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Abstract

Dynamic Factor Models, which assume the existence of a small number of unobserved

latent factors that capture the comovements in a system of variables, are the main �big

data� tool used by empirical macroeconomists during the last 30 years. One important

tool to extract the factors is based on Kalman �lter and smoothing procedures that can

cope with missing data, mixed frequency data, time-varying parameters, non-linearities,

non-stationarity and many other characteristics often observed in real systems of economic

variables. This paper surveys the literature on latent common factors extracted using Kalman

�lter and smoothing procedures in the context of Dynamic Factor Models. Signal extraction

and parameter estimation issues are separately analyzed. Identi�cation issues are also tackled

in both stationary and non-stationary models. Finally, empirical applications are surveyed

in both cases.
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1 Introduction

In recent decades, dynamic factor models (DFMs) have been widely used to represent comove-

ments within large systems of macroeconomic and �nancial variables where the cross-sectional

dimension is often relatively large compared with the time dimension; see Stock and Watson

(2017) for the importance of DFM in time series econometrics research. DFMs generally assume

the existence of a small number of unobserved factors capturing the comovements in the sys-

tem, being the main �big data� tool used by empirical macroeconomists during the last 20 years.

Diebold (2003) points out that, although DFMs do not �really� analyse big data, they represent

a movement of macroeconomics in this direction. Stock and Watson (2016) also describe the

DFM as a �big data� tool.

Two main types of procedures for factor extraction are popular in the related literature. First,

many applications consider factors extracted using non-parametric procedures based on Principal

Components (PC) which are computational simple and have well-known asymptotic properties.

For example, PC is consistent under mild conditions and it is robust to the underlying dependence

of common factors and idiosyncratic components as far as the factors are pervasive and the

idiosyncratic dependence is weak. As a consequence, PC procedures are very popular for factor

estimation and several excellent surveys are available in the literature; see, for example, Bai and

Ng (2008) for a technical survey on the econometric theory for PC. However, PC procedures do

not use all the information available in the data when the common factors are serially dependent

and, consequently, they are not e�cient. Furthermore, as there is not a particular speci�cation

of the dynamic dependence of the factors, one cannot obtain their out-of-sample forecasts.

Second, factors can be extracted using Kalman Filter and Smoothing (KFS) procedures that

cast the DFM as a state-space model (SSM). One important feature of KFS procedures is that

they open the door to Maximum Likelihood (ML) estimation of the model parameters and,

consequently, if the assumed model speci�cation is correct, is e�cient for factor extraction. Fur-

thermore, factor extraction based on KFS procedures allows to handle missing data and mixed

frequencies in a simple way; see Camacho, Perez-Quiros and Poncela (2013) and Luciani (2017)

who survey the literature on missing observations and mixing frequencies. Moreover, KFS proce-

dures are also of interest in empirical applications because they allow incorporating restrictions

on the factor loadings as, for example, in Reis and Watson (2010) and Coroneo, Giannone and

Modugno (2016) who impose a block structure, or on the idiosyncratic components as in Luciani

(2015). They are also attractive because it is possible to perform counterfactual exercises as in,

for example, Luciani (2015) or to incorporate seasonal dependencies as in Alonso et al. (2011),

Camacho, Lovcha and Perez-Quiros (2015) and Nieto, Peña and Saboyá (2016). In addition, KFS

procedures have been extended to account for regime-switching nonlinearities; see, for example,

Camacho, Perez-Quiros and Poncela (2015, 2018) and Camacho, Leiva-Leon and Perez-Quiros

2



(2016). However, KFS procedures also have drawbacks. Historically, their implementation has

been numerically challenging when the cross-sectional dimension of the system under analysis was

large. Furthermore, KFS procedures require full speci�cation of the dependence of the common

and idiosyncratic components. These speci�cations introduce potential misspeci�cation that is

not re�ected in the model-based inference.

The literature about factor extraction using KFS has only been partially reviewed; see Stock

and Watson (2011, 2016b), Barhoumi, Darné and Ferrara (2013), and, more recently, Doz and

Fuleky (2020). In this paper, we update and complement previous surveys with a focus on open

issues that still require further research. This is, by necessity, a selective review of the literature.

The rest of the paper is organized as follows. Section 2 introduces notation by presenting

the SSM and the KFS algorithms for factor extraction. Section 3 deals with the representation

of DFMs as SSMs and how factor extraction can be performed in this context. We consider the

e�ect on the extracted factors and their MSEs of assuming that the DFM is exact when it is

not. We also consider the e�ect of the dependence and number of underlying factors and of the

cross-sectional dimension on the properties of the extracted factors. In section 4, we describe

estimation procedures of the parameters of the DFM proposed in the literature and illustrate

their performance when extracting the common factors assuming that the model speci�cation is

known. Section 5 deals with the model speci�cation. In particular, we describe procedures for

the determination of the number of factors and of the lags of factors. In Section 6, we survey

empirical applications implementing the KFS in the context of stationary DFMs to describe and

forecast the future evolution of variables of interest. Section 7 considers DFMs for non-stationary

systems. Section 8 concludes the paper with some �nal remarks.

2 State-space models: Kalman �lter and smoothing algorithms

and estimation

In this section, we brie�y describe SSMs, the algorithms to extract the unobserved states and

the parameter estimators.

2.1 State-space models

SSMs were originally developed by control engineers with the attention focused on a set of m

unobserved state variables, αt, that evolve over time and are related with an N dimensional

vector of variables, Yt, observed at time t, for t = 1, ..., T . A SSM speci�es a full parametric

model for both Yt and αt and can be formulated in a variety of ways. In this paper, we follow

Harvey (1989) and consider the following linear Gaussian SSM

Yt = dt + Ztαt + εt (1)
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αt = ct +Wtαt−1 +Rtηt (2)

where εt is an N × 1 white noise vector with covariance matrix Ht and ηt is a g × 1 white noise

vector with covariance matrix Qt. The disturbances εt and ηs are uncorrelated with each other

for all t and s and are uncorrelated with the initial state, α0. The system matrices, dt, Zt, Ht,

ct, Wt, Rt and Qt are N × 1, N ×m, N ×N , m × 1, m ×m, m × g and g × g are either non-

stochastic or depend on past observations, so that they are known at time t− 1. Equations (1)

and (2) are known as the measurement equation and transition equation, respectively. The SSM

in equations (1) and (2) is fully speci�ed when additional assumptions about the distribution of

the initial state and the distribution of the disturbances are made. Usually, both disturbances

and the initial state are assumed to be Gaussian vectors, the latter with mean a0 and covariance

matrix P0.

In the context of the DFM considered in this paper, the SSM in equations (1) and (2) can be

particularized to a time-homogenous model, with the system matrices being time-invariant, and

without deterministic terms, i.e. with dt = ct = 0.1 Therefore, the SSM that we will consider

from now on is given by

Yt = Zαt + εt (3)

αt = Wαt−1 +Rηt (4)

where the covariance matrices of εt and ηt are H and Q, respectively.

2.2 Kalman �lter and smoothing algorithms

The SSM opens the way for the application of the Kalman �lter, a recursive procedure for

computing the optimal estimator, in the sense that it minimizes the mean square error (MSE),

of the state vector at time t based on observations up to and including Yt. The Kalman �lter

enables the estimate of the state vector to be continually updated as new observations become

available. Furthermore, the Kalman �lter also provides the basis for one-step-ahead prediction

and smoothing as well as out-of-sample forecast of the factors. De�ne at = E(αt|Y1, ..., Yt) and

Pt = E
(

(αt − at)(αt − at)
′ |Y1, ..., Yt

)
. The Kalman �lter updating equations are given by2

at = at|t−1 + Pt|t−1Z
′
Σ−1
t

(
Yt − Zat|t−1

)
, (5)

1There are interesting DFMs in which the system matrices are not time-invariant as, for example, the DFMs
with time-varying factor loadings of Stock and Watson (2002) and Eickmeier, Lemke and Marcellino (2015) or
the time-varying parameters (volatilities and constants) model proposed by Delle Monache, Petrella and Venditti
(2016). Koopman, Mallee and Van der Wel (2010) allow the volatilities to be time-varying. Koop and Korobilis
(2014) also consider an SSM with time-varying parameters. Furthermore, dt and ct could be di�erent from zero
when there are deterministic components; see, for example, Grassi, Proietti, Frale, Marcellino and Mazzi (2015)
and Jungbacker and Koopman (2015), among many others. Most of the procedures described in this paper can be
extended to these cases. However, we focus on the homogeneous time-invariant SSM to simplify the exposition.

2If the disturbances were not normaly distributed, then at|t−1 and at are the minimun mean square linear
estimators (projections) of αt given Y1, ..., Yt−1 and Y1, ..., Yt, respectively.
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Pt = Pt|t−1 − Pt|t−1Z
′
Σ−1
t ZPt|t−1, (6)

where at|t−1 = E(αt|Y1, ..., Yt−1) and Pt|t−1 = E
(

(αt − at|t−1)(αt − at|t−1)
′ |Y1, ..., Yt−1

)
are ob-

tained from the following prediction equations

at|t−1 = Wat−1, (7)

Pt|t−1 = WPt−1W
′
+RQR

′
, (8)

and

Σt = ZPt|t−1Z
′
+H. (9)

Note that Σt is the covariance matrix of the innovations, νt = Yt − E(Yt|Y1, ..., Yt−1). Inverting

Σt can be a di�cult task when the cross-sectional dimension of Yt, N , is large.3 Harvey (1989)

suggests two alternative possible solutions. First, using the Woodbury identity, it is possible to

see that

Σ−1
t = H−1 −H−1Z

(
P−1
t|t−1 + Z

′
H−1Z

)−1
Z
′
H−1, (10)

and

|Σt| = |H| × |Pt|t−1| × |P−1
t|t−1 + Z

′
H−1Z|. (11)

Expression (10) is easy to evaluate if H is diagonal. Furthermore, given that the covariance

matrix of εt, H, is time-invariant, it only needs to be inverted once. The second solution

proposed by Harvey (1989) to avoid inverting Σt is to use the information �lter that gives a

set of recursions for the information matrix, P−1
t .

Note that using (10) requires the existence of P−1
t|t−1. However, Pt|t−1 could be non-invertible

if there are MA components in the state vector; see, for example, Ansley and Kohn (1985).

Furthermore, Jungbacker and Koopman (2015) argue that (10) does not necessarilly lead to

computational gains, because, when N is very large, Σ−1
t and the Kalman �lter recursions still

remain high-dimensional. Alternatively, they propose a computationally e�cient procedure for

the Kalman �lter recursions. The key insight is that the observed time series, Yt can be split

into a low-dimensional vector series and a high-dimensional vector series as follows

Y ∗t = AYt, (12)

where A is an N ×N nonsingular matrix such that A = [ALAH ]′ with AL = Z†′H−1 being an

n×N where n << N is the rank of Z and Z† is a basis for the column space of Z. If Z is of full

column rank and n = m, then Z†′ = Z and, consequently, AL = ZH−1.4 De�ne Y L
t = ALYt.

3We assume that the inverse of Σt exists.
4The matrix AH is not needed for �ltering or estimation.
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The measurement equation for Y L
t is given by

Y L
t = ALZαt +ALεt. (13)

For factor extraction, we need to apply the Kalman �lter to the low-dimensional series, Y L
t ; see

Grassi et al. (2015) for an empirical application.

The Kalman �lter is in steady-state if

Pt+1|t = P̄ . (14)

The important fact about a SSM being in steady-state is that the recursion for the MSEs of the

state is redundant and, consequently, the covariance matrix of the innovations, Σt, also converges

to a steady-state Σ̄, as follows

lim
t→∞

Σt = Σ̄ = ZP̄Z
′
+H, (15)

and

Σ̄−1 = H−1 −H−1Z
(
P̄−1 + Z

′
H−1Z

)−1
Z
′
H−1. (16)

Harvey (1989) shows that, if the system is detectable5 and stabilisable6, and if P1|0 is positive

semi-de�nite, then

lim
t→∞

Pt|t−1 = P̄ , (18)

with P̄ being independent of P1|0. If the system is observable and if P1|0 − P̄ is positive de�nite

or P1|0 = P̄ , then the result in (18) holds although this is not su�cient for the steady state to

be reached exponentially fast.

