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Chapter 1

Introduction

For several decades magnetic confinement of high-temperature plasmas has been in-
vestigated with the objective of building a burning fusion reactor. One of the main
obstacles in reaching this goal is the energy and particle losses caused by radial trans-
port processes in the plasma. Therefore, the identification and reduction of this radial
transport is a demanding challenge faced by theoretical and experimental physicists.

The transport processes in toroidal plasmas can be grouped into two categories, i.e.
neoclassical and turbulent transport. Neoclassical theory is an extension of classical
theory to include the toroidal geometry of magnetic confinement fusion experiments,
which results in new particle drifts and magnetic field mirror effects, which trap parti-
cles and lead to an increased collision frequency. Neoclassical transport is an ubiquitous
process, since it depends on the existence of background gradients in the plasma and
Coulomb collisions between particles.

The second type of transport, turbulent or anomalous transport, is fundamentally
different from neoclassical transport due to the fact that the described particle losses are
caused by microinstabilities. These microinstabilities occur irregularly in the plasma,
hence turbulent transport is an intermittent process rather than a continuous one. The
particle and energy losses observed in toroidal fusion plasmas are believed to be mainly
caused by turbulent transport, making it one of the dominant fields of investigation of
the fusion community in the last few decades.

Plasma turbulence can basically be described as the incoherent motion of the plasma
which arises from small-scale fluctuations in parameters such as plasma density, tem-
perature, potential, and the magnetic field. Gradients in the plasma parameters are
the driving forces of the turbulence, which leads to the conclusion that the better the
plasma confinement (stronger gradients), the higher the turbulence level. However, this
is not completely true: the discovery of the H-mode confinement regime in 1982 showed
that the plasma can spontaneously self-organize and enter a mode of improved confine-
ment (L-H transition), characterized by a steepening of plasma gradients accompanied
by a significant reduction of the level of fluctuations and turbulent transport.

This discovery led to an immense effort, from both the theoretical and the exper-
imental sides, in trying to understand the L-H transition and the reduced turbulence
level in the H-mode confinement regime. After more than a quarter century of active
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research, the prevailing paradigm to explain the turbulence level reduction consists in
turbulence suppression via sheared flows. However, although these flows are observed
in H-mode plasmas, their generation mechanisms are still unknown. Several candidates
involving the edge pressure gradient or turbulence driven mean and oscillating flows
exist, but elucidation is still pending.

These questions push forward the continuous development of new diagnostics which
are capable of measuring the involved magnitudes. One of these diagnostics is Doppler
reflectometry, a rather new diagnostic based on the scattering of electromagnetic waves
off density fluctuations. Doppler reflectometry combines the scale-selectivity of scat-
tering experiments with the radial localization of reflectometry. During the last ten
years it has proven to be a powerful technique to measure the perpendicular velocity of
density fluctuations wu, the radial electric field E,., and the perpendicular wave num-
ber spectrum S(k,) in magnetically confined fusion plasmas. A major advantage of
Doppler reflectometry is the possibility to measure the edge density gradient region,
where several other diagnostics (Langmuir probes, heavy ion beam probes) struggle to
obtain measurements.

H-mode plasmas have been observed in the TJ-II stellarator since 2008 with lithium
coated walls and neutral beam injection heating. The resultant plasma characteristics
are comparable to other devices, i.e. an increase of the energy confinement time 7,
decreases in H, radiation and in the density turbulence level, and a steepening of the
edge density profile gradient.

In this work the design of an optimized Doppler reflectometer for the TJ-II stel-
larator and its application to turbulence and radial electric field studies is illustrated.
In the Doppler reflectometer design, special consideration is paid to the fact that the
TJ-II plasma is complex, i.e. three-dimensional and highly shaped, which results in
the need for an optimization of the system in terms of alignment to the magnetic field
and microwave beam focusing.

The experimental part dedicates particular emphasis to a comparison between equi-
librium L- and H-mode plasmas. Both perpendicular velocity profiles of density fluctu-
ations and perpendicular wavenumber spectra of density turbulence in L- and H-modes
are compared.

The dynamics of the L-H transition is investigated on fast timescales with special
attention to oscillating sheared flows and the coupling between density turbulence and
sheared flows, magnitudes which are measured simultaneously by Doppler reflectome-
try.



Chapter 2

Turbulence and Radial Electric
Fields in Toroidal Fusion Plasmas

In this chapter, the term turbulence is introduced, along with its properties and impact
on magnetic confinement fusion. Furthermore, the sheared flow mechanism, commonly
accepted to cause turbulence suppression, is presented. In this context it is appropriate
to give a short overview of how sheared flows can be generated by the plasma itself
and through external mechanisms. Therefore at the end of the chapter the terms of
perpendicular velocities and radial electric fields, central measurement magnitudes in
this work, are explained.

2.1 Turbulence

Turbulence is an ubiquitous phenomenon in fluids, gases and plasmas as soon as the
fluid or gas is subject to external forces [I]. These can be boundaries or obstacles the
gas is passing, artificially injected energy through the propeller of ships or aircrafts, or
the forces acting on the plasma due to the gradients produced when it is confined by
a magnetic field. The basic equation to describe turbulence in incompressible neutral
fluids (V - u = 0) is the Navier-Stokes equation,

Prm (?)_1751 + (u- V)u) = —Vp+ vAu, (2.1)
where p,, is the mass density, u is the velocity field, p the pressure and v the viscosity. If
L is the characteristic scale of the system, Uy its characteristic velocity, a characteristic
time T' = L /Uy is defined. A transition to dimensionless magnitudes can be obtained by
defining primed magnitudes x' = x/L, u' = u/Uy, t' = t/T and p' = p/p,,U?, resulting
in spatial and temporal derivatives of the form V' = LV and 0/0t' = (L/Uy)0/0t.
Substituting magnitudes in (Z1) by their primed equivalents, the dimensionless form
of the Navier-Stokes equation is

ou’
ot!

1
+ (U -Viu=-V)p + EAIU/’ (2.2)

3
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Figure 2.1: Schematic visualization of a flow at different Reynolds numbers, increasing from
left to right. The flow goes over from laminar to turbulent passing an intermediate stage where
eddies and Kdrmdn vortex streets are formed. Taken from Ref. [2].

where the Reynolds number is defined

o UOme
N 1%

R

(2.3)

and describes the degree of turbulence of the system by relating the non-linear behavior
with the viscous damping. Indeed, ([Z2]) shows that a flow is completely characterized
by its Reynolds number. Two systems that have different L, Uy, p,, and v can be
dimensionally similar if their R, are the same, i.e. they will show the same dynamical
properties.

Fig. 211 shows the different flow states for increasing R, from left to right. On the
left, R. is low and the flow is laminar. In the middle, an intermediate R, causes the
formation of eddies and Karman vortex streets. The fully developed turbulence at high
R, is depicted on the right, where eddies are formed which feed energy into smaller
eddies and no clear structures can be seen. It was only in 1941 that a theory appeared
which explained the transfer of energy from larger into smaller eddies on basis of a
dimensional analysis, explained further below.

It should be mentioned that a magnetically confined fusion plasma is a more com-
plex system than the neutral fluid mentioned here. In a plasma, at least two fluids
exist (electrons and ions), which interact on each other. These fluids can act back on
the magnetic field, i.e. slightly move the obstacles considered static from before. This
results in an extremely complex system of interactions. Nevertheless, although the
neutral fluid picture is used here as a schematic description, it gives a basic (visual)
understanding of turbulence.

2.1.1 Turbulence in Magnetically Confined Fusion Plasmas

In magnetically confined toroidal plasmas, nested so-called fluz surfaces are formed by
the magnetic field B. In general, the magnetic field has two components, a toroidal
component B, and a poloidal component By, where ¢ and ¢ are the toroidal and
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poloidal angles, respectively. In the tokamak concept, B, is produced by toroidal field
coils, while By is obtained by inducing a toroidal plasma current. For more information
on tokamaks, the reader is referred to [3]. In the stellarator, both B, and By are
obtained through a complex arrangement of magnetic coils [4]. In the present work the
stellarator TJ-II [5] is used, for details on its coil configuration see chapter Al

In a plasma in force equilibrium (Vp = j x B, p: pressure, j: (diamagnetic) cur-
rent), plasma parameters on the magnetic flux surfaces are nearly constant since the
charged particles in a plasma can move freely along the magnetic field lines, hence
parallel transport is fast. Perpendicular to the flux surfaces, however, the transport
is slow due to the Lorentz force, and so gradients (in density, temperature, etc.) are
formed. It will be seen later (cf sec. 23)) that flows will be present in a plasma as soon
as it is confined. These have impact on the Reynolds-number (23)), and the system can
go into a turbulent state, causing fluctuations in plasma density, temperature, poten-
tial, or even the magnetic field. These fluctuations can give rise to microinstabilities,
which are believed to be responsible for the so-called turbulent or anomalous transport
(anomalous: Greek for “defiance of laws”).

Note that the decoupling of parallel and perpendicular directions through the mag-
netic field has the effect that as a first approximation, plasma movements perpendicular
to the magnetic field can be seen as two-dimensional (2D). This has effect on turbulence
spectra, as will be seen below.

2.1.2 Spectral Properties of Turbulence

When thinking about turbulence in a fluid, one automatically thinks about movements
in random directions and different scales incorporated in the problem, as indicated on
the right hand side (rhs) of fig. 2] where eddies of different sizes are schematically
displayed. Due to the number of variables incorporated in the problem, an analytical
solution is not feasible. In principle, the calculation of the evolution of a turbulent
system with computer simulations is possible, since the governing equations and initial
conditions are known. However, simulations of systems at high R, are extremely CPU
consuming and will not be possible until many generations of computers have passed.
Still, a statistical (global) description can be used to characterize the turbulence and
to try to make predictions on the turbulence behavior, which is important for example
in weather forecasts or financial evolution predictions.

An important question when looking at a turbulent system, e.g. a fluid, is how
much turbulence energy is contained in each scale. But this is only a momentary char-
acterization of the system. The scales in the system are of interest and can change in
its temporal evolution. In nature the sizes of involved objects can grow (e.g. forma-
tion of clouds out of individual water drops) or shrink (e.g. breaking apart of large
rocks through collisions in an avalanche). These rearrangements are generally labeled
cascades, where the cascade towards smaller scales is called direct cascade, and the one
towards larger scales inverse cascade. Joining the two pictures, the energy contained
in each scale, and the formation of larger or smaller structures, the question arises how
the energy is transferred between the different scales. This is fundamentally different
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Figure 2.2: Schematic drawing of the spectral energy of 3D Navier Stokes turbulence. The
direct cascade transfers energy to smaller scales.

depending on whether two or three-dimensional (2D or 3D) turbulence is considered.

3D Turbulence

One of the most established theories is obtained via a dimensional analysis and was
first published in 1941 by Kolmogorov, therefore called the Kolmogorov-41 or K/jI-
theory [6L[7]. In this work homogeneous, isotropic 3D turbulence is assumed. The
key contribution of the K41-theory is the idea of a multiscale nature of turbulence,
where the properties of a turbulent cascade are controlled by an energy transfer rate.
Fig. schematically plots the energy per unit wavenumber against the structure
scale. Eddies are schematically shown to indicate the size of the structures, which is
decreasing towards higher k. The basic idea is that energy is injected into the system
at some large scale (injection scale k;), then transferred towards smaller scales (inertial
range), and ultimately dissipated through viscosity (dissipative range). Note that in
the Navier-Stokes equation (2.1), the viscosity goes with k2 (V*u), hence dissipative
effects dominate at small scales. The important wavenumber range where dissipation
dominates is sometimes called the viscous cutoff [§]. In the K41-theory it is assumed
that injection scale and dissipative range are separated in k-space. Since no energy
is transferred into the system in the inertial range, the turbulent energy is conserved.
For self-similar and isotropic Navier-Stokes turbulence, the K41-theory predicts for the
spectral energy per unit wave number

Ey = C¥B3E™5/3, (2.4)

where C is the Kolmogorov constant and ¢ is the energy transfer rate. The spectral in-
dex predicted by (2.4)) is « = —5/3 and has been confirmed by a number of experiments

in fluids (see e.g. [9HIT]).
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Figure 2.3: Schematic drawing of the spectral energy of 2D Navier Stokes turbulence. The
dual cascade transfers energy to larger and enstrophy to smaller scales.

2D Turbulence

The essential difference between 3D and 2D turbulence is that in 2D, the effect of
vorticity stretching is absent (Kraichnan, 1967: “In two dimensions, the vorticity con-
straint drastically changes matters.”), resulting in the conservation of enstrophy. The
principal consequence is that energy is transferred towards smaller wavenumbers and
enstrophy towards higher wavenumbers, each with different spectral indices.

A schematic drawing of a theoretical wavenumber spectrum of two-dimensional
Navier-Stokes turbulence is shown in fig. In 2D turbulence, if energy is injected
at one scale k; (injection), two inertial ranges form. Energy is transferred from the
injection scale towards larger scales and enstrophy is transferred towards smaller scales.
The two directions are called inverse cascade for energy and direct cascade for enstrophy
transfer. Therefore, the name dual cascade is often used in the context of 2D turbulence.
At high k, the energy is dissipated and thus contributes to the total energy in the
system. The spectral indices o are different for the two inertial ranges. The inverse
cascade is characterized by a« = —5/3 while the direct cascade shows @ = —3. The
latter spectral index was modified with a logarithmic correction in a paper by Kraichnan
in 1971 taking into account the nonlocality of interactions [12].

Fig. 241 shows a turbulence wavenumber spectrum measured in a 2D fluid [I3].
Experimentally, a 2D fluid is realized by a thin (< 1 cm thick), but wide (> 10x10
cm?) layer where movement is mainly horizontal. Small test particles are introduced
on the surface and their movement is recorded by a video camera. The excitation of
turbulence is then done via an array of magnets below the fluid interacting with a
current flowing through the fluid layer, resulting in j x B-driven vortices which interact
to produce the turbulent flow. For details the reader is referred to Refs. [I3HI0].

However, the description above only holds under certain assumptions, the most
basic of them is that a neutral fluid is considered. In magnetized plasmas, as stated
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Figure 2.4: Experimental wavenumber spectrum measured in a 2D fluid. The injection scale
k; is marked by the vertical dashed line. Taken from [I3].

above, two or more fluids can interact and even act back on the magnetic field. Fur-
thermore, the probability density function (PDF) of the turbulent fluctuations has to
be Gaussian, which has been shown not to be the case in several fusion experiments. In
recent experiments skewed PDFs were measured and the structures were labeled blobs
(positive perturbations) in the confinement region and holes (negative perturbations)
in the scrape-off layer (SOL) [I7HI9]. This was also confirmed by simulations, which
show that PDF's are non-Gaussian for 2D interchange, but almost Gaussian for 2D-ITG
(ion-temperature-gradient) turbulence [20].

2.2 Turbulence Suppression

Since the discovery of the low to high confinement (L-H) transition in the ASDEX
tokamak in 1982 by Wagner et al. [21], exceptional efforts have been undertaken to
understand the improved confinement regime and the transition into it. The H-mode
improved confinement is intrinsically connected to reduced cross-field losses of particles
and energy, caused by so-called transport barriers. In many experiments, these trans-
port barriers show similar properties, among them a location close to the plasma edge
and sheared poloidal plasma flows. In the following the H-mode confinement regime is
introduced, followed by a brief introduction to the theory of turbulence suppression by
shear flows.
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2.2.1 The H-mode Confinement Regime

H-mode plasmas are characterized by their improved (high, H) confinement properties
with respect to (w.r.t.) the normal (low, L) confinement plasmas. In general, H-
mode plasmas are obtained when the plasma heating power P exceeds a heating power
threshold P, which depends mainly on plasma line-averaged density (n.), magnetic
field strength B and plasma surface area S [22]. The type of heating (ohmic, electron
cyclotron resonance heating (ECRH), neutral beam injection (NBI)) is not relevant.
The fact that this power threshold exists excites pronounced physics interest in the H-
mode: it is worth mentioning that when going into H-mode the system self-organizes
into a higher energy state with reduced turbulence and transport, although an addi-
tional energy source (heating) is applied to it.

A plasma in H-mode exhibits steep gradients in density n, temperature 1" and radial
electric field E,., and the turbulence level is strongly reduced. A reduced amount of
radial particle flux T" is registered by H, (D,) monitors, interrupted sometimes by
strong particle exhaust events, the so-called ELMs (Edge Localized Modes), which are
grouped by their different characteristics in type I, II and IIT ELMs. The steepening of
gradients and reduced radial particle flux lead to an increase of the energy confinement
time 7 by a factor of 2 — 3. Although the H-mode confinement regime has been known
for more than a quarter century and experimental evidence strongly suggests that the
radial electric field E, plays an important role in H-mode physics, it is still not clear
whether the strong E,. and its spatial derivative dE,./dr = E! are a consequence of the
L-H transition, or rather a cause. This is because the self-organization of the plasma
into H-mode happens on a fast (turbulent) timescale, making it difficult to distinguish
cause and effect.

The first theoretical connection between the H-mode confinement regime and the
radial electric field F, was suggested by Itoh and Itoh [23]. Their model is based on
a bifurcation in E, which causes another bifurcation in the particle flux and convec-
tive energy loss in the plasma edge (Ja — r| < ppi, a is the minor plasma radius, r
is the minor radius and p,; is the ion poloidal gyroradius). In 1990, the mechanism
of turbulence suppression by sheared flows was first proposed in order to explain the
L-H transition by Biglari et al. [24]. In this work a sufficiently sheared E, can cause
sheared plasma flows which can tear apart turbulent eddies, reducing their radial cor-
relation length and thus reducing turbulent transport. Nowadays, this theory is the
prevailing picture explaining H-mode reduced turbulent transport due to accumulated
experimental evidence. Shortly after Biglari et al. published their work, it was realized
that turbulence itself could modify the average plasma flow profile through Reynolds
stress [25], which implies that E, or flow profiles and turbulence have to be calculated
self-consistently. In 1994, Diamond et al. proposed the first self-regulating model in
which turbulence and shear flows were coupled [26]. This work established a link be-
tween the turbulence level and shear flows through the Reynolds stress. The power
threshold was theoretically explained in terms of the net energy input rate, which has
to exceed the flow damping rate, giving a power threshold for the H-mode confine-
ment. The model shows characteristics of the predator-prey model [27], in which the
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flow shear is analogous to the predator species and the fluctuation level to the prey
species. Recent H-mode theories also include the effect of oscillating sheared electric
fields, the so-called Zonal Flows (ZF) as a cause for the L-H transition [28-30].

Despite the above mentioned efforts, still no theoretical model exists which can
explain in detail the H-mode confinement regime, in fact the question for the mech-
anism which generates the strong F, observed in H-mode plasmas is seen as one of
the fundamental open issues confronting the fusion community. In general, theoretical
models try to find sinks and sources for the radial force balance equation (cf sec. 23))
to explain the strong E! found in H-mode plasmas compared to L-mode plasmas.

2.2.2 Shear Flows

In order to explain the suppression of turbulence by velocity shearing, first basic at-
tempts were made by Lehnert in 1966 by analytically applying a spatially varying ve-
locity field to flute disturbances [31]. With regard to L-H transitions, in 1990, Biglari,
Diamond and Terry published a letter showing analytically that a possible turbulence
quench mechanism is a sufficiently strong shear in the radial electric field E,. [24] (For
a review, see [32]). An important result of this work is that the turbulence suppression
does not depend on the sign of either F, or its associated radial shear dF, /dr = E..
In mathematical form, the above criterion can be written

Awt
koL,

El
B,

(2.5)

®

where Aw; is the turbulence decorrelation frequency, B, is the toroidal field, L, is
the radial correlation length of the turbulent structures with poloidal wavenumber ky.
This criterion is often called the BDT-criterion. Indeed, (23] shows that the larger the
turbulent structures (L,), the less radial electric field shear is necessary to tear them
apart. A first experimental confirmation of the paradigm was provided by Groebner et
al. in 1990 in the DIII-D tokamak [33]. But the theory is not only applicable to plasmas,
it has been confirmed to be active in 2D fluids, where self-generated and externally
applied sheared flows are shown to lead to a turbulence suppression in agreement with
the BDT theory [I5].

A schematic visualization of the shear decorrelation mechanism is shown in fig.
2.5l The gray circle represents a turbulent structure which is put into a velocity field.
The velocity u, affects the structure. On the left hand side (lhs), no shear is present
(u’y = 0), hence the structure is convected upwards without any change to its shape.
The drawing in the middle shows the same turbulent structure affected by weak shear
(u,, weak). Tt is stretched and tilted, but still the correlation length L, is not changed.
However, if a strong velocity shear is present (u; strong, rhs), the turbulent structure
is torn apart, resulting in smaller structures, with the effect that L, decreases. This
means that (2I) is not satisfied anymore, so no further turbulence suppression will
occur. [t can be said that the turbulent structure size is now in balance with the
velocity shear strength.
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Figure 2.5: Schematic drawing illustrating turbulence decorrelation. Without shear, the
turbulent structure is convected upwards but retains its shape. As the shear increases, the
structure is stretched and eventually, when the shear is strong enough, torn apart, reducing
the turbulence correlation length.

In fig. a gyrofluid simulation result by Scott [34] is depicted. From left to right
the imposed u’ increases. The (ion temperature) turbulent structures are affected by
the velocity shear, and in the rightmost plot, structures have small radial size (L,
small) but are elongated in the vertical direction, and the velocity shear acts like a
transport barrier.

2.2.3 Zonal Flows

Zonal flows (ZFs) are low frequency (up to some kHz) n = m = 0 (n,m: toroidal
and poloidal mode numbers, respectively) electrostatic fluctuations with finite radial
wavenumber k, [28-30] (therefore sometimes called band-like sheared flows). Since they
are poloidally symmetric, they do not drive radial transport. ZFs gain their energy
from all types of microinstabilities, and regulate the amplitude of the latter by shearing
them. Since ZFs are electrostatic fluctuations, the caused velocity shear is time-varying.
Mathematically, this effect can be described as a predator-prey system [27], in which
the turbulence is the prey and the ZF is the predator.

A possible interaction between ZFs and mean sheared flows is subject to recent
research. Due to the fact that ZFs depend on turbulence and that a mean flow shear
can suppress turbulence, a suppression of turbulence by a mean flow shear will result
in a ZF suppression as well. Indeed, a recent theory states that ZFs can lower the L-H
transition threshold by quenching the turbulence, followed by a gradient buildup in
the plasma, which can drive a mean flow shear which itself suppresses turbulence and
thus the ZF that helped the plasma to enter into H-mode in the first place [35].

Another consequence of ZF's is the so-called Dimits shift [36]. It describes the effect
that ITG turbulence is stable even slightly above the linear critical gradient R/Lr,
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Figure 2.6: Gyrofluid simulation of turbulence decorrelation due to background imposed
E x B shear flow [34]. Ion temperature fluctuations are plotted. From left to right, the
velocity shear increases.

because ZFs limit the eddy size and thus transport. The effective critical gradient is
upshifted, hence the name.

2.3 The Radial Electric Field

The importance of the radial electric field E, in magnetic confinement fusion was not
recognized until in 1988 Itoh and Itoh introduced E, into the discussion to explain the
H-mode confinement regime [23], later followed by the inclusion of its shear in 1990 by
Biglari [24]. From then until today, increased effort has been undertaken to measure
E, in tokamaks and stellarators. The BDT theory predicts that if the FE, shear is
strong, it can drive perpendicular plasma shear flows that break turbulent structures
into smaller ones, thus reducing radial correlation lengths and suppressing turbulence.

To calculate the plasma flows perpendicular to the magnetic field, the momentum
equation without external forces or friction is considered. Furthermore, an equilibrium
solution is desired, so that temporal derivatives are zero. This leads to

p(E+vxB)—Vp=0. (2.6)



2.3. The Radial Electric Field 13

Here, p = nq is the charge density, E and B are electric and magnetic fields, respec-
tively, and v is the plasma flow. Multiplication from the right with B and for flows
perpendicular to B

(vxB)xB=-Bv+(B-v)B=—-B%, (2.7)
leads to a formula for the perpendicular velocity of the plasma:

_E><B_Vp><B
- B2 pB?%

V| (28)

This formula states that in a plasma confined in a magnetic field, flows will be present.
The two terms on the rhs are the E x B-velocity

ExB
VExB — BQ (29)
and the diamagnetic velocity
Vp x B
Vdia — —W (210)

Since vgyp is charge-independent, it does not produce any currents in the plasma.
However, this is not true if for instance due to collisions one plasma species is hampered
in its movement. Then the other species will carry a current in the plasma. The
diamagnetic velocity vgi., due to its charge-dependence, produces a current in the
plasma, called diamagnetic current

jdia = p(vdia,i - Vdia,e)- (211)

Writing (Z9) in component form and solving for F, a simple expression for the
vy g-contribution of the radial electric field is obtained

E, = vpypB. (2.12)

The radial electric field can be obtained from the radial force balance for any plasma
species «
1 dpg

E, = vgoBy — VpaBy — p—aé, (2.13)
where vy o, Uy o, po and p, are the poloidal and toroidal velocities, charge density and
pressure of species a. The last term on the rhs is often called the diamagnetic contri-
bution to E,. Principal factors determining the F, structure are poloidal and toroidal
driving forces (momentum input from NBI, neoclassical fluxes, ion orbit losses, etc.)
and their counterparts, the damping forces, like parallel and perpendicular viscosities.
Note that a velocity shear in both poloidal and toroidal directions can contribute to
an FE, shear.
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2.3.1 Measurement of the Radial Electric Field

Experimentally, a measurement of FE, is particularly challenging. The measurement
is possible in the edge plasma and scrape-off layer by emissive [37] or ball-pen [3§]
probes, which measure the plasma potential ¢,. Taking the derivative —d¢,/dr =
—¢,, (dz/dr = 2’ for all magnitudes z in the following) gives E,. However, emissive
probes are fragile and have limited lifetime, in particular in large-scale experiments
with high temperatures. Ball-pen probes are promising, but only usable around the
separatrix. Another type of probes is the Langmuir probe, which measures the floating
potential ¢q. Often E, is calculated from radially separated probes, and a possible
electron temperature contribution to ¢g is neglected, which can lead to problems in
the measurement interpretation [39,/40].

Another diagnostic capable of measuring E, is the Heavy Ion Beam Probe (HIBP),
which measures the radial ¢, profile. Using £, = —¢[, a radial electric field profile
is obtained. A drawback of HIBP systems is that their signal quality depends on the
plasma density, meaning that in the edge plasma, which is of particular importance for
H-mode research, they lack accuracy. Furthermore, HIBP system are complex and ex-
pensive, hampering their feasibility for many — in particular small-scale — laboratories.

Apart from these two methods, (2I3]) can be used to calculate E, from measure-
ments of vy, v, and p’ through charge exchange recombination spectroscopy (CXRS)
[41]. Spectroscopy lacks spatial and especially temporal resolution, so this method is
not optimum when trying to measure fast processes, e.g. the dynamics of the L-H
transition [42]. All terms of (2.I3) have to be measured for the same species «, be it
ions or some impurity. Apart from that, the installation of both poloidal and toroidal
CXRS lines of sight is complex and presents great challenges to the experimentalist.

Doppler reflectometry, discussed in the following, is a relatively cost-effective diag-
nostic capable of measuring the perpendicular velocity of density fluctuations u,, F,
(for details see sec. B3)) and density turbulence wavenumber spectra S(k, ). Therefore
it offers an attractive alternative to the cited issues and is a valuable tool for the in-
vestigation of turbulence and the interplay between (sheared) flows and the level of
turbulence in fusion plasmas.
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Doppler Reflectometry

Doppler reflectometry (DR), also called Doppler backscattering (DBS), is a diagnostic
tool first used in the late 1990’s [43H45] which is capable of providing measurements
of the perpendicular velocity of density fluctuations u; and their wavenumber spectra
S(ky), where k, is the turbulence perpendicular wavenumber. With the addition of
very basic and almost always satisfied assumptions, it is possible to deduce the radial
electric field F, from the perpendicular velocity. An important point is that measure-
ments can be made on fast timescales, which allows for the calculation of fluctuating
perpendicular velocities u , fluctuating radial electric fields E, and turbulence level 7,
simultaneously.

