
( 

Working Paper 93-13 Departamento de Estadfstica y Econometrfa 

Statistics and Econometrics Series 11 Universidad Carlos III de Madrid 
May 1993 Calle Madrid, 126 

28903 Getafe (Spain) 

Fax (341) 624-9849 

A DECISION THEORETIC ANALYSIS OF THE UNIT ROOT HYPOTHESIS� 

USING MIXTURES OF ELLIPTICAL MODELS� 

Gary Koop and Mark F.J. Steel-�

Abstract _ 
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on general elliptical densities; ii) allowing for structural breaks to occur; Hi) allowing for moving 
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The economic literature devoted to the issue of unit roots in economic time series 

has grown immensely since the seminal papers of Dickey and Fuller (1979) and Nelson 

and Plosser (1982). Although the majority of the literature assumes a classical 

ec()nometric perspective, a growing Bayesian unit root literature has emerged (see DeJong 

and Whiteman (1991a,b), Phillips (1991), Sims (1988), Koop (1991, 1992), Schotman 

and van Dijk (1991a,b), Wago and Tsurumi (1990), Zivot and Phillips (1991». In many 

cases, Bayesian results differ substantially from their classical"counterparts. 

This paper makes a contribution to this growing body of Bayesian unit root 

literature. It considers more general classes of models and methods of drawing inferences 

than are presently used. The paper uses models that are mixtures over various submodels 

with general elliptical distributions that differ in both their covariance structure and their 

treatment of structural breaks. The resulting mixed model is very flexible and 

encompasses a wide variety of dynamic structures. In addition, the paper uses a formal 

decision theoretic framework based on predictive means and variances and the 

conservative notion that it is worse to underestimate than to overestimate predictive 

variances. This approach accords naturally with a Bayesian paradigm and provides an 

explicit forum for choosing between stationary, unit root, and explosive models. 

Our approach is applied to the fourteen Nelson-Plosser data series (see Data 

Appendix). Results indicate that, although the probability of trend-stationarity is high for 

most series, our decision analysis often selects the unit root model. 

Section 1 of the paper introduces our hypothesis of interest and the methodology 

we use to test it. Section 2 discusses the sampling model, Section 3 the prior density, and 

Section 4 the posterior density. Section 5 treats the decision problem while Section 6 

applies the methods to the extended Nelson-Plosser data set. Section 7 concludes. 

Section 1: What Are We Testing? 

Our aim is to determine whether a unit root is present, ie. to test an exact 

restriction. One obvious way is to calculate posterior odds comparing the model with a 

unit root imposed against the unrestricted model. This method requires that an informative 

(Proper) prior be placed over p, the coefficient which equals one under a unit root. Koop 

(1991, 1992) calculates posterior odds using informative natural conjugate priors. 

Schotman and van Dijk (1991a) use proper priors that require less subjective prior input 
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but at the cost that their priors are data-based. 

Rather than test explicitly for a unit root, an alternative methodology (DeJong and 

Whiteman (1991a,b) and Phillips (1991» is to calculate the posterior probability that p is 

in some region near 1. This method has the advantage that proper priors are no longer 

necessary and thus the analysis may be made more "objective". The disadvantage is that 

the definition of p as "close to one" is highly subjective. By way of example, consider 

calculating the probability that Ip I~ .975 and Ip I~ 1. The' former is highly subjective 

whereas the latter is suitable for testing for nonstationarities (ie. unit root or explosive 

behavior) but not for the presence of a unit root pe·, se. In this paper, we use proper 

priors on p which allow us to compute posterior odds for the exact unit root null. 

Furthermore we use a decision theoretic framework to carry out the unit root tests. 

The loss function used in the decision analysis is based on predictive behavior which can 

differ crucially for stationary (HI: Ipl < 1), unit root (H2: p=I), and explosive (H3: 

Ipi> 1) models. Our decision problem will be set up with respect to these three regions 

for p. 

Section 2: The Likelihood Function 

Bayesian methods require the specification of a likelihood function. Phillips (1991), 

for example, bases his likelihood function on the following specification: 

i-I 

Y,= /J+$t +PY,-I +L fI>,A.Y,_/+8, (1) 
/-1 

with 8t LLd. N(0,T·2), while DeJong and Whiteman (1991a) use a different parameterization. 

Since analytical results cannot always be obtained for their pararneterization and extensive 

Monte Carlo integration is required, Phillips' parameterization is preferred (see Phillips 

(1991». In the empirical section we use Phillips' parameterization and set k=3. 

We expand the class of considered likelihoods by relaxing i) the normality and ii) the 

LLd. assumption; and Hi) by allowing for structural breaks (perron (1989), Banerjee, 

Lumsdaine and Stock (1990) and Zivot and Phillips (1990». We let y (where y=(Yh·",YT)') 

have any density within the class of multivariate elliptical densities, and thereby cover such 

densities as the multivariate normal, multivariate-t and Pearson type-no Moreover, we allow 

the covariance matrix to take the form T·
2V(1J), where V(1J) is any positive defmite symmetric 
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matrix pararneterized by a finite vector 'I. Techniques for handling extensions i) and ii) are 

des,cribed in Osiewalski and Steel (1993a,b). 

In this paper, no single model need be selected for final analysis. Several different 

stmctural breaks and structures for V(f1) can be chosen, and a supermodel, which is a finite 

(� mi:cture of the various submodels, used. We allow V(f1) to have various structures in the 

ARMA class. The motivation behind the inclusion ofa moving average component is discussed 

in :Schwert (1987). 

Formalizing the ideas described in the preceding paragraphs, we begin with the model 

with no structural breaks (MN)' We mix over m different correlation structures so that each 

individual model is labelled MNi (i=l, ... ,m). For each model MNi we take: 

P(y I BN ,r2 ,f1,Y(0) ,MN/) = I r-2vN/(f1) 1-112 

(2)"'. gN/[ (y-hNj(BN ) ) 'r 2vN: ('I) (y-hN/(BN) ) ] 

where gNi(')� is a nonnegative tunction which satisfies (for all i and T),
T I 

Iu"- gNj(u) du=r(T/2) 71-m • (3) 

In I:>ther words, we assume y has a T-variate elliptical density (see, for instance, Dickey and 

Chen (1985) or Fang, Kotz and Ng (1990». Note that (3) is a necessary and sufficient 

condition for (2) to be a proper density, Y(O) is the vector of initial observations (Yl-k, •.• ,Yo)' , 

and hNi(BN) is a vector of length T with property: 

k-I 
[hN/(BN ) ],=� IJ+{3t+PY,-I+L,lPjJ1Y,-r 

j-I 

Since we assume this function to be identical for all covariance structures, we drop the i 

subscript and write: 

(4) 

where 

Y-I=(YO'Y"··· 'YT-I)', 
xN=(xt,···,x:)', 
X~=(l,t,J1y,_.,••• ,J1Y,_k+I)', 
aN= (IJ, (3, lP., ••• , lPk-I)'= (IJ,{3, lP')', 

and hence BN = (P, aN')" For future reference we define: 
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The model without structural breaks (MN) is then given by the mixture of the 

probabilities in (2) over the m covariance structures: 

P(y I 0N,1 2 ,fJ,6,y(O) ,MN) 
III 

2 
(6) 

=E6i P(Y 1 0N,1 ,fJ'YcO),MNi ), 
i-I 

where °= (Oh""OoJ' is a vector of mixing parameters with Oi~O and EOj=1. 

We obtain the model with structural breaks (Ms) by mixing over various covariance ) 

structures G= 1, ... ,m) and breakpoints (q=1,... ,T-1). Note that we use the same covariance 

structures as in the previous model. Although not necessary, doing so simplifies the notation 

such that VNi=VSj=Vj for i=j. Moreover, we conceptually allow for the structural breaks . ) 

to occur at any point in our sample. Two types of structural breaks, level breaks and trend 

breaks, can occur at any time q= 1, ... ,T-1. Perron (1989) argues for the presence of a level 

break in 1929 and a trend break in 1973 for most D.S. macroeconomic time series. To reduce 
)

the burden of computation only the latter two breaks are included in the empirical analysis 

although the general notation is retained throughout this section. 

