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a b s t r a c t 

The statistical properties of a general family of asymmetric stochastic volatility (A-SV)
models which capture the leverage effect in financial returns are derived providing analyt- 

ical expressions of moments and autocorrelations of power-transformed absolute returns.

The parameters of the A-SV model are estimated by a particle filter-based simulated max- 

imum likelihood estimator and Monte Carlo simulations are carried out to validate it. It

is shown empirically that standard SV models may significantly underestimate the value- 

at-risk of weekly S&P 500 returns at dates following negative returns and overestimate it

after positive returns. By contrast, the general specification proposed provide reliable fore- 

casts at all dates. Furthermore, based on daily S&P 500 returns, it is shown that the most

adequate specification of the asymmetry can change over time.

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

Stochastic Volatility (SV) models, originally proposed by Taylor (1982, 1986) and popularized by Harvey et al. (1994) ,

specify the volatility of financial returns as a latent stochastic process. The original SV models were soon extended to cope

with the asymmetric response of volatility to past standardized returns of different signs (leverage effect). For instance,

Taylor (1994) and Harvey and Shephard (1996) independently incorporate the leverage effect through correlation between

the level and log-volatility innovations. Alternatively, Breidt (1996) and So et al. (2002) introduce asymmetry by allowing

the parameters of the log-volatility equation to be different depending on the sign of lagged returns while Asai and McAleer

(2011) specify the leverage effect as an EGARCH component; see also McAleer (2005) , Yu et al. (2006) , Asai (2008) , Tsiotas

(2012) and Yu (2012a) for alternative asymmetric specifications or combinations of the three basic specifications. With re- 

spect to the shape of the conditional distribution, even though normality of standardized returns is still a common assump-

tion, SV models with heavy-tailed and/or asymmetric distributions such as symmetric or skewed Student- t , Generalized

Error Distribution (GED) and scale mixtures of normals are increasingly popular; see, for example, Asai and McAleer (2011) ,

Wang et al. (2011, 2013) , Feunou and Tédongap (2012) , Nakajima and Omori (2012) , Tsiotas (2012) and Jensen and Maheu

(2014) for some recent references. Note that the GED distribution with parameter ν is described by Harvey (1990) and has

the attractiveness of including distributions with different tail thickness as, for example, the extended exponential power
∗ Corresponding author.
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distribution of Choy and Walker (2003) when ν < 1, the double exponential when ν = 1 , the Gaussian when ν = 2 and the

uniform distribution when ν = ∞ . The GED distribution has heavy tails if ν < 2. 

Although the literature on asymmetric SV models is rather extensive, statistical properties such as existence and ana-

lytical expressions of moments are only available in specific SV models with Gaussian standardized returns. The statistical

properties of non-normal asymmetric SV models are generally unknown. The main objective of this paper is to fill this gap

by deriving the properties of a very general family of asymmetric SV models with non-Gaussian standardized returns, from

now on referred to as Generalized Asymmetric SV (GA-SV) family. In particular, we provide general conditions for stationar-

ity and for the existence of integer moments of returns and absolute returns. In addition, we derive analytical expressions

of the marginal variance and kurtosis, the autocorrelations of power-transformed absolute returns and the cross-correlations

between returns and future power-transformed absolute returns for a given general specification of the volatility with GED

standardized returns. Knowledge of these moments could be important to develop tests, as those proposed by Horváth et al.

(2006) in the context of GARCH-type models, which are based on the comparison of sample and analytical plug-in moments.

Expressions of analytical population moments are also important, for instance, when checking necessary conditions for the

asymptotic validity of many estimators. 

When dealing with real time series of financial returns, plug-in analytical moments can only be obtained after estimat-

ing the parameters. Due to the intractability of the likelihood, parameter estimation in GA-SV models is a rather difficult

task. Asymmetric SV models have been estimated via a variety of methods including Efficient Importance Sampling (EIS),

Monte Carlo Likelihood (MCL) and Monte Carlo Markov Chain (MCMC) methods. The feasibility and performance of avail-

able estimators of parameters and volatilities in the context of the general specification considered in this paper is to be

analysed. Meanwhile, the second contribution of this paper is the proposal of a particle filter-based Simulated Maximum

Likelihood (SML) procedure with continuous resampling introduced by Malik and Pitt (2011) to estimate the parameters

of GA-SV models. We show by Monte Carlo simulations that this estimator provides very accurate estimates of the GA-SV

parameters even in moderate sample sizes as small as five hundred observations. Furthermore, the proposed SML estimator

is simple to implement and relatively fast on a standard PC. 

Finally, the results are illustrated in an empirical application by estimating the volatility of a series of weekly S&P 500

returns. We show that standard SV models significantly underestimate the volatility at dates following negative returns and

overestimate it after positive returns. By contrast, GA-SV models accurately estimate the volatility after both negative and

positive returns and provide reliable value-at-risk (VaR) forecasts at all dates. Furthermore, we also analyze daily S&P 500

returns and show that the most adequate specification of the log-volatility may be different depending on the particular

period of time considered. 

The paper is organized as follows. In Section 2 , we describe the GA-SV family and derive its statistical properties.

Section 3 presents several popular asymmetric SV models contained in the GA-SV family and derives analytical expres-

sions of their moments. Section 4 describes the particle filter-based SML and reports its finite sample moments in Monte

Carlo simulations. Section 5 presents an empirical application to weekly S&P 500 returns. Finally, the main conclusions and

some guidelines for future research are summarized in Section 6 . 

2. Statistical properties of GA-SV models

2.1. Model description 

Let y t be the return at time t, σ 2 
t its volatility, h t ≡ log σ 2 

t and εt be an independent and identically distributed (IID)

sequence with mean zero and variance one. The GA-SV family is given by 

y t = exp (h t / 2) εt , t = 1 , . . . , T , (1)

h t − μ = φ(h t−1 − μ) + f (εt−1 ; θ ) + ηt−1 , (2)

where the log-volatility disturbance ηt is a Gaussian white noise with variance σ 2 
η , f ( εt ; θ ) is a real parametric function

of εt which is independent of ηt for all leads and lags and θ is a vector of parameters. Normality of ηt when f (εt ; θ ) = 0

is justified in Andersen et al. (20 01b, 20 01a, 20 03) . The scale parameter μ is related to the marginal variance of returns,

while φ controls the rate of decay towards zero of the autocorrelations of power-transformed absolute returns, hence, the

persistence of volatility shocks. Note that, in Eqs. (1) and (2) , the standardized return at time t − 1 , εt−1 , is correlated with

the volatility at time t . Furthermore, if f ( · ; θ ) is not an even function, then positive and negative past standardized returns
with the same magnitude have different effects on volatility. 

Although the specification of the log-volatility in Eq. (2) considers dependence on only one lag of past log-volatilities,

f (εt−1 ; θ ) and ηt−1 , the results obtained in this paper can be extended to models with further lags which can be written as

follows h t − μ = 

∑ ∞ 

i =1 βi ( f (ε t−i ; θ ) + ηt−i ) where β i , i = 1 , 2 , . . . , are the parameters of the lag polynomial β(L ) = (
(L )) −1

with 
(L ) = 1 − φ1 L − · · · − φp L 
p . Moreover, general results can also be obtained when σ 2 

η changes; see, for example, Mao

et al. (2017) for a particular specification in which σ 2 
η is allowed to change according to the sign of past returns. We

do not consider changes in the variance of the volatility noise as they do not generate leverage effect. Finally, note that

the specification of the log-volatility in (2) rules out models in which the persistence, φ, is time-varying, such as, the

time-varying specification of Yu (2012a) . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned in the Introduction, the statistical properties of models (1) and (2) are only known for particular speci-

fications of f ( εt ; θ ) when εt is Gaussian. Taylor (1994, 2007) provide expressions for the variance and kurtosis of returns

and the autocorrelation function of squared observations for the asymmetric autoregressive SV (A-ARSV) model of Harvey

and Shephard (1996) which is obtained when f (εt−1 ; θ ) = γ1 εt−1 . For the same model and still assuming normality of stan-

dardized returns, Pérez et al. (2009) derive the autocorrelation and cross-correlation functions of the power-transformed

absolute returns. Asai and McAleer (2011) derive the first and second order moments of returns and Yu (2012a) derives the

moments of returns and the conditions for stationarity, strict stationarity and ergodicity in extended specifications of the

A-ARSV model. Mao et al. (2017) derive the moments of returns when f (εt−1 ; θ ) = γ1 εt−1 + αI(εt−1 < 0) where I ( · ) is an
indicator function that takes value one when the argument is true and zero otherwise. In the next subsection, we provide

the moments for the GA-SV family.

2.2. Moments of returns 

Theorem 2.1 establishes sufficient conditions for the stationarity of y t and derives the expression of E(y c t ) and E (| y t | 
c ) for

any positive integer c . 

Theorem 2.1. Consider the GA-SV process y t defined in Eqs. (1) and (2) . The process y t is strictly stationary and ergodic if | φ| < 1

and the variance of f ( εt ; θ ) is finite. Furthermore, if εt follows a distribution such that both E (exp (0.5 cf ( εt ; θ ))) and E (| εt | 
c ) exist

and are finite for some positive integer c , then { y t } and {| y t |} have finite, time-invariant moments of order c given by 

E(y c t ) = E(εc 
t ) E

(
exp 

(
ch t 

2 

))
, (3) 

and 

E(| y t | c ) = E(| εt | c ) E
(
exp 

(
ch t 

2 

))
, (4) 

where E( exp ( ch t 2 )) = exp ( cμ2 ) exp ( 
c 2 σ 2 

η

8(1 −φ2 )
) P (0 . 5 c, φ) with P (a, b) ≡ ∏ ∞ 

i =1 E( exp (ab i −1 f (εt−i ; θ ))) .

Proof. See Appendix A.1 . �

Theorem 2.1 establishes the strict stationarity of y t if | φ| < 1 and the variance of f ( εt ; θ ) is finite. Existence of E(y 2 t ) is

guaranteed if, in addition, E (exp ( f ( εt ; θ ))) < ∞ . Consequently, under these conditions, y t is also weakly stationary. 

Note that according to expression (3) , if εt has a symmetric distribution, then all odd moments of y t are zero. Further-

more, from expression (4) , it is straightforward to obtain expressions of the marginal variance and kurtosis of y t as the

following corollaries show. 

Corollary 2.1.1. Under the conditions of Theorem 2.1 with c = 2 and taking into account that E(y t ) = 0 , the marginal variance

of y t is directly obtained from (4) as follows 

σ 2 
y = exp 

(
μ + 

σ 2 
η

2(1 − φ2 ) 

)
P (1 , φ) . (5) 

Corollary 2.1.2. Under the conditions of Theorem 2.1 with c = 4 , the kurtosis of y t can be obtained as E(y 4 t ) / (E(y 2 t )) 
2 using

expression (4) with c = 4 and c = 2 as follows 

κy = κε exp 

(
σ 2 

η

1 − φ2 

)
P (2 , φ) 

(P (1 , φ)) 2 
, (6) 

where κε is the kurtosis of εt . 

The kurtosis of the basic symmetric Autoregressive SV (ARSV) model considered by Taylor (1982, 1986) and Harvey et al.

