working

UNIVERSIDAD CARLOS 111 DE MADRID papers X
UC3M Working Papers Departamento de Estadistica
Statistics and Econometrics Universidad Carlos IIT de Madrid
16-03 Calle Madrid, 126
ISSN 2387-0303 28903 Getafe (Spain)
February 2016 Fax (34) 91 624-98-48

A Partial Parametric Path Algorithm for Multi-
class Classification

Ling Liu*, Belén Martin-Barragan®, Francisco Javier Prieto®

Abstract

The objective functions of Support Vector Machine methods (SVMs) often in-
clude parameters to weigh the relative importance of margins and training accura-
cies. The values of these parameters have a direct effect both on the optimal accu-
racies and the misclassification costs. Usually, a grid search is used to find appro-
priate values for them. This method requires the repeated solution of quadratic
programs for different parameter values, and it may imply a large computational
cost, especially in a setting of multiclass SVMs and large training datasets. For
multi-class classification problems, in the presence of different misclassification
costs, identifying a desirable set of values for these parameters becomes even
more relevant. In this paper, we propose a partial parametric path algorithm, base-
d on the property that the path of optimal solutions of the SVMs with respect to
the preceding parameters is piecewise linear. This partial parametric path algo-
rithm requires the solution of just one quadratic programming problem, and a
number of linear systems of equations. Thus it can significantly reduce the com-
putational requirements of the algorithm. To systematically explore the different
weights to assign to the misclassification costs, we combine the partial parametric
path algorithm with a variable neighborhood search method. Our numerical ex-
periments show the efficiency and reliability of the proposed partial parametric
path algorithm.

Keywords: Multi-class SVM, Piecewise Linearity, Partial Parametric Path
Algorithm, Variable Neighborhood Search

* Department of Statistics, Universidad Carlos I1I de Madrid.
® Business School, University of Edinburgh

A Partial Parametric Path Algorithm for Multi-class
Classification

Ling Liu? Belén Martin-Barragan! Francisco J. Prietot

February 24, 2016

Abstract

The objective functions of Support Vector Machine methods (SVMs) often include
parameters to weigh the relative importance of margins and training accuracies. The
values of these parameters have a direct effect both on the optimal accuracies and the
misclassification costs. Usually, a grid search is used to find appropriate values for them.
This method requires the repeated solution of quadratic programs for different parameter
values, and it may imply a large computational cost, especially in a setting of multi-
class SVMs and large training datasets. For multi-class classification problems, in the
presence of different misclassification costs, identifying a desirable set of values for these
parameters becomes even more relevant. In this paper, we propose a partial parametric
path algorithm, based on the property that the path of optimal solutions of the SVMs
with respect to the preceding parameters is piecewise linear. This partial parametric
path algorithm requires the solution of just one quadratic programming problem, and a
number of linear systems of equations. Thus it can significantly reduce the computational
requirements of the algorithm. To systematically explore the different weights to assign
to the misclassification costs, we combine the partial parametric path algorithm with a
variable neighborhood search method. Our numerical experiments show the efficiency
and reliability of the proposed partial parametric path algorithm.

KEYWORDS: Multi-class SVM, Piecewise Linearity, Partial Parametric Path Al-
gorithm, Variable Neighborhood Search

1 Introduction

SVM is a popular approach to solve classification problems. The effectiveness of SVM methods
has not only been demonstrated in a very large number of experiments [2, 15, 20|, but it is
also proven in theory, see [13, 16, 17]. In the classical binary SVM setting for the nonlinearly
separable case, the classification problem has two objectives: avoid overfitting and limit any
classification errors. This is usually modeled by combining both objectives using a parameter
C, 1/2||w\|2+C'F(Zé:1 &i), see [4]. This parameter can be seen to represent a trade-off between
training and testing misclassification costs. The aim is to construct a suitable classifier which

*L. Liu, Statistics Department, Universidad Carlos III de Madrid, C/ Madrid 126, 28903 Getafe (Madrid),
Spain, Email: lliu@est-econ.uc3m.es

TB. Martin-Barragan, University of Edinburgh Business School, 29 Buccleuch Place, Edinburgh EHS 9JS,
United Kingdom, Email: Belen.Martin@ed.ac.uk

tF.J. Prieto, Universidad Carlos III de Madrid, C/ Madrid 126, 28903 Getafe (Madrid), Spain, Email:
fjpQ@est-econ.uc3m.es

has high classification ability for the whole instance population. Attaining this aim requires
the choice of a proper value for parameter C.

Selecting a default value for C' may not provide acceptable results, as the optimal values
from the SVM have been shown to depend critically on the choice of the value of C' [3, 6, 10].
Usually, grid search is used to find an appropriate value of this parameter|6]. This approach
is time-consuming, especially when we have big datasets to deal with. In [3], they treat C as
a kernel parameter and minimize estimates of generalization errors by gradient descent. This
approach depends on the differentiability of the estimates and still needs to solve the opti-
mization problem (a quadratic program) several times. [10] explores the entire path of binary
SVMs based on the fact that the corresponding Lagrange multipliers are piecewise-linear in C.
They achieved very large savings in computational costs when constructing multiple classifiers
for a set of C values.

Notice that the classic binary SVM doesn’t take into account any a priori information (such
as skewed class distributions, different misclassification costs). However, this information may
be critical. For example in medical diagnosis, the difference between the classification costs
of misclassifying a healthy person as ill and a diseased patient as healthy is large and can’t
be ignored. To take into account this information, [1, 18] use two different parameters C*
and C~ associated to different classes. Also, [1] extends the path algorithm when considering
asymmetric misclassification costs. In [12], differences between the weights of instances are
taken into account and a corresponding path algorithm is proposed. Their numerical experi-
ments show that these proposed path algorithms significantly reduce the computational cost
to find proper parameter values for the binary SVMs.

As in real life we usually have more than two classes, the efficient two-class SVM approach
has been extended for multi-class classifications. In [21], they propose a single-objective SVM
to handle all the classes simultaneously. However, they consider all misclassification costs
to be the same, and they use no a priori information related to the classes’ distributions.
A direct way to overcome this drawback is to assign different weights to the penalty terms
for different misclassification errors in the objective function. Another way is to use multi-
objective methods such as [14]. As we discussed before, the first proposal, based on a direct
assignment of weight values, is not efficient because of the large computational costs required
to choose suitable weights.