3.1 History

Conventional reflectometers are based on the fact that electromagnetic waves are re-
flected by the plasma at a so-called cutoff-density n., which depends on the wave
frequency fy and, for X-mode measurements, on the magnetic field strength B. Usu-
ally, the frequencies necessary to probe fusion plasmas are in the microwave frequency
range (1 — 100 GHz). The phase ¢ of the reflected wave is compared to a reference
wave and gives information on the cutoff-layer position in the plasma.

From the early 1990’s on, it was observed that the phase ¢ of reflectometer measure-
ments did not fluctuate around a mean value, as was expected due to radial movements
of the cutoff layer. Instead it increased or decreased monotonically, with ¢ reaching
net values corresponding to cutoff layer movements larger than the system size, which
could not be real. The first one to make measurements (on JET) and document the
effect was Sips in 1991 [40], calling it phase runaway (PRA). He also noted that the
PRA was due to density fluctuations, and it was seen that in H-mode the PRA dis-
appeared. However, Sips provided no physical interpretation of the effect, instead he
attributed it to a phase meter problem at low signal level (due to fluctuations). To
overcome the problem, he installed high-pass filters which allowed the measurements of
fluctuations only on timescales smaller than 0.2 ms, which removed the PRA, but with
the drawback to lose the information on density fluctuations with frequencies below
5 kHz.

15
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The correct interpretation of Bragg backscattering off moving density fluctuations
was first given by Sanchez et al. at the first International Reflectometry Workshop
(IRW1) in Abingdon, UK, in March 1992 [47]. The heterodyne reflectometry signals
measured in the W7-AS stellarator allowed for the calculation of complex amplitude
spectra, and the PRA was shown to be related to asymmetries in the spectra. Two
interpretations were proposed, (i) symmetric moving plasma perturbations with an an-
tenna misalignment or (ii) asymmetric moving plasma perturbations. The conclusions
from Sanchez et al. from W7-AS were confirmed by Hanson et al. for measurements
on the ATF torsatron in September 1992 [4§].

One year later, in 1993, as a side-product in a different context, Mazzucato and
Nazikian derived a formula for the Doppler shift in the frequency spectrum caused by
enhanced scattering off density fluctuations at the cutoff layer [49]. They proposed
that “.. the plasma rotation may be inferred from the Doppler shift in the peak of the
frequency spectrum.”

In the following years the observation of PRA was confirmed by many groups on
several experiments [50H56], where a connection between turbulence level and the exis-
tence of the PRA was deduced in almost all cases. Bulanin and Korneev showed that
the sign of the PRA reversed when the plasma entered H-mode in TUMAN-3, and
attributed the effect to a possible velocity shear in H-mode [51]. Branas et al. showed
that in W7-AS H-mode plasmas the PRA completely vanished, interrupted by short
reappearances during ELMs. In addition, when the magnetic field was reversed, the
phase derivative changed sign, a proof that radially moving density fluctuations were
not responsible for the PRA [56].

The first two-dimensional (2D) full-wave simulations were done by Irby et al., where
the effect of poloidally propagating density fluctuations on the phase evolution was
confirmed [57]. Using the previously developed physical optics model [58,59], Conway
investigated the effects of asymmetric reflectometer configurations and asymmetric
density perturbations [60]. In this context he showed that phase ramping or PRA only
occurs when a threshold turbulence level — its value depends on several parameters —
is surpassed.

At this point it seemed to be only a matter of time until the first Doppler reflectome-
ters were developed. PRA had been observed and explained in theory and simulation
and it had been proposed that PRA could be exploited to deduce the perpendicular
velocity of plasma density fluctuations.

The first measurements with deliberately tilted antennas that showed finite Doppler
shifts fp clearly separated from 0 kHz were presented in March 1999 at the 4% Interna-
tional Reflectometry Workshop in Cadarache, France, by Hirsch et al. for W7-AS [43]
and Zou et al. for Tore Supra [44]. Tt was then when Zou et al. showed the first perpen-
dicular wavenumber spectrum ever measured with Doppler reflectometry [44]. Bulanin
did similar measurements on TUMAN-3M with tilted antenna beams [45], However, in
his experiments the antenna setup was not optimized and the Doppler peak was not
separated from the reflection component of the spectrum, so that the interpretation
of the data was not straightforward. In the years following 1999, several Doppler re-
flectometers were designed for different tokamak and stellarator experiments [61H65].



3.2. Theoretical Background 17

6 (a) /m m<0\\00 (b) /m
N(z<0)=1 N(z <0) =1\
y m/>10 y
N(z) an N(z) ) an
0 u v
0 0
B B

Figure 3.1: Oblique incidence of a microwave beam in a slab plasma (a) without and (b)
with the presence of turbulence at the cutoff layer.

The new systems had better spectral resolution and Doppler shifts of several MHz
were obtained. Dedicated 2D full wave simulations show that optimized systems with
Gaussian beams are reliable in fp and S(k) measurements [66,67].

3.2 Theoretical Background

In the following, the physical processes involved in Doppler reflectometry and the
spectral resolution of a Doppler backscattering experiment are explained. These are
important points indispensable in the design process of a Doppler reflectometer.

3.2.1 Physical Mechanism

In contrast to conventional reflectometry, where the microwave beam is launched per-
pendicular to the cutoff layer in the plasma, in Doppler reflectometry the microwave
beam is launched obliquely with respect to the cutoff layer normal. The following de-
scription for the case without turbulence is based on the derivation given in Ref. [68]. In
fig. B1l(a) a plasma slab in the y-z-plane is indicated, with the density gradient pointing
downward in z-direction. The magnetic field points into the page. For z < 0, there is
no plasma, hence the refractive index N(z < 0) = 1, i.e. the wave (indicated by a blue
line) travels in a straight line in vacuum. The wave vector is k = w/c (0, sin 6y, cos 6y).
As the wave enters into the plasma at z = 0, the refractive index starts to decrease and
the wave vector is modified according to the local dispersion relation in the plasma. As
indicated in fig. Bl(a) the wave direction is modified as the cutoff layer is approached.
At the cutoff layer the refractive index takes on its minimum value N = sinf,, k.
changes sign and the wave travels out of the plasma again. In the case of fig. Bla),
with a flat cutoff layer, the wave is reflected and no scattering takes place.
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The situation is different when the cutoff layer is corrugated as schematically dis-
played in fig. BIl(b). Due to the corrugations, scattering will take place, as indicated
by the magenta dashed line. If the turbulence scale k£, at the cutoff layer matches the
Bragg condition

l{/l = 2]{30 siné’o, (31)

the -1 order scattering will return to the antenna (Bragg backscattering). Typically,
Doppler reflectometers cover a perpendicular wavenumber range of k; = 3 — 20 cm ™!,
values where the typical wavenumber spectra in magnetic confinement fusion experi-
ments are finite, i.e. fluctuations at these scales are normally present.

The spectrum of the backscattered wave is Doppler shifted, the value of the Doppler
shift depends on the velocity of the plasma turbulence and on its wave number

wp =u-k=uik; +uk+uk,. (3.2)

In general, Doppler reflectometers are optimized in a way that they are only sensitive to
k., and not k| by aligning them perpendicular to the magnetic field B. Additionally, in
magnetically confined plasmas it is usually assumed that k; > k) and u; < u), in a way
that the second term on the rhs of (8.2)) is negligible with respect to the first one [69].
k1 /ky was experimentally shown to be close to 200 in the stellarator experiment T.J-
K [70], about 100 — 200 in TEXT [71,[72] and roughly 30 in TFTR [73]. About
a quarter century ago, these measurements were extremely challenging, so generally
upper bounds for &k were provided, with the result &, > ky [74.[75], but which did not
rule out k; > kj. Numerically &, > kj was confirmed for plasma edge turbulence
simulations with TEXT parameters [72]. If in addition to the above the turbulence
does not displace itself radially [48,[62]76], the third term vanishes, and ([B2]) can be
written

wp = UJ_I{:J_. (33)

The perpendicular wavenumber of density turbulence k£, = 2k, ; is obtained through
ray tracing, which gives k, ;, the wavenumber of the incident ray. With the measure-
ment of the Doppler shift, the perpendicular velocity of density fluctuations can be
calculated.

It should be mentioned that the typical density turbulence timescales are ~ 10 us,
which defines a lower limit for the measurement of the Doppler shift of a spectrum. This
makes Doppler reflectometry a well-suited diagnostic for temporally resolved analysis
of perpendicular velocity and density fluctuation behavior. In particular, Doppler
reflectometry is important to investigate transient phenomena like I-H transitions on
short timescales. This fact is underlined by the ability to measure u; or E, (DC and
fluctuating) and n, simultaneously.

The radial localization of the backscattering process is provided both by the Bragg
condition and the swelling of the wave electric field close to the cutoff layer [7T7]. At
the backscattering layer, k£, ; takes on its minimum value. Since k; = 2k, ; is also
minimum, the highest density fluctuation level is expected (see wavenumber spectra
in sec. ZT1.2). The radial resolution of the diagnostic depends strongly on the density
profile gradient and can be optimized by optimizing the spectral resolution of the
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system [78] (see next section). A ray tracing analysis of the radial localization is done
in sec. b.7.2

3.2.2 Spectral Resolution

Scattering of electromagnetic waves is an established method for the investigation of
density fluctuations. In every scattering experiment, the wavenumber investigated de-
pends on the volume illuminated by the electromagnetic wave. The density fluctuations
in a volume V' can be expressed in wavenumber space by

ﬁ(k,t):/vn(r,t)eik'rdr. (3.4)

As stated above, the Bragg condition determines the perpendicular wavenumber of
density turbulence k; selected by the antenna. The spectral (wavenumber) resolution
Ak of a system determines the wavenumber interval to be measured, centered at k.
This can be interpreted as a bandpass filter in wavenumber space. Holzhauer and Mas-
sig showed that the spectral resolution Ak for a gaussian beam is inversely proportional

to the beam size w [79],
22

w

Ak (3.5)

a factor which has to be modified for cutoff-layer curvature yielding the spectral reso-
lution of a Doppler reflectometer [80,K1]

2¢/2 2k, \ 2
AkL:T\/_ 1+(w 0), (3.6)

Peft
with peg the effective radius of curvature within the spot size, defined

RcRp

= 3.7
Rc + Rp ( )

Peft
with Rp and R¢ the radii of curvature of the microwave beam and cutoff layer, respec-
tively. Note that if the beam waist is at the cutoff layer (Rg — o0), then peg — Rc,
i.e. the effective radius of curvature reduces to the plasma curvature R¢. If in addition
a plasma slab is treated (pegs — 00), then the square root in (B8] is unity and (B3 is
recovered.

The optimum beam size is obtained by setting the first derivative of (B.6]) to zero,
which yields after some basic calculus

Wopt = ’;f (3.8)

The spectral resolution dependence on the beam size in the plasma is illustrated
in fig. In (a), the probing beam frequency is fo = 50 GHz for all curves and
plane beam wavefronts are assumed in the plasma (Rg — 00), therefore pog = Rc. In
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Figure 3.2: Spectral resolution dependence on beam size for Rg — oo (waist at cutoff layer).
(a) At fixed microwave frequency (fo = 50 GHz) but for different magnetic confinement fusion
experiments, i.e. different Rc (slab: co, AUG (ASDEX Upgrade): 2.0 m, TS (Tore Supra):
0.7 m, TJ-II: 0.2 m). (b) In TJ-II for different probing beam frequencies.

consequence, the cutoff layer curvature is the only free parameter. In the slab case, the
larger the beam spot, the better the spectral resolution. For the ASDEX Upgrade case
(AUG), Rc = 2.0 m was used [82]. Here the spectral resolution can be minimized by
using a beam spot size of around 4 cm. For Tore Supra (TS, Rc = 0.7 m), the beam
size should be smaller. For TJ-II (R¢ = 0.2 m), an optimum beam waist of roughly
1.5 ¢m should be used.

Fig. B2(a) underlines the particular importance of a well-defined beam spot size
w for the stellarator TJ-II. It is crucial that w lies in the range of 1.5 cm, and in
particular a beam size smaller than this value should be avoided, since the spectral
resolution deteriorates more rapidly towards smaller w than towards larger ones. Note
also that in the plot a beam waist in the plasma is assumed, i.e. to obtain a situation
like the one in fig. B2(a), the beam has to be focused to the backscattering region.

The frequency dependence of Ak, on w is visualized for the TJ-II case with plane
wavefronts in the backscattering region in fig. B.2(b). As is expected from (B.§), for
lower frequencies wep; becomes larger. Furthermore, better spectral resolution can be
obtained with lower frequencies. The optimum Doppler reflectometer configuration in
TJ-II is one which provides a focused beam in the plasma with decreasing spot size
for increasing probing beam frequencies. For a detailed description of the Doppler
reflectometer design for TJ-II and hardware details the reader is referred to chapter
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3.3 The Perpendicular Velocity of Density Fluctu-
ations

The perpendicular velocity u; measured by Doppler reflectometry is a composition
of the plasma background E x B-velocity vgyxp and the phase velocity of the density
fluctuations vy,

U] = VExB + Uph- (39)

The phase velocity of density fluctuations vy, can be interpreted as the velocity with
which the density fluctuations move in the plasma frame. If vy}, is negligible compared

to vexa,
Uph K< VEXB, (3.10)

3) reduces to u; = vpxp. With knowledge of the magnetic field B the radial electric
field can be calculated
E,. =u, B. (3.11)

In general, it is difficult to show that v,, < vEyxp. Nevertheless, by comparison with
diagnostics that measure E,. it can in principle be shown that the inequality holds.
Comparative studies using Doppler reflectometry have been done in TJ-I1I, where FE,
calculated with (BI1]) was compared to the one obtained with the heavy ion beam
probe [83] (for details see sec. E.84]), which measures directly the plasma potential ¢,
hence E, = —V¢, can be obtained. The inequality (8.10) was confirmed for ECRH
and NBI heated L-mode plasmas. Comparisons with spectroscopy in W7-AS [61] and
with Langmuir probes in ASDEX Upgrade [19] support the applicability of (BI0).
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Chapter 4

Experiment Description

In this chapter, the TJ-II stellarator and the diagnostics with impact on this work will
be introduced.

4.1 The TJ-II Stellarator

TJ-11 is a 4-period heliac-type stellarator [5] which started operation in 1997 in Madrid,
Spain. It has a major radius of Ry = 1.5 m and an average minor plasma radius of
(a) < 0.2 m. The on-axis magnetic field strength is By < 1 T. A sketch of the coil
system, plasma and vacuum vessel of the experiment is shown in fig. Il There are
32 toroidal field coils (TF, brown), 4 vertical field coils (VF, green), one circular (CC,
blue) and one helical (HX, turquoise) coil, following the helical law

Rux = riix cos (—4yp), (4.1)
Zux = Tixsin(—4p),

where ¢ is the toroidal angle and 7% = 0.07 m is the swing radius of the helical
coil. The toroidal field coils (radius rrp = 0.4 m) follow the same helical law, with
a swing radius of r7% = 0.28 m. The ensemble circular and helical coil form the so-
called central conductor. The central conductor is of major importance, since the total
current in it defines the plasma volume and the current in the helical coil has large
impact on the rotational transform. The configuration of the currents is generally
labeled Ico_Iux-Ivr, and denotes the currents in the different coils in terms of 100 A.
So Icc = 100 stands for a current of 10 kA in the circular coil. Note that Itg is absent
in the configuration denomination, because its value is determined by the requirement
of By = 0.95 T at the toroidal heating position, the resonance condition for electron
cyclotron heating. The standard configuration of TJ-II is 100-44_64. Due to the four
periods, TJ-II is divided into four sectors (A, B, C, D), each one of 90°, which are
identical in terms of physics (flux surfaces are equivalent). The eight ports per sector
are labeled in counterclockwise direction, so the ports in sector A are labeled Al to AS,
those in Sector B are labeled B1 to B8 and so on (for clarification see fig. EL1]). In the
following, because of the fourfold symmetry and for simplicity, the letter identifying

23
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Figure 4.1: (a) Top-down view and (b) lateral view of the TJ-II coil system, plasma (red)
and vacuum vessel (gray). The port numbering is indicated. For details refer to the text.

the sector will be discarded. Because of stellarator symmetry, the flux surfaces at ¢ are
the same as those at 90° — ¢ mirrored at Z = 0 for ¢ < 90°. About 200° of the total
plasma is depicted in fig. @Il On the lower rhs of fig. EI(a) the plasma is above the
central conductor and then winds in clockwise direction around the central conductor
with increasing ¢. The cut through the plasma on the rhs is at the position where the
Doppler reflectometer is installed (¢ = 67.1°, port 6).

In fig. the flux surfaces (red) for the magnetic standard configuration of TJ-II
are shown for increasing toroidal angles indicated in the upper left corner of each plot.
The axis ranges are the same in all plots. The stellarator symmetry mentioned above
can be observed e.g. at ¢ = 30° and 60°. Note that with increasing toroidal angle ¢,
the plasma winds clockwise around the central conductor, indicated by the & symbol
at R — Ry = Z = 0. The winding of the plasma around the central conductor can
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Figure 4.2: Flux surfaces for the standard configuration of TJ-II at different toroidal angles
indicated in the upper left corner of each plot. The axis ranges are the same in all plots.

also be observed in fig. LIl Note the magnetic island (n/m = 8/5) in the flux sur-
faces at approximately 3/4 of the plasma radius, an important feature of the standard

configuration.

TJ-II possesses a high magnetic configuration flexibility, illustrated in the vacuum
t-profiles of some configurations in fig. 3l ¢ denotes the number of poloidal turns
during one toroidal turn by a traced magnetic field line. By changing the current in
the different coils, the radial positions of rationals (several of them are indicated by
the dashed lines) can be controlled, allowing the study of their impact on magnetic
confinement or transport barrier formation. Major results are that rational ¢-values
can facilitate the transition from L- to H-mode [83] and that they tend to increase E,
in their vicinity [84]. When low order rationals are located in the plasma core (p ~ 0.3,
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Figure 4.3: Vacuum ¢ range in TJ-II. ¢(0) can take any value from 0.9 to 2.2. In all con-
figurations, ¢ increases with the normalized flux radius p and the magnetic shear is low. The
labels of the curves are in the standard notation (see text). Important rational n/m values are
indicated. The 8/5-rational is at p ~ 0.75 in the standard configuration.

with p = r/a the effective radius of the plasma, a the minor plasma radius), an electron
internal transport barrier (eITB) may form [85H87]. ¢(0) can take any value between
0.9 and 2.2, and increases with p. In all the configurations, the magnetic shear is low.
The plasma volume varies with the configuration between 0.3 and 1.1 m? (a = 0.1—0.2
m), depending mainly on the sum of the currents in CC and HX.

The plasma discharges of TJ-II last for up to 300 ms, with hydrogen or helium as
working gas. Heating systems include electron cyclotron resonance and neutral beam
injection heating (ECRH and NBI). ECR heating is achieved using 2 gyrotrons heating
at the second harmonic with f = 53.2 GHz and a power of Pgcrag = 300 kW each. In
ECRH-plasmas, the density profile is normally flat or even hollow [88], due to pump-
out of the electrons [80], and the electron temperature profile is peaked. The maximum
density in ECRH plasmas is limited by the cutoff-density, which is 1.75 x 10 m~3 for
the TJ-II system. The electron temperature in ECRH plasmas reaches TFCRH ~ 2 keV .

e,max

parameter value
major radius Ry = 1.5 m
average minor radius (a) < 0.2 m
magnetic field strength | B < 1T
rotational transform ¢(0) R 0.9-22
electron density (ECRH) | nfSRE ~ 1.5 % 10" m™®
electron density (NBI) | o)~  8x 10" m™?
peak electron temperature | T¢ jax = 2 keV
ion temperature T; 2 150 eV

Table 4.1: Characteristics of TJ-II and the parameters of the produced plasmas.
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Figure 4.4: (a) Circuit diagram of the AM reflectometer. Microwave frequencies are obtained
by doubling and tripling of the oscillator signal. (b) The AM receiver detection system uses
an intermediate frequency of 10.7 MHz.

In NBI discharges (two NBI injectors with 1 MW each), the density profile is peaked
with maximum values of nYBL ~ 8 x 10! m™3. The characteristics of TJ-IT and

e,max

parameters of the produced plasmas are summarized in Tab. 1]

4.2 The AM Profile Reflectometer

A short description of the AM profile reflectometer is given in this section, for more
detailed information the reader is referred to [89]. The density profiles measured with
this system are used as input for the ray-tracing code TRUBA (cf sec. 5.7]) to calculate p
and k,; of the Doppler reflectometer measurement. The system works in X-mode and
measures at a toroidal angle of ¢ = 45°, entering the vessel through port A4ATOP. The
frequency range is 25 — 50 GHz (sweep time: 1 ms) and densities of n, = 0.03 — 1.00 x
10" m~2 are covered. Normally, a frequency of 50 GHz would allow for densities up to
1.50 x 10 m~3, but in general the reflected signal close to 50 GHz is noisy and cannot
be used for profile reconstruction. The range of frequencies is obtained by employing
a hyper-abrupt varactor-tuned oscillator (12 - 18 GHz) and doubling and tripling its
frequency, as shown in fig. 4[(a). The signal is then amplitude modulated (AM) at 200
MHz and a reference signal is split by a directional coupler. Low-pass filters (f < 50
GHz) are used to avoid perturbation of the system by the ECRH system which works
at 53.2 GHz. The probing beam is sent to the plasma by the emitting antenna. The
reflected (phase shifted) signal is received by another antenna and the phase of the AM
envelope is measured by a phasemeter (fig. £4(b)) by comparing it to the reference
signal. The phase information yields the time delay, which itself is the input for the
Bottolier-Curtet [90] algorithm to obtain the density profile.
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Figure 4.5: Circuit diagram of one channel of the fast frequency hopping reflectometer. The
signal received from the plasma is down converted to 768 MHz and heterodyne detection, done
by an I1.Q. detector, yields the complex amplitude signal which contains the information on
the plasma properties. For details refer to the text.

4.3 The Fast Frequency Hopping Reflectometer

The fast frequency hopping reflectometer system [91] was installed in TJ-IT until 2008,
when the electronics part of the system was moved to be used by the new Doppler
reflectometer. The system is a two-channel heterodyne system (for details on hetero-
dyne methods, see the review [02]) working in the frequency range of 33 — 50 GHz
(Q-band) in X-mode, resulting in an accessible range of plasma densities of about 0.3
to 1.5 x 10 m~3. The emitting part of the system is installed at a toroidal position
of o = 85.3° and enters the vessel through port BSSIDE. A sketch of the electrical
system (one channel) is shown in fig. The frequencies of the two channels can be
changed independently on a timescale smaller than 1 ms, allowing for the investigation
of turbulence and fluctuations with high radial and temporal resolution (AR < 1 c¢m,
sampling rate 5 MHz). Each channel uses two independent 8.0 — 12.5 GHz synthesiz-
ers, one of which is called the main synthesizer (RF) and the other one local oscillator
(LO), which has a frequency offset of 192 MHz.

The RF signal is multiplied by 4 to achieve 33 — 50 GHz and transmitted by a
standard horn antenna to the plasma. The returning signal is converted by a harmonic
mixer to an intermediate frequency (IF) of 768 MHz, amplified and band pass filtered
around 768 MHz with 10 MHz bandwidth. Then it is amplified to the requisite level
of the 1.QQ. detector.

The LO signal is mixed with the RF signal and then multiplied by 4 to attain the
necessary 768 MHz, and then fed to the 1.Q. detector, which returns the In-phase (I)
and Quadrature (()) signals containing the amplitude and phase information of the
received signal. For details on the I — Q) plane and interpretation refer to sec. .11



4.3. The Fast Frequency Hopping Reflectometer 29

-0.2+

0.4} .
. T ! |
0 025 05 075 1

R — Ry [m]

Figure 4.6: Schematic drawing of the frequency hopping fluctuation reflectometer system.
The flux surfaces are shown in red, the perpendicular to the LCFS in green and the center of
the microwave beam is indicated in blue. The support of the waveguides (close to the vacuum
vessel) is shown on the right hand side.

A sketch of the reflectometer system is shown in fig. The flux surfaces for
the standard configuration are shown in red, and the antenna configuration is almost
symmetrical to the perpendicular of the flux surfaces (misalignment about -2°), shown
as a green line. The support of the waveguides is made of stainless steel with an inlet
of teflon which holds and insulates the waveguides. The misalignment of -2° with
respect to the perpendicular to the flux surfaces generates slightly asymmetric spectra
of the complex amplitude (Ae*®) and the complex phase (e*?). This effect is due to
the Doppler shift caused by the perpendicular velocity of the turbulence of the plasma

(phase runaway, cf sec. B.2.1]).

4.3.1 Reflectometer Capability to Measure the Sign of the
Perpendicular Velocity

The reversal of the edge perpendicular velocity w, in TJ-II can be triggered by the
modulation of the line-averaged density (n.) and is closely connected to a threshold
value of the collisionality [93]. As stated above, the conventional reflectometer is capa-
ble to monitor the sign of the perpendicular velocity of density fluctuations [04195]. The
center of gravity or mean frequency of the power spectrum S(f) of the reflectometer is

defined
T fS(f)df

T S(hdf

where fyy is the Nyquist frequency, and reflects the degree of asymmetry of the spec-
trum.

(f) = (4.3)
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Figure 4.7: (#11285) (a) Time trace of the line-averaged density (n.), crossing twice the
threshold density ny, ~ 0.57 x 10! m=3. (b) Corresponding edge perpendicular velocity
measured with Langmuir probes at p ~ 0.9. (c) The center of gravity (f) of the power
spectrum of one reflectometer channel measuring at p ~ 0.8. Negative (f) corresponds to
positive v and vice versa. (d) The slope of the reconstructed phase also reflects the sign of
the perpendicular velocity.

In fig. 7 a discharge with density modulation is shown. In (a), the line-density
(n.) crosses the threshold density ny, at ¢ = 120 ms and goes below again at ¢t = 170
ms, which is indicated by dotted vertical lines. The edge perpendicular velocity u
measured with Langmuir probes [96] at p ~ 0.9 is depicted in (b). u is positive (ion-
diamagnetic direction) when the line-density is below the threshold density ((n.) < n)
and it is negative when the line-density is above the threshold density ((n.) > n).
In (c), the comparison with the center of gravity measurement of the reflectometer is
demonstrated. The reflectometer is measuring at p ~ 0.8. Due to phase-runaway [48]
1], the mean frequency is negative when the perpendicular velocity is positive and
vice versa. For comparison, the reconstructed phase ¢ is plotted in (d). The slope is
negative for u;, > 0 and positive for u; < 0.

This relation between measurements of Langmuir probes and the reflectometer
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demonstrates that although it is not possible to calculate absolute perpendicular veloc-
ities from the reflectometer data, it is possible to determine the sign of v, . Advantages
of the reflectometer to the Langmuir probes are that the reflectometer can measure
at more internal positions (up to p ~ 0.6) and that the temporal resolution of the
reconstructed phase is better than the length of the time window required to calculate
u, from Langmuir probe measurements.

However physics studies are limited if only the sign of w; can be obtained. In
order to study radial electric fields and turbulence behavior and their coupling, it was
decided to design a Doppler reflectometer for TJ-II.
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Chapter 5

The TJ-1II Doppler Reflectometer

One of the two main parts of this thesis was the design of a Doppler reflectometer (DR)
for the TJ-II stellarator. The design and optimization of a DR has to be carefully done
in order to achieve good spectral resolution and to avoid a possible kj-dependence,
which enhances the system reliability [67]. Apart from that, through the optimiza-
tion process, data analysis is easier and can even be automated (to some degree) if a
potential zero-order reflection can be avoided.

5.1 Design of the Doppler Reflectometer

As a first step in the DR design a study was done on the viability of Doppler reflec-
tometry in TJ-II. This included the localization of suitable and available ports, which
were found in sector C6. Apart from that, the spectral resolution (cf sec. B.2.2) had
to be optimized by encountering the optimum beam size wep in the plasma for the
respective position of the DR. To accelerate the design process of the system, in the
calculation of wey, the poloidal flux surfaces were preferred to the perpendicular ones.
This approximation caused a slight error of wep resulting in a spectral resolution 2.8%
worse. This error is small and comparable to standard error sources, i.e. uncertainties
in antenna and mirror fabrication, positioning and alignment of the system. Never-
theless, in the remaining sections, as a guide, the optimum way to design the Doppler
reflectometer is illustrated. Differing results caused by considering the poloidal flux
surfaces are mentioned throughout the text.