As mentioned above, on top of one-step-ahead predictions, at|t−1, and update �ltered esti-

mates of the state, at, one can also obtain smoothed estimates, given by at|T = E[αt|Y1, ..., YT ]

together with their corresponding MSEs, Pt|T = E[(αt−at|T )(αt−at|T )
′ |Y1, ..., YT ]. The smoothed

estimates of the state can be computed backwards, for t = T − 1, ..., 1, by the following recursive

formulae

at|T = at + Ct
(
at+1|T −Wat

)
(19)

5The state vector is observable if it can be determined exactly given Yt, ..., Yt+m−1. The system is observable

if Rank
[
Z

′
,W

′
Z

′
, ..., (W

′
)m−1Z

′
]

= m. Observability implies detectability.
6De�ning Q = R∗R∗

′
, the transition equation can be written as

αt = Wαt−1 +Bη∗t , (17)

where B = RR∗ and η∗t = R∗−1ηt is such that E(η∗t ) = 0 and E(η∗t η
∗′
t ) = Ig. The model is controlable if

Rank
[
B,WB, ...,Wm−1B

]
= m. If B is of rank m, the controlability condition is satis�ed. This condition means

that from any particular value of αt, the noises η
∗
t can be chosen in such a way that any desired value for αt+m

can be attained. When the model is not controlable, certain elements in the state vector can only be manipulated
indirectly via other elements. Conditions that are su�cient for controlability are also su�cient for stabilisability.
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Pt|T = Pt + Ct
(
Pt+1|T − Pt+1|t

)
C ′t (20)

where Ct = PtW
′P−1
t+1|t.

The prediction equations of the Kalman �lter in (21) and (22) can also be used recursively to

obtain h-step-ahead out-of-sample forecasts of the state by using them from h = 2, ...,H without

the update step, as follows

aT+h|T+h−1 = WaT+h−1|T+h−2, (21)

PT+h|T+h−1 = WPT+h−1|T+h−2W
′
+RQR

′
, (22)

with aT+1|T and PT+1|T given by (21) and (22).

2.3 Parameter estimation

The system matrices may depend on a set of unknown parameters. One of the main statistical

tasks is often the estimation of these parameters. The Kalman �lter is also important because

it enables the likelihood function to be calculated through the prediction error decomposition,

opening the way for ML estimation of any unknown parameters of the model, Ψ. For a Gaussian

model, the prediction error decomposition of the log-likelihood function is given by

logL(Y ; Ψ) = −NT
2
log(2π)− 1

2

T∑
t=1

log|Σt| −
1

2

T∑
t=1

ν
′
tΣ
−1
t νt, (23)

where Y = (Y1, ..., YT ) and both νt and Σt can be obtained from the Kalman �lter. In multivariate

models, it is not always clear how to compute appropriate starting values for the initial state;

see de Jong (1991) for an easy to implement algorithm.

Very recently, Delle Monache and Petrella (2019) take advantage of the matrix representation

of the SSM and derive closed form expressions of the log-likelihood and the smoothed estimator

of the state that are computationally feasible even for very large N as far as the covariance

matrices of the measurement and transition noises are invertible.

Finally, the log-likelihood can also be obtained using the transformation proposed by Jung-

backer and Koopman (2015). In particular

logL(Y ; Ψ) = logL(Y L; Ψ)− T

2
log

|Σε|
|ALΣεAL′|

− 1

2

T∑
t=1

e
′
tΣ
−1
ε et, (24)

where logL(Y L; Ψ) can be obtained as in (23) based on the low dimensional vector Y L =(
Y L

1 , ..., Y
L
T

)
and et is the Generalized Least Squares (GLS) residual of the regression of Yt

on Z with covariance matrix Σε.

The numerical maximization of the likelihood can be a di�cult task when N is large and

the number of parameters in the model is also large. In this case, the Gaussian log-likelihood
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can be maximized using the expectation maximization (EM) algorithm of Dempster, Laird and

Rubin (1977) proposed by Shumway and Sto�er (1982) and Watson and Engle (1983) for ML

estimation in SSMs; see Wu (1983) for the convergence properties of the EM algorithm.

A very important issue related with the estimation of the parameters of SSMs is the identi�-

cation of the state vector. Given the model in (28) and (29), there is not a unique representation

of the state vector. De�ne an arbitrary non-singular m×m matrix, B, and consider a new state

vector α∗t = Bαt. The following SSM is observationally equivalent to the SSM in equations (3)

and (4)

Yt = Z∗α∗t + εt (25)

α∗t = W ∗α∗t−1 +R∗ηt (26)

where Z∗ = ZB−1, W ∗ = BWB−1 and R∗ = BR. Therefore, there are m2 unknowns in matrix

B. In order to identify the model, Harvey (1989) proposes to restrict RQR
′

= Im, which means

m(m+1)
2 restrictions, and the elements in Z to be such that zij = 0 for j > i, i = 1, ...,m − 1,

which implies the m(m−1)
2 additional restrictions needed to identify the state vector; see Trenkler

and Weber (2016) for a discussion on identi�cation issues in state space models.

Subject to certain regularity conditions, the ML estimator, Ψ̂, has a limiting multivariate

normal distribution with mean Ψ and covariance matrix T−1A−1 where A = limT→∞
IM
T with

IM being the information matrix; see Harvey (1989) for a discussion on the regularity conditions.

When the Kalman �lter converges to a steady state exponentially fast, the properties of the

ML estimator do not depend on the way in which the �lter is started o�.

Note that if the unknown parameters in Σ̄, the steady state of Σt, are independent of the

unknown parameters determining E(Yt|Yt−1, ..., Y1), then maximizing the likelihood is equivalent

to minimizing

S(Ψ) = |
T∑
t=1

νtν
′
t|. (27)

3 Dynamic Factor Models and KFS factor extraction

DFMs are examples of the much larger class of SSMs, in which observable variables are expressed

in terms of unobserved or latent variables, which in turn evolve according to some lagged dy-

namics. In this section, we describe how DFMs can be expressed as SSMs and how the KFS

algorithms can be used for factor extraction.

Consider that Yt = (Y1t, ..., YNt)
′
, t = 1, ..., T , is a stationary zero mean N × 1 vector time
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series generated by the following DFM7

Yt = χt + εt, (28)

where χt = (χ1t, ..., χNt)
′ and εt = (ε1t, ..., εNt)

′ are N × 1 vectors representing the common

and idiosyncratic components, respectively. Depending on the de�nition of χt, there are two

main versions of the DFM usually considered in the literature: the �static� and the �dynamic�

versions.

3.1 Static Dynamic Factor Models

The �static� version of the DFM (S-DFM) establishes a contemporaneous relationship between

each variable in the system and the unobserved underlying factors at time t as follows

χit = λ′iFt (29)

where λi = (λi1, ..., λir) is the r × 1 vector of factor loadings of the Yi variable. It is popular

to assume that Ft, the r × 1 vector of common factors, evolves over time following a stationary

VAR(p) model given by

Ft = Φ1Ft−1 + Φ2Ft−2 + ...+ ΦpFt−p + ut, (30)

where ut is an r × 1 white noise vector with covariance matrix Σu. This speci�cation of the

factors have been considered in many empirical studies with the values of r and p depending

on the particular application; see, for example, Proietti (2011), who speci�ed r = 6 and p = 1,

Camacho and Perez-Quiros (2010) and Scotti (2016), both with r = 1 and p = 11.8 From now

on, we will consider p = 1 to simplify notation. However, all results can be easily extended to

models with p > 1.

Finally, the idiosyncratic components, εit, are often speci�ed as AR(p∗i ) processes as follows

εit = θ1iεit−1 + θ2iεit−2 + ...+ θp∗i iεit−p∗i + eit, (31)

where et = (e1t, ..., eNt) is the vector of idiosyncratic noises, assumed to be white noise with

covariance matrix Σe. The autoregressive order in (31) depends on the particular application.

In many studies, it is considered the same for all i = 1, ..., N . In this case, denote p∗ = p∗i . For

example, Scotti (2016) assumes that p∗ = 1 while Camacho and Perez-Quiros (2010) assume that

7We assume that all deterministic components have been removed from the series in Yt previous to their
analysis.

8Some authors also consider factors generated by Moving Average (MA) processes; see, for example, Otrok
and Whiteman (1998) and Bai and Ng (2007). However, these are the exception.
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p∗i = 1 for all monthly variables and p∗i = 5 for the quarterly variables (GDP and unemployment)

of their system. Also, García-Ferrer and Poncela (2002) allow p∗i to vary between 1 and 6.

Note that these two models are small-scale with N = 13 and N = 5, respectively. As for the

factors, from now ownwards, we will assume that p∗ = p∗i = 1 to simplify the analysis. Finally,

if the idiosyncratic components, εt, are assumed to be cross-sectionally uncorrelated, i.e. Σe

is diagonal, the DFM is known as �exact� while if the idiosyncratic noises are weakly cross-

correlated, the DFM is called �approximate�. In an exact DFM, for the purposes of explaining

contemporaneous movements and making forecasts, once you know the factors, the other series

provide no additional useful information.

Therefore, the S-DFM is given by

Yt = ΛFt + εt (32)

where Λ = (λ1, ..., λN )′ is the N × r matrix of factor loadings and Ft and the elements of εt are

de�ned in (30) and (31), respectively.

Consider �rst the S-DFM with serially uncorrelated idiosyncratic noises, i.e. θi = 0 for

i = 1, ..., N . In this case, it is straighforward to write the S-DFM as a SSM in equations

(3) and (4) by considering m = g = r, Z = Λ, αt = Ft, H = Σe, W = Φ1, R = I and

Q = Σu. If the S-DFM is further exact, assuming that r and p as well as all parameters in

the model are known, the KFS algorithms described in Section 2 can be implemented to extract

the factors, regardless of the cross-sectional dimension, N , by applying the expression of the

inverse of the innovation covariance matrix in (10). In the more realistic case in which Σe is

not diagonal, one can still invert Σt using expression (10) by inverting Σe using the Cholesky

decomposition Σe = DD′ where D is a lower triangular matrix. Inverting D is feasible even

if N is very large. Alternatively, the factors can be extracted using the KFS algorithms as if

Σe were diagonal although it is not. Obvioulsy, in this latter case, the factors extracted using

KFS and the corresponding MSEs obtained are not the true conditional means (projections) and

MSEs of the factors. As an illustration, we simulate a system with r = 1 factor characterized by

an AR(1) model with autoregressive parameter φ = 0.7 and variance of the noise 1 − φ2. The

idiosyncratic noises are serially uncorrelated, homoscedastic, with their variances being 0.5, and

cross-sectionally correlated with the correlation matrix given by a Toepliz matrix whose (i, j)

element is given by τ |i−j| with τ = 0.5. We simulate systems with N = 5, 50 and 150 variables,

which represent small, medium and large systems, respectively, and T = 200 observations. The

accuracy of the point factor estimates is measured by computing the sample MSEs, given by

1
T

∑T
t=1

(
F̂t − Ft

)2
, while the accuracy of the KFS MSEs is measured by the sample coverages

computed as the percentage of times the true factor is included in the 95% con�dence interval

constructed using the KFS's MSEs. Table 1, which reports the sample MSEs and coverages for
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the particular simulations described above, shows that, for these particular simulated systems,

the increases in the MSEs of the misspeci�ed models are 11.87%, 13.33% and 5% when compared

with the corresponding MSEs of the true speci�cation, for N = 5, 50 and 150, respectively. As

expected, the loss of accuracy of the point estimated factors when assuming falsely that the

idiosyncratic components are uncorrelated, is negligible when the cross-sectional dimension, N ,

is large. However, when looking at the coverages reported in Table 1, we can observe that

the coverages of the intervals constructed with the miss-speci�ed smoother are below nominal.