Note that we could compute the posterior probability ofa model with a particular break 

at a particular time against any other structural break model (or the model without structural .) 

breaks). Thus, we could let the data decide which breakpoints should be favored. However, 

in practice, we limit ourselves to those breakpoints which we consider reasonable from an 

economic point of view (thus substantially reducing computational effort). 

Ms is a mixture over models with different structural breakpoints and covariance 

structures (MSjq)' Note that each of these submodels has the likelihood function: 

1 

P(y lOs, 1 2,fJ,YCO) ,M~q) = 1 1-\1}(fJ) 1-" (7) 
gSjq [ (y-h~q (Os) ) '1\1}-1 (fJ) (y -hoVq (Os) ) ] 

where gSjq(') satisfies (3) for all j, q and T, and 

We define 
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and X~ = (DU(q)., DT(q)J',� 

where DU(q)t = 1 if t>q and 0 otherwise (level break)� 

and DT(q)t = t-q if t>q and 0 otherwise (trend break)� 

Furthermore aD = (d,.,dp)' and hence� 

( 

In this setup (J.=(P as')' =(p aN' aD')' =(~' aD')' and the structural break models have two 

parameters more than those lacking structural breaks. In our empirical setup we restrict d,. 

to be zero for 1973 and take dp to be zero for 1929, leaving just one parameter in aD for each 

of the structural break models. For future reference we define 

(8) 

Thle overall model (Ms), mixed over structural breaks and covariance structures, is: 

P(y I (Js,1 2 ,TI,'Y,"'Y(0) ,Ms) 
m T-I (9)

2=L 'YJL "q P (y I (Js, 1 , TI, Y(O) , MSJq) 
J-I q-I 

where'Y = ('Yh ... ,'YaJ' and " = ("I""'''r-I)' are mixing parameters with 'Yj, "q ~ 0 V j, q 

and I: 'Yj = I: "q = 1. 

Finally, we mix over the no-structural-break and structural-break models to obtain the 

sampling model 

m 

P(y I (Js,1 2 ,TI,'A,6,'Y,"'Y(O) )='AL61 P(y I (IN,1 2 ,TI,Y(0) ,MN/) 
I-I ( 10)

m T-I 
2+ (1-'A) L 'YJL "q P (y I (Js, 1 , TI, Y(O) , MSjq) 

J-I q-I 

with 0 S; 'A S; 1. 

To summarize: (10) is the overall sampling model to be used in this paper. It mixes 

ovc~r two models, one with and one without structural breaks. We weight the model with no 

structural breaks over covariance structures (see (6» and the model with structural breaks over 

covariance structures and structural breakpoints (see (9». Each of the mT submodels in (10) 

earl have a different type of elliptical density. Not only do our likelihoods allow for normal, 

Cauchy and Student t densities, but for densities with truncated tails (eg. Pearson type-II 

densities) as well. 
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It remains to specify the choices for V;(''1)' Since most, if not all the residual 

autocorrelation will be removed by including the lagged AYes in the model, Vj is restricted 

to two choices (m=2): V1 = IT and V2 = (1 + 7J2)IT­ 'lA, where 7JE(-I,I) and A is a 

tridiagonal matrix with 2's on the diagonal and -1 's on the off-diagonal. In other words, we 

allow the errors to be uncorrelated (which, for only the normal distribution, implies 

independence) under V1 and to exhibit MA(1) behavior under V2. Choi (1990) argues that 

ignoring the MA(1) component of the errors results in a bias in classical estimates of p equal 

to 7J(1-p)/(1 +'1) for infinite k which tends to drive results towards the unit root for '1 > O. 

Section 3: The Prior Density 

A controversy surrounding the use ofBayesian methods is the role ofprior information. 

Many researchers use priors that are noninformative or objective in order to avoid the issue 

(see DeJong and Whiteman (1991a,b), Koop (1992) and Phillips (1991». Koop and Steel 

(1991) discuss the hazards involved in the use of such "objective" priors. Moreover, improper 

noninformative priors make it impossible to calculate posterior odds required to test for unit 

roots (see Section 1). For the reasons noted, noninformative priors for p are not used in this 

paper. 

An alternative, following Schotman and van Dijk (1991a) and Koop (1991), is to 

introduce explicit prior information into the analysis. Schotman and van Dijk minimize the 

amount of subjective prior information by allowing the prior to depend on the data, an 
) 

approach which violates the likelihood principle and thus is avoided here. Koop (1991) uses 

natural conjugate priors centered over the unit root restriction and performs a sensitivity 

analysis with respect to the prior covariance matrix of the regression parameters. In this paper 

a prior is used which is uniform in log(T­2) and in the regression parameters other than p. As 

well as being improper, the prior is noninformative in certain dimensions in that the posterior 

is proportional to the likelihood function. However, before posterior odds can be calculated 

the prior must be made proper in the remaining dimensions by bounding it, for example. A 

sensitivity analysis can easily be performed over the choice of bounding region. These steps 

are formalized in the remainder of this section. 

The prior density for the parameters of the sampling model can be written as: ) 
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That is, we a priori assume the mixing parameters to be independent of each other and of 

the parameters in each submodel. Since the mixing parameters are of no interest to us, we 

need only specify prior means whose existence is assumed (see Osiewalski and Steel (1993b». 
( 

In order to be as noninformative as possible, all models receive equal prior weight. 

Specifically, we set 

Full robustness with respect to the choices for ~jq(.) and gNi(') is achieved by assuming (see 

Osiewalski and Steel (1993a»: 

This assumption implies a uniform prior for log(r-~. Note that Cl is a constant which cancels 

out of the posterior odds ratio and hence is irrelevant for our analysis. All that remains is to 

specify P(8s,71): 

Since the parameters aD and 71 are not present in all models, we must ensure that P(aD,71) is 

proper. For the sake of convenience we assume that P(aD,71) =P(aD)P(71) =P(d)P(dp)P(71) and 

specify: 

P(d,.) = 1/ (~-AI) on [AI'~] and 0 elsewhere� 
P (dp) = 1/ (B2-B I ) on [B II B2 ] and 0 elsewhere (12)� 
P(71) = 1/2 on (-1,1) and 0 elsewhere .� 

In practice, [A.,A2l and [Bh~ are chosen so as to cover the area where the likelihood 

function is a priori assumed to be appreciable (see Prior Appendix). Finally, it remains to 

specify 

Since the parameters aN are present in all models we allow them to have an unbounded 

uniform prior. 

We assume that the parameter of interest, p, is independent of aD and 71. Under the 
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hypothesis that a unit root is present (H2) we set p = 1. Under the hypothesis that a unit root 

is not present we try two priors for p. Our first choice is a bounded uniform prior which, 

for the stationary region (HI), takes the form: 
J, 

P(P)=2~ 
=0 

and for the explosive region (H3): 

P (p)� =10 
=0 

if p E[.55,1.00) 

otherwise, 

if p E (1.00, 1.10]
otherwise. 

This type of bounded uniform prior leads to a truncated Student t posterior for p under VI ) 

and for p 111 under V2' Alternatively, an independent Student t prior for p with first two 

moments identical to our uniform can be used to yield a 2-0 poly-t posterior density for p (or 

p 111) (Dreze (1977». Note that pseudo-random drawings to be used in the Monte Carlo ) 

integration can easily be made from all these densities (Richard and Tompa (1980». However, 

in our empirical section, we draw values of p from an importance function, which can be more 

efficient due to the truncation. In particular, we use truncated (at p= 1) Student priors for both 
,)

HI and H3 which are constructed in such a way that their untruncated counterparts mimic the 

moments of the relevant uniform prior mirrored around p = 1. This yields half-Students with 

a mode at p = 1. Finally, the degrees of freedom parameter is chosen to be 3 so that this 

alternative prior has fat tails yet still allows the first two moments to exist. ) 

Although the first two posterior moments of p may not be crucially affected by the 

difference between priors, Koop et al. (1992) show that results for n-step ahead prediction 

can differ dramatically. That is, predictive means and variances will exist for any horizon 
) 

(n) in the case of a bounded uniform prior; however the Student prior for p allows only for 

finite predictive means (given 11) for n up to approximately T, and for finite predictive 

variances if n is less than approximately T/2. In Section 5 we introduce a loss function based 

i)on predictive variances whose behavior is expected to differ across priors. 