5.1.1 General Considerations

In sec. B.2] it is mentioned that the turbulence scale measured by a DR depends
basically on the microwave frequency fy and the antenna tilt angle . The microwave
frequency to be used is determined by the plasma density for O-mode and additionally
the magnetic field for X-mode operation. Apart from that, a decision has to be taken
on the radial range of measurement positions. It is clear that the higher the microwave
frequencies, the more internal the measurements while losing the possibility of probing
the edge plasma. For the TJ-II DR, X-mode operation was chosen and the target

33
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measurement range was decided to be the (for turbulence investigations) important
density gradient region, because it has major influence on the radial electric field (cf
eq. (ZI3)) and is a driving term for drift wave turbulence. The microwave generator
of the conventional reflectometer (see sec. .3)) provides frequencies f, = 33 — 50 GHz,
suited for these requirements.

There are basically two different ways of changing the turbulence scale measured
by Doppler reflectometry through the tilt angle 6. One is an alteration of the plasma
shape (by moving the plasma or changing the configuration), which changes the angle
of incidence of the beam with the cutoff layer [62]. The second way is a movement of
the beam, which can be achieved by a motorized antenna [63] or a steerable mirror [97].
In general, a change in plasma shape or position is not desirable, because it can cause
changes in plasma properties like confinement, density and temperature gradients,
velocities etc. Hence for the TJ-II DR it was decided to make the microwave beam
steerable, which technically is achieved with a steerable mirror, explained in detail in
sec. 6.4l

In order to be able to measure in perpendicular incidence (conventional reflectome-
try), the tilt angle of the microwave beam has to be zero degrees, for which ([B.]) yields
k; = 0. In the planning phase of the TJ-II DR it was decided to include this possi-
bility in the design, and even to extend it by allowing the tilt angle to be positive or
negative. Apart from the possibility of measuring in conventional reflectometry mode,
this provides a way to calibrate the DR by searching for the mirror setting where the
power spectrum is symmetric.

The TJ-II plasma is highly shaped, an up-down symmetry exists only at toroidal
angles ¢ = 0° and 45°. However, an approximate symmetry can be found if the plasma
is mirrored by the line which connects the center of the circular coil (R — Ry = Z = 0)
with the center of the helical coil. For simplicity, this line will henceforth be called the
azis of symmetry. Since the helical coil winds around the circular coil (cf (£2)), this
axis of symmetry depends on the toroidal angle ¢. The poloidal angle of the axis of
symmetry is § = —4p. In the design process of the TJ-II DR it was tried to position
the system on this axis of symmetry, in order to provide symmetric measurements in
the sense that tilt angles of 6, provide Doppler shifts fp of the same magnitude but
with different sign.

5.1.2 Toroidal Position

As mentioned in sec. B.2.1] the optimization of a DR implies the alignment of the system
perpendicular to the magnetic field B. To reduce the technical difficulties connected
to the three-dimensionality of the stellarator TJ-II, a toroidal position was chosen
where the vertical component of the magnetic field B, vanishes while maintaining the
position of the DR on the axis of symmetry of the plasma. Therefore, for each toroidal
angle, the vertical magnetic field component on the axis of symmetry at normalized
flux radius p = 0.8 was calculated, in mathematical form (note that p is the normalized
flux radius, not the radius in a toroidal coordinate system)

B.(p=0.8,0,0 = —4¢) <107 T. (5.1)



5.1. Design of the Doppler Reflectometer 35

04 [ 5oa T ; T : T T
_ 02} l
.':. : "1_
@ 0.0
=
N
m

-0.2

-04 prarcees

50 60 70 80 90
¢ [deq]

Figure 5.1: Toroidal dependence of B,(p = 0.8, ¢, 0 = —4¢p). The inset shows a zoom to the
region where B, = 0. For details refer to the text.

Fig. B shows B.(p = 0.8,¢,0 = —4¢) for toroidal angles ¢ = 45° — 90°. The
values of B, range from -0.4 T at ¢ ~ 50° to 0.35 T at ¢ ~ 87°. In the intermediate
range of ¢ = 65° — 70°, the plasma reaches its maximum vertical position at poloidal
angle # ~ 90°. The inset of fig. £.I] shows a zoom to the region where B, ~ 0. At
toroidal angle ¢ = 67.1° condition (B.1) is fulfilled.

The sector corresponding to ¢ = 67.1° is sector 6. It was decided to install the
Doppler reflectometer in sector C6 (and not A6, B6 or D6) due to two reasons: first,
sector C is less affected by direct contact with the two NBI injectors, which inject
towards sectors B and A, and second, port C6TOP and C6SIDE were vacant at the time
of the design, which facilitated substantially the technical design and the installation
of the system, explained in detail in sec.

In fig. B.2(a) a top view of sector C of TJ-II is schematically shown. The DR port
C6 is indicated by the arrow. In fig. B.2(b) sector C is plotted showing the outlines of
the vacuum vessel (gray) and the circular coil (blue). The poloidal plane for ¢ = 67.1°
does not go through the center of port C6, which results in a slight displacement of
the DR w.r.t. the port center. In (c), a zoom to the red indicated area from (b) is
presented. The magnetic field pitch angle, defined

Yo = tan_l(Bg/B@), (5.2)

where By and B, are the poloidal and toroidal magnetic field components, respectively,
at the design position of the DR is 7, = 26°. This angle defines the measurement plane
of the DR in TJ-II, which is perpendicular to the magnetic field, indicated by the green
line in fig. 52)(c). To be able to measure in pure X-mode, minimize the Faraday effect
and to avoid sensitivity to parallel wave numbers k), the system has to be aligned
accordingly.

Furthermore, in fig. B.2[c) a new coordinate perpendicular to the magnetic field
is introduced, R, which defines the distance of any point in the perpendicular plane
to the point where the plane crosses the y-axis, R, (z = 0) = 0. Apart from that,
a parallel plane (brown line) is defined, which is parallel to the magnetic field in the
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Figure 5.2: (a) Top-down schematic view of sector C of TJ-II with vacuum vessel (gray)
and circular coil (blue). The location of ports C6, where the DR is installed, is indicated by
the arrow. (b) Plot of the geometry, indicating the magnetic field at the DR measurement
position. (¢) Zoom to the red indicated region from (b).

point (p = 0.8, = 67.1°,0 = —4¢p). Following the definition of the R, -coordinate, a
coordinate R| parallel to the magnetic field is defined, with R)(z = 0) = 0.

5.1.3 Flux Surfaces Perpendicular to B

Fig. B3(a) shows the poloidal flux surfaces (gray) for the standard configuration at

¢ = 67.1°. The axis of symmetry of the plasma (cf sec. E1.2)) is indicated in green and
crosses the helical coil (circle). The design position Xpes = (p = 0.8, = 67.1°,0 =
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Figure 5.3: (a) Poloidal flux surfaces at ¢ = 67.1° (gray) and vessel wall (black). The axis of
symmetry of the plasma and the design position for the DR are indicated. (b) Flux surfaces
in the (perpendicular) measurement plane of the DR. For details refer to the text.

91.6°) is the starting point for the calculation of the perpendicular flux surfaces. There-
fore, at Xpes the direction of the magnetic field B is calculated. The plane which is
perpendicular to the magnetic field (cf fig. B2)(c)) at xpes defines a vertical slice (be-
cause B, = 0) through the flux surfaces. The result is depicted in fig. B.3|(b). Note the
abscissa is labeled R, , the perpendicular coordinate defined in sec.

A visual comparison between poloidal (gray) and perpendicular (red) flux surfaces
is depicted in fig. B4l Note the perpendicular flux surfaces have been shifted so that
the plasma centers overlap. The plot reveals pronounced geometrical differences, but
also similarities in the flux surfaces. The closer to R = 0, the more similar are the flux
surfaces. However, at R ~ £0.2 m, perpendicular and poloidal flux surfaces deviate
substantially. In the lower horns, the poloidal flux surfaces reach further down than

-0.3 02 -01 -0.0 01 02 03
R [m]

Figure 5.4: Comparison of poloidal flux surfaces at ¢ = 67.1° (gray) and perpendicular flux
surfaces (red). The perpendicular cross section of the plasma is smaller than the poloidal cross
section.
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Figure 5.5: Radius of curvature fit (blue) to the perpendicular flux surface p = 0.8 (red) for
(a) a beam-size comparable section of the flux surface (green) and (b) a larger section (green).

the perpendicular ones. At this toroidal position, the perpendicular cross section is
smaller than the poloidal cross section, which affects the radius of curvature R¢ of the
perpendicular flux surfaces, important for the calculation of the spectral resolution of
the system in sec. B0

5.1.4 Plasma Curvature Radius

The perpendicular flux surfaces from fig. B3[(b) can be taken to be the cutoff surfaces
for the DR, because the magnetic field in the measurement region (edge plasma) is
almost constant, so that the radial position of backscattering will depend mainly on the
electron density. Since the equilibrium plasma density is constant on the flux surfaces,
the latter will be used to calculate R¢ of the plasma using the Levenberg-Marquardt
method to fit

2= /R~ (R~ Rl + 2 (5.3)

to a section comparable to the beam size at the design flux surface (p = 0.8). Here,
R, Ry and zp are free parameters which define the center (R o, 29) and the radius
(Rc) of the circle.

Fig. shows the result of the fitting of (B3] to the perpendicular flux surface at
p = 0.8. In (a), the size of the section to be fitted is of a few cm and in (b) a larger
part of the flux surface is used for fitting. A curvature radius R¢ = 0.20 m is obtained
independently of the size of the fitting region, reflecting the part of the flux surface
under consideration is almost circular. Furthermore, the line connecting the design
position at p = 0.8 and the circle center crosses the plasma center, underlining the
near symmetry at the design position.

The information obtained in this section is indispensable to calculate the spectral
resolution using (B.6]), explained in detail in the next section.
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Figure 5.6: Spectral resolution for different frequencies (33, 41, 50 GHz) obtained when using
the radius of curvature through (a) perpendicular (Rc = 20 cm) and (b) poloidal (Rc = 28
cm) flux surfaces. The optimum beam waist range for all frequencies is indicated in green.

5.1.5 Spectral Resolution of the System

As shown in sec. B.2.2] the spectral resolution Ak, of a Doppler reflectometer depends
on the size of the microwave beam in the plasma w, the wavenumber of the microwave in
vacuum kg and the effective radius of curvature p.g which includes the radii of curvature
of the plasma R and of the microwave beam Rg. Since the TJ-II plasma curvature
is very pronounced, it was decided to design a system with plane beam wavefronts in
the plasma (Rg — 00). In consequence, the effective radius of curvature within the
microwave spot peg (cf ([B.1)) converges to the plasma curvature radius, peg — Rc.

Fig. plots the spectral resolution against the beam waist in the plasma for
different frequencies (33, 41, 50 GHz) and for the perpendicular flux surfaces with (a)
Rc = 20 cm and the poloidal flux surfaces with (b) Re = 28 cm. In (a), the minimum
is located at w ~ 1.70 cm for f, = 33 GHz, and goes towards smaller beam waists for
higher frequencies (w &~ 1.53 cm for fo = 41 GHz, w ~ 1.38 cm for f, = 50 GHz).
This result is important, because it shows that for the given experimental conditions,
the best spectral resolution is obtained with plane beam wavefronts in the plasma and
decreasing waists for increasing microwave frequencies. This has immediate impact on
the design of antenna and mirror, presented in secs. and 4] respectively. The
optimum beam waists in (b) are slightly larger than the ones in (a), because the
plasma curvature is less pronounced when using the poloidal flux surfaces. Since the
system design was made following fig. 5.6[(b), the beam waists in the plasma are larger
than the optimum ones obtained from the perpendicular flux surface calculation (a).
Nevertheless, the difference in Ak is only 2.8%. This error is small and comparable to
standard error sources, i.e. uncertainties in antenna and mirror fabrication, positioning
and alignment of the system.