When N = 5, the coverage is 90% while the coverage is 75.5% when N = 150. Therefore,

the undercoverage seems to be larger as N increases. The smooth MSEs are clearly a�ected

by the misspeci�cation. In this particular example, they are smaller than they should be. To

have a visual plot of this simulation, Figure 1 plots the true simulated factor together with the

factor extracted using the smoothing algorithm assuming all parameters are known (left column)

and the smoothed factor extracted when all the parameters are known but Σe is assumed to

be diagonal (right column) together with their corresponding 95% con�dence bounds. Figure

1 shows that the di�erences between both point smooth factors are only visually appreciable

when N = 5. However, the intervals of the misspeci�ed smoother are wider than those obtained

with the correct model. When N = 50, the point estimates of the factors are nearly the same

with the main di�erences appearing in the MSEs which are smaller than they should be. When

N is large, the MSEs are already so close to zero that it is indi�erent whether the �lter is run

with the true covariance matrix of the idiosyncratic components or with a diagonal matrix; see

Poncela and Ruiz (2020) for further illustrations with other cross-sectional dimensions when the

idiosyncratic components are treated as if they were cross-sectionally uncorrelated and Luciani

(2014) who shows that accounting for cross-correlation rarely boosts the forecasting accuracy.
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Known parameters Estimated parameters

True model Misspeci�ed model True model Misspeci�ed model
MSE Coverage MSE Coverage MSE Coverage MSE Coverage

Cross-sectionally correlated idiosyncratic noises

N = 5 0.219 0.965 0.245 0.900 0.218 0.945 0.266 0.670
N = 50 0.045 0.960 0.051 0.805 0.204 0.525 0.073 0.730
N = 150 0.020 0.965 0.021 0.755 4.879 0.045 0.226 0.375

Autocorrelated idiosyncratic noises

N = 5 0.173 0.970 0.174 0.965 0.197 0.899 0.226 0.870
N = 50 0.019 0.985 0.019 0.970 0.071 0.894 0.052 0.865
N = 150 0.008 0.965 0.008 0.955 0.230 0.397 0.234 0.330

Cross-sectionally correlated and autocorrelation idiosyncratic noises

N = 5 0.302 0.985 0.348 0.865 - - - -
N = 50 0.051 0.990 0.055 0.755 - - - -
N = 150 0.022 0.970 0.023 0.715 - - - -

Table 1: Mean Square Errors (MSEs) of factors extracted using the true and misspeci�ed DFM
with known and estimated parameters. The coverages correspond to the intervals constructed
using the KFS's MSEs with a nominal coverage of 95%.

Consider now the S-DFM in which the idiosyncratic noises are serially correlated according

to (31) and denote by Θ the matrix with θi, i = 1, ..., N in its main diagonal. In this case, the

DFM can be reformulated by augmenting the state vector with lags of the factors as follows:

Yt = ΘYt−1 +
[

Λ −ΘΛ
] Ft

Ft−1

+ et (33)

 Ft

Ft−1

 =

 Φ1 0

Ir 0

 Ft−1

Ft−2

+

 ut

0

 , (34)

where Ir is the r × r identity matrix; see Watson and Engle (1983), Stock and Watson (2005),

Reis and Watson (2010), Jungbacker et al. (2011), Pinheiro, Rua and Dias (2013), Jungbacker

and Koopman (2015) and Bai and Li (2016) for implementations of the model in (33) and (34).

De�ning the observations as Yt−ΘYt−1, the model in (33) and (34) can be directly cast in state

space form by setting m = 2r, g = m, Z =
[

Λ −ΘΛ
]
, αt =

[
Ft Ft−1

]′
, W =

 Φ1 0

Ir 0

,
R =

[
Ir 0

]
and ηt = ut, in the SSM in (3) and (4).9

Even if the idiosyncratic components, εt, are serially correlated, the KFS can be run as if

they were uncorrelated. Figure 2 illustrates the results by plotting the true factor simulated

by the same model described above but with the cross-sectionally uncorrelated idiosyncratic

9Alternatively, one can deal with the autocorrelation of the idiosyncratic noises by augmenting the state
vector by εt; see, for example, Ba«bura and Modugno (2014), Jungbacker et al. (2011) and Coroneo, Giannone
and Modugno (2016). The main problem associated with this alternative is that the state vector dimension,
m = g = r + N , increases with N and can be unfeasible from a computational point of view for large cross-
sectional dimensions. Both formulations lead to the same results when the initialization issues are properly
accounted for.
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components generated by independent AR(1) models all of them with autoregressive parameter

0.5 as in Doz, Giannone and Reichlin (2012). The factors are extracted by the KFS based on the

true model and assuming that the idiosyncratic components are serially uncorrelated. Note that,

in this case, the di�erence between the point estimated factors is even smaller than in Figure 1.

Table 1, which reports the sample MSEs and coverages for these particular simulations, shows

that both are nearly the same regardless of whether the autocorrelation of the idiosyncratic

component is taken into account. It seems that the e�ects of the misspeci�cation of the serial

correlation in the idiosyncratic components are milder than the e�ects of misspeci�cation of

cross-sectional correlations.10

Finally, the same conclusions can be obtained from Figure 3 that plots the same quantities

described above when the idiosyncratic noises are both serial and cross-sectionally correlated;

see also the quantities reported in Table 1 that shows that the undercoverage can be mainly

attributed to the lack of consideration of the cross-correlation of the idiosyncratic components.

Note that these conclusions are obtained in a very simple stationary model with a single

factor that is moderately serially dependent. It is possible that if the factor and idiosyncratic

noises have other alternative serial dependences, the conclusions could be di�erent.

10This result could be expected when extracting the factors. However, misspeci�cation of the serial correlation
of the idiosyncratic components could have implications for forecasting; see D'Agostino and Giannone (2012)
and Poncela, Senra and Sierra (2020) who conclude that the e�ect of the idiosyncratic dynamics on forecasting
macroeconomic in�ation and commodity in�ation, respectively, are negligible.
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3.2 Dynamic version of the dynamic factor model

In the �dynamic� version of the DFM (D-DFM), each variable in the system at time t is related

with the unobserved factors at time t, t − 1,...,t − s.11 Following Bai and Ng (2007) and Stock

and Watson (2016), among others, we express the common component of the D-DFM as follows

χt = Λ(L)Gt, (35)

where Λ(L) = Λ0 + Λ1L+ ...+ ΛsL
s and Gt is the q× 1 vector of unobserved factors. Assuming

for simplicity that the factors, Gt, follow a VAR(1) and s = 1, the D-DFM with the common

component de�ned as in (35) can be written as a S-DFM with restrictions as follows12

Yt =
[

Λ0 Λ1

] Gt

Gt−1

+ εt (36)

 Gt

Gt−1

 =

 Φ1 0

Iq 0

 Gt−1

Gt−2

+

 vt

0

 , (37)

where Ft =

 Gt

Gt−1

 can be treated as an r = q(s+ 1) vector of static factors; see Bai and Ng

(2007) for the expression of the D-DFM as an S-DFM in a more general context. The covariance

matrix of the disturbances of the static factors, Σu has rank q.

Alternatively, the D-DFM can be written as a S-DFM as follows

Yt = (Λ0Φ + Λ1)Gt−1 + Λ0vt + εt (38)

 Gt−1

vt

 =

 Φ Iq

0 0

 Gt−2

vt−1

+

 0

Iq

 vt (39)

Once more, the D-DFM is writen as a S-DFM with two common factors. It is important to

point out that, when the D-DFM is written as a S-DFM as in equations (36) and (37), it is not

possible to assume that the static factors are orthogonal. Alternatively, if the D-DFM is written

as a S-DFM as in equations (38) and (39), the factors can be assumed to be orthogonal but the

matrix of loading is of rank q and, consequently, it is not possible to �nd a rotation such that

Λ′Λ is diagonal.13

If the idiosyncratic noises are serially uncorrelated, then the model in (36) and (37) can be

cast in SSM and the KFS can be implemented to extract the factors; see Pinheiro, Rua and Dias

11Bai and Ng (2007) claim that, for forecasting purposes, little is to be gained from a distinction between static
and dynamic factors.

12The cases in which p > 1 and/or s > 1 follow straightforwardly but they are notationally more cumbersome.
13Note that many procedures based on PC require that simultaneously the factors and loadings are orthogonal.
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(2013) for an empirical implementation. If the idiosyncratic noises are serially correlated as in

(31), then the D-DFM with s = p = 1 can be expressed as follows

Yt = ΘYt−1 + Λ0Gt + (Λ1 −ΘΛ0)Gt−1 −ΘΛ1Gt−2 + et (40)


Gt

Gt−1

Gt−2

 =


Φ1 0 0

Ir 0 0

0 Ir 0



Gt−1

Gt−2

Gt−3

+


vt

0

0

 . (41)

The D-DFM in (40) and (41) can be cast as a SSM and the factors extracted using KFS without

further issues.

As explained above, when describing the KFS factor extraction in S-DFMs, the factors of

a D-DFM can also be extracted using KFS as if the idiosyncratic noises were serial and cross-

sectionally uncorrelated even if they are not.

4 Estimation of parameters of DFMs

The KFS factor extraction described in the previous section assumes known parameters. How-

ever, in practice, the parameters are unknown and need to be estimated before running the KFS

algorithms. In this section, we survey the estimators of the parameters of the DFM based on

ML when the model speci�cation, i.e. s, r and p, is known.14 The �rst issue faced when estimat-

ing the parameters of a DFM is related with parameter identi�cation. In this section, we �rst

describe the parameter identi�cation and then their ML-based and Least Squares (LS)-based

estimation.

4.1 Identi�cation

As explained in Section 2, in a SSM as that in equations (3) and (4), one needs to impose m2

restrictions to identify the m unobserved states; see Anderson and Rubin (1956) for an excellent

discussion on identi�cation issues in the context of static factor models. Consequently, in the

S-DFM with serially uncorrelated idiosyncratic noises, one needs to impose r2 restrictions to

identify the factors. For many applications, including macro-monitoring and forecasting, it is

necessary only to identify the space spanned by the factors. Consequently, it is popular to solve

the lack of identi�cation by imposing mathematically convenient normalizations. It is common to

14In this paper, we focus on ML-based estimators. Other estimators have been proposed in the literature as
Bayesian estimators (Otrok and Whiteman (1998), Lopes and West (2004), Kose, Otrok and Whiteman (2003),
Jackson, Kose, Otrok and Owyang (2016) and Kaufmann and Schumaker (2019)), MCMC procedures as in
Moench, Ng and Potter (2013) and the frequency-domain version of the EM algorithm (Fiorentini, Galesi and
Sentana, 2018). Finally, Kapetanios and Marcellino (2009) propose estimating the parameters using subspace
algorithms; see Eickmeier and Ziegler (2008) for a comparison of the predictive performance of factors estimated
using the subspace estimator with alternative estimators of the factors.
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assume that the factor noise covariance matrix, Σu = Ir or the covariance of the factors, ΣF = Ir

that amounts to r(r+1)
2 restrictions and that λij = 0, j > i that imposes the r(r−1)

2 additional

restrictions needed. For example, Jungbacker and Koopman (2015) assume instead that Σu is

diagonal and the diagonal elements of the r top rows of the loading matrix Λ are restricted to be

one and Solberger and Spanberg (2020) assume that ΣF = Ir with additional restrictions on the

matrix of loadings. Alternatively, many authors assume that Λ = [IrΛ(N−r)]
′ (r2 restrictions);

see, for example, Stock and Watson (2011), Proietti (2011), Bai and Ng (2013) and Coulombe

et al. (this issue). This latter restriction is denoted as the �named factor � restriction by Stock

and Watson (2011).15 Alternatively, Reis and Watson (2010) assume that Λ′Λ is diagonal and

that the columns of Λ sum up to zero. Note that these are r(r+1)
2 restrictions. Althuogh, they

did not say it explicitly, additional r(r−1)
2 restrictions are needed for identi�cation; see Bai and

Li (2012, 2016) who consider �ve sets of restrictions and discuss how the distribution of a ML

estimator depends on the identi�cation restrictions.

Note that, when the idiosyncratic errors are correlated and/or the DFM has dynamic factors,

even if the state vector is extended, the number of restrictions is still r2 given that all new elements

in the transition matrix, W , and in the covariance matrix Q are known. However, it is important

to note that when dealing with the D-DFM, there is a further identi�cation issue that a�ects

the speci�cation of the model and that we will consider latter in this paper.

