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Abstract: In the context of the liberalization of electricity markets, forecasting prices is essential.
With this aim, research has evolved to model the particularities of electricity prices.
In particular, Dynamic Factor Models have been quite successful in the task, both in the short
and long run. However, specifying a single model for the unobserved factors is difficult, and it
can not be guaranteed that such a model exists. In this paper, Model Averaging is employed to
overcome this difficulty, with the expectation that electricity prices would be better forecast by a
combination of models for the factors than by a single model. Although our procedure is applicable
in other markets, it is illustrated with applications to forecasting spot prices of the Iberian Market,
MIBEL (The Iberian Electricity Market) and the Italian Market. Three combinations of forecasts are
successful in providing improved results for alternative forecasting horizons.

Keywords: Dimensionality reduction; Electricity Prices; Bayesian Model Averaging; Forecast
Combination.
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1. Introduction

Nowadays, electricity trading is liberalized in most countries of the Western world. Due to
the particular characteristics of supply and demand, prediction of electricity prices in this context is
complex. Notwithstanding the difficulties, forecasts are necessary for several reasons:

• this is a strategic sector of the economy,
• there are financial implications due to the trading of forwards and options,
• forecasts help optimize and plan consumption and production.

As with other commodities, there are various ways to operate in this market (see Weron, 2014,
for a detailed market description and a thorough literature review). We focus on prices that result
from a pool in which there is a central auction. In this pool, prices could be settled for each hour of
the day, or every half hour, depending on the market.

In the first case, the 24 hourly prices for day t are cleared at the same instant in day t− 1, with
the same common information for all the hours. Therefore, for each day, a 24-dimensional vector
is generated (p1,t, p2,t, . . . , p24,t); where phour,t represents the price of hour = 1, 2, . . . , 24 at day t.
Consequently, prices can be presented in a T× 24 dimensional matrix, where T is the number of days
in the sample, and modeling should be multivariate (as in Huisman et al., 2007; Panagiotelis and
Smith, 2008; García-Martos et al., 2007; Alonso et al., 2011).

In several fields, there has been an increasing interest in the development of methodology to
deal with multivariate time series or a high dimensional vector of series like the ones in electricity
markets. By the end of the 1970s, Sargent and Sims (1977) (these authors presented a factor model
for stationary time series vectors) and Geweke (1977) were the first to propose a Dynamic Factor
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Model. Later, Lee and Carter (1992) contributed by extending the idea of Principal Components to
the dynamic case. More recently, dimensionality reduction techniques have gained popularity, in
particular since the work by Stock and Watson (2002). For example, Peña and Poncela (2004) and
Peña and Poncela (2006) extended Sargent and Sims (1977)’s model for the non-stationary case.

Regarding applications in electricity markets, García-Martos et al. (2012) extended Lee and
Carter (1992) and Peña and Box (1987) to prices with seasonality. Working with data for the
Iberian market for 2007-2009, they propose extracting common factors from the 24-dimensional price
vector, and modeling such factors as univariate seasonal AutoRegressive Integrated Moving Average
(ARIMA) processes. Another example is Alonso et al. (2011), who propose a technique called Seasonal
Dynamic Factor Analysis (SeaDFA), which involves the estimation of a Vector AutoRegressive
Integrated Moving Average (VARIMA) model for unobserved common factors having seasonal
patterns. The work in Maciejowska and Weron (2015) also uses a Factor Model, including hours
and locations.

In an independent path, Forecast Combination or Model Averaging has been developed as
a technique to take advantage of the availability of alternative forecasting approaches. This
methodology consists of weighting a set of forecasts corresponding to alternative models, and
combining them to obtain a single forecast. In this way, model selection uncertainty is incorporated.
According to Clemen (1989), ‘the idea of combining forecasts implicitly assumed that one could not
identify the underlying process, but that different forecasting models were able to capture different
aspects of the information available for prediction’. Other justifications for model averaging are:
doubts of the existence of a ‘best model’ (Sánchez, 2006), ‘portfolio diversification’, a better adaptation
to structural breaks, or to average out omitted variables bias (Bjørnland et al., 2010).

Applications of model averaging in electricity markets are given by Bordignon et al. (2013), for
the British Market, and Nowotarskia et al. (2014), for European and USA markets. Furthermore,
Raviv et al. (2015) obtain forecasts for the daily average price employing dimensionality reduction
techniques as well as Forecast Combination of several models for hourly prices. Other references are
Monteiro et al. (2015), who use averaging to obtain wind speed, solar irradiation, and temperature
forecasts, which are then employed to estimate prices; and García-Martos et al. (2015), who forecast
hourly electricity prices for the Spanish market by weighting seasonal ARIMA (with exogenous
variables) and seasonal Dynamic Factor Models of similar performance.

In spite of its advantages, a major drawback of dimensionality reduction techniques is the
uncertainty concerning the ‘correct’ model: how many factors to include, and what models they
follow. The literature is not definite in regard to the best technique for estimating the number
of underlying factors that would contain enough information to make accurate predictions, and it
should be considered that, as the number of factors included increases, so does estimation complexity
and computational burden. As previously indicated, there is not either a unique model for the factors
that outperforms all other models, in all circumstances (Weron, 2014).

In this work it is assumed that the major decisions attached to forecasting by using
dimensionality reduction techniques may be resolved in a less arbitrary way if Forecast Combination
is included. In order to follow this line of thought, alternative models, including different numbers
of common factors, are estimated. Forecasts for prices are obtained by transforming the factors’
forecasts back to the data units, according to the relations established in the dimensionality technique
employed. Subsequently, Forecast Combination approaches are used to weight each of the forecasts
obtained, and thus provide a single prediction.

Summing up, factor models extract information ex ante (before any forecast is obtained) while
Forecast Combination works ex post (after forecasts are available). The contribution of this work is
to amalgamate both techniques. A reduced number of latent unobserved variables is estimated, and
their forecasts are combined in order to obtain a single prediction.

We apply these techniques to one-day to two-month-ahead electricity prices for the Iberian spot
Market for a period of five years (2008-2012); and for the Italian spot Market for a period of three
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and a half years (mid 2009-2012). Several ARIMA specifications1 are estimated for the factors, and
used to obtain forecasts of the prices for each hour, which makes the task computationally intensive.
Next, these forecasts are combined. We study alternative ways to combine forecasts because their
performance may vary depending on the data-set. The predictions concern mainly the short and
medium-term (one and two months), but a one-year extension is presented to illustrate the potential
accomplishments in long-term forecasting.

The rest of the paper is organized as follows. Fundamentals containing a mathematical
description of the proposed methodology are presented in Section 2, which includes definitions
on Dynamic Factor Models, classical techniques for Forecast Combination, and Bayesian Model
Averaging. Section 3 describes the methodology for this paper. In section 4, we present the results of
the empirical applications. This section is divided into sub-sections presenting the data, an Analysis
of Variance (ANOVA) comparing specifications, and forecasting results. Finally, section 5 concludes
with remarks, limitations and possible extensions.

2. Fundamentals

An outline of the methodology used in this proposal is presented below, as are the drawbacks of
other approaches, which we attempt to resolve.

2.1. Dynamic Factor Model

Dynamic Factor Models (DFM) are a widely applied dimensionality reduction technique. It is
employed when the researcher believes there are fundamental factors driving several variables in a
data-set. These factors, like the variables, evolve through time, and allow to obtain information about
the larger data-set with a simpler model. The explanation here follows García-Martos et al. (2012). As
there, once the common factors are obtained, univariate seasonal ARIMA models are fitted to them.
The forecasts of these models are then combined to obtain one improved forecast.

Let yt be an N-dimensional observed time series vector, generated by an R-dimensional vector
of unobserved common factors R � N. In the Iberian and Italian electricity markets N = 24, and
the matrix of observed series has as many rows as days are considered in the historic data-set. As
in Lee and Carter (1992), it is assumed that vector yt can be written as a linear combination of the
unobserved common factors Ft, plus a vector of specific components or factors εt:

yt = ΩFt + εt, (1)

where Ω is an N× R matrix of loads relating the set of R common unobserved factors with the vector
of observed series yt (the vector of the 24 hourly prices for our application), and εt is an N-dimensional
vector of specific components.

To estimate the factors Ft, singular value decomposition (SVD) is used (as in Lee and Carter, 1992)
for the covariance of the 24 dimensional vector of centred prices (García-Martos et al., 2012). This
consists in calculating the eigevalues, and their associated eigenvectors, for the sample covariance
matrix, and thereupon calculating the matrix of common factors, f , as a linear combination of the
time series: fT×R = YT×NΩ̂N×R.

