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In the general multivariate elliptical class of data densities we define a scalar precision parameter r 
through a normalization of the scale matrix V. Using the improper prior on r which preserves the 
results under Normality for all other parameters and prediction, we consider the posterior moments 
of r. For the subclass of scale mixtures of Normals we derive the Bayesian counterpart to a sampling 
theory result concerning uniformly minimum variance unbiased estimation of 7.
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1. INTRODUCTION 

Much of the recent Bayesian work l on regression models with non-Normal data densities was 

prompted by Zellner (1976), who considered linear models with multivariate Student t error terms, 

a particular member of the elliptical family. 

The general multivariate elliptical (or ellipsoidal) class of data densities, introduced in Section 

2 of this paper, is characterized by ellipsoidal isodensity curves and the way the density function 

changes over the ellipsoids is indicated by a nonnegative labelling function gn., (-) indexed by a 

parameter /I of finite dimension. Location and shape of the ellipsoids are parameterized by 0, and we 

distinguish a scalar precision parameter r which is implicitly defined through a normalization of the 

scale matrix. Given 0, the volume of the ellipsoids is determined by r. In Osiewalski and Steel (1992) 

it was shown that an improper reference prior on r combined with prior independence between r 
and (0,/1) will preserve the "usual" posterior results on (0,/1) that we find under Normality as well as 

the predictive results in the entire multivariate elliptical class. Such robustness with respect to the 

sampling model is only possible because the entire influence of the choice of gn .• O is taken up by the 

conditional posterior distribution of r, given the other parameters. 

In this paper, we focus on the posterior properties of r, in particular its moments and the 

moments of its inverse, er. We find in Section 3 that these moments can, provided they exist, be 

expressed as a product of two factors: one data-dependent but not influenced by the particular choice 

of labelling function gn., (.), and the other depending on the form of &..,0 but not on the data. In 

other words, the posterior moments of r or er under the multivariate elliptical sampling model and 

a commonly used improper prior are equal to the corresponding moments under Normality times 

some correcting factor, which completely captures the effect of the particular tail behaviour assumed 

and does not depend on the observed sample. This result holds given ° and /I, and is also shown to 

hold after marginalizing with respect to (0,/1), under the additional assumption of prior independence 

between ° and /I (proposition 1). 

For some important subclasses of elliptical densities, the posterior moment of er are compared 

with those under Normality (Section 4), and it is found that a multivariate Student t density leads to 

1 We mention lammalamadaka et al. (1987) and Chib et al. (1988) who consider scale mixtures of 
Normals, an elliptical subclass that contains the Student t case, whereas Osiewalski (1991) and Chib et al. 
(1992) generalize to nonlinear models. Osiewalski and Steel (1992) examine the entire family of multivariate 
elliptical densities. 



the same posterior mean of d2 as obtained in the Normal case. The latter was noted in Zellner (1976) 

for linear spherical models. 

Under the extra assumptions of linearity and an improper uniform prior on e, Section 5 

derives the 8ayesian counterpart to a sampling theoretic result concerning uniformly minimum 

variance unbiased estimation of (J2 found by Gir6n et al. (1989), in the context of scale mixtures of 

Normals. The latter is an important subclass of the elliptical family, with the Student t as a prominent 

member. 

Section 6 is devoted to elliptical data densities that allow a finite sampling variance. The 

scalar factor that multiplies the normalized scale matrix in the sampling variance is then defined as 

the common variance factor if. This if is related to d2, but generally not equal to it. Its posterior 

moments are equal to the corresponding moments of (J2 under Normality times a correcting factor, 

which is again not dependent on the observed data (Proposition 2). Interestingly, the inverse yl 

always has the same mean as under Normality for the whole elliptical class with finite sampling 

variance (Corollary 2). This ties in directly with a sampling theory result on unbiased estimation of 

if in linear models. 

Section 7 concludes and an appendix groups some probability density functions used in the 

course of the paper. 
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2. THE ELLIPTICAL SAMPLING MODEL 

In this paper we assume that the observation vector y E Rn possesses a multivariate elliptical 

distribution around some location vector h(x,/3) with scale matrix V (X,~) and the density of y exists. 