This concludes our development of a prior for the parameters of our sampling model. 

It is worth emphasizing that, with four exceptions, p, 11, d" and dp, the priors for all our 

parameters are noninformative. We believe that the priors we specify for these exceptions 
)" 

!will not be considered unreasonable by other researchers. 
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Section 4: The Posterior Density 
( Combining our results from the two previous sections yields our Bayesian model: 

P(y,lJs' 1 2 ,fl,)." 6 ,"'(,K. I y(O» =CI1-2p(p)p(aD )p(fl)P().,) 
2 

P(6)P("'()P(K.) {).,L6,P(y IlJN,12 ,fl,Y(0) ,MNi ) (13)I-I 
2 2 

+ (1-).,) L "'(jL K./'(Y I lJs, 1 2,fl ,Y(O) ,MSjq) } 
j-I 9-1 

Using results from Osiewalski and Steel (1993a)9 we integrate out r and the mixing 

parameters, which yields: 

P(y,lJs,fl I y(O» =c2P(p)P(aD )P(fl) 

{ ~ IVj(fl) 1-ln[dNi(lJN,fl) ] -T/2 
,. (14)
'. 2 2 

+ ~~ ~L ~ IVj(fl) 1-ln[d~q(lJs,fl)] -772} 
J-I qal 

where ~ = clr(f/2)1fT
/2and definitions (5) and (8) are used.� 

For the individual models we obtain:� 

P(lJN,fl I y,y(O),MNj) = 
I (15) 

c~ P(P)P(fl) 1 V;Cfl) 1-'2[dNi (lJN1 fl)] -772 

and 

P(lJs1fl I YIY(O)IM~q) = 
I (16) 

c;~ P(P)P(fl) I Vj(fl) 1-'2 [dSjq(lJs,fl) ] -772 

where CNi and CSjq are the integrating constants needed to construct posterior odds (ie. CNi 

= P(y I y(o),MNJ and CSjq = P(y 1y(O),Msjq». Although the integrating constants may be 

calculated directly, it should be noted that aN may be integrated out of (15) and (16) 

analytically using the properties of multivariate Student distributions. Once aN is integrated 

out, the CN/s and CSjq'S may be calculated using Monte Carlo integration. One-dimensional 

integration is required for calculation of CNI ; two-dimensional integration for Cm and Cslq; 

and three-dimensional integration for Cs2q' Formally, the posterior density for aD' given p 

and fl, is a truncated Student-t over the region given in (12). If this region covers most of the 
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parameter space where the likelihood function is appreciable, the truncation will not matter. 

In this case we can integrate out the full as vector as a joint Student density, leaving only 

one and two dimensional integrals for Cs1q and CS2q which we calculate using Monte Carlo 

integration. A check on this approximation is to perform the integration with respect to aD 

numerically by direct simulation with rejection. 

The integrating constant for the sampling model, C = P(y IY(o», is given by: 

(17) 

These integrating constants can be used to calculate the posterior probabilities of the various 

submodels. 

P(MNj I y,y(0»=CNj/6C .)� 

P(MN I Y'YM)=(CM +Cm )/6C� 

P (MSjq I Y, Y(o» = cSjq /6C� 

P(MSj I Y,Y(O» = (CSjl+CSjZ) /6C 
):� 

P (MSq I Y, Y(o» = (Cs1q+CS2q ) / 6C.� 

The posterior model probabilities may indicate, among other things, whether structural breaks� 

are present or if errors exhibit MA(1) behavior. Although not given here, inference on the )� 

parameters could be obtained from weighted averages of (15) and (16), where the weights� 

are the relevant model probabilities.� 

Under all hypotheses, we use the same general mixture of submodels for the sampling 

density. Note, however, that in all cases, the relative posterior weights given to the submodels 

depend on the data. 

Section S: Decision Theory 

In the previous sections we have described how the posterior probabilities of various 

hypotheses can be calculated using Bayesian methods. However, econometricians must fre­

quently make decisions. For instance, in a pre-testing exercise a decision must frequently be 

made as to whether a unit root is present in a series. If present, the series may have to be 

differenced in a larger VA,R model. The Bayesian paradigm provides a formal framework 

for making such decisions. To make a decision the researcher specifies a loss function and 
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chooses the action which minimizes expected loss (see Zellner (1971». By focussing on 

posterior probabilities, previous Bayesian researchers have implicitly used a very simple loss 

function where all losses attached to incorrect decisions are equal. (That is, the loss associated 

with the choice of a unit root when the series is stationary is equal to that associated with the 

assumption of stationarity when a unit root is present). Classical researchers use a loss function 

where losses are asymmetric, viz. where the choice ofa level of significance implicitly defines 

the loss function. Lacking a measure over the parameter spaceJclassical researchers are forced 

to look forJ saYJ dominating strategies (which are rare) or minimax solutions. It is this lack 

of formal development and justification of a loss function which iSJ in our opinionJa serious 

weakness of previous Bayesian and classical unit root studies. This section proposes two loss 

functions which we use to make decisions on whether to accept or reject the unit root 

hypothesis. 

In practiceJ the choice of loss function depends on the exact nature of the empirical 

exercise. For exampleJif the purpose of the analysis is to pretest for a unit root in each series 

before beginning a multivariate analysisJ then a different loss function might be suitable 

relative to the case where the unit root hypothesis is of interest in and of itself. HenceJ 

although we believe that the loss functions we propose are very sensibleJ we acknowledge 

that other researchers may choose other loss functions. IndeedJ we believe this to be an 

advantage of a decision theoretic approach since researchers are forced to explicitly state and 

defend the assumptions of their analysis. We cannot overemphasize that a classical analysis 

hasJ in the choice of testing procedure and significance levelJ an implicitly defined loss 

function. However, because almost every researcher uses the same implicit loss function they 

are rarely forced to justify it. 

Our criterion for the evaluation of losses associated with incorrect decisions is 

predictionJan important one in that the macroeconomic time series in this study are frequently 

used for prediction (eg. to forecast from VAR models). We develop two loss functions, the 

first of which is based on predictive means and variancesJ and the second of which is a 

computationally convenient approximation to the first. A special case of our first loss function 

is simply the normalized difference in mean-squared errors (MSEs) between the chosen model 

and the "correct" model. HoweverJthe cost ofassuming stationarity when the series are really 

nonstationary may be drastically different from the converse. Since differences between 

nonstationary and stationary models are more pronounced for predictive variances than for 
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predictive means, predictive variances are emphasized here. We allow for asymmetries in� 

our loss function which imply that it is more costly to underestimate predictive variances (and )� 

give a false sense of accuracy) than to overestimate predictive variances. Given that the� 

precision of forecasts is often a crucial issue we believe this approach to be a sensible one.� 

In this paper we use predictive results for the simple AR(l) model with intercept and 

trend, which amounts to conditioning on tf>, 'J1 and aD' It would be computationally demanding 

to integrate out tf>, 'J1 and aD' and results would be almost identical since our predictive 

variances are mainly affected by p. The predictive variance, conditional on p, for forecasting 

n periods ahead is given in Koop, Osiewalski and S~l (1992) (for T>4): . ) 

var(Y~nly,y~,p) = 

SSE [n-I n n ]
~ LP2i+ ~ LL r (i,j)p2n-i-i 

(18) 

T 4 j-O T(T -1) i-I j-l ) 

when we integrate out p., (3 and r using the noninformative priors given in Section 3. In (18) 

we use r(i,j) lE 6ij + 3(T-l)(i+j)+ 2T2
- 3T+ I and SSEp = (Y-PY_I)' M(Y-PY.I) where 

M = I-X(X'X)-IX'X is a Tx2 matrix containing observations on the intercept and trend. The 

corresponding predictive mean conditional on P is given by: 

(19) 

where 

)and 

) 

For notational simplicity we refer to the predictive mean and variance, with P marginalized 

out, at horizon n under Hj G=I,2,3) as meanj and varD 
j
, respectively. 