4.2 Estimation

Estimation of the parameters of the DFM depends crucially on whether the model is static or

dynamic and on the speci�cation of the idiosyncratic components. We describe �rst the ML

estimator and then the two-step estimators based on LS.

4.2.1 Maximum Likelihood

Consider �rst, the S-DFM in (32) with serial and contemporaneously uncorrelated idiosyncratic

errors. In this case, estimation of the parameters can be carried out, after assuming normality,

by ML. Given that, in this case, Σε is diagonal, the innovation covariance matrix, Σt can be

easily inverted using (10) and the Kalman �lter (KF) can be used to compute the innovation

decomposition form of the Gaussian likelihood in (23), which can be maximized using numerical

optimization algorithms; see, for example, Engle and Watson (1981) and Aruoba, Diebold and

Scotti (2009). As explained above, instead of numerical maximization of the likelihood obtained

using the recursions of the Kalman �lter, one can use the matrix form proposed by Delle Monache

and Petrella (2019) who give details about how to implement it to the S-DFM with serially

15Note that, in this type of identi�cation restrictions, the variable ordering could matters for parameter esti-
mation given that the leading series determine the factors; see Lopes and West (2004) and Chan, Leon-Gonzalez
and Strachan (2018) in the context of a factor model in which the factors have not dynamic dependence.
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uncorreted errors and show results for N up to 200. Alternatively, given that �nding numerically

the maximum of the log-likelihood can be unfeasible when N is large due to the very large

number of parameters to be estimated, the Gaussian log-likelihood can be maximized using the

expectation maximization (EM) algorithm proposed by Shumway and Sto�er (1982) and Watson

and Engle (1983) for ML estimation in SSMs.16 The EM algorithm is based on the following

decomposition of the log-likelihood conditional on the initial conditions for the factors

logL = −T
2
log|Σu| −

1

2

T∑
t=1

(Ft − ΦFt−1)′Σ−1
u (Ft − ΦFt−1)

−T
2
log|R| − 1

2

T∑
t=1

(Yt − ΛFt)
′Σ−1

ε (Yt − ΛFt) .

The expected value of the log-likelihood conditional on the observations Y1, ..., YT is given by

E (logL|Y1, ..., YT ) = −T
2
log|Σu| −

1

2

T∑
t=1

tr
{
E
[
(Ft − ΦFt−1) (Ft − ΦFt−1)′ |Y1, ..., YT

]
Σ−1
u }

−T
2
log|R| − 1

2

T∑
t=1

tr{E
[
(Yt − ΛFt) (Yt − ΛFt)

′ |Y1, ..., YT
]

Σ−1
ε },

where

E
[
(Yt − ΛFt) (Yt − ΛFt)

′ |Y1, ..., YT
]

= YtY
′
t + ΛPt|TΛ′ + Λft|T f

′
t|TΛ′ − 2Ytf

′
t|TΛ′, (42)

and

E
[
(Ft − ΦFt−1) (Ft − ΦFt−1)′ |Y1, ..., YT

]
= Pt|T + ft|T f

′
t|T + ΦPt−1|TΦ′ +

Φft−1|T f
′
t−1|TΦ′ − 2Φ

[
ft−1|T f

′
t|T + Ct

]
,

with ft|T being the smoothed estimate of Ft obtained using (19), Pt|T being its MSE given in

(20) and Ct = E
[(
Ft − ft|T

) (
Ft−1 − ft−1|T

)′ |Y1, ..., YT

]
that can be obtained by the Kalman

smoother if the state vector is augmented to include Ft−1.

The conditional expectation of the log-likelihood is maximized by

Λ̂ =
T∑
t=1

Ytf
′
t|T

(
T∑
t=1

(
ft|T f

′
t|T + Pt|T

))−1

(43)

Φ̂ =
T∑
t=1

(
ft|T f

′
t−1|T + Ct

)( T∑
t=1

(
ft−1|T f

′
t−1|T + Pt−1|T

))−1

. (44)

16Comparing the properties of parameter estimates obtained based on maximizing the likelihood based on the
EM algorithm and on the procedure proposed by Delle Monache and Petrella (2019) could be of interest for
further research.
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Note that the estimators in (43) and (44) can be substituted when necessary by restricted versions

after imposing the adequate restrictions. Furthermore, if the VAR order p > 1, the estimator

can be modi�ed accordingly. Finally, the corresponding estimators of the covariance matrices

are given by

Σ̂e = diag

{
1

T

T∑
t=1

êtê
′
t

}
(45)

Σ̂u =
1

T

T∑
t=1

ûtû
′
t (46)

where êt = Yt − Λ̂Ft and ût = Ft − Φ̂Ft−1.

The EM algorithm works iteratively. Given starting values for the parameters, Ψ0, the

expectation (E) step consists in computing the smoothed estimates of the factors and their

MSEs. Once these smoothed expectations are obtained, the maximization (M) step consists in

estimating the parameters using (43) to (46). These steps are iterated until convergence. Note

that the EM algorithm can also be adopted to obtain ML estimates based on the likelihood

decomposition proposed by Jungbacker and Koopman (2015) in (24). For each EM step, the

Kalman smoothing is based on the low-dimensional model; see Grassi et al. (2015) for an

empirical implementation. The parameters of the exact S-DFM can be estimated by ML using

the EM algorithm regardless of N ; see, among many others, Stock and Watson (1989, 1991)

and Coulombe et al. (this issue) with N = 4, Ba«bura et al. (2013) with N = 24, Quah

and Sargent (1993) with N = 60 and Proietti (2011) with N = 148. The EM algorithm is

convenient because, in state space models, it is straightforward to compute the expected value

of αt conditional on YT and to maximize the log-likelihood using standard regression formulae.

However, the EM algorithm has also some disadvantages. First, the matrix of second partial

derivatives is not available and, consequently, standard errors of the parameter estimates cannot

be obtained directly. However, these partial derivatives can be approximated by perturbing the

likelihood function in the neighborhood of the maximum. Computation of the information matrix

via recursions is also possible as in Harvey (1989) or Cavanaugh and Shumway (1996). Versions

of the information matrix, obtained from outputs arising naturally in the EM algorithm, such

as in Meng and Rubin (1991) or Oakes (1999), are either hard to compute, as in the former, or

will involve relatively untractable derivatives as in the latter.17

Finally, note that the EM estimators in (43) and (44) can be substituted when necessary

by restricted versions after imposing the adequate restrictions. Furthermore, if the VAR order

p > 1, the EM estimator can also be modi�ed accordingly.

17A compromise that is easy to apply and will be robust toward distributional assumptions is the bootstrap, as
derived in Sto�er and Wall (1991). However, it is not clear whether bootstrap can be implemented in the context
of large cross-sectional dimension, N . In the context of non-stationary DFMs, Peña and Poncela (2006) estimate
the model parameters using the EM procedure with a �nal pass using the scoring algorithm to obtain uncertainty
measures of the estimated parameters.
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If the idiosyncratic noises are weakly cross-correlated, ML estimation is still feasible if N is

not very large; see, for example, Coulombe et al. (this issue). However, if the cross-sectional

dimension is large, ML is not feasible due to the extremely large number of parameters. In

any case, Doz, Giannone and Reichlin (2012) prove consistency, when both N and T diverge

to in�nity, of smoothed factors extracted when the DFM parameters are substituted by esti-

mates obtained using the EM algorithm assuming wrongly that the idiosyncratic components

have neither cross-sectional nor temporal correlations. This estimator is known in the related

literature as Quasi-ML (QML). The min
(√

N,
√
T
)
- consistency and asymptotic normality of

the estimates of the loadings, factors and common components have been proved by Barigozzi

and Luciani (2019a) who derive the conditions under which the asymptotic distribution can still

be used for inference in case of miss-speci�cation.18 As an illustration of the performance of the

factors extracted using KFS with estimated parameters instead of the true parameters in a DFM

with cross-sectionaly correlated errors, we consider the same systems generated in the previous

section with N = 5, 50 and 150 series and T = 200 temporal observations and implement the EM

algorithm to estimate the parameters. Table 1, which reports the sample MSEs and coverages,

shows that, when the true model is estimated with N = 5, the results are very similar to those

obtained with known parameters. Although the point estimates of the estimated misspeci�ed

model are only slightly worse, the coverage in this case is very low (only a 67% when the nominal

is 95%). As N increases, and given that T is �xed, the quality of the estimated parameters

decreases and, also the quality of the point and interval estimates of the factors extracted with

the estimated true model. For example, when N = 50, the sample MSE of the factor extracted

with the estimated true model increases 353.3% with respect to that of the factor extracted using

the true parameters. Furthermore, the coverage is 52.5% instead of 96%. When N = 150, it is

not possible to estimate all the parameters in the model just using T = 200 observations. The

MSE is huge while the coverage is 4.5%. The true factor is almost always outside the interval.

Figure 4 plots the true factor together with the factor extracted when the parameters are esti-

mated assuming that the true model speci�cation is known (left column) together with the 95%

intervals for the factor obtained when the MSE of the smoothed estimates is obtained using the

estimated parameters. The �rst conclusion from Figure 4 is that, if one wants to estimate the

full covariance matrix of the idiosyncratic errors, the sample size, T , should be large enough

when compared with the cross-sectional dimension. When, N = 150 and T = 200, there is

not enough information as to estimate the full covariance matrix of the idiosyncratic errors and,

consequently, the extrated factor is far away from the true factor. However, when T is large

enough, the factor extracted with estimated parameters, has a similar behaviour to the factor

extracted with known parameters; compare with the �rst column in Figure 1 when N = 5 or 50.

18Barigozzi and Luciani (2019a) compare the loadings, factors and common components estimated using PC
and QML estimators and conclude that, in static DFMs, both procedures are rather similar.
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Regardless of N , the parameters of the exact S-DFM in equations (33) and (34), with serially

correlated idiosyncratic errors speci�ed as a diagonal VAR model, can still be estimated by ML

using the EM algorithm modi�ed with Cochrane-Orcutt iterations to estimate Θ conditional on

Λ and Λ conditional on Θ; see Reis and Watson (2010) for an empirical implementation in a

system with N = 187, Grassi et al. (2015) consider a system with N = 170 series and Bai and

Li (2016) who conjecture what the limiting distribution of the parameters and factors should

be.19 Note that, in this case, the innovation covariance matrix can still be inverted easily using

(10) due to the diagonality of Σe.
20 Table 1 reports the sample MSE of the factor extracted

from the same simulated systems described above generated by the DFM with autocorrelated

idiosyncratic components when the parameters are estimated. Regardless of whether the true or

misspeci�ed models are estimated, we can observe that, if N = 5, the sample MSEs (coverages)

are only slightly larger (smaller) than those of the corresponding models with known parameters.

However, the sample MSEs (coverages), which are similar regardless of whether the true or the

misspeci�ed models are estimated, increase (decrease) with respect to those of the corresponding

models with known parameters. When N = 150, the sample MSEs are very large and the

coverage of the con�dent intervals very low (remember that we are estimating the parameters

with just T = 200 observations); see Figure 5 that illustrates the �gures reported in Table 1.21

19The procedure implemented by Reis and Watson (2010) is only valid when no missing values occur in Yt; see
Jungbacker, Koopman and van der Wel (2011) for a detailed discussion and computationally feasible solution of
the missing value problem.

20The parameters of the S-DFM with autocorrelated idiosyncratic noises written, as in footnote 9, by extending
the state vector with the idiosyncratic noises have been estimated by Coroneo, Giannone and Modugno (2016)
by EM adding a small noise to the measurement equation.

21We do not consider the estimation of the parameters of the DFM with cross-sectional and serially correlated
idiosyncratic noises because it is infeasible due to the very large number of parameters to be estimated with just
T = 200 observations.
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Following Doz, Giannone and Reichlin (2012), extracting the factors using the KFS based on

QML parameter estimates is very popular in empirical applications; see, for example, Ba«bura,

Giannone and Reichlin (2011) and den Reijer and Johansson (2019). This procedure has been

extended by Ba«bura and Modugno (2014) to deal with missing observations and idiosyncratic

dynamics; see Scotti (2016) for an empirical application. Marcellino and Sivec (2016) extend

the procedure proposed by Doz, Giannone and Reichlin (2012) to a mixed-frequency factor

augmented VAR (MF-FAVAR) model.