The common factors Ft may be non-stationary, including regular or seasonal unit roots
in addition to auto-regressive and moving average (regular and seasonal) components. These

1 For each one of the common factors included in the analysis 36 choices of parameters are available: p = 1, 2, 3, d = 0,
q = 1, 2, 3, P = 0, 1, D = 1, Q = 0, 1, s = 7. These pre-defined models are all automatically estimated with the software
TRAMO, by its Matlab interface, intervening outliers.
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ARIMA(p, d, q) × (P, D, Q)s models are used to obtain factors’ forecasts, and from them prices’
forecasts. For instance, the i-th factor at date t, Fit, would be modeled by

(1− L)d(1− Ls)Dφi(L)Φi(Ls)Fit = ci + θi(L)Θi(Ls)ηit, (2)

where i = 1, 2, . . . , R is the i-th factor, φi(L) = (1 − φi1L − φi2L2 − . . . − φipi L
pi ), Φi(Ls) = (1 −

Φi1Ls −Φi2L2s − . . .−ΦiPi L
Pis), θi(L) = (1− θi1L− θi2L2 − . . .− θiqi L

qi ) , and Θi(Ls) = (1−Θi1L−
Θi2L2s − . . . − ΘiQi L

Qis) are polynomials, L is the lag operator such that Lyt = yt−1. The roots of
|φi(L)| = 0, |Φi(Ls)| = 0, |θi(L)| = 0, |Θi(Ls)| = 0, satisfy the usual stationarity and invertibility
conditions, and ηit∼N(0, Wi) are uncorrelated E(ηitη

′
it−h) = 0, h 6= 0 . It is also assumed that the error

term of the common factors ηit is uncorrelated with the specific components E(ηitε
′
t−h) = 0, ∀h. ci

is the constant of the model for the common factors, and its inclusion in the common factors model
(2) can be particularly relevant to calculate long-term forecasts in the non-stationary case, which is
the case of electricity prices. Furthermore, in this work the specific components are assumed to be
independent and have no dynamic structure along them (e.g. Peña and Poncela, 2006).

It should be noticed that we work in two consecutive steps: firstly we estimate the factors f , and
secondly we estimate the ARIMA models like (2) (φ̂, Φ̂, θ̂, Θ̂ are estimated for each common factor
fi). Morever, the estimation of the first factor is the same when R = 1 or R > 1, which is natural
consequence of the SVD procedure. Nevertheless, the selection of R affects the forecasting errors for
the series. The more factors are included (greater r), the greater the variability of the data explained
by the model. The cost of incorporating more factors is an increase in the number of parameters to
estimate.

To summarize, a key stage when estimating this kind of models is the selection of the number
of common factors, R, as well as the model they follow, which implies selecting the orders:
p, d, q, P, D, Q. r could be obtained using existing tests such as the ones proposed in Peña and Poncela
(2006) or Bai and Ng (2002), and could also be selected such that diagnostic checking results2 are
reasonable (Alonso et al., 2011). However, alternative values could satisfy these criteria. Because
selecting one value for R and the other parameters will likely not render the best results in every
scenario, we will instead keep the alternatives and combine their forecasts. Forecast Combination is
presented in the following Subsection 2.2.

2.2. Forecast Combination

Empirically, the improvements of using Forecast Combination instead of a “best” model have
been shown for different types of models (for instance see Poncela et al., 2011; Kuzin et al., 2012;
Martínez-Álvarez et al., 2015), and in various research areas (Clemen, 1989; Stock and Watson,
2004). However, Weron (2014) points out that Forecast Combination techniques have not been fully
exploited for electricity prices.

In general, we can think of the combination equation as follows:

ŷC
t+h|t =

K

∑
i=1

w(h)
t,i ŷ(i)t+h|t, (3)

where w(h)
t,i is the i-th model weight at time t for the forecast horizon h, K the total number of models

considered, and ŷ(i)t+h|t the forecast obtained with the i-th model for the forecast horizon h.
Combinations will vary depending on the weights they use, and the set of models they include.

There are classical and Bayesian techniques. In the next subsections, we briefly summarize the
literature on both classical approach and an approximation to Bayesian combination, mentioning

2 Specific factors and errors of the observation equation must be uncorrelated between them, and specific factors without
any cross correlation.
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their drawbacks and advantages. This will help us justify our methodological proposal presented in
Section 3.

2.2.1. Classical techniques for Forecast Combination

One easy way to obtain Forecast Combination is the simple average, in which all alternative
forecasts are given the same weight. This approach often works very well in comparison with more
complex ones. One possible reason is that ‘complicated combining methods pursuing “optimal”
behavior often lead to unstable weights and the combined forecast even performs significantly
worse than the individual forecasts’ (Yang, 2004). Alternatively, a simple combination method
outperforming more complex ones might be explained by a larger variability of the latter (Yang, 2004).
In this regard, Bjørnland et al. (2010) advice to use a simple average when the alternative models to
combine have similar forecast error variance.

A different approach to assign weights consists of estimating weights that minimize a loss
function with the forecast error of the models to combine as explanatory variables (Elliott et al., 2006).

A further option is a combination using only the dm best models. Possible advantages of this
approach are: to reduce the variability of the combination (Yang, 2004), and to avoid under-weighting
independent information when the models are correlated (Bjørnland et al., 2010). The set dm could
change through time depending on the most recent performance of the models (Bjørnland et al.,
2010)3, or it could be fixed (Swanson and Zeng, 2001).

Another way to combine forecasts would be to employ the median prediction (Kuzin et al., 2012).
Alternatively, some authors employ a combination regression of the form

yt+h = α0 +
P

∑
i=1

αi pi,t + εt+1,

where yt+h is the forecast resulting from the combination, and pi,t are the predictions of the alternative
models. Swanson and Zeng (2001) use the Bayesian Information Criterion (BIC)(Schwarz, 1978) or the
Akaike Information Criterion (AIC) to select the best combination. There are also some drawbacks
to this regression based approach. Swanson and Zeng (2001) indicate collinearity in the competing
forecasts, and over-fitting due to outliers; Wright (2008) adds that while in-sample fit is improved,
out-of-sample prediction tends to be worse than using the average to combine.

Even using complex combinations, empirical findings in Swanson and Zeng (2001) suggest that,
in some cases, the difference between alternative combination methods is not significant, a result that
will also be obtained at points in this work.

2.2.2. Bayesian techniques for Forecast Combination (BMA)

With this approach, the predictive distribution of a new observation is obtained by averaging
with different weights the predictive distribution of each model considered. The idea was initially
introduced by Leamer (1978) and allows to incorporate the uncertainty regarding the variety of
available models (Leamer, 1978). It has been applied in statistics (Raftery, 1995; Raftery et al., 1997;
Chipman et al., 2001) and econometrics (Koop and Potter, 2003; Cremers, 2002).

According to Wright (2008), an advantage of Bayesian Model Averaging (BMA) is that ‘One
does not have to be a subjectivist Bayesian to believe in the usefulness of BMA, or of Bayesian
shrinkage techniques more generally. A frequentist econometrician can interpret these methods as
pragmatic devices that may be useful for out-of-sample forecasting in the face of model and parameter
uncertainty’.

3 These authors evaluate model performance based on the sum squared errors. The results they obtain with a time-varying
subgroup of models outperform those of the simple average of all the models.
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As Wright (2008) explains, the procedure takes under consideration a large number of alternative
models’ forecasts, assuming one of them is the ‘true’ data-generating model; however, the researcher
is unaware of which one is this. A prior regarding which model is the correct one is set, and
then a posteriori probabilities of the different models being the true one are obtained to weight the
predictions.

Alternative models’ weights can be time evolving. For instance, Billio et al. (2011) work
with weights that change depending on the predictive densities past performance and learning
mechanisms.

Following Wright (2008): let K be the total number of models M1, . . . , MK. The i-th model is
related to the vector of parameters θi. The researcher has a priori knowledge of the probability that
the i-th model is the true one, p(Mi). Then the data, D, is observed and the probability is updated by
calculating the a posteriori probability that model i-th is the true one:

p(Mi|D) =
p(D|Mi)p(Mi)

K
∑

i=1
p(D|Mj)p(Mj)

, (4)

where p(D|Mi) =
∫

p(D|θi, Mi)p(θi|Mi)dθi is the marginal likelihood of the i-th model, p(θi|Mi)

is the a priori density of that model parameters vector, and p(D|θi, Mi) is the likelihood. Inference
about a ‘future’ quantity ∆ is based on

p(∆|D) =
K

∑
i=1

p(∆|D, Mi)p(Mi|D). (5)

In particular, the mean of this posterior distribution is used as forecast. This procedure
minimizes the Mean Squared Forecast Error (MSFE). It is only necessary to specify the set of models,
their priors p(Mi), and the parameters’ priors p(θi|Mi).