Our first loss function takes the form: 

) 
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1~~=maX(1,var:/var:)+6 max(1,var:/var:)-(1+6) 
[meand-mean s

] 2 
+ 11 11 ,

s var11 

where H" is the hypothesis chosen; H. is the "correct" hypothesis; and ~, which is greater
( 

than or equal to 1, reflects our aversion to underestimating the predictive variance. In order 

to deal with model uncertainty, we calculate the predictive mean and variance for each of the 

six submodels under Hll H2 and H3, respectively, and then average across models using the 

relevant posterior model probabilities. For each decision, d, we compute the expected loss: 

3 

l~·I=L l~~ p(Hs I y,y(O»), 
s-I 

and choose d for which the loss is minimal for a given forecast horizon, n. 

Our loss function has some attractive properties. Note first, that if the correct model 

is chosen (ie. d=s), then the loss is zero. Secondly, the loss increases as predictive bias 

increases or as the predictive variance of the selected model diverges from the "correct" 

model. Thirdly, if varD" >varD· and we overestimate the predictive variance, then 

11 I MSE:-MSE:
1'- (20)d,s----s-, 

MSEII 

where 

MSE}=var!.+ (Bias}) 2 
11 11 11' 

and 

Bias~=mean~-mean:• 

Note that the bias equals zero if the "correct" model is chosen. It would, ofcourse, be possible 

to use (20) as our loss function for cases where varD"<var~· as well. However, we feel that 

it is important to allow for losses to be asymmetric, which we do by introducing ~. 

The parameter ~ plays an important role in our loss function. If~= 1, the loss function 

is symmetric in the sense that underestimating and overestimating the predictive variance are 

equally costly. For values of {, greater than one underestimating the predictive variance (and 

giving a researcher excessive confidence in her forecasts) is more costly than overestimating 
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the predictive variance. The loss function is constructed such that losses are: i) equal to the 

relative overestimation of the predictive variance plus the scaled squared bias if the chosen 

model has a bigger variance than the "correct" model; and ii) equal to 0 times the relative 

underestimation of the predictive variance plus the scaled squared bias if the chosen model 

has a smaller variance than the "correct" model. 

Koop et al. (1992) discusses the properties of predictive means and variances in great 

detail. For present purposes, it is sufficient merely to note that the predictive means do not 

differ much across hypotheses but that the predictive variances do. Under HI the predictive 

variance is at least of 0(n2
). Note that the trend-statiopary model does DQt lead to bounded 

predictive variances if parameter uncertainty is taken into account (see Sampson (1991) for 

a classical analysis). Under H2 and H3, the predictive variance grows, respectively, at rate 

0(n4
) and exponentially. 

It is crucial to consider multi-period predictions since they bring out the differences 

in predictive behavior between stationary, unit root, and explosive models (see Chow (1973) 

for some specific problems when n> 1). At short horizons the losses do not differ much across 

models (unless 0 is very large) and the model is chosen largely on the basis of its posterior 

probability. At long forecast horizons, the differences in predictive variances between 

stationary and nonstationary models grow large; and assuming 0> 1, nonstationary models 

grow concomitantly more attractive. So, if there is any chance that the correct model is 

nonstationary, our loss function will choose it at some forecast horizon. In other words, the 

cost of incorrectly choosing the stationary model and seriously underestimating the predictive 

variance will eventually dominate at some forecast horizon. H2 will be chosen if n goes to 

infinity and 0 is held constant; and if 0 goes to infinity and n is held constant, H3 will be 

chosen. Since the decision taken depends crucially on the choice of n and 0, a sensitivity 

analysis is performed over these two parameters. 

This first loss function combines predictive means and predictive variances in a 

plausible way. Despite these characteristics, the loss function is computationally burdensome 

because the calculation ofvarj requires that (18) be evaluated at each draw in our Monte Carlo 

procedure. For this reason, we introduce a second loss function which ignores the SSEp term 

which is very similar across models, and the bias term. Furthermore, we replace the powers 

of pin (18) by their expected values; that is, we replace ,; with E(pi) calculated using Monte 

Carlo integration. This strategy amounts to approximating varj by E(var(YT+D Iy,y(O),p», where 
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the expectation is taken over p. By not fully marginalizing with respect to p, we ignore an 

c� additional term which would have been added to the predictive variances under HI and H3• 

For this reason, predictive variances for the trend-stationary and explosive models are slightly 

underestimated relative to the unit root model, a characteristic which we observe and discuss 

in our empirical results. c 
More formally we define: 

For each Hi'� we can use the marginal posterior of p to calculate the posterior mean: 

Our second loss function can be written as: 

This loss function is much simpler to compute and has approximately the same properties as 

the first loss function. Evidence presented in the empirical section indicates that the 

approximation is a good one. 

The decision theoretic approach is based on the assumption that researchers are 

interested in choosing a particular region for p since they may wish, for instance, to difference 

the data. However, in cases where such a pretest strategy is not required, we suggest basing 

predictions on a mixture over regions for p weighted with the relevant posterior probabilities. 

Section 6: Empirical Results 

This section presents evidence on the existence of a unit root in the Nelson-Plosser 

series. The data used are extended to cover the period until 1988 (see Data Appendix). Tables 

1 and 2 present posterior means and standard deviations for p and ." under HI and H3, while 

Table 3 presents evidence on the presence of structural breaks and moving average errors. 

Table 4 contains the posterior probabilities of HI' H2 and H3, and Table 5 summarizes the 

results of the decision analysis. Posterior odds are calculated for testing the various hypotheses 

with respect to p by using the sampling model weighted over all the submodels. Although 

our primary focus is on the unit root hypothesis, two subsidiary questions are simultaneously 
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addressed: (1) Is there evidence of one or more structural breaks in our economic time series? 

(2) Is there evidence of MA(I) behavior in the error terms? 

Since parameter estimates are only slightly relevant to the issues we address in this 

paper, we discuss these only briefly. Note first that Tables 1 and 2 support the conclusions 

of Choi (1990): Omitting the MA(l) component of the error term does indeed tend to drive 

estimates of p towards one in a manner consistent with the asymptotic bias derived by Choi. 

Table 3 contains the probability that an MA(1) error term is present as well as the AR(3) 

structure already allowed for in our specification. For many series this probability is very 

high and for no series is it small enough to be ignored. Thus Choi's results are more than 

just theoretically interesting. The inclusion of a moving average error term would appear to 

be an important part of any specification. With respect to structural breaks in Table 3, note 

that, although our results are consistent with Perron's contention that a level break occurred 

in 1929 in many macroeconomic time series, we find virtually no evidence for the presence 

of a trend break in 1973 for any of the series. This latter fmding is not inconsistent with 

Perron's since he only considered the trend-break model when using post-war quarterly data. 

As Perron (1989) notes, models with structural breaks tend to yield less evidence of a unit 

root. 

We do not discuss Table 4 in detail but we do use the results to calculate the expected 

losses required for our decision analysis. For our purposes it is sufficient to note that results 

show that trend-stationarity (HJ) is the most probable hypothesis for most of the series (notable 

exceptions are the CPI and velocity); however, without a formal loss function it would be 

rash to rule out the unit root model at this time. 

Results from our decision theoretic analysis are presented in Table 5, which contains 

only those for our computationally attractive second loss function, l.ci
D

,2. To judge the difference 

between the two loss functions, a decision theoretic analysis was carried out using our first 

loss function, ~D,J, for the uniform prior for two series which exhibit very different behavior: 

real GNP and the CPI. Using l.ciD,J and real GNP, we choose, for ~=1,10 and 100, 

respectively: i) HJ for n < 84, else H2; ii) HJ for n < 61, else H2; and ill) H2• A comparison 

with Table 5 indicates that results using the second loss function are qualitatively the same; 

that is, a researcher would choose HJ unless ~= 100 or she were interested in very long-run 

predictions. As expected, however, using the approximation slightly biases results in favor 
" 

of H2• For CPI conclusions are exactly the same for our two loss functions. These findings 
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indicate that the second loss function provides a good approximation to the frrst; consequently, 

c we use only lctD,2 for the other series. 