40 Chapter 5. The TJ-1I Doppler Reflectometer

,,,,,
"y

~~~~~
,,,,,,,,
......
......
- i

.....

-
S I
o m— M
i,

-------
,,,,,,,,,,
.........

Design value T

0.5 0.6 0.7 0.8 0.9 1.0
Y

Figure 5.7: Magnetic field pitch angle variation in the radial measurement range of the TJ-II
DR for 6, = 0° and £12°.

5.1.6 Magnetic Field Pitch Angle

Fig. 5. 7lshows the radial variation of the magnetic field pitch angle v, for three beam tilt
angles, one in perpendicular incidence (solid line) and two others with £12° (4 : dashed
line, — : dotted line) w.r.t. the perpendicular beam in the radial measurement range
of the DR. Straight lines starting from the mirror center are used for the calculation,
no beam refraction is taken into account. -y, varies about 3° from p = 0.5 to p = 1.0.
This variation is comparable to the variation of the magnetic field direction w.r.t. the
measurement plane, which implies that the kj-sensitivity is low in the whole radial
measurement range.

5.1.7 Flux Compression / Expansion

Fig.6.8(a) illustrates that the distance dr between two flux surfaces can vary poloidally.
Three representative measurement positions are indicated. In the lower left, the dis-
tance dr®P? between the two flux surfaces is large, leading to flux expansion. Moving
along the flux surfaces in counterclockwise direction, a region close to the central con-
ductor with flux compression (dr¢®™P) is indicated. In the upper part, at the DR
measurement position, the distance between flux surfaces is dr™. Obviously,

dro® > dpmess 5 dpeomp, (5.4)

If the plasma moves along the flux surface, its velocity v, will vary depending on the
space between flux surfaces. A comparable situation is water passing through a pipe,
where the flow velocity is inversely proportional to the square of the pipe radius. Due
to the effect of flux compression or expansion, the plasma velocity on a flux surface
(¥ = const., ¥ normalized magnetic flux) is not constant, but changes depending on
the value of VW. In the plasma, the stronger VW, the closer to each other are the flux
surfaces.

Since Doppler reflectometry provides a local measurement of u , in order to compare
with other measurements, it is necessary to convert the local measurement to a flux
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Figure 5.8: (a) Two perpendicular flux surfaces of TJ-II illustrating that the E, measurement
is a local measurement. (b) Radial evolution of the flux compression factor ¢ in the DR
measurement region calculated for different vacuum magnetic configurations of TJ-II.

surface averaged value. Therefore, the magnitude

_ vy

¢ = 2N (5.5)

is defined, where (-) is the flux surface average. Hence ¢ > 1 for flux compression and
¢ < 1 for flux expansion. The flux surface averaged perpendicular velocity can then be
written

(ui) =1/C-uy. (5.6)

Note that the correction factor is not squared as in the water pipe example. That is
because the above example is calculated for a circular pipe cross-section, which is not
the case in the plasma.

The radial ¢ profile for different magnetic configurations is depicted in fig. E.8|(b).
For all configurations, ( is close to unity and its radial variation is small. Therefore, in
the flux surface averaged measurements throughout this thesis, a value ¢ = 1.05 will
be used.

Since the plasma potential ¢, is assumed constant on a flux surface, the radial
electric field measurement depends on the poloidal measurement position. With the
above example

EXP < RS < EromP (5.7)

i.e. an FE, measurement depends on its measurement position, and will be largest in
zones of flux compression and smallest in zones of flux expansion.

5.1.8 Summary

The above section illustrates the process of theoretical Doppler reflectometer design.
A toroidal position for the DR has been found and the optimum beam size at the
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cutoff layer has been calculated. Furthermore, the decision has been taken to employ
plane wavefronts in the plasma. With those criteria, the theoretical requirements for
the TJ-IT DR have been established, leading to a feasible hardware design, explained
in the following sections.

5.2 General Hardware Considerations

With the information obtained through the theoretical considerations (sec. Bl the
hardware components to be used in the emitting/receiving part of the Doppler reflec-
tometer can be designed. The main requirements are summarized:

Available space
The toroidal position encountered in sec. in combination with the complex
three-dimensional structure of the magnetic field dictates the alignment of the
Doppler reflectometer. The use of top and lateral port is necessary, and due to
the port shapes and sizes, the final sizes of mirror and antenna are restricted.

Gaussian beam
There are several types of antennas that provide Gaussian beams, among which
are the Gaussian Optics Lens Antennas (GOLA), corrugated horns and specifi-
cally designed antennas. GOLAs and corrugated horns are large (up to 1 m for
the requirements of the diagnostic). Apart from that, GOLAs are inadequate
for vacuum operation. So the choice was made to have an antenna specifically
designed for the present requirements.

Beam waist in plasma
The requirement to position the beam waist in the plasma causes the necessity
to employ a focusing mirror.

Steerable mirror
To change the turbulence scale measured, the mirror has to be steerable. This
complicates the design of the supporting structure and special care has to be
taken with the space restrictions due to the operational space.

With these requirements it is clear that the design of the system has to be done
carefully both from a physics and a technical point of view. The measures taken to
achieve the points above are explained in the following.

5.3 Choked-corrugated Antenna

The antenna of a Doppler reflectometer is one of the crucial parts of the system.
Depending on the requirements imposed by the plasma, the antenna has to fulfill
a range of demands to obtain the optimum microwave beam. In the following, the
requirements, hardware details and beam properties are summarized.
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5.3.1 Requirements

As mentioned in sec. BTl for the TJ-II Doppler reflectometer frequencies ranging
from fy = 33 — 50 GHz are used. From the theory of Gaussian beam propagation (see
Ref. [98] and Appendix [A]), the radius of curvature of the beam can be written

R=2+22/z, (5.8)
where z is the coordinate along beam propagation and z. the confocal distance

Tws
2o = N (5.9)
These equations show that the frequency of the microwave beam enters into R through
the confocal distance. In sec. [5.4]it will be shown that the curvature of an ellipsoidal
mirror depends on the radius of curvature of the incoming Gaussian beam R;. To
simplify the design of a mirror suited for the whole frequency range, it is thus important
that the antenna produces a Gaussian beam whose waist follows the relation wy o< v/ Ag,
resulting in a frequency-independent confocal distance. Hence R; will depend only on
the distance from antenna to mirror.

Apart form that, the requirements from sec. can only be met by certain types
of antennas, of which the standard and commercially available ones are either too
large for the space requirements of TJ-II (corrugated antennas) or inadequate for vac-
uum operation (GOLAs). Nevertheless, a patented design of small choked-corrugated
horns exists, combining parallel and perpendicular ridges and developed by the An-
tenna Group of the University of Navarra, Spain. These antennas provide high-quality
Gaussian beams [99,[100] and do not employ any vacuum-susceptible parts.

5.3.2 Hardware Details

A sketch of the choked-corrugated antenna specifically designed for the TJ-II Doppler
reflectometer is depicted in fig. .9 The total length and diameter are 10.4 and 7.8 cm,
respectively, values that comply the space requirements imposed by the TJ-II vacuum
vessel. The choked part (parallel ridges w.r.t. the beam axis) is located approximately
between [ = 1 and [ = 2 cm, where [ is the coordinate along beam propagation. The
rest of the antenna (up to [ = 10.4 c¢m) consists of perpendicular ridges. The height
of the parallel corrugations is 0.7 mm, with material of 0.3 mm in between and the
width of the perpendicular corrugations and the intermediate material is 1.6 and 0.5
mm, respectively. The fabrication process of these small-size ridges is demanding and
each part (choked and corrugated) has to be manufactured separately.

The photographs in fig. show the choked-corrugated antenna demounted (a)
and mounted (b). In (a) the corrugations of both parts can be seen. The choked part
is attached to the corrugated part, resulting in the antenna shape in (b).
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Figure 5.9: Sketch of the choked-corrugated antenna. Length and diameter are 10.4 and 7.8
cm, respectively. Parallel (between [ = 1 and 2 cm) and perpendicular (up to { = 10.4 cm)
ridges are visible.

5.3.3 Beam Properties

The beam properties of the antenna are important to obtain reliable results in Doppler
reflectometry [I0I]. Unfortunately, due to time restrictions, it was not possible to
measure the antenna characteristics in the laboratory. For this reason the beam prop-
erties shown in this section are the results of numerical simulations provided by the
developers.

Fig.[5.1T(a) shows the simulated far field radiation pattern of the choked-corrugated
antenna for fy = 37 GHz. The design gaussian is shown in light blue. The different
co-polarization patterns (0° (black), 45° (green), 90° (brown)) coincide well with the
desired power distribution. The different angles are measured w.r.t. the polarization
direction of the microwave beam in the antenna, illustrated in fig. EI1I(b). The polar-

(@) (b)

Figure 5.10: Photograph of the choked-corrugated antenna installed as part of the TJ-II
Doppler reflectometer. (a) Choked and corrugated parts are fabricated separately. (b) Final
assembly.
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Figure 5.11: (a) Antenna far field radiation pattern for fy = 37 GHz with design Gaussian
beam profile in light blue. All co-polarization simulations follow the Gaussian well, with side
lobes below -30 dB. The cross-polarized radiation is below -30 dB as well. (b) Schematic
drawing illustrating the different co-polarization curves in (a). For details refer to the text.

ization direction in the antenna mouth is the z-direction. To measure the co-polarized
power distribution, another antenna which measures only the desired polarization scans
the azimuth moving in different directions: parallel (black), perpendicular (brown) and
at 45° degrees (green) w.r.t. to the radiation polarization in the antenna mouth. Since
the polarization has non-parallel components away from the center (y = 0), the power
pattern will be different when scanning in different directions. This is illustrated in fig.
(ITi(a). The different co-polarization curves do not coincide perfectly. Nevertheless,
the differences are marginal and well below -30 dB. The cross-polarization, measured
similar as above, but with an antenna measuring only the non-desired polarized radi-
ation, is also below -30 dB.

Further frequency-dependent characteristics of the antenna are plotted in fig.
Note that the frequency range of the Doppler reflectometer is 33 — 50 GHz, therefore
the regions indicated by the line pattern are not used in operation. In (a), the simulated
frequency dependence of the maximum crosspolar power (e.g. maximum of red line
in fig. B.IT)(a)) is less than -30 dB in the whole frequency range, except for a narrow
region around 44.5 GHz.

Another design criterion for the antenna was a beam waist of wy = 1.7\ for f, = 41
GHz. This results in wy(41 GHz) = 1.24 cm, which gives the proportionality factor for
the beam waist

Woy = 01454\/ )\0, Wy, )\0 in m. (510)

Fig. BI2(b) shows the beam waist against the frequency, with the design beam waist
indicated by the dashed straight lines. The agreement with the y/Ao-curve (dashed
curve) is not perfect, but the general trend is followed. In particular the frequencies
between 44 and 50 GHz show good agreement with the theoretical curve.

The directivity D of an antenna (sometimes called peak directivity) is a measure of
how directional an antenna pattern is, and relates the emitted power density in the
desired direction to the emitted power density by an ideal isotropic radiator antenna
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Figure 5.12: Frequency-dependent beam characteristics of the choked-corrugated antenna.
The regions marked by the line pattern are out of the frequency range of the microwave
electronics (Q-band). (a) The cross-polarization is below -30 dB in almost the whole frequency
range. (b) Frequency dependence of the beam waist wy with design case (dashed line). (c)
The variation in antenna directivity is below 2.5 dB in the whole frequency range.

radiating the same amount of total power. Hence, an antenna emitting the same
amount of power in all directions would have D = 0 dB. Fig. 512(c) shows D of the
choked-corrugated antenna, which is between 22.5 and 25.0 dB in the whole Q-band
range. Note the small variation of D across the whole frequency band (~ 2.5 dB),
which is of particular importance in the system power calibration in sec.

5.4 Ellipsoidal Mirror

To be able to focus the beam to the cutoff layer in order to optimize the spectral

resolution of the Doppler reflectometer (sec. BILH), an ellipsoidal mirror was designed.

The calculation of the mirror surface, hardware and calibration details are explained
in the following.
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Figure 5.13: Geometry used for the calculation of the ellipsoidal mirror surface. The coordi-
nate system {z’y’z’} is rotated by ¢ w.r.t. the coordinate system {zyz}.

5.4.1 Surface Calculation

The design of the ellipsoidal mirror follows mainly the descriptions in [98,[102]. The
necessary theoretical background on gaussian beam propagation is given in appendix
[Al In fig. the geometry and the system of coordinates (Cartesian, {zyz}) used for
the derivation of the formulas for the ellipsoidal mirror are shown. y points into the
direction of the reader, the ellipsoid is rotationally symmetric about the z-axis. a and
b are the major and minor radii, respectively, which define the shape of the ellipse by

132 + y2 22

b2 a?

b2
e=y\/1-— (5.12)

and ranges from 0 to 1 (supremum). It indicates how elongated the ellipse is, 0 is
equivalent to a circle and the approach of 1 results in an elongated ellipse. F; and F,
are the focal points. The distances R; and R, (equivalent to the radii of curvature of
the microwave beam) connecting F; and Fy with any point P lying on the ellipse follow
the rule

=1 (5.11)

The eccentricity is defined

R1 + R2 = 2a. (513)
An equivalent lens focal length [y can be written as

1 1 1

=y 5.14
R R (5.14)
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Iy can also be calculated (for a detailed derivation the reader is referred to [98])

1+ (2—1)2] , (5.15)

where n = 1 — (w;/wq)?, 2. = mwi/\g the confocal distance and d; the distance
between the beam waist and the mirror. w; and wy are the beam waists at d; and d,
respectively.

As seen in fig. 5.13] 6; is the angle of incidence of the beam and 6, describes the
angle between the beam and the axis of symmetry of the ellipsoid. Using the law of
cosines, the distance between the two foci Ay can be calculated as

d
lfy=—|[1—4|1—n
! Ui

Ao =\ R} + R} — 2R: Ry cos 26, (5.16)

and

2 2 p2
w). (5.17)

,=m —cos
P ( 2R1 A
It is now convenient to define a local coordinate system {x'y’2'} (shown in green in fig.

B.13). The axis 2’ is tangential to the ellipse in the point of incidence of the beam P,
Z' is perpendicular to the surface. It follows from geometry that

b =0,—0, (5.18)

which is the angle of rotation between the x’'z’-plane and the zz-plane. The unprimed
coordinates can now be expressed in terms of the primed ones, ¥ and 0,

2’ costp — 2'siny) + Ry sinb,
=y (5.19)
z = a'siny+ 2 cosp — Ag/2 — Ry cosb,.

Substituting these expressions into (GI1]) and defining e = Ag/2, the section of the
ellipse can be calculated as
, —B—+vB?—-4AC

= 2
z A , (5.20)

where
A = a*sin®¢ + b cos® 1,
B = —2[d’R;sintsing, + b°cosv (e + Ry cosb,) + €2’ siny) cos ¥]
C = a*(a'cosp + Rysind,)? + b?[2'sinep — (e + Ry cosb,)]” — a®b? + ay>.

For small surface extents and incidence angles, this expression can be written as

/ cos 0; 2 1 2 /
= T E—— 1-— 5.21
- < 414 S 4lfcosﬁiy ) (1 =), (5:21)
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Figure 5.14: Contour plot of the ellipsoidal mirror installed as part of the Doppler reflec-
tometer of TJ-II. The total size is 18 x 19 cm?, the axis of rotation is the 2’ = 0 axis.

where
€2 sin 9 cos ¥
Ry sin0,

A typical design procedure of a mirror (f,d;,wy,ws,0; known) goes as follows:
Since the distance between antenna and mirror is known, one can calculate the radius
of curvature Ry at the mirror. (510 depends only on w;, ws and d; and gives the focal
length l;. By using (5.I4), the radius of curvature of the outgoing beam R, and thus
the position of the outgoing beam waist dy can be calculated. The distance between
foci is given in (5.106]) and this yields 6, using (5.17), which results in ¢ through (G.I8]).
All the required values are now obtained and the surface of the mirror can be calculated
with (520) or (B2T]).

The final design values used to calculate the surface of the mirror are shown in Tab.
Bl Using these values, the final simplified equation (5.2]]) for the mirror reads in SI
units

2= (1.34- 2”7 +2.68-y7) (1 -1.25-2). (5.22)

However, for the final design of the mirror (L20) was used. A contour plot of the
mirror surface is shown in fig. 514 Due to space limitations imposed by the vacuum
vessel, the final dimensions of the elliptical mirror are 18 x 19 cm?. The axis of rotation
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parameter value
microwave beam frequency f = 35 GHz
waist at antenna w1 = 1.571 A
waist in plasma Wa = 3.000 A
configuration 100-44_64
position of cutoff layer Peutoff = 0.8
distance antenna — mirror dy = 0.15 m
distance mirror — cutoff dsy = 0.20 m
incidence angle 0; = 45.0°
toroidal angle ® = 67.1°

Table 5.1: Design parameters for the ellipsoidal mirror of the DR installed in TJ-II.

is the 2’ = 0 axis. While in the y/-direction, the mirror is symmetric, an asymmetry is
found in the z’-direction. In the lower half, the 1.2 ¢cm contour line reaches ' ~ —10
cm, while in the upper half, it reaches 2’ ~ 9 cm. Furthermore, the upper two corners
are more elevated than the lower ones, represented by the dark contour shading.

5.4.2 Fabrication and Calibration

A schematic drawing of the mirror manipulator system is depicted in fig. In
(a) the magnetic field lies horizontal in the plane while in (b) it points into it. The
(upper) non-vacuum part is separated from the (lower) vacuum part through a flange,
indicated by the line-pattern area. The non-vacuum part, which is shown again as a
photograph in fig. .16l is protected against accidental mechanical impact by an acrylic
glass housing. Inside, a stepper motor [ is located on top, mounted on a fixture seen
on the lhs of (a). The motor turns a leadscrew, which moves a nut [ up and down. In
the schematic fig. BI85 the nut is shown three times corresponding to three different
angular positions of the steerable mirror. Two optical barriers are installed which serve
as upper limit (UL, O) and lower limit (LL, O) between which the nut can be moved.
Another optical barrier, called home (H, O), is used as the reference position and is
situated slightly above LL. This position is particularly important, because each time
the mirror angle w.r.t. the horizontal 0y (see fig. B.10) is intended to be reduced, the
reference position is approached first and then the mirror is moved to the new value
of Oy. This is a precaution to avoid any hysteresis due to up/down movements of the
leadscrews. Above UL and below LL are security switches [, called upper security
(US) and lower security (LS) that are activated mechanically to protect the system
from moving to its mechanical limits in case of failure of the optical limits (UL/LL).

The vacuum part of the system shows the fixture which holds the mirror on the
lhs of figs. G.I5)(a, b). At the lower end the fixture provides a clamp that sustains the
mirror rotatable on its 2’ = 0 axis (cf fig. 5.I4]). The mirror angle fy is controlled by
a manipulator arm [ connected to a vertically moving nut .

The system operation goes as follows: the movement of the step motor [ turns
the leadscrews of the exterior and in-vessel parts of the system, which are connected
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(a)
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Figure 5.15: Schematic drawing of the mirror manipulator system. The control part and
barriers (optical and mechanical) are above the flange (diagonal pattern), the movements are
translated to the in-vessel part of the system, causing the mirror rotation w.r.t. the magnetic
field direction.

mechanically. The movement of the leadscrews causes a vertical movement of the nuts
[0 and [0. Hence each position of the exterior nut corresponds to a position of the
mirror. With a calibration of the system, a relationship between motor step number
and angular position of the mirror can be established.

Fig. BI7(a) shows a photograph of the mirror and its manipulator system. Note
that a 180° rotated view of fig. B.I5(a) is shown. The mirror is in the lower part of
the picture with the reflecting surface on the reverse side. The pronounced surface
curvature is visible at the lower rim of the mirror. The support arm is located at the
extreme right of the mirror. This displacement is due to the toroidal displacement of
the mirror from the center of port C6 (cf sec. and fig. B.2(b-c)). Going upwards
the support arm ends in the vacuum flange. Above the flange the mirror manipulator
system electronics with stepper motor and control module are visible. The vacuum
part is depicted in (b). The mirror is now seen from its side with the support arm
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Figure 5.16: Photograph of the mirror manipulator system electronics. The nut is moved by
a leadscrew between the lower and upper optical barriers to effect the poloidal movement of
the mirror.

on the left. The angular movement is obtained through the manipulator arm which
connects the upper part of the mirror with the nut that is moved vertically by the
leadscrew. Here the mirror is seen in maintenance position, i.e. the position it has to
be in to be taken out of TJ-II or to be put inside. The vertically moving nut is in an
upper position and the manipulator arm is almost vertical. During operation, the nut
position is lower. The typical operational range is 0y = 32° — 52°.

The absolute calibration of the mirror angle w.r.t. the horizontal plane 0y is de-
picted in fig. GI8(a). To calibrate the mirror, the number of counts gc in the EPOS
interface is gradually increased and 6y is measured with a digital spirit level with a
precision of £0.1°. This is done three times (black, blue and green), but due to the
good reproducibility, the points lie on top of each other. The functional dependence
from fig. G.I8(a) can be fitted with a fifth-grade polynomial (red curve),

Ou(qc) = as(qe)’ + as(ge)* + as(qe)® + as(qe)? + ar(qe) + ao, (5.23)

yielding the coefficients denoted in tab. Apart from the fit, in fig. B.I8(a) the
operational range of the mirror during plasma operation is indicated. It ranges from
Oy = 32° to Oy = 52°. The functional dependence of f on gc in this region is almost
linear and the slope is weak compared to the higher fg-range, increasing the precision
of the system in this range. The maintenance position is indicated at 8y = 73.5° which
is close to the upper limit (73.8°). The absolute deviation of the measurement points
from the fit is illustrated in fig. 5.I8(b), where the deviation is below 0.2° for almost the
whole operational range of the system. This uncertainty in the positioning is mostly
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Figure 5.17: (a) Photograph of the mirror, its manipulator system and the electronics. (b)
Vacuum part of the system.

due to the fact that the measurement of 8y in the laboratory is difficult, since a spirit
level has to be brought into contact with the mirror. This contact causes a small force
acting on the mirror, which can be strong enough to change fy by a small amount. In
tab. fu and number of steps gc of the stepper motor of different important positions
(limits, switches, home, operational range) are listed.

To move the mirror during operation of TJ-II, a LabView(C) interface is used which

coefficient value
as 1.425 - 10°
ay -1.996 - 10726
as 1.182 - 10719
as -2.239 - 10713
a; 4.220 - 107
ao 31.857

Table 5.2: Coefficients of the polynomial fit (Z.23)).
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Figure 5.18: (a) Calibration of the mirror angle w.r.t. the horizontal #y and polynomial fit
to the measurements (red). (b) Absolute deviation of the measurement form the fit.

uses the above calibration of the mirror. This remote operation enables changes of 0y
on a shot-to-shot basis, e.g. to measure perpendicular wavenumber spectra of density
fluctuations (cf sec. {).

position Ou qc

[O 75.3° 7,873,000

UL 73.8° 7,734,000

maintenance 73.5° 7,705,000

upper limit in operation 52.0° 4,593,000

lower limit in operation 32.0° 34,000
H 31.9° 0

LL 31.7° -37,000

LS 31.5° -84,000

Table 5.3: Important mirror positions with corresponding fy values and number of steps gc
of the stepper motor.
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Figure 5.19: (a) Contour plot of the absolute electric field distribution of the microwave beam
obtained through 2D full wave simulation. d; and ds are the distances from antenna to mirror
and from mirror to detection plane, respectively. (b) Power distribution of the microwave
beam. The 5% power level is indicated by the black dashed contour line. For details refer to

the text.

5.5 2D Full Wave Simulation of the System

Since the DR design of secs. B.1] and is not trivial, it is convenient to cross-check
the theoretical design of the mirror. Before its fabrication at CIEMAT workshops,
simulations using the 2D full wave code by Blanco et al. [I03] were carried out to test
the focusing properties of the configuration and to analyze the beam properties in the

plasma.

5.5.1 Focusing Properties

Fig. shows the geometry used for the 2D full wave simulations. The simulated
area is 35 cm in the x- and 45 cm in the y-direction. The spatial resolution in the
calculation is Az = Ay = 3 x 1072 cm, corresponding to 20 points/wavelength at 50
GHz. In the upper part of the plot the mirror is indicated as a solid line, its center is at
(z,y) = (20 cm, 31 cm). Hence the distance from the antenna to the mirror d; = 15 cm
and the distance from mirror to plasma ds = 20 cm. The fy = 33 GHz Gaussian beam,
corresponding to the beam emitted by the antenna (wp any = 1.39 cm), is introduced
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on the rhs of the graphic. In (a), the absolute value of the electric field distribution
is plotted color-coded. The beam is reflected by the mirror towards the plasma and
shows convergent beam wavefronts just after being reflected. In the proximity of the
plasma cutoff layer indicated by the dashed region and corresponding to p = 0.60 to
0.85, the beam wavefronts are plane, while for more interior positions (y — 0 cm) the
beam diverges. The dashed line at y = 11 ¢cm marks the detection plane corresponding
to p =~ 0.80, where the beam properties are analyzed in the following.

In fig. B.19(b) the logarithm of the power distribution of the beam is plotted in color-
scale. To guide the eye, the 5% power level is indicated by the dashed black contour
lines. From antenna to mirror, the beam size w grows. As the beam is reflected, several
maxima and minima, caused by constructive and destructive interference of incoming
and outgoing beam, are observed. The outgoing beam size does not change as much
as the incoming beam size, because the beam waist at the cutoff layer is larger than
the antenna beam waist. An asymmetry can be observed on the lhs of the outgoing
beam, where the power decays more rapidly than on the rhs. This is due to the lost
power at the lower end of the mirror, visible in the blue and violet tail going towards
the lower left. In order not to interfere with the plasma, the mirror could not be any
larger than the one analyzed here. Nevertheless, the lost power is roughly three orders
of magnitude less than the beam central power, hence the effect is negligible.

In fig. the beam amplitude distribution and the wavefront phase in the detec-
tion plane are analyzed for beams with (a) fy = 33 GHz, (b) fo = 41 GHz and (c)
fo = 49 GHz. Note that (a) corresponds to the simulation presented in fig. The
normalized amplitude distribution is shown in dB in the upper row and in linear scale
in the middle row. The blue solid line is the desired theoretical Gaussian amplitude
distribution while the red line is the simulation result. The dashed vertical lines mark
the desired beam waist in the plasma and the dashed horizontal line marks the 1/e-
amplitude. The lower row shows the wavefront phase ¢ obtained through simulation.
In (a) (fo = 33 GHz) the simulation amplitude distribution is close to the desired
gaussian, only marginal deviations can be observed on the wings of the distribution.
The beam waist obtained through the simulation is wy = 2.7 cm and compares well to
the desired beam waist of 3\g ~ 2.7 cm. The wavefront phase is almost constant along
the beam waist, so Rg — 00, a criterion assumed in the calculation of the optimum
beam size in sec. In the fy = 41 GHz case, the amplitude distribution does not
overlap with the desired one as well as in (a), but still the beam shape is close to the
desired gaussian, with wy = 2.4 cm compared to a desired wy = 2.2 cm. Furthermore,
the wavefront phase is constant along the beam waist. The 27 change r = —4 cm is a
fringe jump, not a discontinuity in the wavefront phase. Fig. 5.20(c) depicts the above
for fo = 49 GHz. The deviation of the obtained beam shape from the desired one is
stronger in this case, the beam waist is wy = 2.1 cm, larger than the desired waist of
1.8 cm. Still the wavefront phase is constant along the extension of the beam waist.

The dependence of the optimum beam waist wqye on the frequency ([B8) is re-
produced by the antenna-mirror design of the TJ-II Doppler reflectometer. This is
important in order to obtain a good spectral resolution not only for one microwave fre-
quency, but for the whole frequency range of the system. Fig. 5.21] shows the spectral



5.5. 2D Full Wave Simulation of the System o7

Amplitude [dB]

ool 'f;=33 GHz!
25t :

norm. amplitude

o [rad]

\

1

1

1
4 -2 0 2 4 4 -2 0 2 4
X [cm] X [em] X [em]

Figure 5.20: 2D full wave simulation results for the beam amplitude distribution (upper and
middle row) and phase distribution (lower row) in the detection plane for (a) fo = 33 GHz,
(b) fo =41 GHz and (c¢) fo =49 GHz.

resolution dependence on the beam waist in the plasma. The optimum beam waist
range is indicated in green. The beam waist radii obtained by 2D full wave simulation
(vertical lines) are slightly displaced from the optimum ones towards the more slowly
rising flanks of the curves. This was a deliberate design decision since Ak, deteriorates
more rapidly towards small beam waists. The deterioration of Ak, w.r.t. the optimum
value is indicated by the line pattern areas, the value of the deterioration is comparable
for all frequencies.

5.5.2 Beam Behavior in the Plasma

A 2D full wave calculation in the plane of the perpendicular flux surfaces is shown in
fig. The absolute electric field distribution is shown. The density profile used
is of the form n, = n.o(1 — p*)?, with n.y = 1.7 x 10 m™3 o = 6 and 8 = 7.
Density fluctuations with a fluctuation level of 7./n. = 0.1, where n. is the cutoff-
density, are randomly introduced. The probing beam frequency is f, = 41 GHz and
the mirror angle fy = 36°. The flux surfaces are plotted in red, and in the upper
part of the plot the antenna and the ellipsoidal mirror are located. The green lines
show ray tracing calculations with the same plasma and probing beam parameters,
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Figure 5.21: Spectral resolution of the TJ-II Doppler reflectometer. The optimum beam
waist range is indicated in green. The vertical lines indicate the beam waists obtained by
focusing of the beam with the ellipsoidal mirror.

explained in more detail below (sec. B.7). Following the beam propagation beginning
at the antenna mouth, the beam size as well as its wavefront curvature Rp increases.
As the beam reaches the ellipsoidal mirror, it is reflected towards the plasma, and close
to the mirror the beam wavefronts are convergent. As the beam enters into the plasma,
its electric field amplitude grows until it reaches its maximum close at the cutoff layer
(here: p =~ 0.75). The beam is reflected and starts to travel out of the plasma again
towards the upper left of the plot.

It is remarkable that the 2D full wave simulation and the 3D ray tracing calculation
coincide almost perfectly. The ray tracing calculation is done in the full 3D geometry of
TJ-11, taking into account the complex structure of the plasma as it winds around the
helical coil. Afterwards, the ray tracing result is projected onto the R, -axis. But not
only the similarity of the beam propagation is striking, also the point of reflection in the
plasma coincides well. As can be observed from the color-coded full wave simulation
amplitude, the region of strong electric field is slightly inclined with respect to the
flux surfaces, the left extreme being further away from the p = 0.7 flux surface than
the right extreme. Even this inclination is reproduced by the ray tracing calculation,
where the right hand ray enters further into the plasma than the left hand ray.

5.5.3 Summary

The above 2D full wave calculations confirm the good adaptation of the hardware
components to the plasma characteristics. It has been demonstrated that the focusing
properties of the ellipsoidal mirror produce a beam with plane wavefronts in the cutoff
layer region (p = 0.60 — 0.85). Furthermore, the beam waist radii in the plasma decrease
with increasing probing beam frequency, a property indispensable for optimum spectral
resolution, mathematically described by (B.8)). Furthermore, the DR geometry has been
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Figure 5.22: 2D full wave calculation showing the absolute electric field distribution in

experiment geometry. The flux surfaces are shown in red, antenna and mirror in black and the
ray tracing result is overlaid in green.

prepared as input to the 2D full wave code. The shape of the beam is as expected, and
the beam shape and amplification of the wave electric field at the cutoff layer coincide
spatially with 3D ray tracing calculations, explained in further detail in sec. 7]

These results justify the correct theoretical design of the hardware components, and
with the information obtained, the system is ready for fabrication and installation into
TJ-11.

5.6 Design of the Final Configuration

The design of the final configuration is shown in fig. In (a), the top-down view