(1994) is given by κε exp 

(
σ 2
η

1 −φ2

)
. Therefore, this kurtosis is multiplied by the factor r = 

P(2 ,φ) 

(P(1 ,φ) 2 )
in the GA-SV family. 

Note that the expression of E (| y t | 
c ) in (4) depends on both the distribution of εt and on f ( · ; θ ). Therefore, in order to

obtain closed-form expressions of the variance and kurtosis of returns, one needs to assume a particular distribution of εt 

and specify f ( εt ; θ ). We provide analytical expressions for some popular distributions and specifications in Section 3 . 

2.3. Dynamic dependence 

It is easy to see that returns generated from (1) and (2) are a martingale difference. However, they are not serially in-

dependent as the conditional heteroscedasticity generates non-zero autocorrelations of power-transformed absolute returns. 

The following theorem derives the autocorrelation function (acf) of power transformed absolute returns. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.2. Consider a stationary process y t defined in Eqs. (1) and (2) with | φ| < 1 and Var ( f ( εt ; θ )) < ∞ . If εt follows a

distribution such that E (exp (0.5 cf ( εt ; θ ))) < ∞ and E (| εt | 
c ) < ∞ for some positive integer c, then the τ -th order autocorrelation

of | y t | 
c is finite and given by 

ρc (τ ) = 

E(| εt | c ) E(| εt | c exp (0 . 5 cφτ−1 f (εt ; θ ))) exp
(

φτ c 2 σ 2
η

4(1 −φ2 )

)
P (0 . 5 c(1 + φτ ) , φ) T τ (0 . 5 c, φ) − [ E(| εt | c ) P (0 . 5 c, φ)] 2

E(| εt | 2 c ) exp
(

c 2 σ 2 
η

4(1 −φ2 )

)
P (c, φ) − [ E(| εt | c ) P (0 . 5 c, φ)] 2

,

(7)

where T τ (a, b) ≡ ∏ τ−1 
i =1 E( exp (ab i −1 f (εt−i ; θ ))) if τ > 1 while T 1 ( a , b ) ≡1 .

Proof. See Appendix A.2 . �

Notice that, in practice, most authors dealing with real time series of financial returns focus on the autocorrelations of

squares, ρ2 ( τ ), which can be obtained from (7) when c = 2 . 

The leverage effect is reflected in the cross-correlations between power-transformed absolute returns and lagged returns.

The following theorem gives general expressions of these cross-correlations. 

Theorem 2.3. Consider a stationary process y t defined in Eqs. (1) and (2) with | φ| < 1 and Var ( f ( εt ; θ )) < ∞ . If εt follows a

distribution such that E (exp (0.5 cf ( εt ; θ ))) < ∞ and E (| εt | 
2 c ) < ∞ for some positive integer c , then the τ -th order cross-correlation

between y t and | y t+ τ | c for τ > 0 is finite and given by

ρc1 (τ ) = 

E(| εt | c ) exp
(

2 cφτ −1 
8(1 −φ2 ) 

σ 2 
η

)
E(εt exp (0 . 5 cφτ−1 f (εt ; θ ))) P (0 . 5(1 + cφτ ) , φ) T τ (0 . 5 c,φ) √ 

P(1 ,φ)√
E( | εt | 2 c ) exp

(
c 2 σ 2 

η

4(1 −φ2 )

)
P ( c, φ) − [ E(| εt | c ) P (0 . 5 c, φ)] 2

. (8)

Proof. See Appendix A.3 . �

3. Nested SV models

Closed-form expressions of the moments of returns can be obtained for appropriate choices of the function f ( · ; θ ) and
of the distribution of εt . In this section, we derive and illustrate these moments for a very general specification of the

volatility when εt follows a GED distribution. The GED distribution has often been considered in the context of symmetric

SV models; see, for example, Andersen (1996) , Liesenfeld and Jung (20 0 0) and Cappuccio et al. (20 04, 20 06) . Note that

these two latter works consider a skewed GED distribution. Another very popular distribution in the context of SV models

is the Student- ν distribution; see, for example, Wang et al. (2011) and Nakajima and Omori (2012) . However, closed-form

expressions of the moments of returns cannot be obtained in this case given that exp ( −μh t ) and exp ( −μ/ 2 ) y t fail to

have finite unconditional means and variances; see Nelson (1991) for the same problem in the context of EGARCH models.

Furthermore, we also consider some of the most popular specifications nested in the GA-SV model and discuss their ability

to match the empirical properties often observed in time series of financial returns. 

Consider the GA-SV model defined in Eqs. (1) and (2) with εt having a centered and standardized GED ( ν) distribution
and 

f (εt ; θ ) = α(I(εt < 0) − 0 . 5) + γ1 εt + γ2 (| εt | − E(| εt | )) . (9)

We denote this model as Threshold GA-SV (TGA-SV); see Asai et al. (2012) for a similar specification allowing for long-

memory. The TGA-SV model nests several popular models capturing asymmetric volatility in the context of SV models.

For example, when α = γ2 = 0 and εt follows a Gaussian distribution, we obtain the A-ARSV model of Taylor (1994) and

Harvey and Shephard (1996) . On the other hand, when α = 0 , the model reduces to the EGARCH plus error model of Demos

(2002) and Asai and McAleer (2011) , denoted as E-SV and it is similar to that proposed by Asai and McAleer (2005) . Asai

and McAleer (2005) consider the specification in Eq. (9) with α = 0 defined in terms of the observables y t instead of the

unobservables εt to facilitate estimation. However, this specification makes it difficult to derive the statistical properties

of financial returns. When γ2 = 0 , the specification is similar to the asymmetric SV model proposed by Asai and McAleer

(2006) . Finally, when γ1 = γ2 = 0 , the specification gives the threshold model where only the constant changes depending

on the sign of past returns; see the recent discussion by Mao et al. (2017) on Threshold SV models. 

Note that, if γ 1 < 0 and α > 0, the leverage effect is always satisfied as, in this case, 2 γ 1 < α and, consequently, a positive

shock to returns always has a smaller effect on the log-volatility than a negative shock of the same magnitude. 

The second moment of a GED ( ν) variable is finite when 0 < ν < ∞ . Consequently, when εt is GED ( ν), the variance of f ( εt ;

θ ) is finite. Therefore, according to Theorem 2.1 , if | φ| < 1, the return process defined in (1) and (2) with f ( εt ; θ ) defined in
(9) and εt having a GED distribution is strictly stationary and ergodic. Furthermore, if ν > 1, then a closed-form expression

of E (| y t | 
c ) can be derived; see Appendix B.1 for the corresponding expectations. In particular, the marginal variance and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kurtosis of y t are given by Eqs. (5) and (6) with 

P (1 , φ) = 

∞ ∏ 

i =1 

exp (−0 . 5 φi −1 α) exp 

(
− φi −1 γ2 �(2 /ν) √ 

�(3 /ν)�(1 /ν) 

) {
∞ ∑ 

k =0

( (
�(1 /ν) 

�(3 /ν) 

)k/ 2 
�((k + 1) /ν) 

2�(1 /ν) k ! 
φk (i −1) 

×
[
(γ1 + γ2 ) 

k + exp (αφi −1 )(γ2 − γ1 ) 
k
])}

, (10) 

and 

P (2 , φ) = 

∞ ∏ 

i =1

exp (−φi −1 α) exp 

(
− 2 φi −1 γ2 �(2 /ν) √

�(3 /ν)�(1 /ν) 

) {
∞ ∑ 

k =0

( (
�(1 /ν) 

�(3 /ν) 

)k/ 2 
�((k + 1) /ν) 

�(1 /ν) k ! 
2 k −1 φk (i −1) 

×
[
(γ1 + γ2 ) 

k + exp (2 αφi −1 )(γ2 − γ1 ) 
k
])}

, (11) 

where �( · ) is the Gamma function. Note that, in order to compute P ( · , · ), one needs to truncate the corresponding infinite
product and summation. Our experience is that truncating the product at i = 500 and the summation at k = 10 0 0 gives very

stable results. 

Given that the Gaussian distribution is a particular case of the GED distribution when ν = 2 , closed-form expressions of

E (| y t | 
c ) can also be obtained in this case; see Appendix B.2 for the corresponding expectations. Note that these expectations

are derived by Demos (2002) when c = 0 or 1 and α = 0 . In particular, the marginal variance is given by expression (5) while

the kurtosis is given by expression (6) with 

P (1 , φ) = 

∞ ∏ 

i =1

exp (−0 . 5 φi −1 α) exp 
(
−φi −1 γ2

√
2 /π

){
exp 

(
αφi −1 + 

φ2 i −2 (γ1 − γ2 ) 
2 

2 

)

(φi −1 (γ2 − γ1 ))

+ exp

(
φ2 i −2 (γ1 + γ2 ) 

2 

2 

)

(φi −1 (γ2 + γ1 ))

}
, (12) 

and 

P (2 , φ) = 

∞ ∏ 

i =1

exp (−φi −1 α) exp 
(
−2 φi −1 γ2

√
2 /π

){
exp 

(
2 αφi −1 + 2 φ2 i −2 (γ1 − γ2 ) 

2
)

(2 φi −1 (γ2 − γ1 ))

+ exp
(
2 φ2 i −2 (γ1 + γ2 ) 

2
)

(2 φi −1 (γ2 + γ1 ))

}
, (13) 

where 
( · ) is the Gaussian cumulative distribution function. The expressions of the marginal variance derived by Taylor

(1994) for the classical asymmetric SV model of Harvey and Shephard (1996) , by Ruiz and Veiga (2008) for the asymmetric

long-memory SV model, by Asai and McAleer (2011) for their general specification and by Mao et al. (2017) for a Threshold

SV model, can be obtained as particular cases of expression (5) with P (1, φ) defined as in (12) . 

When ν < 1, we cannot obtain analytical expressions of E (| y t | 
c ). However, in Appendix B.1 , we show that, in this case,

E (| y t | 
c ) in Eq. (4) is finite if γ2 + γ1 ≤ 0 and γ2 − γ1 ≤ 0 . It is important to note that the same conditions have to be satisfied

for the finiteness of E (| y t | 
c ) when εt follows a Student- t distribution with d > 2 degrees of freedom. Finally, if ν = 1 , the

conditions for the existence of E (| y t | 
c ) are γ2 + γ1 < 2 

√ 

2 /c and γ2 − γ1 < 2 
√ 

2 /c. 

The expectations needed to obtain closed-form expressions of the autocorrelations in expression (7) and cross-

correlations in (8) have been derived in Appendix B.1 for the TGA-SV model with a GED distribution with parameter ν > 1

and in Appendix B.2 for the particular case of Gaussian errors, i.e. ν = 2 . As above, when ν ≤1, we can only obtain condi-

tions for the existence of the autocorrelations and cross-correlations. The codes to evaluate the moments, autocorrelations

and cross-correlations are available online. 

We now illustrate the influence of the leverage parameters on these moments. We consider a TGA-SV model with Gaus-

sian errors and plot, in the left panel of Fig. 1 , the first order autocorrelations of squared returns, namely, ρ2 (1), as a function

of the leverage parameters, γ 1 and α, when φ = 0 . 98 , σ 2 
η = 0 . 05 and γ2 = 0 and 0.1. We observe that the autocorrelations

of squared returns are larger for larger values of γ 2 . However, both surfaces are rather flat and, consequently, the leverage

parameters do not have large effects on the first order autocorrelations of squares. 