It is worth emphasizing that our loss functions have two key properties. First, as long 

as 0 is greater than I, it is better to overestimate than to underestimate predictive variances. 

This property tends the researcher toward favoring H2 over HI and H3 over H2 and HI' Indeed c 
as 0 goes to infmity and holding n constant, H3 will always be chosen. Second, there is a 

tendency in our loss functions to favor H2• H2 lies between HI and H3 such that a researcher 

will generally never go too far wrong in choosing H2• (potential losses would be very large 

if, say, HI were chosen when H3 were the correct moqel). In fact, as n goes to infinity and 

holding 0 constant H2 will always be chosen. These two properties account for most of the 

findings in Table 5, which presents the model chosen for different values of n and o. With 

the exception of the CPI and velocity series and, to a lesser extent, the GNP deflator and real 

wage series, HI is the model chosen (so long as 0 or n is not large). However, clear scope 

exists for choosing nonstationarity ifunderestimating predictive variances is felt to be a serious 

problem. If0= 100 a researcher would almost never select the trend-stationary model. Figures 

I and 2 graphically depict the behavior oflctD,2 (which is defined analogously to lctD,I) as n varies 

for the uniform prior for real GNP per capita and CPI with 0= 10. 

There appears to be less sensitivity of cur loss function with respect to n. If we restrict 

attention to short- or medium-term forecasts (eg. n< 10), only a few cases exist where different 

values of n yield different conclusions. A typical example is real GNP, where, unless the 

researcher is interested in forecasting four or more decades into the future, the trend-stationary 

model is chosen for 0= 1or 10. Only if 0= 100 (a strong penalty for underestimating predictive 

variances) is the unit root model selected. 

It is interesting to compare our results to those of other researchers, although it should 

be stressed from the outset that different authors use data series of different lengths so that 
" 

some results are not directly comparable. A very nice summary of previous work using the 

Nelson-Plosser data set is given in Table 1 of Schotman and van Dijk (1991b). Note that: i) 

Nelson and Plosser (1982» fail to reject the null hypothesis of a unit root in thirteen of the 

fourteen series, the exception being the unemployment rate. Other classical papers exhibit 

similar patterns. ii) Most Bayesian papers find much more evidence for trend-stationarity than 

do their classical counterparts. Even with a prior heavily weighted towards nonstationarity, 

Phillips finds that the probability of nonstationarity is greater than a half for only one or two 
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series (see Phillips (1991), Table IV). 

Our Table 4 yields similar results to many of the other Bayesian analyses; that is, we 

find strong evidence of trend-stationarity for some series, but not for all. For around half of 

the series, evidence is decidedly mixed. This finding is hardly surprising, given the difficulty 

in distinguishing between unit root models and persistent trend-stationary models in finite 

samples. In our opinion, previous Bayesian analyses have not gone far enough, and in view 

of this uncertainty, we believe that researchers must specify a loss function if a single model 

is to be selected. 

Our results in Table 5 are closer to those obtained in classical analyses. For example, 

for ~ =10 and n>6 either the unit root or the explosive model would be selected for eight 

of our fourteen series under the uniform prior. It is also interesting to note that our results 

for ~= 10 with the uniform prior correspond closely to those given in Phillips (1991, reply), 

who uses the Bayes model likelihood ratio test on the same data. This test can be thought of 

as an "objective" Bayesian test for a unit root, and is described in more detail in Phillips and 

Ploberger (1991). Phillips' results differ from ours chiefly in that he finds the nominal wage 

series to contain a unit root, whereas we only match this finding if n is very large or ~= 100. 

Note, however, that our results are obtained using a formal decision theoretic approach based 

on a strong aversion to underestimating predictive variances. Researchers who do not wish 

to include such an aversion in their analysis will tend to choose trend-stationarity more often. 

A final issue worth discussing is the sensitivity of our results to various priors. As 

described in Section 4, we use two different priors for p: a half-Student and a bounded uniform 

prior. The first and second order moments of the half-Student prior are chosen so as to match 

the uniform prior. The differences between the two priors occur in third and higher moments. 

Tables 1 and 2 indicate that posterior first and second moments do not differ much across 

the two priors. The remaining tables, however, indicate somewhat larger differences. This 

is especially true of Table 5, where in some cases, the two very similar priors yield 'different 

conclusions (eg. Nominal GNP and Money Stock for ~= 10 or the GNP deflator for ~= 1). 

As described in Section 3, predictive variances exist only for n less than approximately T/2 

when a Student t prior under HI and H3 is used. More precisely, for this Student t case, Table 

5 reports results only for n< (T+ 1)/2. Our decision analysis depends upon high order moments 

of p and our priors differ in these higher moments. Recall that, while all moments exist for 

our bounded uniform prior, none beyond 2exist for our half-Student prior. Although Bayesians 
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who use informative priors typically do not worry about third or higher order prior moments, 

our analysis suggests that care should be taken in eliciting priors when a decision analysis 

which involves prediction is carried out. The effect of prior moments on the existence of 

predictive variances for multi-period forecasting is formally analyzed in Koop et al. (1992). 

( 

Section 7: Conclusions 

The paper develops a formal decision theoretic approach to testing for unit roots which 

involves the use of a loss function based on predictive· moments. It also extends the class of 

likelihood functions in the Bayesian unit root literature by using a likelihood function which 

is a mixture over submodels which differ in covariance structure and in the treatment of 

structural breaks. Each of the individuallikelihoods mixed into the overall likelihood function 

belongs to the class of general elliptical densities. 

Our empirical results indicate that a high posterior probability of trend-stationarity 

exists for most of the economic time series. This finding is consistent with most previous 

Bayesian analyses. However, if there is a high cost to underestimating predictive variances, 

our ensuing decision analysis indicates that trend-stationarity is not necessarily the preferred 

choice. Thus, our loss function can lead to results similar to those of many classical analyses; 

that is, it can often select the unit root model. 

These findings highlight the importance of the decision theoretic part of our, or of any, 

analysis. In general, the researcher must think clearly about the consequences of selecting 

a hypothesis in an empirical context. A Bayesian analysis which merely presents posterior 

mQdel probabilities is incomplete; and a classical analysis which accepts passively the loss 

structure implicit in the choice of a significance level may be misleading. 
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Table 1· Posterior Means for D and fI under H 1 (Standard deviations in parentheses) 

Uniform 
Prior p 

Student 
Priorp 

) 

NoMA 
p 

MA 
p 

MA 

." 

NoMA 
P 

MA 
P 

MA 
." 

Real GNP nb 

1b 

tb 

0.8134 
(.0570) 
0.7409 
(.0681) 
0.8127 
(.0562) 

0.7462 
(.0889) 
0.6941 
(.0829) 
0.7338 
(.0862) 

0.4416 
(.3377) 
0.3815 
(.2880) 
0.5178 
(.2943) 

0.8291 
(.0594) 
0.7669 
(.0689) 
0.8288 
(.0547) 

0.7836 
(.0894) 
0.7242 
(.0999) 
0.7732 
(.0877) 

0.3483 
(.3705) 
0.3484 
(.3127) 
0.4372 
(.3365) 

) 

Nominal GNP nb 
1b 

tb 

0.9411 
(.0296) 
0.7777 
(.0630) 
0.9209 
(.0371) 

0.9031 
(.0448) 
0.7555 
(.0763) 
0.8514 
(.0659) 

0.6737 
(.1683) 
0.3228 
(.2410) 
0.7762 
(.1206) 

0.9434 
(:0287) 
0.7991 
(.0634) 
0.9251 
(.0355) 

0.9025 
(.0485) 
0.7862 
(.0760) 
0.8728 
(.0625) 

0.7512 
(.1290) 
0.3168 
(.2612) 
0.7744 
(.1182) 

Real per cap. 
GNP 

nb 

lb 

tb 

0.8032 
(.0579) 
0.7564 
(.0671) 
0.8032 
(.0583) 