L.Wang and X.Shen [19] have proposed a path algorithm for multi-class classification
problems based on the L1 norm. It takes advantage of the property that their optimal solutions
are piecewise-linear on a tuning parameter s, which controls the sum of the L; norms of all
the slope vectors w.. They reconstruct the entire optimal path based on finding appropriate
features characterizing changes in the active sets. To identify the joints and get the solutions,
they need to construct sets of linear equations based on the derivatives of the slopes with
respect to s. Our proposal shares its basic motivation with this one, but it aims to take
advantage of the simplicity of Lo optimization problems, and to take into account differences
among classification costs. We introduce a partial-parametric-path algorithm (PPPA) for
multi-class classification inspired by the previous one and by [1, 10]. The partial path begins
with a starting solution obtained from a multi-class SVM problem, and it is extended to
different values of the weight parameters, while checking if they are acceptable.

In this paper, we provide a general framework for the application of PPPA. If we have
a sufficiently good classification performance at the starting point (a default set of values for
the parameters), we don’t need to apply PPPA. If the initial classification performance is
not acceptable, we take advantage of the piecewise linearity of the optimal solutions to obtain
efficient representations of the solution paths for alternative values of the parameters. By

controlling the changes in the active sets, we construct partial solution paths along some cho-
sen parameter directions. To systematically explore the whole parameter space, we combine
PPPA with a variable neighborhood search method (VNS). When using PPPA | we only need
to solve one quadratic program to get our starting solution. All other solutions are obtained
by solving systems of linear equations. Thus, PPPA is computationally efficient. From our
experiments in Section 6, we have also verified that PPPA is robust, as it provides the same
solutions as the ones obtained from the corresponding quadratic programming problems, in
nearly all cases.

This paper is organized as follows: In Section 2, we present a single-objective multi-
class SVM which takes into account differences in misclassification costs. In Section 3, we
characterize the piecewise linear nature of the optimal solutions of the quadratic programs
of interest. The components of the partial solution path are presented in Section 4. The
combination of PPPA and VNS is introduced in Section 5. In Section 6, we describe and
comment a set of experimental results showing that PPPA is efficient and reliable for multi-
class classification problems. Finally, conclusions are presented in Section 7.

2 Our reference multi-class support vector machine

In what follows we assume that we have a training set I = {z;}"_; C R!, corresponding to
m (m > 3) different classes, and values y; € G = {1,...,m} denoting the class membership
of the vectors x;. The aim of multi-class SVMs is to generate classifiers which can help us to
predict with high accuracies the class membership of all the objects. For simplicity, we will
just consider linear classifiers as nonlinear ones can be seen as linear in a higher dimensional
space.

For multi-class classifications, the most commonly used single-objective methods are the
all-together, one-against-all and one-against-one methods, [11]. The all-together and one-
against-all methods are based on constructing m classifiers. Specifically, the all-together
method maximizes the sum of all the margins and minimizes the penalty variables simul-
taneously within a single quadratic programming. Each of the margins is constructed by
considering all instances of one class vs those of all the remaining classes; a similar approach
is used in one-against-all method. One-against-all methods solve m quadratic programs to
obtain the m classifiers. In all these cases, the presence of asymmetries in the misclassifi-
cation costs, for example, may have a significant effect on the accuracies of the classifiers.*
A one-against-one method constructs m(m — 1)/2 classifiers and each of them are obtained
from a binary SVM which just considers a pair of classes. In [11], experiments show that
in general a one-against-all method does not achieve accuracies as high as a one-against-one
method. In this paper we prefer to construct m(m — 1)/2 classifiers and maximize all the
pairwise margins. Of course, we could use the path-algorithm (introduced in [1]) on each of
the binary SVMs from the one-against-one method to find a satisfactory choice of parame-
ters. But when m is large, this would require tracking a very large number of paths, with
very high associated computational costs. In order to take advantage of the high accuracy
of a one-against-one method and the compactness of an all-together method, we have cho-
sen to construct a single-objective multi-class SVM maximizing all the pairwise margins and

*A one-against-all classifier is constructed from m binary SVMs. Each of these binary SVMs considers
only one class as the positive class and all the remaining classes as the negative class. So we can see that the
difference between the sizes of positive and negative classes can be quite large. The classification accuracies
would be affected because the classical binary SVM gives the same weight to the penalties of the positive and
negative classes misclassification errors.

minimizing all the penalties at the same time.

We construct our classifiers as follows:

e The classifier (discriminating hyperplane) separating the training data from class p and
that from class g, is given by:

LP9: fP(z) = (wP) T2 + 87 — 9= 0,9 > p,p,q € G.

Ideally, we would like to have all class p objects lying above hyperplane LP4, q # p,p,q € G,
and all class g objects lying below LP9. If there exist hyperplanes such that the training objects
satisfy this ideal situation, we say that the training objects are linearly separable. But usually
we have linearly nonseparable data, and we need to take into account both margins and
misclassification errors. So, by maximizing all the margins of the m(m — 1)/2 classifiers and
minimizing the misclassification penalties, we construct a single-objective SVM,

1 m m
; - p\T' pq Pq ¢pq
% DIILTES 3 3 oyt
p=1gq>p p=1 q#p z€l,
s.t. (wpq)Tx—i—Bp—Bq—l—gqu1,$€Ip,q>p,p,q€G, (1)
— (W) Ty — P+ B1+€® > 1,z € Iy,q > p,p,q € G,
&1 >0,z €ly,q#p,pq€G,

Here, I, = {z € I|x belongs to class p}, and tgq denotes the weights for each of the penalties.
Misclassification penalties €57 are introduced to avoid overfitting and to guarantee the exis-
tence of solutions for (1) in the linearly nonseparable case. To take into account the possible
differences in misclassification costs, we introduce different weights th?,q # p,p,q € G for

each misclassification penalties associated to different classes and classifiers.

Note that (1) is a quadratic program, whose solution provides the information to define
the corresponding classifiers. A difficulty is the choice of acceptable values for the weights
th?, that is, values that yield classifiers which have high accuracies and low misclassification
costs.

This paper focuses on the introduction of efficient procedures to determine acceptable sets
of weights. Our approach is based on a two-step approach:
e We select an initial set of weights, and a “search direction” on the space of these weights.

e We find the optimal combination of weights on this one-dimensional space by building
a partial path from the optimal solution of (1) as the starting point, and conducting a
search on these solutions.

e Finally, we modify the search directions using a variable neighborhood search method
(VNS) and repeat this process until we are close enough to an acceptable solution.

To build the partial path we solve the following program as a function of C"

D WIS B 3 oL LR 9 3 D

p=1g¢>p p=1 g#p z€lp p=1 g#p z€lp
st (WNTx 4P — BT+ €01 > 1,2 € I,q > p,p,q € G, (2)
— (WP Tz — P+ B+ €% > 1,2 € Iy q > p,p,q € G,
>0,z €ly,q#p,pq€G,

4

Here 77, q # p,p,q € G denotes the direction along which we construct the partial path.

