamma(1
2
, 2).

Since this distribution is NWUC, we will use (4.2.23).

The annual premium is c = 1.1; namely, there is a loading of 10% given by the reinsurer.

In this example, C(b) = 1.1− (1.1) · (1− b) > 0 if b ∈ (0, 1].

Consider an interest model with three possible interest rates:

I = {6%, 8%, 10%}.

The transition matrix (see (4.2.5)) is given by




0.2 0.8 0

0.15 0.7 0.15

0 0.8 0.2


 .

Thus, our interest rate model incorporates mean reversion to a level of 8%. In this example

B = (0, 1].
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In figure 1, we show that the relation between Rl and b, with l ∈ {0, 1}, is inversely

proportional. Remember that b = 1 means no reinsurance, and so we will hope to have a small

value of Rl. Analogously, when b is close to zero (reinsure almost everything), Rl becomes

extremely large.
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Figure 4.1: In the left side: The relation between R0 and b. In the right side: The relation
between R1 and b.

The numerical results in Table 4.2.4 show that the upper bound in (4.2.19) can be tighter

than that in (4.2.27). This suggests that the upper bounds derived by the inductive approach

are tighter than the upper bounds obtained by supermartingales. In addition, Table 4.2.4 shows

that the upper bounds derived in this section are sharper than the Lundberg upper bound.

Retention level b Lundberg Induction Martingale R0 R1

0.01 0.752e− 19 0.226e− 20 0.224e− 20 8.8067 9.5091
0.25 0.171 0.135 0.149 0.352 0.380
0.5 0.414 0.350 0.386 0.176 0.190
0.75 0.555 0.481 0.530 0.117 0.126
1 0.643 0.564 0.621 0.0880 0.0950

Table 4.1: Table of upper bounds for ruin probabilities with x = 5 and i = 8%

Remark 4.2.4. In the case b = 1, our results are the same as in Cai and Dickson [7].
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4.3 Random length of periods and individual claim

The outline of the section is as follows. In Subsection 4.3.1 the risk model is formulated.

Some important special cases of this model are briefly discussed. In Subsection 4.3.2 we derive

recursive equations for finite-horizon ruin probabilities and integral equations for the ultimate

ruin probability. In Subsection 4.3.3 we obtain upper bounds for the ultimate probability of

ruin. An analysis of the new bounds and a comparison with the Lundberg’s inequality is also

included. Finally, in Subsection 4.3.4 we illustrate our results on the ruin probability in a

risk process with a heavy tail claims distribution under proportional reinsurance and a Markov

interest rate process‡.

4.3.1 The model

We consider a discrete-time insurance risk process in which the surplus Xn varies according

to the equation

Xn = Xn−1 (1 + In) + C(bn−1) · Zn − h(bn−1, Yn), (4.3.1)

for n ≥ 1, with X0 = x ≥ 0. As Subsection 4.2.1, we introduce an absorbing (cemetery) state

κ, such that if Xn < 0 or Xn = κ, then Xn+1 = κ. We denote the state space by X = R ∪ κ.

Let Yn be the n-th claim payment, which we assume to form a sequence of i.i.d. random

variables with common probability distribution function (p.d.f.) F . The random variable Zn

stands for the length of the n-th period, that is, the time between the ocurrence of the claims

Yn−1 and Yn. We assume that {Zn} is a sequence of i.i.d. random variables with p.d.f. G.

This case includes a controlled version of the Cramér-Lundberg model if we assume that the

claims occur as a Poisson process. Of course, we can also think of the case where Zn = 1 is

deterministic. In addition, we suppose that {Yn}n≥1 and {Zn}n≥1 are independent.

The process can be controlled by reinsurance, that is, by choosing the retention level (or

proportionality factor or risk exposure) b ∈ B of a reinsurance contract for one period, where

‡This section was submitted, see [15].
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B := [bmin, 1], and bmin ∈ (0, 1] will be introduced below. Let {In}n≥0 be the interest rate

process ; we suppose that In evolves as a Markov chain with a denumerable (possibly finite)

state space I consisting of nonnegative integers.

We consider the case of proportional reinsurance, then the function h(b, y) is given by (4.2.2).

The premium (income) rate c is fixed. Since the insurer pays to the reinsurer a premium rate,

which depends on the retention level b, we denote by C(b) the premium left for the insurer if

the retention level b is chosen, where

0 ≤ C(b) ≤ c, b ∈ B.

As Section 4.2, we define bmin := min{b ∈ (0, 1]|C(b) ≥ 0}. Moreover, C(b) is an increasing

function that we will calculate according to the expected value principle with added safety

loading θ from the reinsurer:

C(b) = c− (1 + θ)(1− b)
E[Y ]

E[Z]
, (4.3.2)

where Y and Z are generic random variables with p.d.f. F and G, respectively.

We consider Markovian control policies π = {an}n≥1, which at each time n depend only on

the current state, that is, an(Xn) := bn for n ≥ 0. Abusing notation, we will identify functions

a : X → B with stationary strategies, where B = [bmin, 1], the decision space. Consider an

arbitrary initial state X0 = x ≥ 0 (note that the initial value is not stochastic) and a control

policy π = {an}n≥1. Then, by iteration of (4.3.1) and assuming (4.2.2), and (4.3.2), it follows

that for n ≥ 1, Xn satisfies

Xn = x

n∏

l=1

(1 + Il) +
n∑

l=1

(
C(bl−1)Zl − bl−1 · Yl

n∏

m=l+1

(1 + Im)

)
. (4.3.3)

Let (pij) be the matrix of transition probabilities of {In}, i.e.,

pij := P (In+1 = j|In = i) , (4.3.4)
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where pij ≥ 0 and
∑

j pij = 1 for all i, j ∈ I. The ruin probability when using the policy π,

given the initial surplus x, and the initial interest rate I0 = i is defined as

ψπ(x, i) := P π

( ∞⋃

k=1

{Xk < 0} |X0 = x, I0 = i

)
, (4.3.5)

which we can also express as

ψπ(x, i) = P π (Xk < 0 for some k ≥ 1|X0 = x, I0 = i) . (4.3.6)

Similarly, the ruin probabilities in the finite horizon case are given by

ψπ
n(x, i) := P π

(
n⋃

k=1

{Xk < 0} |X0 = x, I0 = i

)
. (4.3.7)

Thus,

ψπ
1 (x, i) ≤ ψπ

2 (x, i) ≤ · · · ≤ ψπ
n(x, i) ≤ · · · ,

and

lim
n→∞

ψπ
n(x, i) = ψπ(x, i).

The following lemma is an extension of Lemma 4.2.1 and it is used below to simplify some

calculations.

Lemma 4.3.1. For any given policy π, there is a function ψπ(x) such that

ψπ(x, i) ≤ ψπ(x)

for every initial state x > 0 and initial interest rate I0 = i.

Proof. By (4.3.1) and (4.2.2), the risk model is given by

Xn = Xn−1 (1 + In) + C(bn−1)Zn − bn−1Yn.

Since In ≥ 0, we have

Xn = Xn−1 (1 + In) + C(bn−1)Zn − bn−1Yn

≥ Xn−1 + C(bn−1)Zn − bn−1Yn.
(4.3.8)

Define recursively

X̃n := X̃n−1 + C(bn−1)Zn − bn−1Yn, (4.3.9)
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with X0 = X̃0 = x. Hence, Xn ≥ X̃n for all n ∈ N. Clearly, if Xn < 0, then X̃n < 0.
Let

E1 :=

{
ω ∈ Ω|

∞⋃
n=1

{Xn(ω) < 0}
}

and E2 :=

{
ω ∈ Ω|

∞⋃
n=1

{
X̃n(ω) < 0

}}
,

and note that E1 ⊂ E2. Therefore,

P π

( ∞⋃
n=1

{Xn < 0} |I0 = i

)
≤ P π

( ∞⋃
n=1

{
X̃n < 0

}
|I0 = i

)
,

and since the X̃n do not depend on In, we obtain from (4.3.5)

ψπ(x, i) = P π (
⋃∞

n=1 {Xn < 0} |X0 = x, I0 = i)

≤ P π
(⋃∞

n=1

{
X̃n < 0

}
|X0 = x

)
=: ψπ(x).

We denote by Π the policy space. A control policy π∗ is said to be optimal if for any initial

values (X0, I0) = (x, i), we have

ψπ∗(x, i) ≤ ψπ(x, i)

for all π ∈ Π. Schmidli [54] and Schäl [48] show the existence of an optimal control policy for

some special cases of the model risk (4.3.1). However, even in these special cases it is extremely

difficult to obtain closed expressions for ψπ∗(x, i). We are thus led to consider bounds for the

ruin probabilities, which we do in Subsections 4.3.2, 4.3.3, and 4.3.4, below. First, we note that

(4.3.1) includes some interesting ruin models.

Special cases. To conclude this section we note the following subcases of the risk model

(4.3.1).

1. If In = 0 for all n ≥ 1, then the risk model (4.3.3) reduces to the discrete-time risk model

with proportional reinsurance:

Xn = x−
n∑

t=1

(bt−1Yt − C(bt−1)Zt). (4.3.10)
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or equivalently,

Xn = Xn−1 + C(bn−1)Zn − bn−1Yn.

The corresponding ruin probability is

ψπ(x) := P π

( ∞⋃
n=1

{Xn < 0} |X0 = x

)
.

Assuming, constant stationary strategies, say bn = b0, then, by (4.3.10),

ψπ(x) = P π (
⋃∞

n=1 {
∑n

t=1 [b0Yt − C(b0)Zt] > x} |X0 = x) .

Moreover, if we assume that b0E[Y ] < C(b0)E[Z], then there exists a constant R0 ≡
R0(b0) > 0 satisfying

E
[
e−R0(C(b0)Z−b0Y )

]
= 1. (4.3.11)

Therefore, by the classical Lundberg inequality for ruin probabilities (see [2, 32, 62]), for

x ≥ 0

ψπ(x) ≤ e−R0x. (4.3.12)

Since determining ruin probabilities is essentially an infinite-horizon problem, it suffices

to consider stationary strategies.

Remark 4.3.1. It is enough to consider constant stationary strategies in this section, i.e,
bn = b for all n ≥ 1 and we will to argue: first, we assume that P (bY > C(b)Z) > 0 for
all b ∈ B. Because, if there is some be ∈ B such that P (beY > C(be)Z) = 0, the ruin can
be prevented by retention level be and the risk process considered in this case becomes
trivial. Secondly, we assume the net profit condition Eπ [C(b)Z − bY ] > 0 for some π ∈ Π.
Otherwise, ruin cannot be prevented because the surplus would be decreasing in time for
all reinsurance treaties. Therefore, using the law of large numbers, we have

1

n

n∑
i=1

[C(b)Zi − bYi] → Eπ [C(b)Z − bY ] ,

this implies that for the stationary strategy bn = b the process Xn tends to infinity
(in particular, infn Xn > −∞). Hence, there is an initial capital X0 = x such that
P (infn Xn ≥ 0|X0 = x) > 0. Because there is a strictly positive probability that from
initial capital zero the set [x,∞) is reached before the set (−∞, 0), we get also that
P (infn Xn ≥ 0|X0 = 0) > 0. Finally, we have a stationary strategy for which ruin is not
certain.
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2. Exponentially distributed length periods. Our process (4.3.1) a controlled version

of Cramér-Lundberg model if the claims occur as a Poisson process, in which case the

Zn are exponentially distributed, say Zn ' Exp(λ). Suppose that, in addition, In = 0

for all n ≥ 1, and that the single claims have expectation µ and moment generating

function MY (s). Thus, Yn has a compound distribution with expectation λµ and moment

generation function e[λ(MY (s)−1)]. Let MY (b; r) :=
∫∞

0
ebrydF (y) be the moment-generating

function of the part of the claim the insurer has to pay if the retention level b is chosen.