illustrates the alignment of the system w.r.t. the magnetic field. Furthermore, the
toroidal displacement of the mirror (yellow) away from the port center (to achieve
B, =0, cf sec. BI2) is visible. In order to align the system as shown, the waveguide
and support structure (orange) of the DR had to be placed close to the port wall. The
antenna can be seen as a gray cylindrical structure at the end of the waveguide. In the
non-vacuum part of the system, the waveguide (red) and the antenna shutter manipu-
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Figure 5.23: Final design of the TJ-II DR. (a) Top-down view illustrating the perpendicular
alignment w.r.t. the magnetic field. (b) Lateral view showing the 10° vertical inclination and
the antenna shutter. For details refer to the text.

lator are located. In fig. B.23|(b) a lateral view of the system is depicted. The antenna
shutter (here open, below antenna) was installed in order to protect the antenna small-
size corrugations from impurity accumulation as well as boron and lithium deposition
during vessel wall conditioning. The vertical antenna inclination of 10° serves to pro-
tect the mirror from the plasma. Apart from that, the distance between plasma and
mirror in this configuration is large enough that in case of a mirror manipulator system
malfunction the material does not reach the plasma and thus does not hinder plasma
operation and require opening the vacuum vessel.

The 10° inclination of the antenna results in a mirror angle 0y = 42.5° for perpen-
dicular incidence in the plasma, referred to as 6, in the following, i.e. 6, = 42.5°. It
is convenient to define a so-called launch angle 0;, which denotes the beam inclination
w.r.t. perpendicular incidence

0, = 2(0n — 0,), (5.24)

where the factor 72”7 is due to the law of reflection. Since the operational range of
the mirror is 0y = 32° — 52°, the operational range in terms of the launch angle is
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Figure 5.24: In-vessel photographs of the TJ-II DR. (a) The ellipsoidal mirror before the
antenna is installed. The manipulator arm is used to change the mirror angle fy. (b) Antenna
and mirror are installed. The antenna shutter is open as in operation.

0 = (—21°) — (+19°).

Since the antenna is used to emit and receive the microwave beam, the received
signal has to be decoupled from the transmission line and fed into the detector. This
decoupling is done via a directional coupler which was located outside the vacuum part
of the system in the first operation phase of the system. The result was that a parasitic
reflection of the carrier wave was measured which came from the mica window that
separated the non-vacuum from the vacuum part of the waveguide. This reflection gave
an offset amplitude in the IQ-plane (cf sec. 6 and could in some (very few) cases
saturate the measurement. This saturation can lead to a mirror image of the Doppler
peak at reversed frequency — fp. Nevertheless, this does not hinder the measurement of
the Doppler shift and thus u, measurements. However, due to the power in the mirror
peak, height of the true Doppler peak is lost and the measurements of the turbulence
level are error-prone.

To eliminate the problem, a vacuum directional coupler was installed inside the
vacuum vessel, which caused a slight modification of the antenna support structure.

Photographs taken on the day the system was installed (January 15, 2009) from
the lateral port C6SIDE show the system inside the TJ-II vacuum vessel (fig. 5.24). In
(a) the antenna is not yet placed in C6SIDE, so that the ellipsoidal mirror can be seen
entirely. In the upper part of the photograph, the support structure enters the vacuum
vessel through C6TOP. Connecting support structure and mirror, the manipulator
arm is marked in the upper part of the photograph. Here the mirror angle 6y has
already been changed from the maintenance position to a position in the operational
range. Fig. 5.24(b) shows a similar view as (a), but the antenna has been installed
in C6SIDE. The support structure in the upper part of the photograph holds the
waveguide, the antenna, and the antenna shutter, which is opened in the photograph.
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In the background, the mirror is visible. The photograph shows the DR as it is during
plasma operation (mirror position in operational range, antenna shutter open).

5.7 The 3D Ray Tracing Code TRUBA

As pointed out in sec. B2l an analytical solution to the wave equation cannot be
found for complex plasma geometries such as the one encountered in TJ-II. In case
of curved plasma geometry, ray [104] or beam [105] tracing has to be used to obtain
the (radial) backscattering position, usually called the ray turning point (RTP) prrp
and the perpendicular wavenumber of density fluctuations &k, the microwave beam
is backscattered off [106,[107]. Ray/beam-tracing makes use of the WKB (Wentzel-
Kramers-Brillouin) approximation, which is valid for

Ao |N']

2m N?
where )\ is the wavelength in vacuum and N and N’ are the refractive index and its
spatial derivative, respectively. Condition (B.20]) is not satisfied for steep gradients
or low values of the refractive index N. Note that low values of N are intrinsic to
perpendicular incidence of the microwave beam, where N — 0 is obtained. This,
however, is not the case in Doppler reflectometry, where N is finite at the ray turning
point. An equivalent form of writing (B.25]) is \'/2r < 1, where X is the spatial
derivative of the beam wavelength in the plasma. Since the TJ-II plasma curvature
is non-negligible (Rc = 0.20 m for the DR measuring region), the ray tracing code
TRUBA (trubé: Russian for pipe) [108], previously employed for TJ-II plasma heating
scenarios [T09HITT], has been adapted to the DR geometry. TRUBA solves the ray/beam-
tracing equations for the full three-dimensional geometry of TJ-II (one run in ray-
tracing mode with one traced ray takes about 5 seconds). At each point of the ray
trajectory the incident wavenumbers perpendicular (k, ;) and parallel (kj;) to the
magnetic field are calculated. In the following ray-tracing is done in non-relativistic
mode, which gives reliable results provided electron temperatures are low. For an
estimation of relativistic effects in reflectometry, see Ref. [I12]. Running TRUBA in
full relativistic mode requires a large amount of CPU time and the difference to non-
relativistic calculations is negligible for the temperatures in consideration (< 1 keV).

< 1, (5.25)

5.7.1 TRUBA applied to the TJ-II Doppler Reflectometer

Since TRUBA has been adapted to the geometrical configuration of the TJ-II DR, only
few inputs are necessary to calculate prrp and k; at prrp. The inputs are the magnetic
configuration, the plasma electron density profile n.(p) (analytical or experimental),
microwave frequency fy and mirror angle fy. The analytical density profile — if used —
is of the form

Ne = ne,O(]- - poz)ﬁ’ (526>

where n.( is the central density and p is the normalized poloidal flux radius. « and
[ are parameters describing the shape of the profile. In the following examples, an
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Figure 5.25: Ray tracing results obtained with TRUBA. The density profile (5.20]) is used. (a)
Ray (fo = 33 GHz, 6, = —12°) in the plane of perpendicular flux surfaces. The vessel wall

is indicated by a thick line and the perpendicular flux surfaces for the standard configuration
are shown in red. The cross in the upper part is the center of the ellipsoidal mirror. (b)
Magnitudes along the ray trajectory inside the plasma.

analytical density profile of the form of ([£26) with n.o = 1.7 x 10" m™3 a = 6 and
[ =T is used.

A ray tracing calculation for the standard magnetic configuration (100_44_64) with
a microwave beam with fy = 33 GHz and 6, = —12° is depicted in fig. In (a), the
perpendicular flux surfaces (red) and the calculated ray (green) are shown. The ray
tracing starts at the mirror center (2 = 3’ = 0 cm in fig. B.14) and the ray is traced
depending on its wavenumber k towards the plasma. Before it reaches the plasma,
the ray travels in a straight line according to vacuum wave propagation. Inside the
plasma the electron density increases, the dielectric tensor becomes important and the
ray curves and turns around when the refractive index reaches its minimum at the ray
turning point. Afterwards the ray travels out of the plasma and eventually hits the
wall where the ray-tracing calculation terminates. Fig. E28(b) shows the evolution
of different ray properties along the trajectory. Note that since the abscissa is the
normalized poloidal flux radius of the plasma, the ray enters at p = 1, propagates
towards smaller p, turns around and travels out again. The perpendicular component
of the refractive index N, (green line) decreases as the ray travels up the density
gradient of the plasma, until it reaches its minimum at prrp = 0.78. The parallel
component of the refractive index (green dashed line) is negligible throughout the
whole ray trajectory. The wavelength of the microwave (brown line) is A &~ A\g ~ 0.9
cm in the edge of the plasma and increases towards the ray turning point, where it
achieves a maximum value of about A = 2 ecm. The absolute value of the magnetic
field is slightly increasing as the ray enters into the plasma and is B ~ 0.9 T at the
ray turning point and on its way out of the plasma. From the ray tracing calculation,
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Figure 5.26: (a) Ray (fo = 33 GHz, 6; =~ 0°) calculated with TRUBA. (b) Magnitudes along
the ray trajectory.

k. of the turbulence is calculated at the ray turning point

27Tf0
C

ki =2k ;=2 Ny, (5.27)
where k| ; is the perpendicular wavenumber of the microwave ray.

Note that the evolution of N, N and X as the ray leaves the plasma (p = prrp —
p = 1) is similar to when it entered (p = 1 — p = pgrrp), the curves lie on top of each
other.

The ray tracing calculation shown in fig. shows an almost perpendicular ray
(6) = 0.2°), i.e. the system operates in conventional reflectometry mode. For a perfectly
perpendicular ray with 6, = 0.0° TRUBA does not terminate. As mentioned above,
numerical problems are encountered when N — 0. In fig. £.20](a) the ray enters into
the plasma, is reflected at p = 0.76 and returns to the mirror, indicated by the cross
in the upper part of the plot. In fig. BE.26(b) N, decreases towards zero, and has a
stronger slope than the N, evolution for the 6 = —12° case in fig. 525l Note due to
the perpendicular incidence the evolution of B is identical on the way into the plasma
and out again. Nj = 0 because the beam reflection is in the vicinity of the design
position of the DR (perpendicular incidence, p = 0.80).

In fig. ray tracing calculations for microwave beams of different frequencies
(33, 41, 49 GHz) and 6, = +12° are shown for the standard magnetic configuration of
TJ-II. The density profile from (5.20) is used. The blue line corresponds to a ray with
fo = 33 GHz and 6, ~ 0°. A cut perpendicular (a) and parallel (b) to the magnetic
field is shown. In (a) the reflected rays for ) = £12° do not return to the antenna, but
are deflected towards the vessel wall. This effect assures that the zero-order reflection
for the TJ-II DR is negligible in most cases when analyzing the complex amplitude
spectra. In (b), only the reflected ray with 6, ~ 0° has no component of the wave
vector parallel to the magnetic field (k) = 0) because B, = 0. The rays for ¢ = —12°
are deflected to the right, because the magnetic field has a small vertical component



5.7. The 3D Ray Tracing Code TRUBA 65

(b)

(a)0.6
0.5¢

0.4

—

E 03
N

0.2

0.1

0.0

05 06 0.7 08 09 1.0 11 0.6 0.7 08 09 10 1.1
Ry [m] Ry [m]

i
L 1 1 1 1 1

Figure 5.27: Ray tracing calculations for perpendicular incidence at 33 GHz (6, = 0°, blue
line) and different microwave frequencies (33, 41, 49 GHz) for 6, = +12° (thin lines) obtained
from TRUBA. (a) Perpendicular to the magnetic field and (b) parallel to the magnetic field.

(B, > 0). For 6, = +12° the rays are deflected towards the left, because B, < 0.

The exact available k -space will depend on the magnetic configuration and density
profile, although only slight changes are to be expected. Fig. [5.28(a) shows the density
profile used for the ray-tracing calculations. In (b) the k| -space is shown for microwave
frequencies ranging from 33 — 49 GHz and launch angles #, = —5° to —21°. The radial
measurement region of the Doppler reflectometer in this plasma is p = 0.55 — 0.77 and
the wavenumber range covered by varying 6, is k;, = 3 — 15 cm~!. If it is desired to
measure the wavenumber spectrum at a fixed radial position, for each launch angle 6,
the frequency has to be adapted adequately. The same holds for a radial scan at fixed
wavenumber (a horizontal cut through fig. B28(b)). However, during experiments,
this is normally not done since density profiles are usually not available immediately
after the discharge. Instead, for fixed 6, several frequencies are measured, followed
by an alteration of # and another scan of frequencies and so on. In this way, the
whole perpendicular wavenumber space is spanned, and the analysis is done after the
experimental day.

Fig. [0.28(c) shows the parallel wavenumber contribution relative to the perpendicu-
lar wavenumber k) /%, . For all the points from (b), the values are below 8%, reflecting
the good adaptation of the system to the geometry of the TJ-II magnetic field. Due
to the symmetry of the system, the parallel wavenumber contributions for 6, > 0 are
of the same order, while k| = 0 is obtained for perpendicular incidence at p = 0.8, the
design position of the DR (cf fig. B26(b)).

5.7.2 Using TRUBA to Estimate Uncertainties

Since the backscattering region in a Doppler backscattering experiment has finite ex-
tension, not only one k, -value will be probed, but a range of values k; + Ak, , where
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Figure 5.28: (a) Analytical density profile used for the (b) ray-tracing calculation of the &
wavenumber space spanned by the DR. (¢) The k)-influence is small. For details refer to the
text.

the value of Ak, depends on plasma and wavefront curvatures and on the probing
beam spot size (cf sec. B2Z2)). Here the weighting of the central &, is maximum,
and the weighting function decreases exponentially towards lower and higher values of
k, [I13]. Naturally, due to the spatial extension the radial measurement position will
also be subject to uncertainties. In order to be able to provide uncertainties for the
measurements, TRUBA can be used not only to trace the probing beam center, but also
additional rays which represent the envelope of the microwave beam where the ampli-
tude dropped to 1/e of its central value. The envelope is launched from the mirror
and in parallel to the central ray. Note that the three rays (central one and envelopes)
are independent of each other. Nevertheless, the representation chosen here can give
an idea of the beam size in the plasma. For simplicity and illustrative reasons, in the
following the combination of central ray and envelopes will be referred to as a beam,
although the rays do not affect each other. This is not to be confused with beam
tracing [105], a technique which allows for interference and diffraction effects.

In fig. the central and the envelope rays (labeled 1 and 2) are plotted for
6 = —12° and (a) fo = 33 GHz and (b) fy = 49 GHz. The mirror center is shown
as a cross in the upper part of the plot. As before, the central ray is traced from
the mirror center towards the plasma, enters until it reaches prrp, leaves the plasma
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Figure 5.29: Visualization of the beam size to estimate uncertainties in p and k; for (a)
fo =33 GHz and (b) fo = 49 GHz. The central ray and envelope rays at 1/e of the central
amplitude value are plotted.

and eventually hits the vessel wall. The envelope rays are launched from the mirror
surface, displaced along the mirror according to the antenna beam waist characteristic
(E10). Note that because of the higher probing beam frequency the beam is smaller
in (b). The envelope rays enter in parallel to the central ray, and are reflected at their
respective ray turning points pgrp and pirp. Since the tilt angles of the envelope rays
are different from the central ray tilt angle due to the plasma curvature, ray 1 enters
more than the central ray and envelope ray 2: pkpp < prre < pipp. Correspondingly
the perpendicular wavenumbers kL and kiz of the envelope rays are different. To
estimate the uncertainties in prrp and k, the means of the two respective deviations
are used:

1 9
Aprrp = |PRTP — PRIP] ‘; |PRTP — PRTP] (5.28)
Ak = lki;— ki |+ ki — kT, (5.29)

The absence of the factor 1/2 in (5:29) is due to the relation k; = 2k, ;. The calculation
of error bars in Doppler reflectometry measurements is generally not straightforward
and different approaches are used, e.g. assumption of constant errors in fp and 6y
without the inclusion of the beam size [62,114]. A similar method to the one proposed
here but employing beam tracing [106] is used by Hennequin et al. in Tore Supra [115].
It has to be noted that these approaches are makeshift solutions that cannot cover
the whole physical picture, which includes a variety of effects like fluctuations, forward
scattering and reflection, multiple scattering and non-linear effects at large fluctuation

amplitude [IT5].
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Figure 5.30: (#20277, #20281) Doppler shifted power spectra for four different microwave
frequencies for a low-density ECRH plasma [0 — [0 and for a higher density ECRH discharge
0. The launch angle is ) = —13° in all cases. The Doppler peaks are clearly separated from
f =10 kHz.

5.8 Plasma Operation Testing of the Doppler Re-
flectometer

First experimental results from the TJ-II DR were obtained on February 5, 2009. In
the first phase of operation, the reliability of the system was tested.

5.8.1 Doppler Shifted Spectra

Fig. shows typical spectra of the complex amplitude signal from the DR for four
different microwave frequencies at low density (0 - O: #20281, (n.) ~ 0.5 x 10! m~3)
and one at higher density (0: #20277, (n.) ~ 0.7x10" m~3) discharges. Heating of the
plasma was done via ECRH with heating power Prcrg = 500 kW and the mirror angle
was 0 = —13°. The Doppler shifted peaks (m = —1) are clearly visible in the negative
frequency part for low (n.) and in the positive part for high (n.). fp is calculated by
fitting a Gaussian to the respective spectrum (cf sec. for details). The microwave
frequencies used, radial positions of the cutoff layers, perpendicular wavenumbers and
deduced perpendicular velocities are shown in tab.[5.4l The uncertainties are calculated

following the expressions in sec. B.7.2] and Gaussian propagation of uncertainties for
Au -
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No. f [GHz] p fo [kHz] ki [em™] uy [km/s]
U 33.5 0.82 £0.03 -275.9 54+ 1.5 32+09
0 38.0 0.69 £ 0.04 -382.9 7.0+ 1.6 3.4+08
0 39.5 0.66 £+ 0.04 -434.5 == 3.5+0.8
0 41.0 0.63 £ 0.08 -577.9 82+ 1.8 4.4+1.0
U 34.0 0.86 = 0.02 358.0 5.6+ 1.7 —4.04+1.2

Table 5.4: Deduced perpendicular velocities from the spectra in fig. [5.301 The values of p and
k) are obtained from TRUBA and the perpendicular velocity is calculated by fitting a Gaussian
to the respective spectrum. For details refer to the text.

5.8.2 Symmetry of the System

The ability of the system to measure in different types of operation is illustrated in
fig. 631l Three power spectra are shown for different microwave beam launch angles
6,. For 6, = 0° (blue), the power spectrum is symmetric and the system operates
in conventional reflectometry mode. The Doppler shift fp is negative for §, = —12°
(green, fo = 35.0 GHz) and positive for ) = +12° (magenta, f, = 36.5 GHz), and the
absolute value of fp is comparable in the two cases. The two 6, = +12 spectra are
not perfect mirror images, which can be due to several reasons, among them are that
the two probing frequencies are not the same and the plasmas are slightly different.
Nevertheless, the general trend is observed that for comparable plasma conditions
measurements with different launch angle signs yield different Doppler peak signs.
A striking difference between the spectra of perpendicular and oblique incidence is
not only the presence of a Doppler shift in case of oblique incidence. The spectrum
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Figure 5.31: (#20281, #20297, #20361) Power spectra for different 6; in comparable plas-
mas. The 6, = 0° spectrum is symmetric, the other two show comparable Doppler shifts with
different sign.
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Figure 5.32: (#24102) Spectrogram of the DR during an ECRH discharge. The time window
length is 30 ms, ten frequency steps (33.5 — 42.5 GHz) are realized, indicated on top of the
plot. For details refer to the text.

for §) = 0° is the spectrum of the direct (zero-order) reflection and is symmetrically
broadened due to turbulence and possible cutoff-layer movements.

5.8.3 Perpendicular Velocity Profile

In order to measure radial profiles of the perpendicular velocity w; with the TJ-II
DR, either the frequencies of the two reflectometer channels can be scanned during
the plasma discharge, or several comparable discharges can be realized and the fre-
quencies changed on a shot-to-shot basis. Usually, the former method is used for
ECRH plasmas, because the discharges are usually stationary with constant density
during one frequency scan of the DR. ECRH discharges can become non-stationary
if (n.) 2 0.8 x 10' m™=3, which then implies shot-to-shot Doppler reflectometry mea-
surements. The temporal length of a frequency scan can be programmed, typically 10
steps are realized in 30 ms, i.e. 3 ms/step. Hence in a 300 ms plasma, typically ten u
profiles are measured.

A spectrogram of a typical 30 ms frequency scan during an ECRH discharge at
low density is shown in fig. During the time window, 10 frequency steps are
realized with frequencies stepping from f, = 33.5 GHz (first step) to fo = 42.5 GHz
(last step) with frequency steps of Afy = 1 GHz (indicated on top of the plot). The
spectrogram is interrupted by white stripes of about 1 ms duration which occur when
the microwave frequency is switched. The color code represents the amplitude of the
spectrum, which is maximum (Doppler peak) at negative frequencies. In general, the
amplitude measurement has to be calibrated, because the sensitivity of the system
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Figure 5.33: (#24102) Low density ECRH plasma ({n.) ~ 0.5x 10 m~3) (a) Density profile
at t = 1139 ms obtained with the AM reflectometer. (b) Profile of the perpendicular velocity
of density fluctuations obtained with the DR.

varies with the microwave frequency. However, for microwave channel two (CH2, shown
here), the amplitude — frequency response is almost constant, i.e. the color code can
be compared between frequency steps, giving an idea of how the density fluctuations
decrease at higher fy, i.e. at more internal measurement positions. This decrease is
mainly a mixture of two effects: first, the density fluctuation level decreases from the
plasma edge towards the center, and second, a higher k£, is measured in the more
internal regions of the plasma (cf fig. B.28]). For the spectrum amplitude analysis, the
measurement has to be calibrated and the response of each channel (CH1, CH2) to
each frequency (fo =33 — 50 GHz) has to be known (cf sec. BT]).

From 130 to 140 ms (fy = 33.5 — 35.5 GHz) the Doppler shift is rather constant
at fp &~ —250 kHz. Later fp increases in absolute value, while the amplitude S(fp)
decreases. The perpendicular wavenumbers probed range from k&, = 5.6 cm™! at
fo =335 GHz to k; = 9.3 em™! at fy = 42.5 GHz. Throughout the time window,
the Doppler shifts fp are negative, which corresponds to positive u; (ion-diamagnetic
direction), a common situation at low line-averaged densities in ECRH plasmas in TJ-
II. The exploitation of all frequency steps from fig. (for CH2) and those from CH1
gives 20 radial measurement points in a 30 ms time window.

The resulting (u,) profile (flux surface averaged, cf sec. B.IT) is plotted in fig.
B.33[b). The profile was acquired between 130 ms and 160 ms of ECRH discharge
#24102. In (a), the electron density profile used as input for TRUBA and measured with
the AM reflectometer is shown. The measurement region of the DR in this discharge
is p = 0.53 — 0.78, one quarter of the total plasma radius. The measurement positions
of the two innermost points in the profile had to be obtained by linearly extrapolating
the density profile in (a). Due to the frequency programming mentioned above, each
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point measured by one microwave channel is followed by a point measured by the other
microwave channel. Nevertheless, the measurements are well aligned and continuous,
suggesting that no hardware issues are present in the system. The error bars were
calculated using the 3-ray method presented in sec. An interesting characteristic
is the minimum in the w,; profile around p = 0.73. This effect has been investigated in
detail and will be presented and interpreted in sec. [[.1l

5.8.4 Radial Electric Field Profiles

As mentioned in sec.[3.3] the perpendicular velocity measured by Doppler reflectometry
is the superposition of the F x B plasma background velocity vgxp and the phase
velocity of turbulence vpy:

U| =VgExB + Uph- (530)

If the phase velocity of turbulence is small compared to the E x B-velocity,
Uph K VEXB, (5.31)

its contribution to (B.30) can be neglected and the E x B-velocity is measured directly
by the DR. With knowledge of the magnetic field strength B, the radial electric field
E,. can be calculated directly:

E.=u,B. (5.32)

The validity of the inequality (5.3I]) has not been shown for TJ-II yet. Nevertheless
in TJ-II a Heavy Ion Beam Probe (HIBP) is installed which measures the plasma
potential ¢, and thus is able to provide the measurement of E, = —d¢,/dr.

In fig. 534 radial E, profiles measured by HIBP (squares) and DR (circles) are
shown. For the DR measurements, (5:31]) was assumed to be true and E, was calculated

10 :. — ------- L Trr oo L L : ECRH meEK nth
o, ] ® DR
. s ' . O HIBP
E El é ECRH [ [>ny,
g of 'l! ® DR
= ] O HIBP
R '
5 - 5 NBI L-mode
: R S 3 .
_10- ......... Lo v v 00000 |-'--I """"" ] N HlBP
0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.34: (#21872, #21909) Radial E, profiles measured by HIBP (squares) and DR
(circles) for three plasma scenarios: ECRH (n.) < ng, (black), ECRH (n.) > n, (red) and
NBI L-mode (green). The agreement is good in all cases.
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according to (5.32). A trend observed in TJ-II since several years and discussed in
detail in sec. [[Ilis reproduced by the measurements: If the line-average density (n.) is
above a certain threshold density n¢y,, F, becomes negative. For the low density ECRH
case (black), E, is positive in the whole measurement range, while for the mid-density
ECRH case (red), the radial range p > 0.7 is dominated by a negative E,.. In the
NBI plasma, E, < 0 in the whole radial measurement range. In all three cases the
agreement between HIBP and DR is remarkable, confirming (5.31]) a posteriori for the
observed plasmas.
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Chapter 6

Data Analysis and Interpretation

This chapter gives an overview of the analysis methods used in this work. First a
short introduction to quadrature phase detection is given followed by a presentation of
numerical methods used to find the Doppler shift fp of Doppler shifted spectra.

6.1 Quadrature Phase Detection

The heterodyne detection technique (for a review, see Ref. [92]) allows for the measure-
ment of phase and amplitude information of a received microwave from the plasma.
The signal received has two components, the in-phase (I) and quadrature (@) terms:

I = Acoso (6.1)
Q@ = Asino.

These terms are combined to obtain the complex amplitude signal

V=1+iQ = Acos¢+iAsingp = Ac™. (6.3)
(a) Ag?m\” v (b) N9
fffffffffffffff 3 w = d¢/dt
A me
A - do _
T T

Figure 6.1: Schematic representation of heterodyne detection. (a) The position of the point S
in the complex plane depends on amplitude and phase of the detected signal. (b) The temporal
change in the phase can be expressed by the angular velocity.

I0)
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As shown in fig. [6Il(a), the point V' is located in the complex plane at (A cos ¢,
Asin ¢). To obtain amplitude and phase from V', the standard operations for complex
numbers are used,

A = VVVr=/I2 4+ Q2 (6.4)
o = iarctan%, (6.5)

where V* is the complex conjugate of V' and the sign on the rhs of (G.H) has to be
chosen appropriately so that V = Acos ¢ + iAsin ¢.

For conventional reflectometry reflecting at a perfect mirror, the measurement of
the phase ¢ then gives information on the position of the cutoff layer. In fact, if the
microwave frequency is swept, the density profile can be reconstructed. If the cutoff
layer moves due to turbulence, this movement is reflected in a change in ¢, drawing a
crescent shape in the 1Q-plane.

Fig. [6II(b) demonstrates the situation for a reflectometer subject to phase runaway
(cf sec. BJl), asymmetric density perturbations at the cutoff layer [60], or a Doppler
reflectometer. The phase is increasing or decreasing in time, the angular velocity is
given by w = d¢/dt.

Since Vis a complex number, the fluctuation spectra are two-sided, i.e. positive
and negative frequencies are resolved. This gives the possibility to know in which
direction the phase is evolving, which for Doppler reflectometry means the direction of
propagation of the density fluctuations (the sign of u, ). Throughout all of the work,
1Q)-detection was used, so all spectra shown will be two-sided.

6.2 Analysis of Doppler Shifted Frequency Spectra

To check the reliability of different methods to obtain the Doppler shift fp, an analytical
Doppler shifted spectrum will be analyzed throughout this section. The shape of the
spectrum is similar to an experimentally measured spectrum from the TJ-IT DR. Both
spectra are shown in fig. It should be noted that the spectrum has a particularly
strong m = 0 (zero-order reflection) component around 0 kHz, which in general is not
the case for the TJ-II DR measurements. Nevertheless, the spectrum has been chosen
in order to investigate the influence of the zero-order reflection on the different analysis
methods. If a spectrum shows no zero-order reflection, all analysis methods yield the
correct results.

Fig. illustrates that the Doppler shifted peak is at about -500 kHz. The objective
is to find the Doppler peak numerically and to extract its Doppler shift fp, its height
Ap, and its width Afp. The advantage of a synthetic spectrum is that the input
parameters are known, so that the values obtained through the different methods can
be cross-checked against the true ones.

The analytical spectrum is composed of a Lorentz function Si, representing the
zero-order reflection, a Gaussian function Sg representing the Doppler peak and a
noise component £.
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Figure 6.2: (a) Example spectrum of the TJ-II Doppler reflectometer in an ECRH plasma
(#22815, CH2, t=82-85 ms). (b) Analytical spectrum (red) (with Lorentzian (black), Gaus-
sian (blue) and noise (khaki) components) used to evaluate analysis methods.

The Lorentz function is defined
Ay,
—
f=1
1+ ()
where fi,, called location parameter, specifies the location of the peak of the distribution
and v, called scale parameter, is the half width at half maximum (HWHM). Ay, is the

amplitude of the peak.
Furthermore, the Gaussian function is of the form

SL(AvaL777 f) - (66)

_(—fe)?

Sa(Ag, fa,0,f) = Age™ 207 . (6.7)

Here, Ag is the amplitude of the peak, fq the position of the center of the peak and
o controls the width of the peak, with about 68% of the area under the distribution
within the interval [fg — o, fo + 0]. The HWHM is v21n 20.

The normally distributed noise component &(u, o) with zero mean p = 0 and stan-
dard deviation ¢ = 0.03, £(0,0.03), is added to simulate the noisy character of the
spectra. The complete spectrum thus is

S(AL, fL,’)/,Ag, fc;,O', f) = SL(AL, fL,’)/, f) + Sc,<Ag, fc;,O', f) + 5(07003) (68)

Since the Lorentzian Sy, describes the zero-order reflection, f;, = 0. In addition a
scale parameter of v = 100 kHz is chosen, representing well the example spectrum in
fig. 6.2[(a). The Doppler peak amplitude and width are fixed at Ag = 0.8 and ¢ = 200
kHz.

With the fixed values above in the following

S(Aln fL)ry? AG7 fGa g, f) = S(ALﬂ 0) 100 kHZ7 087 fG7 200 kHZ7 f) (69)
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Figure 6.3: Analytical spectra with COG analysis result indicated in green. The influence of
the zero-order reflection is strong in all cases (a)-(c). For details refer to the text.

In order to test the different methods, in each section three descriptive examples with
fa = 250,400 and 800 kHz will be shown and a systematic study varying fg from 100
to 1000 kHz and varying Ay, from 0 to 1 is presented.

Three principal ways have been used throughout this work to obtain the Doppler
shift fp of a spectrum: calculation of the center of gravity of the spectrum (COG) (also
called weighted mean), fit to the power spectrum (SFIT) S(f) and fit to the asymmetric
part of the power spectrum (AFIT) S*(f). They will be presented in the following along
with their benefits and drawbacks. For clarity, in the three following sections (G.21]
~[6:23) the Doppler shift and amplitude obtained by the different methods are called
fp and Ap, respectively. These values are compared to the input Doppler shift and
amplitude fq and Ag.

6.2.1 Center of Gravity

The center of gravity (COG), also called weighted mean, (f) of a spectrum S(f) is
defined

T rs(haf
(f) === (6.10)

] st

and is a measure for its asymmetry. If the spectrum consists only of a Gaussian, i.e.
S(f) = Sa(f), the COG yields the position of the center of the peak, i.e. (f) = fa.
If the spectrum is not noisy, its value at (f) will then represent the amplitude of the
Gaussian, i.e. S({f)) = Ag. However, as depicted in fig. [6.2(a), a zero-order reflection
component can be existent in measured Doppler reflectometry spectra, with the effect
that the frequency obtained by calculating the COG is not the value of the Doppler
shift, but lies somewhere between 0 and the true Doppler shift fq.

This effect is illustrated in fig. [6.3] where the Doppler shift is varied between 250
(a), 400 (b) and 800 kHz (c). In each plot the three components (Sp (black), Sg
(blue), ¢ (yellow)) are shown along with the resulting spectrum (red). For small fp,
the contribution from the Lorentzian influences the measurement and an amplitude
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fa [kHz] fo/fa Ap/Ag
(a) 250 0.573 1.320
(b) 400 0.572 0.882
(c) 800 0.571 0.338

Table 6.1: Values obtained normalized to respective input values by COG analysis (cf fig.
[63]). The errors in Doppler shift and amplitude are large.

higher than Ag is obtained. For 800 kHz (c), the COG analysis yields a false Doppler
shift close to the minimum between St, and Sg. The fp and Ap values obtained through
COG analysis compared to their input equivalents are shown in tab.

A more systematic analysis is shown in fig. In (a), the Doppler shift fq of