After identifying appropriate parameter values and building the corresponding classifiers,
we use majority voting (also known as 'Max Wins’) to define our classification rule as in [11]:
For observation z, if wPix + P — 59 > 0, then the vote for it belonging to the p-th class
is increased by one. Otherwise, the vote for the g-th class is increased by one. After this
procedure is completed, = is assigned to the class with the largest vote. In the case that two
classes have identical votes, the one with smaller index is selected.

3 Optimal classifiers are piecewise affine functions of C

In this Section, we prove that the solutions of problem (2) are piecewise affine wrt C'. This
is the basic property on which the efficiency of our proposal rests. We also introduce simple
characterizations for the solutions of interest.

As the classifiers LP9 : (wP9)Tz 48P — B9 =0,q > p,p,q € G depend only on the differences
P — 9 (instead of the values (P), without loss of generality we will set ' = 0 in all that
follows.

We will use a slightly modified notation, to simplify the representation of the optimal
solutions of (2). In particular, we will work with the observations projected onto a higher
dimensional space. Let

z, if (i,5) = (p,),

XP = (5;72“1, 5315’1)61, e ,5;’7;;1)"1) , where 5;];pq =< —uz, if(i,7)=(q,p),
0, otherwise.
T .
Let w = (leT,wl?’T, o wm=DmIT and B = (82,8%,---, 8™, so that we can write

(wP) Tz + BP — B9 = (W)T XP? + BP — B9. Let XP9 denote a matrix with row vectors equal to
XP? x € I,, while €77 denotes a vector containing the values &8,z € I,. Define

x12 £12 tl?inlxl
x2 g2l 2170,
X = : €= : and ¢} = : k=0,1,
X(mfl);n g(mfl);n t]({m—l)mi’ﬁm_1><1
Xmim-1) gm(m—1) DT

where n?,p € G is the number of class p training instances. Then, we can rewrite (2) as
follows:

min 2wl + (t0)"€ + C(1)E,
st. Xw+RB+E> T(m_l)nxl, (3)
€ > Opm_1ynx1
where R is the coefficient matrix of the variables § in (2).

As the objective function of (3) is quadratic (positive semidefinite) and the constraints are
affine functions, the corresponding KKT conditions are necessary and sufficient for optimality.
These KKT conditions for (3) are:

w=XT), (4)

RTX = 0(-1)x1, (
A+ p=ty+ Cty, (
Xw+RB+€2 Lin 1ynx1s (7
€ > Opm1)nx1s (
A > Opm_t1ynx1s (

1> O 1ynx1s (10

N (T -tynx1 — Xw = RB =€) =0, (11

pre =0, (12
where A denotes the multipliers of Xw + RS + £ > T(m,l)nxl and p denotes the multipliers
of £ > O(m—1)nx1-

We define the following relevant active sets:

e The indices of the above-margin objects: A = {i | X;w + R;8 > 1},
e The indices of the below-margin objects: B = {i | X;w + R;8 < 1},
e The indices of the on-margin objects: O = {i | X;w + R;8 = 1},
where X; and R; denotes the i-th row of X and R respectively. As each constraint is associated
to one object, these definitions allow us to separate the objects into three disjoint sets.
Based on the preceding KKT conditions, we refine the preceding definitions as follows:
1€ A, if and only if A\; =0,

1 € B, if and only if \; = to; + Cty;,
1 € O, if and only if 0 < \; < tg; + Cty;.
Let X4 denote the sub-matrix of X collecting all rows X; with ¢ € A. Similarly, we define
Xp,X0o,Ra,Rp, and Rp. Also, let A\p denote the sub-vector of A corresponding to the
components \; with ¢ € O. Similarly, we introduce A4, Ap, toa, toB, too, t14,t1 and t10. We
have
w= X5 o + Xktop + CXkEtyp,
RbAo + Rbtos + CREt1 = Opn_1)x1,
XOW + ROB = TnoX]n

where no denotes the size of the active set O.

From these definitions and the optimality conditions, the solutions of problem (3) can be
computed by solving the system

I 0o XxJ w XEtop Xktip
0 0 R} B | =| Bhtes | +C| Rits |, (13)
Xo BRo O —Ao Inox1 Onp x1

(m—1)I

where X is a no x ™%—= matrix and Ro is a no x (m — 1) matrix.

We will make use of the following auxiliary result characterizing some properties of the
coefficient matrix for system (13).

Lemma 3.1. Given active sets O, A and B, the necessary and sufficient conditions for the
coefficient matriz of (13) to be nonsingular is that the column vectors of Ro are linearly
independent and the row vectors of(Xo Ro) are also linearly independent.

Proof. Consider an auxiliary system having the same coefficient matrix as system (13),

I 0 Xg Ul
0 0 R} upy | =0. (14)
Xo Ro O us

We will use it to study the singularity of the coefficient matrix of (13), based on the properties
of the solutions of (14).

e Necessity: Suppose the coefficient matrix of (13) and (14) is nonsingular, then the unique
solution of (14) is u = 0.

If the column vectors of Rp are linearly dependent, there exists us # 0 such that
Rous = 0. The coefficient matrix of (13) cannot be invertible in this case, as we
can choose u; = 0, ug = 0 and obtain a nonzero vector in the null space of this
matrix, contradicting our assumption. It follows that if the coefficient matrix of (13) is
nonsingular, the column vectors of Rp must be linearly independent.

Analogously, if the row vectors of (Xo Ro) are linearly dependent, there exists
uz # 0 such that
X%) -
us = 0.
(%

Again, in this case we can choose u; = 0, us = 0 and obtain a nonzero vector in the
null space of this matrix. This contradicts our assumption, implying that we must have
linearly independent row vectors for (Xo Ro).

e Sufficiency: Assume that the column vectors of Rp and the row vectors of (Xo Ro)
are linearly independent. This implies that M e Xng + ROR(T) and RSRO are
invertible, and M is positive definite.

From (14) we have
REu3 =0= RoRbuz =0
uy = —Xgu;),
Xour + Rous = 6 = Roug = Xngu:g = (Xng + RoRg)u:g = Uz = M71R0u2
REus = REM~*Rouy = 0.
As M is positive definite, RgM ~1Ro is at least positive semidefinite. As ugRgM “1Rous =
0, from the positive-definiteness of M we have Rous = 0. As Rp has full column rank,

it must hold that us = 0. As uz = M 'Rouy and ul = —Xgu;‘;7 we have u; = 0 and
uz = 0. It follows that the coefficient matrix of (13) and (14) is nonsingular.

To present our existence result, we introduce the following regularity condition:

C1: The row vectors of (Xo Ro) are linearly independent.

The next result provides the desired characterization of the solutions.