The latter is then necessarily equal to 

where the labelling function or density generator ~ .• (.) is indexed by n and v and satisfies 

(2.2) 

For general properties of such symmetric multivariate distributions we refer the reader to Kelker 

(1970), Cambanis et al. (1981), Dickey and Chen (1985) and Fang et al. (1990). The location vector 

in this regression context is a known function of a set of exogenous variables in X and a coefficient 

vector /3 of finite dimension. We reparameterize ~ into (1/, r) such that 

V(X,ij) = ~V(X'l1)' 
't 

(2.3) 

where r E R+ is a scalar precision parameter and V(X,1/) is a normalized PDS scale matrix function 

of X and a finite parameter vector 1/. For notational convenience, we now define ° = (ft,1/) E e, 
which summarizes all the information about location and shape of the ellipsoids. 

Under (2.1)-(2.3) the squared radius r, which is equal to r = r d(y,X,O) with 

d(y,X,8) = (y-h(X,~))1 V(X,Tl)-l (y-h(X,~)), 

has the following density function: 

n/2 .E-1 
_7t_ (r2) 2 g (r2), 
1~) n,v 

(2.4) 

which was essentially proven in Kelker (1970) and can be found in Dickey and Chen (1985, p.161) 

and Fang et al. (1990, p.36). 
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3. THE PRIOR STRUCTURE AND POSTERIOR RESULTS 

In Osiewalski and Steel (1992) it was shown that the improper prior 

p(w) = p(~2)p(6,v) = ~ p(6,v), 
~2 

(3.1) 

where c > 0 and p(e,v) is functionally independent of r E RH renders predictive inference and 

posterior inference on e completely robust with respect to the choice of the labelling function g.,.,(). 

In other words, as the multivariate reference2 Normal sampling model is a special case of (2.1) by 

choosing gn .• (-) = gnO = (2'7f}nl2 exp (-·/2), we obtain exactly the same predictive results and 

posterior results on e as under Normality for gm: member of the elliptical class in (2.1) - (2.3). 

Indeed, after integrating out r using (2.2), the marginal density of (y,e,v) given X is [see Osiewalski 

and Steel (1992, Section 3)] 

n 1_.E 
p(y,6,vlx) = c r(~)1t-2p(6,v) IV(X,1l) 1- 2 d(y,x,6) 2 (3.2) 

which no longer depends on gn .• (-). The entire influence of the choice of tail-behaviour through ~..<-) 

is captured by the conditional posterior of r. Let us therefore examine the posterior of r, and in 

particular its moments, under the prior structure in (3.1). 

We find that the prior in (3.1) preserves the form of the sampling density (2.4) for the 

squared radius r2 = r d(y,X,e) in its conditional posterior 

(3.3) 

Equivalently, the posterior of the precision parameter r is 

(3.4) 

2 Generally, the labelling function &..l)=(qhr)"n exp (-q.) leads to the Normal data density with 
variance (02/2q)V(X,17). As our reference Normal case we choose the value q=1I2. 
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Since (3.3) only depends on /I and not on the other parameters nor the data, posterior 

moments of r or of its inverse er = r have exactly the same dependence on (y,X,O) for all elliptical 

data densities: 

(3.5) 

where mEM. and M. = {aER: r R+(r~ap(r2I/1) dr2 < oo}. In particular, ifm= -1 is an element 

of M., then (3.5) gives us the conditional posterior mean of the scale parameter cr. In the reference 

Normal case, where /I is absent and p(r2) = fo (r21 n/2, 112), conditional posterior moments are given 

by 

(3.6) 

and exist if and only if m> -n/2. 

From (3.5) and (3.6) we now derive that for m E M. n (-n/2, 00) 

(3.7) 

the product of the moment under Normality in (3.6), which depends on d(y,X,O), and the factor 

f(m,n,v) (3.8) 

which entirely captures the influence of the choice of a particular elliptical data density but does not 

depend on the observed sample. Under prior (functional) independence between 0 and /I this 

interesting product structure is preserved after marginalizing (3.6) and (3.7) with respect to 0, leading 

to our main result. 