In the right panel of Fig. 1 , we illustrate the effect of the parameters on the cross-correlations between y t and y 
2 
t+1 

,

denoted by ρ21 (1). First order cross-correlations between returns and future squared returns are indistinguishable for the

two values of γ 2 considered. Furthermore, Fig. 1 shows that | γ 1 | drags ρ21 (1) in an approximately linear way while the

effect of α is nonlinear. Also note that the effect of the threshold, α, on ρ21 (1) is relevant when γ1 = 0 . However, as γ 1 

increases, the role of α to explain the leverage effect decreases. 

The first column of Fig. 2 illustrates the autocorrelation function (acf) of squared returns (top panel) and the cross-

correlation function (ccf) between returns and future squared returns (bottom panel) in a TGA-SV model with parameters

φ = 0 . 98 , σ 2 
η = 0 . 05 , α = 0 . 07 , γ1 = −0 . 08 , γ2 = 0 . 1 and ν = 1 . 5 , 1 . 7 , 2 and 2.5. As expected, the acf of y 2 t has an exponential

decay. Furthermore, fatter tails of εt imply smaller autocorrelations of squared returns; see Carnero et al. (2004) for similar

conclusions in the context of symmetric SV models. The ccf plotted in the bottom panel of the first column shows that the

parameter ν of the GED distribution has a very mild influence on the cross-correlations. 



Fig. 1. First order autocorrelations of squares (left panel) and first order cross-correlations between returns and future squared returns (right panel) of

different Gaussian TGA-SV models with parameters φ = 0 . 98 and σ 2 
η = 0 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second column of Fig. 2 plots the acf and ccf of an A-ARSV model with α = γ2 = 0 and otherwise the same pa-

rameters as in the TGA-SV model above. We can observe that the autocorrelations of squared returns and the absolute

cross-correlations are slightly smaller than those of the corresponding TGA-SV model. Therefore, including γ 2 and α in the

TGA-SV model allows for stronger volatility clustering and leverage effect. 

The third column of Fig. 2 plots the autocorrelations and cross-correlations for an E-SV model with α = 0 and otherwise,

the same parameter values as in the TGA-SV model considered above. Comparing the plots of the A-ARSV and E-SV models

in Fig. 2 , we can observe that adding | εt−1 | into the A-ARSV model generates larger autocorrelations of squared returns.

However, as expected, the cross-correlations are almost identical. Therefore, the E-SV model represents wider dependencies

of volatility than the A-ARSV model but not more volatility leverage. 

Fig. 2 shows that, given a particular E-SV model, we may find an A-ARSV model with almost the same autocorrela-

tions and cross-correlations. For instance, the autocorrelations in the E-SV model with ν = 2 are very similar to those in

the A-ARSV model with ν = 2 . 5 . Furthermore, the cross-correlations are indistinguishable in any case. Nevertheless, these

two models generate returns with different kurtoses. Therefore, if the parameter ν is free, it is difficult to identify the pa-

rameters γ 2 and σ
2 
η using the information of the autocorrelations and cross-correlations only. However, the distribution of

returns and, in particular the kurtosis, implied by both models is different and this information can be used to identify these

parameters. 

The autocorrelations in the TGA-SV and E-SV models are almost identical. Including α only has a paltry effect on volatility

clustering. However, the cross-correlations are different and show that α allows for more leverage effect. 

The last specification of f ( · ; θ ) considered in this paper specifies the log-volatility with different constant levels depend-

ing on the sign of past returns as f (εt ; θ ) = α[ I(εt < 0) − 0 . 5] . This specification has been previously considered by Asai and

McAleer (2006) and it is a restricted version of the Threshold SV model proposed by Breidt (1996) and So et al. (2002) ; see

Mao et al. (2017) for the relevance of this specification when compared to the more general Threshold SV model. Hereafter,

we refer to this model as restricted Threshold SV (RT-SV). The last column of Fig. 2 illustrates the shape of the autocorrela-

tions of squared returns and the cross-correlations between returns and future squared returns for a RT-SV model with the

same values of the parameters as in the TGA-SV above and γ1 = γ2 = 0 . Comparing the autocorrelations of squared returns

in the TGA-SV and the RT-SV models represented in the top panel, we observe that the latter are slightly smaller than the

former. However, the absolute cross-correlations in the RT-SV model are the smallest among all the models considered. The

presence of α in the TGA-SV model seems to reinforce the role of the leverage parameter γ . 
1 



Fig. 2. Autocorrelation function of squares (first row) and cross-correlations between returns and future squared returns (second row) for different speci- 

fications of asymmetric SV models. The first column corresponds to a TGA-SV model with α = 0 . 07 , φ = 0 . 98 , σ 2 
η = 0 . 05 , γ1 = −0 . 08 , γ2 = 0 . 1 and ν = 1 . 5 

(solid lines), ν = 1 . 7 (dashed lines), ν = 2 (dotted lines) and ν = 2 . 5 (dashdot lines). The second column corresponds to the A-ARSV model with α = γ2 = 0 . 

The third column corresponds to an E-SV model with α = 0 . Finally, the last column corresponds to the RT-SV model with γ1 = γ2 = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to illustrate the effect of past shocks, εt−1 and ηt−1 , on the volatility at time t , in the TGA-SV model, Fig. 3 plots

the following volatility surface 

V t = exp ((1 − φ) μ) σ 2 φ
y exp ( f (εt−1 ; θ ) + ηt−1 ) , (14) 

when φ = 0 . 98 , σ 2 
η = 0 . 05 , exp (μ) = 0 . 01 and ν = 2 . We consider the specification of f ( εt ; θ ) in Eq. (9) with a) (α, γ1 , γ2 ) =

(0 . 07 , −0 . 08 , 0 . 1) (top panel), b) (α, γ1 , γ2 ) = (0 , −0 . 08 , 0) (middle panel) and c) (α, γ1 , γ2 ) = (0 , −0 . 08 , 0 . 1) (bottom

panel). Note that the shape of V t does not depend on the distribution of εt as it is a function of f (εt−1 ; θ ) and ηt−1 .

Note that the only dependence is through the constant E (| εt |) which affects the marginal variance of returns. The response

of volatility in (14) is obtained from (2) by evaluating the lagged volatilities at the marginal variance and assuming that at

time t − 1 the volatility is equal to an “average” volatility. It is important to point out that, given that εt and ηt are mutu-

ally independent, the relation between the log-volatility, h t , and εt−1 is measured just by the covariance between f (εt−1 ; θ )

and εt−1 . However, when looking at the more interesting relation between the volatility and εt−1 , we observe that the

leverage effect depends on ηt−1 . The volatility surface in Eq. (14) is different from the News Impact Curve proposed by Yu

(2012a) and Takahashi et al. (2013) in that they use numerical methods to compute the conditional variance. In (14) , we

are more interested in describing how the volatility, instead of the conditional variance, responds to the level and volatility

shocks. 

The top panel of Fig. 3 plots V t for the TGA-SV model when the parameters are given by the values in (a). We can observe

that V t shows a discontinuity due to the presence of the indicator function in f ( εt ; θ ). Furthermore, the leverage effect of

the TGA-SV model is different depending on the values of the log-volatility shock, ηt−1 . It is visible when ηt−1 is positive.

However, when ηt−1 is negative, the leverage effect is weaker. The second panel of Fig. 3 plots the volatility response when

the parameters are given by (b), corresponding to an A-ARSV model. In this case, we observe that the leverage effect is very

weak for negative log-volatility shocks. Finally, the bottom panel of Fig. 3 plots the volatility response when the parameter



Fig. 3. Volatility responses of GA-SV models with φ = 0 . 98 , σ 2 
η = 0 . 05 exp (μ) = 0 . 01 and ν = 2 . Top panel f (εt ; θ ) = α(I(εt < 0) − 0 . 5) + γ1 εt + γ2 (| εt | −

E(| εt | )) ; middle panel f (εt ; θ ) = γ1 εt and bottom panel f (εt ; θ ) = γ1 εt + γ2 (| εt | − E(| εt | )) . The parameter values are { α, γ1 , γ2 } = { 0 . 07 , −0 . 08 , 0 . 1 } . 

 

 

 

 

 

 

 

values are given by the values in (c), corresponding to the E-SV model. In this case, there is no discontinuity but the effect

of εt−1 on V t still depends on ηt−1 . 

4. Model estimation

As shown in the previous section, GA-SV models are attractive because of their flexibility to mimic the dynamic proper-

ties of financial returns and because they incorporate several popular specifications of the leverage effect often considered

before in the literature. The downside to adopting an appealing GA-SV model is the difficulty involved with parameter

estimation and volatility forecasts. In this section, we briefly describe alternative estimators of SV models and propose es-

timating the parameters of GA-SV models by combining a particle filter-based SML procedure with continuous resampling

introduced by Malik and Pitt (2011) . We analyze the finite sample properties of the proposed estimator and compared them

with those of a MCMC estimator implemented using a friendly and accesible software. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Estimators of stochastic volatility models 

The likelihood function of SV models is expressed by a high dimension integral which cannot be solved analytically due

to the presence of the unobserved volatility. As a result, maximum likelihood estimation of the parameters of SV models

is not trivial. In the context of asymmetric SV models, the intractability of the likelihood is inherited from standard SV

models; see Broto and Ruiz (2004) and Yu (2012b) for surveys on estimation of SV models. Asymmetric SV models have

been estimated via a variety of methods including EIS, MCL and MCMC methods. The EIS estimator, originally proposed by

Liesenfeld and Richard (2003) and Richard and Zang (2007) , evaluates the likelihood function numerically by integrating out

the latent volatility process via importance sampling techniques, followed by numerical maximization of the approximated

likelihood function. Consequently, it requires finding an important sampler such that the variance of the importance weights

exists; see Koopman et al. (2009) for conditions for the existence of the variance. Scharth and Kohn (2016) propose an

alternative procedure to avoid the exponential growth of the variance as the dimension of the integration increases. Even if

the existence conditions are satisfied, one has to select a class of auxiliary samplers such that they are close to the original

model and it is easy to sample from them. Finding the auxiliary samplers in the case of GA-SV models is a challenging task.

Very recently, Koopman et al. (2019) propose a computational simplification of the EIS estimator based on using standard

Kalman filter and smoothing methods. This modification avoids computing (possibly) complicated density kernels that need

to be tracked for every time period. However, as pointed out by Huang and Yu (2008) , a drawback of EIS-based estimators

is that they may not be easily generalized to asymmetric SV models due to the nonlinear specification of the unobserved

log-volatility process. 

Bayesian imputation via MCMC is usually more complicated. One exception is the MCMC estimator implemented in

Meyer and Yu (20 0 0) , Yu (20 05) , Yu (2012a) and Wang et al. (2013) that is friendly and easy to implement. However, it

is based on a single-move Gibbs sampling algorithm that it is known to have problems to converge to the conditional

posterior, severely impacting the statistical properties of the resulting parameter estimators; see Kim et al. (1998) . New

Bayesian estimators have recently been proposed in the literature. They estimate in a fairly precise way the parameters of

several SV models. For instance, Andrieu et al. (2010) propose a particle Markov chain Monte Carlo (PMCMC) that combines

MCMC with sequential Monte Carlo methods that are able to cope with complex patterns of dependence. More recently,

Kastner and Fruhwirth-Schnatter (2014) show that an interweaving strategy can greatly improve sampling efficiency for all

parameters of some SV models. Shestopaloff and Neal (2014) show that ensemble MCMC sampling methods for Bayesian 

computations are much more efficient that the interweaving strategy since the later relies on the latent process being linear

and Gaussian. Alternatively, McCausland et al. (2011) propose using the efficient Cholesky Factor Algorithm to draw states

and compare several estimators concluding that there is not a dominant method. 