A disadvantage of this approach though, is that the conditional probabilities are, in general,
unknown. Therefore, they should be estimated from the data, which could mean that any benefits of
Forecast Combination are lost.

Often, all models will have equal a priori probabilities, i.e. p(Mi) = 1/K. In this case, as Raftery
(1995) indicates, the posterior probability p(D|Mi) is proportional to exp(−(1/2)BICi). Therefore,
expression (4) can be written as follows,

p(Mi|D) ≈ exp(−(1/2)BICi)
K
∑

i=1
exp(−(1/2)BICi)

. (6)

Expression (6) is easy to calculate and no prior densities need to be set (Raftery, 1995). In this
paper, one of the Forecast Combinations will use weights obtained as indicated in expression (6).

Notice that the selection of equal a priori probabilities is motivated by the approach of using
non-informative a priori probabilities. However, other a priori probabilities can be considered and,
in such cases, expression (6) would be:

p(Mi|D) ≈ exp(−(1/2)BICi)p(Mi)
K
∑

i=1
exp(−(1/2)BICi)p(Mi)

. (7)

In this paper the goal is to derive some feasible and reasonable weights, not to estimate
conditional probabilities. Of course, it is to be expected that clever a priori probabilities produce
better weights in the sense of better forecast performance.
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3. Methodology

Taking into account the limitations of existent approaches in dimensionality reduction, most
importantly the issue of selecting a number of common underlying factors r, as well deciding for a
‘best’ model for them; and given the advantages of Forecast Combination revisited in the previous
sections, our methodological proposal consists of averaging the forecasts of alternative models for
each factor.

This allows to capture the factors underlying the behavior of large data-sets, avoiding the risk of
committing to a particularly ‘bad’ specification for them. That is why we consider that this approach
improves previously mentioned solutions to open problems described along sections 1 and 2.

The complete prediction procedure can be summarized in the following steps, repeated for each
window of time in the data-set. Notice that each window of time provides a historical data-set as well
as out of sample data with which the forecasts will be compared.

Select a window of time (considering a historical length)

Use SVD to extract estimates of the common factors, f1 and
f2 (we work with models of one and two common factors)

Estimate 36 alternative seasonal ARIMA models for each factor

Calculate forecasts employing the estimated
seasonal ARIMA models, f1,t+h and f2,t+h

Transform to competing forecasts of hourly prices
using either one factor (ŷT+h = ω1 f1,T+h) or
two factors (ŷT+h = ω1 f1,T+h + ω2 f2,T+h)

Combine forecasts according to Equation (3)

For each window of time, the factors underlying the data are estimated by means of SVD, as
explained in Section 2.1. There are as many common factors as time series in the data-set, N. However,
the purpose of applying dimensionality reduction techniques is to be able to describe the data by
means of a much smaller number of variables, thus R << N. There are many criteria for estimating
the value R that would best represent the underlying trends in the data. In this regard, a contribution
of this work is that, instead of committing to one of them, the possibility of estimating several models
is explored. For this reason, at least two settings are estimated: on the one hand r = 1, which means
that only the underlying factor most representative of the data variability is used to forecast; and on
the other hand r = 2, which means that the first and second most important underlying factors are
estimated and employed to obtain forecasts. Based on the percentage of the total variability explained
by the common factors, having up to r = 2 in the case of the Iberian data corresponds to explaining
about 80% of the total variability. However, for the Italian data we need r = 3 to achieve a similar
result in terms of the percent of variability explained. Therefore, we incorporate the option of having
up to three common factors in the models, and the steps described should accommodate a third factor
f3 for this data-set.

As indicated in the flowchart, the next step consists of estimating models for the factors. The
literature review performed in this work reveals that it is difficult, if not impossible, to find a model
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that by all criteria would outperform all others. Even more, a good fit does not guarantee an
accurate forecasting performance. To overcome these difficulties, our proposal consists of fitting
36 ARIMA specifications for each estimated factor, in lieu of selecting a ‘best’ set of parameters.
These specifications result from the following parameters: p = {1, 2, 3}, d = {0}, q = {1, 2, 3},
P = {0, 1}, D = {1}, Q = {0, 1}, s = 7. Additional values of the parameters (for example, p > 3) are
excluded because they increase the computational burden but do not provide a relevant improvement
in results.

After forecasts are estimated for all the options of factors (either one or two) and ARIMA models,
they are transformed to forecasts for the original variables, by means of a multiplication by the matrix
of weights following expression (1). This will render many forecasts for the data, which will be
combined to present with a single forecast for each variable of the original data-set.

3.1. Forecast Combinations and Accuracy Metrics

We consider five alternative combinations (2 to 6 below), and compare them to a benchmark (1
in the next enumeration):

1. Forecast resulting from the benchmark model (‘BIC-selected model’ for future reference). This is
the best model according to the BIC (has the lowest BIC). Selecting only one model is equivalent
to assigning it a weight wi = 1 in (3), and wi = 0 for all other models. The superscript (h) has been
eliminated from expression (3) because weights will not be adaptive to the forecasting horizons,
and subscript t has also been omitted to avoid confusion with time-varying weights.

2. Forecast calculated as the median of the forecasts of all the models (‘median-based combination’).
This is also a case of weights w(h)

i = 1, for the model with the median forecast, and w(h)
i = 0 for

all other models.
3. Forecast equal to the mean of all forecasts (‘mean-based combination’). In this case, expression

(3)’s weights are all equal wi = 1/K, where K is the total number of models in the analysis.
4. Forecast obtained using BIC-based weights as in expression (6) (‘BIC-based combination’). This

approach involves equal a priori probabilities. Other sensible sets of a priori probabilities were
considered, and similar results were obtained.

5. Forecast obtained with BIC-based weights for the top 50% models (‘BIC-50% combination’). In
other words, half of the models are included according to their BIC criterion wi = p(Mi|D) of
expression (6), and for the half that has the largest BIC values, wi = 0. Let us recall that the BIC
evaluates the fit of the model, not how accurate it is when used to forecast.

6. Forecast calculated as the mean of the forecasts of the top 50% models (‘mean BIC-based
combination’). Only half of the models are included (the ‘best’ half models depending on their
BIC), and the Forecast Combination is simply their average. In other words, the 50% models with
the lowest BIC are assigned weights wi = 2/K, and the 50% models with the greatest BIC are
assigned weights wi = 0.

In order to evaluate forecasts and assess the most appropriate combination, we need to define a
forecasting accuracy metric. We can evaluate the forecasts’ accuracy by means of several alternative
metrics, see Conejo et al. (2005); Hyndman and Koehler (2006); Weron (2014) for a detailed review.
Some of them are the relative forecast error, and the Mean (and Median) Average Percentage Error
(MAPE). However, these measures are not valid when the data have negative and/or positive, but
close to zero, values (Hyndman and Koehler, 2006), a frequent occurrence for many electricity markets
(Bello et al., 2016; Monteiro et al., 2015, deal with the issue of forecasting extreme prices in the Spanish
electricity market).

Therefore, we use the Mean Absolute Error (MAE) and Median Absolute Error (MedAE). They
can be obtained as follows,

MAEi
τ =

1
m

τ+m

∑
z=τ+1

(
1

24

24

∑
h=1
|(yh,z − ŷi

h,z)|) (8)
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and

MedAEi
τ =

1
m

τ+m

∑
z=τ+1

(median(|yh,z − ŷi
h,z)|)), (9)

where m is the number of days in the out-of-sample period, and τ is the last observation of the rolling
window employed to estimate the model used to compute the forecasts.

Additionally, in order to simplify the comparison between the benchmark and Forecast
Combinations the Relative MAE (RelMAE) will be computed. Following Hyndman and Koehler
(2006), we calculate it as follows,

RelMAEi
τ = MAEi

τ/MAEb
τ , (10)

where b indicates the benchmark model (BIC-selected model). As indicated in Hyndman and Koehler
(2006), whenever RelMAEi

τ < 1 the forecast provided by the i-th combination is better than the one
provided by the benchmark, and the opposite happens when RelMAEi

τ > 1.