Proposition 1. For any elliptical data density (2.l),(2.2) with the reparameterization (2.3) and using 

the improper prior (3.1) with p(O,/I) = p(O) p(/I) and p(/I) proper, we obtain for m E M. n MN: 

(3.9) 

where the last factor denotes the corresponding posterior moment in the reference case of a Normal 

data density with mean h(X,m and covariance matrix T·2V(X;1/), and MN is the set of all a E R for 

which EN[ (r)a I y,X] exists. 
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Proof From Osiewalski and Steel (1992) we know that under the prior pew) = (c/r) p(8) p(v) the 

marginal posterior of (8,v) factorizes as p(8,v i y,X) = p(v) p(8 i y,X), where the posterior of 8 is the 

same as under Normality, i.e., 

1 n 
p(8Iy,x) = PN(8Iy,X)oc p(8) IV(X,T)) 1-'2d(y,x,8) '2 

Thus, from (3.7), we obtain 

E[('t 2 )ml y ,X,v] = f(m,n,v)fEN[('t 2 )mly ,x,e]PN(8Iy,X)d6 
8 

• 
An obvious extension of Proposition 1 is to marginalize (3.9) with respect to v, which, given 

the proof above, leads to 

(3.10) 

where we integrate f(m,n,v) with the proper prior p(v) over the parameter space of v. Clearly, if 

f( -1 ,n,v) = 1 the posterior mean of er is the same as in the reference Normal case, whatever the form 

of p(v). 

In the next section we shall examine f(m,n,v) in some important special cases of the elliptical 

family. As a byproduct, we shall arrive at the result that f(-l,n,v) = I for multivariate Student t data 

densities with precision matrix rV(X,1/)"1, and where v E R+ is the degrees of freedom parameter. 

Zellner's (1976) seminal paper contains the latter result for linear functions h(X,,6) = X,6 and 

spherical models, i.e. V(X,1/) = In. 
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4. SOME SUBCLASSES OF ELLIPTICAL DATA DENSmES 

4.1 Scale Mixtures of Normals. 

The form of the data density is then 

(4.1) 

where fN° (.1.) denotes the Normal density function (see the Appendix) and F,(.) is a distribution 

function over R+ , parameterized by /I. The squared radius density is now a mixture of gamma 

densities fo(r2[ (n/2),(1I2A) and 

r (E+m) 
2 [Am dF (A) 

r (~). v , 

(4.2) 

so that 

(4.3) 

provided that m > -n/2 and the integral in (4.3) is finite. Generally, for scale mixtures of Normals 

the mth moment of r is the same as under Normality if E(Aml /I) = 1. In particular, f(-l,n,/I) = 1 if 

and only if n> 2 and E(A-ll /I) = 1; this holds e.g. for the case where A-I is gamma distributed with 

parameters (/112, /1/2) for /I> 0, which induces a Student t data density with /I degrees of freedom, 

location h(X,{J) and precision rY(X,17)"I. 

4.2. Beta-prime Distributed Squared Radius. 

Dickey and Ch en (1985, Appendix A.3) introduce the subclass with an F-distributed squared 

radius. Here, equivalently, we assume that r2 has a beta-prime or inverted beta density (see 

Appendix): 

(4.4) 

with /I = (a,b,c) E R/. Moments for -b<m<a are given by 
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leading to the expression 

f(m,n,v) 

r (a-m) r (b+m) 
r(a)r(b) 

~~)r(a-m)r (b+m) 

r (~+m) r(a)r(b) 

(4.5) 

(4.6) 

for m E (-b,a) n (-n/2, 00). By taking b= n/2 we obtain the Pearson Type VII family (see Fang 

et al., p.8l) for which f(-l,n,v) becomes 2a/c. Restricting this family even further by taking c=2a, 

thus equating the posterior mean of d2 with that under reference Normality, we end up in the 

multivariate Student case with 2a degrees of freedom and location and precision as in Subsection 4.1. 

The latter density is thus a common element of both subclasses considered sofar. 