Finally, to our knowledge, estimation of a general specification of the GA-SV family with GED standardized returns has

not been considered in the literature yet. Consequently, in this paper, we implement a relatively simple and fast estimator

of the parameters of GA-SV models based on a particle filtering SML procedure with continuous resampling as proposed by

Malik and Pitt (2011) . Although MCMC methods are very powerful for estimating nonlinear and non Gaussian state space

models, the choice of a prior distribution can often influence the performance of the sampler. For instance, requiring the

sampler to take many iterations to converge from the starting value to the target distribution; see van Ravenzwaaij et al.

(2018) . It is also true that particle filtering methods can be inefficient in the presence of highly informative observations.

However, in the context of SV models, the observations are not very informative individually and, consequently, this is not

a concern; see Pitt et al. (2014) . According to our Monte Carlo experiments, the SML estimator can be very accurate even

with sample sizes as small as T = 500 observations. 

4.2. Simulated ML estimation of GA-SV models via particle filtering 

Consider a set of observations y 1: T = (y 1 , . . . , y T ) generated from the TGA-SV model in Eqs. (1) and (2) with | φ| < 1, εt 

having a centered and standardized GED ( ν) distribution and f (εt−1 ; θ ) given by (9) . At date t = 0 , the initial log-volatility

distribution is assumed to be given by h 0 ∼ N (μ, 
σ 2 
η

1 −φ2 ) . Note that, in the TGA-SV model, the marginal variance of h 0 is given

by V ar(h 0 ) = 

1 
1 −φ2 (σ

2 
η + 0 . 25 α2 + γ 2

1
+ γ 2 

2
− �(2 /ν)

�(1 /ν)�(3 /ν) 
(αγ1 

√ 

�(1 /ν)�(3 /ν) + γ2 �(2 /ν))) . However, using σ 2 
η / (1 − φ2 ) as

variance of the initial distribution does not have effects on the final estimates. Since εt−1 = y t−1 exp (−h t−1 / 2) , Eq. (2) can

be rewritten as: 

h t − μ = φ(h t−1 − μ) + f [ y t−1 exp (−h t−1 / 2) ; θ ] + ηt−1 . (15) 

Denote by θ ∗ = (θ, μ, φ, σ 2 
η ) the vector of all parameters in the log-volatility equation, (2) except the parame-

ter of the distribution of εt , ν , and by g y ( y t | h t ; ν) the density of returns, y t , conditional on contemporaneous unob-

served log-volatilities, h t , which is given by the GED density with parameter ν . Finally, g h (h t | h t−1 , y t−1 ; θ ∗) is the con-
ditional density of log-volatility given past log-volatilities and observations, which is given by N (μ(1 − φ) + φh t−1 +
f [ y t−1 exp (−h t−1 / 2) ; θ ] , σ 2 

η ) . 

We estimate θ = (θ ∗, ν) by SML where the likelihood is estimated by the particle filtering iterative algorithm described

below; see Gordon et al. (1993) . Given θ and y 0 , at date t = 0 particles of the initial log-volatilities, { h (n ) 
0 

} N 
n =1 

, are generated

from the initial log-volatility distribution. Then, for t > 0, iterate the following three steps: 
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tep 1 (Sampling): For every n = 1 , . . . , N, simulate a new state ˜ h (n ) t from g h (· | h (n ) t−1 
, y t−1 ; θ ∗) . 

tep 2 (Correction): Given the new data point y t , compute 

w 

(n ) 
t (θ ) = g y (y t | ˜ h (n ) t ;ν

)
, n ∈ { 1 , . . . , N} . 

tep 3 (Selection): For every n = 1 , . . . , N, draw h (n ) t from 

˜ h (1) 
t , . . . , ̃  h (N) 

t with importance weights p (1) 
t (θ ) , . . . , p (N) 

t (θ ) where

p (n ) t (θ ) = w 

(n ) 
t (θ ) / 

∑ N 
i =1 w 

(i ) 
t (θ ) . 

Given θ , the true but intractable log-likelihood function can be estimated by 

log ̂  L (θ ) = 

T ∑ 

t=1

log 

(
1 

N 

N ∑ 

n =1

w 

(n ) 
t (θ ) 

)
. (16)

Since the simulated estimator ˆ L (θ ) is a consistent and unbiased estimator of L ( θ ∗) ( Del Moral, 2004 , Chapter 9), θ ∗

can be estimated by maximizing the estimated log-likelihood as follows: 

ˆ θ ∗
SML = arg max 

θ ∗
log ̂  L (θ ) . (17)

The estimator in (17) is a SML estimator; see Gouriéroux and Monfort (1996 , Chapter 3). When T and N → ∞ and 
√ 

T /N →
0 , it is asymptotically equivalent to the maximum likelihood estimator; see Malik and Pitt (2011) . 

In order to facilitate maximization of the log-likelihood in (16) , it is important that its estimator is continuous as a

function of the parameters. With this purpose, in step 1, we use the continuous resampling proposed by Malik and Pitt

(2011) for univariate hidden state processes as follows 

Step (i) (Sorting): Sort the particles { ̃ h (n ) t } in ascending order 
ˆ h (1) 
t ≤ ˆ h (2) 

t ≤ · · · ≤ ˆ h (N) 
t .

Denote the importance weight associated with ˆ h (n ) t by ˆ p (n ) t . 

Step (ii) (Sorted uniforms): Draw sorted { u i } using Malmquist ’s (1950) sorted uniforms. That is draw { v i } from a uniform

distribution on the interval (0,1). Set u N = v 1 /N 
N 

and for n = N − 1 , . . . , 1 : 

u n = u n +1 v 1 /n n . 

The resulting u 1 < u 2 < · · · < u N are ordered uniform variates. 

Step (iii) (Index sampling): Define π(0) 
t = ˆ p (1) 

t / 2 , π(N) 
t = ˆ p (N) 

t / 2 and π(k ) 
t = ( ̂  p (k +1) 

t + ˆ p (k ) t ) / 2 for k = 1 , . . . , N − 1 , and set

s = 0 , j = 1 . For i = 0 , . . . , N, sample indexes r 1 , . . . , r N and a new set of uniforms u ∗
1 
, . . . , u ∗

N 
: 

s = s + π(i ) 
t 

while (u j ≤ s and j ≤ N) {
r j = i 

u ∗j = (u j − (s − π(i ) 
t )) /π (i ) 

t 

j = j + 1 } . 
Step (iv) (Particle drawing): For the selected regions where r j = 0 , we set h 

( j) 
t = ̂

 h (1) 
t and where r j = N, we set h 

( j) 
t = ̂

 h (N) 
t .

Otherwise, set 

h ( j) t = ( ̂h 
(r j +1) 

t − ˆ h 
(r j ) 

t ) × u ∗j + ̂

 h 
(r j )

t . 

Note that it is important to guarantee that, for a fixed seed, the random number generator provides continuously chang-

ing numbers in the parameters. For instance, the inverse cdf method to generate continuous random numbers satisfies this

property. 

Finally, also note that there is not weight degeneracy as step 3 of the particle filtering is carried out at each moment of

time t . 

4.3. Finite sample performance of the particle filter-based simulated ML estimator 

In this section, we carry out Monte Carlo experiments to analyze the finite sample performance of the particle filter-

based SML estimator of the parameters of the TGA-SV model. We consider two designs for the Monte Carlo experiments.

First, εt has a centered normal distribution and ν is treated as known while all other parameters in the model are estimated.

Second, we consider the TGA-SV model with GED standardized returns with ν = 1 . 5 . In this case, the parameter ν is also

estimated. The Monte Carlo results are based on R = 500 replicates of sizes T = 50 0 , 10 0 0 and 20 0 0 generated by each

of these TGA-SV models with parameters (μ, φ, α, γ1 , γ2 , σ
2 
η ) = (0 , 0 . 98 , 0 . 07 , −0 . 08 , 0 . 1 , 0 . 05) and N = 10 4 particles. For

computational efficiency, we choose to estimate μ · (1 − φ) instead of μ as it leads to a more stable numerical optimization



Table 1

Monte Carlo results of the particle filter-based SML estimator of the TGA-SV parameters based on N = 10 4 particles. The table reports Monte Carlo averages 

and standard deviations (in parenthesis) of 500 estimates of the TGA-SV-N (left panel) and TGA-SV-G (right panel) models, and the mean and standard

deviation of computing times. True parameters are in bold.

TGA-SV-N TGA-SV-G

μ(1 − φ) φ α γ 1 γ 2 σ 2
η μ(1 − φ) φ α γ 1 γ 2 σ 2

η ν

True 0 0.98 0.07 −0.08 0.1 0.05 Time 0 0.98 0.07 −0.08 0.1 0.05 1.5 Time

T = 500 

Mean 0.012 0.969 0.082 −0.078 0.106 0.042 1194.3 0.009 0.971 0.078 −0.078 0.037 0.026 1.623 1738.1 

Std. dev. (0.043) (0.016) (0.080) (0.051) (0.144) (0.025) (356.5) (0.054) (0.018) (0.088) (0.059) (0.287) (0.034) (0.416) (566.8)

T = 10 0 0 

Mean 0.007 0.975 0.075 −0.078 0.101 0.047 2341.3 0.006 0.976 0.071 −0.079 0.085 0.035 1.550 3630.6 

Std. dev. (0.030) (0.009) (0.060) (0.038) (0.093) (0.016) (728.7) (0.030) (0.009) (0.065) (0.041) (0.198) (0.028) (0.275) (1045.7)

T = 20 0 0 

Mean 0.006 0.978 0.066 −0.081 0.103 0.049 4822.0 0.004 0.978 0.072 −0.080 0.099 0.042 1.513 7522.1 

Std. dev. (0.023) (0.006) (0.044) (0.025) (0.059) (0.011) (1436.3) (0.024) (0.006) (0.048) (0.029) (0.135) (0.021) (0.178) (2086.2)

Table 2

Monte Carlo results comparing SML and MCMC estimators. T = 20 0 0 and normal errors. 

Parameter estimates Average time

μ(1 − φ) φ α γ 1 γ 2 σ 2
η

True values 0.006 0.94 0.1 −0 . 12 0 0.05

SML 0 . 059
(0 . 013)

0 . 937
(0 . 012)

0 . 103
(0 . 068)

−0 . 122 
(0 . 036)

0 . 006
(0 . 062)

0 . 049
(0 . 013)

4301 . 18 s

MCMC 0 . 011
(0 . 038)

0 . 931
(0 . 014)

0 . 106
(0 . 070)

−0 . 123 
(0 . 037)

0 . 014
(0 . 064)

0 . 054
(0 . 014)

260 . 60 s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when φ is close to one, as it is the case in our Monte Carlo designs. It is important to point out that the average computing

time involved in the estimation of the TGA-SV model using the particle filter-based SML estimator is below half an hour.