Theorem 3.2. Under condition C1, the solution of (13) defines a piecewise-affine optimal
solution of (3).

Proof. As B = (82,82,---,5™)7, the number of columns in Rp and its maximum column
and row rank is m — 1. Consider an optimal solution of (3) defined by (wo, 8o, &o)-

Assume that Rp does not have full rank. Then, there exists a non-zero vector u such that
Rou = 0. Define 8, = By + eu, and

B = 1= Xl — (82— B2) = €8 — e(u” — ")

As Rou = 0 it holds that Xpwy 4+ RofB. = 1 for any €, and (wo, By, &) are feasible as long as
€1 < € < €9, with

Pq D qa_ 7 Pq D qa_ 7
_ XBw0+/80_/80_1 XAw0+/BO_BO_1
€1 = max max , max < 0,
uP—ul<0,p£q,p,qgeG —(uP — ud) uP—u1<0,p£q,p,qg€G uP — ud
Pq D qa_ 7 Pq D qa_ 7
. . XAWO+/80_50_1 . XBWO+50_50_1
€2 = min min , min > 0.
uP —u?>0,p#q,p,q€G uP — uf uP —u?>0,p#q,p,q€G —(uP —u9)

Select € = ¢ if

> (u? — uP)(th* 4+ CHH")# BP1 > > (uP — u?)(th? + CH")# BV,
p#q,0,q€G,uP—u1<0 Pp#q,0,q€EG,uP —u1>0

and € = €5 > 0 otherwise. We have that

1
P, = §||WO||2 + (to + Ct) &,

=®y+e > (u? — uP)(th? + C#59)4£BP1
P#q,p,9€G,uP —uI<0

— > (uP — u?)(th? + CHY)#BP1| < ®y,
P#q;p,q€G,uP —u1>0

where ®g = %HWOHZ + (to + Ct1)T&. As a consequence, there must exist an optimal
solution including an additional support vector in O, the one defining the selected value for
€. This procedure can be repeated until the matrix Ro has full column rank.

As we can always find a solution such that the column vectors of Rp are linearly inde-
pendent, if condition C1 holds for active sets O, A and B, from Lemma 3.1 the inverse of the
coefficient matrix of (13) exists, and (13) implies that the optimal solution (w, 3, o) is an
affine function of C.

Also, as & = max(0,1 — X;w — R;f8), Aa = 0, A = top + Ctip and pu = tg + Ct1 — A,
the optimal solutions (w, 3,&, A, u) are affine with respect to C, under our conditions. Thus,
under C1 the optimal classifiers are piecewise affine functions of C. O

From this result, the coefficient matrix of (13) is singular only if the row vectors of
(Xo Ro) are linearly dependent. If this is the case, we could project the observations
onto a higher dimensional space in which the number of on-margin observations may be
smaller and the row vectors of the corresponding (Xo Ro) matrix are linearly indepen-
dent. Thus, for simplicity we will assume in what follows that the row vectors of (Xo Ro)
are linearly independent.

4 The partial parametric path algorithm

To be able to identify good parameter values for the weights of the misclassification errors
t, we follow the procedure described in Section 2. The basic step in that procedure consists
in the construction of a univariate path along a given parameter direction (selected using a
VNS method). In this Section, we study the properties of this path and we present efficient
methods to obtain it.

This procedure consists on the following steps:

e For a given starting parameter vector ¢y and a parameter direction ¢;, we compute the
solution to the SVM problem corresponding to C' = Cy = 0.

e Then we determine the largest increase in the parameter C that will not change the
active sets, C7. We obtain this value by making use of the linear structure of the
optimal solutions in that interval, using Theorem 3.2.

e We update the active sets at Cj with £ = 1 (a “joint” in the path), and we repeat the
procedure for increasing k until some criterion is optimized, or a stopping criterion is
satisfied. In our experiments, the criterion to optimize has been the training classifica-
tion accuracy, and the termination criterion has been defined as reaching a prespecified
maximum value for C'.

4.1 Characterization of linear segments of the solution path

From Theorem 3.2, for given active sets the classifiers are affine with respect to parameter
C. Define C}, as the k-th joint where there is a change in the active sets, By, A, O are the
active sets corresponding to all values C} < C < Cl41, and Ag, ux denote the corresponding
multipliers.

As the assume that the row vectors of (Xo, Ro,) are linearly independent, we can
define

-1
wi I 0 X} ngktwk
- k,Ok Xok ROk 0 1
and)
- T
w,g I 0 Xé‘k ngtlBk
_)‘k,Ok Xo,C Ro,C 0 0
Also,

— b - b
%,Ak = O’)\k,Ak = 07)\%,Bk = tOBk7)\k:Bk - tlBk7
b b
Ng:tO_A%7 Mk;:tl_)‘a
a N a _ 7 a a
0

b b b
) gk,Bk = —Xp,wi — Rp, By

Then the optimal solution (w, 8,&, A, 1) of (3) with respect to C, Cj, < C < Cg41 is given

w wy WZ
B 4 v
El=1 & |+C| & | (15)
A Y Ab
[s 1

4.2 Finding the joint values Cj

Between joints, the active sets do not change and the optimal solutions of (3) are affine
functions of C. But as we increase the value of C, the solution path (15) reaches values that
may not satisfy some of the optimality conditions. In this Section, we describe how to obtain
efficiently the value of the next joint (the value of C'), where the active sets change.

As the value of C' changes from the preceding joint, at some point it will become necessary
to adjust the active sets. We can classify these adjustments into four cases:

e Case 1: Some above-margin object changes to become an on-margin one;
e Case 2: Some below-margin object changes to become an on-margin one;
e Case 3: Some on-margin object changes to an above-margin one;

e Case 4: Some on-margin object changes to a below-margin one.

We now provide the characterization of the joint values corresponding to each of the four
cases, for C > C,

e For the first case, we check X;w + R;5 = 1,for i € Ai. We have

1 (Xiwf + RifY)

X; a+0b+Ri a+Cb:1:>C: ’
(wp w) (B Br) Xl + RoB

1€ Ayg.

