
ADATE: Automatic Design of
Algorithms Through Evolution

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Inductive Functional Programming

R. Olsson. Inductive Functional
Programming Using Incremental
Program Transformation. Artificial
Intelligence Journal. 74:1. 1995
ADATE: Automatic Design of Algorithms
Through Evolution

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Motivation
Loops and recursion are hard for GP
Crossover is a very low-level program
transformation operator
Unlike GP, exhaustive search, from
simple to complex programs
Implicitely, it assumes Occam’s Razor:
simpler programs are more likely to be
correct

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Representation Language
ML-ADATE: A functional language based
on ML
Why a functional language?: no global
variables, effects of subexpresions are
local, and changes to them remain local
Usually functional programs are smaller
than imperative ones (and the system
looks for simple programs)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ADATE Lenguage

Subset of ML
Type definitions: tuples and lists
Definitions of Functions (and
variables) (in let sentences)
Case sentences (conditionals)
It allows for recursion

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Case Definitions (boolean)

If (A<B) then C else D

Case (A<B) of
False => D
| True => C

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Case Definition (boolean
expressions)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Case Definitions (for types,
like lists)

If (A is the empty list) then B else C
Case A of

Nil => B
| A1::AS1 => C

(A1::AS1 is a list made of an element A1 and
a sublist AS1. A=[1,2,3], A1=1, AS1=[2,3])
For data types, the branches in the case
must correspond to the type definition
A list can either be:

the empty list (NIL)
or a list made of head (A1) and rest (AS1)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Case Definition (list types)
A list can be either:

•The empty list NIL

•A construction of an
element and a list:
cons(element, list)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Function (subroutine)
Definitions (local)

let
fun g(x) = 3*x
in
g(5)

end

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Function Definitions

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specifications in ADATE
A set of types
Primitive functions / terminals
Type of the program f to be inferred
A set of inputs {I1, I2, ..., In}

Well chosen, incremental difficulty and special
cases

A fitness function (output evaluation oe) that
evaluates programs, taking into account the
input/output pairs

{(I1,f(I1)), (I2,f(I2)), ..., (In,f(In))}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Partially Correct Programs

They can return:
The correct answer
Don’t know (?)
The wrong answer
Maximum number of calls reached

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

The Output Evaluation
Function (oe)

Let P the candidate solution (program) to be
evaluated
Input to oe:

list of [(I1, P(I1)), ..., (In, P(In))]
Output from oe:

Number of correct (Nc), wrong (Nw), and don’t
know answers
List of grades / fitness [g1, g2, ..., gk]: list of real
values that measure the quality of the P’s
outputs.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Input/Output Pairs and Grades

In some cases an I/O specification is
adequate:

Reverse list: ([1,2,3], [3,2,1]), ([2,1], [1,2])

In other cases, a graded value is better
Pacman: [g1 = number of points, g2 = time
the Pacman survived]
TSP: [g1 = length of the path]
Shortest path for robot navigation, etc.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of Specification: Sort.
I/O pairs

• ([], [])
• ([0], [0])
• ([0,1], [0,1])
• ([1,0], [0,1])
• ([0,1,2], [0,1,2])

• ([0,2,1], [0,1,2])
• ([1,0,2], [0,1,2])
• ([1,2,0], [0,1,2])
• ([2,0,1], [0,1,2])
• ([2,1,0], [0,1,2])

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specification of Sort. Datatype
datatype list = nil | cons of int * list
That is, a list of integers can either be:

An empty list (nil)
A construction of an integer and another
list (like [1], [1,3], ...)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specification of Sort.
Primitives

Funs_to_use = ["false", "true", "<", "nil", "cons"]
cons (a, (b c)) = (a, b, c)

That is, very primitive functions indeed. Sort
was built from scratch

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specification of Sort. Output
Evaluation Function (oe)

It just counts the number of correct and
wrong outputs predicted, from the I/O set
No grades are used (but they could be used,
by measuring the degree of disorder in the
output list or how far is an element from its
final position)
Ex: ([3,2,1], [1,2,3]), but P([3,2,1]) =
[2,1,3]. g1 = 1 + 1 = 2

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Components for the Heuristic
Functions

Output evaluation function (oe) (“fitness”):
Nc, Nw, [grade1, ..., gradek]

S: Syntactic complexity on the space of
syntactically correct programs (N is the total
number of nodes and mi is the number of
possible symbols at node i):

T: Time Complexity:
Number of recursive calls and “calls” to lets for all
inputs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ADATE Heuristic Functions pei