Programs were implemented in C and computation was performed on an Intel(R) Xeon(R) CPU E7-4830 v3 @ 2.10 GHz.

The C codes are available from the second author. To maximize the log-likelihood, 5 maximizations are run with the initial

parameter values chosen randomly in the parameter space. The maximization is carried out using the Downhill simplex

procedure and the global maximum of the 5 maximization results is taken as the global maximum. 

Table 1 reports the Monte Carlo averages and standard deviations of the particle filter-based SML estimates. We can ob-

serve that, regardless of whether the distribution of standardized returns is assumed to be known or not, all the parameters

are accurately estimated, even when the sample size is as small as T = 500 . Note that when ν is estimated as a further

parameter, the standard errors of the SML estimator of γ 2 and σ
2 
η increase with respect to those obtained when the distri-

bution of εt is assumed to be known and normal. These Monte Carlo experiments show that the particle filter-based SML

estimator does a remarkable job in estimating the parameters of the general asymmetric SV model considered in this paper.

Finally, Table 1 also reports the means and standard deviations of computing time (in seconds) of the 500 Monte Carlo

replicates for the two models and three sample sizes considered. Computing times reported in this table are reasonably

small for the SML to be used in practice. 

In order to compare the particle filter-based SML estimator with alternative estimators based on Gibbs samplers, we carry

out an additional simulation experiment. In this second experiment, the parameters of the DGP are choosen to reproduce

those estimated in the empirical application. In particular, 500 replicates of size T = 20 0 0 are generated by the TGA-SV

model with Normal standardized returns and parameters μ = 0 . 1 , φ = 0 . 94 , α = 0 . 1 , γ1 = −0 . 12 , γ2 = 0 and σ 2 
η = 0 . 05 .

Table 2 reports the Monte Carlo means and standard deviations when the parameters are estimated using the SML estimator

and the Just Another Gibbs Sampler (JAGS) proposed by Plummer (2003) which is a recent alternative to OpenBugs. The JAGS

estimator is implemented with 3 chains each of them having 10 0 0 0 iterations and a burning of 50 0 0. Table 2 shows that,

if the sample size is as large as T = 20 0 0 , the particle filter SML estimates are slightly closer to the true values and their

standard errors are also slightly smaller than those provided by JAGS. Furthermore, the Gibbs estimator requires on average

16.5 times less computer time. The differences between the estimates of the two estimators are greater for smaller sample

sizes and benefit the SML estimator. 

5. Empirical application

In this section, the results are illustrated by fitting the TGA-SV model and several of its particular specifications to S&P

500 returns. We consider first weekly and then daily returns. 



Fig. 4. (a) Weekly S&P 500 returns observed from January 9, 1950 to May 18, 2017. (b) Sample and plug-in autocorrelations (left column) and cross- 

correlations (right column) for the TGA-SV (solid lines), E-SV (dash lines), A-ARSV (asterisk lines) and ARSV (dash-dotted lines) models when the errors

follow GED (first row) and Gaussian distributions (second row).

 

 

 

 

 

 

 

 

 

5.1. Weekly returns 

S&P 500 prices are observed weekly between January 9, 1950 and May 8, 2017, with a total of T = 3513 observations. The

returns, computed as y t = 100 × 
 log P t , where P t is the adjusted close price at time t obtained from finance.yahoo.com,

are plotted in Fig. 4 which also plots the sample autocorrelations of squares and the cross-correlations between re-

turns and future squared returns. We can observe the usual pattern of volatility clustering and negative and significative

cross-correlations between returns and future squared returns. 

We fit the TGA-SV, E-SV, A-ARSV and ARSV models with GED (denoted by -G) and Normal (denoted by -N) errors. The

parameters are estimated by the particle filter-based procedure described in Section 4 with N = 10 4 particles. Table 3 re-

ports the parameter estimates together with their corresponding asymptotic standard errors in parentheses. The particle-

filter estimated log-likelihoods are also reported together with the p -values of the likelihood-ratio test which compares

the likelihood of each model to that of the TGA-SV-G specification. First of all, we can observe that, regardless of the



Table 3

Empirical parameter estimates and log-likelihood values for weekly S&P 500 returns. Standard errors of parameter estimates are

reported in parentheses. P -values of the likelihood tests comparing restricted models to the TGA-SV-G model are reported in paren- 

theses below the log-likelihood values.

Model Parameter estimates Log L̂

μ(1 − φ) φ α γ 1 γ 2 σ 2
η ν

TGA-SV-G 0 . 085
(0 . 009)

0 . 936
(0 . 007)

0 . 099
(0 . 052)

−0 . 116 
(0 . 025)

−0 . 070 
(0 . 058)

0 . 051
(0 . 008)

2 . 521
(0 . 186)

−7068 . 13 

E-SV-G 0 . 083
(0 . 009)

0 . 935
(0 . 007)

– −0 . 157
(0 . 014)

−0 . 070 
(0 . 056)

0 . 051
(0 . 008)

2 . 523
(0 . 185)

−7070 . 06 
(0 . 049)

A-ARSV-G 0 . 085
(0 . 009)

0 . 934
(0 . 007)

– −0 . 158
(0 . 014)

– 0 . 048
(0 . 007)

2 . 371
(0 . 125)

−7071 . 07 
(0 . 053)

ARSV-G 0 . 035
(0 . 008)

0 . 969
(0 . 007)

– – – 0 . 036
(0 . 007)

2 . 119
(0 . 103)

−7134 . 63 
(0 . 0 0 0 0)

TGA-SV-N 0 . 076
(0 . 008)

0 . 945
(0 . 007)

0 . 093
(0 . 050)

−0 . 106 
(0 . 023)

0 . 040
(0 . 041)

0 . 033
(0 . 005)

– −7073 . 78
(0 . 001)

E-SV-N 0 . 073
(0 . 008)

0 . 945
(0 . 007)

– −0 . 143
(0 . 013)

0 . 038
(0 . 040)

0 . 033
(0 . 005)

– −7075 . 60
(0 . 001)

A-ARSV-N 0 . 069
(0 . 007)

0 . 949
(0 . 006)

– −0 . 140
(0 . 013)

– 0 . 033
(0 . 005)

– −7076 . 04
(0 . 001)

ARSV-N 0 . 032
(0 . 008)

0 . 972
(0 . 006)

– – – 0 . 031
(0 . 006)

– −7135 . 24
(0 . 0 0 0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particular log-volatility specification and error distribution, the persistence parameter, φ, ranges always between 0.934 and

0.972. However, the estimation of the variance of the log-volatility noise depends on the distribution assumed for stan-

dardized returns and on whether the leverage effect is modeled. When standardized returns are normal or the volatility

is assumed to be symmetric, the estimated σ 2 
η is always smaller than in models with leverage effect and non-Gaussian

standardized returns. With respect to the asymmetric parameters, it is interesting to observe that the threshold parameter

is always significant while the estimates of γ 1 are slightly smaller for Gaussian errors and for the TGA-SV specification.

The estimates of the EGARCH parameter, γ 2 , are not statistically significant. Finally, the estimates of the GED parameter, ν ,
are significantly larger than 2, when the volatility is asymmetric. However, when there is no leverage effect, the estimated

ARSV model is almost the same regardless of whether the errors are normal or not. When looking at the p -values reported

in Table 3 , we can observe that models with normal errors or symmetric volatilities are rejected when compared with the

TGA-SV-G model. Therefore, models with GED errors and leverage effect are closer to the true Data Generating Process (DGP)

than models with Gaussian errors or symmetric volatilities. 

In order to analyze the effect of these estimates on the moments that each of the models can explain, we compute the

plug-in autocorrelations of squares and cross-correlations, obtained when the estimated parameters are substituted in the

corresponding expressions (7) and (8) . These plug-in autocorrelations and cross-correlations are plotted in Fig. 4 together

with the corresponding sample moments. In concordance with the analytical results on the properties of TGA-SV models,

we can observe that the plug-in cross-correlations are nearly the same regardless of whether the errors are Gaussian or

GED. Furthermore, all asymmetric specifications of the log-volatility imply very similar cross-correlations. We can observe

that these plug-in cross-correlations are smaller than the corresponding sample cross-correlations for the first two and the

seventh lags while they explain rather well the sample cross-correlations for all other lags. The sample cross-correlations

plotted in Fig. 4 suggest that a specification of the leverage effect with further lags may be appropriate to represent the

dynamic dependence of S&P 500 volatilities. With respect to the particular specification of the leverage effect, it seems that

the E-SV specification provides the best fit between plug-in and sample moments while introducing the threshold parameter

does not have a clear benefit with respect to the moments that the models can explain. 

Fig. 5 plots the volatility responses obtained after substituting in Eq. (14) the unknown parameters by their corresponding

estimates obtained assuming GED errors. We can observe that the response to positive shocks implied by the three asym-

metric specifications is very similar. However, the response of volatility to negative shocks can be rather different depending

on the particular specification of the function f ( εt ; θ ) considered. 
We assess the volatility forecast accuracy of the various alternative models considered by forecasting the tail distribu-

tion of returns, namely, the Value-at-risk (VaR) and by constructing volatility forecast intervals. With this purpose, we run

a particle filter with a large number of particles, namely, N = 10 6 , and compute the 1%, 5% and 10% one-step-ahead VaRs

and construct one-step-ahead forecast intervals for future volatilities with nominal coverages of 80%, 90%, 95% and 99%.

Table 4 reports the failure rates for the VaR and the volatility intervals constructed following negative returns while Table 5

reports the same quantities constructed following positive returns. We also provide the mean deviation between the squared

returns and forecasted squared returns computed as T −1 
∑ T 

t=1 (y 
2 
t − E [ y 2 t | y 1: t−1 ]) . Asymptotic standard errors are reported in

parenthesis with bold values indicating significant differences from nominal values at the 5% significance level. Note that

Andersen and Bollerslev (1998) report that volatility models have poor predictive power when volatility forecasts are evalu-

ated against squared returns, as a consequence of the noise existing in the return generating process. An alternative would

be to evaluate the volatility forecasts against the realised volatility obtained from high frequency data. In total 1520 fore-

casts follow negative returns while 1988 follow positive returns. Consider first the results corresponding to VaR and volatility



Table 4

Failure rates of VaR and of volatility forecast intervals following past negative returns. Average volatility forecast errors. Asymptotic 
standard errors are in parentheses. Bold values indicate significant differences from theoretical values at the 5% significance level.