4. Results

4.1. Data

We study two data-sets of electricity spot prices, one for the Iberian market, which includes
Spain and Portugal (July 2006 - December 2012), and the other one for the Italian market (January
2008 - December 2012). To illustrate the behavior of these prices, a few representative time series
are plotted. To the left, Figure 1a, corresponds to the Iberian market, while to the right, Figure 1b,
corresponds to the Italian market. Both figures present hours 4, 9, 12, and 20, for the last six months
of 2012. In each figure there is a common pattern in the evolution of the hourly series, which is what
the common factors attempt to capture.
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Figure 1. Electricity day-ahead prices for four representative hours during the last semester of 2012.
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4.2. ANOVA for Comparison of Alternatives for Modeling

We rely on Design of Experiments (DOE) techniques to assess which is the forecasting
methodology that produces the smallest error, measured by MAE, in the forecasts of electricity prices.
We consider the following factors:

• Logarithm: this factor has two levels, Logarithm = {No, Yes}. Logarithm = No when we use the
prices in the same way they are reported (e per MWh). Logarithm = Yes means that we work
with ln(prices). Taking logarithm has the effect of producing time series with less volatility.

• Historical Length: this factor indicates how long is the dataset employed in each rolling window.
It has two levels, Historical Length = {308 days, 548 days}. Historical Length = 308 days
indicates that the common factors are extracted from series of prices with an extension of 44
weeks (García-Martos et al., 2012). Historical Length = 548 days involves employing time series
that extend for 1.5 years, supporting the well known idea that the estimation of common factors
benefits from extensive data.

• Moving Average (MA): this factor has two levels, MA = {No, Yes}. MA = No makes reference to a
forecasting methodology in which the common factors are fitted with AutoRegressive-Integrated
(ARI) models. MA = Yes instead, allows greater complexity since in this case the common factors
are modeled as having an AutoRegressive-Integrated-Moving-Average (ARIMA) behavior.

• Forecast Combinations: this factor has six levels, Combinations = {1, 2, 3, 4, 5, 6} which were
described in Section 3.1.

To compare these features, we have performed a computational experiment in which we
computed one-day-ahead to two-month-ahead forecasts for every hour and day. This involves
estimations for every day during five years (Iberian data), or three and a half years (Italian data), long
periods of time that allow validating the results. There are 2× 2× 2× 6 = 48 treatments resulting
from combining all the levels of the aforementioned factors.

We analyze separately the performance of out-of-sample forecasts for various forecasting
horizons: one-day-ahead (forecasting horizon h = 1), one-week-ahead (h = 7), one-month-ahead
(h = 30), and two-month-ahead (h = 60). The goal is to select the treatment which results in the
smallest forecasting error possible (measured by MAE) for each of these forecasting horizons h.

Furthermore, and given the fact that forecasts have been computed for a large number of days,
the particular Day could also explain some significant part of the variability of the response variable,
MAE. For instance, if the prices in one day are rather unexpected for being too low or high, the MAE
will be large, whatever the values for Logarithm, Historical Length, Moving Average (MA), and Forecast
Combinations. Therefore, Day is considered as a block in the computational experiment. This helps
remove a likely correlation between forecasting errors.

An ANOVA with four factors and one block is conducted to compare the alternative forecasting
methodologies (see Montgomery, 1984, for a complete reference on ANOVA and Design of
Experiments).

The equation of the model is:

MAEijkld = μ + αi + β j + γk + δl + εd + uijkld, (11)

uijkld ∼ NIID(0, σ2
u),

where μ is the grand mean, and αi, β j, γk, δl , and εd are known as the main effects of the
factors Logarithm, Historical Length, Moving Average (MA), Forecast Combinations, and the block Day,
respectively. For instance, the main effect δl measures the increase or decrease of the average response
of the Forecast Combinations l = 1, 2, 3, 4, 5, 6 with respect to the average level. Similar interpretations
apply for the rest of the effects. This is related to the restrictions ∑i={No,Yes} αi = 0, ∑j={308,548} β j = 0,
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∑k={No,Yes} γk = 0, ∑6
l=1 δl = 0, and ∑D

d=1 εd = 0 (D represents the total number of days with
forecasts, this is D = 1767 for the Iberian data, and D = 1219 for the Italian data).

The noise term uijkld includes all that is not explicitly taken into account in the model, but that
somehow is able to explain some of the variability of the response variable MAEijkld.

Since it is assumed that the error term uijkld is Gaussian, independently and identically
distributed, with zero mean and variance σ2

u , once the model has been estimated, a diagnostic
checking must be performed, testing that the ûijkld are homoskedastic, Gaussian and independent,
where

ûijkld = MAEijkld − µ̂− (α̂)i − (β̂)j − (γ̂)k − (δ̂)l − (ε̂)d.

The ANOVA is conducted for each forecasting horizon, and the results are summarized in the
next Section 4.2.1, and fully described in Appendices A and B. In all the cases, the response variable
was transformed after a first attempt to fit a model to the MAEijkld because the residuals were
heteroskedastic. The results shown hereafter consider the ln(MAEijkld) as the response variable.
Given that the logarithm is a monotonically increasing function, the results can be interpreted directly,
and the best model corresponds to the smallest ln(MAEijkld), while the worst model to the largest
ln(MAEijkld).

Often, in practice the Gaussianity assumption for the ANOVA residuals does not hold.
Therefore, the p-values to assess whether the Design of Experiment factor effects are significant or
not are recalculated employing bootstrap, following Davison and Hinkley (1997). Likewise, the
confidence intervals for the mean of the main effects are obtained employing bootstrap. See Appendix
C for further detail on the bootstrap procedures employed.

4.2.1. Summarizing the Conclusions from the ANOVA

For the Iberian data-set, for all the forecasting horizons considered, taking Logarithm of prices
does not make a difference in performance. Regarding the Historical Length of the data, the short
window of 308 days is preferred for the forecasting horizons of 1 and 7-day-ahead (forecasts for
the short term) while the long window of 548 days is preferred for the forecasting horizons of 30
and 60-day-ahead (long term forecasts); this is consistent with the results in Alonso et al. (2011).
Furthermore, the Moving Average terms for the factor models are statistically significant for all
forecasting horizons, which means that modeling the common factors as ARIMA reduces the error in
comparison to modeling them as ARI.

Regarding the Forecast Combinations, the median-based combination, mean-based combination
and mean BIC-based combination result in better forecasts than the benchmark BIC-selected model
and the other combinations available for most forecasting horizons (h = 7 onward). However, it is
not clear that one of these three is best: the confidence intervals for the median-based combination,
mean-based combination and mean BIC-based combination usually overlap, indicating no significant
difference between them.

In the case of the Italian data-set, employing Logarithm = Yes contributes to reduce the
forecasting error for all the horizons considered. The Historical Length behaves differently than the
way it does for the Iberian data-set for h = 30, for which case it is convenient to set it to 308 days
instead of the 548 days that are suggested for the peninsula. MA is also a factor which contributes to
reduce the forecasting error, for any forecasting horizon considered. As it occurs with the results for
the Iberian electricity prices, Forecast Combinations 2, 3 and 6 reveal better results than the benchmark,
and it is also not clear that any of the three would be better than the other two in all scenarios.
On the contrary, Combinations 4 and 5 fail to outperform the benchmark, specially for the long-term
forecasting horizons.

For details of the ANOVA results for each forecasting horizon see Appendices A and B.
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4.3. Electricity Price Forecasting

In this section, the results of the Forecast Combinations are presented, in comparison with the
best model selected by the BIC information criterion4. Forecasts are calculated for a long period, for
each day and hour. The next paragraphs describe technical details involved in estimation. Subsection
4.3.1 sheds light on the results involved in the estimation of each rolling window and Subsection 4.3.2
presents the results for all days and hours for up to 60-day-ahead forecasts.

Prices are transformed using logarithms to mitigate the existing heteroskedasticity, present in
most commodity prices’ time series. Therefore, the series modeled are yt = ln(Pt + k), where Pt

represents the vector of 24 prices for day t, and k = 1, 000.
For medium- and long-term forecasting, forecasts of specific components are negligible.

Therefore, we do not model these, but only the unobserved common factors, which explain the larger
portion of the variability, and capture the trend of the series in the long-run. This is in line with
the results in Alonso et al. (2011). The prediction horizon will vary from 1 to 60 days, and once the
factor(s) are modeled and predicted, the loading matrix is used to obtain the forecasts of the original
24-dimensional vector of prices. Then, the out-of-sample performance of the forecasts is evaluated.

We work with rolling windows of Historical Length= 548 days, the best length for medium- and
long-term forecasts according to the previous section; and estimate one and two common factors for
the Iberian data-set, and also a third factor for the Italian data-set.