Absolute fitness values are not assigned to
programs. Instead, they are compared pairwise
Pei, to minimize in lexicographic order (if draws
in the first component, compare the second, and
so on)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Atomic Transformations
R (Replacement): Replacement changes part of the
individual with new expressions. This is the only
transformation that changes the semantics of the
program
REQ (Replacement without making the individuals
fitness worse): Does the same as Replacement but
now the new individual is guaranteed to have an
equal or better fitness (several R are made, and the
best of the non-worsening Rs is chosen)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Atomic Transformations
ABSTR (Abstraction): takes an expression in the
individual and puts that expression in a function in
a let…in block and replaces the expression with a
call to that function.
CASE-DIST (Case distribution): takes a case expression
inside a function call and moves the function call into each
of the case code blocks.
EMB (Embedding): changes the return type of functions in
let … in blocks, in order to make it more general

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of Replacement

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Expression Synthesis for
Replacement

They are generated (enumerated) from
small to large, using case sentences,
and the primitives

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Restrictions in Expression
Synthesis in Recursive Calls

Let g(A1, A2) be a recursive call within g(V1, V2)
Then some Ai has to be smaller than Vi

It does not guarantee termination, and not all
possible forms of recursivity are included
But the aim is to reduce the number of
synthesized expressions anyway

Xs1 smaller than Xs = X1::Xs1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Restrictions in Expression
Synthesis in Case Sentences

More than one branch must be
activated, otherwise the case sentence
is removed
The number of branches in the case
expression depends on the type of the
variable. If A is a list:
Case A of

Nil => B
| A1::AS1 => C

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Abstraction (Function
Definition)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of Abstraction

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Distribution Case

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Compound Transformation.
Coupling Rules

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

22 Compound
Transformations (forms)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search in ADATE
Basically, exhaustive, no randomization, but uses
some heuristics in expression synthesis and
program generation
It starts with the empty program ?
Then program space is explored from small to
large programs (Occam’s Razor)
New programs are generated by means of forms
(compound transformations)
Search = two nested iterative deepening
processes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search in ADATE. Iterative
Deepening.

Worki = number of individuals to be
generated at iteration i
Work0 = 10000
Every iteration, Work is increased
exponentially:

Worki+1 = 10000*ai

a = 3 from theoretical and practical
considerations

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search in ADATE. Primary
Iteration

Iteration 0: generate 10000 programs
Iteration 1: generate 30000 programs
Iteration 2: generate 90000 programs
Etc.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iterative Deepening.
Secondary Iteration

Worki, it is divided equally among all
the forms (22 compound
transformations)
That is, for every form, Worki /22
programs should be produced

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Iterative Deepening.
Secondary Iteration

1. Selection: A program is picked from the
population

2. Generation: Generate children of that program
by performing one compound transformations of
each form. No form can generate more than
Worki /22 programs

3. Insertion: Check the children with the program
evaluation functions to see if they are to be
discarded or inserted into the population

4. Repeat step 2 and 3 for the forms until Worki
programs have been produced. Then, go to 1

?Increasing
work

Number of programs generated

Work = 10000*31

Work = 10000

Work = 10000*32

Empty program

?Increasing
work

Number of programs generated

Work = 10000*31

Work = 10000

R
EMB-R REQ-R

...

Work = 10000*32

?Increasing
work

Number of programs generated

Work = 10000

Work = 10000*31

...
R

EMB-R
REQ-R

Work = 10000*32

EMB-R R REQ-R

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ADATE’s Population
The population is divided into:

Classes: programs with the same number of case
sentences
Subclasses: programs with the same number of let
sentences
Each subclass (c,l) contains three programs, the best
one found so far according to pe1, pe2, and pe3
(Recent versions include the time complexity as well as
the syntactic one)

The aim is to maintain diversity, avoid large
programs eliminating small ones, and make sure
that small programs are expanded first

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

ADATE Population Structure

Number of
case
sentences

Number of let sentences

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3
(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Selecting the Next Program to
be Expanded/Transformed

A program is eligible for expansion, if it is better
than all the programs (c,l)-simpler than itself.
Better, according to at least one pei
The program to be expanded will be the most
(c,l)-simple, among all the eligible
No program is ever expanded, if it contains more
than 1.2 * case sentences than the best program
found so far
Note:

(c1,l1) < (c2,l2) if ((c1<c2) or ((c1=c2) and (l1<l2)))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Program Selection
Cases

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3

p1, p2, p3
(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

In red, programs simpler than the green one

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Inserting a New Program into
the Population

A program is rejected if it is no better
than all its ancestors, for at least one
pei

The program is inserted into its (c,l)
subclass, and replaces the ith program,
if it is better than it, according to the
corresponding pei function

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Solved Problems by ADATE
Simplifying a polynomial:

(x4+3x2) + (x3+2x2) = x4+ x3+5x2

Intersecting two rectangles
Permutating a list: generate all permutations of
a list
Container: move small boxes inside a container
(http://www-ia.hiof.no/~geirvatt/)
Other: Reversing a list, List delete min, Intersecting two
lists, Sorting a list , Locating a substring, Binary search
tree insertion, Transposing a matrix, Binary search tree
deletion, Path finding in graphs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Primitives Used to Solve the
Problems

Sorting a List
["false", "true", "<", "nil", "cons"]

Simplifying a Polinomial
["+", "=", "false", "true","term", "nil", "cons"]

Intersection of two rectangles
["<", "point", "rect", "none", "some"]

Inserting/deleting in binary trees
["<", "bt_nil", "bt_cons", "false", "true"]

Reversing/Intersection/Deleting in lists
["false", "true", "=", "nil", "cons"]

Permutation Generation
["false", "true", "nil'", "cons", "append"]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Results (200MHz PentiumPro)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Sort Program

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Sort Program (O(n2))
f(x) =
case x of

[] => x
A:AS =>

g(y) =
case y of

[] => [A]
B:BS => if (A<B) then B:g(BS) else A:y

in g(f(AS))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Intersection of Two
Rectangles

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Program Space Size

Sorting program:
96 bits -> 2^96 programs
2^20 = 1048576

Intersection of Two Rectangles:
239 bits ->2^239 programs

Huge program spaces!

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions ADATE
Incremental program construction is
possible
Heuristic functions work well in such
huge spaces
ADATE designed for synthesis of
algorithms, not for the synthesis of
numerical functions (lots of GP work
belongs to this class)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions

Different approaches to Automatic
Inductive Programming:

Synthesis-based (functional, logic):

Search-based (GP, PIPE, ADATE, OOPS)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions

Synthesis-based:
Algorithms with conditionals and recursion
Mostly, structural tasks
Use input/output pairs but no performance
measure
Require few training instances, and few
computational effort

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions
Search-based:

Generality, all kinds of tasks but ...
High computational effort
I/O pairs & performance measures
GP: can evolve all kind of structures
(mathematical expressions, and even circuits and
antennaes), but recursion is hard
PIPE: Very similar
ADATE: more algorithmically orientated, deals well
with recursion, higher level operators

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Conclusions
Already some remarkable results
Computer power keeps growing, so much
more is to be expected
Heuristically guided incremental generation of
programs is possible
Why not combining synthesis and search
based techniques? (suggested by U. Schmidt)
Focus on the fact that it is computer
programs that are to be generated, study
better the space of useful computer programs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Generality / Computing Effort
Tradeoff

Computing
Effort

Synthesis-
functional

Generality

Synthesis-
logic

GP

PIPE

ADATE

I/O pairs

I/O pairs &
performance
measure

Algorithms

Math.
expressions
, structures,
...

	ADATE: Automatic Design of Algorithms Through Evolution
	Inductive Functional Programming
	Motivation
	Representation Language
	ADATE Lenguage
	Case Definitions (boolean)
	Case Definition (boolean expressions)
	Case Definitions (for types, like lists)
	Case Definition (list types)
	Function (subroutine) Definitions (local)
	Function Definitions
	Specifications in ADATE
	Partially Correct Programs
	The Output Evaluation Function (oe)
	Input/Output Pairs and Grades
	Example of Specification: Sort. I/O pairs
	Specification of Sort. Datatype
	Specification of Sort. Primitives
	Specification of Sort. Output Evaluation Function (oe)
	Components for the Heuristic Functions
	ADATE Heuristic Functions pei
	Atomic Transformations
	Atomic Transformations
	Example of Replacement
	Expression Synthesis for Replacement
	Restrictions in Expression Synthesis in Recursive Calls
	Restrictions in Expression Synthesis in Case Sentences
	Abstraction (Function Definition)
	Example of Abstraction
	Distribution Case
	Compound Transformation. Coupling Rules
	22 Compound Transformations (forms)
	Search in ADATE
	Search in ADATE. Iterative Deepening.
	Search in ADATE. Primary Iteration
	Iterative Deepening. Secondary Iteration
	Iterative Deepening. Secondary Iteration
	ADATE’s Population
	ADATE Population Structure
	Selecting the Next Program to be Expanded/Transformed
	Program Selection
	Inserting a New Program into the Population
	Solved Problems by ADATE
	Primitives Used to Solve the Problems
	Results (200MHz PentiumPro)
	Sort Program
	Sort Program (O(n2))
	Intersection of Two Rectangles
	Program Space Size
	Conclusions ADATE
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Generality / Computing Effort Tradeoff