Moving now to the D-DFM in equations (36) and (37), note that QML estimation based

on the EM algorithm is still possible as far as the �regressions� in the maximization step are

conveniently restricted; see, for example, Pinheiro, Rua and Dias (2013) and Jungbacker and

Koopman (2015). Barigozzi and Luciani (2019a) extend the asymptotic results to the D-DFM

written as a S-DFM in which the covariance matrix of the factor noises is singular.22 Stock and

Watson (2016) also suggest to estimate the D-DFM by imposing the restriction that Σu has rank

q.

Finally, closely related to te QML estimator of Doz, Giannone and Reichlin (2012), Bai and

Li (2016) propose a three-step estimator and derive the limiting distribution of the smoothed

factors and estimate the dynamics of the idiosyncratic components. In the �rst step, Bai and

Li (2016) propose the joint estimation of the loadings and idiosyncratic variances avoiding the

speci�cation of the factor dynamics by maximizing the following log-likelihood23

logL(Y ; Ψ) =
1

2N
log|ΣY | −

1

2N
tr
(
MY Σ−1

Y

)
(47)

where ΣY = ΛMFΛ′+Ω withMF = 1
T

∑T
t=1

(
Ft − F̄

) (
Ft − F̄

)′
and Ω = diag (E (εε′)), where ε

is the N × T matrix given by ε = (ε1, ..., εT ), and MY = 1
T

∑T
t=1

(
Yt − Ȳ

) (
Yt − Ȳ

)′
. Note that

ΣY is an approximation of E (MY ) because Ω is restricted to be diagonal. The parameters to be

estimated are Ψ = (Λ,Ω,MY ). In the second step, the factors are estimated by GLS as follows

F̂ = Y ′Ω̂−1Λ̂
(

Λ̂′Ω̂−1Λ̂
)−1

(48)

and the parameters of the VAR(p) model are estimated based on F̂ . Finally, in the last step,

the Kalman smoother is evaluated using the previous parameter estimates.

22Barigozzi and Luciani (2019a) show that, when the number of shocks is smaller than the number of factors,
the QML estimates of the loadings are worse when estimated by PC than when estimated by QML while the
factors are hardly a�ected.

23Bai and Li (2016) point out that, under �xed N , if cross-sectional heteroscedasticity exists but it is not
allowed in the estimation, then the estimated factor loadings are inconsistent.
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4.2.2 Least Squares estimation

Doz, Giannone and Reichlin (2011) prove the consistency, when both N and T diverge to in�nity,

of the smoothed factors extracted when the parameters of the stationary S-DFM are substituted

by two-step estimates. In the �rst step, the r factors are extracted using PC. Denote the PC

extracted factors by f̂PCt and by Λ̂PC the corresponding estimated loadings. In the second step,

assuming that the dynamic dependence of the factors is described by a VAR(1) process, the

autoregressive parameters can be estimated by OLS as follows

Λ̂PC =
T∑
t=1

Ytf̂
PC
t
′

(
T∑
t=1

f̂PCt f̂PC′t

)−1

(49)

Φ̂PC =
T∑
t=1

f̂PCt f̂PCt−1
′

(
T∑
t=1

f̂PCt−1 f̂
PC
t−1
′

)−1

(50)

The corresponding estimators of the covariance matrices are given by equations (45) and (46),

where êt = Yt−Λ̂PC f̂PCt and ût = f̂PCt −Φ̂PC f̂PCt−1 . Doz, Giannone and Reichlin (2011) show that

the smoothed factors extracted using the PC estimates of the parameters are consistent even if the

idiosyncratic component is wrongly assumed to be temporal and cross-sectionally uncorrelated

due to the misspeci�cation error vanishing as N and T diverge to in�nity; see Giannone, Reichlin

and Sala (2005), Giannone, Reichlin and Small (2008), Angelini et al. (2011) and Ba«bura and

Rünstler (2011) for implementations of this estimator. Koop and Korobilis (2014) extend the

procedure proposed by Doz, Giannone and Reichlin (2011) to deal with time-varying parameters

and stochastic volatility.

It is important to point out that when estimating using this two-step procedure the restric-

tions imposed to identify the factors in PC and those imposed in the SSM representation of the

DFM should be the same. For example, very recently, Solberger and Spanger (2020) implement

in E-Views the KFS factor extraction based on the two-step estimator of the parameters of the

S-DFM. Although Solberger and Spanger (2020) say that they can estimate the D-DFM, this is

not the case, as they are not taking into account the speci�cation in the static representation of

the D-DFM in (36) and (37); see, for example, Bai and Ng (2007) for the relation between the

static factors extracted using PC and the dynamic factors.

Finally, note that the two-step estimator of the parameters has often been used to obtain

starting values of the parameters in the EM algorithm; see, for example, Proietti (2011) and

Doz, Giannone and Reichlin (2012). Joseph, Kalamara, Potjagailo and Kapetanios (this issue)

also use the PC factors as starting values in the context of the estimator proposed by Kapetanios

and Marcellino (2009).
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5 Model speci�cacion

For KFS factor extraction to be e�cient is crucial that the SSM is correctly speci�ed. In this

section, we describe some selected procedures used in the literature to specify the model, in

particular, to determine the number of static and dynamic factors and their lags. We also describe

procedures to decide about the dependence structure of factors and idiosyncratic noises. In many

works implmenting KFS to extract latent factors in the context of DFMs, the speci�cation of

the factors is ad hoc. For example, in many works the factors and idiosyncratic components

are assumed to follow a VAR(p1) and VAR(p2) model respectively, with p1 and p2 being �xed

a priori ; see, for example, Aruoba, Diebold and Scotti (2009) and Proietti (2011) who consider

DFMs with p1 = 1 and p2 = 0 or Frale et al. (2011) who are interested in just one common factor,

i.e. r = 1. Alternatively, p1 can be determined by using information criteria as, for example, in

Joseph, Kalamara, Potjagailo and Kapetanios (this issue). In other works, the number of factors

is determined a priori without using any speci�c criteria; see, for example, Aruoba, Diebold and

Scotti (2009) and Camacho and Perez-Quiros (2010) who, in the context of small-scale DFMs,

�x r = 1 or Chauvet and Senyuz (2016) who �x r = 2. Koopman, Malle and Van der Wel

(2010) and Delle Monache, Petrella and Venditti (2016) also chose an ad hoc number of factors.

Joseph, Kalamara, Potjagailo and Kapetanios (this issue) determine the number of factors as

that equal to the lowest number of factors which explains 50% of the variance in the data. Also,

in many works the speci�cation of the model is choosen by minimizing a Root Mean Square

Error (RMSE) criterion; see, for example, Rünstler et al. (2009) and Hindrayanto, Koopman

and de Winter (2016).

Alternatively, many authors implement methods for determining the number of factors de-

signed in the context of Principal Components (PC) methods. For example, in the context of

S-DFMs, the number of static factors can be selected by using one of the several procedures

proposed in the literature; see Breitung and Eickmeier (2006), Stock and Watson (2011) and

Barhoumi et al. (2013), among others for more detailed and complete reviews. The most widely

used methods to determine the number of factors in S-DFMs are due to Bai and Ng (2002); see,

for example, Proietti (2011). The Bai and Ng (2002) criteria are based on modi�cations of the

Akaike (AIC) and Bayesian (BIC) information criteria, taking into account the cross-sectional

and temporal dimensions of the dataset as arguments of the function penalizing overparametriza-

tion. However, these criteria usually detect too many factors being quite sensitive to the choice

of rmax, the maximum number of factors; see, for example, the Monte Carlo results in Ahn and

Horestein (2013) and the arguments by Hyndrayanto, Koopman and de Winter (2016). Alterna-

tively, Alessi, Barigozzi and Capasso (2010) re�ne the AIC and BIC criteria proposed by Bai and

Ng (2002) by multiplying the penalty function by a constant that tunes the penalizing power

of the function itself. Furthermore, Alessi, Barigozzi and Capasso (2010) suggest estimating the
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number of factors using di�erent subsamples. These criteria are linked to the eigenvalues of the

sample covariance matrix of the variables in the system. In particular, the number of factors is

selected as the number of eigenvalues larger than a threshold speci�ed by a penalty function.

Another useful procedure to select the number of static factors is due to Onatski (2010)

who proposes to select r using the di�erence between eigenvalues of 1
T Y

′
Y and proves that this

selection is consistent. Note that, in spite of the lack of consistency of the eigenvalues when

both N and T go together to in�nity, pointed out by Lam and Yao (2012) through a simulation

exercise, the empirical evidence and simulations results obtained by Corona, Poncela and Ruiz

(2017) indicate that the di�erence between adjacent eigenvalues is a good estimator of the number

of common factors. The procedure works even when the proportion of the variance attributed

to the factors is small relative to the variance due to the idiosyncratic noises or when these are

substantially correlated. Under the assumption of Normality, both cross-sectional and temporal

dependence in the idiosyncratic noise are allowed. In a way, this procedure formalizes the eyeball

decisions taken when examining the scree plot of the eigenvalues as proposed by Cattell (1966).

The intuition behind the method is as follows: the line connecting two zero adjacent eigenvalues

has zero slope, while that connecting eigenvalues linked to common factors should have a slope

di�erent from zero. This procedure is based on determining a sharp threshold that consistently

separates the bounded and diverging eigenvalues of the sample covariance matrix of the observed

series.

Finally, Lam and Yao (2012) propose a procedure to determine the number of factors based

on separating "strong" and "weak" factors that require the idiosyncratic components to be white

noise. Following ideas in Peña and Poncela (2006), they propose to determine the number of

factors by the number of nonzero eigenvalues of the following matrix

SY =
K∑
k=1

CY (k)C ′Y (k), (51)

where CY (k) = Cov(Yt, Yt−k) and K should be small as the autocorrelation is often at its

strongest at the small lags.

Finally, Choi and Jeong (2019) propose some further new criteria to determine r. They also

carry out very detailed Monte Carlo experiments to compare the performance of the more pop-

ular criteria available in the literature. They show that it is di�cult to conclude which criterion

performs best and advice that, in empirical applications, one should consider several criteria at

the same time. In the same line, Stock and Watson (2011) point out that, when dealing with em-

pirical systems, di�erent methods frequently determine a di�erent number of static factors with

limited research comparing the performance of the di�erent methods. Consequently, they suggest

to augment the statistical estimators of r with inspection of the scree plots and with judgement

informed by the application at hand; see, for example, Hyndrayanto, Koopman and de Winter
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(2016) and Schiavoni, Palm, Smeekes and van der Brakel (2019) for empirical implementations.

In the context of D-DFMs, the �rst issue faced when trying to identify the number of dynamic

factors is related with the simultaneous identi�cation of the lag order of the VAR model for the

factors, p, and the number of lags, s. To illustrate this problem, consider the following D-DFM

in which the common component is given in equation (30)

Yt = Λ(L)Gt + εt (52)

Gt = Φ1Gt−1 + ...+ ΦpGt−p + vt. (53)

The D-DFM can be written as follows

Yt = Π(L)vt + εt (54)

where Π(L) = Λ(L)Φ(L)−1 with Φ(L) = Ir − Φ1L− Φ2L
2 − ...− ΦpL

p. The model in equation

(54) is known as Generalized DFM (G-DFM) and the parameters of the in�nite lag polynomial

Π(L) matrix cannot be estimated by ML or QML. Several authors propose estimating them

using Dynamic Principal Components based on frequency-domain procedures; see Forni, Hallin,

Lippi and Reichlin (2004, 2005). Recently, Peña, Smucler and Yohai (2019) propose estimating

the G-DFM by linear generalized PCs in the time domain.24 The identi�cation problem appears

because from Π(L) it is not possible to recover the polynomials Λ(L) and A(L) in a unique

form without imposing restrictions; see, for example, the discussion in Lütkepohl (2005). In

order to identify the model, Forni, Hallin, Lippi and Reichlin (2000) consider restrictions on

the eigenvalues of the spectral density matrix and Hallin and Liska (2007) and Onastki (2009)

propose procedures to determine q in the context of the generalized DFM.