As X;(wi + Csz) + R; (B} + C’kﬁg) > 1, we only need to check X;w + R;8 = 1, for

1 € A and Xiwz + Riﬁ,’; < 0. We define

1-— (Xiw,‘i + Rzﬁg)
Xw? + R;BY

Cli—i-l = min{ ’Z € Ag and X,-w,l; + Rzﬁz < O} .

e For the second case, we check & = &}, + C’ﬁ,’;l =0forie€ By. As &, + Ckf/l;l > 0 for
it € By, we only need to check &, + szl =0 for ¢ € By and fzz < 0. We define

a

Ci,, = min {—?Z’i li € By, and §2’i < O} .
kyi

e For the third case, we check A\; = A{; + C’)\Zi =0, for i € Op. As Nei T Ck)\zi > 0 for
1 € O, we only need to check et CAZ,i =0, for ¢ € O and)\Zi < 0. We define

b

AL
C’,z’H = min {—)\k’zﬁ € Oy, and)\271- < 0} .
ki

10

e For the last case, we check p; = uf , + C',uzl- =0fori € Of. As pug, + Ck,uzi > 0 for
it € Oy, we only need to check uf , + C’,uzi =0 for ¢ € O and ,uzi < 0. We define

) PR
C';lH = min {—Mlg’z]z € Oy and u%i < 0} .
ki

The next joint value is defined as:

. 1 2 3 4
Ck+1 = HllIl{Ck_H, Ok+17 Ck+17 Ck+1}'

At Cyy1, we can update the new values (wri1, Bry1,80,,,) by observing the changes in
the active sets and solving equations (13) for the updated active sets. Then we repeat the
procedure with the updated active sets to find the next joint.

It would be possible to build an entire path starting from tq close to 0. But we have found
that this is not useful in practice in many cases, as (1) would return w?? = 0,¢q > p,p,q € G
for this value, which is not a very useful choice for data classification. A reasonable initial
guess for the values of the parameters would provide much better starting estimates and
would reduce the amount of computation to carry out to obtain a good final estimate. Thus,
our method is based on constructing partial paths, instead of trying to reconstruct the entire
solution path.

5 Combining path-following with a VNS method

The partial path method introduced in Section 4 is used to find the best C'* among the
parameters corresponding to the path along parameter direction t;, starting from tg. This
value depends on the choice of tg and ¢;. In this Section, we describe a VNS-based procedure
[7, 8, 9] to obtain values for ¢; yielding good values for the parameters and good solutions for
the multi-class SVM problem, in a systematic manner.

We consider a good solution to be one such that, if the real misclassification costs are
known, yields lower misclassification costs on the training set. If the real misclassification
costs are unknown, we search for a solution with fewer classification errors on the training
set.

To complete the search procedure, we need to obtain:

e An initial direction t19: If we know the real misclassification costs kP4, q # p.p,q € G,
we can start the partial path with 57 = £P9/k and t] = 7, where xk = > gtppacc KL

If we don’t know the real misclassification costs, we suggest taking the initial direction
to = 1 and tip = 0.01 x f, as it is equivalent to the value used in general multi-class
support vector machines [21] with the tradeoff parameter set as 1 + 0.01C, although it
does not consider the different misclassification costs. This is equivalent to assuming all
the misclassification costs kP? =1,q # p,p,q € G.

Starting from the initial point ¢y along ¢19, we generate the corresponding partial path.
To denote all the joints of the partial path, we introduce PP(to,t10) = {Ck(to,t10), k >
0}, where Ck(to,t10) is the k—th joint. From the solutions obtained at the joints of
PP(ty,t10), we choose the value Cy, corresponding to the best misclassification costs
on training set I. Let

PIKD(C[)*,tl(]) = Z Z ﬁpq#{yi = pv@l = Q}, (16)

1€l g#p,p,geG

11

to denote the lowest misclassification costs on the training set along the partial path
PP(tg,t19), where g; is the class membership of z; determined by the corresponding
trained support vector machine. Note that when kP4 = 1, (16) returns the classification
erTor.

Pq
e A neighborhood structure: N, (t19) = {t1] E}Tq — 1‘ < 0.01¢} and ¢ < pge- Although
10
most researchers use ¢ < 2 [8], in the experiments of this paper, we have chosen ¢4, =
10. This choice has been made to consider a larger number of alternatives given its
reduced computational cost, compared to that of other proposals.

e The algorithm will stop if at least one of these conditions is met:

max

— SC1: the number of local searches [s reaches the maximum [s™**. In our experi-

ments we set [s™%* = 100.

— SC2: perfect classification, i.e PIk(Cs,t19) = 0.
Then we proceed the follows:

e Let ls=0.
e While Is < 100 and PIk(Cox,t10) > 0, repeat the following steps:

— Step 1: Set ¢ =1;
— Step 2: Until ¢ = s, repeat the following steps:

* Step 2.a: Generate a direction 19 at random from the :-th neighborhood of
t10;

* Step 2.b: Conduct a local search using #1¢ as the initial solution by doing the
following;:

- Step 2.b.1: Randomly generate t1;,i = 1,---, N (we use N = 10 in our
experiments) from the neighborhood Ni(t10);

- Step 2.b.2: For #y;, generate the corresponding partial path PP(t0,%y;).
Along PP(t0,%1;), we find

Cy;=arg min {PIx(C, t1;)};
CEPP(tO,th')

- Step 2.b.3: Select

(Cla, 1) = arg _min {PIK(CY;, t14)};
(Cfi,tu),iZL--- ,10
- Step 2.b.4: Let Is =1Is+ 1.
x Step 2.c: If PIK(Cla,t14) < PIK(Cox, t10), take t1g = 14, Cox = C1x and go
back to Step 2.b, otherwise set t = ¢+ 4+ 1 and go back to Step 2.a.

6 Numerical experiments

To test the efficiency and reliability of this parametric partial path algorithm, we have con-
ducted several computational experiments. All these experiments have been implemented on
a Macbook with 8 gigabytes of memory, using code written in R. The RMOSEK package has
been used to solve the quadratic programs (1) defining the start point of the algorithm.

12

These experiments have been conducted on the following benchmark datasets: IRIS,
WINE, SEEDS, VEHICLE, CAR (Car Evaluation), GLASS, SCC (Synthetic Control Chart
Time Series) and CTG (Cardiotocography, raw data). All of them are available in the UCI
Machine Learning Repository. A summary of the information for these data sets is listed in
Table 1.

Table 1. Data set description

Data set | size of the data set No. of Dim. No. of classes

IRIS 150 4 3
WINE 178 13 3
SEEDS 210 7 3
VEHICLE 846 18 4
CAR 1728 6 4
GLASS 214 9 6
SCC 600 60 6
CTG 2126 35 10

Table 2 presents the classification performance obtained from the solutions computed at
the starting point. As the real costs are unknown, we start with ¢g = 1 and C' = 0. This
means that at the starting point we don’t consider the differences among misclassification
costs, maximizing the pairwise margins and minimizing the training classification errors using
the same weights for all of them.

Table 2. Classification accuracies at the starting point

Data set‘ IRIS WINE SEEDS VEHICLE CAR GLASS SCC CTG

tr.ac 0.9831 1 0.9464 0.9226 0.8711 0.6488 1 1
te.ac 0.9667 0.9730 0.9048 0.7457 0.8129 0.6444 0.9833 0.9814

L tr.ac= classification accuracy on training set,
2 te.ac= classification accuracy on testing set.