0.7363 
(.0889) 
0.7022 
(.0845) 
0.7256 
(.0866) 

0.4321 
(.3407) 
0.4263 
(.2970) 
0.5152 
(.3004) 

0.8201 
(.0577) 
0.7813 
(.0688) 
0.8205 
(.0579) 

0.7782 
(.0914) 
0.7345 
(.0984) 
0.7636 
(.0918) 

0.3303 
(.3838) 
0.3753 
(.3260) 
0.4365 
(.3383) 

Ind. Prod. nb 

lb 

tb 

0.8256 
(.0523) 
0.7498 
(.0678) 
0.8149 
(.0536) 

0.7626 
(.0859) 
0.6952 
(.0811) 
0.7386 
(.0847) 

0.3843 
(.3072) 
0.3530 
(.2401) 
0.4430 
(.2833) 

0.8392 
(.0515) 
0.7743 
(.0666) 
0.8296 
(.0538) 

0.7985 
(.0832) 
0.7244 
(.0984) 
0.7731 
(.0849) 

0.3003 
(.3356) 
0.3181 
(.2620) 
0.3819 
(.2976) ) 

Employment nb 

lb 

tb 

0.8637 
(.0473) 
0.7982 
(.0563) 
0.8578 
(.0484) 

0.8024 
(.0747) 
0.7300 
(.0767) 
0.7866 
(.0774) 

0.4442 
(.2357) 
0.4209 
(.1916) 
0.4873 
(.2190) 

0.8734 
(.0458) 
0.8150 
(.0555) 
0.8679 
(.0471) 

0.8273 
(.0694) 
0.7599 
(.0773) 
0.8148 
(.0739) 

0.4160 
(.2253) 
0.3953 
(.1954) 
0.4525 
(.2260) 

Unempl. Rate nb 

lb 

tb 

0.7454 
(.0736) 
0.7144 
(.0764) 
0.7378 
(.0758) 

0.6586 
(.0748) 
0.6523 
(.0740) 
0.6587 
(.0739) 

0.5935 
(.1303) 
0.5866 
(.1244) 
0.5922 
(.1362) 

0.7747 
(.0750) 
0.7459 
(.0824) 
0.7682 
(.0770) 

0.6644 
(.1117) 
0.6412 
(.1170) 
0.6542 
(.1140) 

0.6001 
(.1242) 
0.5912 
(.1278) 
0.6055 
(.1275) 

GNP Deflator nb 

lb 

tb 

0.9634 
(.0189) 
0.9166 
(.0289) 
0.9321 
(.0300) 

0.9474 
(.0294) 
0.8843 
(.0423) 
0.8942 
(.0477) 

0.4973 
(.3127) 
0.5462 
(.2314) 
0.6154 
(.2196) 

0.9640 
(.0188) 
0.9194 
(.0285) 
0.9347 
(.0295) 

0.9468 
(.0294) 
0.8909 
(.0396) 
0.9095 
(.0427) 

0.5646 
(.2417) 
0.5313 
(.2400) 
0.4408 
(.3704) 

,j 
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Table 1 (contmued)' Posterior Means for D and " under H I (Standard deviations in parentheses) 

c Uniform 
Prior p 

Student 
Prior p 

NoMA MA MA NoMA MA MA 
p p " p p " 

( CPI nb 

lb 

tb 

0.9886 
(.0077) 
0.9888 
(.0077) 
0.9820 
(.0114) 

0.9804 
(.0134) 
0.9804 
(.0134) 
0.9679 
(.0120) 

0.6531 
(.1406) 
0.6539 
(.1474) 
0.6582 
(.1456) 

0.9887 
(.0078) 
0.9888 
(.0077) 
0.9820 
(.0115) 

0.9808 
(.0129) 
0.9838 
(.0099) 
0.9694 
(.0198) 

0.6286 
(.1665) 
0.4881 
(.3427) 
0.6412 
(.1718) 

Wages nb 

lb 

tb 

0.9373 
(.0279) 
0.7999 
(.0471) 
0.9212 
(.0345) 

0.9053 
(.0459) 
0.7818 
(.0593) 
0.8725 
(.0596) 

0.5068 
(.3128) 
0.2137 
(.2292) 
0.6076 
(.2479) 

0.9393 
(.0273) 
0.8120 
(.0472) 
0.9247 
(.0332) 

0.9032 
(.0487) 
0.7822 
(.0596) 
0.8723 
(.0591) 

0.5165 
(.3155) 
0.2225 
(.2338) 
0.5960 
(.2659) 

c 

Real Wages nb 

lb 

tb 

0.9280 
(.0395) 
0.9276 
(.0397) 
0.8112 
(.0574) 

0.8818 
(.0659) 
0.8751 
(.0672) 
0.7159 
(.0807) 

0.6506 
(.2152) 
0.7391 
(.2361) 
0.6047 
(.2278) 

0.9322 
(.0377) 
0.9324 
(.0377) 
0.8316 
(.0502) 

0.9038 
(.0560) 
0.8867 
(.0614) 
0.7668 
(.0886) 

0.5466 
(.2737) 
0.7954 
(.1909) 
0.4624 
(.3292) 

Money 
Stock 

nb 

lb 

tb 

0.9402 
(.0233) 
0.8807 
(.0318) 
0.9187 
(.0270) 

0.9070 
(.0380) 
0.8454 
(.0446) 
0.8726 
(.0440) 

0.5721 
(.1882) 
0.4773 
(.2041) 
0.5924 
(.1789) 

0.9415 
(.0229) 
0.8848 
(.0316) 
0.9210 
(.0269) 

0.9123 
(.0357) 
0.8550 
(.0432) 

• 0.8811 
(.0424) 

0.5534 
(.2060) 
0.4623 
(.2158) 
0.5700 
(.2008) 

Velo-city nb 

lb 

tb 

0.9629 
(.0212) 
0.9635 
(.0209) 
0.9580 
(.0253) 

0.9395 
(.0356) 
0.9383 
(.0360) 
0.9289 
(.0431) 

0.5648 
(.3094) 
0.6035 
(.2607) 
0.6083 
(.2823) 

0.9635 
(.0207) 
0.9642 
(.0206) 
0.9594 
(.0246) 

0.9437 
(.0341) 
0.9418 
(.0342) 
0.9329 
(.0412) 

0.5481 
(.3220) 
0.5976 
(.2668) 
0.6248 
(.2509) 

Bond Yield nb 

lb 

tb 

0.9466 
(.0299) 
0.8931 
(.0441) 
0.9449 
(.0410) 

0.9195 
(.0466) 
0.8386 
(.0674) 
0.9152 
(.0647) 

0.4860 
(.1987) 
0.5516 
(.2024) 
0.4917 
(.2198) 

0.9488 
(.0289) 
0.9003 
(.0430) 
0.9501 
(.0380) 

0.9277 
(.0427) 
0.8583 
(.0638) 
0.9283 
(.0538) 

0.4560 
(.2314) 
0.5355 
(.2088) 
0.4897 
(.2005) 

Stock Pri· 
ces 

nb 

lb 

tb 

0.9297 
(.0333) 
0.9135 
(.0351) 
0.9069 
(.0378) 

0.8991 
(.0527) 
0.8829 
(.0512) 
0.8581 
(.0619) 

0.3569 
(.3018) 
0.3322 
(.2367) 
0.4342 
(.2663) 

0.9329 
(.0320) 
0.9175 
(.0346) 
0.9120 
(.0362) 

0.9080 
(.0493) 
0.8932 
(.0480) 
0.8751 
(.0579) 

0.3339 
(.3032) 
0.3152 
(.2333) 
0.3934 
(.2811) 

nb - no bres k, lb - level break, tb - trend break. 
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Table 2' Posterior Means for 0 and 17 under H 3 (Standard deviations in parentheses) 

Uniform 
Prior p 

Student 
Prior p 

NoMA MA MA NoMA MA MA 
p p ." P P ." 