Alternatively, Stock and Watson (2005) propose to determine the number of common dy-

namic factors, q, by considering the static representation. Consider, for example, the D-DFM in

equations (36) and (37) that can be written as follows

Yt = ΛFt + εt (55)

Ft = ΦFt−1 +Bvt. (56)

where Λ = [Λ0Λ1] and Φ =
(Φ1 0
Iq 0

)
and B =

(
Iq
0

)
. After substituting (56) into (55), de�ne

24Stock and Watson (2005) point out that Dynamic Principal Components produces two-sided estimates of
the factors and, consequently, these estimates are not suitable for forecasting. Rünstler et al. (2009) compare
the forecast performance of G-DFMs with those of alternative DFMs and �nd evidence in favour of the G-DFM
with the gains in forecast precision against the alternative factor models being rather small and statistically
insigni�cant. D'Agostino and Giannone (2012) also compare static and dynamic PCs by forecasting in�ation and
conclude that both are similar. Recently, Peña, Smucler and Yohai (2019) propose one-sided dynamic PCs that
is appropriate for forecasting.
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Xt = Yt − ΛΦFt−1 which can be writen as follows

Xt = Πvt + εt, (57)

where Π = ΛB. In equation (57), Xt is represented as a factor model with q serially uncorrelated

factors that correspond to the shocks, vt. Were Xt observed data, Stock and Watson (2005)

argue that q could be consistently determined using the Bai and Ng (2002) information criteria.

However, given that this is unfeasible, they propose applying Bai and Ng (2002) to X̂ = Yt −

Ξ̂F̂t−1, where Ξ̂ is an estimator of ΛΦ and F̂t−1 is an estimator of Ft−1. Stock and Watson

(2005) propose estimating Ξ̂ and F̂t−1 by estimating �rst Λ and Ft by PC and components

and then Φ by the OLS estimator of the regression of F̂t onto
(
F̂t−1, ..., F̂t−p

)
, where p can be

choosen using the BIC criteria.25 Amengual and Watson (2007) prove the consistency of this

procedure. Alternatively, Bai and Ng (2007) propose determining q by computing the eigenvalues

of the covariance matrix of the residuals of the regression of F̂t onto
(
F̂t−1, ..., F̂t−p

)
and testing

whether these eigenvalues satisfy an asymptotically shrinking bound that re�ects sampling error.

Note that the results of the test may depend on this shrinking bound.26 Breitung and Pigorsch

(2013) propose determining the number of dynamic factors, q, using canonical correlation analysis

of the current and past values of the common factors in the static representation instead of PCs.

The procedure proposed by Breitung and Pigorsch (2013) also depend on tunning parameters.

Zhao, Cui and Wang (2017) carry out a Monte Carlo comparison of alternative procedures to

determine the number of dynamic factors and conclude that the procedures proposed by Bai and

Ng (2007) and Hallin and Liska (2007) perform better.

These procedures are very popular. For example, Angelini et al. (2011) determine r using

Bai and Ng (2002), p using the SIC criteria and q using Bai and Ng (2007).27 However, it is

important to recall that the procedures for determining q have been designed in the context

of PCs factor extraction and that the assumptions behind PC could not be satis�ed when the

D-DFM is writen as a S-DFM. Furthermore, when the data follow a D-DFM and we �t a S-

DFM, the number of factors increase from q to r = q(s+ 1) but these r factors are not mutually

independent at all lags. Consequently, it could be expected that the number of "static" factors

determined by the procedures designed for truly S-DFMs is going to be such that r < q(s+ 1);

see the arguments in Peña and Tsay (2020).

The discussion about the determination of r and q shows that, in practice, this is a di�cult

problem.28 Furthermore, in the case of the D-DFM, even if we were able to chose r and q, we

25Alternatively, Stock and Watson (2005) propose estimating directly X̂i using the OLS estimator from the

regression of Yt onto
(
F̂t−1, ..., F̂t−p

)
.

26The procedure proposed by Bai and Ng (2007) is a useful cross-check of the more informal procedure proposed
by Giannone, Reichlin and Sala (2005).

27In an application to euro area data, they chose r = 5, q = 3 and p = 1.
28It is important to point out that, in an empirical exercice, D'Agostino and Giannone (2012) conclude that
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do not have enough information as to recover the speci�cation in equations (36) and (37). The

procedures to determine the number of factors, r, when the D-DFM is written as a "static" DFM,

described above, are based on a di�erent speci�cation, in which the autoregressive matrices of

the factors are not restricted. Therefore, when estimating the parameters and running the KFS

algorithms, the estimated model is not exactly the true speci�cation.

The di�culty in choosing the correct speci�cation of the DFM that is then used for factor

extraction (after estimating the unknown parameters) calls for adequate procedures for testing

for the speci�cation of the model. Harvey and Koopman (1992) propose some speci�cation

tests based on auxiliary residuals. However, these tests were implemented to univariate models.

Extensions to multivariate models as those of interest in this survey are needed in the literature.

Recently, Fiorentini and Sentana (2019) derive score tests of misspeci�cation in DFM based on

frequency domain techniques.

6 Forecasting using KFS in stationary DFMs: Empirical

applications

The number of empirical applications of stationary DFMs using KFS for factor extraction is very

extense. In this subsection, we just survey some empirical applications as an example to show

the large range of possibilities of these models and procedures. We apologize for those importnat

works that have not been refered in this subsection.

One of the �rst implementations of KFS algorithms to extract factors in the context of

DFMs was Engle and Watson (1981) who estimate the unobserved metropolitan wage rate for

Los Angeles based on observations of sectoral wages within the Standard Metropolitan Statistical

Area. Afterwards, in the last 40 years, the number of applications of KFS algorithms in DFMs has

been increasing over time. In this section, we aim to describe just some of the main contributions.

Among the many applications of forecasting using KFS procedures within the context of

factor extraction in DFMs, one of the most active areas is real-time macro-monitoring; see Stock

and Watson (2016) for a description of empirical applications. The �rst relevant contribution in

this area is due to Stock and Watson (1989, 1991) who construct the experimental coincident

economic indicator (CEI), which was released monthly through the National Bureau of Economic

Research from May 1989 to December 2003. The CEI was the Kalman �lter estimate of the

common factor among the big monthly indicators often used in dating the business cycle. The

DFM was estimated by ML using a SSM; see Carriero and Marcellino (2007) who compare several

parametric and non-parametric procedures to extract one-single common factor in the context

of estimating composite coincident and leading indexes for the UK. Since then, several further

there is no evident improvement in the forecast accuracy when allowing for the number of dynamic factors to be
smaller than the number of static factors.
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applications have appeared in the literature. Aruoba, Diebold and Scotti (2009) track the high-

frequency evolution of real activity by constructing an index based on indicators measured at

di�erent frequencies, even vey high (daily) data. This index, updated daily by the Federal Reseve

Bank of Philadelphia, has been added to Bloomberg's real-time data that can be followed on

its platform. Based on the index proposed by Aruoba, Diebold and Scotti (2009), Scotti (2016)

constructs uncertainty indexes based on smoothed weights estimated as proposed by Koopman

and Harvey (2003). Camacho and Perez-Quiros (2010) evaluate the short term forecasts from a

factor model in a truly real-time set up for the euro area. They deal with ragged edges using

the proposal by Giannone, Reichlin and Small (2008), with mixed frequencies using the �lter

proposed by Mariano and Murasawa (2003) and with data revisions using Evans (2005). Aruoba

and Diebold (2010) is an extension of the DFM suggested by Stock and Watson (1991). Grassi

et al. (2015) construct monthly indicators of economic activity for the euro area and its largest

member countries.

Closely related with the construction of business cycle indexes is the problem of nowcast-

ing which is important since forecasting improvements of GDP with respect to naive models is

mainly limited to the current quarter; see Ba«bura, Giannone and Reichlin (2011) for a survey

on nowcasting. Factors extracted using KFS algorithms can be used to forecast in the context

of the di�usion indexes of Stock and Watson (2002). Ba«bura and Rünstler (2011) propose

obtaining prediction weights of the individual time series in the system by an extension of the

Kalman �lter using the estimation procedure of Doz, Giannone and Reichlin (2011). Rünstler

(2016) proposes using these prediction weights to re�ne the data set by eliminating uninformative

series when forecasting using DFMs. KFS has been implemented to exploit large information to

bridge monthly and quarterly variables with di�erent publication lags, by combining predictors

in few common factors which are then used as regressors in bridge equations via the Kalman

�lter. The procedure, originally proposed by Giannone et al. (2008), was �rst applied on US

data at the Board of Governors of the Federal Reserve and is also regularly implemented at the

ECB; see Rünstler et al. (2009) for a comparison of forecasts of GDP obtained in ten countries

of the euro area, Matheson (2010), Angelini, Camba-Mendez, Giannone, Reichlin and Rünstler

(2011) to obtain early estimates of current quarter GDP in the euro area, D'Agostino, McQuinn

and O'Brien (2012) for Irish quarterly GDP and Aastveit and Trovit (2012) who investigate

the properties of �nancial assets to forecast growth in Norway. Hindrayanto, Koopman and de

Winter (2016) compare the performance of four di�erent estimators of the factors in a pseudo

real-time competition to forecasts GDP growth in the euro area and �ve of its largest countries.

In particular, they compare forecasts when the factors are estimated using PC and the two pro-

cedures of Doz, Giannone and Reichlin (2011), Doz, Giannone and Reichlin (2012) and Bräuning

and Koopman (2014). These last authors propose adopting a low-dimensional SSM which deals

with the target variable and the factors jointly. More recently, Jansen and de Winter (2018) ex-
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plore the e�ects of combining model-based nowcasting GDP forecasts and quarterly judgmental

consensus forecasts for the G7 countries. It is important to note that, due to the di�culty in

chosing the correct speci�cation of the model, several authors propose to pool forecasts obtained

from di�erent models with di�erent number of factors; see, for example, Kuzin, Marcellino and

Schumacher (2013), Hindrayanto, Koopman and de Winter (2016) and Jansen, Jiu and de Winter

(2016). Camacho and Martinez-Martin (2014) is an application in which a stationary small-scale

DFM is implemented to forecast US GDP with a system of variables that include survey data

and �nancial indicators.

Apart from monitoring and forecasting real economic activity, central banks, researchers and

analysts have widely used DFMs to track and forecast the evolution of in�ation or to detect

comovements in prices, especially in goods or commodities. Just to cite a few applications,

Arouba and Diebold (2010) use small scale DFMs to monitor both real economic activity and

in�ation taking also into account their interactions. Reis and Watson (2010) use quarterly

in�ation for N = 187 sectors in US personal consumption expenditures to extract what they

call pure in�ation and separate it from other components of in�ation. In�ation in commodities

have been analysed in Poncela, Senra and Sierra (2020) and Delle Chiaie, Ferrara and Giannone

(2017).

Giannone, Reichlin and Small (2008) and Ba«bura and Modugno (2014) use state space

models for nowcasting, the problem of predicting the present, the very near future and the very

recent past, which is related with both missing observations and mixing frequencies. Marcellino

and Schumacher (2010) and Foroni and Marcellino (2014) compare di�erent methods to deal

with mixed frequencies when forecasting German GDP and nowcasting Euro area macroeconomic

aggregates, respectively.

Another important application of factor extraction in forecasting is the Factor Augmented

VAR (FAVAR) model. FAVAR models have enjoyed increasing popularity in forecasting macroe-

conomic variables. Koop and Korobilis (2014) propose a FAVAR model with time-varying pa-

rameters (TVP-FAVAR) to construct a �nancial conditions index to track expectations about

growth in key US macroeconomic variables. Marcellino and Sivec (2016) implement the a MF-

FAVAR model to evaluate the e�ects of monetary, oil and �scal shocks. Very recently, Joseph,

Kalamara, Potjagailo and Kapetanios (this issue) implement FAVAR models to forecast UK

in�ation comparing several alternative procedures.