In each window, 36 alternative seasonal ARIMA(p, d, q) × (P, D, Q)s models are estimated for
each factor: p = {1, 2, 3}, d = {0}, q = {1, 2, 3}, P = {0, 1}, D = {1}, Q = {0, 1}. Weekly seasonality
is included in the model, s = 7, but yearly seasonality is not. This follows Alonso et al. (2011),
who found no improvement in the prediction error when modeling yearly seasonality in the Iberian
market, using a similar length of time for the estimation.

Therefore, in the Iberian case there are 36 models that use only one factor and 1,296 models
that use two factors; a total of 1,332 different models, depending on how many factors they include
and the parameters of the ARIMA(p, d, q)× (P, D, Q)s. For the Italian data-set, because up to three
common factors are estimated, the total number of models for any rolling window is 47,988 (36
models that use only one factor, 1,296 models that use two factors, and 46,656 models that use
three factors). These figures make it unfeasible to check the residuals’ behavior for each ARIMA
model estimated; notwithstanding, TRAMO, the software employed to calculate the ARIMA models,
estimates the p-value of the Ljung Box statistic for each model, and shows acceptable values for most
cases. Additionally, three of the five Forecast Combinations under consideration are based on BIC,
so “badly” behaved models (poor fit will be associated to a high residuals variance) will be assigned
small or negligible weights in the final forecast. Furthermore, the median-based combination is not
affected by outliers due to “badly” behaved models. Only the mean combination may be affected by
them but, based on Tables 3 and 4, median and mean combinations reveal similar results. If there were
fewer models or the analyses were limited to a shorter period, residual checking could be performed
before forecast averaging. In that case, it would be reasonable to obtain slightly better results.

Notwithstanding the large number of models, the estimation for each individual window of
time takes only a few minutes; therefore, the procedure could be used in real time. Additionally,
even though with such a large number of models some will be superfluous, the combinations that
use weights depending on the BIC will assign them nearly null weights.

For the Iberian market, the complete data-set comprises the period July, 2006, to December, 2012.
The data before 2008 is only used as historical data, therefore the first predicted day is January 1st,
2008, and the last one December 31st, 2012. Thus, there is a total of 1,767 time rolling windows,

4 This model may have one or two common factors for the Iberian data, and a third factor as well for the Italian case, and
each common factor extracted is modeled with a seasonal ARIMA model with parameters selected by BIC. The model is
selected anew in each window.
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corresponding to 1,827 days in January 1st, 2008-December 31st, 2012 minus 60 days needed for
out-of-sample data (used to compare with up to two-month-ahead forecasts). This data is provided
by the market operator, OMIE (Iberian Market Operator). For the Italian market, on the other
hand, the complete data-set includes January, 2008 to December, 2012. Therefore, the first predicted
day is July 2nd, 2009, and the last one December 31st, 2012. There are 1,219 rolling windows in
total corresponding to 1,279 days in July 2nd, 2008-December 31st, 2012 minus 60 days needed for
out-of-sample data. The prices for the Italian electricity market are available in the website of the
market operator, GME (The Energy Markets Operator).

4.3.1. Illustration for a Single Forecasting Window

Before proceeding with the presentation of the results, this subsection is used to gain insight into
the role of the common factors, as well as the forecasting combinations. With this aim, the estimation
for one window of the Iberian data-set is analyzed in further detail.

The role of the underlying factors is hereby clarified. Considering as an example the first rolling
window in the estimation for the Iberian data-set, Figure 2 presents the first and second common
factors, as well as the weights assigned to them for each of the 24 hours. For the first factor, which
explains 64.6% of the data variability, weights are heavy from hours 8 to 24, when most people are
awake. Then, it is possible to interpret that this factor mainly records the general behavior of prices
during hours when people are awake. On the other hand, the weights of the second factor are positive
from 9 to 18 and negative otherwise. This coincides with usual working hours or, alternatively,
sunlight hours. Therefore, the second factor, which accounts for 13.8% of the data variability, would
capture changes in the price relation of working vs. non working hours. Notice that some models
would include only the first factor, while others will include the first and second common factors.
Models with more factors have been excluded from the analysis for the Iberian electricity prices
(setting r ≤ 2) because already around 80% of the data variability is explained by two factors.
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Figure 2. Common factors and their weighs corresponding to the first rolling window of the Iberian
data-set, with Historical Length= 548 days.

The massive estimations performed make it unfeasible to provide with the estimation results
for each of the 1,332 models and for each of the 1,767 rolling windows of time. However, as an
illustration, for the first rolling window, taking for example the first factor and the ARIMA model of
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Figure 3. BIC criteria corresponding to models with one and two common factors of the first rolling
window of the Iberian data-set, with Historical Length = 548 days.

order p = 1, q = 1, P = 0, Q = 0, the coefficients are the following: φ = 0.7145, θ = −0.1319, both
significant.

To shed some light on how the alternative models enter the combinations, Figure 3 presents the
BIC values for the 1,332 previously mentioned models. For illustrative purposes, also the first rolling
window of the Iberian data is employed. The horizontal axis corresponds to the indexes of the models.
The first 36 values (X axis from 1 to 36) represent models with only one factor (r = 1), starting with
parameters p = 1, q = 1, P = 0, Q = 0 for X axis = 1, then p = 1, q = 1, P = 0, Q = 1 for X axis = 2,
until p = 3, q = 3, P = 1, Q = 1 for X axis = 36. X axis 37 to 1,336 correspond to models with two
factors (r = 2), we can see an important reduction of the BIC for these models. In X axis = 1, 336
the order of the ARIMA models for the two factors coincide, p = 3, q = 3, P = 1, Q = 1. For BIC
dependent combinations, the smaller the BIC value, the greater that model’s weight. In this way,
better performing models are rewarded. It is clear that there are some models with predominant low
BIC (i.e. high weights). Of course, if all considered models had poor goodness of fit, then it would be
reasonable that the combinations would inherit that bad performance. The claim in this work is that
those combinations would be, at least, as good as the best considered model.
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4.3.2. Forecasting Results

Given that, according to the ANOVA, many of the combinations resulted significantly better
than the benchmark, in this section we study more closely those improvements. As it was previously
indicated, in this section we work with DOE’s factors that have the following characteristics:
Logarithm = Yes, Historic Length = 548 days, and MA = Yes. We will consider all the Combinations.

Tables 1 and 2 present some descriptive statistics of interest for the daily average MAE
(expression (8)). As expected, the error increases with the forecasting horizon h, for all the forecasts
available, and for both markets.

For h = 1, the Combinations do not usually do better than the benchmark model, either comparing
means or quartiles. Though this may seem contradictory to the ANOVA’s findings, it is not: as
we explained in subsection 4.3.1, we are not employing the suggested values for the DOE factors
for short-run forecasts. The ANOVA’s outcomes indicate an advantage of using the short Historic
Length, which we do not do here. The reason for this is to focus on the performance of a particular
specification, which in this case reflects an interest in medium- and long-run forecasts rather than
short-run forecasts.

On the contrary, we find that, for longer forecasting horizons (h ≥ 7), the Combinations
consistently render smaller errors than the benchmark. In particular, Combinations 2, 3 and 6 perform
well in these horizons, for both data-sets.

Table 1. Descriptive statistics for MAE. Iberian Market.

Forecasting BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
horizon model Combination Combination Combination Combination Combination

mean 5.3389 5.3617 5.4107 5.3346 5.3346 5.3276
h=1 Q1 3.2591 3.2709 3.2850 3.2632 3.2632 3.2496

Q2 4.5014 4.5198 4.5973 4.4970 4.4970 4.4989
Q3 6.3009 6.3391 6.3991 6.2910 6.2910 6.2734

mean 6.3261 6.1562 6.1648 6.3142 6.3142 6.1400
h=7 Q1 3.6423 3.5485 3.5326 3.6457 3.6457 3.5344

Q2 5.1323 4.9770 4.9612 5.1261 5.1261 4.9754
Q3 7.4496 7.4044 7.3966 7.4500 7.4500 7.3105

mean 7.8677 7.5395 7.5531 7.8411 7.8411 7.4725
h=30 Q1 4.4447 4.2406 4.2163 4.4416 4.4416 4.1877

Q2 6.3851 6.1435 6.1057 6.3668 6.3668 6.0195
Q3 9.8775 9.5081 9.5525 9.8372 9.8372 9.3183

mean 9.5120 9.1545 9.1496 9.4938 9.4938 9.0772
h=60 Q1 5.2904 4.8470 4.8116 5.2651 5.2651 4.7933

Q2 7.7493 7.2159 7.2676 7.7290 7.7290 7.2704
Q3 11.5845 11.4665 11.4378 11.5386 11.5386 11.2074

For evaluating the performance of the Combinations in direct comparison to the benchmark we
use the relative MAE (RelMAE). This is presented in Figures 4a and 4b. For most forecast horizons
considered, all combinations of forecasts included hereby outperform the best factor model selected
by the BIC (RelMAE < 1). Though for the very short time, the median-based and mean-based
Combinations are worse than the benchmark, they outperform it in the medium- and long-run, which
is the aim of this section’s exercise. The mean BIC-based Combination is better than the others for all
forecasting horizons, and for both data-sets. After a certain h, the performance of the Combinations
relatively to the benchmark becomes stable as the forecasting horizon increases, an advantage when
the focus is obtaining accurate forecasts in the long-run. On the contrary, the vast majority of methods
proposed in the literature are only appropriate for short-term forecasting, because their performance
dramatically degrades when extending the forecasting horizon.
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Table 2. Descriptive statistics for MAE. Italian Market.