the Gaussian is varied between 100 and 1000 kHz. The frequency obtained through
COG analysis fp normalized to the input Doppler shift fo (blue circles) is below 1
(blue line), meaning fp < fg. The amplitude Ap normalized to the input amplitude
Ag (magenta diamonds) is influenced by the Lorentzian distribution when fg is small,
yielding a value higher than the theoretical one (Ap/Ag > 1). As fg increases, the
amplitude yielded by the COG method is wrong, because fp lies between 0 and fq.
The noisy character of Ap/Ag is due to the Gaussian noise £ of the spectra. In fig.
[64(b) the amplitude of the zero-order Lorentzian component Ay, is varied between 0
and 1 while fg = 700 kHz. If there is no central component in the spectrum, the
COG analysis yields the correct values for fo and Ag. However, as the amplitude of
the central peak increases, the errors in fp and Ap increase as well. The higher the
zero-order reflection, the larger the errors the COG analysis yields.

In conclusion, the COG method is not suited to calculate the position and amplitude
of the Doppler peak in the power spectrum if there is a zero-order component in the
spectrum. However, most spectra measured with the TJ-II Doppler reflectometer show
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Figure 6.4: Mean frequency (f) and amplitude S({f)) obtained through COG analysis.
Values are normalized to the input values fg and Ag. (a) Changing the input Doppler shift
fc and (b) changing the zero-order amplitude Ay,.
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Figure 6.5: Analytical spectra and gaussian fits to obtain Doppler shift fg and Doppler
peak amplitude Ag. (a) If the Doppler shift is very small, the fitting method does not yield
the correct values. (b-c¢) A well separated Doppler peak can be fitted and correct values are
obtained.

no zero-order contribution. Despite its disadvantages, the COG method is reliable when
used to extract the sign of the Doppler shift, which yields the direction of the plasma
propagation [94[95]. This can be done on fast timescales and therefore it can be used
in the analysis of perpendicular velocity or radial electric field fluctuations [83,[116].

6.2.2 Fit to the Power Spectrum

Another way to obtain fg and Ag and also the width of the Doppler peak is to fit a
Gaussian (see (6.1])) to the power spectrum, hereafter called SFIT method. Throughout
this entire work, the Levenberg-Marquardt method is used for fitting [I17]. Fitting of
a Gaussian is only possible when the Doppler peak is sufficiently separated from the
zero-order reflection. Sufficiently means in this context that there has to be a minimum
in the spectrum between zero-order reflection and Doppler peak. If this is the case, a
fit to the power spectrum is a robust and direct method to obtain fg and Ag.

Fig. shows the three cases from fig. [6.3] analyzed by fitting a Gaussian (green)
to the spectrum (red). To fit a gaussian to the spectrum, it has to be avoided that
the zeroth order is fitted, so in the analysis the fitting is constrained to the frequencies
f > 150 kHz. In (a), the Doppler shifted component of the spectrum is not separated
sufficiently, and the gaussian fit does not yield the correct values of the Doppler com-
ponent. It instead fits the righthand slope of the spectrum. In (b), the errors in fp
and Ap are about 10% because there is still a contribution from the lorentzian. The
fit yields reasonably good values when the Doppler peak is well separated from 0 kHz,
as can be seen in (c¢). The results are summarized in tab.

The convergence of the resulting values to the input values is indicated in fig. 6.6
which is similar to fig. In (a), the Doppler shift obtained by the fit normalized
to the input Doppler shift (fp/fq) is plotted against the input Doppler shift fg (blue
circles). The magenta diamonds show the fit amplitude normalized to the input am-
plitude (Ap/Ag). As the Doppler shift becomes larger, the values obtained by fitting
a Gaussian to the spectrum converge to the input values, as suggested by fig.
In fig. [6.6(b) the dependence of the obtained Doppler shift (input: fg = 700 kHz)
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fo [kHz] fo/fa Ap/Ag
@ 250 0.758 1.231
(b) 400 0.906 1.088
(c) 800 0.986 0.993

Table 6.2: Values obtained normalized to respective input values by fitting a Gaussian to the
power spectrum (cf fig. [6.30)).
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Figure 6.6: Doppler shift and Doppler peak amplitude normalized to their model values
obtained through a gaussian fit to the power spectrum for (a) changing input Doppler shifts
fo and (b) changing zero-order amplitudes Ay,.

and Doppler peak amplitude (input: Ag = 0.8) on the amplitude of the zero-order
component is shown. Since there is a minimum between Doppler peak and zero-order
component, the values obtained by fitting a Gaussian to the spectrum are good for
small values of A;. As Ajp increases, its influence on the fit values becomes visible
and the data deviate from the input Doppler shifts and amplitudes. Nevertheless, the
error in the fg and Ag determination is below 3%. Taking into account that the test
spectrum chosen reflects a comparatively bad situation which is rather uncommon in
the TJ-II DR measurements, these errors can be interpreted as upper limits in the
Doppler peak estimation.

6.2.3 Fit to the Asymmetric Part of the Power Spectrum

Another way to obtain fg, Ag and o is the analysis of the asymmetric part of the
power spectrum S*(f) (hereafter called AFIT method), defined

S*(f) = S(f) = S(=1). (6.11)

The advantage of this method is that only the asymmetric components of S will be
contained in S*. A schematic is depicted in fig. 6.7(a), where S(f) (gray) contains a
zero-order reflection. Subtracting S(—f) (red) from S(f), the asymmetric part of the
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Figure 6.7: Doppler shifted spectra S(f) (gray), mirrored S(—f) (red) and the asymmetric
part S*(f) (blue). (a) Schematic and (b) the example spectrum from fig. [6.3(c).
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Figure 6.8: Evaluation of the applicability of the AFIT method. (a) Gaussians with different
widths 0. The factor R denotes the relative width, o/|fg|. (b) Corresponding asymmetric
spectra and errors in the determination of fp and Ap. The larger the relative width, the
larger the errors.

power spectrum S*(f) (blue) is obtained. As indicated by fig. B7(a), the zero-order
reflection is canceled out. Fig. [67(b) shows the synthetic spectrum from fig. 6.3(c).
The zero-order reflection has vanished and the Doppler shifted peak is still visible in
the spectrum, with positive amplitude at f = 800 kHz and negative amplitude at
f = —800 kHz.

However, it has to be taken into account that if the width of the Doppler peak
is large compared to the Doppler shift, the AFIT method is subject to errors. For a

quantitative analysis, the relative width of the Gaussian is defined
o
R=—. (6.12)
| fal

The meaning of the relative width is demonstrated in fig. 6.8(a), where five Gaus-
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sians are plotted for different values of R (0.20, 0.62, 0.85, 1.00, 1.50). The frequency
axis is normalized to the Doppler shift fo. For small R the Gaussian is well sepa-
rated from f/fq = 0 and its flanks are steep. The larger the value of R becomes, the
wider the distribution, and contributions to S in the negative frequency part become
important. The impact on the asymmetric spectrum S* is shown in fig. E.8(b). For
the smallest value of R (0.20, green), the asymmetric spectrum has two well-separated
components in the negative and in the positive frequency part of the spectrum with
a flat part between them. The error in this case for both the Doppler shift and the
amplitude analysis is 0.00%. As the relative width increases (0.62, black), the flat part
between negative and positive frequencies in the asymmetric spectrum vanishes and
the analysis is subject to errors, for R = 0.62 the errors are 1.00% and 0.49% for the
analysis of Doppler shift and amplitude, respectively. For larger relative widths, the
peak in the asymmetric spectrum moves to frequencies higher than the Doppler shift
and the amplitude decreases, falsifying the analysis. The error in the determination
of the Doppler shift is above 20% for values of R > 1. The errors in the amplitude
determination are always approximately half of the errors of the Doppler shift deter-
mination.

Fig. shows the dependence of the error in the determination of fg and Ag as a
function of R. As seen in fig. B.8(b), the error in the determination of Ag is smaller
than the one for fg. The plot shows that for R < 0.6, the errors are below 1%, which
is acceptable in the analysis of Doppler shifted spectra.

Equation (6.I12) has a singularity at fg = 0 leading to R — oo, although the
absolute width o is finite. However, the fact that R goes to infinite for small f; makes
sense in the context of figs. and The spectrum is symmetric for fq = 0, so it is
not possible to analyze the asymmetric spectrum, because S*(f) = 0 for S = S(fq =
0).
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Figure 6.9: Dependence of the error in the determination of the Doppler shift (blue) and
Doppler peak amplitude (magenta) on the relative width of the Doppler peak R.
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Figure 6.10: Analytical spectra and gaussian fits to the corresponding asymmetric spectra
S*(f) to obtain Doppler shift fg and Doppler peak amplitude Ag. (a-c) The resulting values
have errors below 2% for all cases (fg = 250,400 and 800 kHz).

This analysis underlines the importance of a good spectral resolution of a Doppler
reflectometer system (cf sec. B.2.2)). In the TJ-IT Doppler reflectometer, values of R are
normally around 0.35 and almost always below 0.5, depending on plasma characteris-
tics, beam launch angle and microwave frequency, so the AFIT method is well-suited
for the analysis of the Doppler shifted spectra in TJ-II. The experimental spectrum
from fig. G.2((a) has a relative width of R = 0.338 and thus lies in the range of fig.
where the errors can be neglected.

To analyze the asymmetric spectrum S*, the superposition of two Gaussians — one
positive and one negative but symmetric — has to be fitted to S*, written

Sae(f) = Sa(Aq, fa, 0, f) — Sa(Aa, —fa, 0, f).

Free parameters are Ag, fg and 0. Note that Sg is an odd function, —Sgi(f) = Sac(—f)
and in particular Sg, = 0 for fg = 0, i.e. if the spectrum is not Doppler shifted, the
asymmetric spectrum is 0.

An analysis similar to sections and is demonstrated in fig. [&.I0. The
upper plots show the spectra S and in the lower plots the asymmetric parts of the
spectra S* are depicted. The asymmetric spectra S* do not contain the Lorentzian
contribution and the fits yield values close to the input values for Doppler shift fp and
Doppler peak amplitude Ap, shown in tab.

The applicability of the gaussian fit to the asymmetric spectrum is demonstrated
by fig. In (a), fp/fq is plotted against fg, while the amplitude of the zero-
order reflection is maintained constant at A;, = 1. For all Doppler shifts larger than
200 kHz the method yields correct results with uncertainties below 2%. The points
at 100 and 150 kHz are not correct, because the width of the Doppler peak is larger
than its frequency o > fg, as discussed above. However, when o < fg holds, both
the Doppler shift and amplitudes values obtained through the fit to S* yield correct

(6.13)
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fa [kHz] R fo/fa Ap/Ac
(a) 250 0.80 0.999 1.000
(b) 400 0.50 1.002 1.002
(c) 800 025  0.999 1.001

Table 6.3: Values obtained normalized to respective input values by fitting to S*, the asym-
metric part of the power spectrum (cf fig. [G10).
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Figure 6.11: Doppler shift and Doppler peak amplitude normalized to their model values
obtained through a gaussian fit to the asymmetric part of the power spectrum (AFIT) for (a)
changing input Doppler shifts fg and (b) changing the zero-order amplitude Ar,.

values, underlining the reliability of the method.
Fig. [6.ITI(b) shows the same as (a) but the height of the Lorentzian is varied. Since
the Lorentzian is eliminated in S*, there is no dependence on Ay.

6.2.4 Summary of Analysis Methods

In conclusion, three methods suitable to extract the Doppler shift fg and Doppler peak
amplitude Ag have been presented in this section. They are

e Center of gravity (COG),
e Fit to the power spectrum (SFIT),
e Fit to the asymmetric part of the power spectrum (AFIT).

If the Doppler peak is sufficiently separated from f = 0 (R < 0.6), the AFIT
method (cf sec. B23) can reliably be used. The method fits the asymmetric part of
the power spectrum S* and thus avoids any influence of the zero-order reflection. If
R < 0.6 is provided, obtained results generally are subject to errors below 1%.

The SFIT (cf sec. 622) method can be used when the Doppler peak is separated
from the zero-order reflection. However, if a zero-order reflection is present in the
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spectrum, it will have an effect on the measured Doppler shift and amplitude. The
advantage of the SFIT over the AFIT method is that if there is no zero-order reflection,
it can be used for arbitrary values of R.

The COG method (cf sec.[6.27]) is a simple method which gives reliable results if the
spectrum has no zero-order reflection component or if interest is only paid to the sign
of the rotation or to fast changes in rotation velocity. Hence the COG method is suited
to analyze velocity fluctuations in the plasma on fast timescales. It should be noted
that the example spectrum above is a particularly poor spectrum which is uncommon
in the TJ-II DR measurements. In general, no zero-order reflection is visible and the
COG method yields reliable results.



Chapter 7

Perpendicular Velocity of Density
Fluctuations

The perpendicular velocity of density fluctuations u, is a magnitude of exceptional
interest in magnetically confined fusion plasmas. As mentioned in sec. 2.2} turbulence
theory predicts a possible tearing apart of turbulent structures (eddies) when the ve-
locity shear is sufficiently large, resulting in a reduction of turbulence [241[32]. Further-
more, zonal flows can suppress turbulence through self-regulating mechanisms [28,29].
Measurement and interpretation of radial u, profiles and u, fluctuations is thus ex-
tremely important and can help to understand turbulence suppression and ultimately
shed some light on the many questions regarding the complex processes involved in the
L-H transition.

In this chapter, u, profiles obtained with the TJ-II Doppler reflectometer will
be presented for different plasma conditions. In ECRH plasmas, both positive and
negative u, profiles are observed, and the transition between the two is investigated
in detail. The emergence of a strong u, shear is observed in TJ-II H-mode plasmas,
strong enough to give rise to two Doppler peaks in the DR spectra. Furthermore,
measurements at different k, yield the same u; values, meaning that either vy, < vpxp
or that vy, does not depend on k| .

Furthermore, high temporal resolution measurements of the L-H transition reveal
a reduction of density fluctuations accompanied by an increase in the oscillating shear
flow amplitude. The mean FE, shear starts rise about one millisecond after the L-H
transition and is established roughly three milliseconds afterwards. Finally, close to
the L-H transition threshold, a coupled oscillatory behavior of density turbulence and
sheared flows is observed which shows a characteristic predator-prey relation.

7.1 Perpendicular Velocity Profiles in ECRH Plas-
mas

In this section u profiles in ECRH plasmas measured with Doppler reflectometry are
presented. They are put in context with previously published work treating the con-
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nection between poloidal velocities, turbulence behavior and turbulence suppression.
However, the previous findings did not cover the important density gradient region
(Langmuir probes), lacked measurement precision (HIBP) or have not been able to
provide absolute velocity values (conventional reflectometry).

The TJ-II Doppler reflectometer is able to provide u; measurements with high spa-
tiotemporal resolution in the density gradient region, extending the before mentioned
group of diagnostics and providing new information on the dynamic behavior of edge
perpendicular velocities and density fluctuations.

7.1.1 Introduction

In TJ-IT ECRH plasmas, the poloidal plasma velocity was investigated mainly with
Langmuir probes [96]. It was found by Hidalgo et al. [I18] that the development of
edge poloidally sheared flows requires a threshold density ng, ~ 0.6 x 10* m~=3. The
development of these edge sheared flows — which are connected to the development of
a negative F, —is accompanied by an increase in the level of edge turbulence and edge
turbulent transport [118]. Furthermore, the increase in poloidal velocity shearing rate
dvg/dr was shown to be connected to an increase in plasma density gradient, a driv-
ing term in plasma turbulence. In follow-up measurements, Pedrosa et al. discovered
that once the sheared flow is fully developed, the turbulence level and turbulent trans-
port decrease [I19], while Alonso et al. used fast cameras to statistically investigate
the shape and ordering of turbulent structures close to ng, [120]. Melnikov et al. con-
firmed the Langmuir probe findings on the FE, reversal close to ny, with heavy ion beam
probe measurements covering a large radial range [I2I]. Furthermore, (conventional)
reflectometry was used to investigate the velocity shear layer characteristics [94] and
revealed that plasma collisionality is a key parameter in the u, reversal [93]. Simulta-
neous high temporal resolution measurements at two radial positions showed that the
radial origin of the u, reversal is located at the radial position of maximum density
gradient [95], explained in detail in sec.

7.1.2 Doppler Reflectometry Measurements

Radial profiles of the flux surface averaged perpendicular velocity (u,) for different
line-densities (n.) are plotted in fig. Il The heating power in this experiment is
Prcra = 500 kW. The radial positions move outward as the density increases due
to density profile steepening. For (n.) < ng,, perpendicular velocities are positive in
the whole radial range, corresponding to positive E,. At the outermost measuring
position, (u,;) ~ 3 km/s. There is a small dip in (u,) around p = 0.77, and towards
the plasma center (u ) increases up to values of roughly 4 km/s. In the high density
case ((ne) > ng), (uy) is negative in the whole radial measurement range. Strongest
negative velocities (~ —3 km/s) are found close to the plasma edge, while further
inside, the plasma slows down to about -1 km/s.

The two cases above and below ny, were well-known — although further in the edge —
from previous measurements [II8[1T9] and theoretical estimations [122]. However, the
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Figure 7.1: (#20281, #20285, #20294) Radial (u ) profiles for (n.) < ny, (black), (n.) =~
nen (blue) and (ne) > ng, (red). For (n.) ~ ny,, negative (u, ) values are observed only at
p ~ 0.8, while the remaining radial range shows positive perpendicular velocities.

intermediate case (n.) = ny, shows an interesting effect. The perpendicular velocity
does not reverse its direction first in the plasma edge or center when (n.) goes above ny,,
but at an intermediate position (here p & 0.8). This dip causes two velocity shear layers
with strong (u, ) gradient at p ~ 0.78 and 0.82. It has been observed previously, that for
the subsequent rise of line-average density, the turbulence amplitude slightly decays in
spite of a steepening edge pressure gradient, a driving term in plasma turbulence [T18]
[119]. This effect could be interpreted as turbulence suppression through shear flows
generated at ng,. Possible generating mechanisms of the shear flows could be Reynolds
stress [25L832] or a spatial separation of ion- and electron-root regimes [123].

A detailed investigation on the dynamics of the perpendicular velocity reversal was
done with conventional reflectometry before the DR was installed. It was found that
not only the origin of the velocity reversal is at an intermediate radial position, but also
the terminal point, when the velocity shear layer vanishes. The study is summarized
in the following section.

7.1.3 Velocity Shear Layer Formation Investigations with Con-
ventional Reflectometry

In order to investigate the formation of the edge velocity shear layer (VSL), the line-
averaged density (n.) was modulated. In this way, the formation and the disappearance
of the VSL occurred in each discharge. In this experiment, the plasma was heated on-
axis with Pgcrg = 420 kW. The frequencies of the two-channel fast frequency hopping
reflectometer (Sec. 3]) were held fixed during each discharge, and changed on a shot-
to-shot basis. Since the frequency of each channel corresponds to a radial measurement
position, the sign of the perpendicular velocity of density fluctuations u, is monitored
simultaneously at two different radial positions due to the slightly oblique incidence of
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Figure 7.2: (#18917) (a) Time trace of (n.), crossing twice the threshold density ny, (shaded
area). (b) Respective center of gravity of the power spectra of the two reflectometer channels.
The time instant of the perpendicular velocity reversal is indicated by vertical lines. The radial
positions refer to the measurement position of the respective channel at the time instant of the
crossing (and back-crossing) of ngy,.

the reflectometer mentioned in Sec. If tom and tope are the time instants at which
uy reverses sign at channel 1 (CH1) and channel 2 (CH2), respectively, the time delay
At = teps — tenr is positive if u changes sign first at the radial position of CH1, and
negative if the reversal occurs first at the position of CH2. In all discharges CH2 was
the channel measuring at more interior positions than CH1. Their exact radial values
p are determined for each discharge and corresponding time instant using the density
profiles obtained by AM reflectometry (Sec. [.2]).

In fig. [[2] a discharge representative for the discharges in the series is shown. In (a),
the modulation of (n.) is depicted. The approximate value of the threshold density ng,
is represented by the shaded area. The line-density crosses ny, twice: First at ¢t ~ 115
ms, the formation of the VSL takes place, while at t ~ 157 ms, it disappears. The
center of gravity (f) of the power spectra of the two reflectometer channels is shown
in fig. L2(b). Negative and positive (f) correspond to ion- and electron-diamagnetic
velocity, respectively. When the VSL is formed, the perpendicular velocity reverses its
sign first at p = 0.62 (CHI1, red), then at p = 0.57 (CH2, blue), marked by vertical
lines. The order of magnitude of the delay is of a few milliseconds. When the shear
layer disappears, the reversal of the plasma velocity is first noted at p = 0.56 (CH2)
and then at p = 0.63 (CH1). The values for p at the formation and at the vanishing of
the VSL are similar due to similar density profiles at the transition point.

Fig. shows the reconstructed phase ¢ of the two reflectometer channels for
the same discharge as in fig. when the VSL is established. Before the velocity
reversal takes place, the plasma rotates in ion-diamagnetic direction (¢ decreases).
Reflectometer CH1 notes the velocity reversal approximately 2.5 ms before CH2, which
is the minimum of the polynomial fits indicated by dashed lines. Afterwards, both
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Figure 7.3: (#18917) Reconstructed phase ¢ for the discharge from fig. at the first
crossing (t ~ 1115 ms) of n¢y,. The second-grade polynomial fits are indicated by black dashed

lines. Reflectometer CH1 (red) notes the velocity reversal approximately 2.5 ms before CH2
(blue).

channels are measuring rotation of the plasma in the electron-diamagnetic direction.

Fig. [[4)(a) shows the time delays At in dependence on the radial measurement posi-
tion when (n.) exceeds ny,, marked by circles, and when it falls below nyy,, represented
by diamonds. The values for tcy; and toys are obtained by fitting a second degree poly-
nomial to the reconstructed phase (cf fig. [[3]) and calculating the minimum (emergence
of the shear) or the maximum (disappearance of the shear) analytically using the first
derivative. The vertical error bars are obtained by varying the length of the temporal
window for the fit from 8 to 14 ms and calculating the standard deviation of the results.
Each radial position corresponds to the mean of the two reflectometer measurement po-
sitions p = (pcu1 + pconz)/2, obtained using the profiles from AM-reflectometry shown
in fig. [[4(c). The radial measurement error is shown for one point and is represen-
tative for the error in all measurements. When the density rises (emergence of the
velocity shear), for radii p > 0.68, the perpendicular velocity reverses sign first at the
more internal, and then at the more external positions, because At < 0. However, for
p < 0.68, the contrary takes place: The change in perpendicular velocity is first noted
by the exterior channel and then by the interior channel (At > 0). When (n.) falls
below the threshold density (disappearance of the VSL), the internal measurements
show that the interior channel notes the change first, while the external measurements
show that the exterior channel first measures the change in the u, sign.

This phenomenon can be explained as follows: when (n.) goes above ny,, the VSL
starts to form at p =~ 0.68. Since At = 0, this radius is the origin of the formation
of the shear layer. For simplicity pp = 0.68 is defined. The formation of the shear
layer continues, propagating outward for p > py and inward for p < py. The process
of disappearance of the VSL is the direct opposite: As (n.) falls below ng,, the VSL
starts to contract, the process ending at py. Hence the formation of the VSL as well
as its disappearance occur at the same radial position.

The lower part of fig. [[[4] shows the density profiles (c¢) used for analysis and the
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Figure 7.4: (#18907-11, #18916-18) (a) Time delays At of the formation and disappearance
of the VSL. It forms at p ~ 0.68 and expands radially (circles). When the shear layer disappears
(diamonds), it contracts and vanishes also at p &~ 0.68. The position of the origin and endpoint
of contraction coincides with the position of maximum density gradient, shown in (b). The
gradient is most pronounced at p ~ 0.7. (c¢) Density profiles when the VSL is established
(continuous lines) and when it disappears (dashed lines).

corresponding density gradients (b). Continuous lines correspond to the density profiles
when the VSL emerges while dashed lines show the density profiles at the moment
when the line-density falls below the threshold density (disappearance of the VSL).
The error in determining the radial position of the profile is Ap = +0.012, depending
on the initialization in the plasma edge. The value for Ap is obtained by variation of
the assumed edge density between n.(p = 1) = 0.03 and 0.10 x 10* m~2. Tt should
be noted that the profiles are very similar when the line-density crosses the threshold
density. The region of maximum density gradient (p = 0.66 — 0.72) is marked in fig.
[C4(b) by the horizontal bar. The agreement between the origin (and terminal point)
of the VSL (py = 0.68) with the region of maximum density gradient is striking.

Fig. shows the radial propagation velocity of the shear layer when it is formed
(circles) and when it vanishes (diamonds). Positive and negative velocities correspond
to outward and inward propagation, respectively. The velocity is calculated by obtain-
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Figure 7.5: (#18907-11, #18916-18) Radial propagation velocity of the formation (cir-
cles) and the disappearance (diamonds) of the velocity shear. Positive velocities point radially
outward, negative velocities point radially inward. The expansion while forming and the con-
traction while vanishing of the shear layer is apparent.

1

ing the absolute distance between the two measurement positions of the reflectometer
and dividing by the time delay At (fig. [[4l(a)). The radial measurement error is the
same as in fig. [[4)(a). Since both the radial distance of the measurements and the
delays At are subject to errors, the error in the radial propagation velocity is calcu-
lated using the method of linear propagation of uncertainties. The shear layer starts to
form at py and expands from this point to exterior and interior regions of the plasma.
The disappearance shows the inverse behavior of radial propagation velocity: the shear
layer contracts radially in the direction of py. The radial velocities are of the order
of some ms~!. However, it has to be noted that this velocity depends on the density
evolution. In the experiments, a slow density modulation was chosen in order to be
able to capture the formation and disappearance of the VSL. If the density is ramped
faster, the velocities in fig. are higher.

In fig.[C.6, the mean crossphase v between two poloidally separated Langmuir probes
measuring the floating potential ¢gq at p = 0.85 is shown. The sign of v corresponds
to the sign of u,. The upper part of the figure shows the total timeslice of a discharge
where the reflectometer measures close to py (pcu1 = 0.72, pcpe = 0.70). The dashed
and dotted vertical lines correspond to tcy; and tcpo, respectively. The propagation
time of the VSL from the reflectometer channels to the probe is approximately 6 ms
when the VSL forms. When it disappears, the exact time instant can not be exactly
determined due to high fluctuations in the plasma edge. In the lower part, zooms to the
mean crossphase when it reverses sign are shown for different discharges in which the
reflectometer measurement position is between the origin of the VSL and the plasma
edge. The time instant when the probe notes the velocity shear is tp. In each case,
the reflectometer measures the velocity reversal before the probe, meaning that the
reversal occurred first at more internal positions. The radial propagation velocity of
the emergence of the shear obtained from this measurement is v = 2.941.0 ms™!, which
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Figure 7.6: (#18908 - 10) Mean crossphase v between two poloidally separated Langmuir
probes measuring the floating potential ¢gq. The time instant at which the perpendicular
velocity reversal is noted by reflectometer and probes is marked by vertical lines. Total time
slice (upper part) and zoom to the time instant ¢tp when the probe notes the reversal of the
perpendicular velocity (lower part). The numbers above the plots denote the radial position
of the measurement.

is comparable to the radial velocities measured by reflectometry in fig. However,
the comparison with probe data does not only underline the results from reflectometry,
but also shows that the origin of the VSL detected by reflectometry is the origin of the
peripheral shear layer in TJ-II, which was proved to show universal properties familiar
to all the shear layers of all fusion plasma experiments [118,[119].

Fig. [[7 shows a schematic drawing of the sign of w, (upper part) and the corre-
sponding plasma potential ¢, (lower part). It is assumed that v, = E,/B = —V,¢,/B
and the cases (n.) < ny, (continuous lines), (n.) ~ ny, (dashed lines) and (n.) > ny,
(dotted lines) are depicted. Reflectometer measurement positions at p < py and p > pg
are indicated by dotted vertical lines. Before the shear layer forms, u | is positive, as
is the radial electric field E,. As the shear layer develops and expands, the plasma
velocity close to pg is negative, hence the local F, is negative, caused by a dip in the
plasma potential close to py. At this moment only CH1 of the interior measurement
and CH2 of the exterior measurement note the reversal of u;. When the shear layer
is completely established, u, is negative in the whole radial region, so both channels
are measuring negative E,., independently of their positions in the plasma. This be-
havior resembles the behavior of the toroidal velocity shear reported in [124], where a
qualitative physical explanation in terms of momentum conservation is given.

The influence of magnetic topology (low order rationals) in the development of edge
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Figure 7.7: Schematic drawing of perpendicular velocities and corresponding plasma potential
profiles for (n.) < ng, (continuous lines), (n.) &~ n¢, (dashed lines) and (n.) > ng, (dotted
lines). Reflectometer measurement positions at p < pg and p > pg are indicated by vertical
dotted lines.

sheared flows has been shown both experimentally [125,126] and theoretically [127].
Therefore it is important to cross-check whether rational ¢-values play a role in the
observed VSL formation. The experiment described above has been conducted in two
other configurations, moving the rational ¢ = 8/5 in a radial range of Ap = 0.3. The
resulting values of py (~ 0.7) are not related to the positions of ¢+ = 8/5 in these
configurations. However, heating power could have an influence on the value of py.
Doppler reflectometry results suggest py =~ 0.8 (cf fig. [[T]), but were obtained at higher
heating power (Prcru = 500 kW) than the results shown here (Pgcrn = 420 kW).

It should be pointed out that the formation of the VSL is triggered by a critical
value of the density gradient, which leads to the conclusion that a critical diamagnetic
velocity could be the responsible candidate for the process. The density profiles become
steep just before the VSL is formed and do not change considerably during the phase
where (n.) > ng,. When the VSL is established, a large radial region independent
of the gradient is affected and the perpendicular plasma velocity is in the electron-
diamagnetic direction. The two phases (localized formation and existence in a large
radial range) suggest a decoupling between the formation and the existence of the VSL.
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It can be excluded that rational ¢ values are responsible for the VSL formation in TJ-II.
These results show reliably that the radial origin and final points of the VSL formation
and disappearance are directly connected to the region of maximum density gradient.

7.1.4 Summary on ECRH Plasma Velocity Profiles

The TJ-II DR has been employed to measure radial profiles of the perpendicular veloc-
ity u; . The radial measurement range is p = 0.55 — 0.85, depending on the respective
electron density profile. It was found that u, is positive (negative) when the line-
averaged density (n.) is below (above) the threshold density ng,. Close to ny,, the u)
profile is mostly positive, but shows a dip reaching negative velocities at an intermedi-
ate radial position. Through investigation of the dynamics of the velocity shear layer
formation and disappearance by conventional reflectometry, it has been found that
its origin and terminal point are located at the radial position of maximum density
gradient.

7.2 Perpendicular Velocity Profiles in NBI Plasmas

NBI plasmas in TJ-II reach higher densities than ECRH plasmas. One particular