We assume constant stationary strategies, say bn = b0 for all n ≥ 1. Moreover, we assume

that C(b0) > b0λµ and MY (b0; r) < ∞ for some r > 0 and b0 ∈ B. It is clear that the

risk process Xn − x =
∑n

k=1 (C(b)Zn − bYk) satisfies all the hypotheses of theorem 1.2.2.

Then

Eπ
[
e−R0[C(b)−bYn]

]
= e−R0C(b0) · e[λ(MY (b0;R0)−1)].

Then, by (4.3.11), we have that the adjustment coefficient R0 = R0(b0) fulfils

−R0C(b0) + λ (MY (b0; R0)− 1) = 0. (4.3.13)

By Lemma 4.1 Schmidli [54], R0 is unimodal and it attains its maximum value at a point

b∗0 ∈ B. Then, it is easy to see that it is optimal to have no reinsurance (b∗0 = 1) if and

only if the safety loading θ is too high in the sense that

1 + θ ≥ M ′
Y (1, R0)

µ
. (4.3.14)

3. Let dn be the constant, short-term dividend rate in the n− th period (the dividends are

payments made by a corporation to its shareholder members). Then the discrete-time

risk model with stochastic interest rate and dividends is given by

Xn = Xn−1 (1 + In) + C(bn−1)Zn − h(bn−1, Yn)− dnXn,

with h(b, y) as in (4.2.2). Thus, rearranging terms,

Xn = Xn−1

(
1 + In

1 + dn

)
+
C(bn−1)

(1 + dn)
Zn − h(bn−1, Yn)

(1 + dn)
.
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Let Y ′
n := Yn

(1+dn)
and In

′ := In−dn

(1+dn)
. Since {In} and {Yn} are independent, then so are

{In
′} and {Y ′

n}. Let C ′(bn−1) := C(bn−1)
(1+dn)

. Then the model becomes

Xn = Xn−1 (1 + In
′) + C ′(bn−1)Zn − h(bn−1, Y

′
n),

which from a statistical viewpoint is essentially the same as the model without dividends

(4.3.1) and can be analyzed in a similar way.

4. As an extension of the latter case, some companies have dividend reinvestment plans

(or DRIPs). These plans allow shareholders to use dividends to systematically buy small

amounts of stock. Let d̃n be the short term dividend reinvestment rate in the n-th period,

d̃n ∈ [0, 1). Then, the discrete-time risk model with stochastic interest rate and dividends

reinvestment is given by

Xn = Xn−1 (1 + In) + C(bn−1)Zn − h(bn−1, Yn) + d̃nXn.

Hence, rearranging terms, we obtain

Xn = Xn−1

(
1 + In

1− d̃n

)
+
C(bn−1)

(1− d̃n)
Zn − h(bn−1, Yn)

(1− d̃n)
.

Let Y ”
n := Yn

(1−edn)
, In

” := In−edn

(1−edn)
, and C”(bn−1) := C(bn−1)

(1−edn)
. It follows that

Xn = Xn−1

(
1 + In

”
)

+ C”(bn−1)Zn − h(bn−1, Y
”
n ),

which, again, is essentially the same as the model (4.3.1).

Let us go back to the original risk model (4.3.1). In the next subsection, we will derive

recursive equations for the ruin probabilities and integral equations for the ultimate ruin

probability associated to the model (4.3.1).

4.3.2 Recursive and integral equations for ruin probabilities

In this subsection, we first derive a recursive equation for ψπ
n(x, i). Secondly, we give an integral

equation for ψπ(x, i). Finally, we obtain an equation for the ruin probability with horizon n = 1
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given I0 = i, X0 = x and a stationary policy π. These results, which are valid for any initial

interest rate, are summarized in the following lemma.

Lemma 4.3.2. Let u(y, z) := b0y − C(b0)z, where b0 is the initial retention level. Let
τj(z) := (x(1 + j) + C(b0)z) /b0, X0 = x ≥ 0, and pij as in (4.3.4). Then

ψπ
1 (x, i) =

∑

j∈I
pij

∞∫

0

F (τj(z))dG(z), (4.3.15)

and for n = 1, 2, . . .

ψπ
n+1(x, i) =

∑
j∈I

pij

∞∫
0

τj(z)∫
0

ψπ
n(x(1 + j)− u(y, z), j)dF (y)dG(z)

+
∑
j∈I

pij

∞∫
0

F (τj(z))dG(z).

(4.3.16)

Moreover,

ψπ(x, i) =
∑
j∈I

pij

∞∫
0

τj(z)∫
0

ψπ(x(1 + j)− u(y, z), j)dF (y)dG(z)

+
∑
j∈I

pij

∞∫
0

F (τj(z))dG(z).

(4.3.17)

Proof. Let Uk := u(Yk, Zk) = b0Yk − C(b0)Zk. Given Y1 = y, Z1 = z , the control strategy π,
and I1 = j, from (4.3.3) we have U1 = u(y, z). Therefore,

X1 = x(1 + I1)− U1 = h1 − u(y, z), where h1 = x(1 + j)

Thus, if u(y, z) > h1 then

P π (X1 < 0|Y1 = y, Z1 = z, I1 = j, X0 = x, I0 = i) = 1.

This implies that for u(y, z) > h1

P π

(
n+1⋃

k=1

{Xk < 0} |Y1 = y, Z1 = z, I1 = j, X0 = x, I0 = i

)
= 1,

while if 0 ≤ u(y, z) ≤ h1, then

P π (X1 < 0|Y1 = y, Z1 = z, I1 = j, X0 = x, I0 = i) = 0. (4.3.18)
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Let {Ỹn}n≥1, {Z̃n}n≥1, and {Ĩn}n≥0 be independent copies of {Yn}n≥1, {Zn}n≥1, and {In}n≥0,
respectively.
Let Ũk := b0Ỹk − C(b0)Z̃k. Thus, (4.3.18) and (4.3.3) yield that for 0 ≤ u(y, z) ≤ h1,

P π

(
n+1⋃
k=1

{Xk < 0} |Y1 = y, Z1 = z, I1 = j, X0 = x, I0 = i

)

= P π

(
n+1⋃
k=2

{Xk < 0} |Y1 = y, Z1 = z, I1 = j, X0 = x, I0 = i

)

= P π

(
n+1⋃
k=2

{
(h1 − u(y, z))

k∏
l=1

(1 + Il)

−
k∑

l=1

Ul

k∏
m=l+1

(1 + Im) < 0

}
|X0 = x, I1 = j

)

= P π

(
n⋃

k=1

{
(h1 − u(y, z))

k∏
l=1

(1 + Ĩl)

−
k∑

l=1

Ũl

k∏
m=l+1

(1 + Ĩm) < 0

}
|X0 = x, Ĩ0 = j

)

= ψπ
n(h1 − u(y, z), j) = ψπ

n(x(1 + j)− u(y, z), j)

where the second equality follows from the Markov property of {In}n≥0, and the independence
of {Yn}n≥1, {Zn}n≥1 and {In}n≥0.

Let us now consider the event A = {Y1 = y, Z1 = z, I1 = j,X0 = x, I0 = i}, and recall that
F (y) = P (Y ≤ y) and G(z) = P (Z ≤ z). From (4.3.7) and (4.3.3) we obtain

ψπ
n+1(x, i) = P π

(
n+1⋃
k=1

{Xk < 0} |X0 = x, I0 = i

)

=
∑
j∈I

pij

∞∫
0

∞∫
0

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y)dG(z).
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Then, recalling that τj(z) = x(1+j)+C(b0)z
b0

,

ψπ
n+1(x, i) =

∑
j∈I

pij

{
∞∫
0

τj(z)∫
0

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y)dG(z)

+
∞∫
0

∞∫
τj(z)

P π

(
n+1⋃
k=1

{Xk < 0} |A
)

dF (y)dG(z)

}

=
∑
j∈I

pij

∞∫
0

{
τj(z)∫
0

ψπ
n(x(1 + j)− u(y, z), j)dF (y)dG(z)

+
∫∞

0

∫
τj(z)∞dF (y)dG(z)

}

=
∑
j∈I

pij

{
∞∫
0

τj(z)∫
0

ψπ
n(x(1 + j)− u(y, z), j)dF (y)dG(z)

+
∫∞

0
F (τj(z))dG(z)

}
.

(4.3.19)

This gives (4.3.16). In particular,

ψπ
1 (x, i) =

∑

j∈I
pij

∞∫

0

F (τj(z))dG(z).

Finally, letting n →∞ in (4.3.19) and using dominated convergence we obtain lim
n→∞

ψπ
n+1(x, i) =

ψπ(x, i), and (4.3.17) follows.

Remark 4.3.2. If we consider the risk model without reinsurance, that is, b = 1, we obtain
similar results to those in Cai and Dickson [7].

4.3.3 Bounds for ruin probabilities

We will use the results obtained in Subsection 4.3.2 to find upper bounds for the ruin

probabilities with infinite horizon taking into account the information contributed by the

Markov chain of the interest rate process. We derive a functional for the ultimate ruin

probability in terms of the new worse than used in convex (NWUC) ordering; see Remark

4.3.3, below. This idea was first introduced by Willmot and Lin [62] and has been generalized

by other authors.
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We will present two upper bounds for the ruin probabilities. The first bound is obtained by

an inductive approach, and the second by a martingale approach. These bounds are discussed

in Remark 4.3.4, at the end of this subsection.

4.3.3.1 Bounds obtained by the inductive approach

Theorem 4.3.3. Let R0 > 0 be the constant satisfying (4.3.11). Then, for all x ≥ 0 and i ∈ I,
ψπ(x, i) ≤ β

∑
j∈I

pijE
π[e−R0x(1+j)]

= βEπ[e−R0[x(1+I1)]|I0 = i],

(4.3.20)

where β ≡ β(b0) and is given by

β−1 = inf
t≥0

∫∞
t

eR0b0ydF (y)

eR0b0tF (t)
.