KFS procedures have also been implemented when forecasting in the context of �nancial

variables. One of the most popular applications is to forecast the yield curve. Diebold and

Li (2006) and Diebold, Rudebusch and Aruoba (2006) describe the yield curve by framing the

Nelson-Siegel model into a SSM with three unobserved factors that represent the level, slope

and curvature and that are modeled as VAR processes with the loadings depending on a single

parameter. Koopman, Mallee and Van der Wel (2010) forecast interest rates over di�erent
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maturities based on this model extended by allowing the loading parameter to vary over time and

the variances to follow GARCH models.29 Jungbacker, Koopman and Van der Wel (2014) impose

smoothness restrictions on factor loadings by using a cubic spline function that depends on time

to maturity and Koopman and Van der Wel (2013) include macroeconomic factors in the dynamic

yield curve model and conclude that macroeconomic variables can lead to more accurate yield

curve forecasts.30 In a di�erent context, Coroneo, Giannone and Modugno (2016) implement

the methodology of Doz, Giannone and Reichlin (2012) to forecast monthly excess bond returns

based on out-of-sample forecasts of the underlying yield and macro-economic factors. Another

strand of the literature focus on extracting information from the components of the yield curve

to forecast business cycle turning points; see Chauvet and Senyaz (2016) who �t a DFM with

r = 2 with this purpose.

Mariano and Murasawa (2010), Camacho and Perez-Quiros (2010), Camacho, dal Bianco

and Martinez-Martin (2015a, 2015b) and Jungbacker et al. (2011) also implement state space

models to deal with missing data. Very recently, Schiavoni, Palm, Smeekes and van der Brakel

(2019) incorporate Google trends information into the estimation of unobserved components to

improve unemployment o�cial statistics using KFS with mixed frequencies. Martinez-Martin

and Rusticelli (in press) also implement the methodology of Mariano and Murasawa (2010).

Proietti (2011) consider a large-scale (N = 149, T = 150) static stationary exact DFM to

extract factors for the euro-area in wich the series in the system are observed monthly and

quarterly dealing with the aggregation problem.

Finally, there are also a large number of applications to non-economic data. Just to name

one included in this special issue, Coulombe et al. (this issue) extract the common factor from

a system of four sea ice measures to obtain an optimal composite measure.

7 Non-stationary DFMs

So far, DFMs have been assumed to be stationary. However, panel time series are often non-

stationary due to the presence of unit roots. In this case, it is very popular to di�erentiate

individually each series in a univariate fashion in the system until stationarity is reached and

then �t the corresponding DFM to the di�erentiated system to extract the factors and, �nally,

obtain the recumulated factors if needed; see, for example, Mariano and Murosawa (2003, 2010)

and Grassi et al. (2015), among many others. This solution might derive in loss of information,

missclassi�cation of factors in stationary/non-stationary and ine�cient estimation of the param-

29Note that models with time-varying loadings could be considered as non-stationary. However, given that the
factors are stationary, their treatment, from the point of view of factor extraction, is the same as in stationary
models.

30Poncela (2013) note that this increase in accuracy may be the e�ect of the model speci�cation instead of the
e�ect of the added macroeconomic variables.
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eters and factors; see, for instance, Bariggozzi and Luciani (2019b) and Corona, Poncela and

Ruiz (2020). Alternatively, the DFM can be implemented directly to the original non-stationary

system. This section surveys some relevant issues speci�c to non-stationary DFMs when the

KFS algorithms are implemented to extract the factors. First, we consider the case of known

model. Second, we consider that the DFM speci�cation is known but the parameters need to be

estimated. Finally, we will deal with speci�cation issues. The last subsection reviews selected

empirical applications of non-stationary DFMs in which KFS procedures are implemented to

extract the factors.

7.1 Factor extraction in non-stationary DFMs with known parameters

If the model speci�cation and the parameters are known, the KFS can be implemented to extract

the factors in non-stationary DFMs without new issues on top of those already described for their

stationary counterparts. There are only two considerations worth to mention. First, the role

of the starting values for the state vector (factors) that should be di�erent from those usually

used in stationary models. Second, it is important to investigate the performance of the KFS

extraction when the idiosyncratic noises are non-stationary but their temporal dependence is

ignored when �ltering. Consider �rst that Yt = (Y1t, · · · , YNt), t = 1, · · · , T , is a non-stationary

I(1) vector of time series generated by the following DFM

Yt = ΛFt + εt. (58)

where Ft is an r×1 vector of I(1) common factors and the idiosyncratic components are station-

ary.31 Therefore, there are N non-stationary I(1) time series generated by r < N non-stationary

I(1) common trends. For simplicity, consider that the VAR model for the r common non-

stationary factors is as in equation (30) with r = r1, p = 1 and Φ1 = Ir. The error ut is white

noise with diagonal variance matrix Σu. We also assume that the idiosyncratic components are

white noise with diagonal variance matrix R. The Kalman �lter can be applied in order to

extract the common factors using the initial conditions for the state vector suggested in Peña

and Poncela (2006) with f0 = Λ−Y1 being Λ− a generalized inverse of Λ and with P0 = kIr

where the scalar k is such that k →∞. Additional possibilities of initializing the Kalman �lter

in the presence of non-stationary latent variables are suggested, for instance, in de Jong (1991)

and Durbin and Koopman (2001). To illustrate the performance of the KFS in this case, we

31We assume that there are not deterministic components. In systems where there are, Bai (2004) suggests to
eliminate all the deterministic components before applying nonstationary factor analysis to the series in levels.
Furthermore, Banerjee et al. (2017) argue that the assumption of stationary idiosyncratic noises is in accordance
with macroeconomic systems that exhibit a high rejection of the hypothesis of a unit root of the estimated
idiosyncratic components; see, for example, Poncela and García-Ferrer (2014) and Schiavani, Palm, Smeekes and
van der Brakel (2019) for empirical implementations with stationary idiosyncratic components. Finally, Bariggozzi
and Luciani (2019b) also contemplate the possibility of lags of the common factors in the measurement equation.
This can be dealt with as in the stationary case.
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Figure 6: Simulated factor (red line) together with factor extracted by the Kalman smoother
(blue lines) and 95% con�dence bounds (green lines) obtained using the true speci�cation and
known parameters for a random walk common factor. The systems are simuated by a DFM with
N = 5 (�rst row), N = 50 (second row) and N = 150 (third row).

simulate a system with r = 1 factor characterized by a random walk with zero initial condition,

F0 = 0, and σ2
u = 1. The idiosyncratic noises are serial and cross-sectionally uncorrelated and

homoscedastic with variances equal to 1. As in the stationary case, we simulate systems with

T = 200 observations and N = 5, 50 and 150 variables to replicate small, medium and large

systems, respectively. The factor loadings are drawn from a uniform distribution U(0, 1). Figure

6 plots the true simulated factor together with the factor extracted using the the KFS assuming

all parameters known and using the initial conditions obtained as suggested by Peña and Poncela

(2006). As for the stationary case, the di�erences between the extracted and population factors

are only visually appreciable when N = 5.

Instead of considering a DFM with all factors being I(1), it is possible to face situations in

which some factors are non-stationary while others are stationary; see García-Ferrer and Poncela

(2002), Peña and Poncela (2006) and Bariggozzi and Luciani (2017), among others. Assume

that there are r1 factors that are I(1) and r0 stationary factors with r = r1 + r0 being the

total number of common factors.32 The model is given by (28) to (30) with r1 roots of the

determinantal equation, |Φ(L)| = |Ir − Φ1L− · · · − ΦpL
p| = 0, on the unit circle and r0 outside

it. Usually, the variance associated to the common non-stationary factors is higher than that

32Higher orders of integration have been considered, for instance, in Peña and Poncela (2006).
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Figure 7: Simulated factors (red line) together with factors extracted by the Kalman smoother
(blue lines) and 95% con�dence bounds (green lines) obtained using the true speci�cation and
known parameters for a random walk (left column) and a stationary AR(1) (right column)
common factor. The systems are simuated by a DFM with N = 5 (�rst row), N = 50 (second
row) and N = 150 (third row).

linked to the stationary ones. In order to check how both types of common factors are extracted,

we perform a simulation considering r = 2 with one factor generated by a random walk with

σ2
u1 = 1 and the other by a stationary AR(1) model with autoregressive parameter φ = 0.5 and

σ2
u2 = 1. Therefore, in (29) p = 1 and Φ1 = diag(1; 0.5). Figure 7 plots the true simulated factors

together with their corresponding extracted factors and 95% con�dence bounds. Notice that, as

before, if the model is known, the di�erences between the extracted and population factors are

only visually appreciable when N = 5 for both factors.

Finally, we consider other sources of non-stationarity in the system besides the I(1) common

factors, which may render spurious common factors if they are not properly taken into consid-

eration. In particular, we consider the case of just r = r1 non-stationary factors with some or

all of the idiosyncratic components being also random walks. If all the idiosyncratic components

were I(1), the observed time series are not cointegrated, while if just g1 < N idiosyncratic com-

ponents are I(1), the observed time series are cointegrated. Notice that if all the idiosyncratic

components are random walks, the observed time series can be univaritely di�erenced and the
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analysis can be performed in �rst di�erences. For illustrative purposes consider now the model

given in equations (28) through (31) where the VAR for the common non-stationary factors is

as in (30) with r = r1, p = 1 and Φ1 = Ir. The error ut associated to the common factors is

white noise with diagonal variance matrix Σu. As for the stationary case, from now on, we will

assume that p∗ = p∗i = 1 in equation (31) in order to simplify the analysis where either θ1i = 1

when the idiosyncratic components are also nonstationary or |θ1i| < 1 if they are stationary.

For simplicity, we assume that the idiosyncratic components are cross-sectionally uncorrelated.

Barigozzi, Lippi and Luciani (2020) argue that when θ1i < 1, the dynamics of the I(0) idiosyn-

cratic components do not need to be speci�ed in order to obtain consistent estimates of the

common factors. For illustrative purposes, we simulate a system generated by only one common

random walk (r = r1 = 1) where the �rst N/2 idiosyncratic components are also random walks

if N is even and the �rst N/2 − 1 if N is odd. The remaining idiosyncratic components are

stationary with parameter θ1i = 0.5. The model can be written as in equations (33) and (34)

with Φ1 = 1 and Θ = diag(θ11, · · · , θ1N ). We extract the common factor assuming that we know

the true model. The results are presented in Figure 8, left column. Only for N = 5, we can see

by visual inspection the di�erence between the estimated and the true common factor.33 This is

illustrated in Figure 8, centered column, where we have replaced the true AR parameter of the

idiosyncratic component whenever it was stationary (that is when θ1i = 0.5) by 0. As it can be

seen di�erences between the true and estimated common factors are only visually appreciable

for N = 5 as for the case of using the true model. Finally, we ignore all dynamics in the id-

iosyncratic component, stationary or not, and extract the common nonstationary factor using a

further misspeci�ed model considering that the speci�c components where all stationary white

noise. As pointed out by Bai (2004) and Onatski and Wang (2020) for principal components

and Barigozzi and Luciani (2019b) for the KFS methods, the extracted factor in this case is not

consistent as it is re�ected in the illustration presented in Figure 8, right comlumn, where we can

see important di�erences between the true and estimated common factors for all cross-sectional

dimensions N = 5, 50 and 150. Therefore, misspeci�cation of the idiosyncratic components still

renders consistent estimates of the common factor as long as the misspeci�cation is only asso-

ciated to the stationary part while misspeci�cations related to the nonstationary idiosyncratic

components breaks the consistency of the extracted common factors. The adverse e�ects seem

to be less important as the cross sectional dimension increases in the simulated example.

33Barigozzi and Luciani (2019b) argue that estimating a misspeci�ed model ignoring the dynamics of the
idiosyncratic components when they are stationary does not a�ect the consistency results for the estimated
common components.
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Figure 8: Simulated factors (red line) together with factors extracted by the Kalman smoother
(blue lines) and 95% con�dence bounds (green lines) obtained using the true speci�cation and
known parameters for a random walk and possibly nonstationary idiosyncratic errors when using
the true model (left column), a misspeci�ed model only for the stationary idiosyncratic com-
ponents (center column) assuming that they are white noise and a misspeci�ed model for the
idiosyncratic components, stationary or nonstationary, assuming that they are white noise (right
column). The systems are simuated by a DFM with N = 5 (�rst row), N = 50 (second row) and
N = 150 (third row).
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7.2 Factor extraction in non-stationary DFMs with unknown parameters

As for the estationary case, usually the parameters of the model are unknown and need to be

estimated. However, there is an important di�erence between the identi�cation restrictions in

DFMs with non-stationary factors and those described above for the stationary case. If we

are interested in extracting a particular set of nonstationary common factors, the identi�cation

restrictions need to ensure the superconsistency of the estimators of the factor loading matrix.