From (4.6) a general necessary and sufficient condition to obtain f(-I,n,v)=l is b> 1, n>2 

and (n-2)a=(b-l)c. 

4.3. Beta Distributed Squared Radius. 

This subclass induces data densities that are nonzero only inside the ellipsoid El = { yE Rn: 

r d(Y,X,8) =::;; e} by assuming [see Dickey and Chen (1985, Appendix A.2)] 

for m> -VI' and thus 

f(m,n,v) 

provided m>max {-n/2, -VI}' 

r(v 1 +V 2)r(v 1 +m) -t,m 
r(v 1 +v 2 +m)r(v 1 ) 

r (~) r(v 1 +v 2 )r(v 1 +m) (~ r, 
r (~+m) r(v 1 +v 2 +m)r(v 1 ) 

Generally, (4.9) becomes unity for m= -1 if and only if n> 2, VI > 1 and 

(n-2)(vI + v2-l) = e (vI-I). 

8 
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The special case "1 = n12 corresponds to the multivariate Pearson Type 11 data density, treated 

in e.g. Johnson (1987, Section 6.2) and Fang et al. (1990, Section 3.4). In that case, the posterior 

mean of er is the same as under Normality if and only if i= n+2"2-2 as well as n>2. Reducing the 

subclass even further by also taking "2= 1 we obtain a data density that is uniform over the ellipsoid 

El and f(-l,n,v)=l if and only if i=n. 

4.4. Symmetric Kotz type Distributions. 

The density generator g"I) is now of the form [see Fang et al. (1990, p.76)) 

where,,= (q,s.N) with q,s>O, 2N+n>2 and, from (2.2), we obtain 

Using (4.10) in (2.4) we can derive 

n 

12N+n-2) 
28 

1t 2 c N+E-2 
__ n (r2) 2 exp (_qr 2S ) , 

1~) 

(4.10) 

(4.11) 

( 4.12) 

which becomes a gamma density fo(r2 I N+(n12)-l, q) for s= 1. Clearly, for N= 1 and s= 1 the data 

density (2.1) is Normal, but with (u2/2q)V(X,11) as its covariance matrix. If also q = 112, we are back 

in the reference Normal case. Moments of the squared radius are easily calculated as [see Fang et al. 

(1990, p.77)): 

(4.13) 

from which 
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f(m,n,v) (4.14) 

The original Kotz distribution introduced in Kotz (1975) assumes s = 1, in which case 

f(-l,n,lI) = 1 if and only if n>2, 2N+n>4 and (n-2)q= N+(n/2)-2. For general s>O, these 

1 

conditions become n> 2 and (n-2) q s r ( 2N;~-4) = r ( 2N;~-2) . 

4.5. Summary 

Table 1 summarizes some results concerning f(m,n,lI) and the posterior mean of er in the 

subclasses of elliptical distributions considered here. 

Table 1: Expressions for f(m,n,lI) and conditions for E(c?i y,X,II)=EN(c?i y,X) provided 

-1 EMJiMN • 

Subclass of 
ell iptical distribution 

Scale mixtures of Normals 
(4.1 ) 

* Student t with 11 degrees of 
freedom, 

** Cauchy, 11 = 1 

f(m,n,lI) 

(4.3) 

m<.! 
2 

r (~-m) 
2 m.fi ' 

m<.! 
2 

10 

Necessary and sufficient 
conditions for f(-1 ,n,lI) = 1 

n>2 and E(A,llll)=1 

n>2 

n>2 



Table 1: continued 

Beta-prime distr. r2 (4.4) 

* Pearson VII 
b= n/2 

** Student t with 2a degrees 
of freedom 

b=n/2, 
c=2a 

Beta d istr. r2 (4.7) 

* Pearson 11 
III = n/2 

** Uniformity over ellipsoid 
III = n/2, 

112 = 1 

Kotz type distribution (4.10) 

* Gamma distr. r 

fa (r21 N+~-l,q) 

s= 1 

** Normal 
N=l, s=l 

(4.6) 

r(a-m) (.E)m 
r(a) 2 ' 

m<a 

r(a-m) m 
r(a) a , 

m<a 

(4.9) 