Real GNP nb 

Ib 

tb 

1.0167 
(.0155) 
1.0189 
(.0175) 
1.0172 
(.0159) 

1.0285 
(.0292) 
1.0266 
(.0227) 
1.0219 
(.0191) 

0.4292 
(.4019) 
0.6654 
(.2331) 
0.4941 
(.3357) 

1.0134 
(.0126) 
1.0153 
(.0144) 
1.0136 
(.0125) 

1.0155 
(.0143) 
1.0184 
(.0168) 
1.0172 
(.0162) 

0.3609 
(.4043) 
0.4962 
(.4123) 
0.4811 
(.3491) 

J 

Nominal GNP nb 

Ib 

tb 

1.0138 
(.0124) 
1.0186 
(.0174) 
1.0158 
(.0142) 

1.0196 
(.0177) 
1.0260 
(.0221) 
1.0225 
(.0200) 

0.5850 
(.2637) 
0.6703 
(.2414) 
0.6064 
(.2720) 

1.0117 
(:0105) 
1.0144 
(.0136) 
1.0129 
(.0177) 

1.0155 
(.0138) 
1.0180 
(.0163) 
1.0181 
(.0153) 

0.5143 
(.3284) 
0.5999 
(.3356) 
0.6181 
(.2546) 

Real per cap. 
GNP 

nb 

Ib 

tb 

1.0174 
(.0163) 
1.0193 
(.0181) 
1.0177 
(.0166) 

1.0230 
(.0217) 
1.0241 
(.0201) 
1.0230 
(.0202) 

0.4118 
(.3828) 
0.5183 
(.4057) 
0.5088 
(.3344) 

1.0135 
(.0126) 
1.0152 
(.0138) 
1.0138 
(.0128) 

1.0159 
(.0151) 
1.0184 
(.0163) 
1.0169 
(.0154) 

0.3805 
(.4010) 
0.5182 
(.3998) 
0.4824 
(.3488) 

) 

Ind. Prod. nb 

Ib 

tb 

1.0150 
(.0142) 
1.0179 
(.0169) 
1.0153 
(.0144) 

1.0184 
(.0178) 
1.0215 
(.0195) 
1.0193 
(.0183) 

0.2981 
(.3381) 
0.3533 
(.4593) 
0.3767 
(.3064) 

1.0125 
(.0115) 
1.0141 
(.0131) 
1.0124 
(.0117) 

1.0140 
(.0132) 
1.0159 
(.0139) 
1.0143 
(.0127) 

0.2737 
(.3477) 
0.3517 
(.4285) 
0.3615 
(.3066) j 

Employment nb 

Ib 

tb 

1.0150 
(.0141) 
1.0156 
(.0152) 
1.0154 
(.0144) 

1.0192 
(.0176) 
1.0199 
(.0187) 
1.0193 
(.0180) 

0.3709 
(.2335) 
0.4118 
(.2173) 
0.4164 
(.2198) 

1.0128 
(.0115) 
1.0127 
(.0117) 
1.0123 
(.0115) 

1.0151 
(.0147) 
1.0150 
(.0135) 
1.0153 
(.0134) 

0.3713 
(.2287) 
0.4007 
(.2260) 
0.4163 
(.2069) 

Unemp. 
Rate 

nb 

Ib 

tb 

1.0211 
(.0189) 
1.0226 
(.0205) 
1.0218 
(.0198) 

1.0272 
(.0228) 
1.0287 
(.0241) 
1.0256 
(.0213) 

0.5908 
(.1231) 
0.6006 
(.1287) 
0.5998 
(.1306) 

1.0161 
(.0149) 
1.0166 
(.0153) 
1.0165 
(.0156) 

1.0192 
(.0172) 
1.0203 
(.0198) 
1.0188 
(.0164) 

0.5823 
(.1394) 
0.6018 
(.1285) 
0.5942 
(.1286) 

GNP Deftator nb 

Ib 

tb 

1.0091 
(.0082) 
1.0096 
(.0089) 
1.0120 
(.0110) 

1.0138 
(.0136) 
1.0131 
(.0125) 
1.0175 
(.0153) 

0.5207 
(.3016) 
0.5662 
(.2805) 
0.5726 
(.2737) 

1.0083 
(.0075) 
1.0087 
(.0079) 
1.0105 
(.0095) 

1.0116 
(.0108) 
1.0110 
(.0103) 
1.0137 
(.0120) 

0.5074 
(.3097) 
0.5730 
(.2737) 
0.5647 
(.2793) 
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Table 2 (continyed)' Posterior Means for /J and "under H3 

c 
Uniform 
Prior p 

Student 
Prior p 

NoMA MA MA NoMA MA MA 
p p 

" p p " 

,. 

," 
'­

CPI 

Wages 

nb 

lb 

tb 

nb 

lb 

tb 

1.0067 
(.005'5) 
1.0069 
(.0056) 
1.0081 
(.0069) 

1.0111 
(.0104) 
1.0125 
(.0123) 
1.0132 
(.0124) 

1.0095 
(.0083) 
1.0103 
(.0085) 
1.0119 
(.0105) 

1.0153 
(.0144) 
1.0184 
(.0169) 
1.0189 
(.0171) 

0.5818 
(.1977) 
0.6316 
(.1626) 
0.6430 
(.1466) 

0.4781 
(.3230) 
0.5453 
(.3167) 
0.5277 
(.3097) 

1.0065 
(.0053) 
1.0065 
(.0054) 
1.0078 
(.0065) 

1.0122 
(.0109) 
1.0112 
(.0103) 
1.0120 
(.0111) 

1.0075 
(.0071) 
1.0081 
(.0074) 
1.0097 
(.0088) 

1.0126 
(.0118) 
1.0143 
(.0138) 
1.0147 
(.0133) 

0.3119 
(.4508) 
0.3985 
(.4384) 
0.4469 
(.3990) 

0.4522 
(.3378) 
0.5508 
(.3138) 
0.5181 
(.3045) 

Real Wages nb 

lb 

tb 

1.0207 
(.0181) 
1.0204 
(.0178) 
1.0171 
(.0162) 

1.0258 
(.0221) 
1.0293 
(.0229) 
1.0237 
(.0205) 

0.4960 
(.3116) 
0.8209 
(.1540) 
0.5541 
(.3000) 

1.0159 
(.0139) 
1.0161 
(.0143) 
1.0137 
(.0127) 

1.0188 
(.0174) 
1.0209 
(.0188) 
1.0173 
(.0165) 

0.4289 
(.3881) 
0.7014 
(.3332) 
0.5212 
(.3473) 

Money Stock nb 

lb 

tb 

1.0082 
(.0077) 
1.0085 
(.0082) 
1.0087 
(.0081) 

1.0116 
(.0108) 
1.0123 
(.0120) 
1.0124 
(.0120) 

0.5326 
(.2143) 
0.5477 
(.2010) 
0.5525 
(.2007) 

1.0078 
(.0070) 
1.0079 
(.0074) 
1.0079 
(.0073) 

1.0102 
(.0095) 
1.0107 
(.0100) 
1.0106 
(.0098) 

0.5142 
(.2366) 
0.5431 
(.2059) 
0.5504 
(.1982) 

Velocity nb 

lb 

tb 

1.0120 
(.0104) 
1.0122 
(.0107) 
1.0156 
(.0135) 

1.0170 
(.0157) 
1.0177 
(.0160) 
1.0230 
(.0209) 

0.5176 
(.3398) 
0.5781 
(.2870) 
0.5782 
(.3056) 

1.0106 
(.0091) 
1.0109 
(.0093) 
1.0132 
(.0113) 

1.0137 
(.0120) 
1.0144 
(.0129) 
1.0167 
(.0150) 

0.4942 
(.3588) 
0.5535 
(.3158) 
0.5696 
(.2953) 

Bond Yield nb 

lb 

tb 

1.0163 
(.0143) 
1.0162 
(.0151) 
1.0401 
(.0267) 

1.0224 
(.0191) 
1.0209 
(.0187) 
1.0423 
(.0274) 

0.4531 
(.2135) 
0.4942 
(.2095) 
0.4346 
(.1976) 

1.0136 
(.0120) 
1.0134 
(.0120) 
1.0255 
(.0188) 