Johansen and Tabor (2017) analyze an SSM with an unobserved multivariate random walk and

check whether the extracted common trends and their estimators are cointegrated. They conclude

that, although cointegration holds for the common components, χi,t, i = 1, .., N , it is not always

the case for the common trends. In the context of the ML estimator of the parameters of an

autoregressive representation of the SSM model, they show that, after imposing the necessary

identi�cation restriction in order to separate the factor loading matrix from the common trends

cointegration between the identi�ed non-stationary factors and their estimator holds, if and only

if the estimators of the factor loadings are consistent at a faster rate than
√
T .

Once the non-stationary factors are properly identi�ed, the DFM parameters can be estimated

as in the stationary case.34 Most works dealing with KFS procedures for factor extraction in

non-stationary DFMs obtain parameter estimates based on ML methods with the log-likelihood

maximized either using Newton-type optimization algorithms as in Frale et al. (2011) or using

the EM algorithm as in Zuur et al. (2003), Peña and Poncela (2004) and Seong et al. (2013) who

consider systems with small cross-sectional dimension, in particular, N = 12 in the �rst work

and N = 5 in the last two works. The EM algorithm is also able to handle large N systems; see,

for example, Quah and Sargent (1993) and Barigozzi and Luciani (2017, 2019b). Barigozzi and

Luciani (2019b) provide consistency results for the common components for the model estimated

using the EM-algorithm and KFS when both N and T go in�nity.

There are two important issues related with implementing the EM algorithm in non-stationary

DFMs. First, it is important to point out that the estimation procedures described above, rely

on the idiosyncratic noises being stationary. However, even if the factors were observed, if unit

roots were allowed in the idiosyncratic components, it is no longer possible to �regress� the

observed time series over the factors to estimate the factor loadings as in equation (43) of the

EM algorithm. Alternatively, if the idiosyncratic component for the i-th series is non-stationary,

Barigozzi and Lucinai (2019b) propose replacing Yi,t by Yi,t− εi,t in order to remove the sources

of non-stationarity not coming from the common factors from Yi,t.

The second issue relates to the parameters used to initialize the EM algorithm. Consider

34Obviously, the non-stationary nature of the data should be taken into account with the unit roots imposed
before estimating the parameters. Recall that, in this subsection, we consider that the DFM speci�cation is
known.
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�rst, the initial values for the loading matrix, Λ. Peña and Poncela (2006) assume that the non-

stationarity is only present in the common factors and suggest as initial values of the columns of

the factor loading matrix, Λ, the eigenvectors of the �rst-lag autocovariance or uncentered lagged

second moments matrix of the observed series properly normalized by T 2d instead of T where d

is the order of integrtion of the observed series. The idea is that, if there is no serial correlation

in the idiosynratic noises or it is very weak, the eigenvectors of the lagged covariance matrices

will be a better estimate of the factor loading matrix since they would not be contaminated by

the zero lag correlation present in the noise. Alternatively, Barigozzi, Lippi and Luciano (2020b)

and Barigozzi and Luciani (2019b) allow for I(1) idiosyncratic noises and suggest to use the

eigenvectors of the covariance matrix of the model in �rst di�erences in order to avoid spurious

e�ects due to unit roots in the idiosyncratic noise.

As regards the initial values for the parameters of the state equation, needed for the ML

estimator, consistent estimates of the common factors based on PC can be used to determine

the dynamics of the common factors and give initial estimates for the transition matrix based on

LS estimates of these initial estimates of the common factors. For instance, Barigozzi, Lippi and

Luciani (2020b) use data on �rst di�erences to estimate the factor loading matrix but project

the levels of the series over those estimates of the factor loading matrix to get pre-estimators of

the common factors.

Alternatively, Johansen and Tabor (2017) consider a LS estimator based on using the coin-

tegration implications of the non-stationary DFM.

7.3 Speci�cation of non-stationary DFMs

As in the stationary case, we need to specify the model and write it in state space form prior to

estimation of the parameters and factor extraction. The main issue in non-stationary DFMs is

to determine the number of non-stationary and stationary common factors; see Barhoumi et al.

(2013) who review procedures for the determination of the number of factors in non-stationary

systems. It is important to note that, in empirical applications, it is often the case that the

variance associated to the non-stationary common factors is much larger than that linked to

the stationary factors and, consequently, the later ones may be di�cult to detect; see Peña and

Poncela (2006). In practice, if the number of stationary and non-stationary factors cannot be

determined simultaneously, one should �rst determine the number of non-stationary factors and,

second, determine the number of stationary common factors once the number of non-stationary

common factors is determined. In order to determine the number of factors, it is important

to consider three possible scenarios regarding the idiosyncratic components: (i) all of them are

non-stationary, (ii) all of them are stationary and (iii) a mixture of both, some of them are non-

stationary while some others are stationary. If all idiosyncratic components were non-stationary,
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CY(k)=
1

Tα

T

t=k+1

(Yt−k−Y)(Yt−Y) ✭✺✾✮
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lation analysis is that you may detect the total number of common factors independently of their

order of integration. The disadvantage of the procedure is that any remaining serial correlation

present in the idiosyncratic noise is detected as an additional common factors; see also Pan and

Yao (2008) for methods of detecting the number of common factors based on the same principle.

Apart from the previous methods that rely on analyzing the eigenstructure of certain matrices,

Bai and Ng (2004), propose a procedure, PANIC, for the number of common non-stationary

factors based on PC allowing for non-stationary idiosyncratic components as well. The procedure

is as follows: �rst, apply PC to the data in �rst di�erences and extract the common factors. The

number of common factors for stationary data can be determined applying the information

criteria of Bai and Ng (2002). Denote them by ft. Then recumulate to obtain the common

factors in levels F̂t =
∑t

s=2 fs, t = 2, ..., T . In this way, we have consistent estimates of the

common factors even though there might be unit roots in the idiosyncratic components. If there

is only one common factor, PANIC performs simple unit root test. If there are multiple factors,

Bai and Ng (2004) suggests the tests for common trends proposed by Stock and Watson (1988)

to determine the number of independent stochastic trends in the estimated r common factors;

see Harvey (1989) who also suggests using Stock and Watson (1988) to determine the number

of common trends. As regards the non-stationarity of the idiosyncratic noises, univariate unit

root tests may have low power, so they proposed to use panel unit root tests. In particular, they

propose the following test

S =
−2
∑N

i=1 logsi − 2N√
4N

where si is the p-value corresponding to the Dickey-Fuller test of the ith idiosyncratic residual.

Pooled tests could not be used in the original data because of strong cross-correlation due to

the common factors, but they can be used in the speci�c components since this strong cross-

correlation has been removed after extracting the common factors.

Finally, Nyblom and Harvey (2000) propose a test for the number of common trends based

on the Lagrange multiplier principle. The asymptotic distribution of their test statistics depends

only on the rank r1, the number of common non-stationary factors, of the covariance matrix of

the disturbances driving the N random walks.

7.4 Empirical applications of non-stationary DFMs

The number of empirical applications of non-stationary DFMs using KFS for factor extraction

is much more scarce than in the stationary case.

Many important applications of DFMs deal with real economic activity. Although the vast

majority of papers using DFMs to track and forecast the real economy use stationary DFMs, there

are a few papers that �t non-stationary DFMs using KFS procedures to extract the factors. In

general, analysts are interested in: (i) detecting the turning points of the business cycle through
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indexes of economic activity and (ii) forecasting real GDP or other variables related to real

economic activity. One of the pioneers paper is that by Quah and Sargent (1993) who use

information from a large set of cross-sectional data to track the temporal evolution of aggregate

�uctuations. They use a non-stationary DFM with annual data (T = 48) over a cross section of

N = 60 of sectoral US unemployment. This seminal paper has spurred a vast literature regarding

DFMs, stationary or not, for the analysis of the business cycle. García-Ferrer and Poncela (2002)

use a small scale factor model with stationary and nonstationary common factors to forecast real

GNP of a set of euro area countries that represent about 80% of the euro area GDP. They

�nd the DFMs outperform other forecasting alternatives. The same data set is used in Peña

and Poncela (2004) to illustrate the smaller MSEs obained with DFMs over the pooled term in

García-Ferrer et al. (1987) and univariate alternatives. They also show that the common factor

estimated as the pooling term exhibits minimum MSE if the common factor follows a random

walk. Barigozzi and Luciani (2017) use nonstationary DFMs to separate long-run from short-run

comovements in real economic activity using a large data set of US macroeconomic indicators.

Frale et al. (2011) are interested in an index of economic activity and use mixed frequency non-

stationary DFMs to build EURO-MIND, an index to track the business cycle in the euro area and

Seong et al. (2013) use the data of the four big US monthly indicators (industrial production,

employment, income and sales) and quarterly GDP to compute in-sample monthly smoothed

estimates and out-of-sample monthly forecasts of GDP. Bujosa et al. (2013, 2020) determine

non-stationary common trends based on the identi�cation procedure in Peña and Poncela (2006)

to build monthly coincident and leading indicators for the Spanish economy. They keep only

the lower frequency component in order to obtain smooth indexes with the aim of reducing the

uncertainty of the state of the economy. When building indexes of economic activity, usually

one factor models are estimated. However, Martínez, Nieto and Poncela (2016) ask the question

of which common factor should be used as the index of interest in multifactor models. They

complement the analysis comparing the peaks of the estimated common factors with those of

a reference series using Fisher's randomization test for matching pairs. They apply it to real

economic activity data in Colombia and to �nancial series from stock markets also in Colombia.

A di�erent application related with GDP can be found in Corona, Poncela and Ruiz (2020)

where non-stationary DFMs are used to detect risk sharing or the amount of GDP shocks that

are smoothed, and therefore not passed into consumption, through cross-border international

�ows.

In the nonstationary case there are also DFMs to monitor in�ation; see, for instance, Delle

Monache, Petrella and Venditti (2016).

Another set of applications is more related to �nance. Harvey, Ruiz and Shephard (1994)

�nd that two common trends explain the evoluation of volatilities of four exchange rates in the

context of multivariate stochastic volatility models. Peña and Poncela (2006) use stationary
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and non-stationary common factors to model the interest rates at di�erent maturities. Broto

and Perez-Quiros (2015) work with sovereign credit default swaps (CDS) spreads of ten OECD

economies and decompose them into a global common random walk, a speci�c random walk linked

to European peripheral countries and an idiosyncratic component in order to study contagion.

Other applications include hourly electricity prices as in Alonso et al. (2011) and Carpio, Juan

and López (2014). In demography, Ortega and Poncela (2005) use nonstationary DFMs for I(2)

time series in order to forecast fertitlity rates of Southern European countries. In environmetrics,

Zuur et al. (2003) apply nonstationary DFMs to model biomass of marine species and Nieto,

Peña and Saboyá (2016) extend the non-stationary DFM to seasonal data and apply it to monthly

measures of rainfall measured at six airports in Colombia.

8 Conclusions

Using KFS procedures for factor extraction is a powerful instrument that generates e�cient

estimates of the underlying latent factors, being able to deal in a direct way with di�erent types

of data anomalities and non-stationarities. Through the last years, some issues dealing with the

computational complexity of KFS factor extraction have been solved and the EM algorithm is

now predominant in the estimation of the parameters of DFMs even when the cross-sectional

dimension is very large. When �tting DFMs written in SSF to large systems of time series, it

is crucial to take special care of the identi�cation of the parameters and the speci�cation of the

model (mainly in cases of dynamic and non-stationary factors). Due to the importance of a

correct speci�cation of the factors, there is a need for more evaluation and testing of the model

speci�cation.
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