1~+1) (J )m 
1~+m+l) 2 ' 

m> -E.-1 
2 

(4.14) 

(2q)-m, 
m>-n/2 

n>2, b> 1 and 
(n-2)a=(b-1)c 

n>2 and c=2a 

n>2 

n>2, Ill> 1 and 
(n-2)(1I1 + 112-1) = ((111-1) 

n>2 and 
(=n+2112-2 

n>2 and 
(=n 

n>2 and 

1 (n-2) q sr ( 2N;~-4) 

'" r (2N;~-2) 

n>2,2N+n>4 
and (n-2)q = N + (n/2)-2 

n>2 
and q= 1/2 

Note: * indicates a special case of the subclass, whereas ** identifies a further specialization of *. 
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S. LINEAR REGRESSION WITH KNOWN COV ARIANCE STRUCTURE. 

In the elliptical sampling model (2.1) - (2.3) we shall now make the assumptions that the 

location is a linear function h(X,i3) = Xi3 with X of full column rank k and that the normalized scale 

matrix is known V(X,7]) = V. Furthermore, we add the prior assumption that p(8) is improper 

uniform on Rk, the entire parameter space of 8=13. Our main result in Proposition 1 then reduces to: 

Corollary 1. If the sampling density of yE Rn is multivariate elliptical with location vector Xi3, scale 

matrix T,2V and labelling function ~..(-) satisfying (2.2), and if we assume the improper prior 

p(i3,r,v) = p(i3)p(r)p(v) cc T'~(V) with proper p(v), we obtain for mEM. n (- (n-k)/2, 00) 

(5.1) 

Proof In this linear case with uniform prior, the posterior density of 13 is simply the Student t density 

p(i3ly,X)= ft
k (i3ln-k, (X'X)'l X'y, [(n-k)/y'Py] X'V'lX), which is used to marginalize (3.6) with 

respect to 13. Then (3.9) trivially gives (5.1). • 
Applying Corollary 1 to the special case of scale mixtures of Normals as in Subsection 4.1, 

we obtain the Bayesian counterpart to the sampling-theory result in Theorem 1.2 of Gir6n et al. 

(1989). The latter find that if we consider mixing distributions with finite first and second order 

moments: 

~ P= l. A d F. (A) (5.2) 

and 

a~=l. (A-~p) 2 dFy (A) I (5.3) 

then 

82= (yIPy) / [(n-k) ~Fl (5.4) 

is the uniformly minimum variance unbiased estimator for ,r = T'2, i.e. that 
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(5.5) 

and also that 

(5.6) 

Using (4.3) and (5.1) for m= 1,2 we find that for scale mixtures of Normals with JLF and (JF
2 

both finite the following posterior results hold 

(5.7) 

and 

(5.8) 

which are, indeed, the exact Bayesian counterparts to (5.5) and (5.6). The only difference is that 

Gir6n et al. (1989) condition on all parameters and examine the sampling properties of fi1, whereas 

we condition on the sample and v [which means that we take fi1 in (5.4) to be given] and consider the 

posterior moments of r. 

Of course, Corollary 1 can also be used to find the posterior moments of a2 in the case of 

scale mixtures of Normals. In particular, we obtain that for n>k+2. 

(5.9) 

and for n> k+4 

var(o~IY,x,v)= (yIPy)~{(n-k-2)E(l-2I\1)-(n-k-4) [E(l-llv)P} (5.10) 
(n-k-2) 2 (n-k-4) 

13 



For the special case of the multivariate Student t, (5.9) simplifies to 

(5.11) 

as obtained in Zellner (1976) and which is exactly the same as in the reference Normal case (see also 

Subsections 4.1 and 4.2), whereas (5.10) becomes 

(yIPy) z (2+~ (n-k-2) 1 
var(02Iy,x,v) = v 

(n-k-2) 2 (n-k-4) 

(5.12) 

which reduces to the expression under Normality only if ~oo, i.e. if the Student t tends to the 

reference Normal data density. 