Model VaR Volatility forecast intervals Volatility forecast error

1% 5% 10% 80% 90% 95% 99%

TGA-SV-G 1 . 25
(0 . 29)

4 . 41
(0 . 53)

9 . 28
(0 . 74)

20 . 86
(1 . 04)

9 . 01
(0 . 73)

4 . 61
(0 . 54)

1 . 05
(0 . 26)

0 . 69
(0 . 37)

E-SV-G 1 . 38
(0 . 30)

4 . 61
(0 . 54)

9 . 28
(0 . 74)

21 . 25
(1 . 05)

9 . 54
(0 . 75)

4 . 80
(0 . 55)

1 . 12
(0 . 27)

0 . 76
(0 . 37)

A-ARSV-G 1 . 51
(0 . 31)

4 . 67
(0 . 54)

9 . 01
(0 . 73)

20 . 99
(1 . 04)

9 . 41
(0 . 75)

4 . 80
(0 . 55)

1 . 18
(0 . 28)

0 . 72
(0 . 37)

ARSV-G 1 . 78
(0 . 34)

5 . 98
(0 . 61)

10 . 79
(0 . 80)

23 . 95
(1 . 09)

12 . 04
(0 . 83)

6 . 25
(0 . 62)

1 . 78
(0 . 34)

1 . 32
(0 . 38)

TGA-SV-N 1 . 18
(0 . 28)

4 . 61
(0 . 54)

9 . 41
(0 . 75)

21 . 38
(1 . 05)

9 . 28
(0 . 74)

4 . 34
(0 . 52)

0 . 99
(0 . 25)

0 . 71
(0 . 32)

E-SV-N 1 . 25
(0 . 29)

4 . 87
(0 . 55)

9 . 54
(0 . 75)

21 . 51
(1 . 05)

9 . 54
(0 . 75)

4 . 54
(0 . 53)

1 . 05
(0 . 26)

0 . 78
(0 . 37)

A-ARSV-N 1 . 18
(0 . 28)

4 . 87
(0 . 55)

9 . 47
(0 . 75)

21 . 78
(1 . 06)

9 . 61
(0 . 76)

4 . 47
(0 . 53)

1 . 05
(0 . 26)

0 . 82
(0 . 37)

ARSV-N 1 . 71
(0 . 33)

5 . 99
(0 . 61)

10 . 79
(0 . 80)

24 . 01
(1 . 10)

12 . 11
(0 . 84)

5 . 92
(0 . 61)

1 . 64
(0 . 33)

1 . 34
(0 . 38)

Fig. 5. Plug-in volatility responses of models with GED errors fitted to S&P 500 returns.



Table 5

Failure rates of VaR forecasts, of volatility forecast intervals and mean volatility forecast errors following past positive 
returns. Asymptotic standard errors are in parentheses. Bold values indicate significant differences from theoretical 
values at the 5% significance level.

Model VaR Forecast volatility intervals Forecast volatility error

1% 5% 10% 80% 90% 95% 99% T −1 
∑ T 

t=1 (y 
2 
t − E [ y 2 t | y 1: t−1 ]) 

TGA-SV-G 1 . 21
(0 . 25)

5 . 13
(0 . 50)

9 . 71
(0 . 66)

19 . 93
(0 . 90)

9 . 16
(0 . 65)

4 . 43
(0 . 46)

1 . 06
(0 . 23)

−0 . 17 
(0 . 19)

E-SV-G 1 . 11
(0 . 23)

5 . 03
(0 . 49)

9 . 66
(0 . 66)

19 . 73
(0 . 89)

9 . 26
(0 . 65)

4 . 48
(0 . 46)

0 . 91
(0 . 21)

−0 . 21 
(0 . 16)

A-ARSV-G 1 . 16
(0 . 24)

5 . 03
(0 . 49)

9 . 46
(0 . 66)

19 . 48
(1 . 04)

9 . 11
(0 . 75)

4 . 58
(0 . 55)

0 . 91
(0 . 28)

−0 . 22 
(0 . 16)

ARSV-G 0 . 75
(0 . 19)

4 . 53
(0 . 47)

7 . 85
(0 . 60)

16 . 00
(0 . 82)

7 . 85
(0 . 60)

3 . 37
(0 . 40)

0 . 70
(0 . 19)

−0 . 76 
(0 . 17)

TGA-SV-N 1 . 06
(0 . 23)

4 . 93
(0 . 49)

9 . 51
(0 . 66)

19 . 63
(0 . 89)

8 . 81
(0 . 64)

4 . 23
(0 . 45)

0 . 96
(0 . 22)

−0 . 22 
(0 . 16)

E-SV-N 0 . 96
(0 . 29)

4 . 78
(0 . 55)

9 . 51
(0 . 75)

19 . 58
(0 . 89)

8 . 66
(0 . 63)

4 . 23
(0 . 45)

0 . 91
(0 . 21)

−0 . 27 
(0 . 16)

A-ARSV-N 0 . 96
(0 . 22)

4 . 88
(0 . 48)

9 . 56
(0 . 66)

19 . 58
(0 . 89)

8 . 76
(0 . 63)

4 . 28
(0 . 45)

0 . 91
(0 . 21)

−0 . 27 
(0 . 16)

ARSV-N 0 . 70
(0 . 19)

4 . 48
(0 . 46)

7 . 95
(0 . 61)

16 . 15
(0 . 83)

7 . 70
(0 . 60)

3 . 32
(0 . 40)

0 . 70
(0 . 19)

−0 . 76 
(0 . 17)

Table 6

Estimation results of TGA-SV-G model for daily returns observed from January 4

1950 to December 31 1971 (fist column), January 3 1972 to December 31 1993

(second column) and January 3 1994 to May 8 2017 (third column). Standard er- 

rors of SML estimates are in parenthesis. Log-likelihood together with p-values

for alternative specifications of the log-volatility.

Parameter 1950–1971 1972–1993 1994–2017

μ(1 − φ) −0 . 040 
(0 . 005)

−0 . 003 
(0 . 001)

−0 . 0 0 0 
(0 . 002)

φ 0 . 956
(0 . 005)

0 . 990
(0 . 006)

0 . 977
(0 . 003)

α 0 . 026
(0 . 033)

−0 . 008 
(0 . 021)

0 . 024
(0 . 026)

γ 1 −0 . 109 
(0 . 017)

−0 . 049 
(0 . 010)

−0 . 146 
(0 . 014)

γ 2 −0 . 134 
(0 . 041)

0 . 001
(0 . 025)

−0 . 038 
(0 . 038)

σ 2
η 0 . 035

(0 . 004)
0 . 008
(0 . 001)

0 . 0166
(0 . 002)

ν 1 . 911
(0 . 090)

1 . 578
(0 . 058)

1 . 712
(0 . 071)

Log likelihood −5039 . 75 −7830 . 71 −7777 . 76 

E-SV-G −5040 . 04 
(0 . 445)

−6830 . 78 
(0 . 697)

−7778 . 13 
(0 . 388)

A-ARSV-G −5045 . 99 
(0 . 002)

−6830 . 79 
(0 . 926)

−7778 . 67 
(0 . 405)

ARSV-G −5128 . 25 
(0 . 30 0 0)

−6852 . 17 
(0 . 0 0 0)

−7904 . 30 
(0 . 0 0 0)

TGA-SV-N −5040 . 07 
(0 . 422)

−6 84 9 . 91 
(0 . 0 0 0)

−7784 . 44 
(0 . 0 0 0)

E-SV-N −5040 . 36 
(0 . 540)

−6 84 9 . 91 
(0 . 0 0 0)

−7785 . 00 
(0 . 001)

A-ARSV-N −5051 . 96 
(0 . 0 0 0)

−6858 . 73 
(0 . 0 0 0)

−7794 . 95 
(0 . 0 0 0)

ARSV-N −5603 . 09 
(0 . 0 0 0)

−7411 . 97 
(0 . 0 0 0)

−8321 . 53 
(0 . 0 0 0)

 

 

 

 

 

 

 

 

 

forecast intervals obtained following negative returns. In this case, we can see that, if the asymmetry is not modeled, the

VaR is underestimated with the failures being larger than the nominal. The symmetric models are clearly rejected. Further-

more, the coverage of symmetric volatility intervals following negative returns is below the nominal. Therefore, it seems

that after negative returns, not only the volatility based on symmetric models is underestimated but also its variability is

too small. When comparing different specifications of the asymmetry, we can observe that none of them are rejected when

looking at VaR failures or volatility forecast intervals. However, the mean volatility forecast errors are positive for all specifi-

cations but for the general TGA-SV model. In this latter case, regardless of whether the errors are normal or GED, the mean

errors are not significantly different from zero. Finally, when looking at one-step-ahead VaR failures and volatility forecast

intervals obtained after positive returns, we can observed that, as before, the symmetric specification of the volatility is

rejected. In this case, all symmetric specifications are similar with zero mean forecast errors. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Daily returns 

In this subsection, we analyze daily returns observed from January 4 1950 to May 8 2017. In order to investigate the

dynamic evolution of the specification of log-volatilities, the sample has been splitted into three subperiods: (i) January 4

1950 to December 31 1971 ( T = 5506 ); (ii) January 3 1972 to December 31 1993 ( T = 5560 ); (iii) January 3 1994 to May

8 2017 ( T = 5878 ). Using data in each of these three subperiods, we estimate the parameters of the general TGA-SV-G

model using the particle filter SML estimator. The estimated parameters together with their standard errors are reported in

Table 6 . We can observe that, in all subperiods, the persistence is rather large with φ being estimated over 0.95. The large

estimate of φ together with the small estimate of σ 2 
η imply a rather smooth evolution of the volatity in the decades of

the seventies and eighties. The threshold parameter, α, is not significant. The best specification of the asymmetric response

of the volatility to past positive and negative returns within each of the three subperiods considered is rather different.

In the second subperiod, decades of the seventies and eighties, the only asymmetric parameter that is significative is γ 1

that is estimated as −0.049. Therefore, the basic asymmetric SV model with correlated errors seems to be preferred. Also

note that, in these two decades, normality of standardized returns is clearly rejected. The A-ARSV model with GED errors

seems to be an adequate representation for the evolution of volatilities. However, in the first subperiod, decades of the

fifties and sixties, normality of standarized returns is not rejected and the asymmetric behavior of the volatility is much

stronger with the estimates of both γ 1 and γ 2 being significant. The threshold parameter, α, although not significant, takes

a clearly larger value. In the more recent period, we can observe that normality of standardized returns is rejected and that

all asymmetric parameters have t-statistics with absolute values larger than 1. Results on the accuracy of the alternative

specifications to capture the tail distributions of forecasted returns after positive and negative past returns are available upon

request. 

6. Conclusions and further research

In this paper we provide a powerful instrument to decide among alternative specifications of symmetric responses of

volatility in the context of stochastic volatility models. First, we derive the statistical properties of a general family of asym-

metric SV models, denoted as GA-SV, which includes some of the most popular models usually implemented when modeling

heteroscedastic series with leverage effect. In particular, the A-ARSV model which incorporates the leverage effect through

the correlation between the standardized returns and log-volatility equations, the E-SV model which adds a noise to the

log-volatility equation specified as an EGARCH model and a restricted T-SV model, in which the constant of the volatility

equation is different depending on whether one-lagged returns are positive or negative, are included in the GA-SV family.

Closed-form expressions of the statistical properties of these models are obtained when the errors are GED. We also show

that the asymmetric response of volatility to positive and negative return shocks is different depending on the size and sign

of the volatility shocks. 

Second, we analyze the finite sample properties of the particle filter-based simulated ML estimator and show that it leads

to accurate estimates of the parameters of a general specification belonging to the GA-SV family even when the sample size

is relatively small. 

Third, the results are illustrated by fitting the general specification belonging to the GA-SV family and several restricted

models, to estimate and forecast the volatility of S&P 500 weekly returns. We show that symmetric volatility specifications

are clearly rejected when looking at log-likelihood ratios and one-step-ahead VaR estimates and volatility forecast intervals.

Furthermore, although the alternative specifications of the leverage effect considered generate similar plug-in autocorrela-

tions of squared returns and cross-correlations between returns and future squared returns, the properties of VaR forecasts

and volatility forecast intervals are clearly in favor of the general specification. Finally, we also consider daily S&P 500 re-

turns and show that the most appropriate specification of the asymmetric response of volatility can be different in different

periods of time. 