From Table 2, we can see that for data sets WINE, SCC, CTG and these starting values,
we already find the best parameters, with the best training classification accuracies. So for
these data sets we don’t need to construct partial paths to find better parameters.

For each of the remaining data sets, we construct a partial path starting with C = 0
and 1 = 0.01 x I, as we don’t know the real misclassification costs; we assume that these
misclassification costs are same. We also tried some randomly chosen values for ¢ty and ;.
The corresponding results show the reliability of the partial path algorithm; for details, see
Appendix B.

To test the reliability of the partial paths, at each joint we compute the corresponding
solutions of (3) using RMOSEK. The following figures (from Figure 1 to Figure 8') compare
the solutions obtained from the partial path algorithm and directly from the optimization
code. We should mention that, for both the CAR and VEHICLE data sets, the coefficient
matrices are singular and do not satisfy condition C1, as defined in Section 3. For these data
sets we have projected the original data onto a higher-dimension space in which we obtain

TFigure 3 to Figure 8 can be found in Appendix A.

13

nonsingular coefficient matrices. We have used a modification of a nearest neighbor rule [5]
to modify the data and to avoid this problem, in the following way:

e For the CAR data set, we add the euclidean distances from the instances to each of the
means of I, I>, I3 and 14, as additional coordinates for each instance;

e For the VEHICLE data set, we add the euclidean distances from the instances to the
means, 25% quantiles and 75% quantiles of Iy, Is, I3 and I; as additional coordinates.

Figure 1. Comparison of the solutions from optimization problems and the partial path

algorithm for IRIS data

From optimization

From partial path

.~ -— — -— e
— ap B S — . I -—— ¢
| = ——— — . B n=r—= —
——3—33—3— g ¢ T = E?‘t — = ———y————————=
E!f'.=-._‘_ — = - — - g - -
- = — 3 _-———+=———
t e - t e S—
= ™ — - W =
. - - .
w Y
e -—a, e -—
. -
e .
a 20 ooo EU‘UD o a 20 ooo
c c
From optimization From partial path
R - e R - e
- - - "”'H
1a- % 10 Y
-— -—
- -
15 - 15 -
-
200 40 B0 200 40
c c

From Figure 1 to Figure 8, we can see that the PPPA procedure is very reliable, as the
solutions at the joints computed from the optimization problem and PPPA are quite similar.
Notice that using PPPA we need to solve only one quadratic problem (1), while optimization
methods repeatedly solve (3) for different values of the parameters. Thus, PPPA offers
significant savings in computation times. We show the execution times used for constructing
the partial paths and completing the optimizations at all the joints of the paths in Table 3.

Table 3. Time to compute solutions at all joints

Data set‘ IRIS SEEDS VEHICLE CAR GLASS

t.op(s) 5.102 12.801 2016.6 1438.690 104.864
t.pp(s) | 0.207 0.338 92.418 16.545 9.480

L t.op= time used for completing the optimizations at all the
joints,
2 t.pp— time used for constructing the partial path.

14

Figure 2. Compare the solutions gotten from optimization and partial path algorithm for
SEEDS data

From optimization From partial path

a zs00 SODO 500 1000 a zs00 SODO 500

c c
From optimization From partial path
-
e " - — - -
= '—-‘/-_. = .'—-‘/‘
— —

e e "

- -
-2s Er

‘\"""H.___./""" _._ N ‘\.-.—_‘/-"7-—-.\ .

— e

2500 S000 F500 1000 o 2500 S000 ¥500
C C

Note additionally that a traditional grid search method may miss some good solutions,
and will offer in general solutions of lower quality than PPPA.

Up to this point, we have constructed paths using ¢t; = 0.01 x 1. We now introduce a
variable neighborhood search to find better values of the parameters. The results are shown
in Table 4.

Table 4. Results obtained before and after performing a variable neighborhood search

Unknown misclassification costs With simulated misclassification costs
b.C ac.tr ac.te b.C ce.tr cc.te
RIS before | 22.8497 0.9915 0.9667 22.8497 6 6
after | 22.8497 0.9915 0.9667 22.8497 6 6
SEEDS before | 7930.496 0.9940 0.9286 7930.496 2 7
after | 7930.496 0.9940 0.9286 7930.496 2 7
before | 22.9161 0.8740 0.8129 22.9161 135 65
VEHICLE after | 24.2008 0.8756 0.8129 25.0835 133 65
CAR before | 7678.431 0.9378 0.8266 7678.431 548 356
after | 7678.431 0.9378 0.8266 2590.884 452 329
GLASS before | 4560.535 0.8274 0.62222 4560.535 209 109
after | 6805.878 0.8333 0.6222 9935.552 201 118

I'b.C= Best parameter C found among the paths,
2 cc.tr= classification cost on the training set,
3 cc.te= classification cost on the testing set.

15

From Table 4, we can see that for asymmetric training data (VEHICLE, GLASS) the
variable neighborhood search provides better solutions with higher classification accuracies.

We have also conducted some experiments to study the case when classification costs
are known and different. We simulated values for the real misclassification costs as integers
randomly generated in the interval (1,10). We compare the performance of the proposed
method before and after the variable neighborhood search in Table 4. We can see that when
there are different misclassification costs, the proposed variable neighborhood search method
provides better parameter values. This would imply that when misclassification costs are
known and different, to obtain better results we should assign different weights to different
misclassification errors.

7 Conclusion

In this paper we have proposed a method, PPPA, which starting from an optimal solution
given by RMOSEK for multi-class SVMs, is able to identify good values for the weights of
the misclassification costs with limited computational cost.

In general, we apply the proposed partial path algorithm in the following manner:

e Obtain a starting set of values for the parameters. Based on the optimization criterion
(misclassification costs, for example), decide whether we need to construct a partial
path.

e Along a selected parameter direction, construct a partial path from the starting point.

e Along the preceding path, find the best parameter C' value. If the classification errors
are not acceptable, combine the PPPA and a VNS method to systematically search for
better parameter values.

Compared with a traditional grid search method, the partial path algorithm only needs
to solve one quadratic program (1), while the grid search method repeatedly solves quadratic
programs for each one of the parameter values tested. Thus, PPPA is much more efficient.
Additionally, the quality of the solutions obtained from PPPA is higher than those from
a traditional grid search method, as the number of potential solutions considered is much
higher.

The partial path is constructed by following changes in the active sets. In our experiments,
we have shown that the PPPA is efficient and reliable, because it gives us solutions which are
almost the same as the ones obtained directly from the optimization problem, while requiring
at most one tenth of the computational effort. From our experiments, we also see that if
the misclassification costs are different (or the training data is asymmetric), a VNS method
provides significantly better parameter values.