Proof. It suffices to show that the rightmost term in (4.3.20) is an upper bound for ψπ
n(x, i),

for all n ≥ 1. We will prove this by induction. First note that

F (ϑ) =
(R∞

ϑ eR0b0ydF (y)

eR0b0ϑF (ϑ)

)−1

e−R0b0ϑ
∫∞

ϑ
eR0b0ydF (y)

≤ βe−R0b0ϑ
∫∞

ϑ
eR0b0ydF (y) ≤ βe−R0b0ϑEπ[eR0bY1 ]

(4.3.21)

for any ϑ ≥ 0. This implies that for every x ≥ 0, i ≥ 0, and b0 ∈ B, by (4.3.15) and (4.3.21)
we have

ψπ
1 (x, i) =

∑
j∈I

pij

∞∫
0

F (τj(z))dG(z)

≤ ∑
j∈I

pij

(
βEπ[eR0bY1 ] ·

∞∫
0

e
−R0b0

�
x(1+j)+C(b0)z

b0

�
dG(z)

)

= βEπ[eR0bY1 ]
∑
j∈I

pij

∞∫
0

e−R0[x(1+j)+C(b0)z]dG(z)

= βEπ[eR0bY1 ]
∑
j∈I

pijE
π
[
e−R0[x(1+j)+C(b0)Z1]|I0 = i

]

= βEπ[eR0bY1 ] · Eπ[e−R0[x(1+I1)+C(b)Z1 ]|I0 = i]

= βEπ[eR0bY1 ]Eπ[e−R0C(b)Z1 ]Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0[C(b)Z1−bY1]] · Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0x(1+I1)|I0 = i] (by (4.3.11)).
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This shows that the desired result holds for n = 1. To prove the result for general n ≥ 1, the
induction hypothesis is that, for some n ≥ 1, and every x ≥ 0 and i ∈ I,

ψπ
n(x, i) ≤ βEπ[e−R0x(1+I1)|I0 = i]. (4.3.22)

Now, let 0 ≤ y ≤ τj(z), with τj(z) as in Lemma 4.3.2. Further, in (4.3.22) replace x and i by
x(1 + j) + C(b0)z − b0y and j, respectively, to obtain

ψπ
n(x(1 + j) + C(b0)z − b0y, j) ≤ βEπ[e−R0[x(1+j)+C(b)z−by](1+I1)|I0 = j]

≤ βe−R0[x(1+j)+C(b0)z−b0y].
(4.3.23)

Therefore, replacing (4.3.23) in (4.3.16), we get

ψπ
n+1(x, i) ≤ ∑

j∈I
pij

(
β

∫∞
0

e−R0[x(1+j)+C(b0)z]
∫∞

τj(z)
eR0b0ydF (y)dG(z)

)

+
∑
j∈I

pij

(
β

∫∞
0

e−R0[x(1+j)+C(b0)z]
∫ τj(z)

0
eR0b0ydF (y)dG(z)

)

=
∑
j∈I

pij

(
β

∫∞
0

e−R0[x(1+j)+C(b0)z]
∫∞

0
eR0b0ydF (y)dG(z)

)

= βEπ[eR0bY1 ]
∑
j∈I

pij

∫∞
0

e−R0[x(1+j)+C(b0)z]dG(z)

= βEπ[eR0bY1 ] · Eπ[e−R0C(b)Z1 ] · Eπ[e−R0x(1+I1)|I0 = i]

= βEπ[e−R0x(1+I1)|I0 = i].

Hence, (4.3.22) holds for any n = 1, 2, . . .. Finally, letting n → ∞ in (4.3.22) we obtain
(4.3.20).

As an application of Theorem 4.3.3.1, we next consider the special case in which the claim

distribution is in the class of NWUC distributions.

Remark 4.3.3. For example, let F a phase-type distribution with parameters (α, T ) (see 2.3.3).

Then F is NWUC if and only if T−1 and T−1eTy(I−−→1 α) are both non-negative or non-positive

definite simultaneously for all y ≥ 0 (where I represent the identity matrix and
−→
1 is the column

vector of ones).

Corollary 4.3.4. Under the hypotheses of Theorem 4.3.3.1, and assuming that Eπ[eR0bY1 ] < ∞
for all b ∈ B, and that, in addition, F is a NWUC distribution, we have

ψπ(x, i) ≤ (Eπ[eR0bY1 ])−1Eπ[e−R0x(1+I1)|I0 = i]. (4.3.24)

Proof. Following proof of proposition 2.1.1, let r := R0b > 0. Therefore

β−1 := inf
t≥0

∫∞
t

erydF (y)

ertF (t)
=

∫ ∞

0

erydF (y),

that is, β−1 = Eπ[eR0bY1 ]. Finally, replacing this equality in (4.3.20), we obtain (4.3.24).
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4.3.3.2 Bounds by means of the martingale approach

Another way for deriving upper bounds for ruin probabilities is the martingale approach. To

this end, let Vn := Xn

n∏
l=1

(1 + Il)
−1 with n ≥ 1, be the so-called discounted risk process. The

ruin probabilities ψπ
n in (4.3.7) associated to the process {Vn, n = 1, 2 . . .} are

ψπ
n(x, i) = P π

(
n⋃

k=1

(Vk < 0)|X0 = x, I0 = i

)
.

In the classical risk model, {e−R0Xn}n≥1 is a martingale. However, for our model (4.3.3),

there is no constant r > 0 such that {e−rXn}n≥1 is a martingale. Still, there exists a constant

r > 0 such that {e−rVn}n≥1 is a supermartingale, which allows us to derive probability

inequalities by the optional stopping theorem. Such a constant is defined in the following

proposition.

Proposition 4.3.5. Assume that for each i ∈ I, there exists ρi > 0 satisfying that

Eπ
[
e−ρi[C(b)Z1−bY1](1+I1)−1|I0 = i

]
= 1. (4.3.25)

Then

R1 := min
i∈I

ρi ≥ R0 (4.3.26)

and, furthermore, for all i ∈ I
Eπ

[
e−R1[C(b)Z1−bY1](1+I1)−1|I0 = i

]
≤ 1. (4.3.27)

Proof. For each i ∈ I and r > 0, let

li(r) := Eπ
[
e−r[C(b)Z−bY ](1+I1)−1|I0 = i

]
− 1.

Then the first derivative of li(r) at r = 0 is

l
′
i(0) = Eπ [−(C(b)Z − bY )] · E [

(1 + I1)
−1|I0 = i

]
< 0 (by independence),

and the second derivative is

l
′′
i (r) = Eπ

[(
(C(b)Z − bY )(1 + I1)

−1
)2 · e−r[C(b)Z−bY ](1+I1)−1|I0 = i

]
> 0.

This shows that li(r) is a convex function. Let ρi be the unique positive root of the equation
li(r) = 0 on (0,∞). Further, if 0 < ρ ≤ ρi, then li(ρ) ≤ 0. However,

Eπ
[
e−R0[C(b)Z−bY ](1+I1)−1|I0 = i

]
=

∑
j∈I

pijE
[
e−R0[C(b0)Z−b0Y ](1+j)−1

]

(by Jensen’s inequality) ≤ ∑
j∈I

pijE
[
e−R0[C(b0)Z1−b0Y1]

](1+j)−1

.
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Consequently, by (4.3.11), we have E
[
e−R0[C(b0)Z1−b0Y1]

]
= 1. Hence, since

∑
j∈I

pij = 1,

Eπ
[
e−R0[C(b)Z−bY ](1+I1)−1|I0 = i

]
≤ 1.

This implies that li(R0) ≤ 0. Moreover, R0 ≤ ρi for all i, and so

R1 := min
i∈I

ρi ≥ R0.

Thus, (4.3.26) holds. In addition R1 ≤ ρi for all i ∈ I, which implies that li(R1) ≤ 0. This
yields (4.3.27).

Theorem 4.3.6. Under the hypotheses of Proposition 4.3.3.2, for all i ∈ I and x ≥ 0,

ψπ(x, i) ≤ e−R1x. (4.3.28)

Proof. By (4.3.3), the discounted risk process Vk := Xk

k∏
l=1

(1 + Il)
−1 satisfies that

Vk := x +
k∑

l=1

(
(C(b0)Z1 − b0Yl)

l∏
t=1

(1 + It)
−1

)
. (4.3.29)

Let Sn = e−R1Vn . Then

Sn+1 = Sne
−R1(C(b0)Zn+1−b0Yn+1)

n+1Q
t=1

(1+It)−1

.

Thus, for any n ≥ 1,

Eπ[Sn+1 | Y1, . . . Yn, Z1, . . . Zn, I1, . . . In]

= SnE

[
e
−R1(C(b0)Zn+1−b0Yn+1)

n+1Q
t=1

(1+It)−1

| Y1, . . . Yn, Z1, . . . Zn, I1, . . . In

]

= SnE

[
e
−R1(C(b0)Zn+1−b0Yn+1)(1+In+1)−1

nQ
t=1

(1+It)−1

| I1, . . . In

]

≤ SnE
([

e−R1(C(b0)Zn+1−b0Yn+1)(1+In+1)−1 | I1, . . . In

]) nQ
t=1

(1+It)−1

≤ Sn.

This implies that {Sn}n≥1 is a supermartingale.
Let Ti = min{n : Vn < 0 | I0 = i}, where Vn is given by (4.3.29). Then Ti is a stopping time
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and n ∧ Ti := min{n, Ti} is a finite stopping time. Thus, by the optional stopping theorem for
martingales, we get

Eπ(Sn∧Ti
) ≤ Eπ(S0) = e−R1x.

Hence,

e−R1x ≥ Eπ(Sn∧Ti
) ≥ Eπ((Sn∧Ti

)I(Ti≤n)) ≥ Eπ((STi
)I(Ti≤n))

= Eπ(e−R1VTi I(Ti≤n)) ≥ Eπ(I(Ti≤n)) = ψπ
n(x, i),

(4.3.30)

where (4.3.30) follows because VTi
< 0. Thus, by letting n → ∞ in (4.3.30) we obtain

(4.3.28).

Remark 4.3.4. Summarizing, we have three upper bounds for the ruin probabilities with infinite
horizon. First, the Lundberg bound, which only depends on R0, the Lundberg exponential in
(4.3.11), (4.3.12). Second, the inductive bound (4.3.20) which depends on R0 and also on the
interest rate process. Third, the martingale bound in (4.3.28), which depends on R1. Note that
the last two bounds are sharper than the Lundberg bound. Observe also that the number of
operations to get R1 in (4.3.28) is higher than that to get R0 in (4.3.20).

In the next subsection we present some numerical results.

4.3.4 Numerical results

To illustrate the bounds given by Theorems 4.3.3.1 and 4.3.3.2 we present two numerical

examples that use Matlab and Maple implementations. Without loss of generality we can

work in monetary units equal to E[Y ] in all examples.

4.3.4.1 Exponentially distributed claims

Let consider the special case 2 in Subsection 4.3.1, in which Zn and Yn are exponentially

distributed with parameters λ and 1/µ, respectively. In addition, we will consider an interest

model with three possible interest rates:

I = {6%, 8%, 10%}.

The transition matrix (see (4.3.4)) is given by




0.2 0.8 0

0.15 0.7 0.15

0 0.8 0.2


 .
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Thus, our interest rate model incorporates mean reversion to a level of 8%. If θ is too high, in

the sense that

1 + θ ≥ (1− µR0)
−2 ,

then the optimal policy is given by π∗ = {a∗n}n≥1 with a∗n = 1 for all n. If we assume that

c > λµ, then we have that the ruin probability for the Cramér-Lundberg model is §

ψπ∗(x) =

(
λµ

c

)
e−x( 1

µ
−λ

c ).