1.0222 
(.0196) 
1.0217 
(.0196) 
1.0314 
(.0275) 

0.4531 
(.2173) 
0.4966 
(.2062) 
0.4362 
(.2063) 

Stock pr.. t', nb 

lb 

tb 

1.0141 
(.0130) 
1.0130 
(.0121) 
1.0137 
(.0126) 

1.0164 
(.0155) 
1.0159 
(.0150) 
1.0168 
(.0157) 

0.2389 
(.3432) 
0.2940 
(.2713) 
0.3215 
(.3071) 

1.0120 
(.0108) 
1.0110 
(.0102) 
1.0115 
(.0106) 

1.0130 
(.0116) 
1.0133 
(.0133) 
1.0135 
(.0122) 

0.2203 
(.3461) 
0.2846 
(.2722) 
0.3092 
(.3099) 

Db - no break. b - level break, tb - trend break. 
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Table 3; Posterior Probabilities of Elements in Mixtures 

Uniform Student 
Prior for p Prior for p 

Level Trend Moving Level Trend Moving 
Break Break Average Break Break Average 

Real GNP 0.0614 1.2E-5 0.5856 0.1556 3.6E-5 0.4977 

Nominal 0.6639 2.9E-5 0.4740 0.8489 4.5E-5 0.4146 
GNP 

Real per 0.1728 2.3E-5 0.5719 0.1391 2.0E-5 0.4991 
) 

cap.GNP 

Indust. 0.2449 0.0001 0.5211 0.1636 9.6E-5 0.4829 
Product. 

Employment 0.4488 1.0E-5 0.7137 0.3626 1.lE-5 0.6454 

Unempl. 0.4447 4.9E-4 0.9930 0.4102 4.8E-4 0.9857 
Rate 

GNP Defla­ 0.2676 1.4E-4 0.5892 0.3034 1.7E-4 0.5950 
tor 

CPI 0.0438 5.7E-5 0.4718 0.0461 5.9E-5 0.5148 

Wages 0.9453 2.4E-6 0.3240 0.9427 5.3E-6 0.2960 

Real Wages 0.1428 0.0033 0.5554 0.1252 0.0085 0.5773 

Money 0.5586 1.2E-4 0.7550 0.5194 1.3E-4 0.7399 
Stock 

Velocity 0.0108 0.0002 0.7345 .. 0.0108 0.0002 0.7341 

Bond Yield 0.7527 0.0125 0.7763 0.9180 0.0070 0.7661 

Stock 0.2838 0.0018 0.4587 0.2935 0.0018 0.4485 
Prices 

) 
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Table 4: Posterior Probabilities of Re&ions for 0 

Uniform Student 
Prior for p Prior for p 

HI: p<1 H2: p=1 H3: p> 1 HI: p<1 H2: p=1 H3: p> 1 

Real GNP 0.9824 0.0147 0.0029 0.9816 0.0133 0.0051 

Nominal 0.8275 0.1371 0.0354 0.9232 0.0476 0.0292 
GNP 

Real per 0.9883 0.0094 0.0023 0.9852 0.0099 0.0049 
cap.GNP 

Industr.Prod 0.9869 0.0108 0.0023 0.9863 0.0099 0.0039 
uct. 

Employment 0.9678 0.0263 0.0059 0.9657 0.0242 0.0101 

Unempl. 0.9968 0.0023 0.0009 0.9905 0.0059 0.0036 
Rate 

GNP Defla- 0.4940 0.4339 0.0722 0.6107 0.2896 0.0997 
tor 

CPI 0.0789 0.8087 0.1124 0.1376 0.6192 0.2432 

Wages 0.9794 0.0176 0.0030 0.9803 0.0162 0.0035 

Real Wages 0.4355 0.4198 0.1447 0.5515 0.2720 0.1765 

Money 0.9097 0.0789 0.0011 0.9360 0.0495 0.0145 
Stock 

Velocity 0.3198 0.5650 0.1152 0.4389 0.4141 0.1470 

Bond Yield 0.7057 0.2315 0.0627 0.8790 0.0746 0.0464 

Stock 0.6114 0.3243 0.0643 0.7131 0.2068 0.0801 
Prices 
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Table 5: Results of Decision Analysis Using L.8,2 (n=2, .. ,100) 

) 
Uniform Student 
Prior for p Prior for p 

15=1 15=10 15=100 15=1 15=10 15= 100 

Real GNP� n<67: HI n <49: HI H2 HI HI H2� 
else: H2 else: H2� 

Nominal� n<62: Ht H2 n< 13: H3 Ht n<25: Ht n< 10: H3 
GNP� else: H2 else: H2 else: H2 else: H2 

Real per� n<81: HI n<62: HI H2 HI H2~I 
cap.GNP� else: H2 else: H2 

Ind. Prod.� n<82: HI n<65: HI H2 Ht HI H2� 
else: H2 else: H2� 

Employment� n<80: HI n<57: HI H2 HI HI n<7: HI ) 
else: H2 else: H2 else: H2 

Unempl.� n<80: HI n<63: HI n<41:HI HI n<49: fJI H2 
Rate� else: H2 else: H2 else: H2 else: H2 

GNP Defla- H2 H2 H3 HI n<4: H3 H3 

tor� else: H2 

CPI� H2 H3 H3 H2 H3 H3 

Wages HI� n<78: HI H2 HI HI H2� 

else: H2� 

Real Wages H2� n< 13: H3 H3 n< 16: HI n<20: H3 H3� 

else: H2 else: H2 else: H2� 

Money HI� n<6: HI n<3: H3 HI HI n<5: H3 ) 

Stock� else: H2 else: H2 else: H2 

Velocity H2� n< 15: H3 H3 H2 n<26: H3 H3� 

else: H2 else: H2� 

Bond Yield� n<47:Ht H2 n<33: H3 n<44: HI H2 n<23: H3� 

else: H2 else: H2 else: H2 else: H2� 

Stock Prices� n<50: HI H2 n<58: H3 n<56: HI H2 H3 

else: H2 else: H2 else: H2 

~otes to Table ~ : All moments of the predictIve eXIst for the uniform pnor, but for the Student t pnor second order,. 
moments ofthe predictive exist up ton =41 ,41 ,41,65,50,50,51 ,65,45,45,51 ,61,45,60for our 14 series, respectively.~ 
Hence, our loss comparisons in the last three columns only go up to these horizons. Our loss comparisons for the 
uniform prior go up to n = 100. 
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Data Appendix 
The data used in this paper are that of Nelson and Plosser (1982) updated to 1988 by 

Herman van Dijk. Primary data sources are listed in Schotman and van Dijk (1991b). All data 
are annual U.S. data. We take natural logs ofall series except for the bond yield. The fourteen 
series are: 

1) Real GNP (1909-1988). 
2) Nominal GNP (1909-1988). 
3) Real per capita GNP (1909-1988). 
4) Industrial production (1860-1988). 
5) Employment (1890-1988). 
6) Unemployment rate (1890-1988). 
7) GNP deflator (1889-1988). 
8) Consumer Price Index (1860-1988). 
9) Nominal wages (1900-1988). 
lO) Real wages (1900-1988). 
11) Money stock (1889-1988). 
12) Velocity (1869-1988). 
13) Bond yield (1900-1988). 
14) Common stock prices (1871-1988). 

Prior Appendix 

The Appendix discusses the selection of the bounded uniform priors for d,. and dp in (12). 
We use symmetric priors for all cases (A1=-A2and B1=-~) and set A2= tlYq-l and ~= t2(YT­
yo)/T+l. Since a level break of 10% is deemed to be highly unlikely, we set tl='lO for all 
series except the bond yield and unemployment rate (for these series tl =.4). t2 is more 
difficult to elicit. Looking at (YT-YO>IT+1, we set t2 =.1 for real GNP, wages, employment, 
industrial production, money stock, and GNP per capita; t2 =.2 for nominal GNP; t2 =.4 for 
the Consumer Price Index and the GNP deflator; t2 = 1 for real wages, velocity, unemployment 
and common stock prices; and t2 =4 for the bond yield. For no series is the posterior mean 
close to any of these boundaries. 
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