6. POSTERIOR MOMENTS OF THE COMMON V ARIANCE FACTOR 

Let us now restrict our attention to those elliptical distributions which possess second order 

moments. This rules out cases for which E(r2\ JI) is not finite, like the Cauchy and the Student t 

density with 2 degrees of freedom, but allows us to consider the variance of the data density (2.1) 

under (2.2) and (2.3): 

2 
Var(ylx,w) =~E(r2Iv) V(X,T')) 

n 

[see Dickey and Chen (1985, p. 161) or Fang et al. (1990, p.34»). 

(6.1) 

Note that EN(r2\ JI) = n so that in the case of reference Normality the common variance factor, 

which multiplies the properly normalized matrix V(X,l1), is just er itself. In general, however, this 

common variance factor, say '1', is 

(6.2) 

using (3.8). Combining (6.2) with Proposition 1 we obtain 

Proposition 2. For the elliptical data densities (2.1)-(2.3) where 1 E M, and under the improper 

prior (3.1) with p(O, JI) = p(O) p(JI) and p(JI) proper, we obtain for m E M, n MN: 

14 



This proposition allows the following interesting corollary for m = 1: 

Corollary 2. Under the conditions of Proposition 2 we obtain 

(6.3) 

• 

(6.4) 

so that the inverse common variance factor always has the same mean as under Normality, regardless 

of the choice of the particular elliptical density with finite sampling variance. • 

Generally, EN(r: y,X) = n J ed(y,X,O)"l PN(O: y,X)dO, but in the linear case of Corollary 1 

it becomes the simple expression [see (5.1)]: 

(6.5) 

with leads to 

(6.6) 

Expression (6.6) is the Bayesian counterpart, under elliptical data densities with 1 E M, and 

the prior in Propositions 1 and 2, of the well-known classical result that t is an unbiased estimator 

of the common variance factor ii' under any sampling distribution with mean X{3 and allowing for a 

covariance matrix ii'V. 

Focusing attention on the mean of the common variance factor itself, rather than of its 

inverse, we use Proposition 2 for m = -1 and obtain that 

(6.7) 

Clearly, the nice robustness results in Corollary 2 do not hold for the posterior mean of ii'. With the 

help of the expressions in Section 4 we can, however, evaluate (6.7) in certain elliptical subclasses, 
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provided M. contains the elements (-1, 1) and -1 is in MN• The muItivariate Student t data density 

with JI> 2 degrees of freedom, for example, does not lead to the same posterior mean of the common 

variance factor as under Normality, but to 

(6.8) 

where the proportionality factor tends to unity as v-oo, i.e. as the Student t tends to Normality. Table 

2 summarizes the results for the elliptical families considered in Section 4. 

Table 2: Expressions for f(-I,n,JI) f(l,n,JI) and conditions for E('l'ly,X,JI) = EN(a2Iy,X) provided 

1 E M, and -1 E M, n MN • 

Necessary and sufficient 
Subclass of 

f(-l,n,v) f(l,n,v) 
conditions for 

elliptical distribution 
f(-l,n,v) f(l,n,v) =1 

Scale mixtures of n > 2 and 
Normals (4.1), 

E().-llv) E().lv) E().-llv) E().lv) =1 
n > 2 

* Student t with JI 
deg"ees of freedom n > 2 and 

v 
JI -- 00 (Normality) 

f ().-11~ ~) v>2 
v-2 

G 2' 2 ' 

Beta-prime distr. r2 
(n-2)ab n>2,a>l,b>1 

(4.4), n>2, a> 1, b> 1 n (a-1) (b-1) 
ab and n 

a+b-1 2 

* Pearson VII 
b= n/2 n>2 and a 

a -- 00 (Normality) a-1 

** Student t with 2a degrees 
of freedom 

b=nJ2, n>2 and 
c=2a 

a 
a -- 00 (Normality) a-1 
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Table 2: continued 