In summary, we conclude that the PPPA is an efficient and reliable procedure to find
good parameter values for multi-class SVMs. Combining it with a VNS method helps us to
systematically and efficiently explore a very large set of potential parameter weight values.

16

References

1]

2]

3]

[4]

[5]

(6]

7]
8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Francis R Bach. Considering Cost Asymmetry in Learning Classifiers. Jmlr, 7:1713-1741,
2006.

M P Brown, W N Grundy, D Lin, N Cristianini, C W Sugnet, T' S Furey, M Ares,
and D Haussler. Knowledge-based analysis of microarray gene expression data by using

support vector machines. Proceedings of the National Academy of Sciences of the United
States of America, 97(1):262-267, 2000.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning, 46(1-3):131-159,
2002.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, 1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEFE Transactions on
Information Theory, 13(1):21-27, 1967.

Frauke Friedrichs and Christian Igel. Evolutionary tuning of multiple SVM parameters.
Neurocomputing, 64(Esann):107-117, 2005.

Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuristics, volume 146. 2010.

Pierre Hansen and Nenad Mladenovi¢. Variable neighborhood search: Principles and
applications. Furopean Journal of Operational Research, 130(3):449-467, may 2001.

Pierre Hansen, Nenad Mladenovié, and José a. Moreno Pérez. Variable neighbourhood
search: Methods and applications. Annals of Operations Research, 175(1):367-407, 2010.

Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The Entire Regularization
Path for the Support Vector Machine. Test, 5(2):1391-1415, 2004.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002.

Masayuki Karasuyama, Naoyuki Harada, Masashi Sugiyama, and Ichiro Takeuchi. Multi-
parametric solution-path algorithm for instance-weighted support vector machines. Ma-
chine Learning, 88(3):297-330, 2012.

Yi Lin. Support vector machines and the Bayes rule in classification. Data Mining and
Knowledge Discovery, 6(3):259-275, 2002.

K Tatsumi and T Tanino. Support vector machines maximizing geometric margins for
multi-class classification. TOP, (22):815-840, 2014.

Simon Tong and Daphne Koller. Support Vector Machine Active Learning with Ap-
plications to Text Classification. Journal of Machine Learning Research, pages 45—66,
2001.

V N Vapnik. The Nature of Statistical Learning Theory, volume 8. 1995.
Vladimir N Vapnik. Statistical Learning Theory, volume 2. 1998.

Konstantinos Veropoulos, Colin Campbell, Nello Cristianini, and Others. Controlling the

17

sensitivity of support vector machines. In Proceedings of the international joint conference
on artificial intelligence, pages 55—60, 1999.

[19] Lifeng Wang and Xiaotong Shen. Multi-Category Support Vector Machines , Feature
Selection and Solution Path. Statistica Sinica, 16:617-633, 2006.

[20] Xiaodong Wang and Jun Tian. Gene Selection for Cancer Classification using Support
Vector Machines. Computational and mathematical methods in medicine, 2012:586246,
2012.

[21] J Weston and C Watkins. Multi-class support vector machines. Technical Report CSD-
TR-98-04, 1998.

18

A Comparing The Solutions Obtained from Optimization and
the Partial Path Algorithm, ¢, =1,¢ = 0.01 x T

Figure 3. Comparing the solutions obtained from optimization and the partial path algo-
rithm for CAR data

From optimization From partial path

From optimization From partial path

—za - —za -

—ma - —ma -

—s0 - ~a0 -

& zsoa sooo Tsoo & zsoa sooo rsoo
=]

Figure 4. Comparing the solutions obtained from optimization and the partial path algo-
rithm for VEHICLE data

From optimization From partial path

@ 1900 zdoo adoo agog sooo @ 1000 zdoo adoo adag sooo

< <
From optimization From partial path
F F
a0a - a0a -
- - - -
2s0 2s0
zaa - zaa -
-3 1000 zooo scoo acoo scoa -3 1gaa zooo scoo acoo scoa
< <

fFor GLASS data, we separate the graph to four parts, because when I try to plot all the lines together, the
R always quits. Same ways been used for the figures correspond to randomly start points and randomly ¢;.

19

Figure 5. Comparing the solutions obtained from optimization and the partial path algo-
rithm for GLASS data - Part 1

From optimization From partial path
a= a=
- smemee—s— 00
Z2- Z2-
o o
3 3
a- a-
- o
4= 4=
o 2500 S000 s00 10000 o 2500 S000 s00 10000
c c
From optimization From partial path
Py
=
3
1-
o-
Ell ZE'EIEI SD:III] }'5‘00 1EIEIIDD Ell ZE'EIEI SD:III] }'5‘00 1EIEIIDEI
C C
From optimization From partial path
= =
Z1- / - Z1- / JE—
o- W o- W

t 4 t 4

EID ZSlEIEI SD:III] TS‘DCI 1 I]EIIDD EID ZSlEIEI SD:III] TS‘DCI 1 I]EIIDEI
C C
From optimization From partial path

2 "/—V“*M 2 F/V*M
e e e | I e e
D:E:SE - D:E:SE =

TSO00 10000

o 500 5000 TSO00 10000 o 500 5000
[[

20

Figure 6. Comparing the solutions obtained from optimization and the partial path algo-
rithm for GLASS data - Part 2

From optimization

-

S000 10000

C
From optimization
'
2
a-
- o
ad S ——
‘"“"—C—u—-—.—g—
[+] Z‘S:]EI EDlDD ?E'EII] 1EIEIIEID
C
From optimization
10 -
5-
-
—a-eass
5.
s
I‘:I ZS‘lII- EDIED- FE\'IlIP 1DCIIEID
c

From optimization

21

From partial path

-

S000 10000

c
From partial path
4-
P
o=
-
o Pe——
[+] Z‘S:]EI EDlDD ?E'EII] 1EIEIII]EI
c
From partial path
10 -
5-
a-
—e-aass
5-
—._—.ﬂ
I‘:I ZS‘lII- EDIED- FE\'IlIP 1DCIII]EI
C

From partial path

Figure 7. Comparing the solutions obtained from optimization and the partial path algo-

rithm for GLASS data - Part 3

From optimization

10=
5-
-
&
a
o-
o 2500 EDIDD T500
C
From optimization
1.0 m
o0s=
3
=]

10000

10000

10000

-0.5-
o 2500 S000 F500
[
From optimization
1.0 o -—ae—s-aue
a.5=
ws 0=
&
3
0.5~
-1.0~-
Elll ZS‘DD SO:IIEI TS.EID
[
From optimization
5=
o=
.
#
=]
~S Em
5=
o
EI ZEIDD EE'EID 75‘00