Recalling (4.3.13), the Cramér-Lundberg exponent R0 is the solution of equation

λ + cR0 = λ (1− µR0)
−1 .

By Lemma 4.3.1 and (4.3.12), we have that ψπ∗(x, i) ≤ ψπ∗(x) ≤ e−R0x. In the case that Y has

DFR distribution¶ ♣, then the inductive bound is given by (4.3.24). The martingale bound

can be obtained from Theorem 4.3.3.2. The Table 4.3.4.1 shows the numerical results when

λ = 1, µ = 2, θ = 3, c = 4, and x = 1.

Lundberg ψπ∗(x) Inductive Martingale R0 R1

0.7788 0.3894 0.3817 0.4366109286 0.25 0.8287128040

Table 4.2: Table of upper bounds for ruin probabilities, with x = 1 and i = 8%.

Note that

ψπ∗(x, i) ≤ 0.3817 < ψπ∗(x).

The numerical results in Table 4.3.4.1 show that the upper bound in (4.3.20) can be tighter

than that in (4.3.28). This suggests that the upper bounds derived by the inductive approach

are tighter than the upper bounds obtained by supermartingales. In addition, the upper bounds

derived by the inductive approach are tighter than the ruin probability without interest rate.

Moreover, Table 4.3.4.1 shows that the upper bounds derived in this chapter are sharper than

the Lundberg upper bound.

§See equation (1.1.4).
¶See Remark 2.3.2.
♣If f has DFR, this imply that df F is NWUC.



Inequalities for the ruin probability 83

4.3.4.2 Claims with phase-type distribution

We consider claim distributions of the phase-type because this class is a generalization of the

exponential distribution such that they and their moments can be written in a closed form,

various quantities of interest can be evaluated with relative ease, and furthermore, the set of

phase-type distributions is dense in the set of all distributions with support in [0,∞) (see [2]).

Suppose that the claim size Y has a phase-type density with parameters (α, T ) where

T =

(
−1 0

0 −2

)
, and α = (1/2, 1/2).

Let

I =

(
1 0

0 1

)
,

−→
1 = (1, 1), and t = −T · −→1 =

(
1

2

)

In this case,

MY (s) = E[es·Y ] = α (−sI − T )−1 t.

Thus, E[Y ] = d
ds

MY (s) |s=0= α(T )−2t = 0.75, and Y has NWUC distribution. Let Z w Exp(1),

E[Z] = 1, and MZ(s) = E[es·Z ] = (1− s)−1.

We consider an interest model with three possible interest rates: I = {6%, 8%, 10%}. We

would like to have an idea of the dependence of our bounds on the transition probability matrix

of the interest rate process. To this end, we consider two transition probability matrices, namely,

P1 =




0 0.9 0.1

0.8 0.2 0

0.9 0.1 0


 and P2 =




0.3 0.7 0

0 0.2 0.8

0 0.1 0.9


 .

We fix the premium income rate c = 0.975 and the safety loading θ = 0.1 of the reinsurer. In

addition, B = (0, 1]. In this case (4.3.14) is not satisfied.
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The Lundberg bound: In this example we can guarantee that the Lundberg bound

(4.3.12) holds for each b ∈ B. Then there exists a constant R0 such that (4.3.11) is achieved.

Moreover, solving

Eπ[eR0bY1 ] · Eπ[e−R0C(b)Z1 ] = 1,

is equivalent to find the Cramér-Lundberg adjustment coefficient such that

1 + C(b)R0 = α(−bR0I − T )−1t.

Then the Lundberg bound for the ruin probability is

ψb(x) ≤ e−R0x, for x ≥ 0.

Figure 4.2 shows the relation between R0 and b in this inequality is inversely proportional.

Table 4.3.4.2 presents numerical values of the bounds obtained for several admissible decision

policies.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

b

R 0

Figure 4.2: Relation between R0 and b.

The Induction bound: Here, the claim distribution is a NWUC (see [62], page 24) and

such that Eπ[eR0bY1 ] = MY (R0b) < ∞ for each b ∈ B. Then Corollary 4.3.3.1 applies and for

each i ∈ I and x ≥ 0, we have

ψπ(x, i) ≤ (Eπ[eR0bY1 ])−1Eπ[e−R0x(1+I1)|I0 = i]

≤ [
α (−bR0I − T )−1 t

]−1 ∑
k∈I

pike
−R0x(1+k).
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See Table 4.3.4.2 for numerical values of this bound obtained for several admissible decision

policies. As it is to be expected we get induction bounds smaller than the Lundberg bounds

for the same decision policies.

The Martingale bound:By the condition (4.3.25) of Proposition 4.3.3.2 and Theorem

4.3.3.1, we get the martingale bound (4.3.28). Observe that

E
[
e−ρi(C(b)Z1−bY1)(1+I1)−1|I0 = i

]
= 1

which is equivalent to the following condition for each i ∈ I:
∑

k∈I
pike

ρi(1+k)−1

MY

(
bρi

1 + k

)
MZ

(
−C(b)ρi

1 + k

)
= 1.

In our example we solve R1 = min
i∈I

ρi ≥ R0, and then we obtain ψπ(x, i1) ≤ e−R1x for x ≥ 0.

Numerical results of this bound are reported in Table 4.3.4.2. It is obvious that this martingale

bound improves the results of the induction bound.

We run numerical experiments to compare, for a fixed retention level b, the ruin probability

bounds that could be achieved. Figure 4.3 shows the upper bounds of ruin probability from
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Figure 4.3: Bounds for the ruin probabilities. Left panel: b ∈ [0.5, 1]. Right panel: b ∈ [0.75, 1].

different approaches with the initial state x = 5 and i = 8%.
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Finally, we find of special interest the case of small reinsurers for which the retention level

could be restricted by economic considerations. Table 4.3.4.2 shows the numerical values of the

bounds from different values of b when b is increasing towards 1. Recall, that b = 1 stands for

the control action no reinsurance. Clearly, the best results are obtained in the case where the

transition interest rate matrix is P2.

The numerical results in Table 4.3.4.2 show that the upper bound in (4.3.28) can be tighter

Pκ b Lundberg Induction Martingale R0 R1

P1 0.5 0.323e− 7 0.369e− 8 0.448e− 9 3.4491 4.3048
P1 0.75 0.111e− 4 0.196e− 5 0.586e− 6 2.2810 2.8697
P1 0.85 0.434e− 4 0.846e− 5 0.317e− 5 2.0086 2.5321
P1 0.95 0.126e− 3 0.268e− 4 0.120e− 4 1.7943 2.2655
P1 1 0.2e− 3 0.436e− 4 0.212e− 4 1.7034 2.1522
P2 0.5 0.323e− 7 0.213e− 8 0.382e− 9 3.4491 4.3368
P2 0.75 0.111e− 4 0.136e− 5 0.527e− 6 2.2810 2.8911
P2 0.85 0.434e− 4 0.614e− 5 0.288e− 5 2.0086 2.5509
P2 0.95 0.126e− 3 0.201e− 4 0.110e− 4 1.7943 2.2824
P2 1 0.2e− 3 0.333e− 4 0.195e− 4 1.7034 2.1683

Table 4.3: Numerical bounds of ruin probability.

than that in (4.3.20). This suggests that the upper bounds derived by the martingale approach

are tighter than the upper bounds obtained by induction. In addition, Table 4.3.4.2 also shows

that the upper bounds derived in this chapter are sharper than the Lundberg upper bound.



Chapter 5

Markov control processes

In the last chapter, we considered a similar controlled risk process {Xn}, given by

xn+1 = G (xn, in+1, an, wn) , (5.0.1)

where the sequence {wn} consists of i.i.d random variables with values in a Borel space W and

{wn} is independent of the initial state (x0, i0). The common distribution of the wn is denoted

by F . Moreover, we will look on wn as the disturbance for period n. The sequence {wn}n≥1

forms the source of randomness of the model. Let {in} the interest rate process and {an} be a

sequence of decision functions. Furthermore, the interest rate process {in} in (4.2.1) and (4.3.1)

is supposed to be a Markov chain, i.e., in evolves as

in+1 = H (in, $n) , (5.0.2)

where {$n} is a sequence i.i.d. random variables and independent of initial state (x0, i0) with

a common distribution Υ. Also, we assume that {wn} and {$n} are independent sequences.

In addition, the risk process may be controlled by reinsurance and the cost that will be to pay

it is defined by

c (x, i, a) := 1(−∞,0)(x). (5.0.3)

Clearly, the model (5.0.1) is a generalization of model (3.2.2) given in Chapter 3 and the cost

function (5.0.3) is similar to reward function considered in (3.2.3).

Following the idea of Shäl [48] and Schmidli [54] we introduce a cemetary state. Once the

87
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system is in state x ∈ (−∞, 0), then it shall move to −∞ in the next step, i.e. we set

G (x, i, a, w) = −∞ for x ∈ [−∞, 0). Thus the cost of 1 unit has to be paid at most once.

We assume that the functions C(b)∗ and h(b, y) = b · y† defined in Chapter 4 are continuous

in b for each y. Also, we assume that P (C(b)z < h(b, y)) for all b = a(x).

The state space X of our decision problem can be not countable and we have to take into

account that in general we cannot take the system of all subsets of X as the domain of the

probability measures we are interested in. Thus, consequently the measurability of functions

defined on X is no longer a triviality‡.

Then, under certain conditions the stochastic process (Ω,F , P π
v , {(xn, in)}) is a discrete-time

Markov control process§.

In this chapter, we will study a general Markov decision problem following the ideas of

González-Hernández, López-Mart́ınez and Pérez-Hernández [30], and Hernández-Lerma and

Lasserre [33, 34, 35]. Also, we use the Hinderer’s results [36]. Particularly, we will specify how

to rewrite the minimization of the ruin probability as a MDP applying the results to consider

a fixed discount factor α = 0.

In spite of focused in this thesis to the special case of minimization the ruin probability, we

can apply the results of this chapter to maximization the exponential utility as well. However,

we do not consider a random discount factor.

We begin Section 5.1 by defining a Markov decision model with criterion the expected

discounted cost criterion, where the state and action spaces are Borel spaces. We finish this

∗See, equations (4.2.3) and (4.3.2).
†See, equation (4.2.2).
‡See, A.2 for definition.
§Or equivalently, a Markov decision process.
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section with the canonical construction. In Section 5.2 we study finite MDPs and by using

the dynamic programming algorithm we prove the existence of optimal policies, under the

assumption of the existence of measurable selectors that satisfy optimality equations. In Section

5.3 we give conditions that ensure the existence of such selectors. Finally, in Section 5.4 we

present infinite horizon MDPs, we obtain the optimality equation and we prove the existence

of optimal policies.