Acknowledgments 

We received helpful comments from Antoni Demos, Roman Liesenfeld, Enrique Sentana, George Tauchen, David Veredas,

Mike Wiper, Jun Yu and participants at the 2014 Conference on Indirect Estimation Methods in Finance and Economics held

in Konstanz, at the conference on Modeling Macroeconomic and Financial Time Series held in Loughborough in 2014, the

Bayesian study group of the Department of Statistics at UC3M, at the 48th Scientific Meeting of the Italian Statistical Asso-

ciation held in 2016 in Salerno, at the 2016 Symposium of the Spanish Economic Association held in Bilbao and at the final

conference on Stochastic Dynamical Models in Mathematical Finance, Econometrics, and Actuarial Science held in Laussane

in 2017. We gratefully acknowledge the financial support from the Spanish Government, contract grants ECO2015-70331-C2-

2-R and ECO2015-65701-P ( MINECO /FEDER), the computer support from EUROFIDAI, and the FCT grant UID/GES/00315/2013 .

https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100001871


 

 

 

 

 

 

 

 

 

 

 

 

Appendix A. Proof of Theorems 

A.1. Proof of Theorem 2.1 

Consider y t , which, according to Eq. (1) , is given by y t = εt exp ( h t / 2 ) . From Eq. (2) , h t can be written as 

h t − μ = 

∞ ∑ 

i =1

φi −1 ( f (εt−i ; θ ) + ηt−i ) . (A.1) 

First, note that if | φ| < 1, then �(x ) = 

∑ ∞
i =1 φi −1 x i is a measurable function for x = (x 1 , x 2 , . . . ) ∈ R ∞ 

. Second, given that εt

and ηt are both IID and mutually independent for any lag and lead, then { f (εt ; θ ) + ηt } is also an IID sequence. Lemma

3.5.8 of Stout (1974) states that an IID sequence is always strictly stationary. Therefore, in (A.1) , if | φ| < 1, h t is expressed as

a measurable function of a strictly stationary process and, consequently, according to Theorem 3.5.8 of Stout (1974) , h t is

strictly stationary. As σ t is a continuous function of h t , σ t is also strictly stationary. The level noise εt is independent of σ t 

and strictly stationary by definition. Therefore, it is easy to show that y t = σt εt is strictly stationary. 
When | φ| < 1 and Var ( f ( εt ; θ )) < ∞ , y t and σ 2 

t are strictly stationary and, consequently, any existing moments are time

invariant. Next we show that σ t has finite moments of arbitrary positive order c when εt follows a distribution such that

E (exp (0.5 cf ( εt ; θ ))) < ∞ . 

From expression (A.1) , the power-transformed volatility can be written as follows 

σ c 
t = exp (0 . 5 cμ) exp 

(
0 . 5 c 

∞ ∑ 

i =1

φi −1 ( f (εt−i ; θ ) + ηt−i )

)
. (A.2) 

Given that εt and ηt are mutually independent for all lags and leads, the following expression is obtained after taking

expectations on both sides of Eq. (A.2) 

E(σ c 
t ) = exp (0 . 5 cμ) E

[ 

exp 

(
0 . 5 c 

∞ ∑ 

i =1

φi −1 f (εt−i ; θ )

) ]
E 

[
exp 

(
0 . 5 c 

∞ ∑ 

i =1

φi −1 ηt−i

) ]
. (A.3) 

As ηt is Gaussian, the last expectation in (A.3) can be evaluated using the expression of the moments of the Log-Normal.

Furthermore, given that ηt and εt are both IID sequences, it is easy to show that (A.3) becomes 

E(σ c 
t ) = exp (0 . 5 cμ) exp

( 

c 2 σ 2 
η

8 
(
1 − φ2 

)
)

∞ ∏ 

i =1

E 
[
exp 

(
0 . 5 c φi −1 f ( εt−i ; θ )

)]
. (A.4) 

We need to show that P (0 . 5 c, φ) ≡ ∏ ∞ 

i =1 E 
[
exp 

(
0 . 5 cφi −1 f ( εt−i ; θ )

)]
is finite when E ( exp ( 0 . 5 c f ( εt−i ; θ ) ) ] ) < ∞ . In gen-

eral, we are going to prove that when 
∑ ∞

i =1 | b i | < ∞ and E( exp (b i f (εt−i ; θ ))) < ∞ , then
∏ ∞ 

i =1 E [ exp ( b i f ( εt−i ; θ ) ) ] is always

finite. 

Define a i = E( exp (b i f (εt−i ; θ ))) . As 0 < a i < ∞ , according to Section 0.25 of Ryzhik et al. (2007) , the sufficient and nec-

essary condition for the infinite product 
∏ ∞ 

i =1 a i to converge to a finite, nonzero number is that the series 
∑ ∞ 

i =1 (a i − 1)

converge. Expanding a i in Taylor series around b i = 0 , we have 

a i − 1 = O (b i ) as b i → 0 . 

Consequently, for some ς > 0, there exist a finite M independent of i such that 

sup 
| b i | <ς,b i � =0 

| O (b i ) | < M| b i | .
∑ ∞

i =1 | b i | < ∞ implies
∑ ∞

i =1 | a i − 1 | < ∞ , therefore
∑ ∞ 

i =1 (a i − 1) < ∞ . Thus 
∏ ∞ 

i =1 a i < ∞ . 

Here b i = 0 . 5 cφi −1 . Therefore, if | φ| < 1, then
∑ ∞

i =1 | b i | = 0 . 5 c 
1 −φ

< ∞ . Thus, the product 
∏ ∞ 

i =1 E( exp (0 . 5 cφi −1 f (εt−i ; θ ))) and,

consequently, E(σ c 
t ) are finite when E( exp (0 . 5 cφi −1 f (εt−i ; θ ))) < ∞ . Note that when | φ| < 1, E (exp (0.5 cf ( εt ; θ ))) < ∞ guar-

antees that E( exp (0 . 5 cφi −1 f (εt−i ; θ ))) < ∞ for any positive integer i . Therefore, if | φ| < 1 and E (exp (0.5 cf ( εt ; θ ))) < ∞ , E(σ c 
t )

is finite. 

Finally, consider y t , which, according to Eq. (1) , is given by y t = σt εt . Given that σ t and εt are contemporaneously inde-

pendent, the following expressions are obtained 

E(| y t | c ) = E(σ c 
t ) E(| εt | c ) , (A.5) 

E(y c t ) = E(σ c 
t ) E(εc 

t ) . (A.6) 

Replacing formula (A.4) into (A.5) yields the following required expression 

E ( | y t | c ) = exp (0 . 5 cμ) E ( | εt | c ) exp
( 

c 2 σ 2 
η

8 
(
1 − φ2 

)
)
P (0 . 5 c , φ) , (A.7) 



 

 

 

 

 

 

 

 

 

 

 

where P (x, y ) ≡ ∏ ∞ 

i =1 E( exp (xy i −1 f (εt−i ; θ ))) . Therefore, if further εt follows a distribution such that E(εc 
t ) < ∞ , which is

equivalent to E (| εt | 
c ) < ∞ , then | y t | has finite moments of arbitrary order c . On the other hand, following the same steps, we

obtain 

E ( y c t ) = exp (0 . 5 cμ) E ( εc 
t ) exp

(
c 2 σ 2 

η

8 
(
1 − φ2 

)
)
P (0 . 5 c , φ) . (A.8)

Thus, E(y c t ) < ∞ if | φ| < 1, E(εc 
t ) < ∞ and E (exp (0.5 cf ( εt ; θ ))) < ∞ . 

A.2. Proof of Theorem 2.2

Consider y t as given in Eqs. (1) and (2) . We first compute the τ -th order auto-covariance of | y t | c which is given by 

E(| εt | c σ c 
t | εt−τ | c σ c 

t−τ ) − [ E(| y t | c )] 2 . (A.9)

Note that from Eq. (2) , σ c 
t = exp { 0 . 5 ch t } can be written as follows 

σ c 
t = exp { 0 . 5 cμ(1 − φτ ) } exp

{
0 . 5 c 

τ∑ 

i =1

φi −1 ( f (εt−i ; θ ) + ηt−i )

}
σ cφτ

t−τ . (A.10)

The following expression of the auto-covariance is obtained after substituting (A.7) and (A.10) into (A.9) 

cov (| y t | c , | y t−τ | c ) = E

( 

| εt | c | εt−τ | c exp (0 . 5 cμ(1 − φτ )) exp

(
τ∑ 

i =1

0 . 5 cφi −1 ( f (εt−i ; θ ) + ηt−i )

)
σ c(φτ +1)
t−τ

)

−
{
exp (0 . 5 cμ) E ( | εt | c ) exp

(
c 2 σ 2 

η

8 
(
1 − φ2 

)
)
P (0 . 5 c , φ)) 

} 2

. (A.11)

Given that εt and ηt are IID sequences mutually independent for any lag and lead and that σt−τ only depends on lagged

disturbances, substituting the time-invariant moment of σ t in (A .4) , Eq. (A .11) can be written as follows 

cov (| y t | c , | y t−τ | c ) = exp (0 . 5 c(1 − φτ ) μ) E ( | εt | c ) E
(
σ c ( 1+ φτ )
t 

)
E 
(| εt−τ | c exp 

(
0 . 5 cφτ−1 f ( εt−τ )

))
× E 

( 

exp 

(
τ−1 ∑ 

i =1

0 . 5 cφi −1 f ( εt−i )

) )
E 

(
exp 

(
τ∑ 

i =1

0 . 5 cφi −1 ηt−i

) )
− [ E (| εt | c ) E (σ c 

t ) ] 
2 
. (A.12)

Replacing E(σ c 
t ) as given in (A.4) into Eq. (A.12) , we obtain the following expression of the autocorrelations 

cov (| y t | c , | y t−τ | c ) = exp (cμ) E ( | εt | c ) exp
(

1 + φτ

4 
(
1 − φ2 

) c 2 σ 2
η

)
E 
(| εt | c exp (0 . 5 c φτ−1 f ( εt ; θ ) 

))

×
τ−1 ∏ 

i =1

E 
(
exp 

(
0 . 5 cφi −1 f ( εt−i ; θ )

)) ∞ ∏
i =1

E 
(
exp 

(
0 . 5 c ( 1 + φτ ) φi −1 f ( εt−i ; θ )

))

− exp (cμ)(E(| εt | c )) 2 exp
(

c 2 σ 2 
η

4 
(
1 − φ2 

)
)
[ P ( 0 . 5 c, φ)] 2 . 

The required expression of ρc ( τ ) follows directly from ρc (τ ) = 

cov (| y t | c , | y t−τ | c )
E (| y t | 2 c ) −[ E (| y t | c )] 2 , wher e the denominat or can be obtained

from (A.7) . 

A.3. Proof of Theorem 2.3

The calculation of the cross-covariance between | y t | 
c and y t−τ is obtained following the same steps as in Appendix A.2 .