10000

22

From partial path

o 2500 SODO FS0O 10000

From partial path

a5

W3

-0.5=
o 2500 S000 F500 10000
[
From partial path
1.0 b -~—ae—s-aue
a.5=
ws 0=
&
3
0.5~
-1.0~-
Elll ZS.DD SO:IIEI TS‘EID 1D(IICIEI
[
From partial path
5=
o=
.
#
=]
~SEEm
5=
o
EI ZEIDD SEI'EID 75‘00 1DCIIEIEI

Figure 8. Comparing the solutions obtained from
rithm for GLASS data - Part 4

From optimization

ﬂ
ﬁ

a5

g
o
'

2=

o=

-

sg

2-
_a-
400 -

300~

S000 500

10000

c
From optimization
Elll Z‘S:]EI EDlDD ?E'EII] 1EIEIII]D
c
From optimization
-t
“E::::::_ P———]
Elll Z‘S:]EI EDlDD ?E'EII] 1EIEIII]D
c

From optimization

2500

10000

23

Wi

sg

optimization and the partial path algo-

From partial path

R e

29 —-h‘¥ﬁﬁ“-'.’-‘ga-t;m-ﬂia-
Z‘S:]EI EDlDD ?E'EII] 1EIEIII]EI
c
From partial path
4=
-
o-
2=
4=
[+] 2500 S000 500 10000
c
From partial path
P
ad -t
) t ~
3= _..L_._-r—-‘——"-'_
Elll Z‘S:]EI EDlDD ?E'EII] 1EIEIII]EI
c
From partial path
400 -
300 -
200 -

i 2500 5000 TEO0 10000

B Comparing the solutions obtained from optimization and the
partial path algorithm, ¢, ¢; randomly chosen

Figure 9. Comparing the solutions obtained from optimization and the partial path algo-
rithm for IRIS data

From optimization

From partial path

=
o
S soo acoa 1500 zooo zso S soo oo 1500 zooo 250
=3 =3
From optimization From partial path
o r—-“"’_ o
— | — =
0 0
a0 a0
o s00 1gaa 1500 zooo zso o s00 @ao soo zooo zs0
o

Figure 10. Comparing the solutions obtained from optimization and the partial path algo-
rithm for SEEDS data

From optimization From partial path

- o o o

=
From partial path

's 's
t..k._,\

a0 - e —sa -

a0 - a0 -

24

Figure 11. Comparing the solutions obtained from optimization and the partial path algo-
rithm CAR data

From optimization

From partial path

o o
From optimization From partial path

Figure 12. Comparing the solutions obtained from optimization and the partial path algo-
rithm VEHICLE data

From optimization

From partial path

& 1000 2000 3000 4000 & 1000 2000 3000 4000
<

From optimization From partial path
asao- asa-

&—-——"lﬁ-———w‘&—-—'“’”———w‘

=00 -

=00 -

zoo - zoo -
1s0- e 150~
& 1000 2000 adon a0D0 & 1000 2000 adon a0D0
< <

25

Figure 13. Comparing the solutions obtained from optimization and the partial path algo-
rithm for GLASS data - Part 1

From optimization From partial path

&
]
20-
_30-
0 2500 sa00 7500 10000 0 2500 sa00 7500 10000
c c
From optimization From partial path
60-
a0-
u
]
20
0
From optimization From partial path
4- 4-
3= 3=
Y
T T
]]
e me— &
1- 1-
o #fm .83 313 m 0- F=fg;-g et e
a 2500 s000 7500 10000 a 2500 s000 7500 10000
C C
From optimization From partial path

' '
[+] 2500 5000 TEOD 10000 [+] 2500 5000 TEOD 10000

26

Figure 14. Comparing the solutions obtained from optimization and the partial path algo-
rithm for GLASS data - Part 2

From optimization From partial path

" "
o 2500 5000 TEO0 10000 o 2500 5000 TEO0 10000

c c
From optimization From partial path
60 - 60 -
5 40~ 5 40~
2 2
20" 20"
o- o-
0 2500 5000 7500 10000 0 2500 5000 7500 10000
c c
From optimization From partial path
a0- a0-
20- 20-
3 o 2 -
2 10 2 10
- -—8—5 - i
- -
=-10= =-10=
0 2500 5000 7500 10000 0 2500 5000 7500 10000
c c
From optimization From partial path
10~ = L= 10~ - L
&= &=
i i
& &
2 2
o~ o~
=4 - = = - =
5= -—u H= -
0 2500 5000 7500 10000 0 2500 5000 7500 10000
c c

27

Figure 15. Comparing the solutions obtained from optimization and the partial path algo-

rithm for GLASS data - Part 3

From optimization

=St =
-
5
2 -20-

-40-

o 2500 5000 7500 10000
c
From optimization
1-
o- -t 1—1

|

' .
S00D 7500

0 2500 10000
o
From optimization
24
0= =— e
5 -a-
2
4-
..
0 2500 5000 7500 10000
o
From optimization
5-
0-
= -y
2 .5 _-‘—.-9—-.—.-“.._.__'
0.
e - ——ea
] 2500 5000 7500 10000
c

28

From partial path

e =
&
&
2 -20-
-40-
0 2500 5000 7500 10000
c
From partial path
4=
o
=z
2
-
2=
0 2500 5000 7500 10000
o
From partial path
24
0= — e
5 -a-
2
4-
Y.
0 2500 5000 7500 10000
o
From partial path
5-
o-
= Y
2 .5 _-‘—.-9—-.—.-“.._.__'
0.
-y
15— ——ea
] 2500 5000 7500 10000
c

Figure 16. Comparing the solutions obtained from optimization and the partial path algo-

rithm for GLASS data - Part 4

From optimization

a- % - o
§-1-
]
2-
3-
[2500 5000 7500 10000
o
From optimization
2-
s o
- - -
]
2
-
- n
[2500 5000 7500 10000
o

From optimization

From partial path

a- % - o
§-1-
]
2-
3-
[2500 5000 7500 10000
o
From partial path
2-
0
=
S R S
]
2
4-
- n
[2500 5000 7500 10000
o

From partial path

@
7
g
-
3-
4= ' ' 1 L 1
1] 2500 5000 7500 104000
o
From optimization
500
400 = - —
300 -
=
200=
100 -
o- B, o+ S—-—-
1] 2500 SO0 7500 10000
C

29

@
7
g
-
3-
4= ' ' 1 L 1
1] 2500 5000 7500 104000
o
From partial path
500
400 —
300 -
=
200=
100 -
0 B, o+ S—-
1] 2500 SO0 7500 10000
C