5.1 Markov control model

A Markov decision model (also, called Markov control model (MCM)) is a tuple

M := (X,A, {A(x, i)|(x, i) ∈ X} , Q, c) , (5.1.1)

of the following meaning:

1. X = X′ × (0,∞) is state space and X′ is Borel space.

2. A is action space (or control space).

3. a family {A(x, i)|(x, i) ∈ X} of nonempty measurable subset A(x, i) of A, where A(x, i)

denotes the set of feasible control or actions when the system is in state (x, i) ∈ X. The

set of feasible state-action pairs, namely

K := {(x, i, a)|a ∈ A(x, i), (x, i) ∈ X} , (5.1.2)

is assumed to be a measurable subset of X×A.

4. a stochastic kernel Q on X given K called transition law.

5. a stochastic function c : K→ R called the cost-per-stage function.

Assumption 5.1. The set K contains the graph of a measurable function from X to A; that is,
there is a measurable function f : X→ A such that f(x, i) ∈ A(x, i) ∀(x, i) ∈ X (the family of
such functions will be denoted by F).

This assumption ensures that the sets in Definition 5.1.3 are nonempty.
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Definition 5.1.1. For each t = 0, 1, . . . , define the space Ht of admissible histories up to time
t as H0 = X, and

Ht :=

[
t−1∏
j=0

K

]
× X for t ∈ N¶ (5.1.3)

where K is the set in (5.1.2). A generic element ht of Ht, which is called an admissible t-history,
is a vector of the form

ht = (x0, i0, a0, . . . , xt−1, it−1, at−1, xt, it) (5.1.4)

with (xj, ij, aj) ∈ K for j = 0, . . . , t−1, and (xt, it) ∈ X. Note that, for each t, Ht is a subset of

H t :=

[
t−1∏
j=0

X×A
]
× X for t ∈ N (5.1.5)

and H0 = H0 = X.

A policy is a sequence of actions that is taken by the controller, that is.

Definition 5.1.2. Φ denotes the set of all stochastic kernels ϕ in P (A|X) such that
ϕ (A(x, i)|(x, i)) = 1 for all (x, i) ∈ X, and F stands for the set of all measurable functions
f : X → A satisfying that f(x, i) ∈ A(x, i) for all (x, i) ∈ X. The functions in F are called
selectors of the multifunction (or set-valued mapping) (x, i) 7→ A(x, i).

Remark 5.1.1. Assumption 5.1 ensures that F is nonempty.

A function f in F may be identified with the stochastic kernel ϕ ∈ Φ, for which ϕ (·|(x, i))

is the Dirac measure at f(x, i) for all (x, i) ∈ X, i.e.,

ϕ (C|(x, i)) = 1C (f(x, i)) ∀(x, i) ∈ X, C ∈ B(A),

we may regard F as a subset of Φ, i.e.,

F ⊂ Φ.

Definition 5.1.3. A randomized control policy is a sequence π = {πt}t∈Z+ of stochastic kernels
πt on the control set A given Ht, satisfying the constraint

πt (A(xt, it)|ht) = 1 for all ht ∈ Ht, t ∈ Z+. (5.1.6)

The set of all policies is denoted by Π. As usual, we will identify Φ with the family of

randomized stationary policies, and F with the subfamily of deterministic stationary policies.

In this way, we have that F ⊂ Φ ⊂ Π.

With these elements we can define the next stochastic processes.

¶We denote by N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}.
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5.1.1 The canonical construction

Let (Ω,F) be the measurable space consisting of the (canonical) sample space Ω := H∞ =

[
∏∞

t=1X×A] and F is the corresponding product σ-algebra. The element of Ω are sequence of

the form w = (x0, i0, a0, x1, i1, a1, . . .) with (xt, it) ∈ X and at ∈ A for all t ∈ Z+; the projec-

tions (xt, it) and at from Ω to the sets X and A are called called state and control (or action)

variables, respectively. Observe that Ω contains the space H∞ =
∏∞

t=0K of admissible histories

(x0, i0, a0, x1, i1, a1, . . .) with (xt, it, at) ∈ K for all t ∈ Z+.

Let π = {πt} be an arbitrary control policy and υ an arbitrary probability measure on X,

referred to as the initial distribution. Then, by the theorem of C. Ionescu-Tulcea♣ there exists

a unique probability measure P π
v on (Ω,F) which, by (5.1.6), is supported on H∞, namely

P π
v (H∞) = 1, and, moreover, for all D ∈ B(X)♦, E ∈ B(A) and ht ∈ Ht as in (5.1.4), t ∈ Z+

we have

P π
v ((x0, i0) ∈ D) = ν(D), (5.1.7)

P π
v (at ∈ E|ht) = πt (E|ht) , (5.1.8)

P π
v ((xt+1, it+1) ∈ D|ht, at) = Q (xt, it, at) . (5.1.9)

The stochastic process (Ω,F , P π
v , {(xn, in)}) is a discrete-time Markov control process.

Remark 5.1.2. Particularly, in case of minimizing the ruin probability; we assume that
G : K×W→ X and H : (0,∞)×∆ → (0,∞) are measurable functions, where K ⊂ X×A is the
set defined in (5.1.2). We define a measure Σ → µ (Σ) on W×∆ as µ(w, $) := F (w)×Υ($).
Then, by assumption in (5.0.1), the variables (xt, it, at) and wt are independent for each
t = 0, 1, . . .. Thus the controlled process transition law Q is given by

Q(x, i, a) =

∫

W×∆

1D [G (x, i, a,w) ,H(i,$)] µ (d(w, $)) . (5.1.10)

Notation. The following notation will be useful for us.

♣See, [36] and [33] Appendix C.
♦Denotes the Borel space.
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The expectation operator with respect to P π
v is denoted by Eπ

v . If ν is concentrated at the

initial state (x, i) ∈ X, then we write P π
v and Eπ

v as P π
(x,i) and Eπ

(x,i), respectively.

Let ϕ ∈ Φ, g : X×A → R a measurable function, and Q a stochastic kernel on X given

K. Then we define

g (x, i, ϕ) =

∫

A
g (x, i, a) ϕ (da|x, i)

and

Q (·|x, i, ϕ) =

∫

A
Q (·|x, i, a) ϕ (da|x, i) .

In particular, for a function f ∈ F, we have g (x, i, f) = g (x, i, f(x, i)) and Q (D|x, i, f) =

Q (D|x, i, f(x, i)). Note that each of these functions is measurable.

Interpretation. We observe the system in discrete time (days, months, years,. . .). The

system starts at the state (x0, i0) and we apply a policy π = {πt} in the following way: we choose

an action a0 with distribution law π0 (·|h0), which incurs the immediate cost c (x0, i0, a0). Then,

the system evolves to a new state (x1, i1) according to the transition law Q (·|x0, i0, a0). Now,

we choose an action a1 with distribution law π1 (·|h1), which generates a new cost c(x1, i1, a1)

and the system moves to another state (x2, a2) according to transition law Q (·|x1, i1, a1). The

process is repeated at each time t within the problem’s planning horizon.

5.2 Finite-horizon problems

In this section we consider the Markov control model (5.1.1) with a finite planning horizon N .

The present value of the current cost in stage t given by

e−αc(xt, it, at) for t = 1, . . . , N − 1,

where α ≥ 0 is a fixed discounting parameter. Finally, we consider that at stage N there is a

terminal cost c(xN). That is, the control problem we are interested in is to minimize the finite
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horizon performance criterion

J (π, x, i) := Eπ
(x,i)

[
N−1∑
t=0

e−αtc(xt, it, at) + e−αcN(xN)

]
. (5.2.1)

Thus, denoting by J∗ the value function, i.e.,

J∗ (x, i) := inf
Π

J (π, x, i) , (x, i) ∈ X. (5.2.2)

the problem is to find policy π∗ ∈ Π such that

J (π∗, x, i) = inf J∗ (x, i) , for all (x, i) ∈ X. (5.2.3)

Our main result in this section is the following Dynamical Programming (DP) theorem, which

provides an algorithm for finding both the value function J∗ and a deterministic optimal policy

π∗.

Remark 5.2.1. We will consider in the case of ruin probability α = 0.

Theorem 5.2.1. Let J0, J1, . . . , JN be the functions on X defined (backward, from t = N to
t = 0) by

JN (x, i) := cN(x) (5.2.4)

and for t = N − 1, N − 2, . . . , 0,

Jt (x, i) := min
A(x,i)

[
c(x, i, a) + e−α

∫

X
Jt+1(s, ι)Q (d(s, ι)|x, i, a)

]
. (5.2.5)

Suppose that these functions are measurable and that, for each t = 0, . . . , N − 1, there is a
selector ft ∈ F such that ft(x, i) ∈ A (x, i) attains the minimum in (5.2.5) for all (x, i) ∈ X;
that is, for all (x, i) in X and t = 0, . . . , N − 1,

Jt (x, i) := c(x, i, ft) + e−α

∫

X
Jt+1(s, ι)Q (d(s, ι)|x, i, ft) . (5.2.6)

Then the (deterministic Markov) policy π∗ = {f0, . . . , fN−1} is optimal and the value function
J∗ equals J0, i.e.,

J∗ (x, i) = J0 (x, i) = J (π∗, x, i) ∀(x, i) ∈ X. (5.2.7)

Proof. Let π = {πt} be an arbitrary policy, and let Ct (π, x, i) be the corresponding expected
total cost from time t to terminal time N , given the state (xt, it) = (x, i) at time t, i.e.,

Ct (π, x, i) := Eπ

[
N−1∑
n=t

e(t−n)αc (xn, in, an) + e(t−N)αcN (xN , iN) |xt = x, it = i

]
(5.2.8)
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for t = 0, 1, . . . , N − 1

CN (π, x, i) := Eπ [cN (xN) |xN = x, iN = i] = cN(x).

Ct (π, x, i) is called the “cost-to-go” or cost from time t onwards when using the policy π and
(xt, it) = (x, i). In particular note that, from (5.2.1) and (5.2.8)

J (π, x, i) = C0 (x, i) . (5.2.9)

To prove the theorem, we shall show that, for all (x, i) ∈ X and t = 0, . . . , N ,

Ct (π, x, i) ≥ Jt (x, i) (5.2.10)

with equality if π = π∗, i.e.,

Ct (π∗, x, i) = Jt (x, i) . (5.2.11)

In particular for t = 0,

J (π, x, i) ≥ J0 (x, i) with J (π∗, x, i) = J0 (x, i) ∀(x, i),

which yields the desired conclusion (5.2.7), as J (π, ·, ·) ≥ J0 (·, ·) for arbitrary π implies
J∗ (·, ·) ≥ J0 (·, ·).
The proof of (5.2.10) and (5.2.11) is by backward induction. Observe that (5.2.10) and (5.2.11)
trivially hold for t = N , since, from (5.2.9) and (5.2.4),

CN (π, x, i) = JN (x, i) = cN(x).