That is 

cov ( | y t | c , y t−τ ) = exp (0 . 5(c + 1) μ) E ( | εt | c ) exp
(
1 + c 2 + 2 cφτ

8 
(
1 − φ2 

) σ 2
η

)
E 
(
εt exp

(
0 . 5 cφτ−1 f ( εt ; θ ) 

))

×
∞ ∏ 

i =1

E 
(
exp 

(
0 . 5 ( 1 + cφτ ) φi −1 f ( εt−i ; θ )

)) τ−1∏
i =1

E 
(
exp 

(
0 . 5 cφi −1 f ( εt−i ; θ )

))
. (A.13)

Finally, ρc1 (τ ) = 

cov (| y t | c ,y t−τ ) √ 

E (| y t | 2 c ) −E 2 (| y t | c ) 
√ 

E(y 2 t )
together with (A.7) and (A.13) yields the required Eq. (8) . 



 

 

Appendix B. Expectations 

B.1. Expectations for computing E (| y t | 
c ), cor r (| y t | c , | y t+ τ | c ) and cor r (y t , | y t+ τ | c ) when ε ∼GED ( ν) and f (ε; θ ) =

α[ I(ε < 0) − 0 . 5] + γ1 ε + γ2 (| ε| − E| ε| )

If ε has a centered and standardized GED distribution, with parameter 0 < ν ≤ ∞ , then, the density function of ε is given

by ψ(ε) = C 0 exp (−| ε| ν
2 λν ) , where C 0 ≡ ν

λ2 1+1 /ν�(1 /ν) 
and λ ≡ (2 −2 /ν�(1 /ν) / �(3 /ν)) 1 / 2 , with �( · ) being the Gamma function.

Thus, given that the distribution of ε is symmetric with support (−∞ , ∞ ) , if p is a nonnegative finite integer, then 

E(| ε| p ) = C 0

∫ + ∞ 

−∞ 

| ε| p exp
(

−| ε| ν
2 λν

)
dε = 2 C 0 

∫ + ∞ 

0

ε p exp

(
− εν

2 λν

)
dε. 

Substituting s = 

εν

2 λν and solving the integral yields 

E(| ε| p ) = 2 
p 
ν λp �( (p + 1) /ν) / �( 1 /ν) . (B.1) 

On the other hand, 

E(| ε| p exp (b f (ε; θ ))) =
∫ + ∞ 

−∞ 

| ε| p exp (bα[ I(ε < 0) − 0 . 5 ] + bγ1 ε + bγ2 (| ε| − E| ε| )) C 0 exp
(

−| ε| ν
2 λν

)
dε

= C 0 exp (−0 . 5 bα − bγ2 E| ε| )
[∫ 0

−∞ 

(−ε) p exp (bα) exp (b(γ1 − γ2 ) ε) exp 

(
− (−ε) ν

2 λν

)
dε

+ 

∫ + ∞ 

0

ε p exp (b(γ1 + γ2 ) ε) exp
(
− εν

2 λν

)
dε

]
.

Integrating by substitution with s = −ε in the first integral, we obtain 

E(| ε| p exp (b f (ε; θ ))) = C 0 exp (−0 . 5 bα − bγ2 E| ε| )
[∫ + ∞ 

0

s p exp (bα) exp (b(γ2 − γ1 ) s ) exp 
(
− s ν

2 λν

)
ds 

+ 

∫ + ∞ 

0

ε p exp (b(γ1 + γ2 ) ε) exp
(
− εν

2 λν

)
dε

]

= C 0 exp (−0 . 5 bα − bγ2 E| ε| )
∫ + ∞ 

0

ε p exp

(
− εν

2 λν

)
[ exp (bα) exp (b(γ2 − γ1 ) ε) 

+ exp (b(γ1 + γ2 ) ε) ] dε.

(B.2) 

We can rewrite the previous equation by replacing ε with λ(2 y ) 1/ ν as follows 

E(| ε| p exp (b f (ε; θ ))) = C 0 exp (−0 . 5 bα − bγ2 E| ε| ) λ
p+1 2 

1+ p
ν

ν

×
∫ + ∞ 

0

y −1+ 1+ p 
ν exp (−y ) 

[
exp (bα) exp (b(γ2 − γ1 ) λ2 

1 
ν y 

1 
ν ) + exp (b(γ1 + γ2 ) λ2 

1 
ν y 

1
ν ) 

]
dy. 

Expanding the expression within the square brackets in a Taylor series and substituting C 0 , the following expression is

obtained 

E(| ε| p exp (b f (ε; θ ))) = exp 

(
−0 . 5 bα − bγ2 2 

1 
ν λ�( 2 /ν) / �( 1 /ν) 

)
λp 2 

p 
ν −1

�
(
1
ν

)
×

∫ + ∞ 

0

+ ∞ ∑ 

k =0

[
exp (bα) 

(
bλ2 

1 
ν (γ2 − γ1 ) 

)k

+ 

(
bλ2 

1 
ν (γ1 + γ2 ) 

)k
]
y −1+ 1+ p+ k 

ν exp (−y )

k ! 
dy. 

(B.3) 

E(| ε| p exp (b f (ε; θ ))) = exp
[
−0 . 5 bα − bγ2 2 

1 /νλ�(2 /ν) / �(1 /ν) 
]
2 p/νλp 

∞ ∑ 

k =0

(2 1 /νλb) k 

×
[
(γ1 + γ2 ) 

k + exp (bα)(γ2 − γ1 ) 
k 
]�((p + k + 1) /ν) 

2�(1 /ν) k ! 
< ∞ . (B.4) 



 

 

 

 

 

 

 

 

Following the same steps, the following expression is obtained when ν > 1, 

E(ε p exp (b f (ε; θ ))) = exp 
[
−0 . 5 bα − bγ2 2 

1 /νλ�(2 /ν) / �(1 /ν) 
]
2 p/νλp 

×
∞ ∑ 

k =0

(2 1 /νλb) k 
[
(γ1 + γ2 ) 

k + (−1) p exp (bα)(γ2 − γ1 ) 
k 
]�((p + k + 1) /ν) 

2�( 1 /ν) k ! 
< ∞ . (B.5)

Note that the expectations (B.4) and (B.5) are only valid when ν > 1. When 0 < ν ≤1, it is not possible to obtain closed-

form expression of the required expectations. In this case, we can only obtain the conditions for the expectations to be finite.

When 0 < ν < 1, it is very easy to verify that E (| ε| p exp ( bf ( ε; θ ))) < ∞ if and only if the both integrals in (B.2) are finite, which

holds if and only if b(γ2 − γ1 ) ≤ 0 and b(γ2 + γ1 ) ≤ 0 . When ν = 1 , similarly, the sufficient and necessary conditions for the

infinity of E (| ε| p exp ( bf ( ε; θ ))) are b(γ2 − γ1 ) < 

1 
2 λ

and b(γ2 + γ1 ) < 

1 
2 λ

. That is b(γ2 − γ1 ) < 

√ 

2 and b(γ2 + γ1 ) < 

√ 

2 . The

conditions for the infinity of E ( εp exp ( bf ( ε; θ ))) are the same as those for E (| ε| p exp ( bf ( ε; θ ))) 0 < ν ≤1. 

Finally, when ε ∼ Student- t with d degrees of freedom ( d > 2) and is normalized to satisfy E(ε) = 0 , v ar(ε) = 1 , then 

E(| ε| p exp (b f (ε; θ ))) = C 1 exp (−0 . 5 bα)

[ ∫ + ∞ 

0

ε p exp (bα) exp (b(γ2 − γ1 ) ε)

(
1 + 

ε2 

d − 2 

)− d+1
2 

dε

+ 

∫ + ∞ 

0

ε p exp (b(γ1 + γ2 ) ε)

(
1 + 

ε2

d − 2 

)− d+1
2

]
dε, (B.6)

where C 1 = 

�
(

d+1
2

)
√ 

(d−2) π�
(

d
2

) exp 
[
−bγ2 2 

1 /νλ�(2 /ν) / �(1 /ν) 
]
. We can verify that E(| ε| p exp (b f (ε; θ ))) = ∞ unless b(γ2 − γ1 ) ≤

0 and b(γ2 + γ1 ) ≤ 0 . 

B.2. Expectations for computing E (| y t | 
c ), cor r (| y t | c , | y t+ τ | c ) and cor r (y t , | y t+ τ | c ) when ε ∼N (0, 1)

Assume that all the parameters are defined as in Eqs. (1) and (2) . When ε ∼N (0, 1), using the expression (B.2) and the

formula 3.462–1 of Ryzhik et al. (2007) , the following expressions for any positive integer p and any integer b are derived 

E(| ε| p exp (b f (ε; θ ))) = 

1√ 

2 π
exp 

( 

−0 . 5 bα − bγ2 

√ 

2 

π

) {
exp (bα)�(p + 1) exp 

(
b 2 (γ1 − γ2 ) 

2 

4 

)
D −p−1 (b(γ1 − γ2 ))

+�(p + 1) exp

(
b 2 (γ1 + γ2 ) 

2 

4 

)
D −p−1 (−b(γ1 + γ2 )) 

}
(B.7)

and 

E(ε p exp (b f (ε; θ ))) = 

1√ 

2 π
exp 

(
−0 . 5 bα − bγ2 

√
2 

π

) {
(−1) p exp (bα)�(p + 1) exp 

(
b 2 (γ1 − γ2 ) 

2 

4 

)

×D −p−1 (b(γ1 − γ2 )) + �(p + 1) exp 

(
b 2 (γ1 + γ2 ) 

2 

4 

)
D −p−1 (−b(γ1 + γ2 )) 

}
, (B.8)

where D −a (·) is the parabolic cylinder function. Particularly, when p = 0 , 1 or 2, the expressions are reduced to 

E( exp (b f (ε; θ ))) = exp 

( 

−0 . 5 bα − bγ2 

√
2 

π

)(
exp (bα) exp 

(
Ā 
)

( ̄C ) + exp 

(
B̄ 
)

( ̄D ) 

)
,

E(ε exp (b f (ε; θ ))) = 

1√ 

2 π
exp 

(
−0 . 5 bα − bγ2 

√
2 

π

){
− exp (bα) 

[
1 + 

√ 

2 πC̄ exp ( ̄A )
(̄C ) 
]

+ 

[
1 + 

√ 

2 π D̄ exp ( ̄B )
( ̄D ) 
]}

, 

E(| ε| exp (b f (ε; θ ))) = 

1√ 

2 π
exp 

(
−0 . 5 bα − bγ2 

√
2 

π

){
exp (bα) 

[
1 + 

√ 

2 πC̄ exp ( ̄A )
( ̄C ) 
]

+ 

[
1 + 

√ 

2 π D̄ exp ( ̄B )
( ̄D ) 
]}



 

and 

E(| ε| 2 exp (b f (ε; θ ))) = 

1√ 

2 π
exp 

(
−0 . 5 bα − bγ2 

√
2 

π

)

×
{
exp (bα) 

[
C̄ + 

√ 

2 π( ̄C 2 + 1) exp ( ̄A )
( ̄C ) 
]

+ 

[
D̄ + 

√ 

2 π( ̄D 

2 + 1) exp ( ̄B )
( ̄D ) 
]}

,

where 
( · ) is the Normal distribution function, Ā = 

b 2 (γ1 −γ2 ) 
2 

2 , B̄ = 

b 2 (γ1 + γ2 ) 2 
2 , C̄ = −b(γ1 − γ2 ) and D̄ = b(γ1 + γ2 ) . 
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