point of interest is the possibility to obtain discharges with low to high confinement
transitions (L-H transitions). The H-mode confinement regime was first discovered by
Wagner et al. in 1982 [21] and its causes and consequences have since been one of the
central topics in magnetic confinement fusion research.

This section starts with a short introduction to TJ-II H-mode plasmas, followed by
the presentation of u, profiles for both NBI L- and H-mode plasmas. The strong u
shear in H-mode plasmas causes two separated Doppler peaks to appear in the spectra,
an effect which can be taken advantage of to localize the radial position of the H-mode
velocity shear layer with excellent radial resolution.

Apart from the equilibrium u, measurements, the dynamics of radial electric field
and density turbulence behavior at the L-H transition is investigated, revealing pro-
nounced low frequency FE, shear oscillations at the transition. For discharges close to
the L-H transition power threshold, a coupling between density turbulence level and
FE, is observed which reveals evidence of predator-prey behavior.

7.2.1 Doppler Reflectometry Measurements

Since this section presents results from H-mode plasmas, it is appropriate to introduce
the characteristics of the improved confinement regime of TJ-II. H-modes have been
obtained in TJ-II since 2008 with lithium coated walls [I128] with one (co) or two (co
+ ctr) NBI. H-mode characteristics are comparable to other devices, i.e. an increase
of the energy confinement time 7, a decrease in H, and density turbulence level,
a steepening of the edge density profile gradient and an increase in the radial electric
field (shear) [83] is observed. The electron temperature profile does not show significant
changes.
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Figure 7.8: (#21319) Temporal evolution across an L-H transition in TJ-II. (a) In H-mode,
the experimental energy confinement time TEEXP increases about 25% w.r.t. the ISS predicted
confinement time 75> [129]. (b) In H-mode, the H, level drops significantly w.r.t. L-mode.
(¢) E, is roughly -6 kV/m in L-mode and increases in H-mode, after an oscillatory phase of
about 3 ms marked by the gray stripe.

Fig. shows the temporal evolution of several plasma parameters across an L-
H transition, which takes place at roughly 136 ms. In (a), the experimental energy
confinement time TEEXP = Waia/Pars (Waia and Pyps the diamagnetic energy and ab-
sorbed heating power, respectively) is compared to the energy confinement time 75>
calculated from the International Stellarator Scaling (ISS) [129]. As the plasma enters
H-mode, TEEXP rises by roughly 1.5 ms, and an increase of about 25% w.r.t. 75° is
observed, underlining the improved confinement properties after the transition. At 157
ms, the plasma starts to collapse, seen in the decrease in TSXp. In (b), the line-average
density (n.) is plotted along with the signal from an H, detector. At 136 ms, the H,
signal decreases substantially, an indication of improved particle confinement. During
the H-mode phase, (n.) rises.

Fig. [[8(c) shows a temporal zoom to the FE, evolution during the L-H transition
measured by Doppler reflectometry. In L-mode, E, is of roughly -6 kV/m and in H-
mode an increase of up to -13 kV/m is observed. An increase of edge radial electric field
has been observed in H-modes in many experiments and is believed to be intrinsically

connected to the improved confinement in H-mode (cf sec. [22). The gray stripe marks
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Figure 7.9: (#23013-51) (a) Representative density profiles in L- (black) and H-modes
(red) obtained from AM reflectometry with linear extension (solid) and Thomson scattering
(dashed). (b) Radial (u ) profiles in L- and H-mode plasmas. In H-mode, a strong velocity
shear layer is located at p ~ 0.83.

a 3 ms time window just at the L-H transition. A pronounced F, oscillation is visible
before the stronger H-mode FE, develops. This oscillation is observed when the heating
power in TJ-II is close to the L-H transition threshold. The dynamical characteristics
of the L-H transition are presented later in this chapter.

In order to measure the perpendicular velocity behavior in NBI plasmas of TJ-
IT, the DR channels are programmed to fixed frequencies during the whole discharge
duration, and frequencies are changed on a shot-to-shot basis. This is done both
because the density control in NBI plasmas is particularly difficult and because it
allows spatiotemporally highly resolved studies of the L-H transition. With shot-to-
shot measurements, equivalent time instants can be selected and the u, profile can be
reconstructed or the radial (p) and scale (k) dependence of the L-H transition can be
investigated.

Experiments were carried out in NBI co-heated (370 kW) plasmas pre-heated by off-
axis ECRH (2 x 230 kW). An overlap of 10 ms between ECRH and NBI was used. The
magnetic configuration was 101_42_64, a configuration previously identified as beneficial
for L-H transitions [83]. Fig.[[9shows electron density profiles (a) and the flux surface
averaged perpendicular velocity (u,) profiles (b) for L- and H-mode plasmas in TJ-
II. The density profiles are measured with AM reflectometry [89] (solid) and Thomson
scattering [I30] (dashed). To localize the Doppler reflectometry measurement positions
a linear part is added to the AM profiles which are then used as input for TRUBA. The
linear parts overlap well with the Thomson scattering profiles. In fig. [9(b) the velocity
profile in L-mode is rather flat with values from -5 km/s in the edge region to -7 km/s
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Figure 7.10: (#23013-51) Perpendicular wavenumbers of density turbulence probed during

the measurement of fig. [[9(b). In both (a) L- and (b) H-mode, &k, ranges from about 4 to 14
-1

cm™ .

further inside. However, in H-mode plasmas, a strong velocity shear layer is observed
at pPshear =~ 0.83. Velocities in the edge are similar to those in L-mode, while inside the
VSL (p < pshear) values of up to -15 km/s are reached. Further inside, (u ;) decreases
to about -10 km/s. Note that the innermost measurement points are measured with
fo = 50 GHz, and hence mark the technical limits of the TJ-II DR. It would be of
particular interest to measure the (u ) profiles further inside, which would require
either the possibility of O-mode operation or a second DR in X-mode operating in a
higher frequency band (e.g. V-band: 50 — 75 GHz).

The radial dependence of the k; space scanned in this experiment is depicted in
fig. for (a) L- and (b) H-mode. In (a), the measurement points are further inside
the plasma than in (b), which is due to the shallower density profile in L-mode (cf fig.
[ZI0(a)). In both cases, k; ranges from about 4 to 14 cm™!, corresponding to turbulent
structure sizes between 0.4 and 1.6 cm.

The velocity profiles from fig. [[9(b) are plotted again in fig. [.T1] with color-coded
k., of density turbulence that the microwave beam probed (cf fig. [[I0). It is observed
that the u | measurement does not depend on the value of k. This can either mean that
Uph K Vpxp or that vy, does not depend on the value of &, conclusions of particular
importance not only for Doppler reflectometry, but also for turbulence investigations.
In general, in turbulence theory, v, does depend on k. In drift wave turbulence
the wavenumber dependence of the phase velocity is due to the polarization drift, in
particular for small structures k,p; > 1. The above supports the conclusion that
Uph < Upxp, already seen for ECRH and NBI L-mode plasmas in sec. 5.8.41
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Figure 7.11: (#23013-51) Perpendicular velocity profiles as in fig. [[LO(b) with color-coded
k. of density turbulence as probed by the microwave beam.

7.2.2 The Role of Spectral Resolution in Velocity Shear Mea-
surements

The Doppler shift, as shown in sec. B2l depends on the perpendicular velocity of
density fluctuations u, and the turbulence scale probed by the microwave beam k| .
The relative width of the Doppler peak R, defined in sec. 6.2.3] can be written

o _A'U/J_ AkJ_

Tl Jul kL

where Awu, can be due to spatial or temporal variations in u; and Ak, is the spectral
resolution introduced in sec. Eq. () shows that the spectral resolution of a
Doppler reflectometer has immediate influence on the width of the Doppler peak. An
experimental observation in TJ-II shows that in H-mode plasmas with strong velocity
shear, two Doppler shifted peaks are observed close to the u, shear layer [67]. This
observation is presented in the following, followed by a numerical study of the influence
of the spectral resolution on the capability to distinguish the two Doppler peaks.

Three Doppler shifted spectra measured at different radial positions of the H-mode
uy profile from fig. [L9(b) are plotted in fig. In (c), made at p = 0.87 > pghear,
only one Doppler peak with low Doppler shift is present. However, the spectrum in
(b), acquired at p = 0.83 & pgpear shows two distinct Doppler shifted peaks, one at low
fp (~750 kHz) and one at higher fp (~1800 kHz). Since the backscattering process
has a certain radial extension, the backscattered signal contains information from both
regions of the velocity profile, the low- and the high velocity regions. Spectrum (a) is
measured further inside, at p = 0.79 < pgpear, and only one (high frequency) Doppler
peak is visible at roughly 1900 kHz.

As a reference, fig. [[13|(a) shows again the perpendicular velocity profiles for L-

R (7.1)
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Figure 7.12: (#23024, #23043, #23051) Doppler shifted spectra with respective fits at
different radial positions in a TJ-IT H-mode plasma: (a) inside the shear layer, (b) close to the
velocity shear layer, (c) in the edge.

and H-mode from the previous section. The velocity shear layer (VSL) is indicated at
Pshear =~ 0.83. Fig. [[13|(a) suggests that the radial extension of the VSL is smaller than
the probing wavelength Ao (6 —9 mm). The labels (a, b, ¢) refer to the radial positions
of the Doppler shifted spectra in Fig. [[.12[a-c). The ratios of the amplitudes of the
two peaks S(fuign)/S(fiow) are plotted for several radial positions across the VSL in
Fig. [LI3|(b). Close to the VSL, the ratio is close to one (cf Fig. [ 12[(b)). While at the
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Figure 7.13: (#23013-51) (a) Perpendicular velocity profiles as in fig. [L9(b). The labels a,
b and ¢ indicate the radial positions where the power spectra from fig. [[[T2] are measured. (b)
Ratio of Doppler peak amplitudes close to pshear-
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Figure 7.14: Input velocity profile for the 2D full wave simulation. The u; shear at z = 3
cm is instantaneous. Note the z-axis is reversed.

plasma edge the peak at low frequency dominates (cf Fig. [[12(c)), the predominance
of the high frequency peak becomes clearer as the measurement moves from the VSL
towards the plasma center (cf Fig. [ 12)(a)).

2D Full Wave Simulation Results

In order to delve deeper into the obtained results, two-dimensional full wave simu-
lations [I01] have been conducted. X-mode propagation in plasma slab geometry is
used. The plasma is considered to move perpendicularly to the magnetic field with
velocities of 6 km/s and 15 km/s, values that are close to the experimentally measured
ones. Refer to fig. [[14] for clarity, where the z-axis is reversed. The velocity profile
has a discontinuity at Zghear = 3 cm, i.e. uy = 6 km/s for & < Zgpear and 15 km/s for
T > Tshear- Lhe gaussian antenna is located at the plasma edge at * = 0 cm and its
tilt angle is 20°. The beam waist wy in the antenna is scanned from wy = 0.70 cm to
wy = 2.85 cm. As deduced by Holzhauer and Massig, the larger the beam size, the
better the spectral resolution in scattering experiments [79]. This result is valid for
Doppler reflectometry in plasma slab geometry.

Fig. [[15)(a-c) shows three spectra obtained with beam waist size wy = 1.35 cm, for
radial positions z = 3.9 cm (a), z = 3.0 cm (b) and = 2.3 ¢cm (c). The trend observed
in the experiment (cf Fig. [[12) is reproduced. In Fig. [I5(d-f) the corresponding
spectra for poorer spectral resolution (wy = 0.70 cm) are depicted. The Doppler peak
is generally broader with the consequence that close to the VSL the two peaks blend
into one (e).

The ratio of Doppler peak heights S( fuign)/S(fiow) across the VSL is shown in Fig.
71%(g). Again the z-axis is reversed. Since the peaks are not always separable, the
curves are of different lengths. In particular, in the wy = 0.70 ¢m case, it is not possible
at all to distinguish the two peaks. If the backscattering position is close to Zgpear, then
the heights of the Doppler peaks are comparable. When the measurement position is
separated a few mm from the VSL, the difference in Doppler peak heights is an order of
magnitude and becomes larger as the measurement moves further away from the VSL.
This result confirms the interpretation of the experimental results in Fig. [LI3(b). Note
that the better the spectral resolution, the larger the radial region where two peaks
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Figure 7.15: Doppler shifted spectra from 2D[full] wave calculations for different radial po-
sitions for wy = 1.35 cm (a-c) and wy = 0.70 cm (d-f). (g) Ratio of Doppler peak heights for
different cutoff positions and beam waists at the antenna. (h) R for low and high frequency
Doppler peaks. (i) Error in the perpendicular velocity determination.

can be observed in the Doppler shifted spectra. This affects the length of curves in Fig.
[[1%(g-1). In Fig.[CI5(h) the relative width of the Doppler peak (cf (G12]) in sec. 623
is depicted for the high and low frequency peaks (upper and lower parts, respectively).
As wq reduces (Ak, increases), the Doppler peaks broaden and eventually blend into a
single peak close to the VSL, see Fig. [[.I5](e). Since the simulation input velocities are
known, the errors in their determination can be calculated. Fig. [[I5]i) shows these for
the high velocity part (z > Zgnear, upper part) and the low velocity part (z < Zgpear,
lower part) of the profile. The analysis yields correct values in the outer part of the
plasma, when the wave has not yet reached the VSL. If measurement positions are



104 Chapter 7. Perpendicular Velocity of Density Fluctuations

close to the VSL and further inside, the high velocity can be measured if the spectral
resolution of the system is good (beam waist wy > 1.35 cm). In the case of poor
spectral resolution (black and purple lines) the measurement is error-prone due to the
mixing of the two peaks (cf Fig. [T5(e)).

An important point is that if the spectral resolution is good enough to distinguish
the two peaks, the VSL can be localized with high spatial resolution. This is illustrated
in Fig. [[15(g), where the ratio of Doppler peak heights is unity at the VSL radial
position. For cases of poor spectral resolution (wy = 0.70 cm, black points), it is
impossible to distinguish the two Doppler peaks.

The two peaks are also lost in simulations with wy = 1.35 cm (as in fig. [LI5(b))
and a broader shear layer width (close to Ag), which supports the statement above that
the radial extension of the VSL in TJ-II H-mode plasmas is smaller than the probing
beam wavelength (A\g =6 — 9 mm).

This section has shown that when the spectral resolution of a DR is insufficient,
i.e. the peaks cannot be separated, the measurements can be misinterpreted. These
results highlight the need for the careful design and adaptation of a Doppler reflec-
tometer to the given experimental conditions in order to obtain reliable results. If a
Doppler reflectometer is optimized, however, it is suited to localize the perpendicular
velocity shear layer with excellent radial resolution. Since H-mode plasmas usually
show a strong velocity shear layer, Doppler reflectometry is a diagnostic capable of in-
vestigating perpendicular velocities, radial electric fields and density fluctuation levels
across the shear layer with high accuracy.

7.2.3 Summary on NBI Plasma Velocity Profiles

Radial profiles of the perpendicular velocity of density fluctuations have been presented
for NBI plasmas in TJ-II. In L-mode, the u, profile is rather flat with values between
-5 km/s in the plasma edge (p > 0.8) and -7 km/s further inside (p = 0.7). In H-mode
plasmas, a strong velocity shear develops at p = 0.83. Velocities inside this shear
(towards the plasma center) of up to -15 km/s are observed. From the shear towards
the plasma edge, u, is in the range of -6 km/s, which is comparable to the velocities
measured in L-mode.

These results are in agreement with results obtained in H-modes on other experi-
ments, where strong u, (or E,) shears are measured [33,07[131H135].

Furthermore, a diagnostic peculiarity has been encountered. Doppler reflectometry
measurements can be affected by strong u, shears, which can give rise to two Doppler
peaks. This has been confirmed by 2D full wave simulations and it has been shown that
the separation of the two peaks is only possible when the spectral resolution of the DR
is sufficient, which in general demands that the DR is optimized. If it is not possible
to separate the two peaks, the data can be subject to misinterpretation, underlining
the importance of spectral resolution optimization. Nevertheless, the presence of two
Doppler peaks can be exploited. It has been shown that a high precision spatial
localization of the u, shear layer is possible by making use of the Doppler peak heights.
Their ratio is unity when the radial measurement location is at the shear layer.
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7.3 Dynamics of the L-H Transition

The L-H transition is a sub-millisecond process, and it is a challenge for experimen-
talists to obtain time-resolved measurements which follow the evolution of plasma
parameters during the transition. One of the advantages of Doppler reflectometry is
good spatiotemporal resolution of the diagnostic, which can be utilized to investigate
the temporal evolution of both FE, and n. and a possible coupling of both during the
transition [83].

The basic question which has not been answered in more than one quarter century
of H-mode research is what exactly is the reason for the confinement transition into
H-mode. Is the background radial electric field shear strong enough to “push” the
plasma into H-mode? Could an oscillating E, shear be the candidate? Or does the
plasma enter the H-mode for another reason and the strong FE, shear develops later,
as a consequence of a strong pressure gradient Vp in (2I3))7 These are basic questions
which are of great interest to the magnetic confinement fusion community.

In TJ-II, the L-H-transition shows different characteristics which can depend on
the magnetic configuration [136] and heating power. In the following, the dynamics of
two L-H transitions will be presented, one with higher heating power (co + ctr NBI)
and one with heating power close to the transition threshold power (co NBI).

7.3.1 Evolution of Mean and Oscillating Shear Flows during
the L-H Transition

The plasma investigated in this section is heated by both NBI injectors (co + ctr)
with a total port-through power of 900 kW and has a line-average density of (n.) ~
2.0 x 10" m~3 at the L-H transition, which takes place at ¢t = 90.6 ms.

Since the evolution of the density fluctuation level n, and FE, can be followed on
fast timescales with Doppler reflectometry, it is possible to measure density and FE,
fluctuation spectra. The density and E, fluctuation spectra for L- and H-mode are
plotted in fig. [ TGl In (a), the density fluctuations are reduced over a broad frequency
range from L-mode (black) to H-mode (red). The increase of density fluctuations
between 2 and 5 kHz is not yet fully understood, but it could be conjectured that a
possible shearing apart of turbulence structures by perpendicular sheared flows could
result in a stretching of the structures in the perpendicular direction, as suggested by
the rightmost plot of fig. Nevertheless, a clear reduction of density fluctuations at
all frequencies above 5 kHz is evident, underlining that density turbulence is suppressed
in the H-mode plasma.

Fig. [[I0(b) shows the radial electric field fluctuation spectra in L- and H-modes.
In contrast to the density fluctuations, the low frequency FE, fluctuations between 1
and 10 kHz increase in H-mode w.r.t. the L-mode plasma. For the high frequency part
of the spectrum, no change can be observed.

The temporal evolution of several magnitudes during the L-H transition of the dis-
charge from fig. is illustrated in fig. [ I7 The time instant of the L-H transition
is marked by the vertical dashed line. It has been obtained by searching for the time
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Figure 7.16: (#21620) (a) Density fluctuation and (b) radial electric field fluctuation spectra
in L-mode (black) and H-mode (red) for 2 ms time windows just before and after the L-H
transition. While the density fluctuation level is reduced in almost the whole frequency range
in H-mode, the low frequency FE, fluctuation level increases in H-mode.

instant where the density fluctuation level measured by Doppler reflectometry is dras-
tically decreased. For comparison, the H,, emission is shown in (a), which drops at this
time instant.

In (b), the radial electric field E, measured by the two DR channels is depicted.
The measurement position of CH1 is at p = 0.85 in L.-mode and moves to p = 0.87 in
H-mode due to the density profile steepening in H-mode. CH2 moves from p = 0.82
(L-mode) to p = 0.85 (H-mode). In L-mode (¢ < 90.6 ms), the two channels measure
a low E, of roughly -3 kV/m. The E, at p = 0.82 is slightly stronger than the E,
further outside. From ¢t ~ 87 ms E, starts to become stronger at both measurement
positions until in H-mode they reach E, &~ —6 kV/m in the edge and E, ~ —14 kV/m
slightly further inside. Note that in this discharge, the appearance of the strong u
shear is measured by CH2 while CH1 measures the edge which does not show a strong
E, increase as observed in sec. [[.2.1]

Fig. [LTT(c) plots the mean E, difference between the two channels AE, = E¢H2 —
ECH (ved). In L-mode AE, is constant at roughly -1 kV/m. This value is maintained
until about 1 ms after the L-H transition, when AFE, starts to increase, until it reaches
-6 kV/m about 3 ms after the transition. In the lower part of (c), the high-frequency
density fluctuations filtered between 100 and 200 kHz are suppressed when the plasma
goes into H-mode.

In fig. [ T7(d) the behavior of the low frequency oscillating £, shear, filtered between
1 and 10 kHz, is depicted. The magnitude is obtained through the F, difference between
the two DR channels divided by their distance. To guide the eye, the standard deviation
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Figure 7.17: (#21620) Temporal evolution of an L-H transition. (a) F, of the two DR
channels, (b) H, emission, (¢) mean F, difference (red) and density fluctuations (green), (d)
oscillating F,. shear. For details refer to the text.

is indicated just before and after the L-H transition by the dashed lines. Note the
increase in the oscillating E, shear takes place just at the time instant of the L-H
transition, when the density fluctuation level decreases. Later in the discharge, the
amplitude of the oscillating shear flow decreases slightly.

It has to be stressed that figs. and [Z.I7 show examples of an L-H transition
where the density fluctuation level is reduced simultaneously with an increase in the
oscillating sheared radial electric field, i.e. oscillating shear flow. The mean radial
electric field shear starts to develop roughly one millisecond after the L-H transition
and is completely established several milliseconds later, an observation which resembles
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Figure 7.18: (#23473, 78, 79, 81-83) Radial E, profiles in L- (black) and H-mode (red)
visualizing the E, minima and maxima during the oscillating H-mode phase from fig.

a recently published work from JET [42].

The results presented here point towards Zonal Flows (ZFs) as a possible explana-
tion for the turbulence suppression which could ultimately trigger the L-H transition.
ZFs are a candidate for turbulence regulation via time-varying sheared flows [28]. The
steepening of the edge pressure gradient is a result of the turbulence regulation by the
ZF and can drive a mean sheared flow, which can then act as the turbulence regulation
mechanism in the established H-mode [35]. It is tempting to speculate that the estab-
lished mean FE, shear (fig. [[IT(c), t > 94 ms) could be the suppression mechanism of
density turbulence in the established H-mode and thus damp the oscillating sheared
flow in this phase of the discharge.

Experimentally, with Langmuir probes long-range toroidal correlations in ¢, but not
n. have been detected during the L-H transition [I37] in TJ-II. To gain more insight into
these ¢, fluctuations, a second HIBP system will be installed toroidally separated from
the existing one in TJ-II, allowing measurements of electrostatic fluctuations and their
radial dependence similar to those done at CHS, where the first direct experimental
evidence of ZFs was obtained in 2004 by Fujisawa et al. [I3§].

7.3.2 Experimental Evidence for Predator-Prey Behavior of
Turbulence

The plasma presented in this section is heated with one NBI (co) and the L-H transition
takes place at a line-average density (n.) ~ 2.5 x 10 m™3. During the transition, a
coupled oscillating behavior of density turbulence level and radial electric field can be
observed [139].

The radial E, profile measured in the discharge series is depicted in fig. Like
in sec. [[.2.1] the L-mode profile is rather flat with values between -5 and -6 kV/m. The
H-mode E, profile oscillates inside the shear layer (here p ~ 0.82) between -8 and -10
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Figure 7.19: (#23473) Doppler reflectometer spectrogram during the oscillating phase of an
H-mode transition.

kV/m, while it remains static at -6 kV/m in the plasma edge. This has the effect that
the E, shear oscillates as well, being approximately twice as strong in the maximum
E, case as in the minimum FE, case. As in sec. [[2.] the edge values of the E, profile
are comparable to the L-mode values.

Fig. shows a spectrogram of a 2.4 ms time window during the oscillating phase
of the H-mode transition. The oscillation frequency is of roughly 4.5 kHz. Due to
the high density NBI plasma, fp is positive (negative FE,). Each time the density
fluctuation level is rising and reaches about -50 dB (color-coded), E, starts to increase.
This E, increase lasts roughly 200 us and is accompanied by a decrease in density
fluctuations, until an abrupt F, decrease takes place and the density fluctuation level
starts to rise again.

The temporal evolution of S(fp) and |E,| obtained applying the SFIT method
to the spectrogram from fig. is plotted in fig. [[20(a) and (b), respectively. For
simplicity, the absolute E, value is plotted. A periodic behavior can be detected where
E, (and its shear, see above) follows the density fluctuation level with a 90° phase
difference. The gray vertical stripes mark the time instants when the turbulence level
is maximum. Starting at the stripe at ¢ = 170.1 ms, the turbulence level is maximum
and the E,. shear has already started to increase. With the increase of E, shear, the
turbulence level drops and reaches its minimum value when the FE,. shear is maximum.

The blue region in (b) marks the time window used for the plot of | E,| against S(fp)
in (¢). The gray circle corresponds to the situation marked by the vertical stripes in (a)
and (b), i.e. the turbulence level is maximum and £, (sheared flow) is increasing. In
phase [ the shear flow increases, which suppresses the density turbulence level. When
the turbulence level is minimum, it cannot maintain the sheared flow anymore, which
decreases drastically (O0). Hereafter, the turbulence level increases again due to the
absence of turbulence suppression by sheared flows, and eventually, from about -50 dB,
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Figure 7.20: (#23473) Temporal behavior of (a) density fluctuation level and (b) absolute
electric field amplitude. (c¢) Dependence of |E,| on density fluctuation level for two cycles of
(a) and (b) indicated by the blue bar.

is strong enough to generate the sheared flow again.

This process can be interpreted as a predator-prey mechanism [27], where the
sheared flow is the predator and the density turbulence level is the prey. When the
prey population has grown, the predator population can feed on it and itself starts to
increase in number. This reduces the number of preys (), which has the effect that
the predator population will decrease because there is not enough prey to feed on any
more ([0). When the predator population is at its minimum, the prey population can
rise again (0O).

This type of coupling between turbulence and sheared flows has been proposed the-
oretically [26]. Experimentally, it was investigated in DIII-D power scan experiments
during the so-called IM-mode [I40]. Sheared flow and electron temperature fluctuations
seem to follow a predator-prey behavior, however, the sheared flow is not measured
directly but inferred from Beam Emission Spectroscopy data.

The outstanding advantage of the measurements presented in this section is the
simultaneous measurement (with one diagnostic) of the radial electric field and the
density fluctuation level with high spatiotemporal resolution.

7.4 Summary

The previous section underlines the successful operation of the TJ-II Doppler reflec-
tometer. It is possible to measure u, profiles in plasmas with different heating schemes,
confinement regimes, magnetic configurations (not shown here, see Ref. [136]). In fact,
as of today, no plasma has been encountered in which a Doppler reflectometry mea-
surement was not possible due to whatever reason.

In ECRH plasmas, basically three types of u, profiles can be observed. At low
line-average density (n.) < nw, uy is positive, while at (n.) > nw, uy is negative.
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The third case ((ne) ~ ng,) is an intermediate case, where u, is mainly positive but
reaches negative values close to the radial position of maximum density gradient. From
observations with conventional reflectometry, it is known that the edge velocity shear
layer appearance and disappearance has its radial origin and terminal point at this
position.

In NBI plasmas, the u, profile is negative in the whole radial measurement range
of the DR. In L-mode plasmas, the profile is rather flat with values ranging from -5
km/s in the plasma edge (p = 0.85) to -7 km/s further inside (p = 0.65). In H-mode,
a strong u, shear layer develops at pgpear =~ 0.83, with highly increased u, values of up
to -15 km/s inside (p < pshear), but comparable values to L-mode outside (p > pspear)-

In detailed investigations of the Doppler spectra close to the u, shear layer, two
Doppler shifted peaks are visible, corresponding to velocities inside and outside the
shear layer. This interpretation has been confirmed by 2D full wave simulations, which
also showed that the two peaks are only distinguishable when the spectral resolution
of the DR is good, i.e. the DR is optimized. For poor spectral resolution, simulation
results show that the two peaks blend into one and yield an intermediate and incorrect
velocity.

High spatiotemporal resolution measurements of the dynamics of the L.-H transition
reveal that the decrease of density fluctuations is accompanied by an increase in the
low frequency oscillating shear flow. Furthermore, the mean electric field shear begins
to form roughly one millisecond after the L-H transition and is completely established
about 3 ms after the transition into H-mode. This observation is in accordance with
recent L-H transition theories [28,35], but no definite conclusions can be drawn. Fur-
thermore, a predator-prey type behavior between radial electric field shear and density
fluctuation level has been identified during an L-H transition which shows oscillating
behavior, consistent with the model proposed by Diamond et al. [26].
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Chapter 8

Perpendicular Wavenumber Spectra

Since in toroidal fusion experiments the plasma is magnetized, the movement of any
particle species can in general be decoupled into movement parallel to the magnetic
field, which is mainly of thermal character, and movement perpendicular to the mag-
netic field, which mostly consists of drifts. Effects like collisions depend on plasma
density and temperature, and introduce secondary effects.

Hence when measuring perpendicular density turbulence wavenumber spectra, nor-
mally the findings are compared using the terminology of fluid turbulence introduced
in sec. As pointed out earlier, the spectral indices can depend on several factors,
as for example:

Interacting fluids
The plasma consists of ions and electrons which interact and even act back on
the confining magnetic field, and can in general not be compared to a neutral
fluid.

Energy injection scale
In sec. it is assumed that energy is injected at one distinct wavenumber
k;. In a fusion plasma, there are several sources of energy, there can be several
instabilities present at the same time. If there is a range k; of different energy
injection scales, no knee will be detectable in the spectrum, instead a smoother
transition between inertial ranges is to be expected.

Non-Gaussian PDF
For the derivation in the K41- and 2D-theories, Gaussian PDF's of turbulence are
explicitly assumed. As mentioned in sec. 2.1.2] a non-Gaussian PDF of turbulent
fluctuations will provoke deviations from the predicted spectral indices.

2D turbulence
The separation of the movements parallel and perpendicular to the magnetic
field is correct as long as parallel dynamics do not influence the perpendicular
ones. Nevertheless, drift wave dynamics has three-dimensional character, hence
the resulting spectral shape can be distinct from the ones shown in sec. 22 1.2]
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Nevertheless, a question about the degree of influence the effects above can have on
the spectra is legitimate. The principal features should be expected to be measured,
e.g. a turbulence decrease with increasing k£, and the existence of inertial ranges. An
identification of the viscous cutoff can give an idea of the scales at which turbulence
energy is fed back into the system.

8.1 System Calibration

A microwave generator working with variable frequency will produce a different power
output at each frequency generated. Apart from that, the transmitted power through
waveguides, twists, bends, attenuators, isolators etc. will also depend slightly on the
frequency. Therefore, a power calibration of a Doppler reflectometer is indispensable
if wavenumber spectra are to be measured. This section starts with general remarks
on calibration followed by the system calibration used for the wavenumber spectra
measurements presented later in this chapter.

8.1.1 General Remarks

Several methods of system calibration have been investigated during the course of this
work. The first method consisted in measuring the power returned by the vessel wall
when launching the beam towards the central conductor (combination of circular coil