Let us now assume (the induction hypothesis) that for some t = N − 1, . . . , 0,

Ct+1 (π, x, i) ≥ Jt+1 (x, i) ∀(x, i) ∈ X. (5.2.12)

Then

Ct (π, x, i) = Eπ
[∑N−1

j=t e(t−j)αc (xj, ij, aj) + e(t−N)αcN (xN , iN) |xt = x, it = i
]

=

∫

A

[
c(x, i, a) + e−α

∫

X
Ct+1 (π, s, ι) Q (ds, dι|x, i, a)

]
πt (da|x, i)

hence,

Ct (π, x, i) ≥ min
{A(x,i)}

[
c(x, i, a) + e−α

∫

X
Jt+1 (s, ι) Q (ds, dι|x, i, a)

]

= Jt (x, i) .

This prove (5.2.10). On the other hand, if equality holds in (5.2.12) with π = π∗ so that
πt (·|ht) is the Dirac measure concentrated at f (xt, it), then equality holds throughout the
previous calculations which yields (5.2.11).
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5.3 The measurable selection condition

In this section we give conditions on the MCM (5.1.1) that assure the existence of selectors.

Assumption 5.2. For a given measurable function u : X → R, the function u∗ from X to R
defined,

u∗ (x, i) := inf
A(x,i)

[
c(x, i, a) + e−α

∫

X
u (s, ι) Q (ds, dι|x, i, a)

]
(5.3.1)

is measurable and there exists a selector f ∈ F such that the function within brackets attains
its minimum at f(x, i) ∈ A (x, i) for all (x, i) ∈ X, i.e.,

u∗ (x, i) := c(x, i, f) + e−α

∫

X
u (s, ι) Q (ds, dι|x, i, f) ∀(x, i) ∈ X.

We recall some definitions that will be used in the condition below.

Let Ξ be a metric space and v a function from Ξ to R∪{∞} such that v(s) < ∞ for at least

one point s ∈ Ξ.

• The function v is said to be lower semicontinuous (l.s.c) at s ∈ Ξ, if lim inf v(sn) ≥ v(s) for

any sequence {sn} in Ξ that converges to s. The function v is called lower semicontinuous

if its is l.s.c at every point of Ξ.

• A function v : K → R is said to be inf-compact on K if, for every (x, i) ∈ X and r ∈ R,

the set {a ∈ A (x, i) |v (x, i, a) ≤ r} is compact. A multifunction ψ from X to A is said

to be upper semicontinuous (u.s.c) if ψ−1[F̂] is closed in X for every closed set F̂ ⊂ A.

Let B (X) be the family of measurable bounded functions on X, and C (X) ⊂ B (X) the

subfamily of continuous functions.

We now consider the three conditions under which, in particular, Assumption 5.2 is satisfied

Condition 5.1. 1. The control sets A (x, i) are compact all (x, i) ∈ X.

2. The one-stage cost c is such that c(x, i, ·) is l.s.c on A (x, i) for every (x, i) ∈ X.

3. The function

v′ (x, i, a) :=

∫

X
v (s, ι) Q (ds, dι|x, i, a) (5.3.2)

on K satisfies one of the two following conditions:
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(a) v′ (x, i, ·) is l.s.c. on A (x, i) for every (x, i) ∈ X and every v ∈ C (X).

(b) v′ (x, i, ·) is l.s.c. on A (x, i) for every (x, i) ∈ X and every v ∈ B (X).

Condition 5.2. 1. A (x, i) is compact for all (x, i) ∈ X and the multifunction (x, i) 7→ A (x, i)
is u.s.c.

2. The one-stage cost c is l.s.c. and bounded below.

3. The transition law Q is either:

(a) weakly continuous, i.e., for every function v ∈ C (X), the function v′ in (5.3.2) is
continuous and bounded on K.

(b) strongly continuous, i.e., v′ is continuous and bounded on K for every v ∈ B (X).

Condition 5.3. 1. The one-stage cost c is l.s.c. bounded below and inf-compact on K;

2. Same as 5.2 (3), i.e., Q is either

(a) weakly continuous, or

(b) strongly continuous.

We next show how the last three conditions relate to Assumption 5.2.

Theorem 5.3.1. 1. Each of Condition 5.1 and 5.2 implies Assumption 5.2 for any nonne-
gative measurable function u : X→ R. Moreover, under 5.1(3a) or 5.2(3a), it suffices to
take u nonnegative and l.s.c. in which case, under 5.2(1,2,3a) the function u∗ in (5.3.1)
is l.s.c.

2. Condition 5.3 implies Assumption 5.2 if, under 5.3(2a), u is nonnegative and l.s.c. or,
under 5.3(2b), if u is a nonnegative measurable function. If in addition the multifunction
(x, i) 7→ A∗(x, i) with A∗(x, i) equal to

{
a ∈ A(x, i)|u∗(x, i) := c(x, i, a) + e−α

∫
u(s, ι)Q (ds, dι|x, i, a)

}

is l.s.c., then u∗ is l.s.c..

Remark 5.3.1. In Theorem 5.3.1, we suppose that u is nonnegative, but it is easily seen that it
suffices to take a bounded below.

Proof. To follow [30] and [33] pp. 29.

1. Let u ≥ 0 be a measurable function on X.
To prove the first statement (1), it clearly suffices to consider Conditions 5.1 (1), (2) and
(3b). Moreover, note that given l.s.c. functions v1, v2, then v1 +e−αv2 is also l.s.c.. Hence
the desired conclusion follows from Proposition D.5 in Hernández-Lerma and Lasserre
[33] provided that the function

a 7→
∫

X
u(s, ι)Q (ds, dι|x, i, a) is l.s.c. on A(x, i) for every (x, i) ∈ X. (5.3.3)
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To prove this, let {un} be a sequence in B (X) such that un ↑ u, and let {al} be a sequence
in A(x, i). Converging to a ∈ A(x, i). Then, for each n we have

lim inf
l→∞

∫
u(s, ι)Q

(
ds, dι|x, i, al

) ≥ lim inf
l→∞

∫
un(s, ι)Q

(
ds, dι|x, i, al

)

≥
∫

un(s, ι)Q (ds, dι|x, i, a) .

Letting n tend to infinity we obtain (by the Monotone Convergence Theorem)

lim inf
l→∞

∫
u(s, ι)Q

(
ds, dι|x, i, al

) ≥
∫

u(s, ι)Q (ds, dι|x, i, a)

which proves (5.3.3). Thus, as was already mentioned, we obtain Assumption 5.2 from
Proposition D.5 in [33].
Let us now suppose the Condition 5.1 (3a) and 5.2 (3a) hold. Then the second statement
in (1) follows from the same argument above, but now based on the fact that u ≥ 0 is
l.s.c., then it is the limit of an increasing sequence in C (X) (see Proposition A.2 in [33]).
The last statement in (1) follows from the above arguments and Proposition D.5(b) in [33].

2. Suppose that Condition 5.3 holds with (2a), and that u ≥ 0 is measurable. Then, as in
the proof of part (1), but now approximating u from below by functions in B (X), one can
show that the function

u′ (x, i, a) := c (x, i, a) + e−α

∫

X
u(s, ι)Q (ds, dι|x, i, a) , (x, i, a) ∈ K

is l.s.c. and bounded below. Thus we may obtain Assumption 5.2 from Proposition
D.6(a) in [33], if u′ is inf-compact on K, that is, if for every (x, i) ∈ X and r ∈ R,
the set {a ∈ A(x, i)|u′(x, i, a) ≤ r} := D is compact. But this is obviously true, since
(by lower semicontinuity ?) D is closed and, since u ≥ 0, it is contained in the set
{a ∈ A(x, i)|c(x, i, a) ≤ r}, which, by the inf-compactness of c (see Condition 5.3(1)), is
compact. The proof under (2a) is similar.
The last statement (2) follows from Proposition D.6(b) in [33].

Remark 5.3.2. Particularly, in case of minimizing the ruin probability; consider the equation
model (5.0.1), i.e.,

xn+1 = G (xn, in+1, an, wn) ,

in+1 = H (in, $n) n = 0, 1, . . . ,
(5.3.4)

?See Proposition A.1(c) in [33].
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where {wn} and {$n} are sequence of i.i.d. random disturbances, independent of the inicial
state (x0, i0). The corresponding transition law Q can be written, for all D ∈ B (X) and
(x, i, a) ∈ K, as

Q(x, i, a) =

∫

∆

∫

W
1D [G (x, i, a, w) ,H(i,$)] F (dw)Υ(d$)

In this case, by the “change of variables” formula for integralsג, for any measurable function v
on X we have

E [v (xt+1, it+1) |xt = x, it = i, at = a] =

∫

X
v (s, ι) Q (ds, dι|x, i, a)

=

∫

W×∆

v (G (x, i, a,w) ,H(i, $)) µ (d(w,$))

= Ev [G (x, i, a,w0) ,H(i, $0)]

(5.3.5)

in the sense that, if one of the integrals exists, so does the other, and they are equal.
Thus, for the system (5.3.4), the DP equations in Theorem 5.2.1 can be rewritten, using (5.3.5),
as

JN(x, i) = cN(x)

Jt (x, i) = min
A(x,i)

[
c(x, i, a) +

∫

X
Jt+1(s, ι)Q (d(s, ι)|x, i, a)

]

= min
A(x,i)

[
c(x, i, a) +

∫

W×∆

Jt+1 (G (x, i, a,w) ,H(i, $)) µ (d(w,$))

]

= min
A(x,i)

[c(x, i, a) + EJt+1 [G (x, i, a, wt) ,H(i,$t)]]

(5.3.6)

for all (x, i) ∈ X and t = N − 1, N − 2, . . . , 0.
One might add that we can consider wn as in model (4.3.1), {wn} = {(zn, yn)} with {zn} and
{yn} are i.i.d. random variables independent each other.

5.4 Infinite-horizon cost problem

The motivation to study discounted cost problem is mainly economic. In this section, we

considered finite-horizon problems, but for many proposes it is convenient to introduce the

fiction that the optimization horizon is infinite. Certainly, for instance, processes of capital

accumulation for an economy do not necessarily have a natural stopping time in the definable

Seeג Ash [1] p.225.
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future.

Given a stationary control model as (5.1.1) and the performance criterion to be minimized

is

V (π, x, i) := Eπ
(x,i)

[ ∞∑
t=0

e−αtc(xt, it, at)

]
, π ∈ Π, (x, i) ∈ X. (5.4.1)

A policy π∗ satisfying

V (π∗, x, i) = inf
π

V (xt, it, at) =: V ∗ (x, i) , ∀ (x, i) ∈ X. (5.4.2)

is said to be optimal and V ∗ is called the value function.