Forecasting BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
horizon model Combination Combination Combination Combination Combination

mean 7.7263 7.8204 7.8829 7.7198 7.7198 7.7104
h=1 Q1 4.9388 4.9486 4.9366 4.9253 4.9253 4.8800

Q2 6.5024 6.5837 6.5857 6.5053 6.5053 6.4864
Q3 9.0010 9.2146 9.3917 9.0167 9.0167 9.0471

mean 8.9553 8.8204 8.8323 8.9451 8.9451 8.7682
h=7 Q1 5.3898 5.2714 5.2710 5.3849 5.3849 5.3467

Q2 7.3988 7.2220 7.2518 7.4005 7.4005 7.2698
Q3 10.4787 10.3937 10.3449 10.5152 10.5152 10.1510

mean 10.6954 10.4080 10.4516 10.6815 10.6815 10.3378
h=30 Q1 6.3428 6.1296 6.1021 6.3335 6.3335 6.1352

Q2 8.9068 8.4948 8.5843 8.9069 8.9069 8.4545
Q3 13.1087 12.5893 12.7182 13.0952 13.0952 12.4662

mean 12.2726 11.7872 11.8268 12.2225 12.2225 11.7028
h=60 Q1 7.3961 7.2301 7.3933 7.4088 7.4088 7.2269

Q2 10.6249 10.0720 10.0532 10.5705 10.5705 10.0262
Q3 15.1359 14.2388 14.1938 14.9273 14.9273 14.1697

Table 3. Weekly, monthly, and bi-monthly MAE and MedAE for the Iberian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
MAE 5.9455 5.8690 5.8965 5.9384 5.9384 5.8397
MedAE 5.3515 5.2433 5.2677 5.3444 5.3444 5.2275

Monthly
MAE 6.9069 6.6952 6.7097 6.8934 6.8934 6.6526
MedAE 6.3635 6.1179 6.1367 6.3484 6.3484 6.0882

Bi-Monthly
MAE 7.8184 7.5456 7.5512 7.8014 7.8014 7.4867
MedAE 7.3047 7.0081 7.0157 7.2844 7.2844 6.9539

Last, in Tables 3 and 4, the MAE and MedAE for the BIC-selected model and for the alternative
Combinations are presented for weekly, monthly and bi-monthly forecasts5. Results are consistent
with those of the previous tables. Similar outcomes were obtained with a different accuracy metric,
the Root Mean Squared Error (RMSE, see Appendix D for details) (Hyndman and Koehler, 2006).

In conclusion, there is an improvement in prediction when using Forecast Combinations, specially
median-based, mean-based, and median-BIC-based Combinations, in comparison with the best model
selected according to the BIC criterion. Even though the decrease in the errors is small, it is steady,
supporting the conclusion obtained in the ANOVA, in which some combinations are statistically
significant better than the benchmark.

5 Weekly values are obtained by dividing the average of the week (the MAE of horizons h = 1 to h = 7) by the forecasting
horizon (h = 7). Similarly for the monthly and bi-monthly values.
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(a) Iberian market.
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(b) Italian market.

Figure 4. Relative MAE, forecast horizon from 1- to 60-day-ahead. Values smaller than 1 indicate a
result outperforming the benchmark.

Table 4. Weekly, monthly, and bi-monthly MAE and MedAE for the Italian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
MAE 8.5488 8.4687 8.5109 8.5418 8.5418 8.3989
MedAE 7.2800 7.2110 7.2525 7.2752 7.2752 7.1404

Monthly
MAE 9.7019 9.5744 9.6197 9.6902 9.6902 9.4794
MedAE 8.3685 8.2531 8.3021 8.3579 8.3579 8.1718

Bi-Monthly
MAE 10.6000 10.3025 10.3310 10.5779 10.5779 10.2186
MedAE 9.1880 8.9105 8.9379 9.1656 9.1656 8.8332
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5. Conclusions and further lines of research

In this paper, Dynamic Factor Models and Forecast Combination techniques have been jointly
employed to obtain predictions of spot market electricity prices in the Iberian and Italian Markets.
The main contribution consists, therefore, of combining two streams of literature in order to obtain
forecasts that outperform those resulting from the individual models. In this respect, there are
three combinations that clearly outperform the benchmark: the median-based combination, the
mean-based combination, and the mean BIC-based combination. This conclusion is supported by
the ANOVA of the combinations for forecast horizons 1-day-ahead, 7-day-ahead, 30-day-ahead and
60-day-ahead.

In the process of trying to obtain the best possible results, different aspects of the available
models were compared. In this regard, the main conclusions are that longer historic data-sets benefit
longer forecasting horizons, and the error is reduced by the inclusion of MA terms when modeling
the unobserved factors (vs. AR models).

This application reflects how the methodology works in empirical applications. The numerical
results for electricity prices, which is a difficult to predict series, are good. An effort has been made
to obtain the results for many time horizons (h = 1 to h = 60), for every day and during several
years, and considering several models for the factors, enhancing the validity of our proposal. In order
words, forecasts are obtained for the very short (one day) and short term (a few days ahead), like most
of other works, as well as for the medium term, which is an extension not customary in the literature.
As previously explained, this approach can be employed to obtain long term forecasts (even up to a
year) not experiencing a degradation of accuracy, which is a drawback that most applications suffer
from.

Numerous lines of research remain open in relation with this topic. For instance, in this work,
few techniques for combining forecasts are employed besides the mean, and weights depend on
the overall performance of the particular model to be used in the combination in terms of the
BIC information criterion. However, there are several other, Bayesian and classical techniques to
determine such weights. In particular, it would be interesting to compare the performance of both
types of techniques. Moreover, in this article we have worked with fixed weights; however, these
could change in a predefined way for different forecasting horizons. Furthermore, weights could be
adaptive to the performance of the models (as in Sánchez, 2006).

The use of ARIMA models for the common factors allows to maintain the number of parameters
to estimate low, but it may also signify a constraint in the improvement that can be achieved from
the combinations of forecasts. A future line of work would be to include other models for the factors,
such as the SeaDFA, which assumes that vector Ft follows a VARIMA model, or the Generalized
AutoRegressive Conditionally Heteroscedastic (GARCH)-SeaDFA.

It is also left for future work to incorporate in the Forecast Combination other forecasting
methods, not necessarily involving DFM. For example, the predictions obtained by García-Martos
et al. (2007) mixed model, which presents extremely accurate short-term predictions for the Iberian
market. With weights evolving for different time-horizons, including this model for short-term
predictions could improve the results.

A further improvement could consist of employing explanatory variables that drive spot prices
in the models. Some examples of these variables are demand, weather conditions, fuel prices,
production by technology, and excess capacity. Interesting references are Bello et al. (2016), Monteiro
et al. (2015), and Di Cosmo (2015). However, it would be necessary to assess if the uncertainty in
the prediction of the explanatory variables does not outweigh the improvement in the forecast of the
price. In a similar line of research, regime switching models could be employed to deal with spikes
in the price series.

Last, bootstrap procedures could be used to obtain confidence intervals of the predictions and in
this way assess the uncertainty involved in the forecasts.
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Table A1. Summary of results of the Analysis of variance for ln(MAE) for all forecasting horizons.
Iberian market.

h = 1 h = 7 h = 30 h = 60

Logarithm ns ns ns ns
Hist Length (days) 308 308 548 548
MA Yes Yes Yes Yes
Combinations {6} {2, 3, 6} {2, 3, 6} {2, 3, 6}

Notes: Significance level of at least α = 0.01. ns: not significant.

Table A2. Analysis of variance for ln(MAE). Main effects. Forecast horizon h = 1, Iberian market.