and helical coil) or towards a point slightly displaced from the central conductor. The
results were extremely erratic, a problem which could be due to increased reflection of
certain frequencies at different parts of the vessel. Furthermore, by reflection at the
vessel wall non-symmetric wavefronts can return to the ellipsoidal mirror, resulting in
a deformed wave received by the antenna.

A second way to calibrate the system was to measure the received power with closed
antenna shutter. This method would not include the calibration of the ellipsoidal
mirror. However, the results compared to the method above did not improve, which
could be due to reflected beam deformations at the antenna mouth.

For this reason, a further attempt was undertaken which yielded the most reliable
and reproducible results. The launching and receiving waveguides were disconnected
from the antenna and joined by a 180° turn which included a variable attenuator to
protect the system from saturation. In this way, the emitted power is transferred
directly into the receiving part of the system, which increases the reliability of the
measurement at the cost of the loss of the emitting and receiving part (antenna and
mirror). The directivity of the antenna varies only about 2.5 dB in the whole fre-
quency range (cf fig. £12|(c)), and the 2D full wave simulation results of the mirror
do not indicate a strong frequency dependence of the latter (cf fig. 5.20). Ideally, the
characteristics of the mirror-antenna system should be measured as well and combined
with the microwave oscillator calibration. However, due to time restrictions, it was
not possible to characterize mirror and antenna in the laboratory. Nevertheless, the
microwave components most susceptible to frequency variations are components such
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Figure 8.1: (#200052) Doppler reflectometer amplitude of CH1 (red) and CH2 (blue) with
emitting and receiving waveguides connected and 20 dB attenuation.

as oscillators, multipliers, mixers, filters etc. Since these components are measured
by the above method, the calibration will not be perfect, but at least reliable. An a
posteriori confirmation of this assumption is made later in this chapter (cf sec. B2.]).

The question arises to the observant reader as to why the present section was not
included in the general description of the TJ-II DR, chapter[l This is because chapter [l
presents general properties and characteristics of the DR. However, as mentioned above,
the calibration is particularly susceptible to the configuration of the waveguide system.
If the waveguides are disconnected and connected again or the microwave oscillator
configuration is altered, it can be expected that the calibration values change. Hence
the system calibration is actually part of the experimental measurement of wavenumber
spectra, and should be done on the same day, therefore the inclusion in the experimental
results chapter.

It should also be noted that the system calibration is not necessary for Doppler shift-
and therefore u - and E,-measurements, because the fp extraction is independent of
its height, so the results from the previous chapter are not impaired by the above.

8.1.2 Calibration Results

Fig. Bl plots the power measured with the 180° turn method for microwave frequencies
fo = 33 — 50 GHz in steps of Afy = 1 GHz against acquisition time. Each 5 ms, fy
is increased by Afy. Note the respective fy is indicated on top of the plot. In a
time window of 90 ms, the frequencies to be used in the measurements are scanned.
Technically, the acquisition is 180 ms long, the first 90 ms for CH1 (where CH2 is fixed
at fo = 33.5 GHz) and then 90 ms for CH2 (CH1 at f; = 33.5 GHz), since one channel

has to be characterized at a time.
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fo [GHz] 33 34 35 36 37 38 39 40 41
Pcyp [dB] -15.3 -12.8 -244 -80 -86 -159 -19.2 -14.0 -9.1
Pepp [dB] 132 -75 -108 -144 -136 -64 -64 -71 -7.3

[0 [GHZ 42 43 44 45 46 47 48 49 50
Pom [dB] 96 -11.1 -71 96 -102 -82 -80 -11.1 -136
Poms [dB] -10.2 -12.0 -58 -12.0 -54 -82 -114 -57 -154

Table 8.1: (#200052) Calibration of DR channels for the measurement of perpendicular
wavenumber spectra.

A general observation is the strong power variation in both channels. The received
power for CH1 varies between -24.4 and -7.1 dB, i.e. a difference of 17.3 dB. CH2 is
slightly more constant, with values ranging from -15.4 to -5.7 dB, a difference of 9.7
dB. Each power for each frequency in both channels Pepy cma(fo) in combination with
the gain of each channel Gcpicne is then used to calibrate the measurement. The
calibration values are listed in tab. B1l

The measured Doppler peak height S(fp) can then be calibrated to obtain a com-
parable value (in dB)

S(fD)reaIZS(fD)_G_P<fO>7 (81)

where G is the gain defined in dB for the DR and P( fy) is the power from the calibration
in tab. BRIl In this way, measurements of different frequencies and channels can be
compared to each other, giving the possibility to measure the density turbulence level
at different k|, thus enabling the measurement of perpendicular wavenumber spectra.

8.2 Wavenumber Spectra in L- and H-modes

The usual process of measuring a k,-spectrum is that for a launch angle of the mi-
crowave beam 6, (cf (B24])), a radial profile is measured, i.e. fy is scanned between 33
and 50 GHz, and the backscattered signal is measured. After this frequency scan, 6,
is set to a new value and the process is repeated. For the wavenumber spectra shown
in this section and the u, profiles from sec. [[2.]], a total of 33 comparable plasma
discharges were measured and analyzed. Taking into account the availability of two
DR channels, this results in more than 60 measurements for both L- and H-modes.

8.2.1 Determination of Radial Measurement Regions

For clarity, the u, profiles from sec. [[2.T] are repeated in fig. B2 separated for (a) L-
and (c¢) H-modes. Four different radial regions are identified in each velocity profile.
In L-mode, the choice of intervals is determined by the number of samples available.
Sufficient statistics are obtained when the radial range is divided into four regions
with intervals of Ap = 0.05, as indicated in fig. B2[a) by the vertical dotted lines.
This partitioning results in about 15 points for each k; spectrum, except for the most
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Figure 8.2: (#23013-51) (a, ¢) L- and H-mode u, profiles measured with the TJ-II DR and
labeling of different regions. (b, d) Corresponding wavenumber spaces spanned by variation of
fo and 6.

internal one (here: p = 0.64 — 0.70), where ten measurement points are available. The
corresponding k, space is depicted in fig. B2(b). As can be expected from (B.]) the
probed perpendicular wavenumbers increase towards the plasma center for fixed 6,
because fy (hence ky) increases. An additional effect can be attributed to the fact that
the angle of incidence of the microwave beam with the cutoff layer normal increases as
the beam enters more into the plasma. See fig. 5.27(a) for an illustrative example. The
launch angle scan spans the wavenumber space in the other direction, as indicated by
the arrows in the upper right corner. Fig. B2(b) visualizes that in the outer part of
the measured region, wavenumbers from around 3 to 10 cm™! will be scanned, while
further inside, the wavenumber range can increase up to between 4 and 15 cm~*. The
labels (a, b, ¢, d) at the bottom of the plot identify the wavenumber spectra plotted
below in fig.

In the H-mode profile, the situation is slightly different. Here the u, profile must
be classified in four different sections from a physics point of view. They are marked
in fig. B2l(c) by the vertical dotted lines and labeled (see above plot) the edge region
(p = 0.84 — 0.89), the shear region with strong u, shear (p = 0.82 — 0.84), the
strong FE, region with high FE,. values between p = 0.78 and 0.82, and finally the
tow. core region (towards core, p = 0.75 — 0.78), where E, starts to decrease towards
the plasma center. The fact that the shear region is narrow does not result in a
reduced number of measurement points. In fact it is compensated by the strong density
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gradient at the same radial position, leading to an accumulation of measurements. A
reduced fluctuation level should be expected due to shear decorrelation (cf sec. 2.2.2))
of turbulence in the shear region. The four radial regions are marked in the %k, space
plot in fig. B2(d). As for L-mode, in the edge, the accessible k; values are slightly
lower than further inside, resulting in wavenumber spectra for slightly larger scales.
For the innermost region only few points are available. The labels (a, b, ¢, d) at the
bottom of the plot identify the wavenumber spectra plotted below in fig.

For both L- and H-modes the corresponding normalized wavenumbers are in the
range kps ~ 0.5 — 2.5, where p; = v/2m;T./eB = p;/T./T; is the ion Larmor radius

evaluated at electron temperature.

8.2.2 Experimental Results

The L-mode wavenumber spectra for the radial regions defined in fig. B2(a, b) are
plotted in fig. B3l The horizontal dashed line at -40 dB serves to guide the eye. In
each plot, the u | profile is shown where the respective measurement region is indicated
by a gray stripe. From (a) to (d), the measurement region moves from the plasma edge
towards the plasma center. A general observation is that from large towards small
scales the density turbulence level decreases, which is observed as well in 2D and
3D neutral fluid turbulence (cf sec. Z1.2)). Furthermore, apart from the innermost
spectrum, which shows a large scatter, an inertial range can be identified. Beginning
with the outermost spectrum (a), there is a flat region from k; = 3 to 5 cm™!, where
the spectral fall-off starts. The spectral index of the inertial range is @« = —2.9. The
absence of data at £, > 10 cm™! prohibits an identification of the dissipative range
in the edge k, spectrum. Further inside ((b) and (c)) the spectral index in the k.
range between 4 and 9 cm~! is comparable to the edge spectral index with values of
a = —2.4 and -2.8. Furthermore, a fall-off at higher £, becomes apparent, separated
from the low &, inertial range by a spectral knee at around 9 cm™!. The spectral index
of the high k) inertial range in (b) is & = —11.3. In the innermost k; spectrum (d)
the scatter of data is large, so no conclusions are drawn apart from the spectral fall-off
towards small scales.

Following the theory from sec. the inertial range identified in (a)-(c) could be
interpreted as the enstrophy cascade. However, caution is necessary in the interpre-
tation of the data, as explained above. The underlying theory is based on one energy
injection scale and 2D neutral fluid turbulence, which — as explained above — is not the
case in the measurements presented here.

In the H-mode measurements (fig. B4)), the turbulence level decrease with decreas-
ing structure scale can be confirmed as for the L-mode measurements. In the edge
k, spectrum (a), an inertial range with o = —3.3 can be identified followed by a pro-
nounced spectral fall-off towards higher k; with o between -10 and -14 (large data
scatter). In the shear region (b), the spectral index is comparable, but the turbulence
level has dropped about one order of magnitude in comparison with the edge measure-
ment and also in comparison with the L-mode spectra. The spectral index of the high
k, inertial range is & = —6.8, which is lower than the high &k, spectral index in L-mode
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Figure 8.3: (#23013-51) L-mode wavenumber spectra for different radial regions indicated
in the inset u, profile at the bottom left of each plot. The dashed line at -40 dB serves to
guide the eye. For details refer to the text.

(cf fig. B3(b)), indicating that turbulence reduction is most effective at intermediate
turbulence scales. The turbulence reduction in this region could be due to the shear
decorrelation mechanism, where turbulent structures are torn apart by sheared plasma
flows. In the region of strong E, (c), the turbulence level is reduced as well (and lower
than in L-mode). However, it increases slightly w.r.t. the shear layer measurement (b).
The inertial range shows a spectral index of @« = —3.2, comparable to the measure-
ments further outside. The data scatter at high &, is very large, so no conclusions can
be drawn. For the most internal measurements (d), the turbulence level is comparably
high, and no inertial ranges can be identified.

It should be noted that the appearance of two Doppler peaks close to the u, shear
layer (cf sec. L2Z2) influences the measurement of the Doppler peak amplitude Ap.
Although the higher of the two peaks is used to analyze the spectra, some of the
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Figure 8.4: (#23013-51) Same as fig. B3 for H-mode.

backscattered power is lost to the other Doppler peak. Nevertheless, in the worst case,
when the two Doppler peaks have comparable amplitudes, this results in a factor of
1/2 (or -3 dB), an effect which is limited to a narrow radial range (cf fig. [[.13]). Since
the observed turbulence amplitude reduction in the H-mode shear region is roughly one
order of magnitude (or -10 dB), it can not be explained alone by the double Doppler
peak effect. Obviously some turbulence suppression mechanism, probably F,. shear,
acts on the turbulence.

8.2.3 Interpretation

Comparing L- and H-mode measurements, it becomes apparent that the identified
inertial range in H-mode (o < —3) is slightly more pronounced than that in L-mode
(v > —3). From shear decorrelation theory, it is expected that the power at high
wavenumbers should increase while at low wavenumbers it should decrease, because
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small structures are “born” out of larger ones. This would result in less pronounced
inertial ranges in H-mode. This is not observed here. However, since the difference in «
is small (= 0.5), an interpretation of this effect is arguable. Nevertheless, the fact that
turbulence in the whole wavenumber range is reduced in H-mode w.r.t. the L-mode
plasma in the region of maximum wu; shear (and not in the edge or at the innermost
measurement position), is a strong hint that the shear decorrelation mechanism is
effective and reduces the edge turbulence level in TJ-II H-mode plasmas.

The first far-infrared (FIR) measurements in a tokamak plasma (Mictrotor toka-
mak) were made in 1980 by Semet et al. and yielded o = —3.5 in the range 6 cm™! <
ki <20 cm™! [141], a result comparable to the one obtained here. Devynck et al. in-
vestigated k| spectra in 1993 in the Tore Supra tokamak with collective infrared laser
scattering and obtained spectral indices & = —3 at k; > 6 cm ™! [142]. Furthermore, in
the results at hand, only in one &k, spectrum a maximum is found (fig. B3|(a)) at roughly
ki =5 cm™!. For the other spectra this leads to the conclusion that the maximum is
below k| = 4 ecm™!, a result similar to the one found by Devynck et al. in the same
work [142]. The results of Devynck et al. were confirmed by Zou et al. through the
first k| spectrum measurement by Doppler reflectometry in 1999 for the k; > 4 cm™!
range, where & = —2.8 was measured [44]. Note this value is also measured in the TJ-1T
L-mode plasma. Weisen et al. found that k| spectra peaked at roughly k¥, = 1.3 cm™!
in the TCA tokamak [I43], supporting the above statement. Truc observed a peaking
of the wavenumber spectrum at k; =5 cm™! and o = —4 [144].

Fyfe and Montgomery obtained a dual cascade through numerical simulations with
spectral indices a = —7/3 and -3 for Hasegawa-Mima electrostatic drift-wave turbu-
lence [145]. Hasegawa and Wakatani showed through simulations as well that « = —3
for resistive drift-wave turbulence [146].

There is more work in literature than mentioned here, but a summary of all the re-
sults is out of the scope and not the main interest of this work. In summary, theoretical
predictions and experimental and numerical results have been observed with Doppler
reflectometry in TJ-II as well. The possibility to measure k; spectra in several radial
regions is a benefit of Doppler reflectometry.

8.2.4 On Calibration Quality

With the measured wavenumber spectra, the questions from sec. can be answered.
The outermost L-mode k; spectra from fig.[8 3 are plotted again in fig. The probing
beam frequencies fy and microwave channels are color-coded. In (a), a systematic offset
of roughly 2 dB for the CH1, 34 GHz measurement (orange) causes a separation of the
measurements. Nevertheless, the spectral index deduced above is not affected strongly
by the separation of the measurements. In the k; spectrum in (b), measurements
from both channels and a total of six different probing beam frequencies are mixed.
Although this is a large sample of necessary calibration values, with power variations of
up to 8 dB in the respective channels, the measurements coincide and complement each
other remarkably well, which is a confirmation that the calibration of the electronics
part of the DR excluding the antenna/mirror combination is reliable.
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Figure 8.5: (#23013-51) Perpendicular wavenumber spectra from fig. B3|a-b) with color-
coded frequency and microwave channel information. (a) The 34 GHz measurement points
show an offset of roughly 2 dB w.r.t. the other measurements. (b) The measurements of all
frequencies and channels overlap.

8.3 Radial Dependence of Turbulence Reduction

To calculate the wavenumber spectra of sec. B2l the data were grouped into different
radial regions, and the &, -spectrum plotted for each region. Another representation
is to group the measured data into different wavenumber ranges and plot the radial
turbulence level dependence. In particular, the turbulence level in H-mode ny can
be compared to the turbulence level measured in L-mode 7y, for each channel in each
respective discharge with no need for calibration.

Fig. plots ny normalized to np, for different turbulence scales, which reflects
the reduction of turbulence in H-mode at each scale. A strong reduction close to the
u, shear layer can be observed, confirming the results from the wavenumber spectrum
investigations in sec. B.22l Furthermore, a stronger reduction of intermediate scale
turbulence (k;, = 6 — 11 cm™', corresponding to k ps = 0.9 — 1.7) compared to the
larger and smaller scales can be identified, again confirming the results above. An
interpretation of this effect has not been found yet. Nonetheless, it is tempting to
conjecture that the turbulence decorrelation in the radial direction (L, decrease) results
in a structure elongation in the perpendicular direction, as can be observed in the right
plot of fig. 2.6l This could feed turbulence energy back into the larger k| scales.

8.4 Summary

Perpendicular wavenumber spectra have been measured and compared for the first
time in L- and H-mode plasmas in TJ-II. To be able to compare density fluctuation
levels at different microwave probing beam frequencies, the system has been calibrated.
Best results have been obtained when the emitting and receiving parts of the system
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shear location, the reduction is strongest. In general, of the scales investigated, the intermediate
scales are reduced most effectively.

electronics were connected, which enabled a precise characterization of the system
response. However, due to time restrictions, it has not been possible to calibrate the
transceiving part of the system (antenna — mirror), which should be done in the future
to characterize the system completely.

Nevertheless, with the results from simulation of both antenna and mirror that
the frequency dependence of the transceiving part is negligible, k£, spectra have been
measured in L- and H-modes with radial resolution. For each confinement regime,
several spectra have been obtained at different radial regions, while the choice of regions
depended on physics characteristics of the velocity profiles (mainly in H-mode).

The L-mode spectra show a decrease of turbulence energy towards small scales,
which is seen in both 2D and 3D isotropic Navier-Stokes neutral fluid theory. No
maximum can be detected in the spectra. Inertial ranges can be identified in all L-
mode spectra except for the innermost one, where data scatter is large. Spectral indices
a lie between -2.4 and -2.9. The spectra hint that the dissipative range should be at
ki > 10 em™!, although a clear identification would require a diagnostic measuring at
even higher £ .

In H-mode, the density turbulence level decreases towards small scales as well,
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leading to the same conclusions as in the L.-mode case. The inertial ranges are slightly
more pronounced with a between -3.1 and -3.3. Close to the u, shear layer, the
turbulence energy is decreased preferably at intermediate scales by about one order of
magnitude in comparison to the L-mode measurement, in accordance with the shear
decorrelation mechanism. Further inside, where E, is strong, S(k, ) is reduced as well,
but not as much as at the u,; shear (p = 0.82 — 0.84). At even more internal radii, the
turbulence energy is level with the L-mode measurement.



Chapter 9

Conclusions and Outlook

A Doppler reflectometer has been designed and installed in the TJ-II stellarator. Par-
ticular attention has been paid to the requirements imposed by the complex three-
dimensional structure of the TJ-II magnetic field and plasma. The in-vessel part of the
TJ-II Doppler reflectometer consists of a choked-corrugated antenna and an ellipsoidal
steerable mirror used to focus the beam with a well-defined beam waist to the cutoff
layer in the plasma. The variable tilt angle of the probing beam provides flexibility to
measure at different density turbulence scales (k; = 3~ 15 cm™!) and to use the system
in perpendicular incidence (conventional reflectometry). The system has been aligned
perpendicular to the magnetic field in order to minimize the parallel wavenumber con-
tribution. Two-dimensional full wave simulations and three-dimensional ray-tracing
calculations confirm the correct adaptation of the system to the given requirements.
The reliable operation of the diagnostic has been demonstrated in different types of
plasmas (ECRH, NBI L- and H-mode).

Edge profiles of the perpendicular velocity of density fluctuations v have been mea-
sured both in L-mode (ECRH / NBI) and H-mode (NBI) plasmas in TJ-II. In ECRH
plasmas, u, is positive (ion-diamagnetic direction) for low line-average densities (n.)
and becomes negative (electron-diamagnetic direction) when (n.) exceeds a threshold
density. As this threshold value is approached, the u; reversal is first observed close
to the radial position of maximum density gradient. The u, profiles in NBI plasmas
are negative over the whole radial measurement range. The L-mode profile is rather
flat with wu, -values between -7 and -5 km/s. In H-mode u, increases up to -15 km/s
and a pronounced u, shear develops at p ~ 0.8, where a strong suppression of den-
sity fluctuations is observed. The pronounced u,; shear can give rise to two separated
Doppler peaks, corresponding to the high and low velocity parts of the profile. It has
been shown by two-dimensional full wave simulations that the peaks can be separated
only if the spectral resolution of a Doppler reflectometer is sufficient, underlining the
importance of Doppler reflectometer optimization. The occurrence of the two Doppler
peaks can be exploited to localize the u, shear layer with excellent radial resolution.

The TJ-IT Doppler reflectometer has allowed first-time high spatiotemporal resolu-
tion measurements of the L-H transition in TJ-II. It is observed that the reduction of
density fluctuations is simultaneous with an increase in the low-frequency oscillating

125
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shear flow. Furthermore, the mean radial electric field shear (F, shear) starts to de-
velop roughly one millisecond after the L-H transition and it takes several milliseconds
until the strong H-mode FE, shear is completely established, pointing to zonal flows
as a responsible candidate for triggering the L-H transition. In L-H transitions with
heating power close to the power threshold, an oscillatory coupled behavior between
density fluctuations and F, shear is observed. Here the F, shear follows the density
fluctuations with a phase difference of 90°, resembling predator-prey behavior, where
the density fluctuations are the prey and the FE, shear is the predator. These exper-
imental observations are consistent with L-H transition models based on turbulence
induced sheared / zonal flows.

Perpendicular wavenumber spectra of density fluctuations have been measured in
L- and H-mode NBI plasmas for the first time in TJ-II. Both L- and H-mode spectra
show a decrease of turbulence energy towards small scales. Inertial ranges have been
identified with spectral indices o between -2.4 and -2.9 in L-mode, while in H-mode
slightly stronger spectral indices of -3.1 to -3.3 are observed. The density turbulence
reduction, when going from L- to H-mode, is most pronounced (by about one order
of magnitude) in the radial region of maximum F, shear. Moreover, intermediate
turbulence scales (0.5 — 1.0 cm) have been observed to be suppressed predominantly.

The experimental results give an overview of the applicability of Doppler reflectom-
etry in the TJ-II stellarator. However, the results presented do not exploit all of the
possibilities the new diagnostic provides. Apart from the results of this work, the TJ-1I
Doppler reflectometer has been successfully applied to further physics studies:

e A Master’s thesis was carried out which investigated the influence of rational
surfaces on the edge radial electric field [84].

e Particular regard is paid to the influence of heating power and magnetic config-
uration on the characteristics of both the H-mode and the L-H transition, work
which has partly been published [136] and is still ongoing.

Future plans include correlation measurements which could yield information on the
scale-dependence of the radial correlation length L,, which is predicted to be reduced
by sheared flows (BDT theory). Comparative measurements between L- and H-modes
could yield information of the L, reduction during the L-H transition.

Furthermore, the results obtained with the Doppler reflectometer have motivated
the decision to install a second Doppler reflectometer in a higher frequency band, which
will permit measurements at more internal radial positions. It will be of great interest
to measure the radial evolution of perpendicular velocities, radial electric fields and
wavenumber spectra towards the plasma center.

In a wider context, Doppler reflectometry is a diagnostic technique with a remark-
able potential for future fusion experiments such as W7-X or ITER. In fact, for both
experiments, Doppler reflectometers are planned and first designs are available. Due
to the higher densities expected, higher probing beam frequencies will be needed in
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these experiments. This will not only reduce the size of the employed waveguides and
antennas, but also improve the radial resolution of the diagnostic.
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Appendix A

Gaussian Beam Propagation

A.1 The Paraxial Wave Equation in Cartesian Co-
ordinates

The wave equation (Helmholtz equation) in cartesian coordinates {zyz} is given by

1 02

where V? = (8?/02% + 0%/0y* + 0?/0z?) is the (vector) Laplacian, c is the speed of
light and u represents either the electric field E or the magnetic field H of the wave.

By choosing the ansatz
E = Az, y, 2)e™, (A2)
(A.J) reduces to
(A + kQ) A=0, (A.3)

where k = w/c. If the direction of propagation of the wave is the z-direction, i.e.
A= afz,y, 2)e (A4)
(A.3) can be evaluated and yields

0a  0%a 0%a da

— +—+ — —2itk— =0. (A.5)

oxr?  0y?> 02?2 0z
Assuming the axial variation of the beam to be small in comparison to the perpendicular
variation,
0?a 0?a 0a 0?a
072 ox? 0z? 0y?
and assuming also that the variation along the direction of propagation will be small
over a distance comparable to a wavelength,

and

Ag
Az

da
A K 95 (A.7)
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Figure A.1: Cylindrical coordinate system used for the calculation of gaussian beam param-
eters.

the third term in (A.H) becomes negligible in comparison to the other ones and the
form of the parazial wave equation wave equation is obtained:
?a  0%a da

@ + 8_1/2 — QZK’& =0. (A.S)

A.2 The Paraxial Wave Equation in Cylindrical Co-
ordinates

Since the following will treat of axially symmetric beams, it is convenient to go over
to a cylindrical coordinate system {rpz}, as shown in Fig. [Al r represents the
perpendicular distance from the axis of propagation, taken to be the z-axis. The
angular coordinate is ¢ and varies over [0, 27).
The paraxial wave equation ([A.§)) in cylindrical coordinates takes the form (a =
a(r, ¢, z)) ) ;
@+1@+l@_2ik@20. (A.9)
or?2  ror  r?dyp? 0z
If the beam is assumed to be axially symmetric, the third term in ([A.9) vanishes and
the axially symmetric parazial wave equation is obtained:

0*a  10a - Oa
a2 oy kg =0 (A-10)
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Figure A.2: Illustration of the (gaussian) beam parameters. Going from the near field
(# < zc) to the far field (z > z.) region, the beam parameters change their behavior. For
details refer to the text.

The solution to this equation is straightforward and can be read in detail in [9§].
The normalized solution to ([AI0) is the electric field distribution of a gaussian beam
in cylindrical coordinates

2 o o
E(r,z) = — 2 &XP (—E—zk}z—zm—kngo). (A.11)

Here, the definitions

)
5 = WT“)O (A.12)
N\ 2
w = w 1+(z—) (A.13)
2
R = z+;c (A.14)
¢y = tan! (5) (A.15)

are used. z. is called the confocal distance, w is the beam waist, R the radius of
curvature of the beam and ¢q is the gaussian beam phase shift.

The confocal distance or confocal parameter z. has significant meaning in beam
propagation. It can be seen in (AI3]) - (A.I5)) that the behavior of the beam parameters
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w, R and ¢y is different for 0 < z < z. and z > z.. Therefore, two different regions are
defined, the “near field” for z < z. and the “far field” for z > z., in which the beam
parameters behave differently. This is illustrated in Fig. The distance from the
beam waist z, normalized to the confocal distance z., is shown on the abscissa.

z < z.: The beam radius normalized to the beam waist (w/wy, solid line) remains
collimated, the increase in beam waist up to the confocal distance is very small. The
radius of curvature nomalized to the confocal distance (R/z., dashed line) decreases
from infinity, which is its value at z = 0, since the wavefronts are plane at the beam
waist. The phase shift increases almost linearly.

2z = z.: At this position the beam radius is w = V2w, the radius of curvature is
minimum R = 2z, and the phase shift is ¢y = 7/4.

2z > 2. In the far field, both the beam waist and the beam radius grow linearly
with z. The phase shift converges to a value of /2.



Appendix B

Acronyms / Abbreviations /
Symbols

Acronyms / Abbreviations

AFIT Gaussian fit to the asymmetric part of the power spectrum
CH1, CH2 Channel 1 and 2 of the Doppler reflectometer
COG Center Of Gravity of the power spectrum
CXRS Charge Exchange Recombination spectroscopy
DR Doppler Reflectometry

DBS Doppler Backscattering

ECE Electron Cyclotron Emission

ECRH Electron Cyclotron Resonance Heating

ELM Edge Localized Mode

fig. Figure

FIR Far-Infrared

GAM Geodesic Acoustic Mode

HIBP Heavy Ion Beam Probe

HWHM Half Width at Half Maximum

ISS International Stellarator Scaling

ITG Ion temperature gradient

lhs, rhs Left hand side, right hand side

NBI Neutral Beam Injection

PDF Probability Density Function

PRA Phase Runaway

rhs, lhs see lhs, rhs

RTP Ray turning point

SFIT Gaussian fit to the power spectrum

SOL Scrape-Off Layer

tab. Table

continued on next page. ..
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VSL
w.r.t.
WKB
ZF

Appendix B. Acronyms / Abbreviations / Symbols

Velocity Shear Layer

with respect to

Wentzel-Kramers-Brillouin approximation (Geometrical optics)
Zonal Flow

Latin alphabet

#12345
a

Ap

Ag

EEEED R W

Nth

P, abs

PECRH
PNBI

TJ-IT Shot number 12345

Minor plasma radius

Doppler peak amplitude

Gauss function amplitude

Lorentz function amplitude

Magnetic field strength

Magnetic field strength, absolute value
Magnetic field strength (on-axis)

(Peak) directivity

Energy

Electric field

Radial electric field

Radial electric field, fluctuating part
Microwave frequency

Center of gravity or mean frequency of power spectrum
Doppler shift of power spectrum

Width of Doppler peak

Location parameter for Gaussian

Location parameter for Lorentzian
Nyquist-frequency

Wave vector

Wave number in vacuum

Perpendicular wavenumber of density turbulence
Spectral resolution

Perpendicular wavenumber of ray (ray tracing)
Radial correlation length

Plasma density of species «

Cutoft-density

Line-averaged plasma electron density
Threshold density for the development of a negative E,
Refractive index

Refractive index (perpendicular component)
Refractive index (parallel component)
Absorbed heating power

Heating power (ECRH)

Heating power (NBI)

continued on next page. ..



Py Threshold heating power for the L-H transition
p=nT Plasma pressure

qc Number of counts (stepper motor)
R=o0o/fp Relative width of Doppler peak

Rp Curvature radius of microwave beam
Rc Curvature radius of plasma

R, Reynolds number

r Minor radius

THX Helical coil swing radius

TR Toroidal field coil swing radius

S Power spectrum

S* Asymmetric part of power spectrum
Sa Gaussian distribution

St Lorentzian distribution

S(ky) Wavenumber spectrum

T, Temperature of species «

UL Perpendicular velocity

Ug Poloidal velocity

o Perpendicular velocity, fluctuating part
VExB E x B-velocity

Uph Phase velocity of density fluctuations
w Beam size

Wo Beam waist

Wiia Diamagnetic energy

Wopt Optimum beam waist (in plasma)

Ze Confocal distance

Greek alphabet

135

« Spectral index, particle species

r Particle flux

0 Crossphase

Yp Magnetic field pitch angle

1 Mean value

v Viscosity

wp Doppler shift of the power spectrum (angular)
) Phase of reflectometer measurement, beam wavefront phase
or) Floating potential

op Plasma potential

© Toroidal angle

v Normalized poloidal magnetic flux

p Normalized plasma radius

Po Radial origin of low density velocity shear layer

continued on next page. ..
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Pa Charge density of plasma species «

Peft Effective curvature radius (DR spectral resolution)
Pm.a Mass density of plasma species a

Pp.a Poloidal gyroradius of species «

PRTP Ray turning point

Ps [on Larmor radius at electron temperature

Pshear Radial position of velocity shear layer

o Standard deviation, width of Gaussian distribution
TP Energy confinement time (experimental)

TS ISS predicted energy confinement time

0 Poloidal angle

Bo Tilt angle of microwave beam

Ou Mirror angle w.r.t. horizontal

0, Launch angle of the microwave beam

E(p,0) Gaussian noise with mean p and standard deviation o
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