Throughout the following, we suppose that the one-stage cost c is nonnegative♠. Moreover, we

will use Vn to denote the n-stage cost

Vn (π, x, i) := Eπ
(x,i)

[
n−1∑
t=0

e−αtc(xt, it, at)

]
. (5.4.3)

Hence (by the Monotone Convergence Theorem) we may write V (π, x, i) in (5.4.1) as

V (π, x, i) = lim
n→∞

Vn (π, x, i) . (5.4.4)

A measurable function v : X → R is said to be a solution of optimality equation (OE) if it

satisfies

V (x, i) = min
A(x,i)

{
c(x, i, a) + e−α

∫

X
V (s, ι)Q (ds, dι|x, i, a)

}
∀ (x, i) ∈ X. (5.4.5)

In Theorem 5.4.1, we prove that the value function V ∗ in (5.4.2) is solution to the OE. To this

end, we begin with the DP Theorem 5.2.1 for finite-horizon problems and with suitable change

of indices we obtain the forward form of the dynamic programming algorithm, that is, the value

iteration functions defined as

vn (x, i) = min
A(x,i)

{
c(x, i, a) + e−α

∫

X
vn−1(s, ι)Q (ds, dι|x, i, a)

}
∀ (x, i) ∈ X. (5.4.6)

♠It suffices to assume that c is bounded below.
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and n = 1, 2, . . ., with v0(·) := 0. The idea then is to show that

V ∗ (x, i) = lim
n→∞

vn (x, i) ∀ (x, i) ∈ X. (5.4.7)

this result is to be expected since vn is the value function of the n-stage cost Vn in (5.4.3) with

zero terminal cost, namely

vn (x, i) = inf
π

Vn (π, x, i) ∀ (x, i) ∈ X. (5.4.8)

This, letting n →∞ in (5.4.6) we anticipate to obtain (5.4.9), if we can justify the interchange

of limits and minima. This approach, requires first of all, the measurable selection condition

in Assumption 5.2 for (5.4.6) and (5.4.9) to be well defined. We also impose the follow

requirements.

Assumption 5.3. 1. The one-stage cost c is l.s.c., nonnegative, and inf-compact on K.

2. Q is strongly continuous.

Assumption 5.4. There exists a policy π such that V (π, x, i) < ∞ for each (x, i) ∈ X.

We shall denote by Π0 the family of policies for which Assumption 5.4 holds. We now state

our main result in this section.

Theorem 5.4.1. Suppose that Assumptions 5.3 and 5.4 hold. Then

1. The value function V ∗ is the minimal solution to the OE. i.e.,

V ∗ (x, i) = min
A(x,i)

{
c(x, i, a) + e−α

∫

X
V ∗(s, ι)Q (ds, dι|x, i, a)

}
∀ (x, i) ∈ X. (5.4.9)

for all (x, i) ∈ X and if u is another solution to the OE, then u(·) ≥ V ∗(·).
2. There exists a selector f ∗ ∈ F such that f ∗(x, i) ∈ A(x, i) attains the minimum in (5.4.9),

i.e.,

V ∗ (x, i) = c(x, i, f ∗) + e−α

∫

X
V ∗(s, ι)Q (ds, dι|x, i, f ∗) ∀ (x, i) ∈ X. (5.4.10)

and deterministic stationary policy f ∗∞ is optimal. Conversely, if f ∗∞ is a stationary
deterministic optimal policy, then it satisfies (5.4.10).

3. If π∗ is a policy such that V (π∗, ·, ·) is a solution to the OE and satisfies

lim
n→∞

Eπ
(x,i)

[
e−αnV ∗ (xn, in)

]
= 0 ∀π ∈ Π0 and (x, i) ∈ X, (5.4.11)

then V (π∗, ·, ·) = V ∗(·, ·), and so π∗ is α-discounted optimal. In other word, if (5.4.11)
holds, then π∗ is optimal if and only if V (π∗, ·, ·) satisfies the OE.
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4. If an optimal policy exists, then there exists one that is deterministic stationary.

The proof of this theorem requires several lemmas.

Lemma 5.4.2. Let u and un (n = 1, 2, . . .) be l.s.c. functions, bounded below, and inf-compact
on K. If un ↑ u. Then

lim
n→∞

min
A(x,i)

un(x, i, a) = min
A(x,i)

u(x, i, a) ∀ (x, i) ∈ X, (5.4.12)

Proof. The proof is similar to that of Lemma 4.2.4 in Hernández-Lerma and Lasserre [33] p.47,
and, therefore is omitted.

We need also in this case the existence of measurable selectors that satisfy the DP equation.

To do this we use Theorem 5.3.1 and the following definition.

Definition 5.4.1. M (X)+ denotes the cone of nonnegative measurable function on X, and, for
every u ∈ M (X)+, Tu is the function on X defined as

Tu (x, i) = min
A(x,i)

{
c(x, i, a) + e−α

∫

X
u(s, ι)Q (ds, dι|x, i, a)

}
. (5.4.13)

Lemma 5.4.3. Under Assumption 5.3, T maps M (X)+ into itself, i.e., for every u in M (X)+,
Tu is also in M (X)+, and moreover, there exists a selector f ∈ F such that

Tu (x, i) = c(x, i, f) + e−α

∫

X
u(s, ι)Q (ds, dι|x, i, f) ∀(x, i) ∈ X.

Notice also that, using the operator T , we may rewrite the OE (5.4.9) and the functions in
(5.4.6) as

V ∗ = TV ∗ and vn = Tvn−1 for n ≥ 1

v0 = 0, respectively. We shall next relate V ∗ to the functions u that satisfy u ≥ Tu or u ≤ Tu.

Lemma 5.4.4. Suppose that Assumption 5.3 and 5.4 hold:

1. If u ∈ M (X)+ is such that u ≥ Tu, then u ≥ V ∗.

2. If u : X → R is a measurable function such that Tu is well defined and, in addition,
u ≤ Tu and

lim
n→∞

Eπ
(x,i)

[
e−αnu (xn, in)

]
= 0 ∀π ∈ Π0 and (x, i) ∈ X, (5.4.14)

then u ≤ V ∗.
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Proof. 1. Let u ∈ M (X)+ such that u ≥ Tu, then, by Lemma 5.4.3, we may choose f ∈ F
such that

u (x, i) ≥ c(x, i, f) + e−α

∫

X
u(s, ι)Q (ds, dι|x, i, f) .

Iterations of this inequality give us

u (x, i) ≥ Eπ
(x,i)

[
N−1∑
t=0

e−αtc (xt, it, at)

]
+ Eπ

(x,i)

[
e−αNu (xN , iN)

]
, (5.4.15)

where π = (f, f, . . .) = f∞ and Eπ
(x,i)

[
e−αNu (xN , iN)

]
=

∫
u (s, ι) Qn (ds, dι|x, i, f). Since

u ≥ 0, we have that

u (x, i) ≥ Eπ
(x,i)

[
N−1∑
t=0

e−αtc (xt, it, at)

]
.

Letting N →∞, we get

u (x, i) ≥ V (π, x, i) ≥ V ∗ (x, i) ∀ (x, i) ∈ X.

This proves (1).

2. Let π ∈ Π and (x, i) ∈ X be arbitrary. From the Markov-like property

P π
(x,i) ((xt+1, it+1) ∈ D|ht, at) = Q (xt, it, at)

and the assumption Tu ≥ u,

Eπ
(x,i)

[
e−(t+1)αu(xt+1, it+1)|ht, at

]
= e−(t+1)αEπ

(x,i) [u(xt+1, it+1)|xt, it, at]

= e−(t+1)α

[∫

X
u(s, ι)Q (ds, dι|xt, it, at)

]

= e−tα

[
e−α

∫

X
u(s, ι)Q (ds, dι|xt, it, at)

]
,

obviously,

e−tα

[
c (xt, it, at) + e−α

∫

X
u(s, ι)Q (ds, dι|xt, it, at)− c (xt, it, at)

]

≥ e−αt [u (xt, it)− c (xt, it, at)] .

Hence

e−αtc (xt, it, at) ≥ −Eπ
(x,i)

[
e−(t+1)αu(xt+1, it+1)|ht, at

]
+ e−αtu (xt, it)

= −Eπ
(x,i)

[
e−(t+1)αu(xt+1, it+1)− e−αtu (xt, it) |ht, at

]
.
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Thus, taking expectations Eπ
(x,i) and summing over t = 0, . . . , N − 1, we have

Eπ
(x,i)

[
N−1∑
t=0

e−tαc (xt, it, at)

]
≥

N−1∑
t=0

(
−Eπ

(x,i)

[
e−(t+1)αu(xt+1, it+1) + e−αtu (xt, it) |ht, at

])

= −Eπ
(x,i)

[
e−Nαu(xN , iN)

]
+ u (x, i) ∀N.

Finally, letting N → ∞ and using the hypothesis (5.4.14), it follows that V (π, x, i) ≥
u (x, i), as π and (x, i) were arbitrary.

We shall now use Lemmas 5.4.2 and 5.4.4 to prove the limit (5.4.7).

Lemma 5.4.5. Suppose that Assumptions 5.3 and 5.3 hold. Then vn ↑ V ∗ satisfies the OE.

Proof. To begin, note that, from (5.4.9), (5.4.1) and the assumption that c ≥ 0,

vn (x, i) ≤ Vn (π, x, i) ≤ V (π, x, i) n, π, (x, i) .

Therefore,

vn (x, i) ≤ V ∗ (x, i) n, (x, i) ∈ X. (5.4.16)

Now, the operator T in (5.4.13) is monotone. Therefore, since v0 := 0 and vn := Tvn−1 for
n ≥, the functions from a nondecreasing sequences in M (X)+. This, in turn (by the Monotone
Convergence Theorem), implies un ↑ u, where

un (x, i) = c (x, i, a) + e−α

∫

X
vn (s, ι) Q (ds, dι|x, i, a) ,

u (x, i) = c (x, i, a) + e−α

∫

X
v∗ (s, ι) Q (ds, dι|x, i, a) .

On the other hand, as the proof of Theorem 5.3.1(2), one can show that the nonnegative
functions u and un (n ≥ 1) are l.s.c. and inf-compact on K. Thus, from Lemma 5.4.2,

v∗ = lim
n

vn = lim
n

Tvn−1 = Tv∗; (5.4.17)

that is, v∗ satisfies the OE v∗ = Tv∗.
Hence, to complete the proof of the lemma, it only remains to show that v∗ = V ∗. But this is
immediate because, by Lemma 5.4.4(2), v∗ = Tv∗ implies v∗ ≥ V ∗, and the reverse inequality
follows from (5.4.16) and the already established fact that vn ↑ v∗

Finally, we prove Theorem 5.4.1.

Proof of Theorem 5.4.1.
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1. From Lemma 5.4.5. V ∗ is a solution to the OE, and the fact that V ∗ is the minimal

solution follows from Lemma 5.4.41 if u = Tu, then u ≥ V ∗.

2. The existence of a selector f ∗ ∈ F satisfying (5.4.10) is ensured by Lemma 5.4.3. Now

iteration (5.4.10) shows [as in (5.4.15)] that

V ∗ = E
f∗∞
(x,i)

[
n−1∑
t=0

e−tαc (xt, it, f
∗)

]
+ E

f∗∞
(x,i) [e−tαV ∗ (xn, in)]

≥ E
f∗∞
(x,i)

[
n−1∑
t=0

e−tαc (xt, it, f
∗)

]
n ≥ 1 ∀ (x, i) ∈ X.

This implies, letting n →∞, V ∗ (x, i) ≥ V (f ∗∞, x, i) ∀ (x, i) ∈ X, whereas, from (5.4.2),

V ∗ (·) ≤ V (f ∗∞, ·) and, therefore, f ∗∞ is optimal.