Source DF Sum of Squares Mean Square F-ratio P-value

Logarithm 1 0.02 0.02 0.67 0.4331
Hist Length 1 1.56 1.56 59.45 0.0020
MA 1 111.24 111.24 4240.25 0.0020
Combinations 5 0.35 0.07 2.70 0.0140
Day 1766 22166.97 12.55 478.46 0.0020
Residuals 83041 2178.51 0.03

Notes: DF stands for Degrees of Freedom. All F-ratios are based on the residual mean square error. P-values are estimated by bootstrap.
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Appendix A

Appendix A.1. Details of ANOVA for a Comparison of the Alternatives for Modeling. Results for the Iberian
Electricity Market.

In this section, we describe in detail the results for the ANOVA performed for the forecasting
horizons h = 1, 7, 30, 60, for the data-set of prices in the Iberian electricity market. In order to be
robust against departures from the Gaussianity assumption, we employ bootstrap to calculate the
ANOVA’s p-values, as well as the confidence intervals for the means of the DOE’s factors.

Table A1 presents a summary of the results described in the following sections. For each DOE’s
factor it indicates the best level. For instance, for h = 1, Historical Length= 308 days outperforms the
alternative Historical Length= 548 days. We work with ln(MAE) as dependent variable in order to
eliminate heteroskedasticity.

Appendix A.1.1. Minimizing Forecasting Error for One-Day-Ahead Forecasts (h = 1)

To assess the results for one-day-ahead forecasts (h = 1), see Figure A1 and Table A2. In
Figure A1, the horizontal axis presents the alternative values of the DOE’s factors (Logarithm, Historical
Length, Moving Average, Forecast Combinations), and the vertical axis shows the logarithm of MAE
corresponding to the means and 95% confidence intervals.

The effect of DOE factor Logarithm is not significant. On the contrary, when considering Historical
Length, we can see a significant difference: using the short historic window gives significantly better
forecasts in terms of forecasting accuracy - a smaller MAE - than using the long historic window
(548 days). Regarding the Moving Average component, significantly better results are obtained when
incorporating an MA term in the model of the unobserved common factors (the alternative being
modeling as ARI). Last, Forecast Combination 6 (mean BIC-based combination) outperforms most of
the others.
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FigureA1.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=1,

Iberianmarket.

TableA3.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=7,Iberianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 0.07 0.07 2.66 0.1218
HistLength 1 0.60 0.60 23.07 0.0020
MA 1 7.71 7.71 295.44 0.0020
Combinations 5 8.37 1.67 64.18 0.0020
Day 1766 25363.03 14.36 550.59 0.0020
Residuals 83041 2166.09 0.03

Notes:DFstandsforDegreesofFreedom.AllF-ratiosarebasedontheresidualmeansquareerror.P-valuesareestimatedbybootstrap.

AppendixA.1.2. MinimizingForecastingErrorforSeven-Day-AheadForecasts(h=7)

TableA3andFigureA2presenttheresultsforseven-day-aheadforecasts(h=7).Therearethree

ForecastCombinationswhichoutperformthebenchmark:2,3and6.Furthermore,thereisasignificant

differencebetweenthetwovaluesforHistoricalLength:employinghistoricdata-setsof308days

provideswithsignificantlybetterforecaststhan548days.Significantlybetterresultsareobtained

whenincorporatingaMovingAveragecomponentintheunobservedcommonfactors’models.Last,

theeffectofLogarithmcontinuestobenotsignificant.

AppendixA.1.3. MinimizingForecastingErrorforOne-Month-AheadForecasts(h=30)

Detailsontheresultsforthirty-day-aheadforecasts(h= 30)canbefoundinTableA4and

FigureA3. ForForecastCombinations, weobtainsimilarresultstoh= 7. Contrarytoshorter

forecastinghorizons,theHistoricalLengthof548dayspresentssignificantlybetterforecaststhanthe

shorterwindow,anintuitiveresult. Again,significantlybetterresultsareobtainedwithaMoving

Averagecomponentinthemodelforunobservedcommonfactors.TheeffectofLogarithmcontinues

tobenotsignificant.
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FigureA2.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=7,

Iberianmarket.

TableA4.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=30,Iberianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 0.01 0.01 0.33 0.5669
HistLength 1 19.90 19.90 458.58 0.0020
MA 1 10.34 10.34 238.25 0.0020
Combinations 5 11.35 2.27 52.31 0.0020
Day 1766 24319.88 13.77 317.31 0.0020
Residuals 83041 3604.00 0.04

Notes:DFstandsforDegreesofFreedom.AllF-ratiosarebasedontheresidualmeansquareerror.P-valuesareestimatedbybootstrap.
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FigureA3.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=30,

Iberianmarket.

TableA5.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=60,Iberianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 0.01 0.01 0.15 0.6946
HistLength 1 126.98 126.98 2359.20 0.0020
MA 1 6.73 6.73 125.11 0.0020
Combinations 5 20.82 4.16 77.37 0.0020
Day 1766 25660.02 14.53 269.97 0.0020
Residuals 83041 4469.42 0.05

Notes:DFstandsforDegreesofFreedom.AllF-ratiosarebasedontheresidualmeansquareerror.P-valuesareestimatedbybootstrap.

AppendixA.1.4. MinimizingForecastingErrorforTwo-Month-AheadForecasts(h=60)

Thelongestforecastinghorizonconsideredinthisassessmentissixty-day-ahead(h=60).The

resultsarepresentedinTableA5andFigureA4. Asforh= 7andh= 30,weobtainthatthe

threemostsuccessfulForecastCombinationsare2,3and6.EmployingaHistoricalLengthof548days

provideswithsignificantlybetterforecastsintermsofforecastingaccuracythanusingtheshorter

option.Additionally,significantlybetterresultsareobtainedwhenincorporatingaMovingAverage

componenttomodeltheunobservedcommonfactors.Last,thereisnochangewithrespecttothe

conclusionsforLogarithm.

AppendixB.

AppendixB.1. DetailsofANOVAforaComparisonoftheAlternativesforModeling.ResultsfortheItalian
ElectricityMarket.

Inthissection,wedescribeindetailtheresultsfortheANOVAperformedfortheforecasting

horizonsh=1,7,30,60,forthedata-setofpricesintheItalianelectricitymarket.Inordertobe
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FigureA4.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=60,

Iberianmarket.

TableB1.SummaryofresultsoftheAnalysisofvarianceforln(MAE)forallforecastinghorizons.

Italianmarket.

h=1 h=7 h=30 h=60

Logarithm Yes Yes Yes Yes
HistLength(days) 308 308 308 548
MA Yes Yes Yes Yes
Combinations {2:6} {2:6} {2,3,6} {6}

Notes:Significancelevelofatleastα=0.01.ns:notsignificant.

robustagainstdeparturesfromtheGaussianityassumption,weemploybootstraptocalculatethe

p-valuesoftheanalysis,aswellastheconfidenceintervalsforthemeansoftheDOE’sfactors.

TableB1presentsasummaryoftheresultsdescribedinthefollowingsections.Noticethatwe

workwithln(MAE)fordependentvariableinordertoeliminateheteroskedasticity.

AppendixB.1.1. MinimizingForecastingErrorforOne-Day-AheadForecasts(h=1)

Fortheshortestforecastinghorizonconsidered(h=1),weobtainthatallthefactorsincluded

intheDOEaffecttheforecastingerrormeasuredbyln(MAE)(seeTableB2).FigureB1presents95%

confidenceintervalsshowingtheeffectoftheDOEfactorsinthemeanofln(MAE).Betterresults

areobtainedwhenthedependentvariableisln(Prices)ratherthanPrices,andalsowhentheshort

HistoricalLengthisused.EmployingARIMAmodelsforthecommonfactorsinsteadofARImodels

alsoresultsinasmallerforecastingerror.WefindthatalltheForecastCombinationsproposed,specially

6,turnouttoprovidesignificantlybetterresultsthanthebenchmark(presentedasCombination1in

theplot).
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TableB2.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=1,Italianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 49.61 49.61 1092.13 0.0020
HistLength 1 25.78 25.78 567.39 0.0020
MA 1 220.14 220.14 4846.00 0.0020
Combinations 5 5.66 1.13 24.91 0.0020
Day 1218 12469.53 10.24 225.36 0.0020
Residuals 57285 2602.32 0.05

Notes:
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FigureB1.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=1,

Italianmarket.
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TableB3.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=7,Italianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 17.17 17.17 530.14 0.0020
HistLength 1 10.42 10.42 321.78 0.0020
MA 1 60.84 60.84 1878.39 0.0020
Combinations 5 10.03 2.01 61.94 0.0020
Day 1218 13982.28 11.48 354.44 0.0020
Residuals 57285 1855.34 0.03

Notes:
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FigureB2.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=7,

Italianmarket.