Beta distr. r2 
(4.7), n>2, PI> 1 

* Pearson 11 
PI = n/2 

** Uniformity over ellipsoid 
PI = n/2, 

P2 = 1 

Kotz type distribution 
(4.10), n>2 

* Gamma distr. r 

fa (r2IN+~ -1, q), 
s=l, 2N+n> 4 

** Normal 
N=1, s=1 

(n-2) (V 1 +V 2 -1)V 1 

n(v I +v 2 ) (vI-I) 

v +13 
2 2 

n 
n+2 

(n-2)r (~)r (W) 
n [r ( 2N;~-2)r 

(n-2)(N+~-I) 

~N+~-2) 

n>2, V 1 >1 and 

2v 1 (v 1 +v 2 -1) = nV 2 

n>2 and 
P2 -+ 00 (Normality) 

n>2 and 

(n-2)~ 2N;~-4)r (2~;n) 

n>2 and N= 1 

n>2 

The elliptical distributions with gamma distributed squared radius fo(r2 : n/2, q) (q E RJ 

is the Normal family with variance (u2/2q)V(X,17), where u2/2q is equal to the common variance factor 

'lr from (6.1). Therefore, within this Normal class, moments of'lr are not affected by the choice of 

q (see Table 2) whereas moments of 0-2 are (see Table 1). This illustrates the difference between 0-2, 

an arbitrarily chosen parameter, and 'lr, which is linked to the sampling variance of the observables. 

Given a normalization rule for V(X,17) in (2.3) 'lr is then uniquely identified in the entire class &. .• ,aO 

= a·nl2gn .• (·/a) (aE RJ which satisfies (2.2) if gn .• O does. If, in addition, we wish to identify 0-2, a 

particular subclass needs to be chosen by fixing a. 
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7. CONCLUDING REMARKS 

By using a standard Jeffreys' type improper prior on a scalar precision parameter r we isolate 

the consequences of choosing a non-Normal data density within the much richer multivariate elliptical 

class in the conditional posterior density of r. If, in addition, we impose prior (functional) 

independence between the parameters 8, describing the ellipsoid, and JI, which indexes the labelling 

function, the posterior moments of r given JI can be expressed as their marginal counterparts under 

reference Normality multiplied by a factor which does not depend on the observed sample. 

Examining the posterior moments of r and, in particular, the mean of its inverse, c?, we 

derive conditions under which E(c? i y,X,JI) is the same as that in the reference Normal case for 

several well-known subclasses of elliptical distributions. Within the family of scale mixtures of 

Normals we find Bayesian counterparts to sampling-theoretical results in Gir6n et al. (1989) for linear 

regression models, and we derive the result, pre-empted in Zellner (1976) that the posterior mean of 

a2 is the same for multivariate Student t as for reference Normal sampling models. 

If we express the sampling variance of the data as a product of a properly normalized matrix 

and a scalar common variance factor 'If, we can consider the posterior moments of 'If which is related 

to, but generally not equal to, c? For any member of the multivariate elliptical class with finite 

sampling variance the mean of the inverse of 'If turns out to be the same, given our previous prior 

assumptions. In the linear case, this leads to a Bayesian counterpart for elliptical data densities of the 

classical result that ir = y'Py/(n-k) is an unbiased estimator of 'If under any sampling distribution 

with mean X{3 and covariance matrix 'lfV. The posterior mean of 'If itself, however, is generally 

found to differ from that under Normality. 
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Appendix: Probability density functions. 

A k-variate Normal density on x E Rk with mean vector b E Rk and PDS kxk. covariance matrix C: 

1 f: (xlb, C) = ((21t) klcll-2" exp-i (x-b) 'c;-l (x-b) . 

A k-variate Student t density on x E Rk with r> 0 degrees of freedom, location vector b E Rk and 

PDS kxk precision matrix A: 

r(~) 
k 

r (4) (Ilt) 2" 

A gamma density on z> 0 with a,b > 0: 

A beta density on v E (O,c) with a,b,c> 0: 

r(a+b) (X)4-1(1_X)b-l. 
f B ( vi a , b, e) = er ( a) r (b) e e 

A three-parameter inverted beta or beta prime density on z>O with a,b,c>O [see Zellner (1971, p. 

376)]: 

r(a+b) (.E.
e

)b-l(1+.E.
e

)-(4+b) . 
e r(a)r(b) 
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