To prove the converse, we note first the import fact that for any deterministic stationary

policy f∞, the cost V (f∞, ·) satisfies

V (f∞, x, i) = c (x, i, f) + e−α

∫

X
V (f∞, s, ι) Q (ds, dι|x, i, f) ∀ (x, i) ∈ X.

Indeed,

V (f∞, x, i) = Ef∞
(x,i)

[ ∞∑
t=0

e−tαc (xt, it, f)

]

= Ef∞
(x,i)

[
c (x0, i0, f) +

∞∑
t=1

e−tαc (xt, it, f)

]

= c (x, i, f) + e−αEf∞
(x,i)

[ ∞∑
t=1

e−(t−1)αc (xt, it, f)

]

= c (x, i, f) + e−αEf∞
(x,i)E

f∞
(x1,i1)

[ ∞∑
t=1

e−(t−1)αc (xt, it, f)

]

= c (x, i, f) + e−αEf∞
(x,i) [V (f∞, x, i)]

= c (x, i, f) + e−α

∫

X
V (f∞, s, ι) Q (ds, dι|x, i, f) .

(5.4.18)

In particular, if f ∗ is stationary deterministic optimal, then V (f ∗∞, ·) = V ∗ (·), in which

case (5.4.18), with f = f ∗, reduces to (5.4.10).



Markov control processes 105

3. if V (π∗, ·) satisfies the OE, then from part (1) or Lemma 5.4.4(1) we get V (π∗, ·) ≥ V ∗ (·).
The reverse inequality follows from (5.4.11) and Lemma 5.4.4(2).

Finally,

4. is a consequence of 1 and 2. 2



Concluding remarks

Our main results in this thesis, Theorems 4.2.3, 4.2.6, 4.3.3.1 and 4.3.3.2, give upper bounds

for the probability of ruin of a certain risk process, which (as shown in Subsections 4.2.1 and

4.3.1) includes as special cases several relevant models. To obtain these results, first, we present

an important preliminary result, Lemmas 4.2.2 and 4.3.2, which gives recursive equations for

finite-horizon ruin probabilities and an integral equation for the ultimate ruin probability. We

illustrate our results with an application to the ruin probability in a risk process with a heavy

tail claims distribution under proportional reinsurance and a Markov interest rate process. This

application suggests that the upper bounds derived by inductive approach are tighter than the

ruin probability without interest rate (the function considered in Lemmas 4.2.1 and 4.3.1). In

addition, the upper bounds derived in this article are sharper than the Lundberg upper bound.

Since {In} in (4.2.1) and (4.3.1) is supposed to be a Markov chain, we can rewrite the

minimization of the ruin probability as a Markov decision problem. In chapter 3, we prove the

existence of optimal policies in finite MDPs and by using the dynamic programming algorithm,

under the assumption of the existence of measurable selectors that satisfy optimality equations.

We give conditions that assure the existence of such selectors. Finally, we show the optimality

equation in infinite horizon MDPs and we prove the existence of optimal policies.

Our paper leaves, of course, many open issues. For instance:

1. Is it possible to obtain bounds tighter than those in Theorems 4.2.3, 4.2.6, 4.3.3.1 and

4.3.3.2 ?.

2. Actually, what do we need to obtain the ruin probabilities in closed form ?.
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3. Let τ := inf {k ≥ 1|Xk < 0} be the time of ruin.

Can we calculate or estimate quantities such as E[τ ], or P (τ ≤ T ) for given T > 0?.

These are just a few of the many questions that we can ask ourselves. But two immediate

queries are:

(a) Suppose that in (4.2.1) and (4.3.1) we include an investment process. What can we

say about these models?

(b) Can we rewrite the exponential utility or minimization of the ruin probability

of controlled risk process with investment process as a Markov decision problem?

([33, 34, 54], for instance).

Further research in some of these directions is in progress.



Appendix A

Miscellaneous

A.1 σ-Algebra

Let X be a set. Then a σ-algebra F is a nonempty collection of subsets of X such that the

following hold:

1. X is in F .

2. If A is in F , then so is the complement of A.

3. If An is a sequence of elements of F , then the union of the An’s is in F .

If S is any collection of subsets of X, then we can always find a σ-algebra containing S,

namely the power set of X. By taking the intersection of all σ-algebras containing S, we

obtain the smallest such σ-algebra. We call the smallest o-algebra containing S the σ-algebra

generated by S.

A.2 Borel-measurable

Given a Borel space X (i.e., a Borel subset of a complete and separable metric space), its Borel

σ-algebra is denoted by B(X). By convention, when referring to sets or functions, “measurable”

means “Borel-measurable”. If X and Y are Borel spaces, a stochastic kernel on X given Y is

a function P (·|·) such that P (·|y) is a probability measure on X for each fixed y ∈ Y , and

P (D|·) is a measurable function on Y for each fixed D ∈ B(X). The family of all stochastic

kernels on X given Y is denoted by P (X|Y ).
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A.3 Proof of Proposition 1.1.1

Proof. By using renewal arguments and conditioning on the time and size of the first claim, we
have

Φ(x) = P ( “non-ruin in [0,∞)”|X0 = x)

=
∫∞
0

∫∞
0

P ( “non-ruin in [0,∞)”|T1 = t, Y1 = y) dF (y)dFT1(t)

=
∫∞
0

∫ x+ct

0
P ( “non-ruin in [0,∞)”|T1 = t, Y1 = y) dF (y)dFT1(t)

=
∫∞
0

λe−λt
∫ x+ct

0
P ( “non-ruin in [0,∞)”|T1 = t, Y1 = y) dF (y)dt

=
∫∞
0

λe−λt
∫ x+ct

0
Φ (x + ct− y) dF (y)dt.

The change of variables s = x + ct leads to

Φ(x) =
1

c

∫ ∞

x

λe−λ(s−x)/c

∫ s

0

Φ (s− y) dF (y)ds =
λ

c
eλx/c

∫ ∞

x

λe−λs/c

∫ s

0

Φ (s− y) dF (y)ds.

Consequently Φ is differentiable and differentiation lead to

Φ
′
(x) =

λ

c
Φ(x)− λ

c

∫ x

0

Φ(x− y)dF (y) =
λ

c

[
Φ(x) +

∫ x

0

Φ(x− y)d (1− F (y))

]
. (A.3.1)

Integrating over (0, z) yields

Φ(z)− Φ(0) = λ
c

[∫ z

0
Φ(x)dx +

∫ z

0

∫ x

0
Φ(x− y)d (1− F (y)) dx

]

= λ
c

[∫ z

0
Φ(x)dx +

∫ z

0

[
Φ(0) (1− F (x))− Φ(x) +

∫ x

0
Φ
′
(x− y) (1− F (y)) dy

]
dx

] ∗

= λ
c

[
Φ(0)

∫ z

0
(1− F (x)) dx +

∫ x

0
(1− F (y)) dy

∫ z

y
Φ
′
(x− y)dx

]

= λ
c

[
Φ(0)

∫ z

0
(1− F (x)) dx +

∫ z

0
(1− F (y)) (Φ(z − y)− Φ(0)) dy

]
.

Thus we have

Φ(x) = Φ(0) +
λ

c

∫ x

0

Φ(x− y) (1− F (y)) dy. (A.3.2)

By monotone convergence it follows from (A.3.2), as x →∞, that

lim
x→∞

Φ(x) = Φ(0) +
λµ

c
lim

x→∞
Φ(x).

It follows from the law of large numbers that lim
t→∞

Xt/t = c − λµ with probability one. In the

case of positive safety loading, c > λµ, there exists a random variable T , i.e., a function of N

∗Integration by parts.
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and {Yi}, such that Xt > 0 for all t > T . Since only finitely many claims can occur before T it
follows that inft>0 Xt is finite with probability one and thus lim

x→∞
Φ(x) = 1. Thus

Φ(0) = 1− λµ

c
⇒ ψ(0) =

λµ

c
=

1

1 + ρ
† when c > λµ. (A.3.3)

From (A.3.2) and (A.3.3), we have

ψ(x) =
λ

c

[
µ−

∫ x

0

(1− ψ(x− y)) (1− F (y)) dy

]

ψ(x) =
λ

c

[∫ ∞

x

(1− F (y)) dy +

∫ x

0

ψ(x− y) (1− F (y)) dy

]
. (A.3.4)

Finally, to replace Φ(x) = 1− ψ(x) and Φ′(x) = −ψ′(x) in (A.3.1) we have

cψ
′
(x) + λ

[∫ x

0

ψ(x− y)dF (y) + 1− F (x)− ψ(x)

]
= 0.

†This is an insensitivity or robustness result, since ψ(0) only dependes on ρ and thus on F only through its
mean.
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[36] Hinderer, K. (1970). Foundations of non-stationary dynamical programming with

discrete time parameter. Lectures notes in operation research 33. Springer, Berlin Heidelberg

New York. 78–83.

[37] Kalashnikov, V. (1996). Two-sided bounds for ruin probabilities, Scand. Actuarial J.,

1-18.



REFERENCES 114

[38] Kalashnikov, V. (1997). Geometric Sums: Bounds for Rare Events with Applications,

Kluwer Academic Publishers, Dordrecht.

[39] Lin, X. (1996). Tail of compound distributions and excess time, J. Appl. Prob., 33, 184-

195.

[40] Lundberg, F. (1903). I. Approximerad Framställning av Sannolikhetsfunktionen. II.
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List of principal notation

Xn The n-th surplus process.
X0 = x ≥ 0 The initial surplus.
κ An absorbing (cemetery) state.
X := R ∪ κ The surplus state space.
Yn The n-th claim payment.
Y The claim space.
Zn Length of the n-th period.
{In} The interest rate process.
I Interest rate state space.
b The retention level or proportionality factor or risk exposure.
c Premium (income) rate.
C(b) The premium left for the insurer if the retention level b is chosen.
bmin min {b ∈ (0, 1]|C(b) ≥ 0}.
B := [bmin, 1] The decision space.
θ Safety loading from the reinsurer.
an(xn) = bn The decision function or strategies.
π = {an} Control policy.
Π The policy space / set of all control policies.
Ω Event space on which probabilities are defined.
1A The indicator function of A.
M Markov control model.
K Set of feasible state-action pairs.
F Set of decision functions (or selectors).
Ht Family of admissible histories up to time t.
F Subfamily of deterministic stationary policies.
Φ Family of randomized stationary policies.
P π

v p.m. determined by π and the initial distribution v.
Eπ

v Expectation with respect to P π
v .
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Abbreviations

a.s. Almost surely.
DFR Decreasing failure rate.
df Distribution function.
DP Dynamical programming.
IMRL Increasing mean residual lifetime.
i.i.d. Independent and identically distributed.
l.s.c Lower semicontinuous.
MCM Markov control model.
MCP Markov control process.
MDP Markov decision process.
MRL Mean residual lifetime.
NWU New worse than used.
NWUC New worse than used in convex ordering.
OE Optimality equation.
pdf Probability distribution function.
p.m. Probability measure.
sd Survival distribution.
u.s.c Upper semicontinuous.
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