AppendixB.1.2. MinimizingForecastingErrorforSeven-Day-AheadForecasts(h=7)

Forh=7,allthefactorsincludedintheDOEaffecttheforecastingerrormeasuredbyln(MAE)

(seeTableB3). TheconfidenceintervalsshowingtheeffectoftheDOE’sfactorsinthemeanof

ln(MAE)arepresentedinFigureB2.Similarresultstoh=1areobtainedforLogarithm,Historical

Length,MovingAverage,andForecastCombinations.EspeciallyForecastCombinations2,3and6,turnout

toprovidesignificantlybetterresultsthanthebenchmarkForecastCombination1.

AppendixB.1.3. MinimizingForecastingErrorforOne-Month-AheadForecasts(h=30)

Forh= 30,weobtainsimilarresultstothosepresentedforshorterhorizons(seeTableB4).

FigureB3presentstheconfidenceintervalsshowingtheeffectofthefactorsinthemeanofln(MAE).

InthecaseofForecastCombinations,4and5nolongerprovideasignificantadvantage.
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TableB4.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=30,Italianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 21.23 21.23 453.13 0.0020
HistLength 1 6.21 6.21 132.49 0.0020
MA 1 140.73 140.73 3004.28 0.0020
Combinations 5 2.36 0.47 10.09 0.0020
Day 1218 13557.33 11.13 237.62 0.0020
Residuals 57285 2683.40 0.05

Notes:
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FigureB3.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=30,

Italianmarket.
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TableB5.Analysisofvarianceforln(MAE).Maineffects.Forecasthorizonh=60,Italianmarket.

Source DF SumofSquares MeanSquare F-ratio P-value

Logarithm 1 5.21 5.21 110.18 0.0020
HistLength 1 1.93 1.93 40.86 0.0020
MA 1 83.70 83.70 1770.80 0.0020
Combinations 5 1.69 0.34 7.17 0.0020
Day 1218 13013.62 10.68 226.05 0.0020
Residuals 57285 2707.58 0.05

Notes:
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FigureB4.Bootstrapconfidenceintervalsforthemeanln(MAE)ofthefactorsLogarithm,Historical

Length,MovingAverage,andForecastCombinations.ForecastCombinationsinclude:(1)benchmark

BIC-selected model,(2) median-basedcombination,(3) mean-basedcombination,(4)BIC-based

combination,(5)BIC-50%combination,(6)meanBIC-basedcombination.Forecasthorizonh=60,

Italianmarket.

AppendixB.1.4. MinimizingForecastingErrorforTwo-Month-AheadForecasts(h=60)

Forthelargestforecastinghorizonconsidered(h=60)weobtainthatallthefactorsincluded

intheDOEarestatisticallysignificant(seeTableB5).FigureB4presentstheconfidenceintervals

showingtheeffectofthefactorsinthemeanofln(MAE). Betterresultsareobtainedwhenthe

dependentvariableisln(Prices)insteadofPrices,andalsowhenthelongHistoricalLengthisused,

contrarytowhatwasfoundinthepreviousforecastinghorizonsbutsupportedintheliterature.

SettingMovingAverage=’Yes’stillimprovestheresults.WecontinuetofindthatForecastCombination6

providessignificantlybetterresultsthanthebenchmark(Combination1inthefigure),butthebenefits

ofusing2and3arenotasstrongaswithh<60.

AppendixC.ANOVABootstrapProcedures

DavisonandHinkley(1997)indicatethatwhenwehavedoubtsabouttheaccuracyofthenormal

approximation,theempiricaldistributioncanbeafairerapproximationofthedistributionofthe

parameterofinterest.Asanadvantage,wedonotneedtoknowthedistributionoftheunderlying

parameterinordertoemploybootstrapprocedures.
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Appendix C.1. Bootstrap Procedure to Calculate ANOVA P-values

The ANOVA performed relies on the assumption that the residuals uijkld of expression (11) are
normally distributed. When the data is normally distributed, the Sum of Squares has a χ2 distribution,
and the quotient of Mean Squares follows a distribution Fisher-Snedecor (we call this statistic F-ratio).
The lack of normality in uijkld results in an F-ratio that will most likely not have a Fisher-Snedecor
distribution; therefore, the p-value, determined as Pr(F−ratio≥ Fn1,n2,α)6, is no longer accurate. To
avoid complicating notation, we keep using the denomination F-ratio even if this statistic does not
have a Fisher-Snedecor distribution.

To be robust to departures from the Gaussianity assumption, we calculate the ANOVA p-values
employing bootstrap, according to the following steps. We use the DOE factor Logarithm for
illustrative purposes, but the procedure is the same for all the factors considered.

1. We estimate model (11), obtaining estimates ûijkld and the F-ratio of the ANOVA.
2. We would like to test if there is an effect to taking logarithm of prices. In other words, is there a

difference in the forecasting error of setting Logarithm = No vs. Logarithm = Yes? This translates
in the null hypothesis H0 : αNo = αYes. We estimate (11) under null hypothesis H0 and obtain
estimates µR, βR

j , γR
k , δR

l and εR
d , where R stands for ‘restricted’ model.

3. We generate synthetic samples for the ln(MAE); each bootstrap replication needs to satisfy the
null hypothesis, though employing a random sample of the unrestricted model’s estimated
residuals, û∗ ijkld. The replications are independent, and the random samples (with replacement)
of û∗ ijkld have the same size as the original data-set.

ln(MAE∗ijkld) = µR + βR
j + γR

k + δR
l + εR

d + û∗ ijkld. (12)

4. For each bootstrap replication we re-estimate model (11) to the synthetic data ln(MAE∗ijkld) and
save the statistic F∗b -ratio, where the sub-index b = 1, ..., B represents each of the B bootstrap
replicas.

5. We obtain the Monte Carlo p-value as indicated in Davison and Hinkley (1997),

p̂∗ =
1 + #{F∗b ≥ F}

B + 1
, (13)

where #{·} indicates the number of times the event in braces occurs. We employ B = 500
bootstrap replications.

Appendix C.2. Bootstrap Procedure to Calculate ANOVA Main Effects Confidence Intervals

Also to permit departures from Gaussianity, the confidence intervals for the main effects need
not be estimated with the parametric formula employed for normal data. Instead, we recur to a Monte
Carlo simulation of the bootstrap. The procedure is the following.

1. We estimate model (11), obtaining estimates for the residuals, ûijkld.
2. For each bootstrap replication, we obtain a random sample of ûijkld, and generate a data-set

ln(MAE∗ijkld) = µ + αi + β j + γk + δl + εd + û∗ijkld, (14)

3. We use each simulated sample to estimate the ANOVA and obtain the estimates for each value
of the factors Logarithm, Historical Length, MA, and Forecast Combinations.

6 Fn1 ,n2 ,α is such that Pr(F > Fn1,n2,α) = α when F follows the Fisher-Snedecor distribution with n1 and n2 degrees of
freedom.
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4. We work with B = 500 replications to obtain a bootstrap distribution for the mean ln(MAE)
at each level of the factors of the DOE. We use the bootstrap percentile interval (Davison and
Hinkley, 1997, chapter 5) to calculate 95% confidence intervals for the mean levels of each factor,
by employing the 2.5 and 97.5 percentiles of the estimates of all the bootstrap replications.

Appendix D. Combinations and Benchmark Comparison Employing the RMSE

In this section, we present the results analogous to Tables 3 and 4, but employing a different
accuracy metric, the Root Mean Squared Error. We obtain similar results to those for the MAE: for both
data-sets, Forecast Combinations median-based, mean-based, and specially mean-BIC-based, report
noticeable improvements with respect to the benchmark BIC-selected model.

Table D1. Weekly, monthly, and bi-monthly RMSE for the Iberian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
RMSE 7.1468 7.0810 7.1103 7.1389 7.1389 7.0393

Monthly
RMSE 8.1668 7.9612 7.9721 8.1533 8.1533 7.9052

Bi-Monthly
RMSE 9.1352 8.8689 8.8705 9.1189 9.1189 8.7971

Table D2. Weekly, monthly, and bi-monthly RMSE for the Italian Market.

BIC-selected Median-based Mean-based BIC-based BIC 50% Mean-BIC-based
model Combination Combination Combination Combination Combination

Weekly
RMSE 10.6280 10.5466 10.5937 10.6194 10.6194 10.4675

Monthly
RMSE 11.9479 11.8175 11.8685 11.9353 11.9353 11.7096

Bi-Monthly
RMSE 12.9861 12.6656 12.6981 12.9637 12.9637 12.5709
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